WorldWideScience

Sample records for forest tree mortality

  1. Tree Mortality

    Science.gov (United States)

    Mark J. Ambrose

    2012-01-01

    Tree mortality is a natural process in all forest ecosystems. However, extremely high mortality also can be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....

  2. Vulnerability of Amazon forests to storm-driven tree mortality

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Holm, Jennifer A.; Magnabosco Marra, Daniel; Rifai, Sami W.; Riley, William J.; Chambers, Jeffrey Q.; Koven, Charles D.; Knox, Ryan G.; McGroddy, Megan E.; Di Vittorio, Alan V.; Urquiza-Muñoz, Jose; Tello-Espinoza, Rodil; Alegria Muñoz, Waldemar; Ribeiro, Gabriel H. P. M.; Higuchi, Niro

    2018-05-01

    Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds associated with severe convective storms are dominant natural drivers of tree mortality in the Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted increase in storm events might affect forest ecosystems within the Amazon are not well understood. We found that windthrows are common in the Amazon region extending from northwest (Peru, Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in the northwest Amazon. More frequent winds, produced by more frequent severe convective systems, in combination with well-known processes that limit the anchoring of trees in the soil, help to explain the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the frequency and intensity of convective storms in the Amazon have the potential to increase wind-related tree mortality. A forest demographic model calibrated for the northwestern and the central Amazon showed that northwestern forests are more resilient to increased wind-related tree mortality than forests in the central Amazon. Our study emphasizes the importance of including wind-related tree mortality in model simulations for reliable predictions of the future of tropical forests and their effects on the Earth’ system.

  3. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    Science.gov (United States)

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.

  4. Drought, tree mortality, and wildfire in forests adapted to frequent fire

    Science.gov (United States)

    Scott L Stephens; Brandon M Collins; Christopher J Fettig; Mark A Finney; Chad M Hoffman; Eric E Knapp; Malcolm P North; Hugh Safford; Rebecca B Wayman

    2018-01-01

    Massive tree mortality has occurred rapidly in frequent-fire-adapted forests of the Sierra Nevada, California. This mortality is a product of acute drought compounded by the long-established removal of a key ecosystem process: frequent, low- to moderate-intensity fire. The recent tree mortality has many implications for the future of these forests and the ecological...

  5. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate.

    Science.gov (United States)

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-06-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.

  6. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition

    Science.gov (United States)

    Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.

    2013-01-01

    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096

  7. Observations from old forests underestimate climate change effects on tree mortality.

    Science.gov (United States)

    Luo, Yong; Chen, Han Y H

    2013-01-01

    Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.

  8. Chapter 5 - Tree Mortality

    Science.gov (United States)

    Mark J. Ambrose

    2014-01-01

    Tree mortality is a natural process in all forest ecosystems. Extremely high mortality, however, can also be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....

  9. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2011-01-01

    We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...

  10. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.

    Directory of Open Access Journals (Sweden)

    Qingyin Zhang

    Full Text Available Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P 2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1% than angiosperms (4.8% but did not differ significantly between evergreen (6.2% and deciduous (6.1% species. Stand age and wood density affected the mortality rate. Saplings (4.6% had a higher mortality rate than mature trees (3.2%, and mortality rates significantly decreased with increasing wood density for all species (P < 0.01. We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.

  11. The contribution of competition to tree mortality in old-growth coniferous forests

    Science.gov (United States)

    Das, A.; Battles, J.; Stephenson, N.L.; van Mantgem, P.J.

    2011-01-01

    Competition is a well-documented contributor to tree mortality in temperate forests, with numerous studies documenting a relationship between tree death and the competitive environment. Models frequently rely on competition as the only non-random mechanism affecting tree mortality. However, for mature forests, competition may cease to be the primary driver of mortality.We use a large, long-term dataset to study the importance of competition in determining tree mortality in old-growth forests on the western slope of the Sierra Nevada of California, U.S.A. We make use of the comparative spatial configuration of dead and live trees, changes in tree spatial pattern through time, and field assessments of contributors to an individual tree's death to quantify competitive effects.Competition was apparently a significant contributor to tree mortality in these forests. Trees that died tended to be in more competitive environments than trees that survived, and suppression frequently appeared as a factor contributing to mortality. On the other hand, based on spatial pattern analyses, only three of 14 plots demonstrated compelling evidence that competition was dominating mortality. Most of the rest of the plots fell within the expectation for random mortality, and three fit neither the random nor the competition model. These results suggest that while competition is often playing a significant role in tree mortality processes in these forests it only infrequently governs those processes. In addition, the field assessments indicated a substantial presence of biotic mortality agents in trees that died.While competition is almost certainly important, demographics in these forests cannot accurately be characterized without a better grasp of other mortality processes. In particular, we likely need a better understanding of biotic agents and their interactions with one another and with competition. ?? 2011.

  12. Widespread Amazon forest tree mortality from a single cross-basin squall line event

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro

    2010-08-01

    Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.

  13. Detecting Drought-Induced Tree Mortality in Sierra Nevada Forests with Time Series of Satellite Data

    Directory of Open Access Journals (Sweden)

    Sarah Byer

    2017-09-01

    Full Text Available A five-year drought in California led to a significant increase in tree mortality in the Sierra Nevada forests from 2012 to 2016. Landscape level monitoring of forest health and tree dieback is critical for vegetation and disaster management strategies. We examined the capability of multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS in detecting and explaining the impacts of the recent severe drought in Sierra Nevada forests. Remote sensing metrics were developed to represent baseline forest health conditions and drought stress using time series of MODIS vegetation indices (VIs and a water index. We used Random Forest algorithms, trained with forest aerial detection surveys data, to detect tree mortality based on the remote sensing metrics and topographical variables. Map estimates of tree mortality demonstrated that our two-stage Random Forest models were capable of detecting the spatial patterns and severity of tree mortality, with an overall producer’s accuracy of 96.3% for the classification Random Forest (CRF and a RMSE of 7.19 dead trees per acre for the regression Random Forest (RRF. The overall omission errors of the CRF ranged from 19% for the severe mortality class to 27% for the low mortality class. Interpretations of the models revealed that forests with higher productivity preceding the onset of drought were more vulnerable to drought stress and, consequently, more likely to experience tree mortality. This method highlights the importance of incorporating baseline forest health data and measurements of drought stress in understanding forest response to severe drought.

  14. Monitoring tree mortality in mature Douglas-fir forests: size and species matter

    Science.gov (United States)

    Background/Question/MethodsA regional increase in tree mortality rates associated with climate change will influence forest health and ecosystem services, including water quality and quantity. In recent decades, accelerated tree mortality has occurred in some, but not all, fores...

  15. Research frontiers for improving our understanding of drought‐induced tree and forest mortality

    Science.gov (United States)

    Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael

    2018-01-01

    Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.

  16. Effect of different tree mortality patterns on stand development in the forest model SIBYLA

    Directory of Open Access Journals (Sweden)

    Trombik Jiří

    2016-09-01

    Full Text Available Forest mortality critically affects stand structure and the quality of ecosystem services provided by forests. Spruce bark beetle (Ips typographus generates rather complex infestation and mortality patterns, and implementation of such patterns in forest models is challenging. We present here the procedure, which allows to simulate the bark beetle-related tree mortality in the forest dynamics model Sibyla. We explored how sensitive various production and stand structure indicators are to tree mortality patterns, which can be generated by bark beetles. We compared the simulation outputs for three unmanaged forest stands with 40, 70 and 100% proportion of spruce as affected by the disturbance-related mortality that occurred in a random pattern and in a patchy pattern. The used tree species and age class-specific mortality rates were derived from the disturbance-related mortality records from Slovakia. The proposed algorithm was developed in the SQLite using the Python language, and the algorithm allowed us to define the degree of spatial clustering of dead trees ranging from a random distribution to a completely clustered distribution; a number of trees that died in either mode is set to remain equal. We found significant differences between the long-term developments of the three investigated forest stands, but we found very little effect of the tested mortality modes on stand increment, tree species composition and diversity, and tree size diversity. Hence, our hypothesis that the different pattern of dead trees emergence should affect the competitive interactions between trees and regeneration, and thus affect selected productivity and stand structure indicators was not confirmed.

  17. EAB induced tree mortality impacts ecosystem respiration and tree water use in an experimental forest

    Science.gov (United States)

    Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler

    2011-01-01

    The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...

  18. Tree mortality estimates and species distribution probabilities in southeastern United States forests

    Science.gov (United States)

    Martin A. Spetich; Zhaofei Fan; Zhen Sui; Michael Crosby; Hong S. He; Stephen R. Shifley; Theodor D. Leininger; W. Keith Moser

    2017-01-01

    Stresses to trees under a changing climate can lead to changes in forest tree survival, mortality and distribution.  For instance, a study examining the effects of human-induced climate change on forest biodiversity by Hansen and others (2001) predicted a 32% reduction in loblolly–shortleaf pine habitat across the eastern United States.  However, they also...

  19. Basin-Wide Amazon Forest Tree Mortality From a Large 2005 Storm

    Science.gov (United States)

    Negron Juarez, R. I.; Chambers, J. Q.; Guimaraes, G.; Zeng, H.; Raupp, C.; Marra, D. M.; Ribeiro, G.; Saatchi, S. S.; Higuchi, N.

    2010-12-01

    Blowdowns are a recurrent characteristic of Amazon forests and are produced, among others, by squall lines. Squall lines are aligned clusters (typical length of 1000 km, width of 200 km) of deep convective cells that produce heavy rainfall during the dry season and significant rainfall during the wet season. These squall lines (accompanied by intense downbursts from convective cells) have been associated with large blowdowns characterized by uprooted, snapped trees, and trees being dragged down by other falling trees. Most squall lines in Amazonia form along the northeastern coast of South America as sea breeze-induced instability lines and propagate inside the continent. They occur frequently (~4 times per month), and can reach the central and even extreme western parts of Amazonia. Squall lines can also be generated inside the Amazon and propagate toward the equator. In January 2005 a squall line propagated from south to north across the entire Amazon basin producing widespread forest tree mortality and contributed to the elevated mortality observed that year. Over the Manaus region (3.4 x104 km2), disturbed forest patches generated by the squall produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. The elevated mortality observed in the Central Amazon in 2005 is unlikely to be related to the 2005 Amazon drought since drought did not affect Central or Eastern Amazonia. Assuming a similar rate of forest mortality across the basin, the squall line could have potentially produced tree mortality estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. This vulnerability is likely to increase in a warming climate with models projecting an increase in storm intensity.

  20. Climatic correlates of tree mortality in water- and energy-limited forests.

    Directory of Open Access Journals (Sweden)

    Adrian J Das

    Full Text Available Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1 drought stress, or (2 the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  1. Drought-related tree mortality in drought-resistant semi-arid Aleppo pine forest

    Science.gov (United States)

    Preisler, Yakir; Grünzweig, José M.; Rotenberg, Eyal; Rohatyn, Shani; Yakir, Dan

    2014-05-01

    The frequency and intensity of drought events are expected to increase as part of global climate change. In fact, drought related tree mortality had become a widespread phenomenon in forests around the globe in the past decades. This study was conducted at the Yatir FLUXNET site, located in a 45 years old Pinus halepensis dominated forest that successfully sustained low mean annual precipitation (276mm) and extended seasonal droughts (up to 340 days between rain events). However, five recent non-consecutive drought years led to enhanced tree mortality in 2010 (5-10% of the forest population, which was not observed hitherto). The Tree mortality was characterized by patchiness, showing forest zones with either >80% mortality or no mortality at all. Areas of healthy trees were associated with deeper root distribution and increased stoniness (soil pockets & cracks). To help identify possible causes of the increased mortality and its patterns, four tree stress levels were identified based on visual appearance, and studied in more detail. This included examining from spring 2011 to summer 2013 the local trees density, root distribution, annual growth rings, needle length and chlorophyll content, rates of leaf gas exchange, and branch predawn water potential. Tree phenotypic stress level correlated with the leaf predawn water potential (-1.8 and -3.0 in healthy and stressed trees, respectively), which likely reflected tree-scale water availability. These below ground characteristics were also associated, in turn, with higher rate of assimilation (3.5 and 0.8 μmol CO2 m-2s1 in healthy and stress trees, respectively), longer needles (8.2cm and 3.4 cm in healthy and stressed trees, respectively). Annual ring widths showed differences between stress classes, with stressed trees showing 30% narrower rings on average than unstressed trees. Notably, decline in annual ring widths could be identified in currently dead or severely stressed trees 15-20 years prior to mortality or

  2. Causes and implications of the correlation between forest productivity and tree mortality rates

    Science.gov (United States)

    Stephenson, Nathan L.; van Mantgem, Philip J.; Bunn, Andrew G.; Bruner, Howard; Harmon, Mark E.; O'Connell, Kari B.; Urban, Dean L.; Franklin, Jerry F.

    2011-01-01

    At global and regional scales, tree mortality rates are positively correlated with forest net primary productivity (NPP). Yet causes of the correlation are unknown, in spite of potentially profound implications for our understanding of environmental controls of forest structure and dynamics and, more generally, our understanding of broad-scale environmental controls of population dynamics and ecosystem processes. Here we seek to shed light on the causes of geographic patterns in tree mortality rates, and we consider some implications of the positive correlation between mortality rates and NPP. To reach these ends, we present seven hypotheses potentially explaining the correlation, develop an approach to help distinguish among the hypotheses, and apply the approach in a case study comparing a tropical and temperate forest.

  3. Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis

    Science.gov (United States)

    Sharon M. Hood

    2010-01-01

    This report synthesizes the literature and current state of knowledge pertaining to reintroducing fire in stands where it has been excluded for long periods and the impact of these introductory fires on overstory tree injury and mortality. Only forested ecosystems in the United States that are adapted to survive frequent fire are included. Treatment options that...

  4. Mortality and recruitment of trees in a tropical rain forest of Choco (Colombia)

    International Nuclear Information System (INIS)

    Quinto M, Harley; Rengifo I, Reimer; Ramos P, Yan

    2009-01-01

    A Rates of mortality and recruitment of trees were calculated in a permanent research plot established in the tropical wet forest. The study was based on two measurements, one was done in 1998 and the other in 2005, in which were measured the diameter (DBH) of trees with DBH>10 cm and surveyed dead and recruited trees. We also determined the type of mortality, the mortality and exponential recruitment coefficient, the aboveground biomass (AB) and the mean life of the forest. In the first census 709 individuals were recorded and 710 in the second one. The mean annual mortality rate of trees was 1.39% and the exponential mortality coefficient was 1.41%; the most common types of mortality were uprooting and snags. Annual recruitment rate was 1.2% and the exponential rate of recruitment was 1.19%. Mean life of this forest was estimated in 58.6 years. The AB was of 237.31 t ha-1 in the year 1998, and in the 2005 was of 259.9 t ha-1. The recruited individuals presented AB of 5.08 t ha-1, and the dead of 17.72 t ha-1; the increment of AB in survivors was 30.97 t ha-1 average. Similarity of number of individuals between measurements, as well as in the other parameters evaluated, suggest a possible balance between mortality and recruitment of this forest. Based on the results of this study, we could no reject the hypothesis of dynamic equilibrium of this tropical wet forest.

  5. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L.

    2014-01-01

    How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averaged 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.

  6. Competition and climate affects US hardwood-forest tree mortality

    Science.gov (United States)

    Daniel A. Yaussy; Louis R. Iverson; Stephen N. Matthews

    2013-01-01

    Individual-tree measurements have been collected periodically on sites established in Kentucky, New York, Ohio, and Pennsylvania to investigate the effects of thinning on the growth and yield of valuable hardwood species. These plots were installed between 1959 and 1985. The long-term characteristics of this data set of 47,853 trees allowed us to investigate potential...

  7. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota

    Science.gov (United States)

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.

    2017-01-01

    Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.

  8. Temperature as a potent driver of regional forest drought stress and tree mortality

    Science.gov (United States)

    Williams, A. Park; Allen, Craig D.; Macalady, Alison K.; Griffin, Daniel; Woodhouse, Connie A.; Meko, David M.; Swetnam, Thomas W.; Rauscher, Sara A.; Seager, Richard; Grissino-Mayer, Henri D.; Dean, Jeffrey S.; Cook, Edward R.; Gangodagamage, Chandana; Cai, Michael; McDowell, Nathan G.

    2012-01-01

    s the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000-2007. The FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps water-limited forests globally, towards distributions unfamiliar to modern civilization.

  9. The Role of Tree Mortality in Vitality Assessment of Sessile Oak Forests

    Directory of Open Access Journals (Sweden)

    Imre Berki

    2016-12-01

    Full Text Available Background and Purpose: The drought-induced vitality loss of sessile oak (Quercus petraea (Matt. Liebl. has been continuously observed in Hungary for more than three decades. The decrease in stand density as a consequence of drought-induced mortality has not been taken into consideration in most of the monitoring methods. Materials and Methods: Forest stands without any forest intervention during the last 30 years were selected. Quadrats were designated for the analysis in 18 sessile oak stands along a climatic transect in which foliage transparency and stand density were measured. Drought stress was defined by the water balance approach. By combining the foliage transparency and the relative stand density, a new cumulative assessment method of stand level vitality was introduced to get a more realistic picture about the effects of long-term drought (lasting for several decades on the sessile oak forests in South-East Europe. Results: The calculated health status (100% - vital; 0% - dead of the sessile oak stands was between 70-90% in the moist South-West Hungary and below 50% close to its xeric limit. The individual tree-based vitality assessment method gave considerably higher values on 17 out of 18 sites. Conclusions: Forest monitoring should also consider stand level-based tree mortality in oak forests while assessing health condition especially close to its xeric limit. The proposed new method provides a more realistic picture about the effects of climate change on sessile oak stands particularly for forest managers interested in changing in the wood stock of forests.

  10. Water and Forest Health: Drought Stress as a Core Driver of Forest Disturbances and Tree Mortality in Western North America

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.

  11. Downstream impacts of a Central Amazonian hydroelectric dam on tree growth and mortality in floodplain forests

    Science.gov (United States)

    Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.

    2017-12-01

    The flood pulse of large Amazonian Rivers is characterized by predictable high- and low-water periods during the annual cycle, and is the main driving force in the floodplains regulating decomposition, nutrient cycles, productivity, life cycles and growth rhythms of floodplains' biota. Over at least 20 millions of years, tree species in these ecosystems developed complex adaptative mechanisms to tolerate flooding, such as the tree species Macrolobium acaciifolium (Fabaceae) and Eschweilera tenuifolia (Lecythidaceae) occupying the lower topographic positions in the floodplain forests along the oligothrophic black-water rivers. Tree growth occurs mainly during terrestrial phase, while during the aquatic phase the anoxic conditions result into a cambial dormancy and formation of annual tree rings. The hydroelectric dam Balbina which was installed in the Uatumã River (central Amazonia) during the 1980s altered significantly the flood pulse regime resulting into higher minimum and lower maximum annual water levels. The suppression of the terrestrial phase caused large-scale mortality of flood-adapted trees growing on the lower topographic positions, as evidenced by radiocarbon dating and cross-dating techniques (dendrochronology). In this study we estimated the extension of dead forests using high resolution ALOS/PALSAR radar images, for their detection along a fluvial distance of more than 280 km downstream of the power plant. Further we analyzed tree growth of 60 living individuals of E. tenuifolia by tree-ring analyses comparing the post- and pre-dam periods. We evaluated the impacts of the altered hydrological regime on tree growth considering ontogenetic effects and the fluvial distance of the trees to the dam. Since the Balbina power plant started operating the associated igapó forests lost about 11% of its cover. We found a significant reduction of tree growth of E. tenuifolia during the post-dam period as a consequence of the increasing aquatic phase duration

  12. Climate, Tree Growth, Forest Drought Stress, and Tree Mortality in Forests of Western North America: Long-Term Patterns and Recent Trends

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis

  13. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    Science.gov (United States)

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  14. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    Science.gov (United States)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  15. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests

    Science.gov (United States)

    Allen, Craig D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, Michel; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.(T.); Gonzalez, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J.-H.; Allard, G.; Running, S.W.; Semerci, A.; Cobb, N.

    2010-01-01

    Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.

  16. Tree rings reveal a major episode of forest mortality in the late 18th century on the Tibetan Plateau

    Science.gov (United States)

    Fang, Ouya; Alfaro, René I.; Zhang, Qi-Bin

    2018-04-01

    There is a growing research interest on studying forest mortality in relation to ongoing climate warming, but little is known about such events in past history. The study of past forest mortality provides valuable information for determining baselines that establish the normal parameters of functioning in forest ecosystems. Here we report a major episode of previously undocumented forest mortality in the late 18th century on the northern Tibetan Plateau, China. The event was not spatially uniform, in which a more severe mortality happened in dryer sites. We used dendrochronology to compare radial growth trajectories of individual trees from 11 sites in the region, and found that many trees showed positive growth trend, or growth release, during 1796-1800 CE. Growth releases are a proxy indicator of stand thinning caused by tree mortality. The growth release was preceded by an almost two-decade long growth reduction. Long-term drought related to weakened North Atlantic Oscillation and frequent El Niño events are the likely factors causing the tree mortality in a large area of the plateau. Our findings suggest that, besides the effect of drought in the late 18th century, large-scale forest mortality may be an additional factor that further deteriorated the environment and increased the intensity of dust storms.

  17. Herbivory of tropical rain forest tree seedlings correlates with future mortality.

    Science.gov (United States)

    Eichhorn, Markus P; Nilus, Reuben; Compton, Stephen G; Hartley, Sue E; Burslem, David F R P

    2010-04-01

    Tree seedlings in tropical rain forests are subject to both damage from natural enemies and intense interspecific competition. This leads to a trade-off in investment between defense and growth, and it is likely that tree species specialized to particular habitats tailor this balance to correspond with local resource availability. It has also been suggested that differential herbivore impacts among tree species may drive habitat segregation, favoring species adapted to particular resource conditions. In order to test these predictions, a reciprocal transplant experiment in Sabah, Malaysia, was established with seedlings of five species of Dipterocarpaceae. These were specialized to either alluvial (Hopea nervosa, Parashorea tomentella) or sandstone soils (Shorea multiflora, H. beccariana), or were locally absent (S. fallax). A total of 3000 seedlings were planted in paired gap and understory plots in five sites on alluvial and sandstone soils. Half of all seedlings were fertilized. Seedling growth and mortality were recorded in regular samples over 3.5 years, and rates of insect herbivore damage were estimated from censuses of foliar tissue loss on marked mature leaves and available young leaves. Greater herbivory rates on mature leaves had no measurable effects on seedling growth but were associated with a significantly increased likelihood of mortality during the following year. In contrast, new-leaf herbivory rates correlated with neither growth nor mortality. There were no indications of differential impacts of herbivory among the five species, nor between experimental treatments. Herbivory was not shown to influence segregation of species between soil types, although it may contribute toward differential survival among light habitats. Natural rates of damage were substantially lower than have been shown to influence tree seedling growth and mortality in previous manipulative studies.

  18. A Global Perspective on Warmer Droughts as a Key Driver of Forest Disturbances and Tree Mortality (Invited)

    Science.gov (United States)

    Allen, C. D.

    2013-12-01

    Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress

  19. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality.

    Science.gov (United States)

    Ruiz-Benito, Paloma; Ratcliffe, Sophia; Zavala, Miguel A; Martínez-Vilalta, Jordi; Vilà-Cabrera, Albert; Lloret, Francisco; Madrigal-González, Jaime; Wirth, Christian; Greenwood, Sarah; Kändler, Gerald; Lehtonen, Aleksi; Kattge, Jens; Dahlgren, Jonas; Jump, Alistair S

    2017-10-01

    Intense droughts combined with increased temperatures are one of the major threats to forest persistence in the 21st century. Despite the direct impact of climate change on forest growth and shifts in species abundance, the effect of altered demography on changes in the composition of functional traits is not well known. We sought to (1) quantify the recent changes in functional composition of European forests; (2) identify the relative importance of climate change, mean climate and forest development for changes in functional composition; and (3) analyse the roles of tree mortality and growth underlying any functional changes in different forest types. We quantified changes in functional composition from the 1980s to the 2000s across Europe by two dimensions of functional trait variation: the first dimension was mainly related to changes in leaf mass per area and wood density (partially related to the trait differences between angiosperms and gymnosperms), and the second dimension was related to changes in maximum tree height. Our results indicate that climate change and mean climatic effects strongly interacted with forest development and it was not possible to completely disentangle their effects. Where recent climate change was not too extreme, the patterns of functional change generally followed the expected patterns under secondary succession (e.g. towards late-successional short-statured hardwoods in Mediterranean forests and taller gymnosperms in boreal forests) and latitudinal gradients (e.g. larger proportion of gymnosperm-like strategies at low water availability in forests formerly dominated by broad-leaved deciduous species). Recent climate change generally favoured the dominance of angiosperm-like related traits under increased temperature and intense droughts. Our results show functional composition changes over relatively short time scales in European forests. These changes are largely determined by tree mortality, which should be further

  20. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest.

    Science.gov (United States)

    Lutz, James A; Larson, Andrew J; Furniss, Tucker J; Donato, Daniel C; Freund, James A; Swanson, Mark E; Bible, Kenneth J; Chen, Jiquan; Franklin, Jerry F

    2014-08-01

    Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P old-growth forests.

  1. Tree mortality based fire severity classification for forest inventories: A Pacific Northwest national forests example

    Science.gov (United States)

    Thomas R. Whittier; Andrew N. Gray

    2016-01-01

    Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image changedetection to produce maps for large (>400 ha) fires, and is...

  2. A joint individual-based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics.

    Science.gov (United States)

    Aubry-Kientz, Mélaine; Rossi, Vivien; Boreux, Jean-Jacques; Hérault, Bruno

    2015-06-01

    Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20-year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait-based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests.

  3. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray; Thomas A. Spies; Robert J. Pabst

    2012-01-01

    Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Species’ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...

  4. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure

    Directory of Open Access Journals (Sweden)

    Hiroki Itô

    2016-12-01

    Full Text Available The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca, and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees.

  5. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa Forests in the Florida Keys, USA

    Directory of Open Access Journals (Sweden)

    Jay P. Sah

    2010-01-01

    Full Text Available In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  6. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa) Forests in the Florida Keys, USA

    International Nuclear Information System (INIS)

    Sah, J.P.; Ross, M.S.; Ross, M.S.; Ogurcak, D.E.; Snyder, J.R.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on post fire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with under story type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pine lands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  7. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    Science.gov (United States)

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  8. Tree mortality in mature riparian forest: Implications for Fremont cottonwood conservation in the American southwest

    Science.gov (United States)

    Andersen, Douglas

    2015-01-01

    Mature tree mortality rates are poorly documented in desert riparian woodlands. I monitored deaths and calculated annual survivorship probability (Ps) in 2 groups of large (27–114 cm DBH), old (≥40 years old) Fremont cottonwood (Populus fremontii Wats.) in a stand along the free-flowing Yampa River in semiarid northwestern Colorado. Ps = 0.993 year-1 in a group (n = 126) monitored over 2003–2013, whereas Ps = 0.985 year-1 in a group (n = 179) monitored over the same period plus 3 earlier years (2000–2003) that included drought and a defoliating insect outbreak. Assuming Ps was the same for both groups during the 10-year postdrought period, the data indicate that Ps = 0.958 year-1 during the drought. I found no difference in canopy dieback level between male and female survivors. Mortality was equal among size classes, suggesting Ps is independent of age, but published longevity data imply that either Ps eventually declines with age or, as suggested in this study, periods with high Ps are interrupted by episodes of increased mortality. Stochastic population models featuring episodes of low Ps suggest a potential for an abrupt decline in mature tree numbers where recruitment is low. The modeling results have implications for woodland conservation, especially for relictual stands along regulated desert rivers.

  9. Minnesota's Forest Trees. Revised.

    Science.gov (United States)

    Miles, William R.; Fuller, Bruce L.

    This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…

  10. Sap flow of black ash in wetland forests of northern Minnesota, USA: Hydrologic implications of tree mortality due to emerald ash borer

    Science.gov (United States)

    Andrew C. Telander; Robert A. Slesak; Anthony W. D' Amato; Brian J. Palik; Kenneth N. Brooks; Christian F. Lenhart

    2015-01-01

    Black ash (Fraxinus nigra) mortality caused by the invasive emerald ash borer (EAB) is of concern to land managers in the upper Great Lakes region, given the large areas of ash-dominated forest and potential alteration of wetland hydrology following loss of this foundation tree species. The importance of changes in evapotranspiration (ET) following...

  11. Urban tree mortality: a primer on demographic approaches

    Science.gov (United States)

    Lara A. Roman; John J. Battles; Joe R. McBride

    2016-01-01

    Realizing the benefits of tree planting programs depends on tree survival. Projections of urban forest ecosystem services and cost-benefit analyses are sensitive to assumptions about tree mortality rates. Long-term mortality data are needed to improve the accuracy of these models and optimize the public investment in tree planting. With more accurate population...

  12. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Schwilk, Dylan W.; Knapp, Eric E.; Ferrenberg, Scott; Keeley, Jon E.; Caprio, Anthony C.

    2006-01-01

    Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used prescription burning. Most fires prior to EuroAmerican settlement occurred during the late summer and early fall and most prescribed burning has taken place during the latter part of this period. Poor air quality and lack of suitable burn windows during the fall, however, have resulted in a need to conduct more prescription burning earlier in the season. Previous reports have suggested that burning during the time when trees are actively growing may increase mortality rates due to fine root damage and/or bark beetle activity. This study examines the effects of fire on tree mortality and bark beetle attacks under prescription burning during early and late season. Replicated early season burn, late season burn and unburned control plots were established in an old-growth mixed conifer forest in the Sierra Nevada that had not experienced a fire in over 120 years. Although prescribed burns resulted in significant mortality of particularly the smallest tree size classes, no difference between early and late season burns was detected. Direct mortality due to fire was associated with fire intensity. Secondary mortality due to bark beetles was not significantly correlated with fire intensity. The probability of bark beetle attack on pines did not differ between early and late season burns, while the probability of bark beetle attack on firs was greater following early season burns. Overall tree mortality appeared to be primarily the result of fire intensity rather than tree phenology at the time of the burns. Early season burns are generally conducted under higher fuel moisture conditions, leading to less fuel

  13. Tree Stress and Mortality from Emerald Ash Borer Does Not Systematically Alter Short-Term Soil Carbon Flux in a Mixed Northeastern U.S. Forest

    Directory of Open Access Journals (Sweden)

    Jaclyn Hatala Matthes

    2018-01-01

    Full Text Available Invasive insect pests are a common disturbance in temperate forests, but their effects on belowground processes in these ecosystems are poorly understood. This study examined how aboveground disturbance might impact short-term soil carbon flux in a forest impacted by emerald ash borer (Agrilus planipennis Fairmaire in central New Hampshire, USA. We anticipated changes to soil moisture and temperature resulting from tree mortality caused by emerald ash borer, with subsequent effects on rates of soil respiration and methane oxidation. We measured carbon dioxide emissions and methane uptake beneath trees before, during, and after infestation by emerald ash borer. In our study, emerald ash borer damage to nearby trees did not alter soil microclimate nor soil carbon fluxes. While surprising, the lack of change in soil microclimate conditions may have been a result of the sandy, well-drained soil in our study area and the diffuse spatial distribution of canopy ash trees and subsequent canopy light gaps after tree mortality. Overall, our results indicate that short-term changes in soil carbon flux following insect disturbances may be minimal, particularly in forests with well-drained soils and a mixed-species canopy.

  14. Relationship between precipitation and tree mortality levels in coastal California forests infested with sudden oak death

    Science.gov (United States)

    Brent Oblinger; Zachary Heath; Jeffrey Moore; Lisa Fischer

    2013-01-01

    Phytophthora ramorum has caused extensive oak (Quercus) and tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh) mortality in portions of the central and north coasts of California. In conjunction with stream and terrestrial surveys, aerial detection surveys have played a...

  15. Trees for future forests

    DEFF Research Database (Denmark)

    Lobo, Albin

    Climate change creates new challenges in forest management. The increase in temperature may in the long run be beneficial for the forests in the northern latitudes, but the high rate at which climate change is predicted to proceed will make adaptation difficult because trees are long living sessile...... organisms. The aim of the present thesis is therefore to explore genetic resilience and phenotypic plasticity mechanisms that allows trees to adapt and evolve with changing climates. The thesis focus on the abiotic factors associated with climate change, especially raised temperatures and lack...... age of these tree species and the uncertainty around the pace and effect of climate, it remains an open question if the native populations can respond fast enough. Phenotypic plasticity through epigenetic regulation of spring phenology is found to be present in a tree species which might act...

  16. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Carlson Chris H

    2012-06-01

    Full Text Available Abstract Background Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. Results We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10–35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Conclusions Our ability to predict

  17. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA.

    Science.gov (United States)

    Carlson, Chris H; Dobrowski, Solomon Z; Safford, Hugh D

    2012-06-28

    Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10-35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Our ability to predict the response of forest carbon resources to anthropogenic and

  18. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan.

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the

  19. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation

  20. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires

    Science.gov (United States)

    S.T. Michaletz; E.A. Johnson; M.T. Tyree

    2012-01-01

    It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem:...

  1. Genetic transformation of forest trees

    African Journals Online (AJOL)

    Admin

    In this review, the recent progress on genetic transformation of forest trees were discussed. Its described also, different applications of genetic engineering for improving forest trees or understanding the mechanisms governing genes expression in woody plants. Key words: Genetic transformation, transgenic forest trees, ...

  2. Remotely sensed predictors of conifer tree mortality during severe drought

    Science.gov (United States)

    Brodrick, P. G.; Asner, G. P.

