Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.
2018-03-01
Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.
Energy Technology Data Exchange (ETDEWEB)
Bo, Sit [Forest Resource Div., Forest Department (Myanmar)
1993-10-01
Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships
International Nuclear Information System (INIS)
Sit Bo
1993-01-01
Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships
Mark Nelson; Greg Liknes; Charles H. Perry
2009-01-01
Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...
Barry T. Wilson; Joseph F. Knight; Ronald E. McRoberts
2018-01-01
Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several...
Golinkoff, Jordan Seth
The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest's condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling.
Texas, 2008 forest inventory and analysis factsheet
James Bentley
2011-01-01
This science update summarizes the findings of the first statewide annual inventory conducted by the Southern Forest Inventory and Analysis (FIA) Program in cooperation with the Texas Forest Service of the forest resource attributes in Texas. The 254 counties of Texas are consolidated into seven FIA survey unitsâsoutheast (unit 1), the northeast (unit 2), the north...
Texas, 2010 forest inventory and analysis factsheet
James W. Bentley
2012-01-01
This science update summarizes the findings of the statewide annual inventory conducted by the Southern Forest Inventory and Analysis (FIA) Program in cooperation with the Texas Forest Service of the forest resource attributes in Texas. The 254 counties of Texas are consolidated into seven FIA survey units â southeast (unit 1), northeast (unit 2), north central (unit 3...
Forest inventory with terrestrial LiDAR
Bauwens, Sébastien; Bartholomeus, Harm; Calders, Kim; Lejeune, Philippe
2016-01-01
The application of static terrestrial laser scanning (TLS) in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS) would reduce this occlusion. In this
Directory of Open Access Journals (Sweden)
Xiaowei Yu
2015-11-01
Full Text Available It is anticipated that many of the future forest mapping applications will be based on three-dimensional (3D point clouds. A comparison study was conducted to verify the explanatory power and information contents of several 3D remote sensing data sources on the retrieval of above ground biomass (AGB, stem volume (VOL, basal area (G, basal-area weighted mean diameter (Dg and Lorey’s mean height (Hg at the plot level, utilizing the following data: synthetic aperture radar (SAR Interferometry, SAR radargrammetry, satellite-imagery having stereo viewing capability, airborne laser scanning (ALS with various densities (0.8–6 pulses/m2 and aerial stereo imagery. Laser scanning is generally known as the primary source providing a 3D point cloud. However, photogrammetric, radargrammetric and interferometric techniques can be used to produce 3D point clouds from space- and air-borne stereo images. Such an image-based point cloud could be utilized in a similar manner as ALS providing that accurate digital terrain model is available. In this study, the performance of these data sources for providing point cloud data was evaluated with 91 sample plots that were established in Evo, southern Finland within a boreal forest zone and surveyed in 2014 for this comparison. The prediction models were built using random forests technique with features derived from each data sources as independent variables and field measurements of forest attributes as response variable. The relative root mean square errors (RMSEs varied in the ranges of 4.6% (0.97 m–13.4% (2.83 m for Hg, 11.7% (3.0 cm–20.6% (5.3 cm for Dg, 14.8% (4.0 m2/ha–25.8% (6.9 m2/ha for G, 15.9% (43.0 m3/ha–31.2% (84.2 m3/ha for VOL and 14.3% (19.2 Mg/ha–27.5% (37.0 Mg/ha for AGB, respectively, depending on the data used. Results indicate that ALS data achieved the most accurate estimates for all forest inventory attributes. For image-based 3D data, high-altitude aerial images and WorldView-2
East Texas, 2012—Forest Inventory and Analysis Factsheet
Thomas J. Brandeis; Jason A. Cooper; James W. Bentley
2014-01-01
This science update summarizes the findings of the statewide annual inventory of the forest resource attributes in Texas conducted by the Southern Forest Inventory and Analysis (FIA) Program in cooperation with the Texas A&M Forest Service. The 254 counties of Texas are consolidated into seven FIA survey unitsâsoutheast (unit 1), northeast (unit 2), north central (...
East Texas, 2011 forest inventory and analysis factsheet
Jason A. Cooper; James W. Bentley
2012-01-01
This science update summarizes the findings of the annual inventory conducted by the Southern Forest Inventory and Analysis (FIA) Program in cooperation with the Texas Forest Service of the forest resource attributes in east Texas. The 254 counties of Texas are consolidated into 7 FIA survey unitsâsoutheast (unit 1), northeast (unit 2), north central (unit 3), south (...
Wisconsin's fourth forest inventory, 1983.
John S. Jr. Spencer; W. Brad Smith; Jerold T. Hahn; Gerhard K. Raile
1988-01-01
The fourth inventory of the timber resource of Wisconsin shows that growing-stock volume increased from 11.2 to 15.5 billion cubic feet between 1968 and 1983, and area of timberland increased from 14.5 to 14.8 million acres. Presented are analysis and statistics on forest area and timber volume, growth, mortality, removals, and projections.
Harmonizing national forest inventories
Ronald E. McRoberts; Erkki O. Tomppo; Klemens Schadauer; Göran. Ståhl
2012-01-01
International agreements increasingly require that countries report estimates of national forest resources. The United Nations Framework Convention on Climate Change requires that countries submit annual reports of greenhouse gas emissions and removals by sources and sinks. The Convention on Biological Diversity requires that countries identify and monitor components...
Estimating forest conversion rates with annual forest inventory data
Paul C. Van Deusen; Francis A. Roesch
2009-01-01
The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...
Standards for large-scale forest inventories. A comparative study for Italy
Directory of Open Access Journals (Sweden)
2004-01-01
Full Text Available A comparison has been made between methodologies for forest inventories in Italy, considering aspects as design, sampling units, attributes, forest definitions, statistical methods, estimation models, information quality. Main differences concern the definition of forest categories and the emphasis given to forest attributes like biodiversity, carbon stock, recreational value, geological instability, forest health, which are all increasingly considered in last generation forest inventories.
Conducting tests for statistically significant differences using forest inventory data
James A. Westfall; Scott A. Pugh; John W. Coulston
2013-01-01
Many forest inventory and monitoring programs are based on a sample of ground plots from which estimates of forest resources are derived. In addition to evaluating metrics such as number of trees or amount of cubic wood volume, it is often desirable to make comparisons between resource attributes. To properly conduct statistical tests for differences, it is imperative...
Forest inventory: role in accountability for sustainable forest management
Lloyd C. Irland
2007-01-01
Forest inventory can play several roles in accountability for sustainable forest management. A first dimension is accountability for national performance. The new field of Criteria and Indicators is an expression of this need. A more familiar role for the U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program is for assessment and...
Minnesota DNR Forest Stand Inventory Version 2
Minnesota Department of Natural Resources — This layer is a digital inventory of individual forest stands. The data is collected by DNR Foresters in each DNR Forestry Administrative Area, and is updated on a...
Biomass and carbon attributes of downed woody materials in forests of the United States
C.W. Woodall; B.F. Walters; S.N. Oswalt; G.M. Domke; C. Toney; A.N. Gray
2013-01-01
Due to burgeoning interest in the biomass/carbon attributes of forest downed and dead woody materials (DWMs) attributable to its fundamental role in the carbon cycle, stand structure/diversity, bioenergy resources, and fuel loadings, the U.S. Department of Agriculture has conducted a nationwide field-based inventory of DWM. Using the national DWM inventory, attributes...
Annual Forest Inventory: An Industry Perspective
Roger Lord
2000-01-01
The Forest Inventory and Analysis Program serves important public interests by providing credible data for informed public forest policy debates as well as feedback to the forest-based economic market. This feedback, which affects timber price expectations, helps ensure resource sustainability by promoting better investment decision making within the forest products...
Design considerations for tropical forest inventories
Directory of Open Access Journals (Sweden)
Ronald Edward McRoberts
2013-06-01
Full Text Available Forests contribute substantially to maintaining the global greenhouse gas balance, primarily because among the five economic sectors identified by the United Nations Framework Convention on Climate Change, only the forestry sector has the potential to remove greenhouse gas emissions from the atmosphere. In this context, development of national forest carbon accounting systems, particularly in countries with tropical forests, has emerged as an international priority. Because these systems are often developed as components of or in parallel with national forest inventories, a brief review of statistical issues related to the development of forest ground sampling designs is provided. This overview addresses not only the primary issues of plot configurations and sampling designs, but also to a lesser extent the emerging roles of remote sensing and uncertainty assessment. Basic inventory principles are illustrated for two case studies, the national forest inventory of Brazil with special emphasis on the state of Santa Catarina, and an inventory for Tanzania.
Trestima – Digital Photographs for Forest Inventory
Directory of Open Access Journals (Sweden)
T. Rouvinen
2014-10-01
Full Text Available Higher efficiency of forest survey is a corner stone of forest inventory and forest planning. Mobile technologies create a unique opportunity to solve the problem as well as measurement accuracy improvement, higher data objectiveness and independent control of the results. Trestima technology bases on extraction of forest attributes such as basal area, tree stem diameter, tree height and species distribution from photographs captured by a mobile phone. Image processing is performed automatically in a cloud service using machine vision, which is aided by a human operator when necessary. That allows automating all further calculations. Functions of electronic compass and geopositioning implemented on modern smart-phones allows registering the direction as well as sufficiently accurate geographic coordinates, which enables unambiguously association of a measurement and its location. The service produces reports about timber stock, basal area, average diameter, average height, number of tree trunks and diameter distribution. The report prepared for each tree stand includes standard error, as well as confidence interval for the measurements results and the assessment, with a 95 % probability level. Using thecross-section area, the average diameter and average height, the timber stock and the number of stems in the specific area may be calculated. The report generated by Trestima can be easily supplemented by a derived parameters, as well as any of the applicable formulas can be easily modified or altered in accordance with the needs, for example, dependingon the particularforest inventory area. One of the key features of the Trestima technology is the fact that each measurement contains geographic coordinates’ data. It means that, the location of eachmeasurementcan be displayedon the map, and the route, and the area cover under consideration can be analyzed.
Mark D. Nelson; John Vissage
2007-01-01
The Forest Inventory and Analysis (FIA) program produces area estimates of forest land use within three subcategories: timberland, reserved forest land, and other forest land. Mapping these subcategories of forest land requires the ability to spatially distinguish productive from unproductive land, and reserved from nonreserved land. FIA field data were spatially...
Fuel load modeling from mensuration attributes in temperate forests in northern Mexico
Maricela Morales-Soto; Marín Pompa-Garcia
2013-01-01
The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...
The new Brazilian national forest inventory
Joberto V. de Freitas; Yeda M. M. de Oliveira; Doadi A. Brena; Guilherme L.A. Gomide; Jose Arimatea Silva; < i> et al< /i>
2009-01-01
The new Brazilian national forest inventory (NFI) is being planned to be carried out through five components: (1) general coordination, led by the Brazilian Forest Service; (2) vegetation mapping, which will serve as the basis for sample plot location; (3) field data collection; (4) landscape data collection of 10 x 10-km sample plots, based on high-resolution...
The use of remote sensing for updating extensive forest inventories
John F. Kelly
1990-01-01
The Forest Inventory and Analysis unit of the USDA Forest Service Southern Forest Experiment Station (SO-FIA) has the research task of devising an inventory updating system that can be used to provide reliable estimates of forest area, volume, growth, and removals at the State level. These updated inventories must be accomplished within current budgetary restraints....
Assessment of ASTER data for forest inventory in Canary Islands
Alonso-Benito, Alfonso; Arbelo, Manuel; Hernandez-Leal, Pedro A.; González-Calvo, Alejandro; Labrador Garcia, Mauricio
To understand and evaluate the forest structural attributes, forest inventories are conducted, which are costly and lengthy in time. Since the last 10-15 years there has been examining the possibility of using remote sensing data, to save costs and cheapen the process. One of the aims of SATELMAC, a project PCT-MAC 2007-2013 co-financing with FEDER funds, is to automate the forest inventory in Canary Islands using satellite images. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to estimate forest structure of the endemic vegetal specie, Pinus canariensis, located on the island of Tenerife (Spain). The forest structural attributes analyzed have been volume, basal area, stem per hectare and tree height. ASTER is an imaging instrument flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System. ASTER data were used because it have relatively high spatial resolution in the three visible and near-infrared bands (15 m) and in the six spectral bands (30 m) in the shortwave-IR region. To identify the vegetation index that is most suitable to use, about specific forest structural attributes in our study area, we assess the ability of different spectral indices: Normalized Difference Vegetation Index, Transformed Soil Adjusted Vegetation Index, Modified Soil adjusted Vegetation Index, Perpendicular Vegetation Index and Reduced Simple Ratio. The information provided by the ASTER data has been supplemented by the Third National Forest Inventory (III NFI) and field data. The results are analyzed statistically in order to see the degree of correlation (R2) and the mean square error (RMSE) of the values studied.
Christopher W. Woodall; Linda S. Heath; Grant M. Domke; Michael C. Nichols
2011-01-01
The U.S. Forest Service, Forest Inventory and Analysis (FIA) program uses numerous models and associated coefficients to estimate aboveground volume, biomass, and carbon for live and standing dead trees for most tree species in forests of the United States. The tree attribute models are coupled with FIA's national inventory of sampled trees to produce estimates of...
Huei-Jin Wang; Stephen Prisley; Philip Radtke; John Coulston
2012-01-01
Forest modeling applications that cover large geographic area can benefit from the use of widely-held knowledge about relationships between forest attributes and topographic variables. A noteworthy example involved the coupling of field survey data from the Forest Inventory Analysis (FIA) program of USDA Forest Service with digital elevation model (DEM) data in...
Canada's forest biomass resources: deriving estimates from Canada's forest inventory
International Nuclear Information System (INIS)
Penner, M.; Power, K.; Muhairwe, C.; Tellier, R.; Wang, Y.
1997-01-01
A biomass inventory for Canada was undertaken to address the data needs of carbon budget modelers, specifically to provide estimates of above-ground tree components and of non-merchantable trees in Canadian forests. The objective was to produce a national method for converting volume estimates to biomass that was standardized, repeatable across the country, efficient and well documented. Different conversion methods were used for low productivity forests (productivity class 1) and higher productivity forests (productivity class 2). The conversion factors were computed by constructing hypothetical stands for each site, age, species and province combination, and estimating the merchantable volume and all the above-ground biomass components from suitable published equations. This report documents the procedures for deriving the national biomass inventory, and provides illustrative examples of the results. 46 refs., 9 tabs., 5 figs
[Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].
Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang
2014-08-01
Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.
Bridging the gap between strategic and management forest inventories
Ronald E. McRoberts
2009-01-01
Strategic forest inventory programs collect information for a large number of variables on a relatively sparse array of field plots. Data from these inventories are used to produce estimates for large areas such as states and provinces, regions, or countries. The purpose of management forest inventories is to guide management decisions for small areas such as stands....
Projecting national forest inventories for the 2000 RPA timber assessment.
John R. Mills; Xiaoping. Zhou
2003-01-01
National forest inventories were projected in a study that was part of the 2000 USDA Forest Service Resource Planning Act (RPA) timber assessment. This paper includes an overview of the status and structure of timber inventory of the National Forest System and presents 50-year projections under several scenarios. To examine a range of possible outcomes, results are...
Woodall, Christopher W; Rondeux, Jacques; Verkerk, Pieter J; Ståhl, Göran
2009-10-01
Efforts to assess forest ecosystem carbon stocks, biodiversity, and fire hazards have spurred the need for comprehensive assessments of forest ecosystem dead wood (DW) components around the world. Currently, information regarding the prevalence, status, and methods of DW inventories occurring in the world's forested landscapes is scattered. The goal of this study is to describe the status, DW components measured, sample methods employed, and DW component thresholds used by national forest inventories that currently inventory DW around the world. Study results indicate that most countries do not inventory forest DW. Globally, we estimate that about 13% of countries inventory DW using a diversity of sample methods and DW component definitions. A common feature among DW inventories was that most countries had only just begun DW inventories and employ very low sample intensities. There are major hurdles to harmonizing national forest inventories of DW: differences in population definitions, lack of clarity on sample protocols/estimation procedures, and sparse availability of inventory data/reports. Increasing database/estimation flexibility, developing common dimensional thresholds of DW components, publishing inventory procedures/protocols, releasing inventory data/reports to international peer review, and increasing communication (e.g., workshops) among countries inventorying DW are suggestions forwarded by this study to increase DW inventory harmonization.
Forest inventory-based estimation of carbon stocks and flux in California forests in 1990.
Jeremy S. Fried; Xiaoping. Zhou
2008-01-01
Estimates of forest carbon stores and flux for California circa 1990 were modeled from forest inventory data in support of Californiaâs legislatively mandated greenhouse gas inventory. Reliable estimates of live-tree carbon stores and flux on timberlands outside of national forest could be calculated from periodic inventory data collected in the 1980s and 1990s;...
Japanese national forest inventory and its spatial extension by remote sensing
Yasumasa Hirata; Mitsuo Matsumoto; Toshiro Iehara
2009-01-01
Japan has two independent forest inventory systems. One forest inventory is required by the forest planning system based on the Forest Law, in which forest registers and forest planning maps are prepared. The other system is a forest resource monitoring survey, in which systematic sampling is done at 4-km grid intervals. Here, we present these national forest inventory...
Small-area estimation of forest attributes within fire boundaries
T. Frescino; G. Moisen; K. Adachi; J. Breidt
2014-01-01
Wildfires are gaining more attention every year as they burn more frequently, more intensely, and across larger landscapes. Generating timely estimates of forest resources within fire perimeters is important for land managers to quickly determine the impact of fi res on U.S. forests. The U.S. Forest Serviceâs Forest Inventory and Analysis (FIA) program needs tools to...
An Approach for Forest Inventory in Canada's Northern Boreal region, Northwest Territories
Mahoney, C.; Hopkinson, C.; Hall, R.; Filiatrault, M.
2017-12-01
The northern extent of Canada's northern boreal forest is largely inaccessible resulting in logistical, financial, and human challenges with respect to obtaining concise and accurate forest resource inventory (FRI) attributes such as stand height, aboveground biomass and forest carbon stocks. This challenge is further exacerbated by mandated government resource management and reporting of key attributes with respect to assessing impacts of natural disturbances, monitoring wildlife habitat and establishing policies to mitigate effects of climate change. This study presents a framework methodology utilized to inventory canopy height and crown closure over a 420,000 km2 area in Canada's Northwest Territories (NWT) by integrating field, LiDAR and satellite remote sensing data. Attributes are propagated from available field to coincident airborne LiDAR thru to satellite laser altimetry footprints. A quality controlled form of the latter are then submitted to a k-nearest neighbor (kNN) imputation algorithm to produce a continuous map of each attribute on a 30 m grid. The resultant kNN stand height (r=0.62, p=0.00) and crown closure (r=0.64, p=0.00) products were identified as statistically similar to a comprehensive independent airborne LiDAR source. Regional uncertainty can be produced with each attribute to identify areas of potential improvement through future strategic data acquisitions or the fine tuning of model parameters. This study's framework concept was developed to inform Natural Resources Canada - Canadian Forest Service's Multisource Vegetation Inventory and update vast regions of Canada's northern forest inventories, however, its applicability can be generalized to any environment. Not only can such a framework approach incorporate other data sources (such as Synthetic Aperture Radar) to potentially better characterize forest attributes, but it can also utilize future Earth observation mission data (for example ICESat-2) to monitor forest dynamics and the
Invasive plants found in east Texas forests, 2009 forest inventory and analysis factsheet
Sonja N. Oswalt; Christopher M. Oswalt
2011-01-01
This science update provides information on the presence and cover of nonnative invasive plants found in forests of the eastern region of the State of Texas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) Program at the Southern Research Station of the U.S. Department of Agriculture Forest Service in cooperation with the Texas Forest...
Monitoring nontimber forest products using forest inventory data: an example with slippery elm bark
Jobriath S. Kauffman; Stephen P. Prisley; James L. Chamberlain
2015-01-01
The USDA Forest Service Forest Inventory and Analysi (FIA) program collects data on a wealth of variables related to trees in forests. Some of these trees produce nontimber forest products (NTFPs) (e.g., fruit, bark and sap) that are harvested for culinary, decorative, building, and medicinal purposes. At least 11 tree species inventoried by FIA are valued for their...
The soil indicator of forest health in the Forest Inventory and Analysis Program
Michael C. Amacher; Charles H. Perry
2010-01-01
Montreal Process Criteria and Indicators (MPCI) were established to monitor forest conditions and trends to promote sustainable forest management. The Soil Indicator of forest health was developed and implemented within the USFS Forest Inventory and Analysis (FIA) program to assess condition and trends in forest soil quality in U.S. forests regardless of ownership. The...
International Nuclear Information System (INIS)
McKechnie, Jon; Colombo, Steve; MacLean, Heather L.
2014-01-01
Highlights: • Forest carbon accounting influences the national GHG inventory impacts of bioenergy. • Current accounting rules may overlook forest carbon trade-offs of bioenergy. • Wood pellet trade risks creating an emissions burden for exporting countries. - Abstract: While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but
Stated Preference Methods for Valuation of Forest Attributes
Thomas P. Holmes; Kevin J. Boyle
2003-01-01
The valuation methods described in this chapter are based on the idea that forest ecosystems produce a wide variety of goods and services that are valued by people. Rather than focusing attention on the holistic value of forest ecosystems as is done in contingent valuation studies, attribute-based valuation methods (ABMs) focus attention on a set of attributes that...
Access to forest inventory data: towards transparency in public administration?
Directory of Open Access Journals (Sweden)
Borghetti M
2007-01-01
Full Text Available Transparency in public administration is an important issue in a modern democracy. Thus, we are glad to know the National Forest Service of Italy (Corpo Forestale dello Stato will make soon available on the web the forest inventory data collected in the ongoing National Inventory of Forests and Carbon stocks. We expect all public administrations “storing” important environmental data sets follow this way.
Testing for change in structural elements of forest inventories
Melinda Vokoun; David Wear; Robert Abt
2009-01-01
In this article we develop a methodology to test for changes in the underlying relationships between measures of forest productivity (structural elements) and site characteristics, herein referred to as structural changes, using standard forest inventories. Changes in measures of forest growing stock volume and number of trees for both...
Modeled forest inventory data suggest climate benefits from fuels management
Jeremy S. Fried; Theresa B. Jain; Jonathan. Sandquist
2013-01-01
As part of a recent synthesis addressing fuel management in dry, mixed-conifer forests we analyzed more than 5,000 Forest Inventory and Analysis (FIA) plots, a probability sample that represents 33 million acres of these forests throughout Washington, Oregon, Idaho, Montana, Utah, and extreme northern California. We relied on the BioSum analysis framework that...
Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery
Bonnie Ruefenacht; Mark D. Nelson; Mark Finco
2009-01-01
Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...
Christopher W. Woodall; Jacques Rondeux; Pieter J. Verkerk; G& #246; ran St& #229; hl
2009-01-01
Efforts to assess forest ecosystem carbon stocks, biodiversity, and fire hazards have spurred the need for comprehensive assessments of forest ecosystem dead wood (DW) components around the world. Currently, information regarding the prevalence, status, and methods of DW inventories occurring in the world's forested landscapes is scattered. The goal of this study...
Sharon M. Stanton; Glenn A. Christensen
2016-01-01
These proceedings report invited presentations and contributions to the 2015 Forest Inventory and Analysis (FIA) Symposium, which was hosted by the Research and Development branch of the U.S. Forest Service. As the only comprehensive and continuous census of the forests in the United States, FIA provides strategic information needed to evaluate sustainability of...
Mark D. Nelson; W. Keith Moser
2007-01-01
The USDA Forest Service's Forest Inventory and Analysis (FIA) program conducts strategic inventories of our Nation's forest resources. There is increasing need to assess effects of forest disturbance from catastrophic events, often within geographic extents not typically addressed by strategic forest inventories. One such event occurred within the Boundary...
Michael T. Thompson
2017-01-01
The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...
Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.
2018-01-01
Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.
Alabama, 2012 - forest inventory and analysis factsheet
Andrew J. Hartsell
2013-01-01
These early surveys were not concerned with the forests, species, and tree sizes that were not considered commercially viable. Early surveys reported only on growing-stock trees on timberlands, i.e. commercially important tree species and tree sizes on forests that could sustain harvest operations. Currently, FIA reports on all of the forest lands regardless of site...
Wisconsin's forest statistics, 1987: an inventory update.
W. Brad Smith; Jerold T. Hahn
1989-01-01
The Wisconsin 1987 inventory update, derived by using tree growth models, reports 14.7 million acres of timberland, a decline of less than 1% since 1983. This bulletin presents findings from the inventory update in tables detailing timberland area, volume, and biomass.
Minnesota's forest statistics, 1987: an inventory update.
Jerold T. Hahn; W. Brad Smith
1987-01-01
The Minnesota 1987 inventory update, derived by using tree growth models, reports 13.5 million acres of timberland, a decline of less than 1% since 1977. This bulletin presents findings from the inventory update in tables detailing timer land area, volume, and biomass.
DEFF Research Database (Denmark)
Nord-Larsen, Thomas; Schumacher, Johannes
2012-01-01
Airborne laser scanning may provide a means for assessing local forest biomass resources. In this study, national forest inventory (NFI) data was used as reference data for modeling forest basal area, volume, aboveground biomass, and total biomass from laser scanning data obtained in a countrywid...
Analyzing Forest Inventory Data from Geo-Located Photographs
Toivanen, Timo; Tergujeff, Renne; Andersson, Kaj; Molinier, Matthieu; Häme, Tuomas
2015-04-01
Forests are widely monitored using a variety of remote sensing data and techniques. Remote sensing offers benefits compared to traditional in-situ forest inventories made by experts. One of the main benefits is that the number of ground reference plots can be significantly reduced. Remote sensing of forests can provide reduced costs and time requirement compared to full forest inventories. The availability of ground reference data has been a bottleneck in remote sensing analysis over wide forested areas, as the acquisition of this data is an expensive and slow process. In this paper we present a tool for estimating forest inventory data from geo-located photographs. The tool can be used to estimate in-situ forest inventory data including estimated biomass, tree species, tree height and diameter. The collected in-situ forest measurements can be utilized as a ground reference material for spaceborne or airborne remote sensing data analysis. The GPS based location information with measured forest data makes it possible to introduce measurements easily as in-situ reference data. The central projection geometry of digital photographs allows the use of the relascope principle [1] to measure the basal area of stems per area unit, a variable very closely associated with tree biomass. Relascope is applied all over the world for forest inventory. Experiments with independent ground reference data have shown that in-situ data analysed from photographs can be utilised as reference data for satellite image analysis. The concept was validated by comparing mobile measurements with 54 independent ground reference plots from the Hyytiälä forest research station in Finland [2]. Citizen scientists could provide the manpower for analysing photographs from forests on a global level and support researchers working on tasks related to forests. This low-cost solution can also increase the coverage of forest management plans, particularly in regions where possibilities to invest on
Jeremy W. Lichstein; Jonathan Dushoff; Kiona Ogle; Anping Chen; Drew W. Purves; John P. Caspersen; Stephen W. Pacala
2010-01-01
Geographically extensive forest inventories, such as the USDA Forest Service's Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and mortality records that could be used to develop broad-scale models of forest dynamics. A limitation of inventory data, however, is that individual-level measurements of light (L) and other...
Estimating down dead wood from FIA forest inventory variables in Maine
David C. Chojnacky; Linda S. Heath
2002-01-01
Down deadwood (DDW) is a carbon component important in the function and structure of forest ecosystems, but estimating DDW is problematic because these data are not widely available in forest inventory databases. However, DDW data were collected on USDA Forest Service Forest Inventory and Analysis (FIA) plots during Maine's 1995 inventory. This study examines ways...
Hans-Erik Andersen; Chad Babcock; Robert Pattison; Bruce Cook; Doug Morton; Andrew. Finley
2015-01-01
Interior Alaska (approx. 112 million forested acres in size) is the last remaining forested area within the United States where the Forest Inventory and Analysis (FIA) program is not currently implemented. A joint NASA-FIA inventory pilot project was carried out in 2014 to increase familiarity with interior Alaska logistics and evaluate the utility of state-of-the-art...
Change in avian abundance predicted from regional forest inventory data
Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R.; Uihlein, William B.; Fitzgerald, Jane A.
2010-01-01
An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will
Automatic crown cover mapping to improve forest inventory
Claude Vidal; Jean-Guy Boureau; Nicolas Robert; Nicolas Py; Josiane Zerubia; Xavier Descombes; Guillaume Perrin
2009-01-01
To automatically analyze near infrared aerial photographs, the French National Institute for Research in Computer Science and Control developed together with the French National Forest Inventory (NFI) a method for automatic crown cover mapping. This method uses a Reverse Jump Monte Carlo Markov Chain algorithm to locate the crowns and describe those using ellipses or...
Estimating tree species richness from forest inventory plot data
Ronald E. McRoberts; Dacia M. Meneguzzo
2007-01-01
Montreal Process Criterion 1, Conservation of Biological Diversity, expresses species diversity in terms of number of forest dependent species. Species richness, defined as the total number of species present, is a common metric for analyzing species diversity. A crucial difficulty in estimating species richness from sample data obtained from sources such as inventory...
Forest inventory in the digital remote sensing age | | Southern ...
African Journals Online (AJOL)
Applications of sampling theory together with the technical developments in the field of remote sensing have opened new paths in forest inventory. This paper presents an overview of ongoing research in the field of automatic feature extraction and pattern recognition, which may provide options towards a fully automated ...
Christopher M. Oswalt; Andrew J. Hartsell
2012-01-01
The Cumberland Plateau and Mountains (CPM) are a significant component of the eastern deciduous forest with biological and cultural resources strongly connected to and dependent upon the forest resources of the region. As a result, continuous inventory and monitoring is critical. The USDA Forest Service Forest Inventory and Analysis (FIA) program has been collecting...
Alabama, 2010 forest inventory and analysis factsheet
Andrew J. Hartsell
2011-01-01
FIA was initially established to monitor the Nationâs timber supply and the amount of commercially available resources. These early surveys were not concerned with the forests, species, and tree sizes that were not considered commercially viable. Early FIA reported only on growing-stock trees on timberlands, i.e., commercially important tree species and sizes on...
Inventory of rodent damage to forests
Czech Academy of Sciences Publication Activity Database
Kamler, Jiří; Turek, K.; Homolka, Miloslav; Baňař, P.; Barančeková, Miroslava; Heroldová, Marta; Krojerová, Jarmila; Suchomel, J.; Purchart, L.
2011-01-01
Roč. 57, č. 5 (2011), s. 219-225 ISSN 1212-4834 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : bank vole * field vole * bark damage * forest protection Subject RIV: GK - Forestry http://www.agriculturejournals.cz/publicFiles/40074.pdf
Designing Wood Supply Scenarios from Forest Inventories with Stratified Predictions
Directory of Open Access Journals (Sweden)
Philipp Kilham
2018-02-01
Full Text Available Forest growth and wood supply projections are increasingly used to estimate the future availability of woody biomass and the correlated effects on forests and climate. This research parameterizes an inventory-based business-as-usual wood supply scenario, with a focus on southwest Germany and the period 2002–2012 with a stratified prediction. First, the Classification and Regression Trees algorithm groups the inventory plots into strata with corresponding harvest probabilities. Second, Random Forest algorithms generate individual harvest probabilities for the plots of each stratum. Third, the plots with the highest individual probabilities are selected as harvested until the harvest probability of the stratum is fulfilled. Fourth, the harvested volume of these plots is predicted with a linear regression model trained on harvested plots only. To illustrate the pros and cons of this method, it is compared to a direct harvested volume prediction with linear regression, and a combination of logistic regression and linear regression. Direct harvested volume regression predicts comparable volume figures, but generates these volumes in a way that differs from business-as-usual. The logistic model achieves higher overall classification accuracies, but results in underestimations or overestimations of harvest shares for several subsets of the data. The stratified prediction method balances this shortcoming, and can be of general use for forest growth and timber supply projections from large-scale forest inventories.
The Spanish National Forest Inventory: history, development, challenges and perspectives
Directory of Open Access Journals (Sweden)
Iciar Alberdi
2017-09-01
Full Text Available It is important to have a statistically robust forest information data base which can be updated and can provide long-term information. National Forest Inventories (NFI provide one of the best large-scale sources of information, and therefore are a cornerstone of forest policies. The scopes of NFIs, which are the primary source of data for national and large-area assessments, has been broadened to include new variables to meet increasing information requirements. This paper describes the history, methodology and guidance of Spanish NFI and international requirements. The current objectives are determined by analysing future perspectives and possible direction of future assessments. These objectives include harmonization of NFI, open data source and to broaden the number of field variables monitored (multi-objective inventory in order to effectively fulfil information requirements.
The Finnish multisource national forest inventory: small-area estimation and map production
Erkki Tomppo
2009-01-01
A driving force motivating development of the multisource national forest inventory (MS-NFI) in connection with the Finnish national forest inventory (NFI) was the desire to obtain forest resource information for smaller areas than is possible using field data only without significantly increasing the cost of the inventory. A basic requirement for the method was that...
Dumitru Salajanu; Dennis Jacobs
2010-01-01
Forest inventory and analysis data are used to monitor the presence and extent of certain non-native invasive species. Effective control of its spread requires quality spatial distribution information. There is no clear consensus why some ecosystems are more favorable to non-native species. The objective of this study is to evaluate the reelative contribution of geo-...
National forest inventory contributions to forest biodiversity monitoring
DEFF Research Database (Denmark)
Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne
2012-01-01
. The primary international processes dealing with biodiversity and sustainable forest management, the Convention on Biological Diversity (CBD), Forest Europe, Streamlining European Biodiversity Indicators 2010 of the European Environmental Agency, and the Montréal Process, all include indicators related...... (ground vegetation and regeneration) NFIs should invest more in harmonization efforts. On the basis of these key findings, we recommend that NFIs should represent a main component of a future global biodiversity monitoring network as urgently requested by the CBD....
Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. Thompson III; David R. Larsen; Jacob S. Fraser; Jian. Yang
2013-01-01
Two challenges confronting forest landscape models (FLMs) are how to simulate fine, standscale processes while making large-scale (i.e., .107 ha) simulation possible, and how to take advantage of extensive forest inventory data such as U.S. Forest Inventory and Analysis (FIA) data to initialize and constrain model parameters. We present the LANDIS PRO model that...
Olga N. Krankina; Mark E. Harmon; Warren B. Cohen; Doug R. Oetter; Olga Zyrina; Maureen V. Duane
2004-01-01
Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in...
Ronald E. McRoberts; William A. Bechtold; Paul L. Patterson; Charles T. Scott; Gregory A. Reams
2005-01-01
The Forest Inventory and Analysis (FIA) program of the USDA Forest Service has initiated a transition from regional, periodic inventories to an enhanced national FIA program featuring annual measurement of a proportion of plots in each state, greater national consistency, and integration with the ground sampling component of the Forest Health Monitoring (FHM) program...
John D. Shaw
2008-01-01
(Please note, this is an abstract only) Widespread mortality in several forest types is associated with several years of drought in the Southwest. Implementation of USDA Forest Service Forest Inventory and Analysis (FIA) annual inventory in several states coincided with the onset of elevated mortality rates. Analysis of data collected 2000-2004 reveals the status and...
Nitrous oxide emission inventory of German forest soils
Schulte-Bisping, Hubert; Brumme, Rainer; Priesack, Eckart
2003-02-01
Annual fluxes of N2O trace gas emissions were assessed after stratifying German forest soils into Seasonal Emission Pattern (SEP) and Background Emission Pattern (BEP). Broad-leaved forests with soil pH(KCl) ≤ 3.3 were assigned to have SEP, broad-leaved forests with soil pH(KCl) > 3.3 and all needle-leaved forests to have BEP. BEPs were estimated by a relationship between annual N2O emissions and carbon content of the O-horizon. SEPs were primarily controlled by temperature and moisture and simulated by the model Expert-N after calibration to a 9-year record of N2O measurements. Analysis with different climate and soil properties indicated that the model reacts highly sensitive to changes in soil temperature, soil moisture, and soil texture. A geographic information system (ARC/INFO) was used for a spatial resolution of 1 km × 1 km grid where land cover, dominant soil units, and hygro climate classes were combined. The mean annual N2O emission flux from German forest soils was estimated as 0.32 kg ha-1 yr-1. Broad-leaved forests with SEP had the highest emissions (2.05 kg ha-1 yr-1) followed by mixed forests (0.38 kg ha-1 yr-1), broad-leaved forests (0.37 kg ha-1 yr-1), and needle-leaved forests with BEP (0.17 kg ha-1 yr-1). The annual N2O emission from German forest soils was calculated as 3.26 Gg N2O-N yr-1. Although needle-leaved trees cover about 57% of the entire forest area in Germany, their contribution is low (0.96 Gg N2O-N yr-1). Broad-leaved forests cover about 22% of the forest area but have 55% higher emissions (1.49 Gg N2O-N yr-1) than needle-leaved. Mixed forests cover 21% of the area and contribute 0.81 Gg N2O-N yr-1. Compared to the total N2O emissions in Germany of 170 Gg N yr-1, forest soils contribute only 1.9%. However, there are some uncertainties in this emission inventory, which are intensely discussed.
Spatial variability and Cesium-137 inventories in native forest
International Nuclear Information System (INIS)
Andrello, A.C.; Appoloni, C.R.
2004-01-01
With the nuclear fission discovery and development of nuclear weapons in 1940s, artificial radioisotopes were introduced in the environment. This contamination is due to worldwide fallout by superficial nuclear tests realized from early 1950s to late 1970s by USA, former URSS, UK, France and China. One of theses radioisotopes that have been very studied is cesium-137. Cesium-137 has a half-life of 30.2 years and its biological behavior is similar to the potassium. The behavior in soil matrix, depth distribution, spatial variability and inventories values of cesium-137 has been determinate for several regions of the world. In Brazil, some research groups have worked on this subject, but there are few works published about theses properties of cesium-137. The aim of this paper was study the depth distribution, spatial variability, and inventory of cesium-137 in native forest. Two native forests (Mata 1 and Mata UEL) were sampling in region of Londrina, PR. The results shows that there is a spatial variability of 40% for Mata 1 and 42% for Mata UEL. The depth distribution of cesium-137 for two forests presented a exponential form, characteristic to undisturbed soil. Cesium-137 inventory determinate for Mata 1 was 358 Bq m -2 and for Mata UEL was 320 Bq m -2 . (author)
Bianca Eskelson; Temesgen Hailemariam; Tara Barrett
2009-01-01
The Forest Inventory and Analysis program (FIA) of the US Forest Service conducts a nationwide annual inventory. One panel (20% or 10% of all plots in the eastern and western United States, respectively) is measured each year. The precision of the estimates for any given year from one panel is low, and the moving average (MA), which is considered to be the default...
Comparative Factor Analyses of the Personal Attributes Questionnaire and the Bem Sex-Role Inventory.
Antill, John K.; Cunningham, John D.
1982-01-01
Compared the Personal Attributes Questionnaire (PAQ) and the Bem Sex Role Inventory (BSRI) as measures of androgyny. Results showed that femininty (Concern for Others) and masculinity (Dominance) accounted for most of the variance, but for PAQ, clusters of male- and female-valued items (i.e., Extroversion and Insecurity) formed subsidiary factors.…
A Factor Analysis of the Bem Sex Role Inventory and the Personal Attributes Questionnaire.
Choi, Namok; Jenkins, Stephen J.
This study investigated the dimensions of sex role orientation measured by the revised Bem Sex Role Inventory (BSRI; S. Bem, 1974) and the revised Personal Attributes Questionnaire (PAQ; J. Spence, R. Helmreich, and J. Strapp, 1975). Participants were 651 undergraduates in introductory psychology courses. The sample was approximately 50% male and…
The multi-objective Spanish National Forest Inventory
International Nuclear Information System (INIS)
Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.
2017-01-01
Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.
The multi-objective Spanish National Forest Inventory
Energy Technology Data Exchange (ETDEWEB)
Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.
2017-11-01
Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.
The multi-objective Spanish National Forest Inventory
Directory of Open Access Journals (Sweden)
Iciar Alberdi
2017-10-01
Full Text Available Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.
Dale D. Gormanson; Scott A. Pugh; Charles J. Barnett; Patrick D. Miles; Randall S. Morin; Paul A. Sowers; James A. Westfall
2018-01-01
The U.S. Forest Service Forest Inventory and Analysis (FIA) program collects sample plot data on all forest ownerships across the United States. FIAâs primary objective is to determine the extent, condition, volume, growth, and use of trees on the Nationâs forest land through a comprehensive inventory and analysis of the Nationâs forest resources. The FIA program...
True versus perturbed forest inventory plot locations for modeling: a simulation study
John W. Coulston; Kurt H. Riitters; Ronald E. McRoberts; William D. Smith
2006-01-01
USDA Forest Service Forest Inventory and Analysis plot information is widely used for timber inventories, forest health assessments, and environmental risk analyses. With few exceptions, true plot locations are not revealed; the plot coordinates are manipulated to obscure the location of field plots and thereby preserve plot integrity. The influence of perturbed plot...