    2017-11-01

    Widespread, drought-induced forest mortality has been documented on every forested continent over the last two decades, yet early pre-mortality indicators of tree death remain poorly understood. Remotely sensed physiological-based measures offer a means for large-scale analysis to understand and predict drought-induced mortality. Here, we use laser-guided imaging spectroscopy from multiple years of aerial surveys to assess the impact of sustained canopy water loss on tree mortality. We analyze both gross canopy mortality in 2016 and the change in mortality between 2015 and 2016 in millions of sampled conifer forest locations throughout the Sierra Nevada mountains in California. On average, sustained water loss and gross mortality are strongly related, and year-to-year water loss within the drought indicates subsequent mortality. Both relationships are consistent after controlling for location and tree community composition, suggesting that these metrics may serve as indicators of mortality during a drought.

  3. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    Science.gov (United States)

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Does raking basal duff affect tree growth rates or mortality?

    Science.gov (United States)

    Erin Noonan-Wright; Sharon M. Hood; Danny R. Cluck

    2010-01-01

    Mortality and reduced growth rates due to raking accumulated basal duff were evaluated for old, large-diameter ponderosa and Jeffrey pine trees on the Lassen National Forest, California. No fire treatments were included to isolate the effect of raking from fire. Trees were monitored annually for 5 years after the raking treatment for mortality and then cored to measure...

  5. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains.

    Science.gov (United States)

    Csilléry, Katalin; Kunstler, Georges; Courbaud, Benoît; Allard, Denis; Lassègues, Pierre; Haslinger, Klaus; Gardiner, Barry

    2017-12-01

    Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms -1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these

  7. A recursive algorithm for trees and forests

    OpenAIRE

    Guo, Song; Guo, Victor J. W.

    2017-01-01

    Trees or rooted trees have been generously studied in the literature. A forest is a set of trees or rooted trees. Here we give recurrence relations between the number of some kind of rooted forest with $k$ roots and that with $k+1$ roots on $\\{1,2,\\ldots,n\\}$. Classical formulas for counting various trees such as rooted trees, bipartite trees, tripartite trees, plane trees, $k$-ary plane trees, $k$-edge colored trees follow immediately from our recursive relations.

  8. Tree mortality predicted from drought-induced vascular damage

    Science.gov (United States)

    Anderegg, William R.L.; Flint, Alan L.; Huang, Cho-ying; Flint, Lorraine E.; Berry, Joseph A.; Davis, Frank W.; Sperry, John S.; Field, Christopher B.

    2015-01-01

    The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality1, 2, 3. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality4, 5. Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.

  9. Using inventory data to determine the impact of drought on tree mortality

    Science.gov (United States)

    Greg C. Liknes; Christopher W. Woodall; Charles H. Perry

    2012-01-01

    Drought has been the subject of numerous recent studies that hint at an acceleration of tree mortality due to climate change. In particular, a recent global survey of tree mortality events implicates drought as the cause of quaking aspen mortality in Minnesota, USA in 2007. In this study, data from the Forest Inventory and Analysis program of the USDA Forest Service...

  10. Forest Ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

    Science.gov (United States)

    Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.

    2015-01-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  11. Level and pattern of overstory retention influence rates and forms of tree mortality in mature, coniferous forests of the Pacific Northwest, USA

    Science.gov (United States)

    Lauren S. Urgenson; Charles B. Halpern; Paul D. Anderson

    2013-01-01

    Mortality of retained trees can compromise the ecological objectives of variable-retention harvest. We used a large-scale experiment replicated at six locations in western Washington and Oregon to examine the influences of retention level (40% vs. 15% of original basal area) and its spatial pattern (aggregated vs.dispersed) on the rate and form of tree mortality for 11...

  12. Why do trees die? Characterizing the drivers of background tree mortality

    Science.gov (United States)

    Das, Adrian J.; Stephenson, Nathan L.; Davis, Kristin P.

    2016-01-01

    The drivers of background tree mortality rates—the typical low rates of tree mortality found in forests in the absence of acute stresses like drought—are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the “ambient” or “random” background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from

  13. Long-term impacts of prescribed fire on stand structure, growth, mortality, and individual tree vigor in Pinus resinosa forests

    Science.gov (United States)

    Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell

    2016-01-01

    Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...

  14. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles.

    Science.gov (United States)

    Speckman, Heather N; Frank, John M; Bradford, John B; Miles, Brianna L; Massman, William J; Parton, William J; Ryan, Michael G

    2015-02-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 μmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 μmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates. © 2014 John Wiley & Sons Ltd.

  15. Trees of Our National Forests.

    Science.gov (United States)

    Forest Service (USDA), Washington, DC.

    Presented is a description of the creation of the National Forests system, how trees grow, managing the National Forests, types of management systems, and managing for multiple use, including wildlife, water, recreation and other uses. Included are: (1) photographs; (2) line drawings of typical leaves, cones, flowers, and seeds; and (3)…

  16. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery

    Science.gov (United States)

    Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak

    2013-01-01

    Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...

  17. Forest, trees and agroforestry

    DEFF Research Database (Denmark)

    Rahman, Syed Ajijur; Foli, Samson; Al Pavel, Muha Abdullah

    2015-01-01

    Scientific community is concerned to address contemporary issues of food production and conserve tropical forests that support the livelihoods of millions of people. A review of the literature on deforestation, forest utilization, and landscape management for ecosystem services was conducted to i...

  18. A synthesis of radial growth patterns preceding tree mortality

    Science.gov (United States)

    Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M.R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, Juan C. Linares; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; Lopez Rodriguez, Rosana; Makinen, Harri; Mayr, Stefan; Meszaros, IIona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi

    2017-01-01

    Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or

  19. Simulations of forest mortality in Colorado River basin

    Science.gov (United States)

    Wei, L.; Xu, C.; Johnson, D. J.; Zhou, H.; McDowell, N.

    2017-12-01

    The Colorado River Basin (CRB) had experienced multiple severe forest mortality events under the recent changing climate. Such forest mortality events may have great impacts on ecosystem services and water budget of the watershed. It is hence important to estimate and predict the forest mortality in the CRB with climate change. We simulated forest mortality in the CRB with a model of plant hydraulics within the FATES (the Functionally Assembled Terrestrial Ecosystem Simulator) coupled to the DOE Earth System model (ACME: Accelerated Climate Model of Energy) at a 0.5 x 0.5 degree resolution. Moreover, we incorporated a stable carbon isotope (δ13C) module to ACME(FATE) and used it as a new predictor of forest mortality. The δ13C values of plants with C3 photosynthetic pathway (almost all trees are C3 plants) can indicate the water stress plants experiencing (the more intensive stress, the less negative δ13C value). We set a δ13C threshold in model simulation, above which forest mortality initiates. We validate the mortality simulations with field data based on Forest Inventory and Analysis (FIA) data, which were aggregated into the same spatial resolution as the model simulations. Different mortality schemes in the model (carbon starvation, hydraulic failure, and δ13C) were tested and compared. Each scheme demonstrated its strength and the plant hydraulics module provided more reliable simulations of forest mortality than the earlier ACME(FATE) version. Further testing is required for better forest mortality modelling.

  20. A survey of forest tree diseases in the Northeast - 1957

    Science.gov (United States)

    Robert A. Zabel; Savel B. Silverborg; Marvin E. Fowler

    1958-01-01

    A serious handicap in planning forestry programs in the Northeast is a lack of basic information about forest diseases and their impact on the forest. Magnitude of disease losses, the relative importance of various diseases, their locations, rates of spread, intensities, and the tree mortality they cause - information on all these factors is basic to the development of...

  1. Widespread increase of tree mortality rates in the Western United States

    Science.gov (United States)

    van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, Joseph M.; Taylor, A.H.; Veblen, T.T.

    2009-01-01

    Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.

  2. Spatially random mortality in old-growth red pine forests of northern Minnesota

    Science.gov (United States)

    Tuomas ​Aakala; Shawn Fraver; Brian J. Palik; Anthony W. D' Amato

    2012-01-01

    Characterizing the spatial distribution of tree mortality is critical to understanding forest dynamics, but empirical studies on these patterns under old-growth conditions are rare. This rarity is due in part to low mortality rates in old-growth forests, the study of which necessitates long observation periods, and the confounding influence of tree in-growth during...

  3. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests

    Science.gov (United States)

    Brad Oberle; Kiona Ogle; Amy E. Zanne; Christopher W. Woodall

    2018-01-01

    When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests...

  4. Widespread increase of tree mortality rates in the western United States

    Science.gov (United States)

    Phillip J. van Mantgem; Nathan L. Stephenson; John C. Byrne; Lori D. Daniels; Jerry F. Franklin; Peter Z. Fule; Mark E. Harmon; Andrew J. Larson; Jeremy M. Smith; Alan H. Taylor; Thomas T. Veblen

    2009-01-01

    Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29...

  5. Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors

    Science.gov (United States)

    Jeremy W. Lichstein; Jonathan Dushoff; Kiona Ogle; Anping Chen; Drew W. Purves; John P. Caspersen; Stephen W. Pacala

    2010-01-01

    Geographically extensive forest inventories, such as the USDA Forest Service's Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and mortality records that could be used to develop broad-scale models of forest dynamics. A limitation of inventory data, however, is that individual-level measurements of light (L) and other...

  6. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  7. Trends and Tipping Points of Drought-induced Tree Mortality

    Science.gov (United States)

    Huang, K.; Yi, C.; Wu, D.; Zhou, T.; Zhao, X.; Blanford, W. J.; Wei, S.; Wu, H.; Du, L.

    2014-12-01

    Drought-induced tree mortality worldwide has been recently reported in a review of the literature by Allen et al. (2010). However, a quantitative relationship between widespread loss of forest from mortality and drought is still a key knowledge gap. Specifically, the field lacks quantitative knowledge of tipping point in trees when coping with water stress, which inhibits the assessments of how climate change affects the forest ecosystem. We investigate the statistical relationships for different (seven) conifer species between Ring Width Index (RWI) and Standardized Precipitation Evapotranspiration Index (SPEI), based on 411 chronologies from the International Tree-Ring Data Bank across 11 states of the western United States. We found robust species-specific relationships between RWI and SPEI for all seven conifer species at dry condition. The regression models show that the RWI decreases with SPEI decreasing (drying) and more than 76% variation of tree growth (RWI) can be explained by the drought index (SPEI). However, when soil water is sufficient (i.e., SPEI>SPEIu), soil water is no longer a restrictive factor for tree growth and, therefore, the RWI shows a weak correlation with SPEI. Based on the statistical models, we derived the tipping point of SPEI (SPEItp) where the RWI equals 0, which means the carbon efflux by tree respiration equals carbon influx by tree photosynthesis. When the severity of drought exceeds this tipping point(i.e. SPEIsupported by the Fund for Creative Research Groups of National Natural Science Foundation of China (No. 41321001), the National Basic Research Program of China (No. 2012CB955401), the New Century Excellent Talents in University (No. NCET-10-0251), U.S. PSC-CUNY Award (PSC-CUNY-ENHC-44-83) and the High Technology Research and Development Program of China (No. 2013AA122801).

  8. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    OpenAIRE

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Climate change alone is unlikely to drive severe tropical forest degradation in the next few decades, but an alternative process associated with severe weather and forest fires is already operating in southeastern Amazonia. Recent droughts caused greatly elevated fire-induced tree mortality in a fire experiment and widespread regional forest fires that burned 5–12% of southeastern Amazon forests. These results suggest that feedbacks between fires and extreme climatic conditions could increase...

  9. Modelling diameter growth, mortality and recruitment of trees in ...

    African Journals Online (AJOL)

    Modelling diameter growth, mortality and recruitment of trees in miombo woodlands of Tanzania. ... Individual tree diameter growth and mortality models, and area-based recruitment models were developed. ... AJOL African Journals Online.

  10. Tree agency and urban forest governance

    DEFF Research Database (Denmark)

    Konijnendijk, Cecil Cornelis

    2016-01-01

    governance also involving businesses and civic society. However, governance theory usually does not consider the role of non-human agency, which can be considered problematic due to, for example, the important role of urban trees in place making. The purpose of this paper is to provide further insight...... into the importance of considering tree agency in governance. Design/methodology/approach – Taking an environmental governance and actor network theory perspective, the paper presents a critical view of current urban forest governance, extending the perspective to include not only a wide range of human actors......, but also trees as important non-human actors. Findings – Urban forest governance has become more complex and involves a greater range of actors and actor networks. However, the agency of trees in urban forest governance is seldom well developed. Trees, in close association with local residents, create...

  11. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    NARCIS (Netherlands)

    Sterck, Frank; Anten, Niels P.R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided

  12. Markers of environmental stress in forest trees

    Science.gov (United States)

    Rakesh Minocha

    1999-01-01

    Gradual long-term changes in soil and environmental factors due to human activity, may affect forest trees and lead to loss of forest productivity. In most cases, the symptoms of stress appear too late for their effects to be reversed through management and/or treatment.

  13. Are Scots pine forest edges particularly prone to drought-induced mortality?

    Science.gov (United States)

    Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette

    2018-02-01

    Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.

  14. Long-term mortality rates and spatial patterns in an old-growth forest

    Science.gov (United States)

    Emily J. Silver; Shawn Fraver; Anthony W. D' Amato; Tuomas Aakala; Brian J. Palik

    2013-01-01

    Understanding natural mortality patterns and processes of forest tree species is increasingly important given projected changes in mortality owing to global change. With this need in mind, the rate and spatial pattern of mortality was assessed over an 89-year period in a natural-origin Pinus resinosa (Aiton)-dominated system to assess these processes...

  15. Thinning method and intensity influence long-term mortality trends in a red pine forest

    Science.gov (United States)

    Matthew D. Powers; Brian J. Palik; John B. Bradford; Shawn Fraver; Christopher R. Webster

    2010-01-01

    Tree mortality shapes forest development, but rising mortality can represent lost production or an adverse response to changing environmental conditions. Thinning represents a strategy for reducing mortality rates, but different thinning techniques and intensities could have varying impacts depending on how they alter stand structure. We analyzed trends in stand...

  16. Initial observations on tree mortality following a severe drought in 2012 in two Indiana state forests and implications for long-term compositional dynamics

    Science.gov (United States)

    Andrew R. Meier; Mike R. Saunders

    2014-01-01

    Compositional and structural changes in response to silvicultural treatments in forest stands are well documented (e.g., Saunders and Wagner 2008), but the stochastic nature of natural disturbance events often precludes direct observation of their impacts on stand dynamics. Though the current dominance of oak-hickory forest types in the Central Hardwoods Forest region...

  17. Watering the forest for the trees: An emerging priority for managing water in forest landscapes

    Science.gov (United States)

    Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.

    2013-01-01

    Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.

  18. Spatial elements of mortality risk in old-growth forests

    Science.gov (United States)

    Das, Adrian; Battles, John; van Mantgem, Phillip J.; Stephenson, Nathan L.

    2008-01-01

    For many species of long-lived organisms, such as trees, survival appears to be the most critical vital rate affecting population persistence. However, methods commonly used to quantify tree death, such as relating tree mortality risk solely to diameter growth, almost certainly do not account for important spatial processes. Our goal in this study was to detect and, if present, to quantify the relevance of such processes. For this purpose, we examined purely spatial aspects of mortality for four species, Abies concolor, Abies magnifica, Calocedrus decurrens, and Pinus lambertiana, in an old-growth conifer forest in the Sierra Nevada of California, USA. The analysis was performed using data from nine fully mapped long-term monitoring plots.In three cases, the results unequivocally supported the inclusion of spatial information in models used to predict mortality. For Abies concolor, our results suggested that growth rate may not always adequately capture increased mortality risk due to competition. We also found evidence of a facilitative effect for this species, with mortality risk decreasing with proximity to conspecific neighbors. For Pinus lambertiana, mortality risk increased with density of conspecific neighbors, in keeping with a mechanism of increased pathogen or insect pressure (i.e., a Janzen-Connell type effect). Finally, we found that models estimating risk of being crushed were strongly improved by the inclusion of a simple index of spatial proximity.Not only did spatial indices improve models, those improvements were relevant for mortality prediction. For P. lambertiana, spatial factors were important for estimation of mortality risk regardless of growth rate. For A. concolor, although most of the population fell within spatial conditions in which mortality risk was well described by growth, trees that died occurred outside those conditions in a disproportionate fashion. Furthermore, as stands of A. concolor become increasingly dense, such spatial

  19. The dynamics of strangling among forest trees.

    Science.gov (United States)

    Okamoto, Kenichi W

    2015-11-07

    Strangler trees germinate and grow on other trees, eventually enveloping and potentially even girdling their hosts. This allows them to mitigate fitness costs otherwise incurred by germinating and competing with other trees on the forest floor, as well as minimize risks associated with host tree-fall. If stranglers can themselves host other strangler trees, they may not even seem to need non-stranglers to persist. Yet despite their high fitness potential, strangler trees neither dominate the communities in which they occur nor is the strategy particularly common outside of figs (genus Ficus). Here we analyze how dynamic interactions between strangling and non-strangling trees can shape the adaptive landscape for strangling mutants and mutant trees that have lost the ability to strangle. We find a threshold which strangler germination rates must exceed for selection to favor the evolution of strangling, regardless of how effectively hemiepiphytic stranglers may subsequently replace their hosts. This condition describes the magnitude of the phenotypic displacement in the ability to germinate on other trees necessary for invasion by a mutant tree that could potentially strangle its host following establishment as an epiphyte. We show how the relative abilities of strangling and non-strangling trees to occupy empty sites can govern whether strangling is an evolutionarily stable strategy, and obtain the conditions for strangler coexistence with non-stranglers. We then elucidate when the evolution of strangling can disrupt stable coexistence between commensal epiphytic ancestors and their non-strangling host trees. This allows us to highlight parallels between the invasion fitness of strangler trees arising from commensalist ancestors, and cases where strangling can arise in concert with the evolution of hemiepiphytism among free-standing ancestors. Finally, we discuss how our results can inform the evolutionary ecology of antagonistic interactions more generally

  20. Seeing the forest for the trees

    DEFF Research Database (Denmark)

    Ribbons, Relena Rose

    Tree species influence soils above and belowground communities through leaf litter and root inputs. Soil microbial communities can directly influence tree growth and development through processes such as decomposition of leaves, and indirectly through chemical transformation of nutrients in soils...... as an influence of altered C:N ratios due to leaf litter inputs. This thesis aims to document some of the mechanisms by which trees influence soil microbial communities and nitrogen cycling processes like gross and net ammonification and nitrification. This thesis also aims to determine the role of site nitrogen...... status on modulating those tree species effects. The effects of tree species on ammonification and nitrification rates in forest floors and mineral soils were explored, and related to functional genetic markers for ammonia-oxidation by archaea and bacteria (amoA AOA and AOB), bacterial denitrification...

  1. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    Science.gov (United States)

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.

  2. Genetic transformation of forest trees | Diouf | African Journal of ...

    African Journals Online (AJOL)

    In this review, the recent progress on genetic transformation of forest trees were discussed. Its described also, different applications of genetic engineering for improving forest trees or understanding the mechanisms governing genes expression in woody plants. Key words: Genetic transformation, transgenic forest trees, ...

  3. Analysis and out-year forecast of beetle, borer, and drought-induced tree mortality in California

    Science.gov (United States)

    Haiganoush K. Preisler; Nancy E. Grulke; Zachary Heath; Sheri L. Smith

    2017-01-01

    The level of tree mortality and drought observed over the past decade in North America has been described as ‘unparalleled’ in our modern history, in particular in the Sierra Nevada, California. Forest managers could use early warning of where and how much tree mortality to expect in the very near future to plan and prioritize hazard tree removal, pest suppression...

  4. The importance of Ficus (Moraceae) trees for tropical forest restoration

    DEFF Research Database (Denmark)

    Cottee-Jones, H. Eden W.; Bajpai, Omesh; Chaudhary, Lal B.

    2016-01-01

    Forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates. One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes and which may act as seedling recruitment foci. Ficus trees...... restoration agents than other remnant trees in disturbed landscapes, and therefore the conservation of these trees should be prioritized....

  5. Invasion of Winter Moth in New England: Effects of Defoliation and Site Quality on Tree Mortality

    Directory of Open Access Journals (Sweden)

    Michael J. Simmons

    2014-10-01

    Full Text Available Widespread and prolonged defoliation by the European winter moth, Operophtera brumata L., has occurred in forests of eastern Massachusetts for more than a decade and populations of winter moth continue to invade new areas of New England. This study characterized the forests of eastern Massachusetts invaded by winter moth and related the duration of winter moth defoliation estimated using dendrochronology to observed levels of tree mortality and understory woody plant density. Quercus basal area mortality in mixed Quercus and mixed Quercus—Pinus strobus forests in eastern Massachusetts ranged from 0–30%; mortality of Quercus in these forests was related to site quality and the number of winter moth defoliation events. In addition, winter moth defoliation events lead to a subsequent increase in understory woody plant density. Our results indicate that winter moth defoliation has been an important disturbance in New England forests that may have lasting impacts.

  6. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.

    Directory of Open Access Journals (Sweden)

    David B Lindenmayer

    Full Text Available Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans. Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009. Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1 the prolonged time required (>120 years for initiation of cavities; and (2 repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.

  7. Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem

    Science.gov (United States)

    Lindenmayer, David B.; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E.; Franklin, Jerry F.; Laurance, William F.; Stein, John A. R.; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia – forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006–2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57–100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486

  8. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.

    Science.gov (United States)

    Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.

  9. Quantifying forest mortality with the remote sensing of snow

    Science.gov (United States)

    Baker, Emily Hewitt

    Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and

  10. Edge disturbance drives liana abundance increase and alteration of liana-host tree interactions in tropical forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F

    2018-04-01

    Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative

  11. The Prediction of Drought-Related Tree Mortality in Vegetation Models

    Science.gov (United States)

    Schwinning, S.; Jensen, J.; Lomas, M. R.; Schwartz, B.; Woodward, F. I.

    2013-12-01

    Drought-related tree die-off events at regional scales have been reported from all wooded continents and it has been suggested that their frequency may be increasing. The prediction of these drought-related die-off events from regional to global scales has been recognized as a critical need for the conservation of forest resources and improving the prediction of climate-vegetation interactions. However, there is no conceptual consensus on how to best approach the quantitative prediction of tree mortality. Current models use a variety of mechanisms to represent demographic events. Mortality is modeled to represent a number of different processes, including death by fire, wind throw, extreme temperatures, and self-thinning, and each vegetation model differs in the emphasis they place on specific mechanisms. Dynamic global vegetation models generally operate on the assumption of incremental vegetation shift due to changes in the carbon economy of plant functional types and proportional effects on recruitment, growth, competition and mortality, but this may not capture sudden and sweeping tree death caused by extreme weather conditions. We tested several different approaches to predicting tree mortality within the framework of the Sheffield Dynamic Global Vegetation Model. We applied the model to the state of Texas, USA, which in 2011 experienced extreme drought conditions, causing the death of an estimated 300 million trees statewide. We then compared predicted to actual mortality to determine which algorithms most accurately predicted geographical variation in tree mortality. We discuss implications regarding the ongoing debate on the causes of tree death.

  12. Tree Nonstructural Carbohydrate Reserves Across Eastern US Temperate Forests

    Science.gov (United States)

    Mantooth, J.; Dietze, M.

    2015-12-01

    Understanding the roles, importance, and dynamics of tree non-structural carbohydrates (NSCs) is currently an active area of research. The question of how the relationships between NSCs, growth, and mortality can be used to develop more accurate projections of forest dynamics is central to this research. To begin to address this question, we have asked an even more fundamental question: How much are trees allocating carbon to storage, in the form of NSCs, versus new growth? Ecological theory predicts that there should be trade-offs between different plant life history strategies provided that there are the carbon mass-balance constraints to enforce these trade-offs. Current data on tree NSCs lack the spatial and taxonomic extent required to properly address this question. Therefore, we established a network of forest inventory plots at ten sites across the eastern US and measured growth in adult trees using increment cores and repeat measures of diameter at breast height (DBH). Increment cores were also used to measure sapwood NSCs. We hypothesized that across the eastern US, shade tolerant species, e.g. Sugar Maple (Acer saccharum) have the largest NSC reserves and that shade intolerant species have the lowest reserves. We also hypothesized that NSC reserves increase with temperature and precipitation, as with growth, and that within species NSC reserves increase with growth rate. Initial analyses of tree NSCs indicates that trees of intermediate shade tolerance, e.g. Red Oak (Quercus rubra) have the highest concentrations of sapwood NSCs, and among the highest growth rates. Across the entire study region, NSC concentrations are positively correlated with tree size and growth rate. Within species, NSC concentrations are also positively correlated with growth rate. Across functional groups healthy individuals have significantly higher sapwood NSC concentrations than visibly stressed individuals. There are also significantly lower NSC concentrations in sapwood of

  13. Status and trend of tree growth and mortality rate at the CONECOFOR plots, 1997-2004

    Directory of Open Access Journals (Sweden)

    Gianfranco Fabbio

    2013-11-01

    Full Text Available The circumference of trees in the CONECOFOR permanent monitoring plots (PMPs were measured by three surveys carried out in 1997, 2000 and 2005. Plots were arranged into forest types according to tree species, management system and stand structure: beech (Fagus sylvatica L. and spruce (Picea abies K. high forests, aged coppice forests and transitory crops (deciduous, evergreen oaks and beech. Diameter distribution, basal area, basal area increment, tree mortality rate and in-growth were calculated per layer (dominant, intermediate, dominated within each PMP, to point out relative contributions and changes. A range in relative annual growth was detected both within and between types over the monitored period, but an obvious reduction of annual increment was found in two/thirds of plots over 2000-04 as compared to 1997-99. Current mortality, mostly allocated into the dominated and intermediate layers, can be explained as “regular” due to overstocking and high inter-tree competition in almost all of the observed case-studies. Opposite patterns were found to occur as for stand growth vs. mortality rate between coppice forests and the other types owing to the different dynamics of tree competition in progress. Drought 2003 is the likely large-scale factor determining the reduced annual growth course over the second period.

  14. Are self-thinning contraints needed in a tree-specific mortality model.

    Science.gov (United States)

    Robert A. Monserud; Thomas Ledermann; Hubert. Sterba

    2005-01-01

    Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDI,) or the -312 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen specifically because it does not...

  15. Are self-thinning constraints needed in a tree-specific mortality model?

    Science.gov (United States)

    Robert A. Monserud; Thomas Ledermann; Hubert. Sterba

    2005-01-01

    Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDImax) or the -3/2 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen...

  16. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle-caused tree mortality

    Science.gov (United States)

    Chad M. Hoffman; Penelope Morgan; William Mell; Russell Parsons; Eva Strand; Steve. Cook

    2013-01-01

    Recent bark beetle outbreaks have had a significant impact on forests throughout western North America and have generated concerns about interactions and feedbacks between beetle attacks and fire. However, research has been hindered by a lack of experimental studies and the use of fire behavior models incapable of accounting for the heterogeneous fuel complexes. We...

  17. The hydrological vulnerability of western North American boreal tree species based on ground-based observations of tree mortality

    Science.gov (United States)

    Hember, R. A.; Kurz, W. A.; Coops, N. C.

    2017-12-01

    Several studies indicate that climate change has increased rates of tree mortality, adversely affecting timber supply and carbon storage in western North American boreal forests. Statistical models of tree mortality can play a complimentary role in detecting and diagnosing forest change. Yet, such models struggle to address real-world complexity, including expectations that hydrological vulnerability arises from both drought stress and excess-water stress, and that these effects vary by species, tree size, and competitive status. Here, we describe models that predict annual probability of tree mortality (Pm) of common boreal tree species based on tree height (H), biomass of larger trees (BLT), soil water content (W), reference evapotranspiration (E), and two-way interactions. We show that interactions among H and hydrological variables are consistently significant. Vulnerability to extreme droughts consistently increases as H approaches maximum observed values of each species, while some species additionally show increasing vulnerability at low H. Some species additionally show increasing vulnerability to low W under high BLT, or increasing drought vulnerability under low BLT. These results suggest that vulnerability of trees to increasingly severe droughts depends on the hydraulic efficiency, competitive status, and microclimate of individual trees. Static simulations of Pm across a 1-km grid (i.e., with time-independent inputs of H, BLT, and species composition) indicate complex spatial patterns in the time trends during 1965-2014 and a mean change in Pm of 42 %. Lastly, we discuss how the size-dependence of hydrological vulnerability, in concert with increasingly severe drought events, may shape future responses of stand-level biomass production to continued warming and increasing carbon dioxide concentration in the region.

  18. Temperature response surfaces for mortality risk of tree species with future drought

    Science.gov (United States)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for

  19. Tree mortality from drought, insects, and their interactions in a changing climate

    Science.gov (United States)

    Anderegg, William R.L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie

    2015-01-01

    Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.

  20. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    Science.gov (United States)

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  1. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Science.gov (United States)

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  2. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    Science.gov (United States)

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree

  3. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data.

    Science.gov (United States)

    Rogers, Brendan M; Solvik, Kylen; Hogg, Edward H; Ju, Junchang; Masek, Jeffrey G; Michaelian, Michael; Berner, Logan T; Goetz, Scott J

    2018-02-26

    Increasing tree mortality from global change drivers such as drought and biotic infestations is a widespread phenomenon, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and improve mortality forecasts: repeat forest inventories and satellite remote sensing. Time series of tree-level growth patterns indicate that productivity declines and related temporal dynamics often precede mortality years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized difference vegetation index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 24 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range of forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited. Longer-term NDVI data and annually remeasured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites remeasured at a typical 5 year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems. © 2018 John Wiley & Sons Ltd.

  4. Proceedings of the 23rd Southern Forest Tree Improvement Conference

    Science.gov (United States)

    Robert J. Weir; Alice V. Hatcher; [Compilers

    1995-01-01

    The 23rd Southern Forest Tree Improvement Conference was held at the Holiday Inn SunSpree Resort in Asheville, North Carolina. The Conference was sponsored by the Southern Forest Tree Improvement Committee and hosted by the N. C. State University-Industry Cooperative Tree Improvement Program. A total of 37 presentations, three invited and 34 voluntary, were given....

  5. Increment and mortality in a virgin Douglas-fir forest.

    Science.gov (United States)

    Robert W. Steele; Norman P. Worthington

    1955-01-01

    Is there any basis to the forester's rule of thumb that virgin forests eventually reach an equilibrium where increment and mortality approximately balance? Are we wasting potential timber volume by failing to salvage mortality in old-growth stands?

  6. Rapid decay of tree-community composition in Amazonian forest fragments

    Science.gov (United States)

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  7. Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest.

    Science.gov (United States)

    Levanic, Tom; Cater, Matjaz; McDowell, Nate G

    2011-03-01

    Observations of forest mortality are increasing globally, but relatively little is known regarding the underlying mechanisms driving these events. Tree rings carry physiological signatures that may be used as a tool for retrospective analyses. We capitalized on a local soil water drainage event in 1982 that resulted in increased mortality within a stand of oak trees (Quercus robur), to examine the underlying physiological patterns associated with survival and death in response to soil water limitations. Pre-dawn water potentials showed more negative values for trees in the process of dying compared with those that survived. We used tree rings formed over the 123 years prior to mortality to estimate productivity from basal area increment (BAI, mm(2)), multiple xylem hydraulic parameters via anatomical measurements and crown-level gas exchange via carbon isotope discrimination (Δ, ‰). Oaks that died had significantly higher BAI values than trees that survived until the drainage event, after which the BAI of trees that died declined dramatically. Hydraulic diameter and conductivity of vessels in trees that died were higher than in surviving trees until the last 5 years prior to mortality, at which time both groups had similar values. Trees that died had consistently lower Δ values than trees that survived. Therefore, tree mortality in this stand was associated with physiological differences prior to the onset of soil water reduction. We propose that trees that died may have been hydraulically underbuilt for dry conditions, which predisposes them to severe hydraulic constraints and subsequent mortality. Measurements of above-ground/below-ground dry mass partitioning will be critical to future tests of this hypothesis. Based on these results, it is probable that pedunculate oak trees will experience greater future mortality if climate changes cause more severe droughts than the trees have experienced previously.

  8. Assessing insect-induced tree mortality across large areas with high-resolution aerial photography in a multistage sample

    Science.gov (United States)

    Randy Hamilton; Kevin Megown; James Ellenwood; Henry Lachowski; Paul. Maus

    2010-01-01

    In recent years, unprecedented tree mortality has occurred throughout the national forests owing to insect infestations and disease outbreaks. The magnitude and extent of mortality, coupled with the lack of routine monitoring in some areas, has made it difficult to assess the damage, associated ecological impact, and fire hazard in a timely and cost-effective manner....

  9. Drought-associated tree mortality: Global patterns and insights from tree-ring studies in the southwestern U.S.A

    Science.gov (United States)

    Macalady, Alison Kelly

    Forests play an important role in the earth system, regulating climate, maintaining biodiversity, and provisioning human communities with water, food and fuel. Interactions between climate and forest dynamics are not well constrained, and high uncertainty characterizes projections of global warming impacts on forests and associated ecosystem services. Recently observed tree mortality and forest die-off forewarn an acceleration of forest change with rising temperature and increased drought. However, the processes leading to tree death during drought are poorly understood, limiting our ability to anticipate future forest dynamics. The objective of this dissertation was to improve understanding of drought-associated tree mortality through literature synthesis and tree-ring studies on trees that survived and died during droughts in the southwestern USA. Specifically, this dissertation 1) documented global tree mortality patterns and identified emerging trends and research gaps; 2) quantified relationships between growth, climate, competition and mortality of pinon pine during droughts in New Mexico; 3) investigated tree defense anatomy as a potentially key element in pinon avoidance of death; and, 4) characterized the climate sensitivity of pinon resin ducts in order to gain insight into potential trends in tree defenses with climate variability and change. There has been an increase in studies reporting tree mortality linked to drought, heat, and the associated activity of insects and pathogens. Cases span the forested continents and occurred in water, light and temperature-limited forests. We hypothesized that increased tree mortality may be an emerging global phenomenon related to rising temperatures and drought (Appendix A). Recent radial growth was 53% higher on average in pinon that survived versus died during two episodes of drought-associated mortality, and statistical models of mortality risk based on average growth, growth variability, and abrupt growth

  10. Above-ground tree outside forest (TOF) phytomass and carbon ...

    Indian Academy of Sciences (India)

    to classify TOF, to estimate above-ground TOF phytomass and the carbon content ... eral, trees outside forests (TOF) mean the trees ..... have been used to stratify the area, based on the ... The optimum plot size and num- .... population centres.

  11. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  12. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  13. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    Science.gov (United States)

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937

  14. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    Science.gov (United States)

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. © 2014 John Wiley & Sons Ltd.

  15. Science in the city: Urban trees, forests, and people

    Science.gov (United States)

    Kathleen L. Wolf

    2016-01-01

    The article, intended for professional and manager audiences, is an overview of current research in urban forestry. Topics include tree science, forest risks, forest management and assessment, ecosystem services, and urban socio-ecological systems (including governance and stewardship).

  16. Spatial-temporal changes in trees outside forests

    DEFF Research Database (Denmark)

    Novotný, M.; Skaloš, J.; Plieninger, T.

    2017-01-01

    Trees outside forests act as ecologically valuable elements in the rural landscapes of Europe. This study proposes a new classification system for trees outside forest elements based on the shape and size of the patches and their location in fields. Using this system, the study evaluates the spat......Trees outside forests act as ecologically valuable elements in the rural landscapes of Europe. This study proposes a new classification system for trees outside forest elements based on the shape and size of the patches and their location in fields. Using this system, the study evaluates...

  17. Genetic improvement of forest tree species

    Directory of Open Access Journals (Sweden)

    Teotônio Francisco Assis

    2011-01-01

    Full Text Available Brazilian forestry sector is considered one of the most developed in the world, being the base for important industrialsegments which use wood as raw material. Tree breeding has played an important role on improving the competitiveness ofBrazilian forestry-based companies, especially for its positive reflexes on increasing adaptation, forestry productivity and woodquality. In spite of the importance of other forest trees for the economy, such as Schizolobium, Araucaria, Populus and Hevea, themain genera under genetic improvement in the country are Eucalyptus, Pinus, Acacia and Tectona. They are used by industries likepulp and paper, siderurgy, tannin, chips for exportation and lumber, constituting an important source of revenues for the Brazilian’seconomy, besides their positive social and environmental impacts. This paper presents a generic approach to genetic improvementaspects of these four major genera currently undergoing breeding in Brazil.

  18. Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle

    Science.gov (United States)

    Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.

    2017-12-01

    Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1

  19. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    Science.gov (United States)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  20. Shifts in tree functional composition amplify the response of forest biomass to climate

    Science.gov (United States)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.

    2018-04-01

    Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  1. Shifts in tree functional composition amplify the response of forest biomass to climate.

    Science.gov (United States)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W

    2018-04-05

    Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  2. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David J.; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucía; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David M.; Macalady, Alison K.; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O’Brien, Michael J.; O’Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer A.; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Xu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-08-07

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  3. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    Science.gov (United States)

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  4. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Science.gov (United States)

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  5. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests.

    Science.gov (United States)

    Oberle, Brad; Ogle, Kiona; Zanne, Amy E; Woodall, Christopher W

    2018-01-01

    When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests requires predicting when snags fall as wood decay erodes mechanical resistance to breaking forces. Previous studies have pointed to common predictors, such as stem size, degree of decay and species identity, but few have assessed the relative strength of underlying mechanisms driving snag fall across biomes. Here, we analyze nearly 100,000 repeated snag observations from boreal to subtropical forests across the eastern United States to show that wood decay controls snag fall in ways that could generate previously unrecognized forest-climate feedback. Warmer locations where wood decays quickly had much faster rates of snag fall. The effect of temperature on snag fall was so strong that in a simple forest C model, anticipated warming by mid-century reduced snag C by 22%. Furthermore, species-level differences in wood decay resistance (durability) accurately predicted the timing of snag fall. Differences in half-life for standing dead trees were similar to expected differences in the service lifetimes of wooden structures built from their timber. Strong effects of temperature and wood durability imply future forests where dying trees fall and decay faster than at present, reducing terrestrial C storage and snag-dependent wildlife habitat. These results can improve the representation of forest C cycling and assist forest managers by helping predict when a dead tree may fall.

  6. Slow lifelong growth predisposes Populus tremuloides to tree mortality

    Science.gov (United States)

    Kathryn B. Ireland; Margaret M. Moore; Peter Z. Fule; Thomas J. Zegler; Robert E. Keane

    2014-01-01

    Widespread dieback of aspen forests, sometimes called sudden aspen decline, has been observed throughout much of western North America, with the highest mortality rates in the southwestern United States. Recent aspen mortality has been linked to drought stress and elevated temperatures characteristic of conditions expected under climate change, but the role of...

  7. Causes and consequences of unequal seedling production in forest trees: a case study in red oaks

    Science.gov (United States)

    Emily V. Moran; James S. Clark

    2012-01-01

    Inequality in reproductive success has important implications for ecological and evolutionary dynamics, but lifetime reproductive success is challenging to measure in long-lived species such as forest trees. While seed production is often used as a proxy for overall reproductive success, high mortality of seeds and the potential for trade-offs between seed number and...

  8. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    NARCIS (Netherlands)

    Slik, J.W.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bongers, F.; Poorter, L.

    2013-01-01

    Aim - Large trees (d.b.h.¿=¿70¿cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore

  9. Tree height integrated into pantropical forest biomass estimates

    NARCIS (Netherlands)

    Feldpausch, T.R.; Lloyd, J.; Lewis, S.L.; Brienen, R.J.W.; Gloor, M.; Montegudo Mendoza, A.; Arets, E.J.M.M.

    2012-01-01

    Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer

  10. Five years of monitoring infection and mortality in redwood tanoak forests

    Science.gov (United States)

    Richard C. Cobb; Shannon C. Lynch; Ross K. Meentemeyer; David M. Rizzo

    2008-01-01

    Rates of disease incidence and tree mortality in redwood-tanoak forests were determined by repeated sampling across a system of 120 plots at five long-term research sites from 2001 through 2006. Plots were located within the known geographic area of Phytophthora ramorum in California, ranging from Monterey to Sonoma counties. All overstory species...

  11. Temperature response surfaces for mortality risk of tree species with future drought

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These

  12. Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia.

    Science.gov (United States)

    Xu, Chongyang; Liu, Hongyan; Anenkhonov, Oleg A; Korolyuk, Andrey Yu; Sandanov, Denis V; Balsanova, Larisa D; Naidanov, Bulat B; Wu, Xiuchen

    2017-06-01

    Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long-term resilience of semiarid forests against climate change are limited. In this study, long-term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long-term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900-2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests. © 2016 John Wiley & Sons Ltd.

  13. TREE SPECIES DIRECT SOWING FOR FOREST RESTORATION

    Directory of Open Access Journals (Sweden)

    Robério Anastácio Ferreira

    2007-09-01

    Full Text Available The direct sowing to tropical forest restoration can be viable when the ecological and silvicultural aspects of species areknown. This work evaluated the effect of breaking seed dormancy and a physical protector on the initial growth of riparian treespecies. The experiment was carried out in a randomized blocks design, in a factorial (2x2, with four blocks and four plots for eachtreatment. The treatment to break seed dormancy used were: immersion in sulphuric acid for 20 minutes and washing in water for 1hour plus soaking for 24 hours for Trema micrantha; immersion in boiling water (100oC with following soaking until refreshing for24 hours to Senna multijuga and Senna macranthera and pre-soaking in water for 2 hours for Solanum granuloso-leprosum. Thephysical protector used was a transparent plastic cup (500mL. The breaking seed dormancy used was efficient in laboratory, exceptfor S. macranthera. In field conditions, it was efficient only for S. multijuga and S. macranthera. The physical protector did notpresented any benefit for the studied tree species regarding seedlings emergence and survival, but it provided significant differencesin height and base diameter for S. multijuga and in height for S. macranthera after three months. After 24 months, T. micranthapresented the highest values for height and basal diameter. S. macranthera presented the height relative growth and T. micrantha thehighest basal diameter. The studied species can be recommended for ecological forest restoration, using direct sowing.

  14. i-Tree: Tools to assess and manage structure, function, and value of community forests

    Science.gov (United States)

    Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.

    2011-12-01

    grows internationally, environmental databases from more countries will be coupled with the software suite. Two more i-Tree applications, i-Tree Forecast and i-Tree Landscape are now under development. i-Tree Forecast simulates canopy structures for up to 100 years based on planting and mortality rates and adds capabilities for other i-Tree applications to estimate the benefits of future canopy scenarios. While most i-Tree applications employ a spatially lumped approach, i-Tree landscape employs a spatially distributed approach that allows users to map changes in canopy cover and ecosystem services through time and space. These new i-Tree tools provide an advanced platform for urban managers to assess the impact of current and future urban forests. i-Tree allows managers to promote effective urban forest management and sound arboricultural practices by providing information for advocacy and planning, baseline data for making informed decisions, and standardization for comparisons with other communities.

  15. Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass

    Science.gov (United States)

    Di Vittorio, Alan V.; Negrón-Juárez, Robinson I.; Higuchi, Niro; Chambers, Jeffrey Q.

    2014-03-01

    Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949-54) reported that Central Amazon plots missed 9-17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies.

  16. Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass

    International Nuclear Information System (INIS)

    Di Vittorio, Alan V; Negrón-Juárez, Robinson I; Chambers, Jeffrey Q; Higuchi, Niro

    2014-01-01

    Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949–54) reported that Central Amazon plots missed 9–17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies. (paper)

  17. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests.

    Science.gov (United States)

    Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H

    2018-08-01

    Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    OpenAIRE

    Helen M. Poulos

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees...

  19. Detection of early warning signals of forest mortality in California

    Science.gov (United States)

    Liu, Y.; Kumar, M.; Katul, G. G.; Porporato, A. M.

    2017-12-01

    Massive forest mortality was observed in California during the most recent drought. Owing to complex interactions of physiological mechanisms under stress, prediction of climate-induced forest mortality using dynamic global vegetation models remains fraught with uncertainty. Given that forest ecosystems approaching mortality tend to exhibit reduction in resilience, we evaluate the time-varying resilience from time series of satellite images to detect early warning signals (EWSs) of mortality. Four metrics of EWSs are used: (1) low greenness, (2) high empirical autocorrelation of greenness, (3) high autocorrelation inferred using a Bayesian dynamic linear model considering the influence of seasonality and climate conditions, and (4) low recovery rate inferred from the drift term in the Langevin equation describing stochastic dynamics. Spatial accuracy and lead-time of these EWSs are evaluated by comparing the EWSs against observed mortality from aerial surveys conducted by the US Forest Service. Our results show that most forested areas in California that underwent mortality exhibit a EWS with a lead time of three months to two years ahead of observed mortality. Notably, EWS is also detected in some areas without mortality, suggesting reduced resilience during drought. Furthermore, the influence of the previous drought (2007-2009) may have propagated into the recent drought (2012-2016) through reduced resilience, hence contributing to the massive forest mortality observed recently. Methodologies developed in this study for detection of EWS will improve the near-term predictability of forest mortality, thus providing crucial information for forest and water resource management.

  20. Fighting over forest: interactive governance of conflicts over forest and tree resources in Ghana’s high forest zone

    NARCIS (Netherlands)

    Derkyi, M.A.A.

    2012-01-01

    Based on eight case studies, this book analyses conflicts over forests and trees in Ghana’s high forest zone and ways of dealing with them. It thereby addresses the full range of forest and tree-based livelihoods. Combining interactive governance theory with political ecology and conflict theories,

  1. Low Tree-Growth Elasticity of Forest Biomass Indicated by an Individual-Based Model

    Directory of Open Access Journals (Sweden)

    Robbie A. Hember

    2018-01-01

    Full Text Available Environmental conditions and silviculture fundamentally alter the metabolism of individual trees and, therefore, need to be studied at that scale. However, changes in forest biomass density (Mg C ha−1 may be decoupled from changes in growth (kg C year−1 when the latter also accelerates the life cycle of trees and strains access to light, nutrients, and water. In this study, we refer to an individual-based model of forest biomass dynamics to constrain the magnitude of system feedbacks associated with ontogeny and competition and estimate the scaling relationship between changes in tree growth and forest biomass density. The model was driven by fitted equations of annual aboveground biomass growth (Gag, probability of recruitment (Pr, and probability of mortality (Pm parameterized against field observations of black spruce (Picea mariana (Mill. BSP, interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn. Franco, and western hemlock (Tsuga heterophylla (Raf. Sarg.. A hypothetical positive step-change in mean tree growth was imposed half way through the simulations and landscape-scale responses were then evaluated by comparing pre- and post-stimulus periods. Imposing a 100% increase in tree growth above calibrated predictions (i.e., contemporary rates only translated into 36% to 41% increases in forest biomass density. This corresponded with a tree-growth elasticity of forest biomass (εG,SB ranging from 0.33 to 0.55. The inelastic nature of stand biomass density was attributed to the dependence of mortality on intensity of competition and tree size, which decreased stand density by 353 to 495 trees ha−1, and decreased biomass residence time by 10 to 23 years. Values of εG,SB depended on the magnitude of the stimulus. For example, a retrospective scenario in which tree growth increased from 50% below contemporary rates up to contemporary rates indicated values of εG,SB ranging from 0.66 to 0.75. We conclude that: (1 effects of

  2. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    Science.gov (United States)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  3. Forecasting Vulnerability to Drought-related Mortality in Western US Forests

    Science.gov (United States)

    Buotte, P.; Law, B. E.; Hudiburg, T. W.

    2017-12-01

    Climate-driven tree mortality has been documented across the globe, and continued future mortality is expected. Such mortality could pose threats to ecosystem services, including carbon sequestration. Therefore, forecasting future mortality is critical. Ecosystem process models can be a tool for forecasting forest vulnerability to drought. We modified the Community Land Model (CLM4.5) to forecast forest vulnerability to drought-related mortality in the western US. We increased the ecological resolution by parameterizing CLM4.5 to recognize 14 different forest types common to the region. We used published physiological traits and tuned CLM4.5 to match present day above ground carbon stocks. We incorporated the influence of drought stress through species- or genus-specific controls on stomatal conductance given soil moisture and increased rates of leaf shed during prolonged periods of low soil moisture. We ran CLM4.5 at a 1/24 degree spatial resolution in offline mode using climate forcing data. We compare forest growth and carbon sequestration metrics (e.g. chronic reduction of GPP below its potential) between historical and future time periods to determine relevant metrics of vulnerability to drought-related mortality. Using the robust metrics, we will forecast and map future forest vulnerability to drought-related mortality given a range of climate scenarios.

  4. Approaches to modeling landscape-scale drought-induced forest mortality

    Science.gov (United States)

    Gustafson, Eric J.; Shinneman, Douglas

    2015-01-01

    Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.

  5. Tree mortality in the eastern Mediterranean, causes and implications under climatic change

    Science.gov (United States)

    Sarris, Dimitrios; Iacovou, Valentina; Hoch, Guenter; Vennetier, Michel; Siegwolf, Rolf; Christodoulakis, Dimitrios; Koerner, Christian

    2015-04-01

    The eastern Mediterranean has experienced repeated incidents of forest mortality related to drought in recent decades. Such events may become more frequent in the future as drought conditions are projected to further intensify due to global warming. We have been investigating the causes behind such forest mortality events in Pinus halepensis, (the most drought tolerant pine in the Mediterranean). We cored tree stems and sampled various tissue types from dry habitats close to sea level and explored growth responses, stable isotope signals and non-structural carbohydrate (NSC) concentrations. Under intense drought that coincided with pine desiccation events in natural populations our result indicate a significant reduction in tree growth, the most significant in more than a century despite the increase in atmospheric CO2 concentrations in recent decades. This has been accompanied by a lengthening in the integration periods of rainfall needed for pine growth, reaching even 5-6 years before and including the year of mortality occurrence. Oxygen stable isotopes indicate that these signals were associated with a shift in tree water utilization from deeper moisture pools related to past rainfall events. Furthermore, where the driest conditions occur, pine carbon reserves were found to increase in stem tissue, indicating that mortality in these pines cannot be explained by carbon starvation. Our findings suggest that for pine populations that are already water limited (i) a further atmospheric CO2 increase will not compensate for the reduction in growth because of a drier climate, (ii) hydraulic failure appears as the most likely cause of pine desiccation, as no shortage occurs in tree carbon reserves, (iii) a further increase in mortality events may cause these systems to become carbon sources.

  6. Radiosensitivity and recovery of tree crowns in a gamma-irradiated northern forest community

    International Nuclear Information System (INIS)

    Buech, R.R.

    1977-01-01

    Crown mortality was observed on 13 tree species in a gamma-irradiated forest community located near Rhinelander, Wis. Observations at the end of the first (1973) and second (1974) postirradiation growing seasons are presented for each species. Crown mortality was most severe during 1973 for Acer rubrum, A. saccharum, Ostrya virginiana, Populus tremuloides, Prunus serotina, Quercus rubra, and Ulmus americana. For some species, however, crown mortality was most severe during 1974. These were Betula alleghaniensis, B. papyrifera, Tilia americana, and possibly Fraxinus americana and F. nigra. These differences in year of primary response are explained on the basis of bud differentiation and mortality. The most resistant species were A. saccharum, O. virginiana, and Populus tremuloides, and the most sensitive were T. americana and U. americana. Others were intermediate in sensitivity. Taken collectively, exposures less than 2 or 3 kr did not seriously affect crowns of most species, whereas exposures exceeding about 40 kr were lethal to the crowns of all tree species. The observed zonation of tree mortality closely approximated predictions published by others except for underestimating the resistance of A. saccharum and overestimating the resistance of T. americana, F. americana, and Prunus serotina. Not surprisingly, the tree stratum of the northern forest community was found to be more radiosensitive than lichen, grassland, or herbaceous communities in other irradiation studies

  7. Tree condition and mortality following defoliation by the gypsy moth

    Science.gov (United States)

    Robert W. Campbell; Harry T. Valentine; Harry T. Valentine

    1972-01-01

    Relationships between expected defoliation and the subsequent condition and mortality rate among the defoliated trees are almost always important factors in deciding if, when, and where to take control action against a defoliator such as the gypsy moth, Porthetria dispar (L. )

  8. Darcy’s law predicts widespread forest mortality under climate warming

    Science.gov (United States)

    McDowell, Nate G.; Allen, Craig D.

    2015-01-01

    Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history. Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle. We use a hydraulic corollary to Darcy’s law, a core principle of vascular plant physiology, to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcy’s law indicates today’s forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcy’s corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. Given the robustness of Darcy’s law for predictions of vascular plant function, we conclude with high certainty that today’s forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage.

  9. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  10. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought.

    Science.gov (United States)

    Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep

    2011-01-25

    Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987-2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change-driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage.

  11. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    Science.gov (United States)

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences. PMID:24949231

  12. Sustaining America's urban trees and forests: a Forests on the Edge report

    Science.gov (United States)

    David J. Nowak; Paula B. Randler; Eric J. Greenfield; Sara J. Comas; Mary A. Carr; Ralph J. Alig

    2010-01-01

    Close to 80 percent of the U.S. population lives in urban areas and depends on the essential ecological, economic, and social benefits provided by urban trees and forests. However, the distribution of urban tree cover and the benefits of urban forests vary across the United States, as do the challenges of sustaining this important resource. As urban areas expand...

  13. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  14. Biotic mortality factors affecting emerald ash borer (Agrilus planipennis) are highly dependent on life stage and host tree crown condition.

    Science.gov (United States)

    Jennings, D E; Duan, J J; Shrewsbury, P M

    2015-10-01

    Emerald ash borer (EAB), Agrilus planipennis, is a serious invasive forest pest in North America responsible for killing tens to hundreds of millions of ash trees since it was accidentally introduced in the 1990 s. Although host-plant resistance and natural enemies are known to be important sources of mortality for EAB in Asia, less is known about the importance of different sources of mortality at recently colonized sites in the invaded range of EAB, and how these relate to host tree crown condition. To further our understanding of EAB population dynamics, we used a large-scale field experiment and life-table analyses to quantify the fates of EAB larvae and the relative importance of different biotic mortality factors at 12 recently colonized sites in Maryland. We found that the fates of larvae were highly dependent on EAB life stage and host tree crown condition. In relatively healthy trees (i.e., with a low EAB infestation) and for early instars, host tree resistance was the most important mortality factor. Conversely, in more unhealthy trees (i.e., with a moderate to high EAB infestation) and for later instars, parasitism and predation were the major sources of mortality. Life-table analyses also indicated how the lack of sufficient levels of host tree resistance and natural enemies contribute to rapid population growth of EAB at recently colonized sites. Our findings provide further evidence of the mechanisms by which EAB has been able to successfully establish and spread in North America.

  15. Scientometrics of Forest Health and Tree Diseases: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Pautasso

    2016-01-01

    Full Text Available Maintaining forest health is a worldwide challenge due to emerging tree diseases, shifts in climate conditions and other global change stressors. Research on forest health is thus accumulating rapidly, but there has been little use of scientometric approaches in forest pathology and dendrology. Scientometrics is the quantitative study of trends in the scientific literature. As with all tools, scientometrics needs to be used carefully (e.g., by checking findings in multiple databases and its results must be interpreted with caution. In this overview, we provide some examples of studies of patterns in the scientific literature related to forest health and tree pathogens. Whilst research on ash dieback has increased rapidly over the last years, papers mentioning the Waldsterben have become rare in the literature. As with human health and diseases, but in contrast to plant health and diseases, there are consistently more publications mentioning “tree health” than “tree disease,” possibly a consequence of the often holistic nature of forest pathology. Scientometric tools can help balance research attention towards understudied emerging risks to forest trees, as well as identify temporal trends in public interest in forests and their health.

  16. Genetic diversity and conservation of Mexican forest trees

    Science.gov (United States)

    C. Wehenkel; S. Mariscal-Lucero; J.P. Jaramillo-Correa; C.A. López-Sánchez; J.J. Vargas Hernández; C. Sáenz-Romero

    2017-01-01

    Over the last 200 years, humans have impacted the genetic diversity of forest trees. Because of widespread deforestation and over-exploitation, about 9,000 tree species are listed worldwide as threatened with extinction, including more than half of the ~600 known conifer taxa. A comprehensive review of the floristic-taxonomic literature compiled a list of 4,331...

  17. Adaptation of trees, forests and forestry to climate change

    Science.gov (United States)

    Daniel J. Chmura; Glenn T. Howe; Paul D. Anderson; Bradley J. St Clair

    2010-01-01

    Ongoing climate change will likely expose trees and forests to new stresses and disturbances during this century. Trees naturally adapt to changes in climate, but their natural adaptive ability may be compromised by the rapid changes projected for this century. In the broad sense, adaptation to climate change also includes the purposeful adaptation of human systems,...

  18. Use of DNA markers in forest tree improvement research

    Science.gov (United States)

    D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall

    1992-01-01

    DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...

  19. Isozymes and the genetic resources of forest trees

    Science.gov (United States)

    A. H. D. Brown; G. F. Moran

    1981-01-01

    Genetic data are an essential prerequisite for analysing the genetic structure of tree populations. The isozyme technique is the best currently available method for obtaining such data. Despite several shortcomings, isozyme data directly evaluate the genetic resources of forest trees, and can thus be used to monitor and manipulate these resources. For example,...

  20. The Contribution of Forests and Trees to Sustainable Diets

    Directory of Open Access Journals (Sweden)

    Danny Hunter

    2013-11-01

    Full Text Available With the growing demands from a population expected to reach 9 billion people by 2050, it is unclear how our current global food system will meet future food needs. Ensuring that all people have access to adequate and nutritious food produced in an environmentally and socio-culturally sustainable manner is one of the greatest challenges of our time. “Sustainable diets” have been proposed as a multidimensional framework to address the need for nutritious and adequate food in the context of the many challenges facing the world today: reducing poverty and hunger, improving environmental health, enhancing human well-being and health, and strengthening local food networks, sustainable livelihoods and cultural heritage. This paper examines the contribution of forests and trees to sustainable diets, covering among others, nutritional, cultural, environmental and provisioning aspects. The literature reviewed highlight major opportunities to strengthen the contribution of forest and tree foods to sustainable diets. However, several constraints need to be removed. They relate to: cultural aspects, sustainable use of non-wood forest products, organization of forest food provisioning, limited knowledge of forest food composition, challenges in adapting management of forests and trees to account for forest foods, and in integrating forest biodiversity into complex landscapes managed for multiple benefits. Finally, the paper identifies research gaps and makes recommendations to enhance the contribution of forest foods to sustainable diets through increased awareness and better integration of information and knowledge on nutritious forest foods into national nutrition strategies and programs.

  1. Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests.

    Science.gov (United States)

    Berdanier, Aaron B; Clark, James S

    2016-01-01

    Recent forest diebacks, combined with threats of future drought, focus attention on the extent to which tree death is caused by catastrophic events as opposed to chronic declines in health that accumulate over years. While recent attention has focused on large-scale diebacks, there is concern that increasing drought stress and chronic morbidity may have pervasive impacts on forest composition in many regions. Here we use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 yr. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with drought tolerance. These findings support the ability of trees to avoid death during drought events but indicate shifts that could occur over decades. Tree mortality following drought is predictable in these ecosystems based on growth declines, highlighting an opportunity to address multiyear drought-induced morbidity in models, experiments, and management decisions.

  2. Meta-analysis Reveals that Hydraulic Traits Explain Cross-Species Patterns of Drought-Induced Tree Mortality across the Globe

    Science.gov (United States)

    Anderegg, W.

    2016-12-01

    Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated with elevated risk of mortality in diverse ecosystems remain unknown, though these could greatly improve understanding and prediction of tree mortality in forests. We performed a meta-analysis on species' mortality rates across 475 species from 33 studies around the globe to assess which traits determine a species' mortality risk. We found that species-specific mortality anomalies from community mortality rate in a given drought were associated with plant hydraulic traits. Across all species, mortality was best predicted by a low hydraulic safety margin - the difference between typical minimum xylem water potential and that causing xylem dysfunction - and xylem vulnerability to embolism. Angiosperms and gymnosperms experienced roughly equal mortality risk. Our results provide broad support that hydraulic traits capture key mechanisms determining tree death and highlight that physiological traits can improve vegetation models' prediction of tree mortality during climate extremes. We conclude with thoughts about a revised framework for future tree mortality research.

  3. Seeing Central African forests through their largest trees

    NARCIS (Netherlands)

    Bastin, J.F.; Barbier, N.; Réjou-Méchain, M.; Fayolle, A.; Gourlet-Fleury, S.; Maniatis, D.; Haulleville, De T.; Baya, F.; Beeckman, H.; Beina, D.; Couteron, P.; Chuyong, G.; Dauby, G.; Doucet, J.L.; Droissart, V.; Dufrêne, M.; Ewango, C.E.N.; Gillet, F.; Gonmadje, C.H.; Hart, T.; Kavali, T.; Kenfack, D.; Libalah, M.; Malhi, Y.; Makana, J.R.; Pélissier, R.; Ploton, P.; Serckx, S.; Sonké, B.; Stevart, T.; Thomas, D.W.; Cannière, De C.; Bogaert, J.

    2015-01-01

    Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large,

  4. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of

  5. Regional variation in Caribbean dry forest tree species composition

    Science.gov (United States)

    Janet Franklin; Julie Ripplinger; Ethan H. Freid; Humfredo Marcano-Vega; David W. Steadman

    2015-01-01

    How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (...

  6. Height-diameter allometry of tropical forest trees

    Science.gov (United States)

    T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...

  7. Forest Type and Tree Characteristics Determine the Vertical Distribution of Epiphytic Lichen Biomass in Subtropical Forests

    Directory of Open Access Journals (Sweden)

    Su Li

    2017-11-01

    Full Text Available Epiphytic lichens are an important component in subtropical forests and contribute greatly to forest biodiversity and biomass. However, information on epiphytic lichens still remains scarce in forest conservation owing to the difficulty of accessing all canopy layers for direct observation. Here, epiphytic lichens were quantified on 73 whole trees in five forest types in Southwest China to clarify the vertical stratification of their biomass in subtropical forests. Lichen biomass was significantly influenced by forest type and host attributes, varying from 187.11 to 8.55 g∙tree−1 among forest types and from 289.81 to <0.01 g∙tree−1 among tree species. The vertical stratification of lichen biomass was also determined by forest type, which peaked at the top in primary Lithocarpus forest and middle-aged oak secondary forest and in the middle upper heights in other forests. Overall, the proportion of lichen biomass accounted for 73.17–100.00% of total lichen biomass on branches and 0.00–26.83% on trunks in five forests, and 64.53–100.00% and 0.00–35.47% on eight host species. Seven functional groups showed marked and various responses to tree height between and among forest types. This information improves our understanding of the distribution of epiphytic lichens in forest ecosystems and the promotion of forest management in subtropical China.

  8. Effects of seed predators of different body size on seed mortality in Bornean logged forest.

    Science.gov (United States)

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy

    2010-07-19

    The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.

  9. Mastication and prescribed fire influences on tree mortality and predicted fire behavior in ponderosa pine

    Science.gov (United States)

    Alicia L. Reiner; Nicole M. Vaillant; Scott N. Dailey

    2012-01-01

    The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree...

  10. A Multi-stakeholder Approach to Moving Beyond Tree Mortality in the Sierra Nevada

    Science.gov (United States)

    Balachowski, J.; Buluc, L.; Fischer, C.; Ko, J.; Ostoja, S.

    2017-12-01

    The US Forest Service has estimated that 102 million trees have died in California since 2010. This die off event has been attributed to the combined effects of historical land management practices, fire suppression, insect outbreaks, and climate-related stressors. This tree mortality event represents the largest and most significant ecological disturbance in California in centuries, if not longer. Both scientists and managers recognize the need to rethink our approach to forest management in the face of a changing climate and increasingly frequent, uncharacteristically large wildfires, while budgets and staffing capacity continue to decrease. Addressing the uncertainly in managing under climate change with fewer financial resources will require multiple partners and stakeholders—including federal and state agencies, local governments, and non-governmental organizations—to work together to identify common goals and paths moving forward. The USDA California Climate Hub and USFS Region 5 convened a symposium on drought and tree mortality in July 2017. With nearly 170 attendees across a wide range of sectors, the event provided a meaningful opportunity for reflection, analysis, and consideration of next steps. Among the outcomes of this symposium was the identification of areas in which our capacity for individual and synergistic action is stronger, and those in which it is lacking that will thus require additional attention and effort. From this symposium, which included a series of smaller, stakeholder and partner working groups, we collectively identified research and information needs, possible policy adjustments, future management actions, and funding needs and opportunities. Here, we present these findings and suggest approaches for addressing the current tree mortality event based on the shared interests of multiple, diverse stakeholder groups.

  11. Tree biomass in the Swiss landscape: nationwide modelling for improved accounting for forest and non-forest trees.

    Science.gov (United States)

    Price, B; Gomez, A; Mathys, L; Gardi, O; Schellenberger, A; Ginzler, C; Thürig, E

    2017-03-01

    Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R 2 of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.

  12. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    Science.gov (United States)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  13. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.

    Science.gov (United States)

    Ligot, Gauthier; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis-Yaoba; Morin, Xavier; Bauwens, Sébastien; Baya, Fidele; Brostaux, Yves; Doucet, Jean-Louis; Fayolle, Adeline

    2018-04-16

    Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even

  14. Utilizing forest tree genetic diversity for an adaptation of forest to climate change

    Science.gov (United States)

    Schueler, Silvio; Lackner, Magdalena; Chakraborty, Debojyoti

    2017-04-01

    Since climate conditions are considered to be major determinants of tree species' distribution ranges and drivers of local adaptation, anthropogenic climate change (CC) is expected to modify the distribution of tree species, tree species diversity and the forest ecosystems connected to these species. The expected speed of environmental change is significantly larger than the natural migration and adaptation capacity of trees and makes spontaneous adjustment of forest ecosystems improbable. Planting alternative tree species and utilizing the tree species' intrinsic adaptive capacity are considered to be the most promising adaptation strategy. Each year about 900 million seedlings of the major tree species are being planted in Central Europe. At present, the utilization of forest reproductive material is mainly restricted to nationally defined ecoregions (seed/provenance zones), but when seedlings planted today become adult, they might be maladapted, as the climate conditions within ecoregions changed significantly. In the cooperation project SUSTREE, we develop transnational delineation models for forest seed transfer and genetic conservation based on species distribution models and available intra-specific climate-response function. These models are being connected to national registers of forest reproductive material in order support nursery and forest managers by selecting the appropriate seedling material for future plantations. In the long-term, European and national policies as well as regional recommendations for provenances use need to adapted to consider the challenges of climate change.