Inventory of forest and rangeland and detection of forest stress
Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)
1973-01-01
The author has identified the following significant results. At the Atlanta site (226B) it was found that bulk color composites for October 15, 1972, and April 13, 1973, can be interpreted together to disclose the location of the perennial Kudzu vine (Pyeraria lobata). Land managers concerned with Kudzu eradication could use ERTS-1 to inventory locations over 200 meters (660 feet) square. Microdensitometer data collected on ERTS-1 Bulk photographic products for the Manitou test site (226C) have shown that the 15-step gray-scale tablets are not of systematic equal values corresponding to 1/14 the maximum radiant energy incident on the MSS sensor. The gray-scale values present a third-order polynomial function rather than a direct linear relationship. Although data collected on step tablets for precision photographic products appear more discrete, the density variation within blocks in almost as great as variations between blocks. These system errors will cause problems when attempting to analyze radiometric variances among vegetation and land use classes.
Data Assimilation in Forest Inventory: First Empirical Results
Directory of Open Access Journals (Sweden)
Mattias Nyström
2015-12-01
Full Text Available Data assimilation techniques were used to estimate forest stand data in 2011 by sequentially combining remote sensing based estimates of forest variables with predictions from growth models. Estimates of stand data, based on canopy height models obtained from image matching of digital aerial images at six different time-points between 2003 and 2011, served as input to the data assimilation. The assimilation routines were built on the extended Kalman filter. The study was conducted in hemi-boreal forest at the Remningstorp test site in southern Sweden (lat. 13°37′ N; long. 58°28′ E. The assimilation results were compared with two other methods used in practice for estimation of forest variables: the first was to use only the most recent estimate obtained from remotely sensed data (2011 and the second was to forecast the first estimate (2003 to the endpoint (2011. All three approaches were validated using nine 40 m radius validation plots, which were carefully measured in the field. The results showed that the data assimilation approach provided better results than the two alternative methods. Data assimilation of remote sensing time series has been used previously for calibrating forest ecosystem models, but, to our knowledge, this is the first study with real data where data assimilation has been used for estimating forest inventory data. The study constitutes a starting point for the development of a framework useful for sequentially utilizing all types of remote sensing data in order to provide precise and up-to-date estimates of forest stand parameters.
Considerations in Forest Growth Estimation Between Two Measurements of Mapped Forest Inventory Plots
Michael T. Thompson
2006-01-01
Several aspects of the enhanced Forest Inventory and Analysis (FIA) program?s national plot design complicate change estimation. The design incorporates up to three separate plot sizes (microplot, subplot, and macroplot) to sample trees of different sizes. Because multiple plot sizes are involved, change estimators designed for polyareal plot sampling, such as those...
Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China
Directory of Open Access Journals (Sweden)
Ling Du
2014-06-01
Full Text Available Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004–2008 and the spatially explicit MODIS Land Cover Type product (MCD12C1 were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05°, ~5600 m. Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha−1 during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.
Forest inventory with LiDAR and stereo DSM on Washington department of natural resources lands
Jacob L. Strunk; Peter J. Gould
2015-01-01
DNRâs forest inventory group has completed its first version of a new remote-sensing based forest inventory system covering 1.4 million acres of DNR forest lands. We use a combination of field plots, lidar, NAIP, and a NAIP-derived canopy surface DSM. Given that height drives many key inventory variables (e.g. height, volume, biomass, carbon), remote-sensing derived...
Determining an optimum inventory route for an areal object: the case of forest inventory in Finland
Directory of Open Access Journals (Sweden)
Henna Etula
2014-03-01
Full Text Available In recent decades, routing based on Geographic Information Systems (GIS has become a major branch of technology, which has been used especially in applications related to transport and logistics. However, in terms of the development of methods, routing in a cross-country environment is more difficult, and hence research into it has been relatively scarce. This is particularly true in the context of complex routing problems involving visits to several locations. A typical example of a problem of this kind is field inventory, which is a data collection procedure used in many application areas, particularly those related to environmental research and the management of natural resources. This study presents a problem in which an efficient inventory route is determined for an areal object, such that the area visible from the route meets a prescribed threshold, while maintaining the shortest possible route. Although this problem, referred to here as the Areal Inventory Problem (AIP, is closely related to a multitude of routing and location allocation methods known in the context of GIS, none of them is very well-suited for solving the AIP. This study describes a general solution procedure for the AIP, and introduces an implementation of a heuristic algorithm that can be used to solve a real-world AIP within a reasonable time frame. The proposed approach is demonstrated with actual data related to field inventory practices carried out by the Finnish Forest Centre.
Missouri's forest 1999-2003, part B
Andrew D. Hill; Mark H. Hansen; W. Keith Moser; Gary Brand; Ronald E. McRoberts
2011-01-01
This report presents the methods used in the 1999-2003 inventory of the forest resources of Missouri along with tables of important forest attribute estimates and discussion of quality of these estimates. This inventory is part of the Forest Inventory and Analysis (FIA) program conducted by U.S. Forest Service, a national program to continuously inventory and report on...
Energy Technology Data Exchange (ETDEWEB)
Calama, R.; Sanchez-Gonzalez, M.; Garchi, S.; Ammari, Y.; Canellas, I.; Tahar, S.
2012-11-01
The thuya (Tetraclinis articulata (Vahl.) Mast.) forests are one of the most important ecosystems in semiarid environments in north-western Africa, providing important economic profit and social services to local populations. However, lack of tools aiding sustainable management of these forests is detected. In the present work models for the main tree attributes as total height, crown diameter, height to crown base and stem form are developed for the species, using data from a net of plots installed in JbelLattrech region, in the NE Tunisia. Presented models allow characterizing the actual state and timber production of forests by using variables measured in typical forest inventories and conform a preliminary step for the future development of dynamic growth models. (Author) 18 refs.
Lawrence R. Gering; Dennis M. May; Kurt B. Teuber
1990-01-01
The Forest Inventory and Analysis unit of the Southern Forest Experiment Station is charged with conducting continuous inventories of the forest resources of the Midsouth.Techniques that offer innovative approaches for improving the efficiency of these inventories are in demand.One new approach for estimating the density of forest stands involves the derivation of a...
Energy Technology Data Exchange (ETDEWEB)
Nourian, N.; Shataee-Joibary, S.; Mohammadi, J.
2016-07-01
Aim of the study: The objective of the study was the comparative assessment of various spatial resolutions of optical satellite imagery including Landsat-TM, ASTER, and Quickbird data to estimate the forest structure attributes of Hyrcanian forests, Golestan province, northernIran. Material and methods: The 112 square plots with area of0.09 ha were measured using a random cluster sampling method and then stand volume, basal area, and tree stem density were computed using measured data. After geometric and atmospheric corrections of images, the spectral attributes from original and different synthetic bands were extracted for modelling. The statistical modelling was performed using CART algorithm. Performance assessment of models was examined using the unused validation plots by RMSE and bias measures. Main Results: The results showed that model of Quickbird data for stand volume, basal area, and tree stem density had a better performance compared to ASTER and TM data. However, estimations by ASTER and TM imagery had slightly similar results for all three parameters. Research highlights: This study exposed that the high-resolution satellite data are more useful for forest structure attributes estimation in the Hyrcanian broadleaves forests compared with medium resolution images without consideration of images costs. However, regarding to be free of the most medium resolution data such as ASTER and TM,ETM+ or OLI images, these data can be used with slightly similar results. (Author)
Forest Inventory and Analysis in the United States: Remote sensing and geospatial activities
Mark Nelson; Gretchen Moisen; Mark Finco
2007-01-01
Our Nation's forests provide a wealth of ecological, social, and economic resources. These forest lands cover over 300 million hectares of the United States, or about one third of the total land area. Accurate and timely information about them is essential to their wise management and use. The mission of the Forest Service's Forest Inventory and Analysis (FIA...
David M. Bell; Andrew N. Gray
2015-01-01
Models of forest succession provide an appealing conceptual framework for understanding forest dynamics, but uncertainty in the degree to which patterns are regionally consistent might limit the application of successional theory in forest management. Remeasurements of forest inventory networks provide an opportunity to assess this consistency, improving our...
Tzeng Yih Lam; Raymond L. Czaplewski; Jong Su Yim; Kyeong Hak Lee; Sung Ho Kim; Rae Hyun Kim
2013-01-01
National Forest Inventories (NFIs) serve a primary purpose of providing crucial information for formulating national forest policy, environmental planning and reporting to international processes (Tomppo and others 2010). Pressure for timely and reliable forestry statistics urges countries to put a NFI in place or to consider alternative designs. Some countries, for...
Mapping Russian forest biomass with data from satellites and forest inventories
International Nuclear Information System (INIS)
Houghton, R A; Butman, D; Bunn, A G; Krankina, O N; Schlesinger, P; Stone, T A
2007-01-01
The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass
Mapping Russian forest biomass with data from satellites and forest inventories
Energy Technology Data Exchange (ETDEWEB)
Houghton, R A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Butman, D [Yale School of Forestry and Environmental Science, Yale University, New Haven, CT 06511 (United States); Bunn, A G [Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, WA 98225-9181 (United States); Krankina, O N [Department of Forest Science, Oregon State University, 202 Richardson Hall, Corvallis, OR 97331-5752 (United States); Schlesinger, P [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Stone, T A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)
2007-10-15
The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.
Directory of Open Access Journals (Sweden)
Tianyu Hu
2016-07-01
Full Text Available As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 ± 63.80 Mg/ha and South America (301.68 ± 67.43 Mg/ha had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 ± 94.75, 166.48 ± 84.97, and 132.97 ± 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R2 and root-mean-square error (RMSE between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional
The Use of Three-Dimensional Convolutional Neural Networks to Interpret LiDAR for Forest Inventory
Directory of Open Access Journals (Sweden)
Elias Ayrey
2018-04-01
Full Text Available As light detection and ranging (LiDAR technology becomes more available, it has become common to use these datasets to generate remotely sensed forest inventories across landscapes. Traditional methods for generating these inventories employ the use of height and proportion metrics to measure LiDAR returns and relate these back to field data using predictive models. Here, we employ a three-dimensional convolutional neural network (CNN, a deep learning technique that scans the LiDAR data and automatically generates useful features for predicting forest attributes. We test the accuracy in estimating forest attributes using the three-dimensional implementations of different CNN models commonly used in the field of image recognition. Using the best performing model architecture, we compared CNN performance to models developed using traditional height metrics. The results of this comparison show that CNNs produced 12% less prediction error when estimating biomass, 6% less in estimating tree count, and 2% less when estimating the percentage of needleleaf trees. We conclude that using CNNs can be a more accurate means of interpreting LiDAR data for forest inventories compared to standard approaches.
Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo
2005-01-01
Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...
Christoph Keinn; Goran Stahl
2009-01-01
Current research in forest inventory focuses very much on technical-statistical problems geared mainly to the optimization of data collection and information generation. The basic assumption is that better information leads to better decisions and, therefore, to better forest management and forest policy. Not many studies, however, strive to explicitly establish the...
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2008-01-01
We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867...
Development of biogenic VOC emission inventories for the boreal forest
Energy Technology Data Exchange (ETDEWEB)
Tarvainen, V.
2008-07-01
The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring
Vermont's Forest Resources, 2006
R.S. Morin; R. De Geus
2008-01-01
This publication provides an overview of forest resource attributes for Vermont based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports...
Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang
2014-01-01
With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...
Updating stand-level forest inventories using airborne laser scanning and Landsat time series data
Bolton, Douglas K.; White, Joanne C.; Wulder, Michael A.; Coops, Nicholas C.; Hermosilla, Txomin; Yuan, Xiaoping
2018-04-01
Vertical forest structure can be mapped over large areas by combining samples of airborne laser scanning (ALS) data with wall-to-wall spatial data, such as Landsat imagery. Here, we use samples of ALS data and Landsat time-series metrics to produce estimates of top height, basal area, and net stem volume for two timber supply areas near Kamloops, British Columbia, Canada, using an imputation approach. Both single-year and time series metrics were calculated from annual, gap-free Landsat reflectance composites representing 1984-2014. Metrics included long-term means of vegetation indices, as well as measures of the variance and slope of the indices through time. Terrain metrics, generated from a 30 m digital elevation model, were also included as predictors. We found that imputation models improved with the inclusion of Landsat time series metrics when compared to single-year Landsat metrics (relative RMSE decreased from 22.8% to 16.5% for top height, from 32.1% to 23.3% for basal area, and from 45.6% to 34.1% for net stem volume). Landsat metrics that characterized 30-years of stand history resulted in more accurate models (for all three structural attributes) than Landsat metrics that characterized only the most recent 10 or 20 years of stand history. To test model transferability, we compared imputed attributes against ALS-based estimates in nearby forest blocks (>150,000 ha) that were not included in model training or testing. Landsat-imputed attributes correlated strongly to ALS-based estimates in these blocks (R2 = 0.62 and relative RMSE = 13.1% for top height, R2 = 0.75 and relative RMSE = 17.8% for basal area, and R2 = 0.67 and relative RMSE = 26.5% for net stem volume), indicating model transferability. These findings suggest that in areas containing spatially-limited ALS data acquisitions, imputation models, and Landsat time series and terrain metrics can be effectively used to produce wall-to-wall estimates of key inventory attributes, providing an
The use and usefulness of inventory-based management planning to forest management
DEFF Research Database (Denmark)
Toft, Maja Nastasia Juul; Adeyeye, Yemi; Lund, Jens Friis
2015-01-01
-structured interviews, participatory rural appraisal exercises and analyses of aerial photographs. First, we find that the operational plans supposed to guide community-level management are based on sub-standard forest inventories, which limits their potential role in practical forest management. Second, we find...... of their forests in the sense that their impressions of past and current forest condition are mirrored in what we can observe from analysis of change in forest condition based on aerial photographs. Based on these results we question the usefulness of inventory-based management planning in the context of community...
Italian National Forest Inventory: methods, state of the project, and future developments
Giovanni Tabacchi; Flora De Natale; Antonio Floris; Caterina Gagliano; Patrizia Gasparini; Gianfranco Scrinzi; Vittorio Tosi
2007-01-01
A primary objective of the Italian National Forest Inventory (NFI) is to provide information required by the Kyoto Protocol and the Ministerial Conference on the Protection of Forests in Europe in relation to sustainable forest management practices. For this reason, the second Italian NFI was aimed at providing data in a way that is consistent with the international...
Tree migration detection through comparisons of historic and current forest inventories
Christopher W. Woodall; Christopher M. Oswalt; James A. Westfall; Charles H. Perry; Mark N. Nelson
2009-01-01
Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to modeling activities with little empirical analysis of long-term forest inventory datasets. The goal of this study was to compare historic and current spatial...
COLE: A Web-based Tool for Interfacing with Forest Inventory Data
Patrick Proctor; Linda S. Heath; Paul C. Van Deusen; Jeffery H. Gove; James E. Smith
2005-01-01
We are developing an online computer program to provide forest carbon related estimates for the conterminous United States (COLE). Version 1.0 of the program features carbon estimates based on data from the USDA Forest Service Eastwide Forest Inventory database. The program allows the user to designate an area of interest, and currently provides area, growing-stock...
A statistical power analysis of woody carbon flux from forest inventory data
James A. Westfall; Christopher W. Woodall; Mark A. Hatfield
2013-01-01
At a national scale, the carbon (C) balance of numerous forest ecosystem C pools can be monitored using a stock change approach based on national forest inventory data. Given the potential influence of disturbance events and/or climate change processes, the statistical detection of changes in forest C stocks is paramount to maintaining the net sequestration status of...
Raw data from the Italian National Forest Inventory are on-line and publicly available
Directory of Open Access Journals (Sweden)
Borghetti M
2016-12-01
Full Text Available Raw data from the Italian National Forest Inventory are on-line and publicly available. The National Forest Service in cooperation with the Forest Monitoring and Management Research Unit of the Council for Agricultural Research and Economics (CREA released the raw data from the National Inventory of Forests and forest Carbon pools - INFC2005 project, the second Italian national forest inventory. Data are available together with metadata information at http://www.inventarioforestale.org/. Users, after registration, can download data from 230.874 living tree stems, 16.472 dead tree stems, 31.083 stumps, from a total of 7.272 field plots (for 1.384 of them additional data on fine woody debris and soil carbon pools are also available.
North Carolina, 2007: Forest Inventory and Analysis factsheet
Mark Brown; Barry D. New
2011-01-01
Sixty-three of North Carolinaâs 100 counties were > 50 percent forested. Fifteen of these were > 75 percent forested (fig. 1). The majority of these most heavily forested counties were located in the more mountainous regions of the State, usually near or including national forest lands. The remaining two most heavily forested counties were in the lower Coastal...
International Nuclear Information System (INIS)
Sares, M.A.
1996-01-01
The U.S. Forest Service (USFS) and the Colorado Geological Survey (CGS) are continuing a cooperative agreement to identify sites of environmental degradation associated with abandoned and inactive mines on Colorado's USFS administered lands. The USFS Abandoned Mine Land Inventory Project is a open-quotes discoveryclose quotes process and is a precursor to the Environmental Protection Agency's open-quotes Preliminary Assessmentclose quotes process. Identification of environmentally degraded sites may lead to a formal Preliminary Assessment. The inventory process begins in the office and involves reviewing existing mining and geologic literature, previous mine inventory work, current and historical maps, water quality information, and aerial photographs. During field investigation, each mine feature is given a unique identification number. Field geologists collect data on the physical and geographic characteristics of the mine features along with information on any water emanating from or interacting with the mine features. This information is used to assign a qualitative environmental degradation rating to the individual mine feature. Guidelines for the rating system are given to field personnel to facilitate consistency within the data set. All data collected are entered into a computer database. From a computer perspective, both location and attribute data are being collected. Therefore, the data are well suited for integration into a geographic information system (GIS) creating a geo-referenced data set. The USFS Abandoned Mine Land Inventory Project began in 1991 and is ongoing. To date, field inventories of the Arapaho, Roosevelt, Pike, and Rio Grande National Forests have been completed. Work in the San Isabel, San Juan, White River, Gunnison, Uncompahgre, and Grand Mesa National Forests is in progress. Through the 1994 field season approximately 9,667 mine features (openings, dumps, tailings, highwalls, etc.) have been inventoried
Fitting diameter distribution models to data from forest inventories with concentric plot design
Directory of Open Access Journals (Sweden)
Nikos Nanos
2017-10-01
Research highlights:We designed a new method to fit the Weibull distribution to forest inventory data from concentric plots that achieves high accuracy and precision in parameter estimates regardless of the within-plot spatial tree pattern.
West Virginia's Forest Resources, 2006
Richard H. Widmann; Gregory W. Cook
2008-01-01
This publication provides an overview of forest resource attributes for this state based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory...
New Hampshire's Forest Resources, 2006
R.S. Morin; M. Tansey
2008-01-01
This publication provides an overview of forest resource attributes for New Hampshire based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory...
South Dakota's forest resources, 2012
Brian F. Walters
2013-01-01
This publication provides an overview of forest resource attributes for South Dakota based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, Northern Research Station. These estimates, along with Web-posted core tables, will be updated annually. For more information regarding past inventory reports for South...
South Dakota's forest resources, 2011
Brian F. Walters
2012-01-01
This publication provides an overview of forest resource attributes for South Dakota based on an annual inventory conducted by the Forest Inventory and Analysis program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports for South...
South Dakota's forest resources, 2009
Ronald J. Piva
2010-01-01
This publication provides an overview of forest resource attributes for South Dakota based on an annual inventory conducted by the Forest Inventory and Analysis program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports for South...
South Dakota's forest resources, 2010
Brian F. Walters; Ronald J. Piva
2011-01-01
This publication provides an overview of forest resource attributes for South Dakota based on an annual inventory conducted by the Forest Inventory and Analysis program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports for South...
South Dakota's Forest Resources, 2007
Ronald J. Piva; Andrew J. Lister; Douglas Haugan
2009-01-01
This publication provides an overview of forest resource attributes for South Dakota based on an annual inventory conducted by the Forest Inventory and Analysis program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports for South...
South Dakota's forest resources, 2008
Ronald J. Piva
2010-01-01
This publication provides an overview of forest resource attributes for South Dakota based on an annual inventory conducted by the Forest Inventory and Analysis program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports for South...
TRIM timber projections: an evaluation based on forest inventory measurements.
John R. Mills
1989-01-01
Two consecutive timberland inventories collected from permanent plots in the natural pine type in North Carolina were used to evaluate the timber resource inventory model (TRIM). This study compares model predictions with field measurements and examines the effect of inventory data aggregation on the accuracy of projections. Projections were repeated for two geographic...
The role of remote sensing in U.S. forest inventories: Past, present and future
G. Moisen; K. Brewer; R. Czaplewski; S. Healey; K. Megown; M. Finco
2014-01-01
In the current budget climate, the U.S. Forest Inventory and Analysis program is under increased pressure to do more with less. While reliance solely on field data under the current annual inventory system is a suitable solution when funding is adequate and stable, decreasing budgets and increasing need for timely information may necessitate solutions that can augment...
Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.
2015-12-01
Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.
Directory of Open Access Journals (Sweden)
2005-01-01
Full Text Available In 2000, after the international agreement on the Kyoto Protocol of the United Nations Framework Convention on Climate Change, the United Nation Food and Agriculture Organization decided to adopt a new set of basic forest and forest change definitions. The main change is that new definitions are no more related to land cover but to land use. The entry into force of the Kyoto Protocol requires now that national forest related data must be based on land use concept. Thus, national forest inventory shall be designed in order to collect data which are consistent with current land-use related definitions. In this paper the authors analyze the case of the Italian forest inventory.
Paul L. Patterson; Renee A. O' Brien
2011-01-01
The Interior West Forest Inventory and Analysis (IW-FIA) program of the USDA Forest Service collects field data on understory vegetation structure that have broad applications. In IW-FIA one aspect of quality assurance is assessed based on the repeatability of field measurements. The understory vegetation protocol consists of two suites of measurements; (1) the...
Using Forest Inventory and Analysis data to model plant-climate relationships
Nicholas L. Crookston; Gerald E. Rehfeldt; Marcus V. Warwell
2007-01-01
Forest Inventory and Analysis (FIA) data from 11 Western conterminous States were used to (1) estimate and map the climatic profiles of tree species and (2) explore how to include climate variables in individual tree growth equations used in the Forest Vegetation Simulator (FVS). On the first front, we found the FIA data to be useful as training data in Breiman's...
Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation
Ronald E. McRoberts; Greg C. Liknes; Grant M. Domke
2014-01-01
For most national forest inventories, the variables of primary interest to users are forest area and growing stock volume. The precision of estimates of parameters related to these variables can be increased using remotely sensed auxiliary variables, often in combination with stratified estimators. However, acquisition and processing of large amounts of remotely sensed...
Data bases for forest inventory in the North-Central Region.
Jerold T. Hahn; Mark H. Hansen
1985-01-01
Describes the data collected by the Forest Inventory and Analysis (FIA) Research Work Unit at the North Central Forest Experiment Station. Explains how interested parties may obtain information from the databases either through direct access or by special requests to the FIA database manager.
Southern forest inventory and analysis volume equation user’s guide
Christopher M. Oswalt; Roger C. Conner
2011-01-01
Reliable volume estimation procedures are fundamental to the mission of the Forest Inventory and Analysis (FIA) program. Moreover, public access to FIA program procedures is imperative. Here we present the volume estimation procedures used by the southern FIA program of the U.S. Department of Agriculture Forest Service Southern Research Station. The guide presented...
Cartographic standards to improve maps produced by the Forest Inventory and Analysis program
Charles H. (Hobie) Perry; Mark D. Nelson
2009-01-01
The Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis (FIA) program is incorporating an increasing number of cartographic products in reports, publications, and presentations. To create greater quality and consistency within the national FIA program, a Geospatial Standards team developed cartographic design standards for FIA map...
William H. McWilliams; Carol L. Alerich; William A. Bechtold; Mark Hansen; Christopher M. Oswalt; Mike Thompson; Jeff Turner
2012-01-01
The U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) program maintains the National Information Management System (NIMS) that provides the computational framework for the annual forest inventory of the United States. Questions regarding the impact of key elements of programming logic, processing criteria, and estimation procedures...
Matthew F. Winn; Philip A. Araman
2012-01-01
The USDA Forest Service Forest Inventory and Analysis (FIA) program collects crown foliage transparency estimates for individual trees on Phase 3 (P3) inventory plots. The FIA crown foliage estimate is obtained from a pair of perpendicular side views of the tree. Researchers with the USDA Forest Service Southern Research Station have developed a computer program that...
KaDonna Randolph
2017-01-01
The USDA Forest Service Forest Inventory and Analysis (FIA) program makes and keeps current an inventory of all forest land in the United States. To comply with privacy laws while at the same time offering its data to the public, FIA makes approximate plot locations available through a process known as perturbing ("fuzzing") and swapping. The free spatial...
Directory of Open Access Journals (Sweden)
Amir Eslam Bonyad
2015-06-01
Full Text Available In this study, we explored the utility of k Nearest Neighbor (kNN algorithm to integrate IRS-P6 LISS III satellite imagery data and ground inventory data for application in forest attributes (DBH, trees height, volume, basal area, density and forest cover type estimation and mapping. The ground inventory data was based on a systematic-random sampling grid and the numbers of sampling plots were 408 circular plots in a plantation in Guilan province, north of Iran. We concluded that kNN method was useful tool for mapping at a fine accuracy between 80% and 93.94%. Values of k between 5 and 8 seemed appropriate. The best distance metrics were found Euclidean, Fuzzy and Mahalanobis. Results showed that kNN was accurate enough for practical applicability for mapping forest areas.
Forest inventory and analysis program in the Western U.S.
Ashley. Lehman
2015-01-01
The Pacific Northwest (PNW) Research Stationâs Forest Inventory and Analysis (FIA) program of the USDA Forest Service monitors and reports on the status and trends of the Pacific Islandâs forest resources and ecosystem services. Since 2001 the FIA program has partnered with State and Private Forestryâs, Region 5 and the local governments in the U.S. Affiliated Western...
Directory of Open Access Journals (Sweden)
Mathias Neumann
2015-04-01
Full Text Available The mission of this study is to compare Net Primary Productivity (NPP estimates using (i forest inventory data and (ii spatio-temporally continuous MODIS (MODerate resolution Imaging Spectroradiometer remote sensing data for Austria. While forest inventories assess the change in forest growth based on repeated individual tree measurements (DBH, height etc., the MODIS NPP estimates are based on ecophysiological processes such as photosynthesis, respiration and carbon allocation. We obtained repeated national forest inventory data from Austria, calculated a “ground-based” NPP estimate and compared the results with “space-based” MODIS NPP estimates using different daily climate data. The MODIS NPP estimates using local Austrian climate data exhibited better compliance with the forest inventory driven NPP estimates than the MODIS NPP predictions using global climate data sets. Stand density plays a key role in addressing the differences between MODIS driven NPP estimates versus terrestrial driven inventory NPP estimates. After addressing stand density, both results are comparable across different scales. As forest management changes stand density, these findings suggest that management issues are important in understanding the observed discrepancies between MODIS and terrestrial NPP.
Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong
2012-12-30
Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.
Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning
Directory of Open Access Journals (Sweden)
Sébastien Bauwens
2016-06-01
Full Text Available The application of static terrestrial laser scanning (TLS in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS would reduce this occlusion. In this study, we assessed and compared a hand-held mobile laser scanner (HMLS with two TLS approaches (single scan: SS, and multi scan: MS for the estimation of several forest parameters in a wide range of forest types and structures. We found that SS is competitive to extract the ground surface of forest plots, while MS gives the best result to describe the upper part of the canopy. The whole cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm with the HMLS leading to the best results for DBH estimates (bias of −0.08 cm and RMSE of 1.11 cm, compared to no fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness and non-circular cross-section may explain the negative bias encountered for all of the scanning approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger scale and in a time-efficient manner.
Brett J. Butler; Charles J. Barnett; Susan J. Crocker; Grant M. Domke; Dale Gormanson; William N. Hill; Cassandra M. Kurtz; Tonya Lister; Christopher Martin; Patrick D. Miles; Randall Morin; W. Keith Moser; Mark D. Nelson; Barbara O' Connell; Bruce Payton; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall
2011-01-01
This report summarizes the results of the fifth forest inventory of the forests of Southern New England, defined as Connecticut, Massachusetts, and Rhode Island, conducted by the U.S. Forest Service, Forest Inventory and analysis program. Information on forest attributes, ownership, land use change, carbon, timber products, forest health, and statistics and quality...
Estimating forest attribute parameters for small areas using nearest neighbors techniques
Ronald E. McRoberts
2012-01-01
Nearest neighbors techniques have become extremely popular, particularly for use with forest inventory data. With these techniques, a population unit prediction is calculated as a linear combination of observations for a selected number of population units in a sample that are most similar, or nearest, in a space of ancillary variables to the population unit requiring...
F. Mauro; Vicente Monleon; H. Temesgen
2015-01-01
Small area estimation (SAE) techniques have been successfully applied in forest inventories to provide reliable estimates for domains where the sample size is small (i.e. small areas). Previous studies have explored the use of either Area Level or Unit Level Empirical Best Linear Unbiased Predictors (EBLUPs) in a univariate framework, modeling each variable of interest...
Connecticut's forest resources, 2010
Brett J. Butler; Cassandra Kurtz; Christopher Martin; W. Keith Moser
2011-01-01
This publication provides an overview of forest resource attributes for Connecticut based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...
Connecticut's forest resources, 2009
Brett J. Butler; Christopher Martin
2011-01-01
This publication provides an overview of forest resource attributes for Connecticut based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...
C.M. Oswalt
2015-01-01
This resource update provides an overview of forest resource attributes for the Commonwealth of Kentucky based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) Program at the Southern Research Station of the Forest Service, U.S. Department of Agriculture in cooperation with the Kentucky Department of Natural Resources Division of Forestry....
Pennsylvania's forest resources, 2012
G.L. McCaskill; W.H. McWilliams; C.J. Barnett
2013-01-01
This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...
Pennsylvania's forest resources, 2009
G.L. McCaskill; W.H. McWilliams; B.J. Butler; D.M. Meneguzzo; C.J. Barnett; M.H. Hansen
2011-01-01
This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...
Pennsylvania's forest resources, 2011
G.L. McCaskill; W.H. McWilliams; C.J. Barnett
2012-01-01
This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...
Pennsylvania's forest resources, 2008
G.L. McCaskill; W.H. McWilliams; B.J. Butler; D.M. Meneguzzo; C.J. Barnett; M.H. Hansen
2011-01-01
This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...
Pennsylvania's forest resources, 2010
G.L. McCaskill; W.H. McWilliams; C.J. Barnett
2011-01-01
This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of...
Pennsylvania's forest resources, 2007
G.L. McCaskill; W.H. McWilliams; B.J. Butler; D.M. Meneguzzo; C.J. Barnett; M.H. Hansen
2011-01-01
This publication provides an overview of forest resource attributes for Pennsylvania based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 6 of...
Dacia M. Meneguzzo; Susan J. Crocker
2015-01-01
This resource update provides an overview of forest resource attributes for Nebraska based on annual inventories conducted by the Forest Inventory and Analysis (FIA) Program of the Northern Research Station (NRS), U.S. Forest Service. The estimates presented in this update are based on field data collected in 2010-2014 with comparisons made to data collected from 2005-...
Wisconsin's forest resources, 2010
C.H. Perry
2011-01-01
This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...
Wisconsin's forest resources, 2006
C.H. Perry; V.A. Everson
2007-01-01
Figure 2 was revised by the author in August 2008. This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis program at the Northern Research Station of the U.S. Forest Service from 2002-2006. These estimates, along with associated core tables postedon the Internet, are...
Wisconsin's Forest Resources, 2007
C.H. Perry; V.A. Everson
2008-01-01
This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, are updated annually. For more information please refer to page 4 of this report.
Wisconsin's forest resources, 2009
C.H. Perry
2011-01-01
This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this report...
DEFF Research Database (Denmark)
Overballe-Petersen, Mette V; Nielsen, Anne Birgitte; Bradshaw, Richard H.W.
2013-01-01
of the pollen record? Location Denmark. The Gribskov-Ostrup small forest hollow (56°N, 12°20' E, 44 m a.s.l.) in the forest of Gribskov, eastern Denmark. Methods Pollen analysis was carried out on a small forest hollow, and LRA used to derive pollen-based quantitative estimates of past vegetation. Historical......Questions Can the model performance of the landscape reconstruction algorithm (LRA) for small forest hollows be validated through comparison to inventory-based vegetation reconstructions from the last 150 yrs? Does the application of LRA and the comparison to historical data enhance interpretation...... forest inventory data and maps were used to reconstruct the vegetation within three different circles around the hollow (20, 50 and 200 m ring widths) for five time periods during the last 150 yrs. The results of the two approaches were compared in order to evaluate model performance, and the LRA...
We used a combination of data from USDA Forest Service inventories, intensivechronosequences, extensive sites, and satellite remote sensing, to estimate biomassand net primary production (NPP) for the forested region of western Oregon. Thestudy area was divided int...
Directory of Open Access Journals (Sweden)
Sebastian Lamprecht
2017-05-01
Full Text Available Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volume estimation. This restriction is even more severe on the level of individual trees. The objective of this study was to develop a post-processing strategy to improve the positional accuracy of GNSS-measured sample-plot centers and to develop a method to automatically match trees within a terrestrial sample plot to aerial detected trees. We propose a new method which uses a random forest classifier to estimate the matching probability of each terrestrial-reference and aerial detected tree pair, which gives the opportunity to assess the reliability of the results. We investigated 133 sample plots of the Third German National Forest Inventory (BWI, 2011–2012 within the German federal state of Rhineland-Palatinate. For training and objective validation, synthetic forest stands have been modeled using the Waldplaner 2.0 software. Our method has achieved an overall accuracy of 82.7% for co-registration and 89.1% for tree matching. With our method, 60% of the investigated plots could be successfully relocated. The probabilities provided by the algorithm are an objective indicator of the reliability of a specific result which could be incorporated into quantitative models to increase the performance of forest attribute estimations.
The Kane Experimental Forest carbon inventory: Carbon reporting with FVS
Coeli Hoover
2008-01-01
As the number of state and regional climate change agreements grows, so does the need to assess the carbon implications of planned forest management actions. At the operational level, producing detailed stock estimates for the primary carbon pools becomes time-consuming and cumbersome. Carbon reporting functionality has been fully integrated within the Forest...
Optimized endogenous post-stratification in forest inventories
Paul L. Patterson
2012-01-01
An example of endogenous post-stratification is the use of remote sensing data with a sample of ground data to build a logistic regression model to predict the probability that a plot is forested and using the predicted probabilities to form categories for post-stratification. An optimized endogenous post-stratified estimator of the proportion of forest has been...
Forest inventory, Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final report
International Nuclear Information System (INIS)
Narolski, S.W.
1996-12-01
The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area
Is the “new deal” of National Forest Inventories finally attained?
Directory of Open Access Journals (Sweden)
Chirici G
2015-12-01
Full Text Available This paper briefly describes the recent initiatives of Spain and France that made raw data from their National Forestry Inventory available both online and via open-access databases. As part of the implementation of the European PSI-Directive on the re-use of Public Administration data and the realization of the Statute of Digital Administration by the Agency for Digital Italy (AGID, a similar implementation by the Italian Forest Service is expected through the on-line and open access publication of all georeferenced data related to the phase III of the 2015 Italian Inventory of Forests and Carbon Reservoirs.
Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.
Energy Technology Data Exchange (ETDEWEB)
Narolski, Steven W.
1996-12-01
The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.
Soil attributes of a silvopastoral system in Pernambuco Forest Zone
Directory of Open Access Journals (Sweden)
Hugo N.B. Lima
2018-01-01
Full Text Available This research evaluated soil properties in a silvopastoral system using double rows of tree legumes. Treatments were signalgrass (Brachiaria decumbens in monoculture or in consortium with sabiá (Mimosa caesalpiniifolia or gliricidia (Gliricidia sepium. Treatments were arranged in a complete randomized block design, with 4 replications. Response variables included chemical characteristics and physical attributes of the soil. Silvopastoral systems had greater (P<0.001 soil exchangeable Ca (gliricidia = 3.2 and sabiá = 3.0 mmolc/dm3 than signalgrass monoculture (2.0 mmolc/dm3. Water infiltration rate was greater within the tree legume double rows (366 mm/h than in signalgrass (162 mm/h (P = 0.02. However, soil moisture was greater in signalgrass pastures (15.9% (P = 0.0020 than in silvopastures (14.9 and 14.8%, where soil moisture levels increased as distance from the tree rows increased. Conversely, the light fraction of soil organic matter was greater within the tree legume double rows than in the grassed area (P = 0.0019. Long-term studies are needed to determine if these benefits accumulate further and the productivity benefits which result.
2012-03-07
... Forest Service, Daniel Boone National Forest, Winchester, KY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The U.S. Department of Agriculture, Forest Service, Daniel Boone National Forest... culturally affiliated with the human remains may contact the Daniel Boone National Forest, Winchester, KY...
Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management
C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown
2006-01-01
Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...
Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage
Directory of Open Access Journals (Sweden)
Wilson Barry Tyler
2013-01-01
Full Text Available Abstract The U.S. has been providing national-scale estimates of forest carbon (C stocks and stock change to meet United Nations Framework Convention on Climate Change (UNFCCC reporting requirements for years. Although these currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements, there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the conterminous U.S. using the U.S.’s annual forest inventory. Results suggest that an existing forest inventory plot imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live tree to soil organic carbon and spatial scales (e.g., sub-county to biome. Comparisons among imputed maps indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead wood is often highest in forests suffering from recent mortality events such as those in the northern Rocky Mountains (e.g., beetle infestations. In contrast, live tree carbon density is often highest on the highest quality forest sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area, with weaker agreement for detrital pools (e.g., standing dead trees. Forest inventory imputed plot maps provide an efficient and flexible approach to monitoring diverse C pools at national (e.g., UNFCCC and regional scales (e.g., Reducing Emissions from Deforestation and Forest
Spatially explicit analysis of field inventories for national forest carbon monitoring
Directory of Open Access Journals (Sweden)
David C. Marvin
2016-06-01
Full Text Available Abstract Background Tropical forests provide a crucial carbon sink for a sizable portion of annual global CO2 emissions. Policies that incentivize tropical forest conservation by monetizing forest carbon ultimately depend on accurate estimates of national carbon stocks, which are often based on field inventory sampling. As an exercise to understand the limitations of field inventory sampling, we tested whether two common field-plot sampling approaches could accurately estimate carbon stocks across approximately 76 million ha of Perúvian forests. A 1-ha resolution LiDAR-based map of carbon stocks was used as a model of the country’s carbon geography. Results Both field inventory sampling approaches worked well in estimating total national carbon stocks, almost always falling within 10 % of the model national total. However, the sampling approaches were unable to produce accurate spatially-explicit estimates of the carbon geography of Perú, with estimates falling within 10 % of the model carbon geography across no more than 44 % of the country. We did not find any associations between carbon stock errors from the field plot estimates and six different environmental variables. Conclusions Field inventory plot sampling does not provide accurate carbon geography for a tropical country with wide ranging environmental gradients such as Perú. The lack of association between estimated carbon errors and environmental variables suggests field inventory sampling results from other nations would not differ from those reported here. Tropical forest nations should understand the risks associated with primarily field-based sampling approaches, and consider alternatives leading to more effective forest conservation and climate change mitigation.
Monitoring forest/non-forest land use conversion rates with annual inventory data
Francis A. Roesch; Paul C. Van Deusen
2012-01-01
The transitioning of land from forest to other uses is of increasing interest as urban areas expand and the worldâs population continues to grow. Also of interest, but less recognized, is the transitioning of land from other uses into forest. In this paper, we show how rates of conversion from forest to non-forest and non-forest to forest can be estimated in the US...
Use of generalized linear models and digital data in a forest inventory of Northern Utah
Moisen, Gretchen G.; Edwards, Thomas C.
1999-01-01
Forest inventories, like those conducted by the Forest Service's Forest Inventory and Analysis Program (FIA) in the Rocky Mountain Region, are under increased pressure to produce better information at reduced costs. Here we describe our efforts in Utah to merge satellite-based information with forest inventory data for the purposes of reducing the costs of estimates of forest population totals and providing spatial depiction of forest resources. We illustrate how generalized linear models can be used to construct approximately unbiased and efficient estimates of population totals while providing a mechanism for prediction in space for mapping of forest structure. We model forest type and timber volume of five tree species groups as functions of a variety of predictor variables in the northern Utah mountains. Predictor variables include elevation, aspect, slope, geographic coordinates, as well as vegetation cover types based on satellite data from both the Advanced Very High Resolution Radiometer (AVHRR) and Thematic Mapper (TM) platforms. We examine the relative precision of estimates of area by forest type and mean cubic-foot volumes under six different models, including the traditional double sampling for stratification strategy. Only very small gains in precision were realized through the use of expensive photointerpreted or TM-based data for stratification, while models based on topography and spatial coordinates alone were competitive. We also compare the predictive capability of the models through various map accuracy measures. The models including the TM-based vegetation performed best overall, while topography and spatial coordinates alone provided substantial information at very low cost.
Directory of Open Access Journals (Sweden)
Grant M Domke
Full Text Available The inventory and monitoring of coarse woody debris (CWD carbon (C stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI. Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.'s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles in the conterminous U.S. was 9 percent (145.1 Tg greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.
Domke, Grant M; Woodall, Christopher W; Walters, Brian F; Smith, James E
2013-01-01
The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.'s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.