  15. Can forest dieback and tree death be predicted by prior changes in wood anatomy?

    Science.gov (United States)

    Colangelo, Michele; Julio Camarero, Jesus; De Micco, Veronica; Borghetti, Marco; Gentilesca, Tiziana; Sanchez-Salguero, Raul; Ripullone, Francesco

    2017-04-01

    Climate warming is expected to amplify drought stress resulting in more intense and widespread dieback episodes and increasing mortality rates. Studies on quantitative wood anatomy and dendrochronology have demonstrated their potential to supply useful information on the causes of tree decline, although this approach is basically observational and retrospective. Moreover, the long-term reconstruction of wood anatomical features, strictly linked to the evolution of xylem anatomy plasticity through time, allow investigating hydraulic adjustments of trees. In this study, we analyzed wood-anatomical variables in two Italian oak forests where recent episodes of dieback and mortality have been reported. We analyzed in coexisting now-dead and living trees the following wood-anatomical variables: annual tree-ring area, earlywood (EW) and latewood (LW) areas, absolute and relative (%) areas occupied by vessels in the EW and LW, EW and LW vessel areas, EW and LW vessel density and vessel diameter classification. We also calculated the hydraulic diameter (Dh) for all vessels measured within each ring by weighting individual conduit diameters to correspond to the average Hagen-Poiseuille lumen theoretical hydraulic conductivity for a vessel size. Wood-anatomical analyses showed that declining and dead trees were more sensitive to drought stress compared to non declining trees, indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. We discuss the results and implications focusing on those proved more sensitive to the phenomena of decline and mortality.

  16. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  17. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003-2012)

    Science.gov (United States)

    Berner, Logan T.; Law, Beverly E.; Meddens, Arjan J. H.; Hicke, Jeffrey A.

    2017-06-01

    High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003-2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We quantified tree mortality from harvest using data from US Forest Service reports. In both cases, we used Monte Carlo analyses to track uncertainty associated with parameter error and temporal variability. Regional tree mortality from harvest, beetles, and fires (MORTH+B+F) together averaged 45.8 ± 16.0 Tg AGC yr-1 (±95% confidence interval), indicating a mortality rate of 1.10 ± 0.38% yr-1. Harvest accounted for the largest percentage of MORTH+B+F (˜50%), followed by beetles (˜32%), and fires (˜18%). Tree mortality from harvest was concentrated in Washington and Oregon, where harvest accounted for ˜80% of MORTH+B+F in each state. Tree mortality from beetles occurred widely at low levels across the region, yet beetles had pronounced impacts in Colorado and Montana, where they accounted for ˜80% of MORTH+B+F. Tree mortality from fires was highest in California, though fires accounted for the largest percentage of MORTH+B+F in Arizona and New Mexico (˜50%). Drought and human activities shaped regional variation in tree mortality, highlighting opportunities and challenges to managing GHG emissions from forests. Rising temperatures and greater risk of drought will likely increase tree mortality from fires and bark beetles during coming decades in this region. Thus, sustained monitoring and mapping of tree mortality is necessary to

  18. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  19. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    Science.gov (United States)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2018-01-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater

  1. Factors affecting long-term mortality of residential shade trees: evidence from Sacramento, California

    Science.gov (United States)

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Urban tree survival is essential to sustain the ecosystem services of urban forests and monitoring is needed to accurately assess benefits. While some urban forestry studies have reported street tree survival, little is known about the factors influencing residential yard tree survival, especially over the long-term. We assessed residential shade tree survival in...

  2. Biodiversity promotes tree growth during succession in subtropical forest.

    Directory of Open Access Journals (Sweden)

    Martin Barrufol

    Full Text Available Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.

  3. The balance of planting and mortality in a street tree population

    Science.gov (United States)

    Lara A. Roman; John J. Battles; Joe R. McBride

    2013-01-01

    Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...

  4. Field guide to the forest trees of Ghana

    OpenAIRE

    Hawthorne, William

    1990-01-01

    This guide has been produced to help foresters identify trees in Ghanaian rain forest. The range and definition of forest types covered are the same as those described by Hall and Swaine (1981). Although the guide is designed primarily for use by Technical Officers in the Forestry Department, it is hoped that other interested parties will find it useful as well: technical jargon has been kept to a minimum and the leaves of most species are illustrated. It is designed to be used in conjunction...

  5. The role of old forests and big trees in forest carbon sequestration in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray

    2015-01-01

    Forest ecosystems are an important component of the global carbon (C) cycle. Recent research has indicated that large trees in general, and old-growth forests in particular, sequester substantial amounts of C annually. C sequestration rates are thought to peak and decline with stand age but the timing and controls are not well-understood. The objectives of this study...

  6. A founder project: marketing the domestication baseline for forest trees

    Science.gov (United States)

    C. G. Williams; Floyd E. Bridgwater; C. Dana Nelson

    2004-01-01

    One of the most apparent benefits of forest genomics programmes is to provide genotypic information on the original selections of tree improvement programmes worldwide. In many breeding programmes, brances from these selections were grafted onto seedlings and the grafted seedlings composed the first seed orchards for planting programmes. with advanced generation...

  7. How to test herbicides at forest tree nurseries.

    Science.gov (United States)

    Roger E. Sandquist; Peyton W. Owston; Stephen E. McDonald

    1981-01-01

    Procedures developed in a cooperative westwide study of weed control in forest tree nurseries are described in a form modified for use by nursery managers. The proven, properly designed test and evaluation methods can be used to generate data needed for evaluation and registration of herbicides.

  8. Growth rates of important East African montane forest trees, with ...

    African Journals Online (AJOL)

    These trees showed growth rates at least twice as high as those of the primary species. Juniperus procera was found to be the fastest growing species in the cedar forest, underlining its success in forming dense stands after a fire. Only young Podocarpus latifolius showed a similar fast growth. Olea europaea ssp. cuspidata, ...

  9. Tree Planting at the Bent Creek Experimental Forest

    Science.gov (United States)

    John C. Barber

    1953-01-01

    Foresters everywhere are becoming increasingly conscious of the potentialities of tree selection and breeding. In the quest for suitable breeding material, many of the plantations of the past are assuming importance, for each plantation of introduced species may provide information on its adaptability to a certain area and the desirable and undesirable traits which...

  10. Exploring gender and forest, tree and agroforestry value chains

    NARCIS (Netherlands)

    Haverhals, Merel; Ingram, V.J.; Elias, M.; Basnett, Bimbika Sijapati; Petersen, S.

    2016-01-01

    •This systematic review of literature on gender and value chains of forest, tree and agroforestry (FTA) products examined gender differences and inequalities in FTA value chains, factors that influence these differences, and interventions to foster greater gender equity.
    •There is limited

  11. Measuring Tree Seedlings and Associated Understory Vegetation in Pennsylvania's Forests

    Science.gov (United States)

    William H. McWilliams; Todd W. Bowersox; Patrick H. Brose; Daniel A. Devlin; James C. Finley; Kurt W. Gottschalk; Steve Horsley; Susan L. King; Brian M. LaPoint; Tonya W. Lister; Larry H. McCormick; Gary W. Miller; Charles T. Scott; Harry Steele; Kim C. Steiner; Susan L. Stout; James A. Westfall; Robert L. White

    2005-01-01

    The Northeastern Research Station's Forest Inventory and Analysis (NE-FIA) unit is conducting the Pennsylvania Regeneration Study (PRS) to evaluate composition and abundance of tree seedlings and associated vegetation. Sampling methods for the PRS were tested and developed in a pilot study to determine the appropriate number of 2-m microplots needed to capture...

  12. Propagation of dry tropical forest trees in Mexico

    Science.gov (United States)

    Martha A. Cervantes Sanchez

    2002-01-01

    There is a distinct lack of technical information on the propagation of native tree species from the dry tropical forest ecosystem in Mexico. This ecosystem has come under heavy human pressures to obtain several products such as specialty woods for fuel, posts for fences and construction, forage, edible fruits, stakes for horticulture crops, and medicinal products. The...

  13. Tree species Diversity in the Department of Forest Resources ...

    African Journals Online (AJOL)

    An inventory of trees (>10cm diameter at breast height (dbh)) growing within the premises (~1.2ha) of the Department of Forest Resources Management (DFRM), University of Ibadan, Nigeria, was conducted as a case study of the species quality (richness and diversity) and quantity (volume) found on the University campus.

  14. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

    Science.gov (United States)

    Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-01-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This

  15. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.

    Science.gov (United States)

    Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-09-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This

  16. Rapid tree carbon stock recovery in managed Amazonian forests.

    Science.gov (United States)

    Rutishauser, Ervan; Hérault, Bruno; Baraloto, Christopher; Blanc, Lilian; Descroix, Laurent; Sotta, Eleneide Doff; Ferreira, Joice; Kanashiro, Milton; Mazzei, Lucas; d'Oliveira, Marcus V N; de Oliveira, Luis C; Peña-Claros, Marielos; Putz, Francis E; Ruschel, Ademir R; Rodney, Ken; Roopsind, Anand; Shenkin, Alexander; da Silva, Katia E; de Souza, Cintia R; Toledo, Marisol; Vidal, Edson; West, Thales A P; Wortel, Verginia; Sist, Plinio

    2015-09-21

    While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Diagnosing injury to eastern forest trees

    Science.gov (United States)

    John M. Skelly; Donald D. Davis; William Merrill; E. Alan Cameron; H. Daniel Brown; David B. Drummond; Leon S., eds. Dochinger

    1987-01-01

    The purpose of this manual is to assist members of the National Vegetation Survey in recognizing air pollutant-induced injury and in identifying disease and insect damage that may be confused with air pollutant-induced injury to forest vegetation in the eastern United States. Ozone, sulfur dioxide, and, to a limited geographic extent, hydrogen fluoride, are all...

  18. The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park

    Science.gov (United States)

    Nesmith, Jonathan C. B.; Das, Adrian J.; O'Hara, Kevin L.; van Mantgem, Phillip J.

    2015-01-01

    Tree mortality is a vital component of forest management in the context of prescribed fires; however, few studies have examined the effect of prefire tree health on postfire mortality. This is especially relevant for sugar pine (Pinus lambertiana Douglas), a species experiencing population declines due to a suite of anthropogenic factors. Using data from an old-growth mixed-conifer forest in Sequoia National Park, we evaluated the effects of fire, tree size, prefire radial growth, and crown condition on postfire mortality. Models based only on tree size and measures of fire damage were compared with models that included tree size, fire damage, and prefire tree health (e.g., measures of prefire tree radial growth or crown condition). Immediately following the fire, the inclusion of different metrics of prefire tree health produced variable improvements over the models that included only tree size and measures of fire damage, as models that included measures of crown condition performed better than fire-only models, but models that included measures of prefire radial growth did not perform better. However, 5 years following the fire, sugar pine mortality was best predicted by models that included measures of both fire damage and prefire tree health, specifically, diameter at breast height (DBH, 1.37 m), crown scorch, 30-year mean growth, and the number of sharp declines in growth over a 30-year period. This suggests that factors that influence prefire tree health (e.g., drought, competition, pathogens, etc.) may partially determine postfire mortality, especially when accounting for delayed mortality following fire.

  19. Habitat filtering across tree life stages in tropical forest communities

    Science.gov (United States)

    Baldeck, C. A.; Harms, K. E.; Yavitt, J. B.; John, R.; Turner, B. L.; Valencia, R.; Navarrete, H.; Bunyavejchewin, S.; Kiratiprayoon, S.; Yaacob, A.; Supardi, M. N. N.; Davies, S. J.; Hubbell, S. P.; Chuyong, G. B.; Kenfack, D.; Thomas, D. W.; Dalling, J. W.

    2013-01-01

    Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24–50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages. PMID:23843384

  20. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest.

    Science.gov (United States)

    Kueppers, Lara M; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B; Germino, Matthew J; de Valpine, Perry; Torn, Margaret S; Mitton, Jeffry B

    2017-06-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower

  1. Growth and mortality patterns in a thinning canopy of post-hurricane regenerating rain forest in eastern Nicaragua (1990-2005

    Directory of Open Access Journals (Sweden)

    Javier Ruiz

    2010-12-01

    Full Text Available One of the strongest hypothesis about the maintenance of tree species diversity in tropical areas is disturbance. In order to assess this, the effect of intensive natural disturbances on forest growth and mortality in a thinning canopy was studied after the landfall of hurricane Joan in 1988. We evaluated the growth and mortality rates of the 26 most common tree species of that forest in eastern Nicaragua. Permanent plots were established at two study sites within the damaged area. Growth and mortality rates of all individual trees ≥3.18cm diameter at breast height were assessed annually from 1990 to 2005. During this period the forest underwent two phases: the building phase (marked by increased number of individuals of tree species present after the hurricane and the canopy thinning phase (marked by increased competition and mortality. Our results from the thinning phase show that tree survival was independent of species identity and was positively related to the increase in growth rates. The analysis of mortality presented here aims to test the null hypothesis that individual trees die independently of their species identity. These findings were influenced by the mortality observed during the late thinning phase (2003-2005 and provide evidence in favor of a non-niche hypothesis at the thinning phase of forest regeneration. Rev. Biol. Trop. 58 (4: 1283-1297. Epub 2010 December 01.

  2. Tree Regeneration in Church Forests of Ethiopia: Effects of Microsites and Management

    NARCIS (Netherlands)

    Wassie Eshete, A.; Sterck, F.J.; Teketay, D.; Bongers, F.

    2009-01-01

    Tree regeneration is severely hampered in the fragmented afromontane forests of northern Ethiopia. We explored how trees regenerate in remnant forests along the gradient from open field, forest edge to closed sites and canopy gaps inside the forest. We investigated the effects of seed sowing, litter

  3. Finding a Forest in a Tree

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Miculan, Marino; Rizzi, Romeo

    2014-01-01

    Wide reactive systems are rewriting systems specified by wide reaction rules, where redex and reactum are lists of terms (forests), i.e. rules of the form ⟨l1(x1),…,ln(xn)⟩⇒⟨r1(y1),…,rn(yn)⟩ such that ∪iyi⊆∪ixi. Wide reaction rules are particularly useful for process calculi for mobile and global...... system), possibly finding the subtrees to be grafted at the forest’s leaves (i.e., instantiating the variables)? We show that, although the problem is NP-complete in general, the exponential explosion depends only on the number n of roots of the forest (the width of the redex), and not on the size...

  4. Tree Line Structure and Dynamics at the Northern Limit of the Larch Forest: Anabar Plateau, Siberia, Russia

    Science.gov (United States)

    Kharuk, Viacheslav I.; Ranson, Kenneth J.; Im, Sergey T.; Oskorbin, Pavel A.; Dvinskaya, Maria L.; Ovchinnikov, Dmitriy V.

    2013-01-01

    The goal of the study was to provide an analysis of climate impact before, during, and after the Little Ice Age (LIA) on the larch (Larix gmelinii) tree line at the northern extreme of Siberian forests. Recent decadal climate change impacts on the tree line, regeneration abundance, and age structure were analyzed. The location of the study area was within the forest-tundra ecotone (elevation range 170-450 m) in the Anabar Plateau, northern Siberia. Field studies were conducted along elevational transects. Tree natality/mortality and radial increment were determined based on dendrochronology analyses. Tree morphology, number of living and subfossil trees, regeneration abundance, and age structure were studied. Locations of pre-LIA, LIA, and post-LIA tree lines and refugia boundaries were established. Long-term climate variables and drought index were included in the analysis. It was found that tree mortality from the 16th century through the beginning of the 19th century caused a downward tree line recession. Sparse larch stands experienced deforestation, transforming into tundra with isolated relict trees. The maximum tree mortality and radial growth decrease were observed to have occurred at the beginning of 18th century. Now larch, at its northern boundary in Siberia, is migrating into tundra areas. Upward tree migration was induced by warming in the middle of the 19th century. Refugia played an important role in repopulation of the forest-tundra ecotone by providing a seed source and shelter for recruitment of larch regeneration. Currently this ecotone is being repopulated mainly by tree cohorts that were established after the 1930s. The last two decades of warming did not result in an acceleration of regeneration recruitment because of increased drought conditions. The regeneration line reached (but did not exceed) the pre-LIA tree line location, although contemporary tree heights and stand densities are comparatively lower than in the pre-LIA period. The mean

  5. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  6. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  7. Overstory Tree Mortality in Ponderosa Pine and Spruce-Fir Ecosystems Following a Drought in Northern New Mexico

    Directory of Open Access Journals (Sweden)

    Brian P. Oswald

    2016-10-01

    Full Text Available Drought-caused tree dieback is an issue around the world as climates change and many areas become dryer and hotter. A drought from 1998–2004 resulted in a significant tree dieback event in many of the wooded areas in portions of the Jemez Mountains and the adjacent Pajarito Plateau in northern New Mexico. The objectives of this study were to evaluate and quantify the differences in tree mortality before and after a recent drought in ponderosa pine and spruce-fir ecosystems, and to assess the effect of mechanical thinning on ponderosa pine mortality. Significant increases in mortality were observed in the unthinned ponderosa pine ecosystem. Mortality varied significantly between species and within size classes. Mechanical thinning of ponderosa pines reduced overstory mortality to non-significant levels. A lack of rainfall, snowfall, and increases in daily minimum temperature contributed most to the mortality. Adaptive management, including the use of thinning activities, appear to moderate the impact of climate change on ponderosa pine forests in this region, increasing the long-term health of the ecosystem. The impact of climate change on the spruce-fir ecosystems may accelerate successional changes.

  8. Bioclimatic Extremes Drive Forest Mortality in Southwest, Western Australia

    Directory of Open Access Journals (Sweden)

    Bradley John Evans

    2013-07-01

    Full Text Available Extreme and persistent reductions in annual precipitation and an increase in the mean diurnal temperature range have resulted in patch scale forest mortality following the summer of 2010–2011 within the Forest study area near Perth, Western Australia. The impacts of 20 bioclimatic indicators derived from temperature, precipitation and of actual and potential evapotranspiration are quantified. We found that spatially aggregated seasonal climatologies across the study area show 2011 with an annual mean of 17.7 °C (± 5.3 °C was 1.1 °C warmer than the mean over recent decades (1981–2011,- 16.6 °C ± 4.6 °C and the mean has been increasing over the last decade. Compared to the same period, 2010–2011 summer maximum temperatures were 1.4 °C (31.6 °C ± 2.0 °C higher and the annual mean diurnal temperature range (Tmax−Tmin was 1.6 °C higher (14.7 °C ± 0.5 °C. In 2009, the year before the forest mortality began, annual precipitation across the study area was 69% less (301 mm ± 38 mm than the mean of 1981–2010 (907 mm ± 69 mm. Using Système Pour l'Observation de la Terre mission 5 (SPOT-5 satellite imagery captured after the summer of 2010–2011 we map a broad scale forest mortality event across the Forested study area. This satellite-climatology based methodology provides a means of monitoring and mapping similar forest mortality events- a critical contribution to our understanding the dynamical bioclimatic drivers of forest mortality events.

  9. The structure of spruce-fir tree stands mortality under impact of the Middle Ural copper smelter emissions

    Directory of Open Access Journals (Sweden)

    I. E. Bergman

    2015-04-01

    Full Text Available The influence of industrial pollution on mortality values (dead fallen wood and dead standing trees and its distribution by degrees of decomposition were investigated in spruce-fir forest stands in the vicinity of the Middle Ural copper smelter (the city of Revda, Sverdlovsk region. The total mortality and mortality in each size category did not depend on the distance to the source of pollution. At the same time, the amount of dead fallen wood was significantly greater (1.9 times in the polluted area (2 and 4 km from the smelter as compared with the background territory (30 km from the smelter. Mortality proportion out of the total number of the trees (both live and dead did not differ significantly between the sites, although this parameter tended to increase nearer the smelter. The distribution of mortality by size categories revealed significant differences between background territory and site with average level of contamination, as well as background territory and highly contaminated site. Observed differences are associated with an increased proportion of lesser mortality near the smelter (by 15 % and 12 % as compared with areas of background and middle levels of contamination, respectively, as well as because of double-declining of medium- and large-sized mortality near the smelter. The distribution of the living tree stands by size categories also has a connection with level of contamination. The average diameters of the living tree stand and the elements of coarse woody debris (dead fallen wood and dead standing trees do not differ significantly between sites with different levels of contamination. For the small-sized dead fallen wood, the proportion of weakly decomposed stems increased with the level of pollution, while proportion of strongly decomposed stems decreased. The distribution of medium- and large-sized dead fallen wood on the stages of decomposition does not vary between sites with different levels of pollution.

  10. Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    Directory of Open Access Journals (Sweden)

    T. R. Duhl

    2013-01-01

    Full Text Available In this screening study, biogenic volatile organic compound (BVOC emissions from intact branches of lodgepole pine (Pinus contorta trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB, with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT, with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late

  11. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    Science.gov (United States)

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  12. Conservation and restoration of forest trees impacted by non-native pathogens: the role of genetics and tree improvement

    Science.gov (United States)

    R.A. Sniezko; L.A. Winn

    2017-01-01

    North American native tree species in forest ecosystems, as well as managed forests and urban plantings, are being severely impacted by pathogens and insects. The impacts of these pathogens and insects often increase over time, and they are particularly acute for those species affected by non-native pathogens and insects. For restoration of affected tree species or for...

  13. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  14. Carbon Impacts of Fire- and Bark Beetle-Caused Tree Mortality across the Western US using the Community Land Model (Invited)

    Science.gov (United States)

    Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.

    2013-12-01

    Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions

  15. Emission and soil distribution of fumigants in forest tree nurseries

    Science.gov (United States)

    Dong Wang; Jennifer Juzwik; Stephen Fraedrich

    2005-01-01

    Production of tree seedlings in the majority of forest nurseries in the USA has relied on soil fumigation with methyl bromide (MeBr) to control soil-borne plant pathogens, weeds, parasitic nematodes and insects. Since the announcement of the scheduled MeBr phase-out, a number of nurseries throughout the United States have participated in research programs on MeBr...

  16. Relief influence on tree species richness in secondary forest fragments of Atlantic Forest, SE, Brazil

    OpenAIRE

    Silva,William Goulart da; Metzger,Jean Paul; Bernacci,Luis Carlos; Catharino,Eduardo Luís Martins; Durigan,Giselda; Simões,Sílvio

    2008-01-01

    The aim of this work was to explore the relationship between tree species richness and morphological characteristics of relief at the Ibiúna Plateau (SE Brazil). We sampled 61 plots of 0.30 ha, systematically established in 20 fragments of secondary forest (2-274 ha) and in three areas within a continuous secondary forest site, Morro Grande Reserve (9,400 ha). At each plot, 100 trees with diameter at breast height > 5 cm were sampled by the point centered quarter method, and total richness an...

  17. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia.

    Science.gov (United States)

    Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry

    2016-01-01

    Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to

  18. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    Science.gov (United States)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  19. Relationship of Tree Stand Heterogeneity and Forest Naturalness

    Directory of Open Access Journals (Sweden)

    BARTHA, Dénes

    2006-01-01

    Full Text Available The aim of our study was to investigate if compositional (tree species richness andstructural (vertical structure, age-structure, patterns of canopy closure heterogeneity of the canopylayer is related to individual naturalness criteria and to overall forest naturalness at the stand scale. Thenaturalness values of the assessed criteria (tree species composition, tree stand structure, speciescomposition and structure of shrub layer and forest floor vegetation, dead wood, effects of game, sitecharacteristics showed similar behaviour when groups of stands with different heterogeneity werecompared, regardless of the studied aspect of canopy heterogeneity. The greatest difference was foundfor criteria describing the canopy layer. Composition and structure of canopy layer, dead wood andtotal naturalness of the stand differed significantly among the stand groups showing consistentlyhigher values from homogeneous to the most heterogeneous group. Naturalness of the compositionand structure of the shrub layer is slightly but significantly higher in stands with heterogeneous canopylayer. Regarding other criteria, significant differences were found only between the homogeneous andthe most heterogeneous groups, while groups with intermediate level of heterogeneity did not differsignificantly from one extreme. However, the criterion describing effects of game got lowernaturalness values in more heterogeneous stands. Naturalness of site characteristics did not differsignificantly among the groups except for when stands were grouped based on pattern of canopyclosure. From the practical viewpoint it is shown that purposeful forestry operations affecting thecanopy layer cause changes in compositional and structural characteristics of other layers as well as inoverall stand scale forest naturalness.

  20. Cellulose factories: advancing bioenergy production from forest trees.

    Science.gov (United States)

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  1. Relationships between the stocking levels of live trees and dead tree attributes in forests of the United States

    Science.gov (United States)

    C.W. Woodall; J.A. Westfall

    2009-01-01

    There has been little examination of the relationship between the stocking of live trees in forests and the associated attributes of dead tree resources which could inform large-scale efforts to estimate and manage deadwood resources. The goal of this study was to examine the relationships between the stocking of standing live trees and attributes of standing dead and...

  2. Tree Diversity and Structure of Andaman Giant Evergreen Forests, India

    Directory of Open Access Journals (Sweden)

    M. Rajkumar

    2008-12-01

    Full Text Available We investigated tree diversity in ‘giant evergreen forest’ of Andaman and Nicobar Islands, which falls within the Indo-Burma hot spot of biodiversity in the world. A one hectare square plot was established in sites Kalapahad (KP and Macarthy Valley (MV of Middle Andamans, in which all trees ≥ 30 cm girth at breast height (gbh were enumerated. Tree diversity totaled 105 species that belonged to 63 genera and 49 families. Site MV harboured ~10% greater species richness than KP. Species diversity indices did not vary much between the two sites. In the two sites, there were 1311 individuals of trees (579 ha-1 in KP and 732 in MV. The stand basal area was nearly equal in both the sites (KP- 45.59 m2 ha-1; MV- 47.93 m2 ha-1. Thirteen tree species (12.38% were strict endemics to Andamans. Ten species recorded are rare to the flora of these islands. The two sites are distinctly dominated by two different plant families; Dipterocarpaceae in KP and Myristicaceae in MV. Most of the species were common to central and lower region of Myanmar and Indian mainland. The forest stand structure exhibited a typical reverse-J shape, but site MV had double the density of stems in the lower tree size class than that of KP. The voluminous dipterocarps contributed more to the total above-ground live biomass. The need to preserve these species- and endemics- rich, fragile island forests, prioritized for biodiversity conservation, is emphasized.

  3. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps

    International Nuclear Information System (INIS)

    Karnosky, D.F.

    2003-06-01

    Atmospheric CO 2 is rising rapidly, and options for slowing the CO 2 rise are politically charged as they largely require reductions in industrial CO 2 emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO 2 on forest tree growth, productivity, and forest ecosystem function. In this paper, 1 review knowledge gaps and research needs on the effects of elevated atmospheric CO 2 on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phonology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, 1 discuss research needs regarding modelling of the impacts of elevated atmospheric CO 2 on forests. Even though there has been a tremendous amount of research done with elevated CO 2 and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO 2 . Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO 2 . The more we study the impacts of increasing CO 2 , the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO 2 with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O 3 . Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO 2 enrichment (FACE

  4. Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest

    Science.gov (United States)

    Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan

    2014-05-01

    According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate

  5. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2012-01-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years...

  6. Allometry, biomass, and chemical content of novel African Tulip Tree (Spathodea campanulata) forests in Puerto Rico

    Science.gov (United States)

    Ariel E. Lugo; Oscar J. Abelleira; Alexander Collado; Christian A. Viera; Cynthia Santiago; Diego O. Velez; Emilio Soto; Giovanni Amaro; Graciela Charon; Jr. Colon; Jennifer Santana; Jose L. Morales; Katherine Rivera; Luis Ortiz; Luis Rivera; Mianel Maldonado; Natalia Rivera; Norelis J. Vazquez

    2011-01-01

    The African tulip tree, Spathodea campanulata, the most common tree in Puerto Rico, forms novel forest types with mixtures of native and other introduced tree species. Novel forests increase in area in response to human activity and there is no information about their biomass accumulation and nutrient cycling. We established allometric relationships and chemically...

  7. Use of Hardwood Tree Species by Birds Nesting in Ponderosa Pine Forests

    Science.gov (United States)

    Kathryn L. Purcell; Douglas A. Drynan

    2008-01-01

    We examined the use of hardwood tree species for nesting by bird species breeding in ponderosa pine (Pinus ponderosa) forests in the Sierra National Forest, California. From 1995 through 2002, we located 668 nests of 36 bird species nesting in trees and snags on four 60-ha study sites. Two-thirds of all species nesting in trees or snags used...

  8. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Science.gov (United States)

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  9. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Science.gov (United States)

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  10. Vertical and horizontal distribution of radiocesium around trees in forest soil of deciduous forests, Fukushima, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Mono; Oba, Yurika; Nursal, Wim I.; Yamada, Toshihiro; Okuda, Toshinori [Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi- Hiroshima 739-8521 (Japan); Shizuma, Kiyoshi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2014-07-01

    After the 2011 Nuclear Power Plant accident in Japan, large amount of radionuclides were deposited and remains in the forest land of Fukushima region, yet still uncertain how much deposition stays in the forest. This region is mostly covered by the secondary deciduous forest which sporadically includes Japanese fir (Abies firma). As the leaves of all deciduous trees were shed, we hypothesized that the amounts of deposition radionuclides will be exhibit difference between the conifer trees (Japanese fir) and the other deciduous trees. As these trees inhabit on steep slopes, we also hypothesized there are differences in the radionuclides deposition in soils in relation to the position around tree trunk base (upper side, lower side and mid side at the foot of trees), tree species and slope angles. Study site and method: our study was conducted in deciduous forest of Fukushima region in August 2013, two and a half years after the accident. Samples of litter layer and two soil layers (0 - 5, 5 - 10 cm) were collected under Abies firma and eight deciduous tree species. In total 23 trees in eight forest stands were investigated. Under one tree, samples were taken from four pints (upper side, lower side and mid sides at the foot of trees) around a tree trunk within a radius of one meter from the base of tree trunks. Angle of slope at each tree was also checked. The samples were dried (70 deg. C, 48 hr) and radiocesium and potassium-40 was determined by a germanium detector (GEM Series HPGe Coaxial Detector System) (measurement time 300 - 30000 sec). Results and discussion: we found that radiocesium contained in litter layer accounts for more than 80% of total amount (within litter layer to 10 cm depth from the surface), and almost all the radiocesium exists within litter layer up to 5 cm depth. Although it is well known that cesium shows similar movement to potassium in a plant body, soil contained much more amount of potassium-40 than litter layer. We predicted that

  11. Tree migration detection through comparisons of historic and current forest inventories

    Science.gov (United States)

    Christopher W. Woodall; Christopher M. Oswalt; James A. Westfall; Charles H. Perry; Mark N. Nelson

    2009-01-01

    Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to modeling activities with little empirical analysis of long-term forest inventory datasets. The goal of this study was to compare historic and current spatial...

  12. Tree species diversity and distribution patterns in tropical forests of Garo Hills.

    Science.gov (United States)

    A. Kumar; B.G. Marcot; A. Saxena

    2006-01-01

    We analyzed phytosociological characteristics and diversity patterns of tree species of tropical forests of Garo Hills, western Meghalaya, northeast India. The main vegetation of the region included primary forests, secondary forests, and sal (Shorea robusta) plantations, with 162, 132, and 87 tree species, respectively. The Shannon-Wiener...

  13. Impact of ecological and socioeconomic determinants on the spread of tallow tree in southern forest lands

    Science.gov (United States)

    Yuan Tan; Joseph Z. Fan; Christopher M. Oswalt

    2010-01-01

    Based on USDA Forest Service Forest Inventory and Analysis (FIA) database, relationships between the presence of tallow tree and related driving variables including forest landscape metrics, stand and site conditions, as well as natural and anthropogenic disturbances were analyzed for the southern states infested by tallow trees. Of the 9,966 re-measured FIA plots in...

  14. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    Directory of Open Access Journals (Sweden)

    Helen M. Poulos

    2014-06-01

    Full Text Available This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63% of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P < 0.05. Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P < 0.0001 (55% of piñon pines died, and over five times as many standing dead pines were observed in 2012 than in 2009. Juniperus deppeana vonSteudal and Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02 (30.9% and 20.7%, respectively. Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences.

  15. Seeing the forest and the trees: USGS scientist links local changes to global scale

    Science.gov (United States)

    Wilson, Jim; Allen, Craig D.

    2011-01-01

    The recent recipient of two major awards, Craig D. Allen, a research ecologist with the U.S. Geological Survey Fort Collins Science Center, has loved trees since childhood. He is now considered an expert of world renown on the twin phenomena of forest changes and tree mortality resulting from climate warming and drought, and in 2010 was twice recognized for his scientific contributions.In December 2010, Dr. Allen was named a 2010 Fellow of the American Association for the Advancement of Science “for outstanding leadership in the synthesis of global forest responses to climate change, built from worldwide collaboration and a deep understanding of the environmental history of the southwestern United States.”In March 2010, he was honored with the Meritorious Service Award from the U.S. Department of the Interior (DOI) in recognition of his outstanding vision, initiative, and scientific contributions to the USGS, DOI, and U.S. Department of Agriculture in establishing a model science program to support adaptive land management at the new Valles Caldera National Preserve in north-central New Mexico.Dr. Allen has authored more than 85 publications on landscape ecology and landscape change, from fire history and ecology to ecosystem responses to climate change. He has appeared on NOVA discussing fire ecology and on The Discovery Channel and Discovery Canada explaining the links between drought-induced tree mortality and climate warming, in addition to being interviewed and quoted in innumerable newspaper articles on both topics.But how did this unassuming scientist grow from nurturing maple saplings on 40 acres in Wisconsin to understanding forest system stress worldwide?

  16. Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most

    Science.gov (United States)

    Swann, Abigail L. S.; Laguë, Marysa M.; Garcia, Elizabeth S.; Field, Jason P.; Breshears, David D.; Moore, David J. P.; Saleska, Scott R.; Stark, Scott C.; Villegas, Juan Camilo; Law, Darin J.; Minor, David M.

    2018-05-01

    Regional-scale tree die-off events driven by drought and warming and associated pests and pathogens have occurred recently on all forested continents and are projected to increase in frequency and extent with future warming. Within areas where tree mortality has occurred, ecological, hydrological and meteorological consequences are increasingly being documented. However, the potential for tree die-off to impact vegetation processes and related carbon dynamics in areas remote to where die-off occurs has rarely been systematically evaluated, particularly for multiple distinct regions within a given continent. Such remote impacts can occur when climate effects of local vegetation change are propagated by atmospheric circulation—the phenomena of ‘ecoclimate teleconnections’. We simulated tree die-off events in the 13 most densely forested US regions (selected from the 20 US National Ecological Observatory Network [NEON] domains) and found that tree die-off even for smaller regions has potential to affect climate and hence Gross Primary Productivity (GPP) in disparate regions (NEON domains), either positively or negatively. Some regions exhibited strong teleconnections to several others, and some regions were relatively sensitive to tree loss regardless of what other region the tree loss occurred in. For the US as a whole, loss of trees in the Pacific Southwest—an area undergoing rapid tree die-off—had the largest negative impact on remote US GPP whereas loss of trees in the Mid-Atlantic had the largest positive impact. This research lays a foundation for hypotheses that identify how the effects of tree die-off (or other types of tree loss such as deforestation) can ricochet across regions by revealing hot-spots of forcing and response. Such modes of connectivity have direct applicability for improving models of climate change impacts and for developing more informed and coordinated carbon accounting across regions.

  17. Assessment of drought related mortality in pinyon-juniper and ponderosa pine forests using Forest Inventory and Analysis data

    Science.gov (United States)

    John D. Shaw

    2008-01-01

    (Please note, this is an abstract only) Widespread mortality in several forest types is associated with several years of drought in the Southwest. Implementation of USDA Forest Service Forest Inventory and Analysis (FIA) annual inventory in several states coincided with the onset of elevated mortality rates. Analysis of data collected 2000-2004 reveals the status and...

  18. Methodology to evaluate the insecticide potential of forest tree species

    International Nuclear Information System (INIS)

    Morales Soto, Leon; Garcia P, Carlos Mario

    2000-01-01

    The flora diversity of Colombia has an enormous potential in the rational use of its forest resources. Trees with biocidal effects to control pests and diseases need to be investigated. The objective of this research was to develop a methodology with low costs, easy application and quick results. The methodology employed was as follows: selection of tree species based on bibliography, ancestral reports and personal observations. The process was as follows: field collection of plants, preparation of plants extracts and test with Artemia salina Leach to detect biological activity of the extracts using LC50. Bioassays with those extract more promising (LC50 less than 1000 ppm) Determination of active compounds. The methodology was employed with 5 forest tree species: guarea guidonia (L) Sleumer and trichia hirta L. (Meliaceae), Machaerium Moritzianum Benth. (Fabaceae), Swinglea glutinosa Merrill (rutaceae) and Mammea americana L. (Clusiaceae). Using Artemia salina Leach as indicator of biocidal potential, two species were selected as the most promising, those were: Swinglea glutinosa Merril and Machaerium moritzianum Benth. In addition bioassays were made to evaluate fagoinhibition on Atta cephalotes (L.) (Hym: Formicidae) and control of Alconeura. This methodology is recommended for this kind of research

  19. The contribution of trees outside forests to national tree biomass and carbon stocks--a comparative study across three continents.

    Science.gov (United States)

    Schnell, Sebastian; Altrell, Dan; Ståhl, Göran; Kleinn, Christoph

    2015-01-01

    In contrast to forest trees, trees outside forests (TOF) often are not included in the national monitoring of tree resources. Consequently, data about this particular resource is rare, and available information is typically fragmented across the different institutions and stakeholders that deal with one or more of the various TOF types. Thus, even if information is available, it is difficult to aggregate data into overall national statistics. However, the National Forest Monitoring and Assessment (NFMA) programme of FAO offers a unique possibility to study TOF resources because TOF are integrated by default into the NFMA inventory design. We have analysed NFMA data from 11 countries across three continents. For six countries, we found that more than 10% of the national above-ground tree biomass was actually accumulated outside forests. The highest value (73%) was observed for Bangladesh (total forest cover 8.1%, average biomass per hectare in forest 33.4 t ha(-1)) and the lowest (3%) was observed for Zambia (total forest cover 63.9%, average biomass per hectare in forest 32 t ha(-1)). Average TOF biomass stocks were estimated to be smaller than 10 t ha(-1). However, given the large extent of non-forest areas, these stocks sum up to considerable quantities in many countries. There are good reasons to overcome sectoral boundaries and to extend national forest monitoring programmes on a more systematic basis that includes TOF. Such an approach, for example, would generate a more complete picture of the national tree biomass. In the context of climate change mitigation and adaptation, international climate mitigation programmes (e.g. Clean Development Mechanism and Reduced Emission from Deforestation and Degradation) focus on forest trees without considering the impact of TOF, a consideration this study finds crucial if accurate measurements of national tree biomass and carbon pools are required.

  20. Photo guide for estimating risk to hardwood trees during prescribed burning operations in eastern oak forests

    Science.gov (United States)

    Patrick H. Brose

    2009-01-01

    A field guide of 40 photographs of common hardwood trees of eastern oak forests and fuel loadings surrounding their bases. The guide contains instructions on how to rapidly assess a tree's likelihood to be damaged or killed by prescribed burning.

  1. Trees, Shrubs, and Woody Vines of the Bluff Experimental Forest, Warren County, Mississippi

    Science.gov (United States)

    Robert L. Johnson; Elbert L. Little

    1967-01-01

    Nearly 100 species of trees, shrubs, and woody vines grow naturally on the 450-acre Bluff Experimental Forest in west-central Mississippi. This publication lists the plants and provides information on silvical characteristics of the tree species.

  2. Applications of ion chromatography to study pollution effects on forest trees

    Science.gov (United States)

    Walter C. Shortle; Rakesh Minocha

    1990-01-01

    Air pollution and acidic deposition can influence forest tree growth and survival by causing ionic imbalances in the rooting zone. Altered nutrient status suppresses tree growth and weakens its immune system. Internal infections spread more quickly in response to weakened tree defenses. As adverse conditions persist, many trees die and the survivors are less healthy....

  3. Tree Mortality Undercuts Ability of Tree-Planting Programs to Provide Benefits: Results of a Three-City Study

    Directory of Open Access Journals (Sweden)

    Sarah Widney

    2016-03-01

    Full Text Available Trees provide numerous benefits for urban residents, including reduced energy usage, improved air quality, stormwater management, carbon sequestration, and increased property values. Quantifying these benefits can help justify the costs of planting trees. In this paper, we use i-Tree Streets to quantify the benefits of street trees planted by nonprofits in three U.S. cities (Detroit, Michigan; Indianapolis, Indiana, and Philadelphia, Pennsylvania from 2009 to 2011. We also use both measured and modeled survival and growth rates to “grow” the tree populations 5 and 10 years into the future to project the future benefits of the trees under different survival and growth scenarios. The 4059 re-inventoried trees (2864 of which are living currently provide almost $40,000 (USD in estimated annual benefits ($9–$20/tree depending on the city, the majority (75% of which are increased property values. The trees can be expected to provide increasing annual benefits during the 10 years after planting if the annual survival rate is higher than the 93% annual survival measured during the establishment period. However, our projections show that with continued 93% or lower annual survival, the increase in annual benefits from tree growth will not be able to make up for the loss of benefits as trees die. This means that estimated total annual benefits from a cohort of planted trees will decrease between the 5-year projection and the 10-year projection. The results of this study indicate that without early intervention to ensure survival of planted street trees, tree mortality may be significantly undercutting the ability of tree-planting programs to provide benefits to neighborhood residents.

  4. Experimental Evidence that Hemlock Mortality Enhances Carbon Stabilization in Southern Appalachian Forest Soils

    Science.gov (United States)

    Fraterrigo, J.; Ream, K.; Knoepp, J.

    2017-12-01

    Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.

  5. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010

    Science.gov (United States)

    Christopher W. Woodall; Linda S. Heath; Grant M. Domke; Michael C. Nichols

    2011-01-01

    The U.S. Forest Service, Forest Inventory and Analysis (FIA) program uses numerous models and associated coefficients to estimate aboveground volume, biomass, and carbon for live and standing dead trees for most tree species in forests of the United States. The tree attribute models are coupled with FIA's national inventory of sampled trees to produce estimates of...

  6. Forest Fires, Air Pollution and Mortality in Southeast Asia.

    OpenAIRE

    Narayan Sastry

    2000-01-01

    In this paper, the author assesses the population health effects in Malaysia of air pollution generated by a widespread series of fires that occurred mainly in Indonesia between April and November of 1997. The author describes how the forest fires occurred and why the associated air pollution was so widespread and long lasting. The main objective is to determine whether there were mortality effects and to assess how large and important these were. The author also investigates whether the mort...

  7. A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS

    Directory of Open Access Journals (Sweden)

    Alessandro Dal Col Lúcio

    2006-03-01

    Full Text Available This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of theBrazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzedfrom January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot wereanalyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal componentanalysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis,Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presentedmore than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The clusteranalysis was efficient in the separation of the groups of all tested species, as well as the method of the main components.

  8. Assisting Sustainable Forest Management and Forest Policy Planning with the Sim4Tree Decision Support System

    Directory of Open Access Journals (Sweden)

    Floris Dalemans

    2015-03-01

    Full Text Available As European forest policy increasingly focuses on multiple ecosystem services and participatory decision making, forest managers and policy planners have a need for integrated, user-friendly, broad spectrum decision support systems (DSS that address risks and uncertainties, such as climate change, in a robust way and that provide credible advice in a transparent manner, enabling effective stakeholder involvement. The Sim4Tree DSS has been accordingly developed as a user-oriented, modular and multipurpose toolbox. Sim4Tree supports strategic and tactical forestry planning by providing simulations of forest development, ecosystem services potential and economic performance through time, from a regional to a stand scale, under various management and climate regimes. Sim4Tree allows comparing the performance of different scenarios with regard to diverse criteria so as to optimize management choices. This paper explains the concept, characteristics, functionalities, components and use of the current Sim4Tree DSS v2.5, which was parameterized for the region of Flanders, Belgium, but can be flexibly adapted to allow a broader use. When considering the current challenges for forestry DSS, an effort has been made towards the participatory component and towards integration, while the lack of robustness remains Sim4Tree’s weakest point. However, its structural flexibility allows many possibilities for future improvement and extension.

  9. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series

    Directory of Open Access Journals (Sweden)

    Alfredo eDi Filippo

    2015-05-01

    Full Text Available Understanding the factors controlling the expression of longevity in trees is still an outstanding challenge for tree biologists and forest ecologists. We gathered tree-ring data and literature for broadleaf deciduous (BD temperate trees growing in closed-canopy old-growth forests in the Northern Hemisphere to explore the role of geographic patterns, climate variability, and growth rates on longevity. Our pan-continental analysis, covering 32 species from 12 genera, showed that 300-400 years can be considered a baseline threshold for maximum tree lifespan in many temperate deciduous forests. Maximum age varies greatly in relation to environmental features, even within the same species. Tree longevity is generally promoted by reduced growth rates across large genetic differences and environmental gradients. We argue that slower growth rates, and the associated smaller size, provide trees with an advantage against biotic and abiotic disturbance agents, supporting the idea that size, not age, is the main constraint to tree longevity. The oldest trees were living most of their life in subordinate canopy conditions and/or within primary forests in cool temperate environments and outside major storm tracks. Very old trees are thus characterized by slow growth and often live in forests with harsh site conditions and infrequent disturbance events that kill much of the trees. Temperature inversely controls the expression of longevity in mesophilous species (Fagus spp., but its role in Quercus spp. is more complex and warrants further research in disturbance ecology. Biological, ecological and historical drivers must be considered to understand the constraints imposed to longevity within different forest landscapes.

  10. Remnant trees affect species composition but not structure of tropical second-growth forest.

    Science.gov (United States)

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  11. Patterns of tree species diversity and composition in old-field successional forests in central Illinois

    Science.gov (United States)

    Scott M. Bretthauer; George Z. Gertner; Gary L. Rolfe; Jeffery O. Dawson

    2003-01-01

    Tree species diversity increases and dominance decreases with proximity to forest border in two 60-year-old successional forest stands developed on abandoned agricultural land in Piatt County, Illinois. A regression equation allowed us to quantify an increase in diversity with closeness to forest border for one of the forest stands. Shingle oak is the most dominant...

  12. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    Science.gov (United States)

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  13. Demography of Symbiotic Nitrogen-Fixing Trees Explains Their Rarity and Successional Decline in Temperate Forests in the United States.

    Science.gov (United States)

    Liao, Wenying; Menge, Duncan N L

    2016-01-01

    Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees ("N fixers") are rare and decline in abundance as succession proceeds-a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers' rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers' successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers' successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role.

  14. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N...

  15. Landscape variation in tree species richness in northern Iran forests.

    Science.gov (United States)

    Bourque, Charles P-A; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be

  16. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  17. Calculation of Individual Tree Water Use in a Bornean Tropical Rain Forest Using Individual-Based Dynamic Vegetation Model SEIB-DGVM

    Science.gov (United States)

    Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.

    2015-12-01

    Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.

  18. Influence of Mortality Factors and Host Resistance on the Population Dynamics of Emerald Ash Borer (Coleoptera: Buprestidae) in Urban Forests.

    Science.gov (United States)

    Macquarrie, Chris J K; Scharbach, Roger

    2015-02-01

    The success of emerald ash borer (Agrilus planipennis Fairmaire) in North America is hypothesized to be due to both the lack of significant natural enemies permitting easy establishment and a population of trees that lack the ability to defend themselves, which allows populations to grow unchecked. Since its discovery in 2002, a number of studies have examined mortality factors of the insect in forests, but none have examined the role of natural enemies and other mortality agents in the urban forest. This is significant because it is in the urban forest where the emerald ash borer has had the most significant economic impacts. We studied populations in urban forests in three municipalities in Ontario, Canada, between 2010 and 2012 using life tables and stage-specific survivorship to analyze data from a split-rearing manipulative experiment. We found that there was little overall mortality caused by natural enemies; most mortality we did observe was caused by disease. Stage-specific survivorship was lowest in small and large larvae, supporting previous observations of high mortality in these two stages. We also used our data to test the hypothesis that mortality and density in emerald ash borer are linked. Our results support the prediction of a negative relationship between mortality and density. However, the relationship varies between insects developing in the crown and those in the trunk of the tree. This relationship was significant because when incorporated with previous findings, it suggests a mechanism and hypothesis to explain the outbreak dynamics of the emerald ash borer. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Dating tree mortality using log decay in the White Mountains of New Hampshire

    Science.gov (United States)

    Andrew J. Fast; Mark J. Ducey; Jeffrey H. Gove; William B. Leak

    2008-01-01

    Coarse woody material (CWM) is an important component of forest ecosystems. To meet specific CWM management objectives, it is important to understand rates of decay. We present results from a silvicultural trial at the Bartlett Experimental Forest, in which time of death is known for a large sample of trees. Either a simple table or regression equations that use...

  20. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    Science.gov (United States)

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  1. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon.

    Science.gov (United States)

    Zuleta, Daniel; Duque, Alvaro; Cardenas, Dairon; Muller-Landau, Helene C; Davies, Stuart J

    2017-10-01

    Extreme climatic events affecting the Amazon region are expected to become more frequent under ongoing climate change. In this study, we assessed the responses to the 2010 drought of over 14,000 trees ≥10 cm dbh in a 25 ha lowland forest plot in the Colombian Amazon and how these responses varied among topographically defined habitats, with tree size, and with species wood density. Tree mortality was significantly higher during the 2010-2013 period immediately after the drought than in 2007-2010. The post-drought increase in mortality was stronger for trees located in valleys (+243%) than for those located on slopes (+67%) and ridges (+57%). Tree-based generalized linear mixed models showed a significant negative effect of species wood density on mortality and no effect of tree size. Despite the elevated post-drought mortality, aboveground biomass increased from 2007 to 2013 by 1.62 Mg ha -1  yr -1 (95% CI 0.80-2.43 Mg ha -1  yr -1 ). Biomass change varied among habitats, with no significant increase on the slopes (1.05, 95% CI -0.76 to 2.85 Mg ha -1  yr -1 ), a significant increase in the valleys (1.33, 95% CI 0.37-2.34 Mg ha -1  yr -1 ), and a strong increase on the ridges (2.79, 95% CI 1.20-4.21 Mg ha -1  yr -1 ). These results indicate a high carbon resilience of this forest to the 2010 drought due to habitat-associated and interspecific heterogeneity in responses including directional changes in functional composition driven by enhanced performance of drought-tolerant species that inhabit the drier ridges. © 2017 by the Ecological Society of America.

  2. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks.

    Science.gov (United States)

    McIntyre, Patrick J; Thorne, James H; Dolanc, Christopher R; Flint, Alan L; Flint, Lorraine E; Kelly, Maggi; Ackerly, David D

    2015-02-03

    We document changes in forest structure between historical (1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees (Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

  3. Multi-scale predictions of coniferous forest mortality in the northern hemisphere

    Science.gov (United States)

    McDowell, N. G.

    2015-12-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our incomplete understanding of the fundamental physiological thresholds of vegetation mortality during drought limits our ability to accurately simulate future vegetation distributions and associated climate feedbacks. Here we integrate experimental evidence with models to show potential widespread loss of needleleaf evergreen trees (NET; ~ conifers) within the Southwest USA by 2100; with rising temperature being the primary cause of mortality. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ypd) thresholds (April-August mean) beyond which photosynthesis, stomatal and hydraulic conductance, and carbohydrate availability approached zero. Empirical and mechanistic models accurately predicted NET Ypd, and 91% of predictions (10/11) exceeded mortality thresholds within the 21st century due to temperature rise. Completely independent global models predicted >50% loss of northern hemisphere NET by 2100, consistent with the findings for Southwest USA. The global models disagreed with the ecosystem process models in regards to future mortality in Southwest USA, however, highlighting the potential underestimates of future NET mortality as simulated by the global models and signifying the importance of improving regional predictions. Taken together, these results from the validated regional predictions and the global simulations predict global-scale conifer loss in coming decades under projected global warming.

  4. Local-scale drivers of tree survival in a temperate forest.

    Science.gov (United States)

    Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.

  5. Seeing the forest for the homogeneous trees: stand-scale resource distributions emerge from tree-scale structure

    Science.gov (United States)

    Suzanne Boyden; Rebecca Montgomery; Peter B. Reich; Brian J. Palik

    2012-01-01

    Forest ecosystem processes depend on local interactions that are modified by the spatial pattern of trees and resources. Effects of resource supplies on processes such as regeneration are increasingly well understood, yet we have few tools to compare resource heterogeneity among forests that differ in structural complexity. We used a neighborhood approach to examine...

  6. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  7. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Tree diversity in the tropical dry forest of Bannerghatta National Park in Eastern Ghats, Southern India

    Directory of Open Access Journals (Sweden)

    Gopalakrishna S. Puttakame

    2015-12-01

    Full Text Available Tree species inventories, particularly of poorly known dry deciduous forests, are needed to protect and restore forests in degraded landscapes. A study of forest stand structure, and species diversity and density of trees with girth at breast height (GBH ≥10 cm was conducted in four management zones of Bannerghatta National Park (BNP in the Eastern Ghats of Southern India. We identified 128 tree species belonging to 45 families in 7.9 hectares. However, 44 species were represented by ≤ 2 individuals. Mean diversity values per site for the dry forest of BNP were: tree composition (23.8 ±7.6, plant density (100.69 ± 40.02, species diversity (2.56 ± 0.44 and species richness (10.48 ± 4.05. Tree diversity was not significantly different (P>0.05 across the four management zones in the park. However, the number of tree species identified significantly (P<0.05 increased with increasing number of sampling sites, but majority of the species were captured. Similarly, there were significant variations (p<0.05 between tree diameter class distributions. Juveniles accounted for 87% of the tree population. The structure of the forest was not homogeneous, with sections ranging from poorly structured to highly stratified configurations. The study suggests that there was moderate tree diversity in the tropical dry thorn forest of Bannerghatta National Park, but the forest was relatively young.

  9. Earthworm abundance and species composition in abandoned tropical croplands: comparisons of tree plantations and secondary forests.

    Science.gov (United States)

    G. Gonzalez; X. Zou; S. Borges

    1996-01-01

    We compared patterns of earthworms abundance and species composition in tree plantation and secondary forest of Puerto Rico. Tree plantations included pine (Pinus caribea Morelet) and mahogany (Swietenia macrophylla King) established in the 1930's; 1960's; and 1970's; secondary forests were naturally regenerated in areas adjacent to these plantations. We...

  10. Disentangling above- and below-ground competition between lianas and trees in a tropical forest

    NARCIS (Netherlands)

    Schnitzer, S.A.; Kuzee, M.E.; Bongers, F.J.J.M.

    2005-01-01

    1 Light is thought to be the most limiting resource in tropical forests, and thus aboveground competition is commonly accepted as the mechanism that structures these communities. In many tropical forests, trees compete not only with other trees, but also with lianas, which compete aggressively for

  11. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  12. Assisted migration of forest populations for adapting trees to climate change

    Science.gov (United States)

    Cuauhtémoc Sáenz-Romero; Roberto A. Lindig-Cisneros; Dennis G. Joyce; Jean Beaulieu; J. Bradley St. Clair; Barry C. Jaquish

    2016-01-01

    We present evidence that climatic change is an ongoing process and that forest tree populations are genetically differentiated for quantitative traits because of adaptation to specific habitats. We discuss in detail indications that the shift of suitable climatic habitat for forest tree species and populations, as a result of rapid climatic change, is likely to cause...

  13. Silviculture and the assessment of climate change genetic risk for southern Appalachian forest tree species

    Science.gov (United States)

    Kevin M. Potter; Barbara S. Crane

    2012-01-01

    Changing climate conditions and increasing insect and pathogen infestations will increase the likelihood that forest trees could experience population-level extirpation or species-level extinction during the next century. Gene conservation and silvicultural efforts to preserve forest tree genetic diversity present a particular challenge in species-rich regions such as...

  14. Somatic embryogenesis and cryostorage for conservation and restoration of threatened forest trees

    Science.gov (United States)

    S.A. Merkle; A.R. Tull; H.J. Gladfelter; P.M. Montello; J.E. Mitchell; C. Ahn; R.D. McNeill

    2017-01-01

    Threats to North American forest trees from exotic pests and pathogens or habitat loss, make it imperative that every available tool be employed for conservation and restoration of these at risk species. One such tool, in vitro propagation, could greatly enhance conservation of forest tree genetic material and selection and breeding of resistant or...

  15. Summary of findings from the Great Plains Tree and Forest Invasives Initiative

    Science.gov (United States)

    Dacia M. Meneguzzo; Andrew J. Lister; Cody. Sullivan

    2018-01-01

    The Great Plains Tree and Forest Invasives Initiative (GPI) was a cooperative effort of the U.S. Forest Service and state forestry agencies in Kansas, Nebraska, North Dakota, and South Dakota, with a primary goal of evaluating the tree resources throughout the four-state region as a preparedness measure for the arrival of invasive pests, such as the emerald ash borer...

  16. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  17. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    International Nuclear Information System (INIS)

    E Reed, David; Ewers, Brent E; Pendall, Elise

    2014-01-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO 2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO 2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H 2 O m −2 s −1 . Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO 2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO 2 exchange. These results agree with an emerging consensus in the literature demonstrating CO 2 and H 2 O dynamics

  18. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Science.gov (United States)

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  19. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  20. Genetically engineered trees for plantation forests: key considerations for environmental risk assessment.

    Science.gov (United States)

    Häggman, Hely; Raybould, Alan; Borem, Aluizio; Fox, Thomas; Handley, Levis; Hertzberg, Magnus; Lu, Meng-Zu; Macdonald, Philip; Oguchi, Taichi; Pasquali, Giancarlo; Pearson, Les; Peter, Gary; Quemada, Hector; Séguin, Armand; Tattersall, Kylie; Ulian, Eugênio; Walter, Christian; McLean, Morven

    2013-09-01

    Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment. © 2013 ILSI Research Foundation. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Selective logging and damage to unharvested trees in a hyrcanian forest of Iran

    OpenAIRE

    Farshad Keivan Behjou; Omid Ghafarzade Mollabashi

    2012-01-01

    Selective logging in mature hardwood stands of Caspian forests often causes physical damage to residual trees through felling and skidding operations, resulting in a decline in bole quality and subsequent loss of tree value. This study evaluated the logging damage to residual trees following logging operations. A total density of 5.1 trees/ha and 17.3 m3/ha of wood were harvested. On average, 9.8 trees were damaged for every tree extracted, including 8 trees destroyed or severely damaged. The...

  2. The tree-species-specific effect of forest bathing on perceived anxiety alleviation of young-adults in urban forests

    Directory of Open Access Journals (Sweden)

    Haoming Guan

    2017-12-01

    Full Text Available Forest bathing, i.e. spending time in a forest to walk, view and breathe in a forest, can alleviate the mental depression of visitors, but the tree-species-specific effect of this function by the urban forest is unknown. In this study, sixty-nine university students (aged 19-22, male ratio: 38% were recruited as participants to visit urban forests dominated by birch (Betula platyphylla Suk., maple (Acer triflorum Komarov and oak (Quercus mongolica Fisch. ex Ledeb trees in a park at the center of Changchun City, Northeast China. In the maple forest only the anxiety from study interest was decreased, while the anxiety from employment pressure was alleviated to the most extent in the birch forest. Participants perceived more anxiety from lesson declined in the oak forest than in the birch forest. Body parameters of weight and age were correlated with the anti-anxiety scores. In the oak forest, female participants can perceive more anxiety alleviation than male participants. For university students, forest bathing in our study can promote their study interest. Forest bathing can be more effective to alleviate the anxiety of young adults with greater weight. The birch forest was recommended to be visited by students to alleviate the pressure of employment worry, and the oak forest was recommended to be visited by girls.

  3. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California

    Science.gov (United States)

    Vernon, Michael J.; Sherriff, Rosemary L.; van Mantgem, Phillip; Kane, Jeffrey M.

    2018-01-01

    Drought is an important stressor in forest ecosystems that can influence tree vigor and survival. In the U.S., forest managers use two primary management techniques to promote resistance and resilience to drought: prescribed fire and mechanical thinning. Generally applied to reduce fuels and fire hazard, treatments may also reduce competition for resources that may improve tree-growth and reduce mortality during drought. A recent severe and prolonged drought in California provided a natural experiment to investigate tree-growth responses to fuel treatments and climatic stress. We assessed tree-growth from 299 ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) in treated and untreated stands during severe drought from 2012 to 2015 in the mixed-conifer forests of Whiskeytown National Recreation Area (WNRA) in northern California. The treatment implemented at WNRA removed 34% of live basal area through mechanical thinning with a subsequent pile burning of residual fuels. Tree-growth was positively associated with crown ratio and negatively associated with competition and a 1-year lag of climate water deficit, an index of drought. Douglas-fir generally had higher annual growth than ponderosa pine, although factors affecting growth were the same for both species. Drought resistance, expressed as the ratio between mean growth during drought and mean growth pre-drought, was higher in treated stands compared to untreated stands during both years of severe drought (2014 and 2015) for ponderosa pine but only one year (2014) for Douglas-fir. Thinning improved drought resistance, but tree size, competition and species influenced this response. On-going thinning treatments focused on fuels and fire hazard reduction are likely to be effective at promoting growth and greater drought resistance in dry mixed-conifer forests. Given the likelihood of future droughts, land managers may choose to implement similar treatments to reduce potential impacts.

  4. Crown dynamics and wood production of Douglas-fir trees in an old-growth forest

    Science.gov (United States)

    H. Roaki Ishii; Stephen C. Sillett; Allyson L. Carroll

    2017-01-01

    Large trees are the most prominent structural features of old-growth forests, which are considered to be globally important carbon sinks. Because of their large size, estimates of biomass and growth of large trees are often based on ground-level measurements (e.g., diameter at breast height, DBH) and little is known about growth dynamics within the crown. As trees...

  5. Mapping tropical forest trees using high-resolution aerial digital photographs

    NARCIS (Netherlands)

    Garzon-Lopez, C.X.; Bohlman, S.A.; Olff, H.; Jansen, P.A.

    2013-01-01

    The spatial arrangement of tree species is a key aspect of community ecology. Because tree species in tropical forests occur at low densities, it is logistically challenging to measure distributions across large areas. In this study, we evaluated the potential use of canopy tree crown maps, derived

  6. Effects of Measurement Errors on Individual Tree Stem Volume Estimates for the Austrian National Forest Inventory

    Science.gov (United States)

    Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens. Schadauer

    2014-01-01

    National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...

  7. Tree and forest effects on air quality and human health in the United States

    Science.gov (United States)

    David J. Nowak; Satoshi Hirabayashi; Allison Bodine; Eric. Greenfield

    2014-01-01

    Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and...

  8. Monitoring environmental stress in forest trees using biochemical and physiological markers

    Science.gov (United States)

    R. Minocha; S.C. Minocha; S. Long

    2003-01-01

    Our objective was to determine the usefulness of polyamines, particularly putrescine, and amino acids such as arginine, as foliar indicators of abiotic stress in visually asymptomatic trees. An evaluation of apparently healthy trees is essential in developing risk assessment and stress remediation strategies for forest trees prior to the onset of obvious decline....

  9. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance

    NARCIS (Netherlands)

    Poorter, L.; Bongers, F.J.J.M.; Sterck, F.J.; Wöll, H.

    2003-01-01

    Tree architecture determines a tree's light capture, stability, and efficiency of crown growth. The hypothesis that light demand and adult stature of tree species within a community, independently of each other, determine species' architectural traits was tested by comparing 53 Liberian rain forest

  10. Management and conservation of tree squirrels: the importance of endemism, species richness, and forest condition

    Science.gov (United States)

    John L. Koprowski

    2005-01-01

    Tree squirrels are excellent indicators of forest health yet the taxon is understudied. Most tree squirrels in the Holarctic Region are imperiled with some level of legal protection. The Madrean Archipelago is the epicenter for tree squirrel diversity in North America with 5 endemic species and 2 introduced species. Most species of the region are poorly studied in...

  11. Landscape variation in tree species richness in northern Iran forests.

    Directory of Open Access Journals (Sweden)

    Charles P-A Bourque

    Full Text Available Mapping landscape variation in tree species richness (SR is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i three topographic variables generated directly from the area's digital terrain model; (ii four ecophysiologically-relevant variables derived from process models or from first principles; and (iii seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content, yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot, than by Fagus orientalis (median difference of one species. This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently

  12. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  13. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Science.gov (United States)

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  14. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    OpenAIRE

    Adame, Patricia; Brandeis, Thomas J; Uriarte, Maria

    2014-01-01

    Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon sp...

  15. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA.

    Science.gov (United States)

    Poulos, Helen M

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02) (30.9% and 20.7%, respectively). Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences.

  16. Adaptive genetic potential of coniferous forest tree species under climate change: implications for sustainable forest management

    Science.gov (United States)

    Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru

    2017-04-01

    Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main

  17. Association mapping in forest trees and fruit crops.

    Science.gov (United States)

    Khan, M Awais; Korban, Schuyler S

    2012-06-01

    Association mapping (AM), also known as linkage disequilibrium (LD) mapping, is a viable approach to overcome limitations of pedigree-based quantitative trait loci (QTL) mapping. In AM, genotypic and phenotypic correlations are investigated in unrelated individuals. Unlike QTL mapping, AM takes advantage of both LD and historical recombination present within the gene pool of an organism, thus utilizing a broader reference population. In plants, AM has been used in model species with available genomic resources. Pursuing AM in tree species requires both genotyping and phenotyping of large populations with unique architectures. Recently, genome sequences and genomic resources for forest and fruit crops have become available. Due to abundance of single nucleotide polymorphisms (SNPs) within a genome, along with availability of high-throughput resequencing methods, SNPs can be effectively used for genotyping trees. In addition to DNA polymorphisms, copy number variations (CNVs) in the form of deletions, duplications, and insertions also play major roles in control of expression of phenotypic traits. Thus, CNVs could provide yet another valuable resource, beyond those of microsatellite and SNP variations, for pursuing genomic studies. As genome-wide SNP data are generated from high-throughput sequencing efforts, these could be readily reanalysed to identify CNVs, and subsequently used for AM studies. However, forest and fruit crops possess unique architectural and biological features that ought to be taken into consideration when collecting genotyping and phenotyping data, as these will also dictate which AM strategies should be pursued. These unique features as well as their impact on undertaking AM studies are outlined and discussed.

  18. Growing the urban forest: tree performance in response to biotic and abiotic land management

    Science.gov (United States)

    Emily E. Oldfield; Alexander J. Felson; D. S. Novem Auyeung; Thomas W. Crowther; Nancy F. Sonti; Yoshiki Harada; Daniel S. Maynard; Noah W. Sokol; Mark S. Ashton; Robert J. Warren; Richard A. Hallett; Mark A. Bradford

    2015-01-01

    Forests are vital components of the urban landscape because they provide ecosystem services such as carbon sequestration, storm-water mitigation, and air-quality improvement. To enhance these services, cities are investing in programs to create urban forests. A major unknown, however, is whether planted trees will grow into the mature, closed-canopied forest on which...

  19. Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico

    Science.gov (United States)

    Oscar J. Abelleira Martinez

    2010-01-01

    There is concern that secondary forests dominated by introduced species, known as novel forests, increase taxonomical similarity between localities and lead to biotic homogenization in human dominated landscapes. In Puerto Rico, agricultural abandonment has given way to novel forests dominated by the introduced African tulip tree Spathodea campanulata Beauv. (...