Nikolay S. Strigul; Demetrios Gatziolis; Jean F. Liénard; Andre. Vogs
2015-01-01
Although a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity, measurements conducive to three-dimensional (3D) representations of individual trees are seldom part of forest inventory operations. This is in part because until recently our ability to measure the dimensionality, spatial arrangement, and shape of trees and...
Improve forest inventory with access data-measure transport distance and cost to market.
Dennis P. Bradley
1972-01-01
Describes a method for relating forest inventory volumes to transport distances and costs. The process, originally developed in Sweden, includes a computer program that can be used to summarize volumes by transport costs per cord to specified delivery point. The method has many potential applications in all aspects of resource analysis.
Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens. Schadauer
2014-01-01
National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...
Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system
Kristofer D. Johnson; Richard Birdsey; Andrew O Finley; Anu Swantaran; Ralph Dubayah; Craig Wayson; Rachel. Riemann
2014-01-01
Forest Inventory and Analysis (FIA) data may be a valuable component of a LIDAR-based carbon monitoring system, but integration of the two observation systems is not without challenges. To explore integration methods, two wall-to-wall LIDAR-derived biomass maps were compared to FIA data at both the plot and county levels in Anne Arundel and Howard Counties in Maryland...
Sampling methods for titica vine (Heteropsis spp.) inventory in a tropical forest
Carine Klauberg; Edson Vidal; Carlos Alberto Silva; Michelliny de M. Bentes; Andrew Thomas. Hudak
2016-01-01
Titica vine provides useful raw fiber material. Using sampling schemes that reduce sampling error can provide direction for sustainable forest management of this vine. Sampling systematically with rectangular plots (10Ã 25 m) promoted lower error and greater accuracy in the inventory of titica vines in tropical rainforest.
State-of-the-art methodology of forest inventory: a symposium proceedings.
Vernon J. LaBau; Tiberius Cunia
1990-01-01
The state-of-the-art of forest inventory methodology, being closely integrated with the fast-moving, high technology computer world, has been changing at a rapid pace over the past decade. Several successful conferences were held during the 1980s with the goal and purpose of staying abreast of such change. This symposium was conceived, not just with the idea of helping...
State-of-the-art technologies of forest inventory and monitoring in Taiwan
Fong-Long Feng
2000-01-01
Ground surveys, remote sensing (RS), global positioning systems (GPS), geographic information systems (GIS), and permanent sampling plots (PSP) were used to inventory and monitor forests in the development of an ecosystem management plan for the island of Taiwan. While the entire island has been surveyed, this study concentrates on the Hui-Sun and Hsin-Hua Experimental...
Yadav, Bechu K V; Nandy, S
2015-05-01
Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.
Applying an efficient K-nearest neighbor search to forest attribute imputation
Andrew O. Finley; Ronald E. McRoberts; Alan R. Ek
2006-01-01
This paper explores the utility of an efficient nearest neighbor (NN) search algorithm for applications in multi-source kNN forest attribute imputation. The search algorithm reduces the number of distance calculations between a given target vector and each reference vector, thereby, decreasing the time needed to discover the NN subset. Results of five trials show gains...
David E. Haugen; Michael Kangas; Susan J. Crocker; Charles H. Perry; Christopher W. Woodall; Brett J. Butler; Barry T. Wilson; Dan J. Kaisershot
2009-01-01
The first completed annual inventory of North Dakota's forests reports estimates of more than 724,000 acres of forest land. Information about forest attributes and forest health is presented along with information on agents of change including changing land use patterns and the introduction of nonnative plants, insects, and disease.
West Virginia's forest resources, 2009
R.H. Widmann; G.W. Cook
2011-01-01
This publication provides an overview of forest resource attributes for West Virginia based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this...
West Virginia's forest resources, 2010
R.H. Widmann; G.W. Cook
2011-01-01
This publication provides an overview of forest resource attributes for West Virginia based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this...
West Virginia's forest resources, 2007
R.H. Widmann; G.M. McCaskill; W. McWilliams; G.W. Cook
2010-01-01
This publication provides an overview of forest resource attributes for this state based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 5 of this report...
West Virginia's forest resources, 2008
R.H. Widmann; B.J. Butler; G.W. Cook
2010-01-01
This publication provides an overview of forest resource attributes for West Virginia based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this...
North Dakota's forest resources, 2010
D.E. Haugen; R.A. Harsel
2011-01-01
This publication provides an overview of forest resource attributes for North Dakota based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this...
North Dakota's forest resources, 2011
D.E. Haugen; R.A. Harsel
2012-01-01
This publication provides an overview of forest resource attributes for North Dakota based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this...
North Dakota's forest resources, 2012
D.E. Haugen
2013-01-01
This publication provides an overview of forest resource attributes for North Dakota based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with Web-posted core tables, will be updated annually. For more information, please refer to page 4 of this...
North Dakota's forest resources, 2008
D.E. Haugen; A.J. Lister
2010-01-01
This publication provides an overview of forest resource attributes for North Dakota based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this...
North Dakota's forest resources, 2009
D.E. Haugen
2010-01-01
This publication provides an overview of forest resource attributes for North Dakota based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this...
W. Keith Moser; Renate Bush; John D. Shaw; Mark H. Hansen; Mark D. Nelson
2010-01-01
A major challenge for todayâs resource managers is the linking of standand landscape-scale dynamics. The U.S. Forest Service has made major investments in programs at both the stand- (national forest project) and landscape/regional (Forest Inventory and Analysis [FIA] program) levels. FIA produces the only comprehensive and consistent statistical information on the...
SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR
Directory of Open Access Journals (Sweden)
Jian Tang
2015-12-01
Full Text Available Accurately retrieving tree stem location distributions is a basic requirement for biomass estimation of forest inventory. Combining Inertial Measurement Units (IMU with Global Navigation Satellite Systems (GNSS is a commonly used positioning strategy in most Mobile Laser Scanning (MLS systems for accurate forest mapping. Coupled with a tactical or consumer grade IMU, GNSS offers a satisfactory solution in open forest environments, for which positioning accuracy better than one decimeter can be achieved. However, for such MLS systems, positioning in a mature and dense forest is still a challenging task because of the loss of GNSS signals attenuated by thick canopy. Most often laser scanning sensors in MLS systems are used for mapping and modelling rather than positioning. In this paper, we investigate a Simultaneous Localization and Mapping (SLAM-aided positioning solution with point clouds collected by a small-footprint LiDAR. Based on the field test data, we evaluate the potential of SLAM positioning and mapping in forest inventories. The results show that the positioning accuracy in the selected test field is improved by 38% compared to that of a traditional tactical grade IMU + GNSS positioning system in a mature forest environment and, as a result, we are able to produce a unambiguous tree distribution map.
Jogeir N. Stokland; Christopher W. Woodall; Jonas Fridman; Göran Ståhl
2016-01-01
Deadwood can represent a substantial portion of forest ecosystem carbon stocks and is often reported following good practice guidance associated with national greenhouse gas inventories. In high-latitude forest ecosystems, a substantial proportion of downed deadwood is overgrown by ground vegetation and buried in the humus layer. Such burial obfuscates the important...
LIDAR forest inventory with single-tree, double- and single-phase procedures
Robert C. Parker; David L. Evans
2009-01-01
Light Detection and Ranging (LIDAR) data at 0.5- to 2-m postings were used with doublesample, stratified inventory procedures involving single-tree attribute relationships in mixed, natural, and planted species stands to yield sampling errors (one-half the confidence interval expressed as a percentage of the mean) ranging from ±2.1 percent to ±11.5...
The new forest carbon accounting framework for the United States
Grant M. Domke; John W. Coulston; Christopher W. Woodall
2015-01-01
The forest carbon accounting system used in recent National Greenhouse Gas Inventories (NGHGI) was developed more than a decade ago when the USDA Forest Service, Forest Inventory and Analysis annual inventory system was in its infancy and contemporary questions regarding the terrestrial sink (e.g., attribution) did not exist. The time has come to develop a new...
Huang, C.; Tao, X.; Zhao, F. A.; Schleeweis, K.; Ling, P. Y.; Goward, S. N.; Masek, J. G.; Michaelis, A.
2015-12-01
The southeast United States (SE-US) is dominated by tree plantations and other forms of industrial forests that provide vital socio-ecological services to the human society. Most of these forests are managed to maximize economic outcome, and hence are often subject to intensive management practices and have different harvest-regrowth cycles as compared with natural forest ecosystems. Through the North American Forest Dynamics (NAFD) study, we have mapped forest disturbances for the conterminous United States using dense time series Landsat observations. The derived map products revealed that more than 50% of the forests in SE-US were harvested or disturbed by other forms of human or natural disturbance events at least once between 1986 and 2010. These products are being analyzed together with ancillary GIS data sets and field inventory data to identify industrial forests and to quantify their logging intensity, timber output, recovery rate, and the harvest-regrowth cycle. The derived results will be summarized in this presentation, along with discussions of the underlying environmental and management factors that may drive the spatio-temporal dynamics of the industrial forests in SE-US.
Prandi, F.; Magliocchetti, D.; Poveda, A.; De Amicis, R.; Andreolli, M.; Devigili, F.
2016-06-01
Forests represent an important economic resource for mountainous areas being for a few region and mountain communities the main form of income. However, wood chain management in these contexts differs from the traditional schemes due to the limits imposed by terrain morphology, both for the operation planning aspects and the hardware requirements. In fact, forest organizational and technical problems require a wider strategic and detailed level of planning to reach the level of productivity of forest operation techniques applied on flatlands. In particular, a perfect knowledge of forest inventories improves long-term management sustainability and efficiency allowing a better understanding of forest ecosystems. However, this knowledge is usually based on historical parcel information with only few cases of remote sensing information from satellite imageries. This is not enough to fully exploit the benefit of the mountain areas forest stocks where the economic and ecological value of each single parcel depends on singletree characteristics. The work presented in this paper, based on the results of the SLOPE (Integrated proceSsing and controL systems fOr sustainable forest Production in mountain arEas) project, investigates the capability to generate, manage and visualize detailed virtual forest models using geospatial information, combining data acquired from traditional on-the-field laser scanning surveys technologies with new aerial survey through UAV systems. These models are then combined with interactive 3D virtual globes for continuous assessment of resource characteristics, harvesting planning and real-time monitoring of the whole production.
Directory of Open Access Journals (Sweden)
F. Prandi
2016-06-01
Full Text Available Forests represent an important economic resource for mountainous areas being for a few region and mountain communities the main form of income. However, wood chain management in these contexts differs from the traditional schemes due to the limits imposed by terrain morphology, both for the operation planning aspects and the hardware requirements. In fact, forest organizational and technical problems require a wider strategic and detailed level of planning to reach the level of productivity of forest operation techniques applied on flatlands. In particular, a perfect knowledge of forest inventories improves long-term management sustainability and efficiency allowing a better understanding of forest ecosystems. However, this knowledge is usually based on historical parcel information with only few cases of remote sensing information from satellite imageries. This is not enough to fully exploit the benefit of the mountain areas forest stocks where the economic and ecological value of each single parcel depends on singletree characteristics. The work presented in this paper, based on the results of the SLOPE (Integrated proceSsing and controL systems fOr sustainable forest Production in mountain arEas project, investigates the capability to generate, manage and visualize detailed virtual forest models using geospatial information, combining data acquired from traditional on-the-field laser scanning surveys technologies with new aerial survey through UAV systems. These models are then combined with interactive 3D virtual globes for continuous assessment of resource characteristics, harvesting planning and real-time monitoring of the whole production.
Inventory of species and cultivars potentially valuable for forest/biomass production
Energy Technology Data Exchange (ETDEWEB)
Lavoie, G
1981-01-01
To prepare a guide for experiments in mini-rotation or short rotation forest production, potentially valuable species and cultivars have been inventoried. In this text, 288 species are listed under 31 genera, 27 deciduous and 4 coniferous. This partial inventory was made for the Northern Hemisphere and different climates, ranging from the tropical zone to the cold temperate zone. To be included a species had to satisfy the following conditions: ease of established and rapid juvenile growth. The list of species and cultivars is given in alphabetical order. 55 references.
John Moore; Ian Payton; Larry Burrows; Chris Goulding; Peter Beets; Paul Lane; Peter Stephens
2007-01-01
This article discusses the development of a monitoring system to estimate carbon sequestration in New Zealand's planted Kyoto forests, those forests that have been planted since January 1, 1990, on land that previously did not contain forest. The system must meet the Intergovernmental Panel on Climate Change good practice guidance and must be seen to be unbiased,...
Kukkonen, M.; Maltamo, M.; Packalen, P.
2017-08-01
Image matching is emerging as a compelling alternative to airborne laser scanning (ALS) as a data source for forest inventory and management. There is currently an open discussion in the forest inventory community about whether, and to what extent, the new method can be applied to practical inventory campaigns. This paper aims to contribute to this discussion by comparing two different image matching algorithms (Semi-Global Matching [SGM] and Next-Generation Automatic Terrain Extraction [NGATE]) and ALS in a typical managed boreal forest environment in southern Finland. Spectral features from unrectified aerial images were included in the modeling and the potential of image matching in areas without a high resolution digital terrain model (DTM) was also explored. Plot level predictions for total volume, stem number, basal area, height of basal area median tree and diameter of basal area median tree were modeled using an area-based approach. Plot level dominant tree species were predicted using a random forest algorithm, also using an area-based approach. The statistical difference between the error rates from different datasets was evaluated using a bootstrap method. Results showed that ALS outperformed image matching with every forest attribute, even when a high resolution DTM was used for height normalization and spectral information from images was included. Dominant tree species classification with image matching achieved accuracy levels similar to ALS regardless of the resolution of the DTM when spectral metrics were used. Neither of the image matching algorithms consistently outperformed the other, but there were noticeably different error rates depending on the parameter configuration, spectral band, resolution of DTM, or response variable. This study showed that image matching provides reasonable point cloud data for forest inventory purposes, especially when a high resolution DTM is available and information from the understory is redundant.
Czech Academy of Sciences Publication Activity Database
Hofmeister, J.; Hošek, J.; Brabec, Marek; Dvořák, D.; Beran, M.; Deckerová, H.; Burel, J.; Kříž, M.; Borovička, Jan; Běťák, J.; Vašutová, M.; Malíček, J.; Palice, Zdeněk; Syrovátková, L.; Steinová, J.; Černajová, I.; Holá, E.; Novozámská, E.; Čížek, L.; Iarema, V.; Baltaziuk, K.; Svoboda, T.
2015-01-01
Roč. 57, October (2015), s. 497-504 ISSN 1470-160X Grant - others:GA MŽP(CZ) SP/2D1/146/08 Institutional support: RVO:67985807 ; RVO:67985831 ; RVO:67985939 Keywords : Bryophytes * Dead wood * Forest structure * Lichens * Macrofungi * Size-dependent coefficient model Subject RIV: BB - Applied Statistics, Operational Research; EF - Botanics (BU-J); EF - Botanics (GLU-S) Impact factor: 3.190, year: 2015
International Nuclear Information System (INIS)
Monni, S.; Savolainen, I.; Peltoniemi, M.; Lehtonen, A.; Makipaa, R.; Palosuo, T.
2007-01-01
Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions
Directory of Open Access Journals (Sweden)
V. I. Arkhipov
2014-10-01
Full Text Available The main stages of the developed technology of forest inventory by interpretation method, named «From survey – to project», with the use of modern aerial survey data, special software and hardware are discussed in the paper. A need for development of high-end technology of forest inventory is due to increasing demands of state, business, and civil community for actual and correct information about forests. The tasks of research were: integration software and hardware into single technology, testing on the real object, and development of recommendations for introduction into production and forming of system of preparing specialists for forest interpretation. Positive results of experimental works by measurement and analytical forest interpretation in stereo regime on base of photogrammetric software were obtained by specialists from Russia, Croatia, Belarus, and Sweden. In the technology «From survey – to project», the following instruments are used: photogrammetric complex Vision Map A3, digital photogrammetric system Photomod, program «ESAUL», GIS ArcGIS, special hardware for stereo visualization. Results of testing this technology are shown on example of model territory. Comparison of results of forest inventory obtained by interpretation method and results of control inventory obtained by enumeration method demonstrated that errors of determination of main forest inventory characteristics do not exceed the norms. The advantages of practical use of the technology are shown. It has been noted that forest inventory by interpretation method is a complex psychophysiological process and it requires an attraction of specialists with high qualification on base of special training. It is indicated the necessity of forming system for training forest inventory specialists on interpretation method. The designed and prepared curriculums and training manuals for interpretation method in forestry are listed.
Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods
Zhaodi Guo; Jingyun Fang; Yude Pan; Richard. Birdsey
2010-01-01
Several studies have reported different estimates for forest biomass carbon (C) stocks in China. The discrepancy among these estimates may be largely attributed to the methods used. In this study, we used three methods [mean biomass density method (MBM), mean ratio method (MRM), and continuous biomass expansion factor (BEF) method (abbreviated as CBM)] applied to...
Invasive plants found in Louisiana’s forests, 2009 forest inventory and analysis factsheet
Sonja N. Oswalt; Christopher M. Oswalt
2012-01-01
Foresters and ecologists have noted the spread of nonnative invasive species onto U.S. forest land for decades. Despite soaring costs related to the management of and removal of invasive plants, and inestimable environmental impacts (e.g., altered soil chemistry, competition with native species, altered light environment; Pimentel and others 2005), nonnative invasive...
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available During the FAO Expert Consultation on Global Forest Resources Assessment 2000 (Kotka - Finland 1996, the importance of Trees Outside Forests (TOF and the need for complete and detailed information about these stands were underlined for the first time. Since then and thanks to some pilot studies launched by FAO at the end of the ninenties, the international attention focused on three main topics: the definition of TOF and its classification (linear features, small woods, scattered and individual trees; the effective sampling methods to assess TOF, that are usually rare elements; the ecological role and the economic and social importance of TOF in industrialized and developing countries. Basing on these considerations, the sampling points of the second Italian National Forest Inventory (National Inventory of Forests and Carbon Sinks - INFC intercepting small woods or linear features were recorded. Consequently, the INFC provides information about a substantial portion of the TOF of the country. Thanks to the availability of these data, a specific study was undertaken, aimed at improving information on TOF features and their role in the landscape. The present paper reports on the first results of this study for four regions of the Central Italy (Lazio, Marche, Toscana and Umbria, where the TOF are particularly significant.
Directory of Open Access Journals (Sweden)
Sérgio Gualberto Martins
2002-01-01
Full Text Available This study aimed to evaluate the structural quality of a dystroferric Red Latosol (Oxisol under four forest settlements at Federal University of Lavras campus. The studied forest settlements were: Pinus sp. (PP, Eucalyptus sp. (PE, Hevea brasiliensis (PHB, and native forest (PNF. The mean annual precipitation and temperature for the region are 1493 mm and 19.3°C, respectively. For each studied settlement, disturbed and undisturbed samples from 0-5 cm depth were collected. The studied physical attributes were: aggregates stability, expressed through geometric average diameter, porosity distribution, penetration resistance and permeability. The PNF revealed the highest permeability value (139 mm h-1, followed by PHB (57 mm h-1, PP and PE (40 mm h-1. The highest value for penetration resistance was verified for PP, followed by PE and PHB. The smallest value was presented by PNF. Through this study, it can be concluded that the physical attributes, permeability and soil resistance to penetration, utilized as indicators of soil structural quality, present good performance in distinguishing the effects proportionated by the introduction of fast growth species, contributing for the sustainable management of the studied soil.
Christopher M. Oswalt; Adam M. Saunders
2009-01-01
Sound estimation procedures are desideratum for generating credible population estimates to evaluate the status and trends in resource conditions. As such, volume estimation is an integral component of the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) program's reporting. In effect, reliable volume estimation procedures are...
R. Justin DeRose; Shih-Yu Wang; John D. Shaw
2013-01-01
This study introduces a novel tree-ring dataset, with unparalleled spatial density, for use as a climate proxy. Ancillary Douglas fir and pinyon pine tree-ring data collected by the U.S. Forest Service Forest Inventory and Analysis Program (FIA data) were subjected to a series of tests to determine their feasibility as climate proxies. First, temporal coherence between...
Victor A. Rudis
1991-01-01
More than 400 publications are listed for the period 1979 to 1990; these focus on water, range, wildlife habitat, recreation, and related studies derived from U.S. Department of Agriculture, forest Service, Forest Inventory and Analysis unit surveys conducted on private and public land in the continental United States. Included is an overview of problems and progress...
Giacomo Colle; Antonio Floris; Gianfranco Scrinzi; Giovanni Tabacchi; Lorenzo Cavini
2009-01-01
In this article, we describe in depth the analysis and solutions to manage the multiple coordinates of the sampling objects coming from the three different phases of the second Italian national forest inventory (Inventario Nazionale delle Foreste e dei serbatoi forestali di Carbonio [INFC]). In particular, this article describes the criteria used to determine the...