  20. Land use history, environment, and tree composition in a tropical forest

    Science.gov (United States)

    Jill Thompson; Nicholas Brokaw; Jess K. Zimmerman; Robert B. Waide; Edwin M. III Everham; D. Jean Lodge; Charlotte M. Taylor; Diana Garcia-Montiel; Marcheterre Fluet

    2002-01-01

    The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved...

  1. Tree regeneration following drought- and insect-induced mortality in piñon-juniper woodlands.

    Science.gov (United States)

    Redmond, Miranda D; Barger, Nichole N

    2013-10-01

    Widespread piñon (Pinus edulis) mortality occurred across the southwestern USA during 2002-2003 in response to drought and bark beetle infestations. Given the recent mortality and changes in regional climate over the past several decades, there is a keen interest in post-mortality regeneration dynamics in piñon-juniper woodlands. Here, we examined piñon and Utah juniper (Juniperus osteosperma) recruitment at 30 sites across southwestern Colorado, USA that spanned a gradient of adult piñon mortality levels (10-100%) to understand current regeneration dynamics. Piñon and juniper recruitment was greater at sites with more tree and shrub cover. Piñon recruitment was more strongly facilitated than juniper recruitment by trees and shrubs. New (post-mortality) piñon recruitment was negatively affected by recent mortality. However, mortality had no effect on piñon advanced regeneration (juveniles established pre-mortality) and did not shift juvenile piñon dominance. Our results highlight the importance of shrubs and juniper trees for the facilitation of piñon establishment and survival. Regardless of adult piñon mortality levels, areas with low tree and shrub cover may become increasingly juniper dominated as a result of the few suitable microsites for piñon establishment and survival. In areas with high piñon mortality and high tree and shrub cover, our results suggest that piñon is regenerating via advanced regeneration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    Science.gov (United States)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  3. Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?

    Directory of Open Access Journals (Sweden)

    Goddert von Oheimb

    Full Text Available There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt. Liebl. trees (mean age 115-136 years due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland. We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation. Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes - as shown by a higher mean sensitivity of the tree-ring widths - than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems.

  4. Evaluation of a post-fire tree mortality model for western US conifers

    Science.gov (United States)

    Sharon M. Hood; Charles W McHugh; Kevin C. Ryan; Elizabeth Reinhardt; Sheri L. Smith

    2007-01-01

    Accurately predicting fire-caused mortality is essential to developing prescribed fire burn plans and post-fire salvage marking guidelines. The mortality model included in the commonly used USA fire behaviour and effects models, the First Order Fire Effects Model (FOFEM), BehavePlus, and the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS), has not...

  5. Forecasting the forest and the trees: consequences of drought in competitive forests

    Science.gov (United States)

    Clark, J. S.

    2015-12-01

    Models that translate individual tree responses to distribution and abundance of competing populations are needed to understand forest vulnerability to drought. Currently, biodiversity predictions rely on one scale or the other, but do not combine them. Synthesis is accomplished here by modeling data together, each with their respective scale-dependent connections to the scale needed for prediction—landscape to regional biodiversity. The approach we summarize integrates three scales, i) individual growth, reproduction, and survival, ii) size-species structure of stands, and iii) regional forest biomass. Data include 24,347 USDA Forest Inventory and Analysis (FIA) plots and 135 Long-term Forest Demography plots. Climate, soil moisture, and competitive interactions are predictors. We infer and predict the four-dimensional size/species/space/time (SSST) structure of forests, where all demographic rates respond to winter temperature, growing season length, moisture deficits, local moisture status, and competition. Responses to soil moisture are highly non-linear and not strongly related to responses to climatic moisture deficits over time. In the Southeast the species that are most sensitive to drought on dry sites are not the same as those that are most sensitive on moist sites. Those that respond most to spatial moisture gradients are not the same as those that respond most to regional moisture deficits. There is little evidence of simple tradeoffs in responses. Direct responses to climate constrain the ranges of few tree species, north or south; there is little evidence that range limits are defined by fecundity or survival responses to climate. By contrast, recruitment and the interactions between competition and drought that affect growth and survival are predicted to limit ranges of many species. Taken together, results suggest a rich interaction involving demographic responses at all size classes to neighbors, landscape variation in moisture, and regional

  6. Towards lidar-based mapping of tree age at the Arctic forest tundra ecotone.

    Science.gov (United States)

    Jensen, J.; Maguire, A.; Oelkers, R.; Andreu-Hayles, L.; Boelman, N.; D'Arrigo, R.; Griffin, K. L.; Jennewein, J. S.; Hiers, E.; Meddens, A. J.; Russell, M.; Vierling, L. A.; Eitel, J.

    2017-12-01

    Climate change may cause spatial shifts in the forest-tundra ecotone (FTE). To improve our ability to study these spatial shifts, information on tree demography along the FTE is needed. The objective of this study was to assess the suitability of lidar derived tree heights as a surrogate for tree age. We calculated individual tree age from 48 tree cores collected at basal height from white spruce (Picea glauca) within the FTE in northern Alaska. Tree height was obtained from terrestrial lidar scans (= 3 m), yielding strong predictive relationships between height and age (R2 = 0.86, RMSE 12.21 years, and R2 = 0.93, RMSE = 25.16 years, respectively). The slope coefficient for small and large tree models (16.83 and 12.98 years/m, respectively) indicate that small trees grow 1.3 times faster than large trees at these FTE study sites. Although a strong, predictive relationship between age and height is uncommon in light-limited forest environments, our findings suggest that the sparseness of trees within the FTE may explain the strong tree height-age relationships found herein. Further analysis of 36 additional tree cores recently collected within the FTE near Inuvik, Canada will be performed. Our preliminary analysis suggests that lidar derived tree height could be a reliable proxy for tree age at the FTE, thereby establishing a new technique for scaling tree structure and demographics across larger portions of this sensitive ecotone.

  7. Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning

    Science.gov (United States)

    Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.

    2017-12-01

    Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.

  8. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    Science.gov (United States)

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Disentangling the diversity of arboreal ant communities in tropical forest trees.

    Science.gov (United States)

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling

    2015-01-01

    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.

  10. Compensatory vapor loss and biogeochemical attenuation along flowpaths mute the water resources impacts of insect-induced forest mortality

    Science.gov (United States)

    Biederman, J. A.; Brooks, P. D.; Harpold, A. A.; Gochis, D. J.; Ewers, B. E.; Reed, D. E.; Gutmann, E. D.

    2013-12-01

    Forested montane catchments are critical to the amount and quality of downstream water resources. In western North America more than 60 million people rely on mountain precipitation, and water managers face uncertain response to an unprecedented forest die-off from mountain pine beetle (MPB) infestation. Reduced snow interception and transpiration are expected to increase streamflow, while increased organic matter decay is expected to increase biogeochemical stream fluxes. Tree- to plot-scale observations have documented some of the expected changes, but there has been little significant change to streamflow or water quality at the larger scales relevant to water resources. A critical gap exists in our understanding of why tree-scale process changes have not led to the expected, large-scale increases in streamflow and biogeochemical fluxes. We address this knowledge gap with observations of water and biogeochemical fluxes at nested spatial scales including tree, hillslope, and catchments from 3 to 700 ha with more than 75% mortality. Catchment discharge showed reduced water yield consistent with co-located eddy covariance observations showing increased vapor losses following MPB. Stable water isotopes showed progressive kinetic fractionation (i.e. unsaturated transition layer above the evaporating surface) in snowpack, soil water and streams indicating greater abiotic evaporation from multiple water sources offsetting decreased interception and transpiration. In the 3rd to 5th years following MPB forest mortality, soil water DOC and DON were similar beneath killed and healthy trees, but concentrations were elevated 2-10 times in groundwater of MPB-impacted sites as compared to unimpacted. Stream water DOC and DON were about 3 times as large during snowmelt runoff in ephemeral zero-order channels of MPB-impacted sites compared to unimpacted. Processing in the headwater streams of MPB-impacted forests rapidly attenuated dissolved organic matter. From the MPB

  11. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.: Tree Mortality in Semiarid Biomes

    Energy Technology Data Exchange (ETDEWEB)

    Morillas, L. [Department of Biology, University of New Mexico, Albuquerque NM USA; Now at Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver British Columbia Canada; Pangle, R. E. [Department of Biology, University of New Mexico, Albuquerque NM USA; Maurer, G. E. [Department of Biology, University of New Mexico, Albuquerque NM USA; Now at Department of Environmental Science, Policy, and Management, University of California, Berkeley CA USA; Pockman, W. T. [Department of Biology, University of New Mexico, Albuquerque NM USA; McDowell, N. [Earth Systems Analysis and Modeling, Pacific Northwest National Laboratory, Richland WA USA; Huang, C. -W. [Department of Biology, University of New Mexico, Albuquerque NM USA; Krofcheck, D. J. [Department of Biology, University of New Mexico, Albuquerque NM USA; Fox, A. M. [School of Natural Resources and the Environment, University of Arizona, Tucson AZ USA; Sinsabaugh, R. L. [Department of Biology, University of New Mexico, Albuquerque NM USA; Rahn, T. A. [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos NM USA; Litvak, M. E. [Department of Biology, University of New Mexico, Albuquerque NM USA

    2017-12-01

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semi-arid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contribution of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while non-canopy ET increased. We attributed the elevated non-canopy ET in the girdled site each year to winter increases in sublimation, and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This post-girdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites, and potentially more vulnerable to drought.

  12. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    Science.gov (United States)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  13. Factors impacting stemflow generation in a European beech forest: Individual tree versus neighborhood properties

    Science.gov (United States)

    Metzger, Johanna Clara; Germer, Sonja; Hildebrandt, Anke

    2017-04-01

    The redistribution of precipitation by canopies changes the water flow dynamics to the forest floor. The spatial pattern of throughfall has been researched in a number of studies in different ecosystems. Yet, also stemflow substantially influences water input patterns, constituting a mean of 12% of gross precipitation for European beech as one of the most abundant tree species in Central Europe. While the initiation of stemflow depends mostly on precipitation event properties, stemflow amounts are strongly shaped by canopy structure. Stemflow research has mainly addressed the impact of single tree morphological variables. In previous studies, the impact of forest structure on area-based stemflow was studied comparing plots with different properties using few exemplary stemflow measurements. In non-homogeneous stands, this approach might not be accurate, as the variation of stand properties like tree density could change tree individual stemflow fluxes. To investigate this, a total measurement of all trees per plot is required. We hypothesize, that in addition to individual tree metrics, tree neighborhood relations have a significant impact on stemflow generation in a heterogeneous beech forest. Our study site is located in the pristine forest of the National Park Hainich, central Germany. It is heterogeneous in respect to tree density, species composition and tree age. We measured stemflow in an areal approach, for all trees on 11 subplots (each 10 m x 10 m) spaced evenly throughout a 1 ha plot. This involved overall 65 trees, which is 11% of the plot's trees. 27 precipitation events were recorded in spring and early summer of 2015 and 2016. Stand properties were surveyed, including diameter at breast height, height, position and species of a tree. From this data, we calculated neighborhood properties for each tree, as number, basal area, and relative height of neighboring trees within a radius of the plot's mean tree distance. Using linear mixed effects models, we

  14. Marbled Murrelets Select Distinctive Nest Trees within Old-Growth Forest Patches

    Directory of Open Access Journals (Sweden)

    Michael P. Silvergieter

    2011-12-01

    Full Text Available The coastal old-growth forests of North America's Pacific Coast are renowned both for their commercial and ecological value. This study adds to growing evidence that selective harvesting of the largest trees may have a disproportionate ecological impact. Marbled Murrelets (Brachyramphus marmoratus, a threatened species, nest almost exclusively in these old-growth forests. Detailed knowledge of nesting habitat selection provides guidance for habitat management and conservation. Habitat selection for this species has been studied at a variety of scales using ground and remote methods. However, because Marbled Murrelet nesting activity is limited to a single mossy platform on a single tree, we investigated nest tree selection within old-growth forest patches, using a set of 59 forest patches containing active nests. Nest trees were usually distinctive compared with neighboring trees in the surrounding 25 m radius patch. They averaged 15 to 20% taller than neighboring trees depending on region, had significantly larger stem diameters, more potential nesting platforms, and more moss. They had the most extreme values of height and width about three times as often as expected by chance. An analysis of moss platform use as a function of number of platforms per platform tree suggests that murrelets select individual platforms, rather than platform trees per se. Nonetheless, highly selective logging practices that remove high-value trees from stands may also remove trees most likely to be selected by nesting murrelets.

  15. Seedling establishment in a masting desert shrub parallels the pattern for forest trees

    Science.gov (United States)

    Meyer, Susan E.; Pendleton, Burton K.

    2015-05-01

    The masting phenomenon along with its accompanying suite of seedling adaptive traits has been well studied in forest trees but has rarely been examined in desert shrubs. Blackbrush (Coleogyne ramosissima) is a regionally dominant North American desert shrub whose seeds are produced in mast events and scatter-hoarded by rodents. We followed the fate of seedlings in intact stands vs. small-scale disturbances at four contrasting sites for nine growing seasons following emergence after a mast year. The primary cause of first-year mortality was post-emergence cache excavation and seedling predation, with contrasting impacts at sites with different heteromyid rodent seed predators. Long-term establishment patterns were strongly affected by rodent activity in the weeks following emergence. Survivorship curves generally showed decreased mortality risk with age but differed among sites even after the first year. There were no detectable effects of inter-annual precipitation variability or site climatic differences on survival. Intraspecific competition from conspecific adults had strong impacts on survival and growth, both of which were higher on small-scale disturbances, but similar in openings and under shrub crowns in intact stands. This suggests that adult plants preempted soil resources in the interspaces. Aside from effects on seedling predation, there was little evidence for facilitation or interference beneath adult plant crowns. Plants in intact stands were still small and clearly juvenile after nine years, showing that blackbrush forms cohorts of suppressed plants similar to the seedling banks of closed forests. Seedling banks function in the absence of a persistent seed bank in replacement after adult plant death (gap formation), which is temporally uncoupled from masting and associated recruitment events. This study demonstrates that the seedling establishment syndrome associated with masting has evolved in desert shrublands as well as in forests.

  16. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China.

    Directory of Open Access Journals (Sweden)

    Guoyu Lan

    Full Text Available Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1 fourteen of the twenty tree species were negatively (or positively associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2 Most saplings of the study species showed a significantly clumped distribution at small scales (0-10 m which was lost at larger scales (10-30 m. (3 The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4 It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.

  17. Spatial pattern of tree diversity and evenness across forest types in Majella National Park, Italy

    Directory of Open Access Journals (Sweden)

    Mohammad Redowan

    2015-09-01

    Full Text Available Background Estimation of tree diversity at broader scale is important for conservation planning. Tree diversity should be measured and understood in terms of diversity and evenness, two integral components to describe the structure of a biological community. Variation of the tree diversity and evenness with elevation, topographic relief, aspect, terrain shape, slope, soil nutrient, solar radiation etc. are well documented. Methods Present study explores the variation of tree diversity (measured as Shannon diversity and evenness indices of Majella National Park, Italy with five available forest types namely evergreen oak woods, deciduous oak woods, black/aleppo pine stands, hop-hornbeam forest and beech forest, using satellite, environmental and field data. Results Hop-hornbeam forest was found to be most diverse and even while evergreen Oak woods was the lowest diverse and even. Diversity and evenness of forest types were concurrent to each other i.e. forest type which was more diverse was also more even. As a broad pattern, majority portion of the study area belonged to medium diversity and high evenness class. Conclusions Satellite images and other GIS data proved useful tools in monitoring variation of tree diversity and evenness across various forest types. Present study findings may have implications in prioritizing conservation zones of high tree diversity at Majella.

  18. Individual tree detection in intact forest and degraded forest areas in the north region of Mato Grosso State, Brazilian Amazon

    Science.gov (United States)

    Santos, E. G.; Jorge, A.; Shimabukuro, Y. E.; Gasparini, K.

    2017-12-01

    The State of Mato Grosso - MT has the second largest area with degraded forest among the states of the Brazilian Legal Amazon. Land use and land cover change processes that occur in this region cause the loss of forest biomass, releasing greenhouse gases that contribute to the increase of temperature on earth. These degraded forest areas lose biomass according to the intensity and magnitude of the degradation type. The estimate of forest biomass, commonly performed by forest inventory through sample plots, shows high variance in degraded forest areas. Due to this variance and complexity of tropical forests, the aim of this work was to estimate forest biomass using LiDAR point clouds in three distinct forest areas: one degraded by fire, another by selective logging and one area of intact forest. The approach applied in these areas was the Individual Tree Detection (ITD). To isolate the trees, we generated Canopy Height Models (CHM) images, which are obtained by subtracting the Digital Elevation Model (MDE) and the Digital Terrain Model (MDT), created by the cloud of LiDAR points. The trees in the CHM images are isolated by an algorithm provided by the Quantitative Ecology research group at the School of Forestry at Northern Arizona University (SILVA, 2015). With these points, metrics were calculated for some areas, which were used in the model of biomass estimation. The methodology used in this work was expected to reduce the error in biomass estimate in the study area. The cloud points of the most representative trees were analyzed, and thus field data was correlated with the individual trees found by the proposed algorithm. In a pilot study, the proposed methodology was applied generating the individual tree metrics: total height and area of the crown. When correlating 339 isolated trees, an unsatisfactory R² was obtained, as heights found by the algorithm were lower than those obtained in the field, with an average difference of 2.43 m. This shows that the

  19. Tree structural and species diversities in Okwangwo Forest, Cross ...

    African Journals Online (AJOL)

    Tree species were grouped into abundance classes. A total of 125 tree species belonging to 36 families and 96 genera were recorded in the area with Margaleffs index of species richness of 2.2754. Most (99) of the tree species encountered were threatened/endangered, 23 species were rare with only 3 tree species ...

  20. LBA-ECO ND-02 Secondary Forest Tree Heights and Diameters, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides tree diameters and heights measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment located 6.5-km...

  1. LBA-ECO ND-02 Secondary Forest Tree Heights and Diameters, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides tree diameters and heights measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment located 6.5-km northwest...

  2. Trees and shrubs of the Bartlett Experimental Forest, Carroll County, New Hampshire

    Science.gov (United States)

    Stanley M. Filip; Elbert L., Jr. Little; Elbert L. Little

    1971-01-01

    Sixty-five species of trees and shrubs have been identified as native on the Bartlett Experimental Forest. These species are listed in this paper to provide a record of the woody vegetation of the area.

  3. Acidity of tree bark as a bioindicator of forest pollution in southern Poland

    Energy Technology Data Exchange (ETDEWEB)

    Grodzinska, K

    1977-05-01

    pH values and buffering capacity were determined for bark samples of five deciduous trees (oak, alder, hornbeam, ash, linden), one shrub (hazel) and one coniferous tree (scots pine) in the Cracow Industrial Region (southern Poland) and, for comparison, in the Bialowieza Forest (northeastern Poland). The correlation was found between acidification of tree bark and air pollution by SO/sub 2/ in these areas. All trees showed the least acidic reaction in the control area (Bialowieza Forest), more acidic in Niepolomice Forest and the most acidic in the center of Cracow. The buffering capacity of the bark against alkali increased with increasing air pollution. The seasonal fluctuations of pH values and buffering capacity were found. Tree bark is recommended as a sensitive and simple indicator of air pollution.

  4. Does the amount of trees retained at clearfelling of temperate and boreal forests influence biodiversity response?

    Directory of Open Access Journals (Sweden)

    Fedrowitz Katja

    2012-05-01

    Full Text Available Abstract Clear-felling is one of the main methods used in many parts of the world for the production of pulp, timber and bioenergy, leading to a simplified forest structure and species composition. One of the measures to mitigate the impact of logging on biodiversity is the retention of trees at final harvest. Tree retention approaches in forestry are still rather new, although widely distributed across different continents. Several studies have been performed on the effects of retention trees on biodiversity but to date there is no evidence on the relation between the amounts of trees, i.e. the number, volume or area per ha retained, and the response of biodiversity. The overall aim of our review will be to provide forest practitioners and conservationists in temperate and boreal forests with more detailed recommendations regarding the amount of trees that should be retained in order to achieve positive effects for biodiversity compared to traditional clear-cutting.

  5. Urban trees and forests of the Chicago region

    Science.gov (United States)

    David J. Nowak; Robert E. III Hoehn; Allison R. Bodine; Daniel E. Crane; John F. Dwyer; Veta Bonnewell; Gary Watson

    2013-01-01

    An analysis of trees in the Chicago region of Illinois reveals that this area has about 157,142,000 trees with tree and shrub canopy that covers 21.0 percent of the region. The most common tree species are European buckthorn, green ash, boxelder, black cherry, and American elm. Trees in the Chicago region currently store about 16.9 million tons of carbon (61.9 million...

  6. Tree diversity does not always improve resistance of forest ecosystems to drought.

    Science.gov (United States)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  7. Tree competition and species coexistence in a Quercus--Betula forest in the Dongling Mountains in northern China

    Science.gov (United States)

    Hou, Ji-hua; Mi, Xiang-cheng; Liu, Can-ran; Ma, Ke-ping

    2006-09-01

    The population size structure, growth dynamics and mode of competition among adult trees (≥ 4 cm DBH) of six abundant tree species in a 5 ha study plot of a temperate deciduous forest in the Dongling Mountains in northern China were investigated using diffusion and growth dynamics models. In the year of 2000, two dominant species, Quercus liaotungensis and Betula dahurica accounted for ca. 68.69% of the total basal area and 52.71% of the total density of adult plants. Q. liaotungensis, Populus davidiana and Acer mono exhibited inverse J-shaped DBH distributions whereas Betula dahurica, B. platyphylla and Salix caprea had unimodal DBH distributions. One-sided interspecific competition was detected between some species combinations at the scale of the 5 ha study plot, and the competitive effect was mainly size-dependent rather than from species-specific interactions with large individuals in the canopy layer out competing smaller individuals in the understory. Symmetric competition was found between Q. liaotungensis and A. mono only. However, considering the straight line relationship of G ( t, x) - √{D(t, x)}, which suggests that competitive asymmetry is very low or absent, combined with the relatively low mortality of trees with a DBH larger than 4 cm, we speculate that asymmetric interspecific competition was not important in structuring this tree community. Regeneration characteristics of each species are most likely important in regulating species coexistence and stand dynamics in this forest.

  8. Exploring precrash maneuvers using classification trees and random forests.

    Science.gov (United States)

    Harb, Rami; Yan, Xuedong; Radwan, Essam; Su, Xiaogang

    2009-01-01

    Taking evasive actions vis-à-vis critical traffic situations impending to motor vehicle crashes endows drivers an opportunity to avoid the crash occurrence or at least diminish its severity. This study explores the drivers, vehicles, and environments' characteristics associated with crash avoidance maneuvers (i.e., evasive actions or no evasive actions). Rear-end collisions, head-on collisions, and angle collisions are analyzed separately using decision trees and the significance of the variables on the binary response variable (evasive actions or no evasive actions) is determined. Moreover, the random forests method is employed to rank the importance of the drivers/vehicles/environments characteristics on crash avoidance maneuvers. According to the exploratory analyses' results, drivers' visibility obstruction, drivers' physical impairment, drivers' distraction are associated with crash avoidance maneuvers in all three types of accidents. Moreover, speed limit is associated with rear-end collisions' avoidance maneuvers and vehicle type is correlated with head-on collisions and angle collisions' avoidance maneuvers. It is recommended that future research investigates further the explored trends (e.g., physically impaired drivers, visibility obstruction) using driving simulators which may help in legislative initiatives and in-vehicle technology recommendations.

  9. Increased evaporation following widespread tree mortality limits streamflow response

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Ewers, B. E.; Reed, D. E.; Papuga, S. A.; Brooks, P. D.

    2014-07-01

    A North American epidemic of mountain pine beetle (MPB) has disturbed over 5 million ha of forest containing headwater catchments crucial to water resources. However, there are limited observations of MPB effects on partitioning of precipitation between vapor loss and streamflow, and to our knowledge these fluxes have not been observed simultaneously following disturbance. We combined eddy covariance vapor loss (V), catchment streamflow (Q), and stable isotope indicators of evaporation (E) to quantify hydrologic partitioning over 3 years in MPB-impacted and control sites. Annual control V was conservative, varying only from 573 to 623 mm, while MPB site V varied more widely from 570 to 700 mm. During wet periods, MPB site V was greater than control V in spite of similar above-canopy potential evapotranspiration (PET). During a wet year, annual MPB V was greater and annual Q was lower as compared to an average year, while in a dry year, essentially all water was partitioned to V. Ratios of 2H and 18O in stream and soil water showed no kinetic evaporation at the control site, while MPB isotope ratios fell below the local meteoric water line, indicating greater E and snowpack sublimation (Ss) counteracted reductions in transpiration (T) and sublimation of canopy-intercepted snow (Sc). Increased E was possibly driven by reduced canopy shading of shortwave radiation, which averaged 21 W m-2 during summer under control forest as compared to 66 W m-2 under MPB forest. These results show that abiotic vapor losses may limit widely expected streamflow increases.

  10. Predicting climate change extirpation risk for central and southern Appalachian forest tree species

    Science.gov (United States)

    Kevin M. Potter; William W. Hargrove; Frank H. Koch

    2010-01-01

    Climate change will likely pose a severe threat to the viability of certain forest tree species, which will be forced either to adapt to new conditions or to shift to more favorable environments if they are to survive. Several forest tree species of the central and southern Appalachians may be at particular risk, since they occur in limited high-elevation ranges and/or...

  11. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  12. The role of trees in the geomorphic system of forested hillslopes — A review

    Science.gov (United States)

    Pawlik, Łukasz

    2013-11-01

    Forested hillslopes form a special geoecosystem, an environment of geomorphic processes that depend strongly on forest ecology, including the growth and decay of trees, changes in structure, disturbances and other fluctuations. Hence, the following various functions of trees are reviewed here: their role in both biomechanical and biochemical weathering, as well as their importance for the hillslope geomorphic subsystem and for transport of soil material via tree uprooting and root growth. Special attention is paid to tree uprooting, a process considered the most efficient and most frequent biogeomorphological indicator of bio-physical activity within forest in complex terrain. Trees have varied implications for soil formation in different environments (boreal to tropical forests) and altitudes. In this paper an attempt has been made to emphasize how trees not only modulate geomorphic processes, but also how they act as a direct or indirect agent of microrelief formation, the most striking example of which being widespread and long-lasting pit-and-mound microtopography. Based on the analyzed literature it seems that some problems attributed to forest ecology can have a fundamental effect on forested hillslope dynamics, a relationship which points to the need for its integration and interpretation within the field of geomorphology. The biology of individual trees has a key influence on the development of e.g. rock faces, weathering front migration and changes in the soil biomantle within upper and lower forest belts. Additionally, forms and sediments depend largely on the horizontal and vertical extent, volume and structure of root systems, as well as on active processes taking place in the root zone and rhizosphere. Furthermore, although trees to a large extent stabilize slope surfaces, their presence can also have a dual effect on slope stability due to tree uprooting, a process which in some circumstances can trigger mass movements (e.g. debris avalanches). So far

  13. Tree species is the major factor explaining C:N ratios in European forest soils

    DEFF Research Database (Denmark)

    Cools, Nathalie; Vesterdal, Lars; De Vos, Bruno

    2014-01-01

    The C:N ratio is considered as an indicator of nitrate leaching in response to high atmospheric nitrogen (N) deposition. However, the C:N ratio is influenced by a multitude of other site-related factors. This study aimed to unravel the factors determining C:N ratios of forest floor, mineral soil...... mineral soil layers it was the humus type. Deposition and climatic variables were of minor importance at the European scale. Further analysis for eight main forest tree species individually, showed that the influence of environmental variables on C:N ratios was tree species dependent. For Aleppo pine...... and peat top soils in more than 4000 plots of the ICP Forests large-scale monitoring network. The first objective was to quantify forest floor, mineral and peat soil C:N ratios across European forests. Secondly we determined the main factors explaining this C:N ratio using a boosted regression tree...

  14. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    International Nuclear Information System (INIS)

    Goulet, France

    2000-01-01

    Frost heaving can be a leading cause of tree seedling mortality in many places in the boreal forest of Northern Sweden. The aim of this investigation was to improve our understanding of frost heaving of planted tree seedlings as related to snow cover, scarification, planting methods and soil types. The thesis is based on a review paper, three field experiments and one laboratory experiment. The experiments focus on different methods to control frost heaving of forest tree seedlings and on a number of factors affecting the extent of frost heaving. The review paper identifies the many aspects of frost heaving of forest tree seedlings and agricultural crops based on an intensive review of the research contributions made during the last century. Even if many investigations have been carried out with the aim to decrease the extent of frost heaving, very little quantitative results are available for tree seedlings. In a field experiment, the choice of planting positions was effective in decreasing frost heaving of planted seedlings following mounding or disc-trenching. Seedlings planted in the depressions were largely affected by frost heaving with a maximal vertical displacement of 5.4 cm while frost heaving did not occur on the top of the mound. On the other hand, the planting time and planting depth had no influence on the extent of frost heaving. In another field experiment the size of the scarified patches was strongly correlated to frost heaving which reached between 7.6 and 11.5 cm in 4 and 8-dm patches compared to between 4.4 and 5.3 in non-scarified soil and in a 1-dm patch. Ground vegetation probably decreases the diurnal temperature variation and the number of freezing-thawing cycles. The duration and magnitude of frost temperatures, the frost hour sum, increased with patch size. The difference between the 8-dm and 1-dm patch increased to 2064 hour-degrees at the end of the winter. In larger patches, the planting depth seemed to be effective in reducing the

  15. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, France

    2000-07-01

    Frost heaving can be a leading cause of tree seedling mortality in many places in the boreal forest of Northern Sweden. The aim of this investigation was to improve our understanding of frost heaving of planted tree seedlings as related to snow cover, scarification, planting methods and soil types. The thesis is based on a review paper, three field experiments and one laboratory experiment. The experiments focus on different methods to control frost heaving of forest tree seedlings and on a number of factors affecting the extent of frost heaving. The review paper identifies the many aspects of frost heaving of forest tree seedlings and agricultural crops based on an intensive review of the research contributions made during the last century. Even if many investigations have been carried out with the aim to decrease the extent of frost heaving, very little quantitative results are available for tree seedlings. In a field experiment, the choice of planting positions was effective in decreasing frost heaving of planted seedlings following mounding or disc-trenching. Seedlings planted in the depressions were largely affected by frost heaving with a maximal vertical displacement of 5.4 cm while frost heaving did not occur on the top of the mound. On the other hand, the planting time and planting depth had no influence on the extent of frost heaving. In another field experiment the size of the scarified patches was strongly correlated to frost heaving which reached between 7.6 and 11.5 cm in 4 and 8-dm patches compared to between 4.4 and 5.3 in non-scarified soil and in a 1-dm patch. Ground vegetation probably decreases the diurnal temperature variation and the number of freezing-thawing cycles. The duration and magnitude of frost temperatures, the frost hour sum, increased with patch size. The difference between the 8-dm and 1-dm patch increased to 2064 hour-degrees at the end of the winter. In larger patches, the planting depth seemed to be effective in reducing the

  16. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    Science.gov (United States)

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  17. Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape.

    Science.gov (United States)

    Santos, Bráulio A; Tabarelli, Marcelo; Melo, Felipe P L; Camargo, José L C; Andrade, Ana; Laurance, Susan G; Laurance, William F

    2014-01-01

    Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest. The magnitude of the phylogenetic diversity loss was low (phylogenetic diversity, we observed a significant decrease of 50% in phylogenetic dispersion since forest isolation, irrespective of plot location. Analyses based on tree genera that have significantly increased (28 genera) or declined (31 genera) in abundance and basal area in the landscape revealed that increasing genera are more phylogenetically related than decreasing ones. Also, the loss of phylogenetic diversity was greater in tree communities where increasing genera proliferated and decreasing genera reduced their importance values, suggesting that this taxonomic replacement is partially underlying the phylogenetic impoverishment at the landscape scale. This finding has clear implications for the current debate about the role human-modified landscapes play in sustaining biodiversity persistence and key ecosystem services, such as carbon storage. Although the generalization of our findings to other fragmented tropical forests is uncertain, it could negatively affect ecosystem productivity and stability and have broader impacts on coevolved organisms.

  18. Recruitment of hornbill-dispersed trees in hunted and logged forests of the Indian Eastern Himalaya.

    Science.gov (United States)

    Sethi, Pia; Howe, Henry F

    2009-06-01

    Hunting of hornbills by tribal communities is widespread in logged foothill forests of the Indian Eastern Himalaya. We investigated whether the decline of hornbills has affected the dispersal and recruitment of 3 large-seeded tree species. We hypothesized that 2 low-fecundity tree species, Chisocheton paniculatus and Dysoxylum binectariferum (Meliaceae) bearing arillate fruits, are more dispersal limited than a prolifically fruiting drupaceous tree Polyalthia simiarum (Annonaceae), which has potential dispersers other than hornbills. We estimated the abundance of large avian frugivores during the fruiting season along transects in 2 protected and 2 disturbed forests. We compared recruitment of the tree species near (Hornbills (Anthracoceros albirostris) were significantly lower in disturbed forests, but sites did not differ in abundances of the Mountain Imperial Pigeon (Ducula badia). Overall, tree species showed more severely depressed recruitment of seedlings (77% fewer) and juveniles (69% fewer) in disturbed than in protected forests. In disturbed forests, 93% fewer seedlings of C. paniculatus were beyond parental crowns, and a high number of all seedlings (42%) accumulated directly under reproductive adults. In contrast, D. binectariferum and P. simiarum were recruitment rather than dispersal limited, with fewer dispersed seedlings surviving in disturbed than in protected forests. Results are consistent with the idea that disturbance disrupts mutualisms between hornbills and some large-seeded food plants, with the caveat that role redundancy within even small and specialized disperser assemblages renders other tree species less vulnerable to loss of regular dispersal agents. ©2009 Society for Conservation Biology.

  19. Human impacts affect tree community features of 20 forest fragments of a vanishing neotropical hotspot.

    Science.gov (United States)

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  20. Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.

    Science.gov (United States)

    Gaxiola, Aurora; Burrows, Larry E; Coomes, David A

    2008-03-01

    Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.

  1. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA on Streamflow.

    Directory of Open Access Journals (Sweden)

    Ryan R Bart

    Full Text Available Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm, with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  2. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow

    Science.gov (United States)

    Tague, Christina L.; Moritz, Max A.

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  3. Trees and light : tree development and morphology in relation to light availability in a tropical rain forest in French Guiana

    NARCIS (Netherlands)

    Sterck, F.J.

    1997-01-01

    Tropical rain forest trees spend their life in a heterogeneous light environment. During their life history, they may change their growth in relation to different levels of light availability. Some of their physiological processes (e.g. photosynthesis, carbon allocation, and meristern

  4. Predicting the probability of mortality of gastric cancer patients using decision tree.

    Science.gov (United States)

    Mohammadzadeh, F; Noorkojuri, H; Pourhoseingholi, M A; Saadat, S; Baghestani, A R

    2015-06-01

    Gastric cancer is the fourth most common cancer worldwide. This reason motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods. The aim of this study was to identify the most important factors influencing the mortality of patients who suffer from gastric cancer disease and to introduce a classification approach according to decision tree model for predicting the probability of mortality from this disease. Data on 216 patients with gastric cancer, who were registered in Taleghani hospital in Tehran,Iran, were analyzed. At first, patients were divided into two groups: the dead and alive. Then, to fit decision tree model to our data, we randomly selected 20% of dataset to the test sample and remaining dataset considered as the training sample. Finally, the validity of the model examined with sensitivity, specificity, diagnosis accuracy and the area under the receiver operating characteristic curve. The CART version 6.0 and SPSS version 19.0 softwares were used for the analysis of the data. Diabetes, ethnicity, tobacco, tumor size, surgery, pathologic stage, age at diagnosis, exposure to chemical weapons and alcohol consumption were determined as effective factors on mortality of gastric cancer. The sensitivity, specificity and accuracy of decision tree were 0.72, 0.75 and 0.74 respectively. The indices of sensitivity, specificity and accuracy represented that the decision tree model has acceptable accuracy to prediction the probability of mortality in gastric cancer patients. So a simple decision tree consisted of factors affecting on mortality of gastric cancer may help clinicians as a reliable and practical tool to predict the probability of mortality in these patients.

  5. Effects of Extensive Beetle-Induced Forest Mortality on Aromatic Organic Carbon Loading and Disinfection Byproduct Formation Potential

    Science.gov (United States)

    Brouillard, B.; Mikkelson, K. M.; Dickenson, E.; Sharp, J.

    2015-12-01

    Recent drought and warmer temperatures associated with climate change have caused increased pest-induced forest mortality with impacts on biogeochemical and hydrologic processes. To better understand the seasonal impacts of bark beetle infestation on water quality, samples were collected regularly over two overlapping snow free seasons at surface water intakes of six water treatment facilities in the Rocky Mountain region of Colorado displaying varying levels of bark beetle infestation (high >40%, moderate 20-40%, and low <20%). Organic carbon concentrations were typically 3 to 6 times higher in waters sourced from high beetle-impacted watersheds compared to moderate and low impact watersheds, revealing elevated specific ultraviolet absorbance, fluorescence, and humic-like intensity indicative of elevated aromatic carbon signatures. Accordingly, an increase in disinfection byproduct (DBP) formation potential of 400 to 600% was quantified when contrasted with watersheds containing less tree mortality. Beetle impact exasperated seasonal increases in carbon loading and DBP formation potential following both runoff and precipitation events indicating windows when enhanced water treatment may be utilized by water providers in highly infested regions. Additionally, elevated carbon concentrations throughout the summer and fall along with peaks following precipitation events provide evidence of shifting hydrologic flow paths in areas experiencing high forest mortality from decreased tree water uptake and interception. Collectively, these results demonstrate the need for continued watershed protection and monitoring with a changing climate as the resultant perturbations can have adverse effects on biogeochemistry and water quality in heavily impacted areas.

  6. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Directory of Open Access Journals (Sweden)

    Bráulio A Santos

    Full Text Available Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  7. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    Directory of Open Access Journals (Sweden)

    Patricia Adame

    2014-04-01

    Full Text Available Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon species, hinders the development of species-specific diameter growth models.Area of study: In these analyses, we grouped 82 species from secondary forests distributed across 93 permanent plots on the island of Puerto Rico.Material and Methods: Species were classified according to regeneration strategy and adult height into six functional groups. This classification allowed us to develop a robust diameter growth model using growth data collected from 1980-1990. We used mixed linear model regression to analyze tree diameter growth as a function of individual tree characteristics, stand structure, functional group and site factors.Main results: The proportion of variance in diameter growth explained by the model was 15.1%, ranging from 7.9 to 21.7%. Diameter at breast height, stem density and functional group were the most important predictors of tree growth in Puerto Rican secondary forest. Site factors such as soil and topography failed to predict diameter growth.Keywords: Caribbean forests; growth model; tropical forest succession; Puerto Rico.

  8. Responses of Tree Growths to Tree Size, Competition, and Topographic Conditions in Sierra Nevada Forests Using Bi-temporal Airborne LiDAR Data

    Science.gov (United States)

    Ma, Q.; Su, Y.; Tao, S.; Guo, Q.

    2016-12-01

    Trees in the Sierra Nevada (SN) forests are experiencing rapid changes due to human disturbances and climatic changes. An improved monitoring of tree growth and understanding of how tree growth responses to different impact factors, such as tree competition, forest density, topographic and hydrologic conditions, are urgently needed in tree growth modeling. Traditional tree growth modeling mainly relied on field survey, which was highly time-consuming and labor-intensive. Airborne Light detection and ranging System (ALS) is increasingly used in forest survey, due to its high efficiency and accuracy in three-dimensional tree structure delineation and terrain characterization. This study successfully detected individual tree growth in height (ΔH), crown area (ΔA), and crown volume (ΔV) over a five-year period (2007-2012) using bi-temporal ALS data in two conifer forest areas in SN. We further analyzed their responses to original tree size, competition indices, forest structure indices, and topographic environmental parameters at individual tree and forest stand scales. Our results indicated ΔH was strongly sensitive to topographic wetness index; whereas ΔA and ΔV were highly responsive to forest density and original tree sizes. These ALS based findings in ΔH were consistent with field measurements. Our study demonstrated the promising potential of using bi-temporal ALS data in forest growth measurements and analysis. A more comprehensive study over a longer temporal period and a wider range of forest stands would give better insights into tree growth in the SN, and provide useful guides for forest growth monitoring, modeling, and management.

  9. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile

    NARCIS (Netherlands)

    Fajardo, Alex; Graaf, de N.R.

    2004-01-01

    The gap dynamics of two Nothofagus pumilio (lenga) stands have been investigated. We evaluated and compared tree diameter distributions, spatial patterns, tree fall and gap characteristics and regeneration responses in gaps in two old-growth forests of Nothofagus pumilio in Southern Chile

  10. Comparing i-Tree modeled ozone deposition with field measurements in a periurban Mediterranean forest

    Science.gov (United States)

    A. Morani; D. Nowak; S. Hirabayashi; G. Guidolotti; M. Medori; V. Muzzini; S. Fares; G. Scarascia Mugnozza; C. Calfapietra

    2014-01-01

    Ozone flux estimates from the i-Tree model were compared with ozone flux measurements using the Eddy Covariance technique in a periurban Mediterranean forest near Rome (Castelporziano). For the first time i-Tree model outputs were compared with field measurements in relation to dry deposition estimates. Results showed generally a...

  11. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  12. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.

    2003-01-01

    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca

  13. Understanding the Roles of Forests and Tree-based Systems in Food Provision

    NARCIS (Netherlands)

    Jamnadass, R.; McMullin, S.; Dawson, M.I.I.K.; Powell, B.; Termote, C.; Lckowitz, A.; Kehlenbeck, K.; Vinceti, B.; Vliet, van N.; Keding, G.; Stadlmayr, B.; Damme, van P.; Carsan, S.; Sunderland, T.; Njenga, M.; Gyau, A.; Cerutti, P.; Schure, J.M.; Kouame, C.; Obiri, B.D.; Ofori, D.; Agarwal, B.; Neufeldt, H.; Degrande, A.; Serban, A.

    2015-01-01

    Forests and other tree-based systems such as agroforestry contribute to food and nutritional security in myriad ways. Directly, trees provide a variety of healthy foods including fruits, leafy vegetables, nuts, seeds and edible oils that can diversify diets and address seasonal food and nutritional

  14. Summer droughts limit tree growth across 10 temperate species on a productive forest site

    NARCIS (Netherlands)

    Weemstra, M.; Eilmann, B.; Sass-Klaassen, U.; Sterck, F.J.

    2013-01-01

    Studies on climate impacts on tree annual growth are mainly restricted to marginal sites. To date, the climate effects on annual growth of trees in favorable environments remain therefore unclear despite the importance of these sites in terms of forest productivity. Because species respond

  15. Patterns of diametric growth in stem-analyzed laurel trees (Cordia alliodora) in a Panamanian forest

    Science.gov (United States)

    Bernard R Parresol; Margaret S. Devall

    2013-01-01

    Based on cross-dated increment cores, yearly diameters of trees were reconstructed for 21 laurels (Cordia alliodora) growing in a natural secondary forest on Gigante Peninsula, Panama. From this sample of dominant-codominant trees, ages were 14–35 years with an average of 25 years. Growth typically slowed at 7 years old, indicating effects of...

  16. Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land

    Science.gov (United States)

    Xinhua Zhou; Michele M. Schoeneberger; James R. Brandle; Tala N. Awada; Jianmin Chu; Derrel L. Martin; Jihong Li; Yuqiang Li; Carl W. Mize

    2014-01-01

    Quantifying carbon in agroforestry trees requires biomass equations that capture the growth differences (e.g., tree specific gravity and architecture) created in the more open canopies of agroforestry plantings compared with those generally encountered in forests. Whereas forest-derived equations are available, equations for open-grown trees are not. Data from...

  17. Bat and bird diversity along independent gradients of latitude and tree composition in European forests.

    Science.gov (United States)

    Charbonnier, Yohan M; Barbaro, Luc; Barnagaud, Jean-Yves; Ampoorter, Evy; Nezan, Julien; Verheyen, Kris; Jactel, Hervé

    2016-10-01

    Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.

  18. Effects of dust on forest tree health in Zagros oak forests.

    Science.gov (United States)

    Moradi, A; Taheri Abkenar, K; Afshar Mohammadian, M; Shabanian, N

    2017-10-10

    Dust is one of the most devastating factors for the environment threatening all animal and plant species. In many regions, the ecological and economic impact of microdust on scarce species is critical. In the western region of Iran, the Zagros forests have been exposed to dust storms for many years. In this study, the effect of dust on oak trees, the most important trees of Zagros forests, is investigated. For this purpose, 3-year-old seedlings of three species of oak trees under natural conditions were exposed to dust during spring and summer months. Seedlings were divided into two groups; one group was assigned as dust treatment and the other as control that the control group washed regularly to remove dust. Anatomical characteristics of leaves and dust deposits on leaves during the study period were examined by scanning electron microscope (SEM). The rate of photosynthesis and gas exchange in control and treated plants was examined by IRGA, LCI. SEM images showed that stomata structure, trichome density, and epicuticular waxes of leaves are different in all three species. This difference in micromorphology of species influences the effects of dust deposited on the leaves. A comparison of leaf species images in control and dust treatment showed that in dust treatment the percentage of stomata blocked by dust in three species (per unit area) of Quercus infectoria, Q. libni, and Q. brantii were 61/6, 48/4, and 38/1%, respectively. The results of leaf gas exchange investigation indicated that stomatal occlusion by dust had a negative impact on the examined parameters of three oak species (P ≤ 0.01). Thus, gas exchange and photosynthetic rates of the treated species were significantly reduced. The results of both parts of the study showed the vulnerability of the three species to dust as Q. infectoria > Q. libni > Q. brantii. Therefore, based on these findings, dust can disrupt the physiological activities of the studied species and the continuation of the

  19. Using AVIRIS data and multiple-masking techniques to map urban forest trees species

    Science.gov (United States)

    Q. Xiao; S.L. Ustin; E.G. McPherson

    2004-01-01

    Tree type and species information are critical parameters for urban forest management, benefit cost analysis and urban planning. However, traditionally, these parameters have been derived based on limited field samples in urban forest management practice. In this study we used high-resolution Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data and multiple-...

  20. An object-oriented forest landscape model and its representation of tree species

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  1. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

    Science.gov (United States)

    Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings

    2017-01-01

    We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...

  2. Evidence that soil aluminum enforces site fidelity of southern New England forest trees

    Science.gov (United States)

    S. W. Bigelow; C. D. Canham

    2010-01-01

    Tree species composition of hardwood forests of the northeastern United States corresponds with soil chemistry, and differential performance along soil calcium (Ca) gradients has been proposed as a mechanism for enforcing this fidelity of species to site. We conducted studies in a southern New England forest to test if surface-soil Ca is more important than other...

  3. Tree roosting by male and female eastern pipistrelles in a forested landscape

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill

    2007-01-01

    Little information has been published on selection of tree roosts by eastern pipistrelles (Perimyotis subflavus) in forested environments, and no radiotelemetry-based studies have been conducted on males in forested settings. Therefore, we used radiotelemetry to characterize summer roost selection by 21 male (33 roosts) and 7 female (14 roosts)...

  4. Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands

    Science.gov (United States)

    Lauro Rodrigues Nogueira; Vera Lex Engel; John A. Parrotta; Antonio Carlos Galvão de Melo; Danilo Scorzoni Ré

    2014-01-01

    Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of São Paulo State – Brazil to develop allometric equations to estimate tree biomass of...

  5. Observations on the fauna that visit African Tulip Tree (Spathodea campanulata Beauv.) forests in Puerto Rico

    Science.gov (United States)

    Oscar J. Abelleira Martinez

    2008-01-01

    Diurnal field observations in secondary forests dominated by the introduced African tulip tree (Spathodea campanulata) in Puerto Rico show a faunal assemblage that consists mostly of native species (81.1 percent). The most abundant species were common birds and reptiles, yet some uncommon fauna appear to be visiting or residing in these forests. The observations...

  6. Economic rationale for planting less trees in the face of seedling mortality

    Science.gov (United States)

    Thomas J. Dean; S. Joseph Chang

    2002-01-01

    Simple economic analyses are used to demonstrate that planting extra trees to compensate for initial seedling mortality can actually reduce the profit expected from a pine plantation. At a 6-percent interest rate, the cost of planting 15 or 25 percent additional seedlings compounded to the end of a 30-year rotation exceeds the revenue lost to these rates of seedling...

  7. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  8. Mapping forest tree species over large areas with partially cloudy Landsat imagery

    Science.gov (United States)

    Turlej, K.; Radeloff, V.

    2017-12-01

    Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.

  9. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.

    Science.gov (United States)

    Bongers, Frans; Poorter, Lourens; Hawthorne, William D; Sheil, Douglas

    2009-08-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331,567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.

  10. Regenerative Resilience of Tree Species in a Degraded Forest within Mt Kenya Ecosystem

    International Nuclear Information System (INIS)

    Omenda, T.O; Kariuki, J.G; Kamondo, B.M; Kiamba, J.K

    2007-01-01

    There is widespread human induced degradation of natural forest in Kenya. The major challenge to this situation is to devise cost effective rehabilitation approaches to reverse this trend. A study was conducted in Nyanza province of Kenya describing the structure and diversity of a disturbed natural forest and understanding the role so various propagules, namely seed, soil seed bank and coppices in post-disturbance recovery. The pre-disturbance forest type was a podo-Cassipourea-Teclea tropical montane forest. Four 350 m long line-plot transects were randomly located within the forest. Tree and stump data were obtained from 20*20 m plots located at 50 m intervals, while sapling, seeding and soil seed bank data were obtained from 5*5 m, 1*1 m and 0.2*0.2*0.5 subplots respectively, nested within the large plot. An 'Index of Species Resilence' that defines their continued was developed based on the tree species ability to coppice and their representation in seedling, sapling and tree stages. The forest condition was highly heterogeneous as determined through spatial distribution of basal area, height and diameter of breast height (dbh) of trees and cut stumps, the latter an indicator of disturbance. The Resilience Index indicated that, out of the 40 tree species found in the forest, only 30% had stable presence while 50% had an unstable presence characterized by in key succession stages-implying low auto-recovery potential. Results indicated that, coppicing had a more critical role in regeneration than previously thought, with 78% of all cut-tree species coppicing while only 27.5% of all the trees species regenerated from seed. The role of soil seed bank in auto-recovery was insignificant in this site. The apparent high coppicing potential presents a new opportunity for managing natural forests

  11. Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes

    Science.gov (United States)

    Coelho, Luís Francisco Mello; Ribeiro, Milton Cezar; Pereira, Rodrigo Augusto Santinelo

    2014-05-01

    The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests.

  12. Coordination of physiological and structural traits in Amazon forest trees

    Science.gov (United States)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf

  13. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    Science.gov (United States)

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  14. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.

  15. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers

    Science.gov (United States)

    Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen. Fitzgerald

    2012-01-01

    Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...

  16. Improving Predictions of Tree Drought Mortality in the Community Land Model Using Hydraulic Physiology Theory and its Effects on Carbon Metabolism

    Science.gov (United States)

    McNellis, B.; Hudiburg, T. W.

    2017-12-01

    Tree mortality due to drought is predicted to have increasing impacts on ecosystem structure and function during the 21st century. Models can attempt to predict which forests are most at risk from drought, but novel environments may preclude analysis that relies on past observations. The inclusion of more mechanistic detail may reduce uncertainty in predictions, but can also compound model complexity, especially in global models. The Community Land Model version 5 (CLM5), itself a component of the Community Earth System Model (CESM), has recently integrated cohort-based demography into its dynamic vegetation component and is in the process of coupling this demography to a model of plant hydraulic physiology (FATES-Hydro). Previous treatment of drought stress and plant mortality within CLM has been relatively broad, but a detailed hydraulics module represents a key step towards accurate mortality prognosis. Here, we examine the structure of FATES-Hydro with respect to two key physiological attributes: tissue osmotic potentials and embolism refilling. Specifically, we ask how FATES-Hydro captures mechanistic realism within each attribute and how much support there is within the physiological literature for its further elaboration within the model structure. Additionally, connections to broader aspects of carbon metabolism within FATES are explored to better resolve emergent consequences of drought stress on ecosystem function and tree demographics. An on-going field experiment in managed stands of Pinus ponderosa and mixed conifers is assessed for model parameterization and performance across PNW forests, with important implications for future forest management strategy.

  17. Breakage or uprooting: How tree death type affects hillslope processes in old-growth temperate forests

    Science.gov (United States)

    Šamonil, Pavel; Daněk, Pavel; Adam, Dušan; Phillips, Jonathan D.

    2017-12-01

    Tree breakage and uprooting are two possible scenarios of tree death that have differing effects on hillslope processes. In this study we aimed to (i) reveal the long-term structure of the biomechanical effects of trees (BETs) in relation to their radial growth and tree death types in four old-growth temperate forests in four different elevation settings with an altitudinal gradient of 152-1105 m a.s.l., (ii) quantify affected areas and soil volumes associated with the studied BETs in reserves, and (iii) derive a general model of the role of BETs in hillslope processes in central European temperate forests. We analyzed the individual dynamics of circa 55,000 trees in an area of 161 ha within four old-growth forests over 3-4 decades. Basal tree censuses established in all sites in the 1970s and repeated tree censuses in the 1990s and 2000s provided detailed information about the radial growth of each tree of DBH ≥ 10 cm as well as about types of tree death. We focused on the quantification of: (i) surviving still-living trees, (ii) new recruits, (iii) standing dead trees, (iv) uprooted trees, and (v) broken trees. Frequencies of phenomena were related to affected areas and volumes of soil using individual statistical models. The elevation contrasts were a significant factor in the structure of BETs. Differences between sites increased from frequencies of events through affected areas to volumes of soil associated with BETs. An average 2.7 m3 ha-1 year-1 was associated with all BETs of the living and dying trees in lowlands, while there was an average of 7.8 m3 ha-1 year-1 in the highest mountain site. Differences were caused mainly by the effects of dying trees. BETs associated with dead trees were 7-8 times larger in the mountains. Effects of dying trees and particularly treethrows represented about 70% of all BETs at both mountain sites, while it was 58% at the highland site and only 32% at the lowland site. Our results show a more significant role of BETs in

  18. Scenario Modeling of Thermal Influence from Forest Fire Front on a Coniferous Tree Trunk

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2016-01-01

    Full Text Available Scenario research results of heat transfer and tissue damage in three-layered tree trunk influenced by heat flux from forest fire are presented. The problem is solved in two-dimensional statement in polar coordinates. The typical range of influence parameters (heat flux from forest fire front, trunk radius, coniferous species, air temperature, duration of exposure and distance from fire line is considered. Temperature distributions in different moments of time are obtained. Condition of tree damage by forest fire influence is under consideration in this research. Information summarized using tables with scenario and fire consequences results.

  19. Predictors of mortality for juvenile trees in a residential urban-to-rural cohort in Worcester, MA

    Science.gov (United States)

    Arthur Elmes; John Rogan; Lara A. Roman; Christopher A. Williams; Samuel J. Ratick; David J. Nowak; Deborah G. Martin

    2018-01-01

    This paper explores predictors of juvenile tree mortality in a newly planted cohort in Worcester, MA, following an episode of large-scale tree removal necessitated by an Asian Longhorned Beetle (Anoplophora glabripennis, ALB) eradication program. Trees are increasingly seen as important providers of ecosystem services for urban areas, including:...

  20. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China.

    Science.gov (United States)

    He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.

  1. Large-Scale Mapping of Tree-Community Composition as a Surrogate of Forest Degradation in Bornean Tropical Rain Forests

    Directory of Open Access Journals (Sweden)

    Shogoro Fujiki

    2016-12-01

    Full Text Available Assessment of the progress of the Aichi Biodiversity Targets set by the Convention on Biological Diversity (CBD and the safeguarding of ecosystems from the perverse negative impacts caused by Reducing Emissions from Deforestation and Forest Degradation Plus (REDD+ requires the development of spatiotemporally robust and sensitive indicators of biodiversity and ecosystem health. Recently, it has been proposed that tree-community composition based on count-plot surveys could serve as a robust, sensitive, and cost-effective indicator for forest intactness in Bornean logged-over rain forests. In this study, we developed an algorithm to map tree-community composition across the entire landscape based on Landsat imagery. We targeted six forest management units (FMUs, each of which ranged from 50,000 to 100,000 ha in area, covering a broad geographic range spanning the most area of Borneo. Approximately fifty 20 m-radius circular plots were established in each FMU, and the differences in tree-community composition at a genus level among plots were examined for trees with diameter at breast height ≥10 cm using an ordination with non-metric multidimensional scaling (nMDS. Subsequently, we developed a linear regression model based on Landsat metrics (e.g., reflectance value, vegetation indices and textures to explain the nMDS axis-1 scores of the plots, and extrapolated the model to the landscape to establish a tree-community composition map in each FMU. The adjusted R2 values based on a cross-validation approach between the predicted and observed nMDS axis-1 scores indicated a close correlation, ranging from 0.54 to 0.69. Histograms of the frequency distributions of extrapolated nMDS axis-1 scores were derived from each map and used to quantitatively diagnose the forest intactness of the FMUs. Our study indicated that tree-community composition, which was reported as a robust indicator of forest intactness, could be mapped at a landscape level to

  2. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Science.gov (United States)

    Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo

    2010-09-08

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  3. Acidity of tree bark as a bioindicator of forest pollution in southern Poland

    Energy Technology Data Exchange (ETDEWEB)

    Grodznska, K

    1976-01-01

    PH values and buffering capacity were determined for bark samples of 5 deciduous trees (oak, alder, hornbeam, ash, linden), one shrub (hazel) and one coniferous tree (scots pine) in the Cracow industrial region (southern Poland) and for comparison in the Bialowieza Forest (north-eastern Poland). The correlation was found between acidification of tree bark and air pollution by SO/sub 2/ in these areas. All trees showed the least acidic reaction in the control area (Bialowieza Forest), more acidic in Niepolomice Forest and the most acidic in the center of Cracow city. The buffering capacity of the bark against alkali increased with increasing air pollution. The seasonal fluctuations of pH values is recommended as a sensitive and simple indicator of air pollution.

  4. Influence of matrix type on tree community assemblages along tropical dry forest edges.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel

    2014-05-01

    • Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.

  5. Detailed maps of tropical forest types are within reach: forest tree communities for Trinidad and Tobago mapped with multiseason Landsat and multiseason fine-resolution imagery

    Science.gov (United States)

    Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad. Ramnarine

    2012-01-01

    Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...

  6. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.

    Science.gov (United States)

    Klein, Tamir; Hoch, Günter; Yakir, Dan; Körner, Christian

    2014-09-01

    In trees exposed to prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (i) to what degree is tree growth limited by C availability; and (ii) is growth limited by concurrent C storage (e.g., as nonstructural carbohydrates, NSC)? To test the relationships between drought, growth and C reserves, we monitored the changes in NSC levels and constructed stem growth chronologies of mature Pinus halepensis Miller trees of three drought stress levels growing in Yatir forest, Israel, at the dry distribution limit of forests. Moderately stressed and stressed trees showed 34 and 14% of the stem growth, 71 and 31% of the sap flux density, and 79 and 66% of the final needle length of healthy trees in 2012. In spite of these large reductions in growth and sap flow, both starch and soluble sugar concentrations in the branches of these trees were similar in all trees throughout the dry season (2-4% dry mass). At the same time, the root starch concentrations of moderately stressed and stressed trees were 47 and 58% of those of healthy trees, but never drought there is more than one way for a tree to maintain a positive C balance. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  8. Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Reiter, Ilja M.; Haeberle, Karl-Heinz; Langebartels, Christian; Bahnweg, Guenther; Pretzsch, Hans; Sandermann, Heinrich; Matyssek, Rainer

    2005-01-01

    The responsiveness of adult beech and spruce trees to chronic O 3 stress was studied at a free-air O 3 exposure experiment in Freising/Germany. Over three growing seasons, gas exchange characteristics, biochemical parameters, macroscopic O 3 injury and the phenology of leaf organs were investigated, along with assessments of branch and stem growth as indications of tree performance. To assess response pattern to chronic O 3 stress in adult forest trees, we introduce a new evaluation approach, which provides a comprehensive, readily accomplishable overview across several tree-internal scaling levels, different canopy regions and growing seasons. This new approach, based on a three-grade colour coding, combines statistical analysis and the proficient ability of the 'human eye' in pattern recognition. - Responses of adult forest trees to chronic O 3 stress can be visualized in a survey table applying a three-grade colour coding to each investigated parameter

  9. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  10. Urban forest management in New England: Towards a contemporary understanding of tree wardens in Massachusetts communities

    Science.gov (United States)

    Harper, Richard W.; Bloniarz, David V.; DeStefano, Stephen; Nicolson, Craig

    2017-01-01

    In the New England states, tree wardens are local officials responsible for the preservation, maintenance and stewardship of municipal public trees. This study explores the emerging professional challenges, duties and responsibilities of tree wardens, from the subject’s point of view, by conducting in-person, semi-structured qualitative research interviews with 50 tree wardens throughout Massachusetts. Many of the findings corroborate previous literature, including that tree wardens are typically housed in a municipal department (often public works or highway), that tree wardens routinely interact with a wide variety of local organisations (representatives from other municipal departments, community volunteer associations) and that as community size increases, tree wardens typically have access to a greater pool of resources to carry out urban forest management. A newer finding is that the subject of urban forest health arose as a topic of great importance for tree wardens, as nearly all interviewees (n = 49) indicated that they monitor for urban forest pests and that they would like further continuing education concerning this subject.

  11. Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.

    Science.gov (United States)

    Hor, Soheil; Moradi, Mehdi

    2016-12-01

    Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.

  12. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests.

    Science.gov (United States)

    Varenius, Kerstin; Lindahl, Björn D; Dahlberg, Anders

    2017-09-01

    Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Unique competitive effects of lianas and trees in a tropical forest understory.

    Science.gov (United States)

    Wright, Alexandra; Tobin, Mike; Mangan, Scott; Schnitzer, Stefan A

    2015-02-01

    Lianas are an important component of tropical forests, contributing up to 25% of the woody stems and 35% of woody species diversity. Lianas invest less in structural support but more in leaves compared to trees of similar biomass. These physiological and morphological differences suggest that lianas may interact with neighboring plants in ways that are different from similarly sized trees. However, the vast majority of past liana competition studies have failed to identify the unique competitive effects of lianas by controlling for the amount of biomass removed. We assessed liana competition in the forest understory over the course of 3 years by removing liana biomass and an equal amount of tree biomass in 40 plots at 10 sites in a secondary tropical moist forest in central Panama. We found that growth of understory trees and lianas, as well as planted seedlings, was limited due to competitive effects from both lianas and trees, though the competitive impacts varied by species, season, and size of neighbors. The removal of trees resulted in greater survival of planted seedlings compared to the removal of lianas, apparently related to a greater release from competition for light. In contrast, lianas had a species-specific negative effect on drought-tolerant Dipteryx oleifera seedlings during the dry season, potentially due to competition for water. We conclude that, at local scales, lianas and trees have unique and differential effects on understory dynamics, with lianas potentially competing more strongly during the dry season, and trees competing more strongly for light.

  14. Effects of tree-to-tree variations on sap flux-based transpiration estimates in a forested watershed

    Science.gov (United States)

    Kume, Tomonori; Tsuruta, Kenji; Komatsu, Hikaru; Kumagai, Tomo'omi; Higashi, Naoko; Shinohara, Yoshinori; Otsuki, Kyoichi

    2010-05-01

    To estimate forest stand-scale water use, we assessed how sample sizes affect confidence of stand-scale transpiration (E) estimates calculated from sap flux (Fd) and sapwood area (AS_tree) measurements of individual trees. In a Japanese cypress plantation, we measured Fd and AS_tree in all trees (n = 58) within a 20 × 20 m study plot, which was divided into four 10 × 10 subplots. We calculated E from stand AS_tree (AS_stand) and mean stand Fd (JS) values. Using Monte Carlo analyses, we examined potential errors associated with sample sizes in E, AS_stand, and JS by using the original AS_tree and Fd data sets. Consequently, we defined optimal sample sizes of 10 and 15 for AS_stand and JS estimates, respectively, in the 20 × 20 m plot. Sample sizes greater than the optimal sample sizes did not decrease potential errors. The optimal sample sizes for JS changed according to plot size (e.g., 10 × 10 m and 10 × 20 m), while the optimal sample sizes for AS_stand did not. As well, the optimal sample sizes for JS did not change in different vapor pressure deficit conditions. In terms of E estimates, these results suggest that the tree-to-tree variations in Fd vary among different plots, and that plot size to capture tree-to-tree variations in Fd is an important factor. This study also discusses planning balanced sampling designs to extrapolate stand-scale estimates to catchment-scale estimates.

  15. Native trees show conservative water use relative to invasive trees: results from a removal experiment in a Hawaiian wet forest.

    Science.gov (United States)

    Cavaleri, Molly A; Ostertag, Rebecca; Cordell, Susan; Sack, Lawren

    2014-01-01

    While the supply of freshwater is expected to decline in many regions in the coming decades, invasive plant species, often 'high water spenders', are greatly expanding their ranges worldwide. In this study, we quantified the ecohydrological differences between native and invasive trees and also the effects of woody invasive removal on plot-level water use in a heavily invaded mono-dominant lowland wet tropical forest on the Island of Hawaii. We measured transpiration rates of co-occurring native and invasive tree species with and without woody invasive removal treatments. Twenty native Metrosideros polymorpha and 10 trees each of three invasive species, Cecropia obtusifolia, Macaranga mappa and Melastoma septemnervium, were instrumented with heat-dissipation sap-flux probes in four 100 m(2) plots (two invaded, two removal) for 10 months. In the invaded plots, where both natives and invasives were present, Metrosideros had the lowest sap-flow rates per unit sapwood, but the highest sap-flow rates per whole tree, owing to its larger mean diameter than the invasive trees. Stand-level water use within the removal plots was half that of the invaded plots, even though the removal of invasives caused a small but significant increase in compensatory water use by the remaining native trees. By investigating the effects of invasive species on ecohydrology and comparing native vs. invasive physiological traits, we not only gain understanding about the functioning of invasive species, but we also highlight potential water-conservation strategies for heavily invaded mono-dominant tropical forests worldwide. Native-dominated forests free of invasive species can be conservative in overall water use, providing a strong rationale for the control of invasive species and preservation of native-dominated stands.

  16. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    Science.gov (United States)

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  17. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.; Kilgo, John, C.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  18. Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.

    Science.gov (United States)

    Puigbò, Pere; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article, we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the application of these methods to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a "species tree."