Cassandra M. Kurtz
2013-01-01
Invasive plant species are a worldwide concern due to the high ecological and economic costs associated with their presence. This document describes the plant characteristics and regional distribution of the 50 invasive plant species monitored from 2005 through 2010 on forested Phase 2 (P2) Forest Inventory and Analysis (FIA) plots in the 24 states of the Northern...
Mark D. Nelson; Sean P. Healey; W. Keith Moser; Mark H. Hansen
2009-01-01
Effects of a catastrophic blowdown event in northern Minnesota, USA were assessed using field inventory data, aerial sketch maps and satellite image data processed through the North American Forest Dynamics programme. Estimates were produced for forest area and net volume per unit area of live trees pre- and post-disturbance, and for changes in volume per unit area and...
Scott A. Pugh; Mark H. Hansen; Lawrence D. Pedersen; Douglas C. Heym; Brett J. Butler; Susan J. Crocker; Dacia Meneguzzo; Charles H. Perry; David E. Haugen; Christopher Woodall; Ed Jepsen
2009-01-01
The first annual inventory of Michigan's forests, completed in 2004, covers more than 19.3 million acres of forest land. The data in this report are based on visits to 10,355 forested plots from 2000 to 2004. In addition to detailed information on forest attributes, this report includes data on forest health, biomass, land-use change, and timber-product outputs....
International Nuclear Information System (INIS)
Xi Fengming; Geng Yong; Chen Xudong; Zhang Yunsong; Wang Xinbei; Xue Bing; Dong Huijuan; Liu Zhu; Ren Wanxia; Fujita, Tsuyoshi; Zhu Qinghua
2011-01-01
Cities consumed 84% of commercial energy in China, which indicates cities should be the main areas for GHG emissions reduction. Our case study of Shenyang in this paper shows how a clear inventory analysis on GHG emissions at city level can help to identify the major industries and societal sectors for reduction efforts so as to facilitate low-carbon policy-making. The results showed total carbon emission in 2007 was 57 Mt CO 2 equivalents (CO 2 e), of which 41 Mt CO 2 e was in-boundary emissions and 16 Mt CO 2 e was out-of-boundary emissions. The energy sector was dominant in the emission inventory, accounting for 93.1% of total emissions. Within energy sector, emissions from energy production industry, manufacturing and construction industry accounted for 88.4% of this sector. Our analysis showed that comparing with geographical boundary, setting system boundary based on single process standard could provide better information to decision makers for carbon emission reduction. After attributing electricity and heating consumption to final users, the resident and commercial sector became the largest emitter, accounting for 28.5% of total emissions. Spatial analysis of emissions showed that industrial districts such as Shenbei and Tiexi had the large potential to reduce their carbon emissions. Implications of results are finally discussed. - Highlights: → An inventory analysis can help identify key industries and societal sectors for reduction efforts. → Setting system boundary can provide better information for carbon emission reduction. → Urban districts with heavy industrial plants have potential to reduce their carbon emissions. → Policies that support urban energy structure optimization can accelerate low-carbon development.
International Nuclear Information System (INIS)
Smith, James E.; Heath, Linda S.
2010-01-01
Reviews of each nation's annual greenhouse gas inventory submissions including forestland are part of the ongoing reporting process of the United Nations Framework Convention on Climate Change. Goals of these reviews include improving quality and consistency within and among reports. One method of facilitating comparisons is the use of a standard index such as an implied emission factor (IEF), which for forest biomass indicates net rate of carbon emission or sequestration per area. Guidance on the use of IEFs in reviews is limited, but there is an expectation that values should be relatively constant both over time and across spatial scales. To address this hypothesis, we examine IEFs over time, derived from U.S. forests at plot-, state-, and national-levels. Results show that at increasingly aggregated levels, relative heterogeneity decreases but can still be substantial. A net increase in U.S. whole-forest IEFs over time is consistent with results from temperate forests of nations in the European Community. IEFs are better viewed as a distribution of values rather than one constant value principally because of sensitivities to productivity, disturbance, and land use change, which can all vary considerably across a nation's forest land.
Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data
Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.
2016-01-01
Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.
Sampling procedures for inventory of commercial volume tree species in Amazon Forest.
Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R
2017-01-01
The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with different spatial patterns in the Amazon Forest. For this, the present study aims to evaluate the conventional sampling procedures and introduce the adaptive cluster sampling for volumetric inventories of Amazonian tree species, considering the hypotheses that the density, the spatial distribution and the zero-plots affect the consistency of the estimators, and that the adaptive cluster sampling allows to obtain more accurate volumetric estimation. We use data from a census carried out in Jamari National Forest, Brazil, where trees with diameters equal to or higher than 40 cm were measured in 1,355 plots. Species with different spatial patterns were selected and sampled with simple random sampling, systematic sampling, linear cluster sampling and adaptive cluster sampling, whereby the accuracy of the volumetric estimation and presence of zero-plots were evaluated. The sampling procedures applied to species were affected by the low density of trees and the large number of zero-plots, wherein the adaptive clusters allowed concentrating the sampling effort in plots with trees and, thus, agglutinating more representative samples to estimate the commercial volume.
C.W. Woodall; J.A. Westfall
2009-01-01
There has been little examination of the relationship between the stocking of live trees in forests and the associated attributes of dead tree resources which could inform large-scale efforts to estimate and manage deadwood resources. The goal of this study was to examine the relationships between the stocking of standing live trees and attributes of standing dead and...
Dacia M. Meneguzzo; Mark H. Hansen
2009-01-01
Fragmentation metrics provide a means of quantifying and describing forest fragmentation. The most common method of calculating these metrics is through the use of Geographic Information System software to analyze raster data, such as a satellite or aerial image of the study area; however, the spatial resolution of the imagery has a significant impact on the results....
Thomas R. Whittier; Andrew N. Gray
2016-01-01
Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image changedetection to produce maps for large (>400 ha) fires, and is...
Directory of Open Access Journals (Sweden)
Christoph Fischer
2016-05-01
Full Text Available For national and international reporting on forest available for wood supply (FAWS, harmonized data are needed. This information is required as forests provide goods for various sectors like the timber industry or the bioenergy sector. The effect of applying different thresholds to the three restriction classes (environmental, social and economic restriction within the proposed reference definition for FAWS was evaluated. We applied the reference definition for FAWS to national data sets provided by five European National Forest Inventories using harmonized thresholds. The effects on FAWS area and growing stock were evaluated for each restriction and threshold. All countries within this study could report on protected areas. Social restrictions were not applied in any country, data on other restrictions are available but definitions vary. The application of common thresholds for restrictions proved difficult as effects vary between countries. The economic restriction is the most challenging to assess as many countries do not have corresponding data for direct calculation of, e.g., harvesting costs. Using proxies for harvesting costs was difficult, as common thresholds may not be applied in different countries. For standardized reporting, a FAWS definition should be developed that utilizes existing, harmonized indicators to describe restrictions.
Directory of Open Access Journals (Sweden)
Decky Indrawan Junaedi
2014-01-01
Full Text Available Due to potential impact of invasive alien (exotic species to the natural ecosystems, inventory of exotic species in the Cibodas Botanic Gardens (CBG remnant forest area is an urgent need for CBG. Inventory of exotic species can assist gardens manager to set priorities and plan better responses for possible or existed invasive plants in the CBG remnants forest. The objectives of this study are to do inventory of the exotic species in the CBG remnant forest and to determine whether several environmental variables play role to the existence of exotic species in the CBG remnant forests. There are 26 exotic plant species (23 genera, 14 families found and recorded from all four remnant forests in CBG. Cluster analysis of four environmental variables shows that clustering of environmental factors of exotic species correlates with the abundances of those exotic species. The relation between environmental factor clusters and the abundance of those exotics signify the role of environmental variables on the existence of exotic plant species. The information of exotic plant species in the remnants forest is the base information for gardens manager to manage exotic species in CBG remnants forest. The relation of several environmental factors with exotic species abundance could assist gardens manager to understand better the supportive and or suppressor factors of exotics in the CBG remnants forest. Further study on these species is needed to set priorities to decide which species should be treated first in order to minimize the impact of exotic plant species to native ecosystem of CBG.
Directory of Open Access Journals (Sweden)
Decky Indrawan Junaedi
2014-01-01
Full Text Available Due to potential impact of invasive alien (exotic species to the natural ecosystems, inventory of exotic species in the Cibodas Botanic Gardens (CBG remnant forest area is an urgent need for CBG. Inventory of exotic species can assist gardens manager to set priorities and plan better responses for possible or existed invasive plants in the CBG remnants forest. The objectives of this study are to do inventory of the exotic species in the CBG remnant forest and to determine whether several environmental variables play role to the existence of exotic species in the CBG remnant forests. There are 26 exotic plant species (23 genera, 14 families found and recorded from all four remnant forests in CBG. Cluster analysis of four environmental variables shows that clustering of environmental factors of exotic species correlates with the abundances of those exotic species. The relation between environmental factor clusters and the abundance of those exotics signify the role of environmental variables on the existence of exotic plant species. The information of exotic plant species in the remnants forest is the base information for gardens manager to manage exotic species in CBG remnants forest. The relation of several environmental factors with exotic species abundance could assist gardens manager to understand better the supportive and or suppressor factors of exotics in the CBG remnants forest. Further study on these species is needed to set priorities to decide which species should be treated first in order to minimize the impact of exotic plant species to native ecosystem of CBG.
Ginger species in Besiq Bermai forest, East Borneo: Inventory and collection
Trimanto
2017-05-01
This research is aimed to inventory and collect ginger species from Borneo, especially from Besiq Bermai forest, East Borneo forest. This research was conducted by surveys and using a purposive sampling method. The characterization of Borneo gingers also used a guide to ginger of Borneo. The results showed that there are 19 species which have been recorded in this forest. Amomum, Alpinia, Plagiostachys, Globba, Hornstedtia, Plagiostachys, Zingiber, is genus that found in the forest. The life collections are conserved in Purwodadi Botanical Gardens. The species of Zingiberaceae are Alpinia pubiflora (Benth.) K. Schum., Alpinia aquatica (Retz.) Roscoe, Alpinia capitellata Jack, Alpinia beamanii R.M.Sm. Amomum oliganthum K. Schum, Etlingera pauciflora (Ridl.) R.M.Sm, Elettaria surculosa (K.Schum) B.L. Burrt&R.M. Sm, Hornstedtia rumphii (Sm.) Valeton, Hornstedtia conica Ridl, Hornstedtia reticosa Valeton, Globba pumila Ridl, Plagiostachys bracteolata R.M. Sm, Plagiostachys albiflora Ridl, Plagiostachysbreviramosa Cowley, Zingiber aromaticum Noronha, Zingiber zerumbet (L.) Roscoe ex Sm, Zingiber officinale Roscoe, Zingiber montanum (J.Koenig) Link ex A. Dietr, and Zingiber leptostachyum Valeton.
Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Road systems being developed within the Manitou, Colorado area for human habitation are readily discernible on the S192 normal-color photographs. These are dirt roads, some of which are about 20 feet wide. These data should provide the District Ranger of the Pike National Forest required information on the size and extent of these developing areas, information which he does not now have but is required for total management of the District.
Inventory of forest and rangeland and detection of forest stress. [Colorado and California
Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Disturbances in a forest environment that cause reductions in forest area, timber volume, and timber growth can be detected on ERTS-1 combined color composites. However, detection depends on comparing a conventional aerial photograph taken at some base year with an ERTS-1 image taken in some subsequent year. In a test made on the Atlanta site, 1:63,360 scale aerial photo index sheets made in 1966 were compared with ERTS-1 image 1264-15445 (April 1973). Five factors were found important to detection reliability: (1) the quality of the imagery; (2) the season of the imagery; (3) the size of the disturbed area; (4) the number of years since the disturbances; and (5) the type of cutting treatment. Of 209 disturbances verified on aerial photography, 165 (or approximately 80%) were detected on the ERTS-1 image by one independent interpreter. Improved training and additional experience in using this low resolution imagery should improve detection. Of the two seasons of data studies (fall and early spring), early spring is the best for detecting land use changes. Generally speaking, winter, early spring, and early summer are the best times of year for detecting forest disturbances.
Fitting diameter distribution models to data from forest inventories with concentric plot design
Energy Technology Data Exchange (ETDEWEB)
Nanos, N.; Sjöstedt de Luna, S.
2017-11-01
Aim: Several national forest inventories use a complex plot design based on multiple concentric subplots where smaller diameter trees are inventoried when lying in the smaller-radius subplots and ignored otherwise. Data from these plots are truncated with threshold (truncation) diameters varying according to the distance from the plot centre. In this paper we designed a maximum likelihood method to fit the Weibull diameter distribution to data from concentric plots. Material and methods: Our method (M1) was based on multiple truncated probability density functions to build the likelihood. In addition, we used an alternative method (M2) presented recently. We used methods M1 and M2 as well as two other reference methods to estimate the Weibull parameters in 40000 simulated plots. The spatial tree pattern of the simulated plots was generated using four models of spatial point patterns. Two error indices were used to assess the relative performance of M1 and M2 in estimating relevant stand-level variables. In addition, we estimated the Quadratic Mean plot Diameter (QMD) using Expansion Factors (EFs). Main results: Methods M1 and M2 produced comparable estimation errors in random and cluster tree spatial patterns. Method M2 produced biased parameter estimates in plots with inhomogeneous Poisson patterns. Estimation of QMD using EFs produced biased results in plots within inhomogeneous intensity Poisson patterns. Research highlights:We designed a new method to fit the Weibull distribution to forest inventory data from concentric plots that achieves high accuracy and precision in parameter estimates regardless of the within-plot spatial tree pattern.
Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.
2014-12-01
The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.
Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory
Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo
2013-01-01
Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.
Minnesota's forests 1999-2003 (Part A)
Patrick D. Miles; Keith Jacobson; Gary J. Brand; Ed Jepsen; Dacia Meneguzzo; Manfred E. Mielke; Cassandra Olson; Charles H. (Hobie) Perry; Ronald J. Piva; Barry Tyler Wilson; Christopher Woodall
2007-01-01
The first completed annual inventory of Minnesota's forests reports more than 16.2 million acres of forest land. Additional forest attribute and forest health information is presented along with information on agents of change including changing land use patterns and the introduction of nonnative plants, insects, and diseases.
Tangney, J P
1990-07-01
Individual differences in proneness to shame and proneness to guilt are thought to play an important role in the development of both adaptive and maladaptive interpersonal and intrapersonal processes. But little empirical research has addressed these issues, largely because no reliable, valid measure has been available to researchers interested in differentiating proneness to shame from proneness to guilt. The Self-Conscious Affect and Attribution Inventory (SCAAI) was developed to assess characteristic affective, cognitive, and behavioral responses associated with shame and guilt among a young adult population. The SCAAI also includes indices of externalization of cause or blame, detachment/unconcern, pride in self, and pride in behavior. Data from 3 independent studies of college students and 1 study of noncollege adults provide support for the reliability of the main SCAAI subscales. Moreover, the pattern of relations among the SCAAI subscales and the relation of SCAAI subscales to 2 extant measures of shame and guilt support the validity of this new measure. The SCAAI appears to provide related but functionally distinct indices of proneness to shame and guilt in a way that these previous measures have not.
Energy Technology Data Exchange (ETDEWEB)
Kokorin, A.O.; Nazarov, I.M.; Lelakin, A.L. [Inst. Global Climate and Ecology, Moscow (Russian Federation)
1995-12-31
The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation
Energy Technology Data Exchange (ETDEWEB)
Kokorin, A O; Nazarov, I M; Lelakin, A L [Inst. Global Climate and Ecology, Moscow (Russian Federation)
1996-12-31
The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation
Directory of Open Access Journals (Sweden)
Beck Hans T
2004-08-01
Full Text Available Abstract Background Mixed evergreen forests form the smallest, most widely distributed and fragmented biome in southern Africa. Within South Africa, 44% of this vegetation type has been transformed. Afromontane forest only covers 0.56 % of South Africa, yet it contains 5.35% of South Africa's plant species. Prior to this investigation of the indigenous forests on the Blyde River Canyon Nature Reserve (BRCNR, very little was known about the size, floristic composition and conservation status of the forest biome conserved within the reserve. We report here an inventory of the forest size, fragmentation, species composition and the basic floristic communities along environmental gradients. Results A total of 2111 ha of forest occurs on Blyde River Canyon Nature Reserve. The forest is fragmented, with a total of 60 forest patches recorded, varying from 0.21 ha to 567 ha in size. On average, patch size was 23 ha. Two forest communities – high altitude moist afromontane forest and low altitude dry afromontane forest – are identified. Sub-communities are recognized based on canopy development and slope, respectively. An altitudinal gradient accounts for most of the variation within the forest communities. Conclusion BRCNR has a fragmented network of small forest patches that together make up 7.3% of the reserve's surface area. These forest patches host a variety of forest-dependent trees, including some species considered rare, insufficiently known, or listed under the Red Data List of South African Plants. The fragmented nature of the relatively small forest patches accentuates the need for careful fire management and stringent alien plant control.
James E. Smith; Linda S. Heath; Coeli M. Hoover
2013-01-01
Most nations have ratified the United Nations Framework Convention on Climate Change, and are mandated to report National Greenhouse Gas Inventories, including the land use, land use change and forestry sector when it is significant. Participating countries commonly use data from national forest inventories as a basis for their forest-related emissions estimates. The...
Andrew Lister; Charles Scott; Susan King; Michael Hoppus; Brett Butler; Douglas Griffith
2005-01-01
The Food Security Act of 1985 prohibits the disclosure of any information collected by the USDA Forest Service's FIA program that would link individual landowners to inventory plot information. To address this, we developed a technique based on a "swapping" procedure in which plots with similar characteristics are exchanged, and on a ...
Don C. Bragg
2002-01-01
This article is an introduction to the computer software used by the Potential Relative Increment (PRI) approach to optimal tree diameter growth modeling. These DOS programs extract qualified tree and plot data from the Eastwide Forest Inventory Data Base (EFIDB), calculate relative tree increment, sort for the highest relative increments by diameter class, and...
Mary Stuever; John Capuano
2014-01-01
For a 3-year period, from 2010-2012, the New Mexico Forestry Division utilized contractors to collect Forest Inventory and Analysis (FIA) data in New Mexico. Funded through the American Recovery and Reinvestment Act, the State partnered with the Interior West FIA Program. Together, both agencies collected data on approximately 6,450 plots. This effort represents the...
Wade T. Tinkham; Alistair M. S. Smith; Chad Hoffman; Andrew T. Hudak; Michael J. Falkowski; Mark E. Swanson; Paul E. Gessler
2012-01-01
Light detection and ranging, or LiDAR, effectively produces products spatially characterizing both terrain and vegetation structure; however, development and use of those products has outpaced our understanding of the errors within them. LiDAR's ability to capture three-dimensional structure has led to interest in conducting or augmenting forest inventories with...
Directory of Open Access Journals (Sweden)
Christian Hüttich
2014-07-01
Full Text Available Growing stock volume is an important biophysical parameter describing the state and dynamics of the Boreal zone. Validation of growing stock volume (GSV maps based on satellite remote sensing is challenging due to the lack of consistent ground reference data. The monitoring and assessment of the remote Russian forest resources of Siberia can only be done by integrating remote sensing techniques and interdisciplinary collaboration. In this paper, we assess the information content of GSV estimates in Central Siberian forests obtained at 25 m from ALOS-PALSAR and 1 km from ENVISAT-ASAR backscatter data. The estimates have been cross-compared with respect to forest inventory data showing 34% relative RMSE for the ASAR-based GSV retrievals and 39.4% for the PALSAR-based estimates of GSV. Fragmentation analyses using a MODIS-based land cover dataset revealed an increase of retrieval error with increasing fragmentation of the landscape. Cross-comparisons of multiple SAR-based GSV estimates helped to detect inconsistencies in the forest inventory data and can support an update of outdated forest inventory stands.
Directory of Open Access Journals (Sweden)
Shaun R. Levick
2016-05-01
Full Text Available Abstract Background Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Results Estimation of wood volume from airborne LiDAR was most robust (R2 = 0.92, RMSE = 50.57 m3 ha−1 ~14.13 Mg C ha−1 when trained and tested with 1 ha experimental plot data (n = 50. Predictions based on a more extensive (n = 1100 plot network with considerably smaller (0.05 ha plots were inferior (R2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha−1. Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R2 and RMSE variability of the LiDAR-predicted wood volume model. Conclusions Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We
Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef
2016-12-01
Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2 = 0.92, RMSE = 50.57 m 3 ha -1 ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where
INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS
Directory of Open Access Journals (Sweden)
Cleandson Ferreira SANTOS
2015-06-01
Full Text Available In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.
Santos, Cleandson Ferreira; Silva, Alex Chavier; Rodrigues, Raquel Andrade; de Jesus, Jamilli Sanndy Ramos; Borges, Magno Augusto Zazá
2015-01-01
In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.
Directory of Open Access Journals (Sweden)
Daniel Barandiaran
2017-06-01
Full Text Available Snowpack observations in the Intermountain West are sparse and short, making them difficult for use in depicting past variability and extremes. This study presents a reconstruction of April 1 snow water equivalent (SWE for the period of 1850–1989 using increment cores collected by the U.S. Forest Service, Interior West Forest Inventory and Analysis program (FIA. In the state of Utah, SWE was reconstructed for 38 snow course locations using a combination of standardized tree-ring indices derived from both FIA increment cores and publicly available tree-ring chronologies. These individual reconstructions were then interpolated to a 4-km grid using an objective analysis with elevation correction to create an SWE product. The results showed a significant correlation with observed SWE as well as good correspondence to regional tree-ring-based drought reconstructions. Diagnostic analysis showed statewide coherent climate variability on inter-annual and inter-decadal time-scales, with added geographical details that would not be possible using courser pre-instrumental proxy datasets. This SWE reconstruction provides water resource managers and forecasters with better spatial resolution to examine past variability in snowpack, which will be important as future hydroclimatic variability is amplified by climate change.
Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Some current beetle-killed ponderosa pine can be detected on S190-B photography imaged over the Bear Lodge mountains in the Black Hills National Forest. Detections were made on SL-3 imagery (September 13, 1973) using a zoom lens microscope to view the photography. At this time correlations have not been made to all of the known infestation spots in the Bear Lodge mountains; rather, known infestations have been located on the SL-3 imagery. It was determined that the beetle-killed trees were current kills by stereo viewing of SL-3 imagery on one side and SL-2 on the other. A successful technique was developed for mapping current beetle-killed pine using MSS imagery from mission 247 flown by the C-130 over the Black Hills test site in September 1973. Color enhancement processing on the NASA/JSC, DAS system using three MSS channels produced an excellent quality detection map for current kill pine. More importantly it provides a way to inventory the dead trees by relating PCM counts to actual numbers of dead trees.
Jeremy S. Fried; Theresa B. Jain; Sara Loreno; Robert F. Keefe; Conor K. Bell
2017-01-01
The BioSum modeling framework summarizes current and prospective future forest conditions under alternative management regimes along with their costs, revenues and product yields. BioSum translates Forest Inventory and Analysis (FIA) data for input to the Forest Vegetation Simulator (FVS), summarizes FVS outputs for input to the treatment operations cost model (OpCost...
Spruce, Joseph; Hargrove, William; Norman Steve; Christie, William
2014-01-01
Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.
Directory of Open Access Journals (Sweden)
Danae Maniatis
2011-01-01
Full Text Available In the context of the adoption at the 16th Conference of the Parties in 2010 on the REDD+ mitigation mechanism, it is important to obtain reliable data on the spatiotemporal variation of forest carbon stocks and changes (called Emission Factor, EF. A re-occurring debate in estimating EF for REDD+ is the use of existing field measurement data. We provide an assessment of the use of commercial logging inventory data and ecological data to estimate a conservative EF (REDD+ phase 2 or to report on EF following IPCC Guidance and Guidelines (REDD+ phase 3. The data presented originate from five logging companies dispersed over Gabon, totalling 2,240 plots of 0.3 hectares.We distinguish three Forest Types (FTs in the dataset based on floristic conditions. Estimated mean aboveground biomass (AGB in the FTs ranges from 312 to 333 Mg ha−1. A 5% accuracy is reached with the number of plots put in place for the FTs and a low sampling uncertainty obtained (± 10 to 13 Mg ha−1. The data could be used to estimate a conservative EF in REDD+ phase 2 and only partially to report on EF following tier 2 requirements for a phase 3.
Forest resources of the Lincoln National Forest
John D. Shaw
2006-01-01
The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Lincoln National Forest 1997 inventory...
Ash Dieback on Sample Points of the National Forest Inventory in South-Western Germany
Directory of Open Access Journals (Sweden)
Rasmus Enderle
2018-01-01
Full Text Available The alien invasive pathogen Hymenoscyphus fraxineus causes large-scale decline of European ash (Fraxinus excelsior. We assessed ash dieback in Germany and identified factors that were associated with this disease. Our assessment was based on a 2015 sampling of national forest inventory plots that represent a supra-regional area. In the time from 2012 to 2015, the number of regrown ash trees corresponded to only 42% of the number of trees that had been harvested or died. Severe defoliation was recorded for almost 40% of the living trees in 2015, and more than half of the crowns mainly consisted of epicormic shoots. Necroses were present in 24% of root collars. A total of 14% of the trees were in sound condition, which sum up to only 7% of the timber volume. On average, trees of a higher social status or with a larger diameter at breast height were healthier. Collar necroses were less prevalent at sites with a higher inclination of terrain, but there was no evidence for an influence of climatic variables on collar necroses. The disease was less severe at sites with smaller proportions of the basal area of ash compared to the total basal area of all trees and in the north-eastern part of the area of investigation. The regeneration of ash decreased drastically.
Dumitru Salajanu; Dennis M. Jacobs
2009-01-01
Forest inventory and analysis data monitor the presence and extent of certain non-native invasive species. Onforestland, non-native species are considered part of the understory vegetation and can be found near canopyopenings as well as and...
Heimsch, Florian; Kreilein, Heiner; Rauf, Abdul; Knohl, Alexander
2016-04-01
Rainforests in general and montane rainforests in particular have rarely been studied over longer time periods. We aim to provide baseline information of a montane tropical forest's carbon uptake over time in order to quantify possible losses through land-use change. Thus we conducted a re-inventory of 22 10-year old forest inventory plots, giving us a rare opportunity to quantify carbon uptake over such a long time period by traditional methods. We discuss shortfalls of such techniques and why our estimate of 1.5 Mg/ha/a should be considered as the lower boundary and not the mean carbon uptake per year. At the same location as the inventory, CO2 fluxes were measured with the Eddy-Covariance technique. Measurements were conducted at 48m height with an LI 7500 open-path infrared gas analyser. We will compare carbon uptake estimates from these measurements to those of the more conventional inventory method and discuss, which factors are probably responsible for differences.
Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter
2015-01-01
Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...
International Nuclear Information System (INIS)
Ginisty, Christian; Vallet, Patrick; Chevalier, Helene; COLIN, Antoine
2011-01-01
This article provides an assessment of the quantities of potentially exploitable timber in French forests, poplar plantations and hedges for the period 2007 to 2020. The first step consisted in computing the gross available quantities of timber, prior to deduction of the various current consumptions. This was done applying the reference silvicultural scenarios to all the plots in the French national forest inventory, on the basis of their features (species, structure, fertility, age, observed per hectare volume). Current consumption was then subtracted from these quantities. It was estimated using the annual sectoral 'forest exploitation' survey in industry and an estimation of fuelwood consumption by households. The outcome is an excess availability of more than 28 million cubic metres of timber per year for bio-energy or pulp uses, and nearly 15 million cubic metres of workable timber, essentially hardwoods. (authors)
H. Viana; J. Aranha; D. Lopes; Warren B. Cohen
2012-01-01
Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...
C.W. Woodall; G.M. Domke; J. Coulston; M.B. Russell; J.A. Smith; C.H. Perry; S. Healey; A. Gray
2015-01-01
A national system of field inventory plots (FIA) is the primary data source for the annual assessment of US forest carbon (C) stocks and stock-change to meet reporting requirements under the United Nations Framework Convention on Climate Change (UNFCCC). The inventory data and their role in national carbon reporting continue to evolve. The framework of the previous C...
Loius R. Iverson; Anantha M. G. Prasad; Charles T. Scott
1996-01-01
The USDA Forest Service's Forest Inventory and Analysis (FIA) and the Natural Resource Conservation Service's State Soil Geographic (STATSGO) data bases provide valuable natural resource data that can be analyzed at the national scale. When coupled with other data (e.g., climate), these data bases can provide insights into factors associated with current and...
Scott L. Powell; Warren B. Cohen; Sean P. Healey; Robert E. Kennedy; Gretchen G. Moisen; Kenneth B. Pierce; Janet L. Ohmann
2010-01-01
Spatially and temporally explicit knowledge of biomass dynamics at broad scales is critical to understanding how forest disturbance and regrowth processes influence carbon dynamics. We modeled live, aboveground tree biomass using Forest Inventory and Analysis (FIA) field data and applied the models to 20+ year time-series of Landsat satellite imagery to...
Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang
2012-01-01
This paper describes a set of empirical net forest growth models based on forest growing-stock density relationships for three U.S. regions (North, South, and West) and two species groups (softwoods and hardwoods) at the regional aggregate level. The growth models accurately predict historical U.S. timber inventory trends when we incorporate historical timber harvests...
David Nicholls; Frank Barnes; Felicia Acrea; Chinling Chen; Lara Y. Buluç; Michele M. Parker
2015-01-01
Federal agencies are mandated to measure, manage, and reduce greenhouse gas (GHG) emissions. The General Services Administration (GSA) Carbon Footprint Tool (CFT) is an online tool built to utilize measured GHG inventories to help Forest Service units streamline reporting and make informed decisions about operational efficiency. In fiscal year 2013, the Forest Service...
Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti
2013-01-01
Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...
Classification of boreal forest by satellite and inventory data using neural network approach
Romanov, A. A.
2012-12-01
The main objective of this research was to develop methodology for boreal (Siberian Taiga) land cover classification in a high accuracy level. The study area covers the territories of Central Siberian several parts along the Yenisei River (60-62 degrees North Latitude): the right bank includes mixed forest and dark taiga, the left - pine forests; so were taken as a high heterogeneity and statistically equal surfaces concerning spectral characteristics. Two main types of data were used: time series of middle spatial resolution satellite images (Landsat 5, 7 and SPOT4) and inventory datasets from the nature fieldworks (used for training samples sets preparation). Method of collecting field datasets included a short botany description (type/species of vegetation, density, compactness of the crowns, individual height and max/min diameters representative of each type, surface altitude of the plot), at the same time the geometric characteristic of each training sample unit corresponded to the spatial resolution of satellite images and geo-referenced (prepared datasets both of the preliminary processing and verification). The network of test plots was planned as irregular and determined by the landscape oriented approach. The main focus of the thematic data processing has been allocated for the use of neural networks (fuzzy logic inc.); therefore, the results of field studies have been converting input parameter of type / species of vegetation cover of each unit and the degree of variability. Proposed approach involves the processing of time series separately for each image mainly for the verification: shooting parameters taken into consideration (time, albedo) and thus expected to assess the quality of mapping. So the input variables for the networks were sensor bands, surface altitude, solar angels and land surface temperature (for a few experiments); also given attention to the formation of the formula class on the basis of statistical pre-processing of results of
Introduction to special issue on remote sensing for advanced forest inventory
Andrew T. Hudak; E. Louise Loudermilk; Joanne C. White
2016-01-01
Information needs associated with sustainable forest management are evolving rapidly as the forest sector works to satisfy an increasingly complex set of economic, environmental, and social policy goals. A barrier to the sustainable management of forests and the provision of ecosystem goods and services under these new pressures is a lack of up-to-date and detailed...
How to estimate forest carbon for large areas from inventory data
James E. Smith; Linda S. Heath; Peter B. Woodbury
2004-01-01
Carbon sequestration through forest growth provides a low-cost approach for meeting state and national goals to reduce net accumulations of atmospheric carbon dioxide. Total forest ecosystem carbon stocks include "pools" in live trees, standing dead trees, understory vegetation, down dead wood, forest floor, and soil. Determining the level of carbon stocks in...
Matthew B. Russell; Christopher W. Woodall
2017-01-01
The increasing interest in forest biomass for energy or carbon cycle purposes has raised the need for forest resource managers to refine their understanding of downed woody debris (DWD) dynamics. We developed a DWD forecasting tool using field measurements (mean size and stage of stage of decay) for three common forest types across the eastern United States using field...
Directory of Open Access Journals (Sweden)
I. N. Petukhov
2016-08-01
Full Text Available In June and July 2010 in Yaroslavl, Vologda and Kostroma regions, as a result of exposure to hurricane winds, recorded several violations of extensive forest cover in the form of windfalls and windbreaks (Krylov et al., 2012; Petukhov, Nemchinova, 2014. Retrospective analysis on the basis of remote sensing data for the period 1984–2011’s was conducted. It showed, that among the 21st dedicated mass windfall within the Kostroma region and border areas, windfall July 2010 is unique in the magnitude of the total area of disturbed forest cover. According to our estimates, derived from the analysis of remote sensing (RS, its area was more than 60 thousand Ha, which is four times the average annual area of clear felling, in particular, in the Kostroma region (Petukhov, Nemchinova, 2014. In addition to determining the areas of windfall violations of forest cover, based on forest inventory data and remote sensing data analyzed taxation characteristics of forest stands affected by the impact of the seven gale-force winds within the territory of the Kostroma region. The analysis revealed the following trends in hurricane-force winds damaged trees: for parameters such as completeness, forest type and site class is observed relatively uniform stands hurricane wind damage; I.e., we have not found an association between the degree (probability of forest stands damaged data and taxation values data. An exception is the age, height, and in some cases, the predominant species plantations. Plantations dominated by spruce in the stand proved to be somewhat less, but with a predominance of pine – more resistant to hurricane winds, compared to other tree species. Selectivity is also observed for breach of stands older than 40 years and a height of over 16 meters, which is possibly related to the morphological and physiological features of the trees of a given age and height.
Effects of satellite image spatial aggregation and resolution on estimates of forest land area
M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer
2009-01-01
Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...
Directory of Open Access Journals (Sweden)
Daud Jones Kachamba
2017-06-01
Full Text Available Applications of unmanned aircraft systems (UASs to assist in forest inventories have provided promising results in biomass estimation for different forest types. Recent studies demonstrating use of different types of remotely sensed data to assist in biomass estimation have shown that accuracy and precision of estimates are influenced by the size of field sample plots used to obtain reference values for biomass. The objective of this case study was to assess the influence of sample plot size on efficiency of UAS-assisted biomass estimates in the dry tropical miombo woodlands of Malawi. The results of a design-based field sample inventory assisted by three-dimensional point clouds obtained from aerial imagery acquired with a UAS showed that the root mean square errors as well as the standard error estimates of mean biomass decreased as sample plot sizes increased. Furthermore, relative efficiency values over different sample plot sizes were above 1.0 in a design-based and model-assisted inferential framework, indicating that UAS-assisted inventories were more efficient than purely field-based inventories. The results on relative costs for UAS-assisted and pure field-based sample plot inventories revealed that there is a trade-off between inventory costs and required precision. For example, in our study if a standard error of less than approximately 3 Mg ha−1 was targeted, then a UAS-assisted forest inventory should be applied to ensure more cost effective and precise estimates. Future studies should therefore focus on finding optimum plot sizes for particular applications, like for example in projects under the Reducing Emissions from Deforestation and Forest Degradation, plus forest conservation, sustainable management of forest and enhancement of carbon stocks (REDD+ mechanism with different geographical scales.
Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.
2015-01-01
Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.
Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco
2013-07-01
In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample
Chen, Xuexia; Liu, Shuguang; Zhu, Zhiliang; Vogelmann, James E.; Li, Zhengpeng; Ohlen, Donald O.
2011-01-01
The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High
Directory of Open Access Journals (Sweden)
Iciar Alberdi
2014-04-01
Full Text Available Aim of study: In this study, a methodology has been designed to assess biodiversity in the frame of the Spanish National Forest Inventory with the aim of evaluating the conservation status of Spanish forests and their future evolution. This methodology takes into account the different national and international initiatives together with the different types and characteristics of forests in Spain. Area of study: Álava province (Basque country, Spain.Material and methods: To analyse the contribution of each of the different indices to the biodiversity assessment, a statistical analysis using PCA multivariate techniques was performed for structure, composition and dead wood indicators. Main Results: The selected biodiversity indicators (based on field measurements are presented along with an analysis of the results from four representative forest types in Álava by way of an example of the potential of this methodology. Research highlights: The statistical analysis revealed the important information contribution of Mingling index to the composition indicators. Regarding the structure indicators, it is remarkable the interest of using standard deviations and skewness of height and diameter as indicators. Finally it is interesting to point out the interest of assessing dead saplings since they provide additional information and their volume is a particularly useful parameter for analyzing the success of regeneration.Keywords: species richness; structural diversity; dead wood; NFI; PCA.
Directory of Open Access Journals (Sweden)
Christoph Kleinn
2017-09-01
Full Text Available National Forest Inventories (NFI cover whole countries and strive to put the resource forest and the ecosystem forest into a quantitative framework. While for forest management inventories it is very obvious that they shall support management decisions and contribute to making forest planning, silvicultural interventions, conservation management and timber sales more efficient, the purpose of NFIs is not immediately visible nor “measurable”: they are to support national (and sub-national level policy processes that relate to forests. NFIs have a long history and do experience currently a boom because the availability of a science-based quantification of the forest resource and its changes is among the prerequisites for results-based payments to developing countries when they implement measures that are efficient - and evidenced by verifiable results – in reducing greenhouse gas emissions from forests. While forest monitoring science does currently focus very much on increasing precision and accuracy of forest monitoring, on integration of ever more efficient remote sensing techniques and modelling methods, surprisingly little research is being published on background, strategic justification, institutionalization and impact of NFIs.
Fontaine, Alain; Sauvage, Bastien; Pétetin, Hervé; Auby, Antoine; Boulanger, Damien; Thouret, Valerie
2016-04-01
Since 1994, the IAGOS program (In-Service Aircraft for a Global Observing System http://www.iagos.org) and its predecessor MOZAIC has produced in-situ measurements of the atmospheric composition during more than 46000 commercial aircraft flights. In order to help analyzing these observations and further understanding the processes driving their evolution, we developed a modelling tool SOFT-IO quantifying their source/receptor link. We improved the methodology used by Stohl et al. (2003), based on the FLEXPART plume dispersion model, to simulate the contributions of anthropogenic and biomass burning emissions from the ECCAD database (http://eccad.aeris-data.fr) to the measured carbon monoxide mixing ratio along each IAGOS flight. Thanks to automated processes, contributions are simulated for the last 20 days before observation, separating individual contributions from the different source regions. The main goal is to supply add-value products to the IAGOS database showing pollutants geographical origin and emission type. Using this information, it may be possible to link trends in the atmospheric composition to changes in the transport pathways and to the evolution of emissions. This tool could be used for statistical validation as well as for inter-comparisons of emission inventories using large amounts of data, as Lagrangian models are able to bring the global scale emissions down to a smaller scale, where they can be directly compared to the in-situ observations from the IAGOS database.
Tree Inventory and Biometry Measurements, Tapajos National Forest, Para, Brazil, 2010
National Aeronautics and Space Administration — This dataset provides tree inventory, tree height, diameter at breast height (DBH), and estimated crown measurements from 30 plots located in the Tapajos National...
Curtis, P. S.; Gough, C. M.; Vogel, C. S.
2005-12-01
Carbon (C) storage increasingly is considered an important part of the economic return of forestlands, making easily parameterized models for assessing current and future C storage important for both ecosystem and money managers. For the deciduous forests of the northern midwest, USA, detailed information relating annual C storage to local site characteristics can be combined with spatially extensive forest inventories to produce simple, robust models of C storage useful at a variety of scales. At the University of Michigan Biological Station (45o35`' N, 84o42`' W) we measured C storage, or net ecosystem production (NEP), in 65 forest stands varying in age, disturbance history, and productivity (site index) using biometric methods, and independently measured net C exchange at the landscape level using meteorological methods. Our biometric and meteorological estimates of NEP converged to within 1% of each other over five years, providing important confirmation of the robustness of these two approaches applied within northern deciduous forests (Gough et al. 2005). We found a significant relationship between NEP, stand age ( A, yrs), and site index ( Is, m), where NEP = 0.134 + 0.022 * (LN[ A* Is]) (r2 = 0.50, P database (ncrs2.fs.fed.us/4801/fiadb/) to estimate forest C storage at different scales across the upper midwest, Great Lakes region. Model estimates were validated against independent estimates of C storage for other forests in the region. At the local ecosystem-level (~1 km2) C storage averaged 1.52 Mg ha-1 yr-1. Scaling to the two-county area surrounding our meteorological and biometric study sites, average stand age decreased and site index increased, resulting in estimated storage of 1.62 Mg C ha-1 yr-1, or 0.22 Tg C yr-1 in the 1350 km2 of deciduous forest in this area. For the state of Michigan (31,537 km2 of deciduous forest), average uptake was estimated at 1.55 Mg C ha-1 yr-1, or 4.9 Tg C yr-1 total storage. For the three state region encompassing
Röhling, Steffi; Dunger, Karsten; Kändler, Gerald; Klatt, Susann; Riedel, Thomas; Stümer, Wolfgang; Brötz, Johannes
2016-12-01
The German greenhouse gas inventory in the land use change sector strongly depends on national forest inventory data. As these data were collected periodically 1987, 2002, 2008 and 2012, the time series on emissions show several "jumps" due to biomass stock change, especially between 2001 and 2002 and between 2007 and 2008 while within the periods the emissions seem to be constant due to the application of periodical average emission factors. This does not reflect inter-annual variability in the time series, which would be assumed as the drivers for the carbon stock changes fluctuate between the years. Therefore additional data, which is available on annual basis, should be introduced into the calculations of the emissions inventories in order to get more plausible time series. This article explores the possibility of introducing an annual rather than periodical approach to calculating emission factors with the given data and thus smoothing the trajectory of time series for emissions from forest biomass. Two approaches are introduced to estimate annual changes derived from periodic data: the so-called logging factor method and the growth factor method. The logging factor method incorporates annual logging data to project annual values from periodic values. This is less complex to implement than the growth factor method, which additionally adds growth data into the calculations. Calculation of the input variables is based on sound statistical methodologies and periodically collected data that cannot be altered. Thus a discontinuous trajectory of the emissions over time remains, even after the adjustments. It is intended to adopt this approach in the German greenhouse gas reporting in order to meet the request for annually adjusted values.