  19. Community harvesting of trees used as dens and for food by the tree hyrax (Dendrohyrax arboreus in the Pirie forest, South Africa

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Opperman

    2018-02-01

    Full Text Available Forests in South Africa are harvested by local communities for multiple purposes and this affects the animals that inhabit them. The tree hyrax (Dendrohyrax arboreus has a restricted distribution and utilises various tree species as dens and a source of food. In this article, we determined, through a series of interviews in the communities surrounding the Pirie forest, which plant species are harvested by local people and whether these overlap with those used by the tree hyrax. In addition, we determined the extent to which tree hyraxes are hunted by these communities. Of the trees used by the hyrax as dens in the Pirie forest, Afrocarpus falcatus, Schotia latifolia, Andrachne ovalis, Teclea natalensis and Apodytes dimidiata are important resources for local communities. But as these are harvested at relatively low levels, it is unlikely that current harvesting has a large impact on the tree hyrax. Opportunistic hunting occurs, but the hyrax is not targeted by hunters. Very limited commercial harvesting of A. falcatus has been taking place in the Pirie forest since 1975, but its impact on the hyrax population, although undetermined, is also unlikely to be high. We recommend that the Pirie forest tree hyrax population should be monitored by forest management in order to ascertain the impact of both commercial and community harvesting over the past quarter-century. Conservation implications: Tree hyrax populations in the Pirie forest should be actively monitored by management on an annual basis.

  20. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest

    Science.gov (United States)

    Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a few large trees as opposed to many smaller trees. PMID:22567132

  1. Use of tree species by White-throated treerunner (Pygarrhichas albogularis King) in a secondary native forest of southern Chile

    OpenAIRE

    Gantz, Alberto; Yañez, Miguel; Orellana, José I.; Sade, Soraya; Valdivia, Carlos E.

    2015-01-01

    ABSTRACT In forest ecosystems, numerous species of insectivorous birds use certain tree species as feeding and nesting substrates. Between 2009 and 2010, the use of different floristic components as feeding substrate by the Pygarrhichas albogularis King, 1831 was evaluated in a southern Chilean secondary native forest. From a total of 13 trees and bush species, six tree species were used by P. albogularis as a feeding substrate. Tree use was limited to intermediate heights (11-20 m) and, main...

  2. Topographic Patterns of Mortality and Succession in the Alpine Treeline Ecotone Suggest Hydrologic Controls on Post-Fire Tree Establishment

    Science.gov (United States)

    McCaffrey, D. R.; Hopkinson, C.

    2017-12-01

    Alpine Treeline Ecotone (ATE), the transition zone between closed canopy forest and alpine tundra, is a prominent vegetation pattern in mountain regions. At continental scales, the elevation of ATE is negatively correlated with latitude and is generally explained by thermal limitations. However, at landscape scales, precipitation and moisture regimes can suppress ATE elevation below thermal limits, causing variability and patterning in ATE position. Recent studies have investigated the relative effects of hydroclimatic variables on ATE position at multiple scales, but less attention has been given to interactions between hydroclimatic variables and disturbance agents, such as fire. Observing change in the ATE at sufficient spatial resolution and temporal extent to identify correlations between topographic variables and disturbance agents has proved challenging. Recent advances in monoplotting have enabled the extraction of canopy cover information from oblique photography, at a resolution of 20 m. Using airborne lidar and repeat photography from the Mountain Legacy Project, we observed canopy cover change in West Castle Watershed (Alberta, Canada; 103 km2; 49.3° N, 114.4° W) over a 92-year period (i.e. 1914-2006). Two wildfires, occurring 1934 and 1936, affected 63% of the watershed area, providing an opportunity to contrast topographic patterns of mortality and succession in the ATE, while factoring by exposure to fire. Slope aspect was a strong predictor of mortality and succession: the frequency of mortality was four times higher in fire-exposed areas, with 72% of all mortality occurring on south- and east-facing slope aspects; the frequency of succession was balanced between fire-exposed and unexposed areas, with 66% of all succession occurred on north- and east-facing slope aspects. Given previous experiments have demonstrated that moisture limitation inhibits tree establishment, suppressing elevation of ATE below thermal growth boundaries, we hypothesize

  3. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Directory of Open Access Journals (Sweden)

    Brice B Hanberry

    Full Text Available We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  4. Winning and Losing Tree Species of Reassembly in Minnesota’s Mixed and Broadleaf Forests

    Science.gov (United States)

    Hanberry, Brice B.; Palik, Brian J.; He, Hong S.

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota’s mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity. PMID:23613911

  5. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Science.gov (United States)

    Hanberry, Brice B; Palik, Brian J; He, Hong S

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  6. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: the shade tolerance-stand structure hypothesis revisited.

    Science.gov (United States)

    Zavala, Miguel A; Angulo, Oscar; Bravo de la Parra, Rafael; López-Marcos, Juan C

    2007-02-07

    Light competition and interspecific differences in shade tolerance are considered key determinants of forest stand structure and dynamics. Specifically two main stand diameter distribution types as a function of shade tolerance have been proposed based on empirical observations. All-aged stands of shade tolerant species tend to have steeply descending, monotonic diameter distributions (inverse J-shaped curves). Shade intolerant species in contrast typically exhibit normal (unimodal) tree diameter distributions due to high mortality rates of smaller suppressed trees. In this study we explore the generality of this hypothesis which implies a causal relationship between light competition or shade tolerance and stand structure. For this purpose we formulate a partial differential equation system of stand dynamics as a function of individual tree growth, recruitment and mortality which allows us to explore possible individual-based mechanisms--e.g. light competition-underlying observed patterns of stand structure--e.g. unimodal or inverse J-shaped equilibrium diameter curves. We find that contrary to expectations interspecific differences in growth patterns can result alone in any of the two diameter distributions types observed in the field. In particular, slow growing species can present unimodal equilibrium curves even in the absence of light competition. Moreover, light competition and shade intolerance evaluated both at the tree growth and mortality stages did not have a significant impact on stand structure that tended to converge systematically towards an inverse J-shaped curves for most tree growth scenarios. Realistic transient stand dynamics for even aged stands of shade intolerant species (unimodal curves) were only obtained when recruitment was completely suppressed, providing further evidence on the critical role played by juvenile stages of tree development (e.g. the sampling stage) on final forest structure and composition. The results also point out the

  7. Forest FIRE and FIRE wood : tools for tree automata and tree algorithms

    NARCIS (Netherlands)

    Cleophas, L.G.W.A.; Piskorski, J.; Watson, B.W.; Yli-Jyrä, A.

    2009-01-01

    Pattern matching, acceptance, and parsing algorithms on node-labeled, ordered, ranked trees ('tree algorithms') are important for applications such as instruction selection and tree transformation/term rewriting. Many such algorithms have been developed. They often are based on results from such

  8. Epiphytic orchids and host trees diversity at Gunung Manyutan Forest Reserve, Wilis Mountain, Ponorogo, East Java

    Directory of Open Access Journals (Sweden)

    NINA DWI YULIA

    2011-01-01

    Full Text Available Yulia ND, Budiharta S (2011 Epiphytic orchids and host trees diversity at Gunung Manyutan Forest Reserve, Wilis Mountain, Ponorogo, East Java. Biodiversitas 12: 22-27. Natural forests in Wilis Mountain have been destroyed by forest fires, landslides and illegal logging. As a consequence, biological diversity in this area is threatened by local extinctions, particularly of orchid species. This study was aimed to explore, document and analyze the diversity of epiphytic orchids at Gunung Manyutan Forest Reserve, a natural forest area in Wilis Mountain. Purposive sampling on 1 hectare (50 x 200 m2 contiguous plot was used. This plot was divided into eight subplots (25 x 50 m2. All data on orchid species were recorded including its number, host trees and zone of the host tree where the orchid attached. The results showed that there were 29 epiphytic orchid species recorded. Flickingeria angulata was the most abundant species (Relative Abundance of orchids/ %Fo = 38.74, continued by Appendicula sp. (%Fo = 10.91 and Eria hyacinthoides (%Fo = 6.57. The three most important host trees were Pinus merkusii, Schima wallichii and Engelhardia spicata. Zone 3 (bottom part of the branches was revealed as the most favorable part at the host tree (281 individuals, while Zone 1 (bottom part of the main stem was the least preferable one.

  9. Coordination of physiological and structural traits in Amazon forest trees

    Directory of Open Access Journals (Sweden)

    S. Patiño

    2012-02-01

    Full Text Available Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS obtained for 1020 individual trees (encompassing 661 species located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax, seed size, leaf mass per unit area (MA, foliar nutrients and δ13C, and branch xylem density (ρx.

    Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies.

    Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient

  10. Detection and Segmentation of Small Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Marius Hauglin

    2016-05-01

    Full Text Available Due to expected climate change and increased focus on forests as a potential carbon sink, it is of interest to map and monitor even marginal forests where trees exist close to their tolerance limits, such as small pioneer trees in the forest-tundra ecotone. Such small trees might indicate tree line migrations and expansion of the forests into treeless areas. Airborne laser scanning (ALS has been suggested and tested as a tool for this purpose and in the present study a novel procedure for identification and segmentation of small trees is proposed. The study was carried out in the Rollag municipality in southeastern Norway, where ALS data and field measurements of individual trees were acquired. The point density of the ALS data was eight points per m2, and the field tree heights ranged from 0.04 to 6.3 m, with a mean of 1.4 m. The proposed method is based on an allometric model relating field-measured tree height to crown diameter, and another model relating field-measured tree height to ALS-derived height. These models are calibrated with local field data. Using these simple models, every positive above-ground height derived from the ALS data can be related to a crown diameter, and by assuming a circular crown shape, this crown diameter can be extended to a crown segment. Applying this model to all ALS echoes with a positive above-ground height value yields an initial map of possible circular crown segments. The final crown segments were then derived by applying a set of simple rules to this initial “map” of segments. The resulting segments were validated by comparison with field-measured crown segments. Overall, 46% of the field-measured trees were successfully detected. The detection rate increased with tree size. For trees with height >3 m the detection rate was 80%. The relatively large detection errors were partly due to the inherent limitations in the ALS data; a substantial fraction of the smaller trees was hit by no or just a few

  11. Drought stress and tree size determine stem CO2 efflux in a tropical forest.

    Science.gov (United States)

    Rowland, Lucy; da Costa, Antonio C L; Oliveira, Alex A R; Oliveira, Rafael S; Bittencourt, Paulo L; Costa, Patricia B; Giles, Andre L; Sosa, Azul I; Coughlin, Ingrid; Godlee, John L; Vasconcelos, Steel S; Junior, João A S; Ferreira, Leandro V; Mencuccini, Maurizio; Meir, Patrick

    2018-06-01

    CO 2 efflux from stems (CO 2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO 2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO 2_stem in the droughted forest relative to a control forest. This was driven by increasing CO 2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO 2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO 2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO 2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO 2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO 2_stem fluxes, stand-scale future estimates of changes in stem CO 2 emissions remain highly uncertain. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  12. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    Science.gov (United States)

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  13. Labor and Population Program: The Dangers of Smoke Haze. Mortality in Malaysia from Indonesian Forest Fires

    National Research Council Canada - National Science Library

    2002-01-01

    .... All told, about 70 million people lived in areas affected by the smoke haze. An important research and policy concern is whether the smoke haze caused by the forest fires had significant health or mortality...

  14. Transfer of fallout radionuclides by Fukushima NPP accident from tree crown to forest ecosystem

    Science.gov (United States)

    Onda, Y.; Kato, H.; Wakahara, T.; Kawamori, A.; Tsujimura, M.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring prefectures due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami on 11 March 2011. The total deposition of radioactive materials in fallout samples for 137Cs ranged from 0.02to >10 M Bq/m2 for Cs-137. Experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. Approximate Cs-137 fallout in this area is 200-600k Bq/m2. We established 3 forest sites: broad leaf tree forest and two Japanese cedar forest plantation (young and mature). In each site we installed towers of 8-12 meters. Using these towers, we sampled tree leaves, and measure Cs-137 and Cs-134 in the laboratory, and also we have measure Cs-137, Cs-134 content at various height in each forest using a portable High Purity Germanium (HPGe) detector (Ortech; Detective-EX). We also measured the throughfall, stem flow and litter fall inside of the forest. In each site, we establish the 20 m x 20 m plot to monitor the changes of fallout radionuclides through time with the portable HPGe detector. The monitoring is now ongoing but we found significant amount of Cs-134 and Cs-137 has been trapped by cedar forest plantations especially young trees, but not so much in broad leaf trees. The trapped Cs-137 and Cs-134 is then washed by rainfall and found into throughfall. Therefore, in forest ecosystems, the fallout has been still ongoing, and and effective remediation method in forested area (especially cedar plantation) can be removing the trees.

  15. Uniform standards for genome databases in forest and fruit trees

    Science.gov (United States)

    TreeGenes and tfGDR serve the international forestry and fruit tree genomics research communities, respectively. These databases hold similar sequence data and provide resources for the submission and recovery of this information in order to enable comparative genomics research. Large-scale genotype...

  16. Detection of dead standing Eucalyptus camaldulensis without tree delineation for managing biodiversity in native Australian forest

    Science.gov (United States)

    Miltiadou, Milto; Campbell, Neil D. F.; Gonzalez Aracil, Susana; Brown, Tony; Grant, Michael G.

    2018-05-01

    In Australia, many birds and arboreal animals use hollows for shelters, but studies predict shortage of hollows in near future. Aged dead trees are more likely to contain hollows and therefore automated detection of them plays a substantial role in preserving biodiversity and consequently maintaining a resilient ecosystem. For this purpose full-waveform LiDAR data were acquired from a native Eucalypt forest in Southern Australia. The structure of the forest significantly varies in terms of tree density, age and height. Additionally, Eucalyptus camaldulensis have multiple trunk splits making tree delineation very challenging. For that reason, this paper investigates automated detection of dead standing Eucalyptus camaldulensis without tree delineation. It also presents the new feature of the open source software DASOS, which extracts features for 3D object detection in voxelised FW LiDAR. A random forest classifier, a weighted-distance KNN algorithm and a seed growth algorithm are used to create a 2D probabilistic field and to then predict potential positions of dead trees. It is shown that tree health assessment is possible without tree delineation but since it is a new research directions there are many improvements to be made.

  17. New flux based dose–response relationships for ozone for European forest tree species

    International Nuclear Information System (INIS)

    Büker, P.; Feng, Z.; Uddling, J.; Briolat, A.; Alonso, R.; Braun, S.; Elvira, S.; Gerosa, G.; Karlsson, P.E.; Le Thiec, D.

    2015-01-01

    To derive O 3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O 3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O 3 flux concept and represents a step forward in predicting O 3 damage to forests in a spatially and temporally varying climate. - Highlights: • We present new ozone flux based dose–response relationships for European trees. • The model-based study accounted for the soil water effect on stomatal flux. • Different statistically derived ozone flux thresholds were applied. • Climate region specific parameterisation often outperformed simplified parameterisation. • Findings could help redefining critical levels for ozone effects on trees. - New stomatal flux based ozone dose–response relationships for tree species are derived for the regional risk assessment of ozone effects on European forest ecosystems.

  18. Human Influences on Tree Diversity and Composition of a Coastal Forest Ecosystem: The Case of Ngumburuni Forest Reserve, Rufiji, Tanzania

    Directory of Open Access Journals (Sweden)

    J. Kimaro

    2013-01-01

    Full Text Available This paper reports on the findings of an ecological survey conducted in Ngumburuni Forest Reserve, a biodiversity rich forest reserve within the coastal forests of Tanzania. The main goal of this study was to determine the influence of uncontrolled anthropogenic activities on tree species diversity and composition within the forest ecosystem. It was revealed that economic activities including logging, charcoaling, and shifting cultivation were the most important disturbing activities affecting ecological functioning and biodiversity integrity of the forest. Further to this, we noted that the values of species diversity, composition, and regeneration potential within the undisturbed forest areas were significantly different from those in heavily disturbed areas. These observations confirm that the ongoing human activities have already caused size quality degradation of useful plants, enhanced species diversification impacts to the forest ecosystem, and possibly negatively affected the livelihoods of the adjacent local communities. Despite these disturbances, Ngumburuni forest reserve still holds important proportions of both endemic and threatened animal and plant species. The study suggests urgent implementation of several conservation measures in order to limit accessibility to the forest resources so as to safeguard the richness and abundance of useful biodiversity stocks in the reserve.

  19. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    Science.gov (United States)

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf

  20. [Wood transformation in dead-standing trees in the forest-tundra of Central Siberia].

    Science.gov (United States)

    Mukhortova, L V; Kirdianov, A V; Myglan, V S; Guggenberger, G

    2009-01-01

    Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

  1. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest.

    Science.gov (United States)

    Barbeta, Adrià; Ogaya, Romà; Peñuelas, Josep

    2013-10-01

    Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we

  2. Protecting the forests while allowing removal of damaged trees may imperil saproxylic insect biodiversity in the Hyrcanian Beech Forests of Iran

    Science.gov (United States)

    Müller Jörg; Thorn Simon; Baier Roland; Sagheb-Talebi Khosro; Barimani Hassan V.; Seibold Sebastian; Michael D. Ulyshen; Gossner Martin M.

    2015-01-01

    The 1.8 million ha of forest south of the Caspian Sea represent a remarkably intact ecosystem with numerous old-growth features and unique species assemblages. To protect these forests, Iranian authorities recently passed a law which protects healthy trees but permits the removal of injured, dying and dead trees. To quantify the biodiversity effects of this strategy,...

  3. Upper canopy pollinators of Eucryphia cordifolia Cav., a tree of South American temperate rain forest

    Directory of Open Access Journals (Sweden)

    Cecilia Smith-Ramírez

    2016-05-01

    Full Text Available Ecological processes in the upper canopy of temperate forests have been seldom studied because of the limited accessibility. Here, we present the results of the first survey of the pollinator assemblage and the frequency of insect visits to flowers in the upper branches of ulmo, Eucryphia cordifolia Cav., an emergent 30-40 m-tall tree in rainforests of Chiloé Island, Chile. We compared these findings with a survey of flower visitors restricted to lower branches of E. cordifolia 1- in the forest understory, 2- in lower branches in an agroforestry area. We found 10 species of pollinators in canopy, and eight, 12 and 15 species in understory, depending of tree locations. The main pollinators of E. cordifolia in the upper canopy differed significantly from the pollinator assemblage recorded in lower tree branches. We conclude that the pollinator assemblages of the temperate forest canopy and interior are still unknown.

  4. Contributions of a global network of tree diversity experiments to sustainable forest plantations.

    Science.gov (United States)

    Verheyen, Kris; Vanhellemont, Margot; Auge, Harald; Baeten, Lander; Baraloto, Christopher; Barsoum, Nadia; Bilodeau-Gauthier, Simon; Bruelheide, Helge; Castagneyrol, Bastien; Godbold, Douglas; Haase, Josephine; Hector, Andy; Jactel, Hervé; Koricheva, Julia; Loreau, Michel; Mereu, Simone; Messier, Christian; Muys, Bart; Nolet, Philippe; Paquette, Alain; Parker, John; Perring, Mike; Ponette, Quentin; Potvin, Catherine; Reich, Peter; Smith, Andy; Weih, Martin; Scherer-Lorenzen, Michael

    2016-02-01

    The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.

  5. Forest stand dynamics and sudden oak death: Mortality in mixed-evergreen forests dominated by coast live oak

    Science.gov (United States)

    L.B. Brown; B. Allen-Diaz

    2009-01-01

    Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plant–pathogen interaction on forest structure and composition. Coast live...

  6. Phytomass carbon pool of trees and forests in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2011-01-01

    The study reports estimates of above ground phytomass carbon pools in Indian forests for 1992 and 2002 using two different methodologies. The first estimate was derived from remote sensing based forest area and crown density estimates, and growing stock data for 1992 and 2002 and the estimated pool

  7. Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

    Science.gov (United States)

    Holste, Ellen K; Holl, Karen D; Zahawi, Rakan A; Kobe, Richard K

    2016-10-01

    Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species ( Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis ) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora , accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.

  8. LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....

  9. Modeling forest mortality caused by drought stress: implications for climate change

    Science.gov (United States)

    Eric J Gustafson; Brian R. Sturtevant

    2013-01-01

    Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for...

  10. A Tale of Two Forests: Simulating Contrasting Lodgepole Pine and Spruce Forest Water and Carbon Fluxes Following Mortality from Bark Beetles

    Science.gov (United States)

    Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Pendall, E.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Borkhuu, B.

    2014-12-01

    In recent decades, bark beetle infestation in western North America has reached epidemic levels. The resulting widespread forest mortality may have profound effects on present and future water and carbon cycling with potential negative consequences to a region that relies on water from montane and subalpine watersheds. We simulated stand-level ecosystem fluxes of water and carbon at two bark beetle-attacked conifer forests in southeast Wyoming, USA. The lower elevation site dominated by lodgepole pine (Pinus contorta) was attacked by mountain pine beetle (Dendroctonus ponderosae) during 2008-2010. The high elevation Engelmann spruce (Picea engelmannii) dominated site was attacked by the spruce beetle (Dendroctonus rufipennis) during roughly the same time period. Both beetle infestations resulted in >60% canopy mortality in the footprint of eddy covariance towers located at each site. However, carbon and water fluxes responses to mortality depended on the forest type. Using data collected at the sites, we scaled simulated plant hydraulic conductivity by either percent canopy mortality or loss of live tree basal area during infestation. We also simulated a case of no beetle attack. At the lodgepole site, the no-beetle model best fit the data and showed no significant change in growing season carbon flux and a 15% decrease in evapotranspiration (ET). However, at the spruce site, the simulation that tracked canopy loss agreed best with observations: carbon flux decreased by 72% and ET decreased by 31%. In the lodgepole stand, simulated soil water content agreed with spatially distributed measurements that were weighted to reflect overall mortality in the tower footprint. Although these two forest ecosystems are only 20 km apart, separated by less than 300m in elevation, and have been impacted by similar mortality agents, the associated changes in carbon and water cycling are significantly different. Beetle effects on hydrologic cycling were greatest at high elevation

  11. Response of Boreal forest tree canopy cover to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1994-01-01

    A section of the Canadian Boreal forest was irradiated chronically by a point source of 137 Cs from 1973 to 1986. Tree canopy cover was measured at permanently marked locations during the pre-irradiation, irradiation and post-irradiation phases, spanning a period of two decades. The tree canopy was severely affected at dose rates greater than 10 mGy/h delivered chronically. The canopy of sensitive coniferous tree species, such as Abies balsamea and Picea Mariana, decreased at dose rates greater than 2 mGy/h, but in some cases the tree canopy was replaced by more resistant species, such as Populus tremuloides and Salix bebbiana. Effects on canopy cover could not be detected at dose rates less than 0.1 mGy/h. Even at dose rates of 5 mGy/h, the forest canopy is recovering six years after irradiation stopped. (author)

  12. TREES AND REGENERATION IN RUBBER AGROFORESTS AND OTHER FOREST-DERIVED VEGETATION IN JAMBI (SUMATRA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Hesti L. Tata

    2008-06-01

    Full Text Available The rubber  agroforests  (RAF  of Indonesia provide  a dynamic interface  between natural  processes  of forest  regeneration and  human’s management   targeting  the harvesting  of latex  with  minimum investment  of time  and financial  resources.  The composition  and species richness  of higher  plants  across an intensification gradient from forest to monocultures of tree crops have been investigated  in six land use types (viz. secondary forest, RAF, rubber monoculture, oil palm plantation, cassava field and Imperata grassland  in Bungo,  Jambi  Province,  Indonesia.  We emphasize  comparison of four different  strata  (understory, seedling,  sapling  and tree of vegetation  between forest and RAF,  with  specific interest  in plant  dependence  on ectomycorrhiza fungi. Species richness  and species accumulation curves for seedling  and sapling  stages were similar  between forest and RAF,  but in the tree stratum  (trees > 10 cm dbh selective thinning by farmers was evident in a reduction  of species diversity and an increase in the proportion of trees with edible parts. Very few trees dependent on ectomycorrhiza fungi were encountered  in the RAF. However, the relative distribution of early and late successional species as evident from the wood density distribution showed no difference between RAF and forest.

  13. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    Science.gov (United States)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to

  14. Effects of nurse trees, spacing, and tree species on biomass production in mixed forest plantations

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Meilby, Henrik

    2016-01-01

    Growing concern about increasing concentrations of greenhouse gases in the atmosphere, and resulting global climate change, has spurred a growing demand for renewable energy. In this study, we hypothesized that a nurse tree crop may provide additional early yields of biomass for fuel, while...... was in most cases reduced due to competition. However, provided timely thinning of nurse trees, the qualitative development of the trees will allow for long-term timber production....

  15. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change

    OpenAIRE

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C.

    2014-01-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species p...

  16. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees.

    Science.gov (United States)

    Gaylord, Monica L; Kolb, Thomas E; McDowell, Nate G

    2015-08-01

    Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine (Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood δ(13)C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Timber tree regeneration along abandoned logging roads in a tropical Bolivian forest

    DEFF Research Database (Denmark)

    Nabe-Nielsen, J.; Severiche, W.; Fredericksen, T.

    2007-01-01

    Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north-eastern Boli......Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north......-eastern Bolivia. Some species benefited from increased light intensities on abandoned logging roads. Others benefited from low densities of competing vegetation on roads with compacted soils. This was the case for the small-seeded species Ficus boliviana C.C. Berg and Terminalia oblonga (Ruiz & Pav.) Steud. Some...

  18. Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina).

    Science.gov (United States)

    Tálamo, Andrés; Barchuk, Alicia H; Garibaldi, Lucas A; Trucco, Carlos E; Cardozo, Silvana; Mohr, Federico

    2015-07-01

    Successful persistence of dry forests depends on tree regeneration, which depends on a balance of complex biotic interactions. In particular, the relative importance and interactive effects of shrubs and herbivores on tree regeneration are unclear. In a manipulative study, we investigated if thornless shrubs have a direct net effect, an indirect positive effect mediated by livestock, and/or an indirect negative effect mediated by small vertebrates on tree regeneration of two key species of Chaco forest (Argentina). In a spatial association study, we also explored the existence of net positive interactions from thorny and thornless shrubs. The number of Schinopsis lorentzii seedlings was highest under artificial shade with native herbivores and livestock excluded. Even excluding livestock, no seedlings were found with natural conditions (native herbivores present with natural shade or direct sunlight) at the end of the experiment. Surprisingly, seedling recruitment was not enhanced under thornless shrubs, because there was a complementary positive effect of shade and interference. Moreover, thornless shrubs had neither positive nor negative effects on regeneration of S. lorentzii. Regeneration of Aspidosperma quebracho-blanco was minimal in all treatments. In agreement with the experiment, spatial distributions of saplings of both tree species were independent of thornless shrubs, but positively associated with thorny shrubs. Our results suggest that in general thornless shrubs may have a negligible effect and thorny shrubs a net positive effect on tree regeneration in dry forests. These findings provide a conceptual framework for testing the impact of biotic interactions on seedling recruitment in other dry forests.

  19. Tsunami damping by mangrove forest: a laboratory study using parameterized trees

    Directory of Open Access Journals (Sweden)

    A. Strusińska-Correia

    2013-02-01

    Full Text Available Tsunami attenuation by coastal vegetation was examined under laboratory conditions for mature mangroves Rhizophora sp. The developed novel tree parameterization concept, accounting for both bio-mechanical and structural tree properties, allowed to substitute the complex tree structure by a simplified tree model of identical hydraulic resistance. The most representative parameterized mangrove model was selected among the tested models with different frontal area and root density, based on hydraulic test results. The selected parameterized tree models were arranged in a forest model of different width and further tested systematically under varying incident tsunami conditions (solitary waves and tsunami bores. The damping performance of the forest models under these two flow regimes was compared in terms of wave height and force envelopes, wave transmission coefficient as well as drag and inertia coefficients. Unlike the previous studies, the results indicate a significant contribution of the foreshore topography to solitary wave energy reduction through wave breaking in comparison to that attributed to the forest itself. A similar rate of tsunami transmission (ca. 20% was achieved for both flow conditions (solitary waves and tsunami bores and the widest forest (75 m in prototype investigated. Drag coefficient CD attributed to the solitary waves tends to be constant (CD = 1.5 over the investigated range of the Reynolds number.

  20. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests.

    Science.gov (United States)

    Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate

    2017-07-01

    Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a

  1. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    Science.gov (United States)

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody

  2. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  3. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains.

    Science.gov (United States)

    Fyllas, Nikolaos M; Christopoulou, Anastasia; Galanidis, Alexandros; Michelaki, Chrysanthi Z; Dimitrakopoulos, Panayiotis G; Fulé, Peter Z; Arianoutsou, Margarita

    2017-11-15

    In this study we analysed a novel tree-growth dataset, inferred from annual ring-width measurements, of 7 forest tree species from 12 mountain regions in Greece, in order to identify tree growth - climate relationships. The tree species of interest were: Abies cephalonica, Abies borisii-regis, Picea abies, Pinus nigra, Pinus sylvestris, Fagus sylvatica and Quercus frainetto growing across a gradient of climate conditions with mean annual temperature ranging from 5.7 to 12.6°C and total annual precipitation from 500 to 950mm. In total, 344 tree cores (one per tree) were analysed across a network of 20 study sites. We found that water availability during the summer period (May-August) was a strong predictor of interannual variation in tree growth for all study species. Across species and sites, annual tree growth was positively related to summer season precipitation (P SP ). The responsiveness of annual growth to P SP was tightly related to species and site specific measurements of instantaneous photosynthetic water use efficiency (WUE), suggesting that the growth of species with efficient water use is more responsive to variations in precipitation during the dry months of the year. Our findings support the importance of water availability for the growth of mountainous Mediterranean tree species and highlight that future reductions in precipitation are likely to lead to reduced tree-growth under climate change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  5. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  6. Foliage biomass qualitative indices of selected forest forming tree species in Ukrainian Steppe

    Directory of Open Access Journals (Sweden)

    Sytnyk Svitlana

    2017-06-01

    Full Text Available Our study objective was research on the assimilation component of aboveground biomass of trees and its correlation with mensurational indices of trees (age, diameter and height in stands of the main forest forming species in the Ukrainian Northern Steppe zone - Pinus sylvestris L. (Scots pine and Robinia pseudoacacia L. (Black locust. The research was carried out in forest stands subordinated to the State Agency of Forest Resources of Ukraine. We used experimental data collected on sample plots established during years 2014-2016. The main research results prove that the foliage share in the tree greenery biomass structure had a wide range of values. For both investigated species, a positive correlation was found between the dry matter content in the tree foliage and the tree age, height and diameter. The foliage share in tree greenery biomass decreased with increasing mensurational index values. Correlation analysis revealed linear relationships between the mensurational indices and the discussed aboveground live biomass parameters. The closest correlation was observed between the stand age, mean stand diameter, mean stand height and dry matter content in the foliage.

  7. Tree species composition and structure in an old bottomland hardwood forest in south-central Arkansas

    Science.gov (United States)

    Brian Roy Lockhart; James M. Guldin; Thomas Foti

    2010-01-01

    Tree species composition and structure was determined for an old bottomland hardwood forest located in the Moro Creek Bottoms Natural Area in south-central Arkansas. Diversity for this forest was high with species richness ranging from 33 for the overstory and sapling strata to 26 for the seedling stratum and Shannon-Weiner values of 2.54 to 1.02 for the overstory and...

  8. Feasibility of high-density climate reconstruction based on Forest Inventory and Analysis (FIA) collected tree-ring data

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; John D. Shaw

    2013-01-01

    This study introduces a novel tree-ring dataset, with unparalleled spatial density, for use as a climate proxy. Ancillary Douglas fir and pinyon pine tree-ring data collected by the U.S. Forest Service Forest Inventory and Analysis Program (FIA data) were subjected to a series of tests to determine their feasibility as climate proxies. First, temporal coherence between...

  9. How fast will trees die? A transition matrix model of ash decline in forest stands infested by emerald ash borer

    Science.gov (United States)

    Kathleen S. Knight; Robert P. Long; Joanne Rebbeck; Annemarie Smith; Kamal Gandhi; Daniel A. Herms

    2008-01-01

    We recorded Fraxinus spp. tree health and other forest stand characteristics for 68 plots in 21 EAB-infested forest stands in Michigan and Ohio in 2005 and 2007. Fraxinus spp. were a dominant component of these stands, with more than 900 ash trees (including Fraxinus americana, Fraxinus pennsylvanica, Fraxinus profunda...

  10. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2014-01-01

    Biodiversity conveys numerous functional benefits to forested ecosystems, including community stability and resilience. In the context of managing forests for climate change mitigation/adaptation, maximizing and/or maintaining aboveground biomass will require understanding the interactions between tree biodiversity, site productivity, and the stocking of live trees....

  11. Project CAPTURE: using forest inventory and analysis data to prioritize tree species for conservation, management, and restoration

    Science.gov (United States)

    Kevin M. Potter; Barbara S. Crane; William W. Hargrove

    2015-01-01

    A variety of threats, most importantly climate change and insect and disease infestation, will increase the likelihood that forest tree species could experience population-level extirpation or species-level extinction during the next century. Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation) is a cooperative effort...

  12. Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests

    Science.gov (United States)

    Tyson L. Swetnam; Donald A. Falk; Ann M. Lynch; Stephen R. Yool

    2014-01-01

    Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter or height, are a well-understood property of natural,...

  13. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine.

    Science.gov (United States)

    Progar, R A; Blackford, D C; Cluck, D R; Costello, S; Dunning, L B; Eager, T; Jorgensen, C L; Munson, A S; Steed, B; Rinella, M J

    2013-02-01

    Mountain pine beetle, Dendroctonus ponderosae