Forest Inventory-based Projection Systems for Wood and Biomass Availability
Barreiro, Susana; Schelhaas, M.; McRoberts, Ronald E.; Kändler, Gerald
2017-01-01
Well-managed forests and woodlands are a renewable resource, producing essential
raw material with minimum waste and energy use. Rich in habitat and species diversity, forests may contribute to increased ecosystem stability. They can absorb the effects of unwanted deposition and other
Using forest inventory data to assess fisher resting habitat suitability in California.
William J. Zielinski; Richard L. Truex; Jeffrey R. Dunk; Tom Gaman
2006-01-01
The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat,...
Evaluating the compatibility of American and Mexican national forest inventory data
Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen
2012-01-01
The international border region between the United States and Mexico represents a point of discontinuity in forest policy, land use management and resource utilization practices. These differences along with physical barriers which separate the two countries can interact to alter the structure and functioning of forest vegetation. One valuable source of information for...
Maria K. Janowiak; Louis R. Iverson; Jon Fosgitt; Stephen D. Handler; Matt Dallman; Scott Thomasma; Brad Hutnik; Christopher W. Swanston
2017-01-01
Climate change is having important effects on forest ecosystems, presenting a challenge for natural resource professionals to reduce climate-associated impacts while still achieving diverse management objectives. Regional projections of climate change and forest response are becoming more readily available, but managers are still searching for practical ways to apply...
Directory of Open Access Journals (Sweden)
Trimanto Trimanto
2017-05-01
Full Text Available Nusa Tenggara consists of some small islands, one of them is Moyo Island. The diversity of plant species in this island is not really known for certain. This research was determined to observe the diversity of plant spe-cies in Moyo Island forest. The research was conducted in April 2013 by using floristic analysis method. The characteristic of Moyo Island forest is lowland evergreen rain forest. The results showed there were 60 tree species recorded in Moyo Island forest. There were many fruiting trees and seedling from the trees which show healthy growth, indicated that the plant regeneration in this forest is went well. The diversity of Pteri-dophytes and orchids were not high. Epiphytic fern which often found in the forest were Drynaria quersifolia and Platycerium bifurcatum and terrestrial orchid that dominated in the forest was Nervilia aragoana. Tuber plant was often found in this forest and grew prolifically were Tacca, Dioscorea and Amorphophallus. In coastal area lived a population of Pandanus tectorius. There were three new record plants found. The first was epiphytic orchid: Pteroceras javanica, the second was the epiphytic plant: Hoya verticillata and wild tuber plant: Tacca leontopetaloides.
Directory of Open Access Journals (Sweden)
Sarah Ehlers
2018-04-01
Full Text Available Today, non-expensive remote sensing (RS data from different sensors and platforms can be obtained at short intervals and be used for assessing several kinds of forest characteristics at the level of plots, stands and landscapes. Methods such as composite estimation and data assimilation can be used for combining the different sources of information to obtain up-to-date and precise estimates of the characteristics of interest. In composite estimation a standard procedure is to assign weights to the different individual estimates inversely proportional to their variance. However, in case the estimates are correlated, the correlations must be considered in assigning weights or otherwise a composite estimator may be inefficient and its variance be underestimated. In this study we assessed the correlation of plot level estimates of forest characteristics from different RS datasets, between assessments using the same type of sensor as well as across different sensors. The RS data evaluated were SPOT-5 multispectral data, 3D airborne laser scanning data, and TanDEM-X interferometric radar data. Studies were made for plot level mean diameter, mean height, and growing stock volume. All data were acquired from a test site dominated by coniferous forest in southern Sweden. We found that the correlation between plot level estimates based on the same type of RS data were positive and strong, whereas the correlations between estimates using different sources of RS data were not as strong, and weaker for mean height than for mean diameter and volume. The implications of such correlations in composite estimation are demonstrated and it is discussed how correlations may affect results from data assimilation procedures.
Directory of Open Access Journals (Sweden)
Jens T Stevens
Full Text Available Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA program reflects the timing of historical high-severity (i.e. stand-replacing fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1 the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2 recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.
Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.
P. Barbosa; F. Herrera; S. Goeking; V. Nieto; M. Pena; S. Ortiz
2014-01-01
El Inventario Forestal Nacional de Colombia (IFN) incluye un programa de Aseguramiento de Calidad (AC) para garantizar la confiabilidad de todos los datos recogidos y generados en la etapa de muestreo. El objetivo de este programa; es proporcionar un marco que asegure que la información compilada acerca de los bosques es completa, exacta, imparcial y de calidad...
Duffy, P.; Keller, M. M.; Morton, D. C.
2016-12-01
Carbon accounting for REDD+ requires knowledge of deforestation, degradation, and associated changes in forest carbon stocks. Degradation is more difficult to detect than deforestation so SilvaCarbon, an US inter-agency effort, has set a priority to better characterize forest degradation effects on carbon loss. By combining information from forest inventory and lidar data products, impacts of deforestation, degradation, and associated changes in forest carbon stocks can be more accurately characterized across space. Our approach employs a hierarchical Bayesian modeling (HBM) framework where the assimilation of information from multiple sources is accomplished using a change of support (COS) technique. The COS formulation allows data from multiple spatial resolutions to be assimilated into an intermediate resolution. This approach is being applied in Paragominas, a jurisdiction in the eastern Brazilian Amazon with a high proportion of logged and burned degraded forests where political change has opened the way for REDD+. We build on a long history of research including our extensive studies of logging damage. Our primary objective is to quantify above-ground carbon stocks and corresponding uncertainty in a spatially explicit manner. A secondary objective is to quantify the relative contribution of lower level data products to the overall uncertainty, allowing for more focused subsequent data collection in the context of uncertainty reduction. This approach provides a mechanism to assimilate information from multiple sources to produce spatially-explicit maps of carbon stocks and changes with corresponding spatially explicit maps of uncertainty. Importantly, this approach also provides a mechanism that can be used to assess the value of information from specific data products.
Vitality of the Estonian forests (results of the inventory and research)
International Nuclear Information System (INIS)
Karoles, K.
1991-01-01
Factors affecting Estonian forests are: The environmental, specially atmospheric pollution, - the foundation of new forests as monoculture on unsuitable locations, - mechanical damages by unsuitable forest machinery, - unfavourable water conditions, - Heterobasidion or Armillaria rot roots. Local damages in consequence of air pollutants are distributed in environments of Tallinn, Kivioli, Kohtla-Jaerve and the thermal power stations (Narva), where the SO 2 -content in the air is on the average higher than 50 (80) μg/m 3 . Pine forests on dry sand soils (600 ha damaged in 1989) and the older spruce forests show the new type of forest decline. High Al-ion concentration, disturbances of the Ca-Mg-metabolism, an extreme nutrient deficit, (specially N-deficit) and periodical water deficit as well as pathogenic fungi are damaging the trees. Spruces show nonspecific defoliation, needle necrosis, needlefall, occurence of fungal diseases. More damaged are the spruce forests in regions with basic precipitations and high sulphur-deposition. (orig./UWA) [de
Accuracy Assessment of Timber Volume Maps Using Forest Inventory Data and LiDAR Canopy Height Models
Directory of Open Access Journals (Sweden)
Andreas Hill
2014-09-01
Full Text Available Maps of standing timber volume provide valuable decision support for forest managers and have therefore been the subject of recent studies. For map production, field observations are commonly combined with area-wide remote sensing data in order to formulate prediction models, which are then applied over the entire inventory area. The accuracy of such maps has frequently been described by parameters such as the root mean square error of the prediction model. The aim of this study was to additionally address the accuracy of timber volume classes, which are used to better represent the map predictions. However, the use of constant class intervals neglects the possibility that the precision of the underlying prediction model may not be constant across the entire volume range, resulting in pronounced gradients between class accuracies. This study proposes an optimization technique that automatically identifies a classification scheme which accounts for the properties of the underlying model and the implied properties of the remote sensing support information. We demonstrate the approach in a mountainous study site in Eastern Switzerland covering a forest area of 2000 hectares using a multiple linear regression model approach. A LiDAR-based canopy height model (CHM provided the auxiliary information; timber volume observations from the latest forest inventory were used for model calibration and map validation. The coefficient of determination (R2 = 0.64 and the cross-validated root mean square error (RMSECV = 123.79 m3 ha−1 were only slightly smaller than those of studies in less steep and heterogeneous landscapes. For a large set of pre-defined number of classes, the optimization model successfully identified those classification schemes that achieved the highest possible accuracies for each class.
Base-age invariance and inventory projections
C. J. Cieszewski; R. L. Bailey; B. E. Borders; G. H. Brister; B. D. Shiver
2000-01-01
One of the most important functions of forest inventory is to facilitate management decisions towards forest sustainability based on inventory projections into the future. Therefore, most forest inventories are used for predicting future states of the forests, in modern forestry the most common methods used in inventory projections are based on implicit functions...
Directory of Open Access Journals (Sweden)
Jose de Jesus Navar Chaidez
2016-05-01
Full Text Available Aboveground tree biomass (bole, branches and foliage, M, plays a key role in the conventional and sustainable management of forest communities. The standard approach to assess tree or plot M is harvesting trees, developing and fitting allometric equations to trees or forest inventory plot data. In the absence of local tree allometry, it is usually recommended to fit off site allometric equations to evaluate tree or plot M. This research aims: (a to develop an updated on site allometric equation (b to fit available off site allometric equations to destructively harvested trees and (c to fit available allometric equations to plot M of Mexico’s Sinaloan tropical dry forests to understand sources of inherent tree and plot M variability. Results showed that: (a the improved on site allometric equation increases precision in contrast to the conventional biomass equation previously reported as well as to off site tree M equations, (b off site allometry projects tree and plot M deviates by close to one order of magnitude. Two tested and recommended approaches to increase tree and plot M precision when fitting off site equations are: (i to use all available tree allometric functions to come up with a mean equation or (ii to calibrate off site equations by fitting new, local parameters that can be calculated using statistical programs.These options would eventually increase tree and plot M precision in regional evaluations.
Floristic inventory of a zone of ecological tension in the Atlantic Forest of Northeastern Brazil
Mendes, Kalinne; Gomes, Polyhanna; Alves, Marccus
2010-01-01
Abstract The Serra de Itabaiana National Park, Sergipe, is situated in a transition area between Atlantic Forest and the Caatinga and is considered by the Ministério do Meio Ambiente to be extremely important for the conservation of the Atlantic Forest flora. The paucity of floristic information from Sergipe state and areas of ecological tension motivated this floristic survey in the only National Park in the state. Botanical collections were made from 2006 to 2009, in six expedictions, by me...
Directory of Open Access Journals (Sweden)
Marcus Schmidt
2016-03-01
Full Text Available Background An examination of the distribution of ancient charcoal kiln sites in the forest landscape seems to be worthwhile, since general trends in the selection of suitable kiln site locations in the past might become obvious. In this way forest landscape elements with a more intense usage by charcoal burning can be identified. By doing this, we can expect to gain information on the former condition and tree species composition of woodland. Investigations on the spatial distribution of charcoal kiln sites in relation to landscape attributes are sparse, however, probably due to the high on-site mapping effort. The outstanding suitability of LiDAR-derived digital terrain models (DTMs for the detection of charcoal kiln sites has been recently proved. Hence, DTM-based surveys of charcoal kiln sites represent a promising attempt to fill this research gap. Methods Based on DTM-based surveys, we analyzed the spatial distribution of charcoal kiln sites in two forest landscapes in the German federal state of Hesse: Reinhardswald and Kellerwald-Edersee National Park. In doing so, we considered the landscape attibutes "tree species composition", “water supply status”, “nutrient supply status”, “soil complex classes”, “altitude”, “exposition”, and “inclination”. Results We found that charcoal kiln sites were established preferably on hillside locations that provided optimal growing and regeneration conditions for European beech (Fagus sylvatica due to their acidic brown soils and sufficient water supply. These results are in line with instructions for the selection of appropriate kiln site locations, found in literature from the 18th to the 19th century. Conclusions We conclude that there were well-stocked, beech-dominated deciduous forest stands in northern Hesse before 1800, particularly at poorly accessible hillside locations. These large stocks of beech wood were utilized by the governments of the different Hessian territories
Directory of Open Access Journals (Sweden)
Kalle Eerikäinen
2012-12-01
Full Text Available An approach based on the nearest neighbors techniques is presented for producing thematic maps of forest cover (forest/non-forest and total stand volume for the Terai region in southern Nepal. To create the forest cover map, we used a combination of Landsat TM satellite data and visual interpretation data, i.e., a sample grid of visual interpretation plots for which we obtained the land use classification according to the FAO standard. These visual interpretation plots together with the field plots for volume mapping originate from an operative forest inventory project, i.e., the Forest Resource Assessment of Nepal (FRA Nepal project. The field plots were also used in checking the classification accuracy. MODIS satellite data were used as a reference in a local correction approach conducted for the relative calibration of Landsat TM images. This study applied a non-parametric k-nearest neighbor technique (k-NN to the forest cover and volume mapping. A tree height prediction approach based on a nonlinear, mixed-effects (NLME modeling procedure is presented in the Appendix. The MODIS image data performed well as reference data for the calibration approach applied to make the Landsat image mosaic. The agreement between the forest cover map and the field observed values of forest cover was substantial in Western Terai (KHAT 0.745 and strong in Eastern Terai (KHAT 0.825. The forest cover and volume maps that were estimated using the k-NN method and the inventory data from the FRA Nepal project are already appropriate and valuable data for research purposes and for the planning of forthcoming forest inventories. Adaptation of the methods and techniques was carried out using Open Source software tools.
Aponte, Cristina; Tolhurst, Kevin G; Bennett, Lauren T
2014-07-01
Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of -8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (-0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless
Chris Witt; Paul L. Patterson
2011-01-01
We used Interior West Forest Inventory and Analysis (IW-FIA) data to identify conditions where pinyon-juniper woodlands provide security cover, thermal cover, and suitable amounts of big sagebrush (Artemisia tridentata spp.) forage to mule deer in Utah. Roughly one quarter of Utah's pinyon-juniper woodlands had a big sagebrush component in their understory....
Marla R. Emery; Alexandra Wrobel; Mark H. Hansen; Michael Dockry; W. Keith Moser; Kekek Jason Stark; Jonathan H. Gilbert
2014-01-01
Traditional ecological knowledge (TEK) has been proposed as a basis for enhanced understanding of ecological systems and their management. TEK also can contribute to targeted inventories of resources not included in standard mensuration. We discuss the results of a cooperative effort between the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) and USDA Forest...
Devon Donahue
2012-01-01
This paper is an analysis of 5 years of accident data for the USDA Forest Service, Rocky Mountain Research Station (RMRS) Inventory and Monitoring (IM) Program that identifies past trends, allows for standardized self-comparison, and increases our understanding of the true costs of injuries and accidents. Measuring safety is a difficult task. While most agree that...
Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.
2017-10-01
Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.
Inventories of N2O and NO emissions from European forest soils
DEFF Research Database (Denmark)
Kesik, M.; Ambus, Per; Baritz, R.
2005-01-01
Forest soils are a significant source for the primary and secondary greenhouse gases N2O and NO. However, current estimates are still uncertain due to the still limited number of field measurements and the herein observed pronounced variability of N trace gas fluxes in space and time, which are d...
Kevin M. Potter; Christopher W. Woodall; Christopher M. Oswalt; Basil V. III Iannone; Songlin Fei
2015-01-01
Biodiversity is expected to convey numerous functional benefits to forested ecosystems, including increased productivity and resilience. When assessing biodiversity, however, statistics that account for evolutionary relationships among species may be more ecologically meaningful than traditional measures such as species richness. In three broad-scale studies, we...
Mean species cover: a harmonized indicator of shrub cover for forest inventories
Iciar Alberdi; Sonia Condés; Ronald E. Mcroberts; Susanne Winter
2018-01-01
Because shrub cover is related to many forest ecosystem functions, it is one of the most relevant variables for describing these communities. Nevertheless, a harmonized indicator of shrub cover for large-scale reporting is lacking. The aims of the study were threefold: to define a shrub indicator that can be used by European countries for harmonized shrub cover...
Cypress facts for the South, 2010—forest inventory and analysis factsheet
John G. Greis; Mark J. Brown; James W. Bentley
2012-01-01
With the expansion of markets for cypress mulch, continued interest in cypress for use in construction and furniture manufacturing, and its prominence as a component of the Southâs forested wetlands, it is important to understand the status of this uniquely southern resource. This factsheet is intended to provide a brief look at the geographic occurrence and extent of...
Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Eucalyptus tree stands killed by low temperatures in December 1972 were outlined by image enhancement of two separate dates of ERTS-1 images (January 22, 1973-I.D. 1183-18175 and April 22, 1973-I.D. 1273-18183). Three stands larger than 500 meters in size were detected very accurately. In Colorado, range and grassland communities were analyzed by visual interpretation of color composite scene I.D. 1028-17135. It was found that mixtures of plant litter, amount and kind of bare soil, and plant foliage cover made classification of grasslands very difficult. Changes in forest land use were detected on areas as small as 5 acres when ERTS-1 color composite scene 1264-15445 (April 13, 1973) was compared with 1966 ASCS index mosaics (scale 1:60,000). Verification of the changes were made from RB-57 underflight CIR transparencies (scale 1:120,000).
Forest resources of the Nez Perce National Forest
Michele Disney
2010-01-01
As part of a National Forest System cooperative inventory, the Interior West Forest Inventory and Analysis (IWFIA) Program of the USDA Forest Service conducted a forest resource inventory on the Nez Perce National Forest using a nationally standardized mapped-plot design (for more details see the section "Inventory methods"). This report presents highlights...
James W. Bentley; Consuelo Brandeis; Jason A. Cooper; Christopher M. Oswalt; Sonja N. Oswalt; KaDonna Randolph
2014-01-01
This bulletin describes forest resources of the State of Texas at the time of the 2008 forest inventory. This bulletin addresses forest area, volume, growth, removals, mortality, forest health, timber product output, and the economy of the forest sector.
Directory of Open Access Journals (Sweden)
Stéphane Couturier
2009-10-01
Full Text Available There is no record so far in the literature of a comprehensive method to assess the accuracy of regional scale Land Cover/ Land Use (LCLU maps in the sub-tropical belt. The elevated biodiversity and the presence of highly fragmented classes hamper the use of sampling designs commonly employed in previous assessments of mainly temperate zones. A sampling design for assessing the accuracy of the Mexican National Forest Inventory (NFI map at community level is presented. A pilot study was conducted on the Cuitzeo Lake watershed region covering 400 000 ha of the 2000 Landsat-derived map. Various sampling designs were tested in order to find a trade-off between operational costs, a good spatial distribution of the sample and the inclusion of all scarcely distributed classes (‘rare classes’. A two-stage sampling design where the selection of Primary Sampling Units (PSU was done under separate schemes for commonly and scarcely distributed classes, showed best characteristics. A total of 2 023 punctual secondary sampling units were verified against their NFI map label. Issues regarding the assessment strategy and trends of class confusions are devised.
Dacia M. Meneguzzo
2016-01-01
This resource update provides an overview of forest resources in Kansas based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2015 inventory,...
Dacia M. Meneguzzo
2017-01-01
This resource update provides an overview of forest resources in Kansas based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2016 inventory,...
Dacia M. Meneguzzo
2016-01-01
This resource update provides an overview of forest resources in Nebraska based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2015 inventory...
International Nuclear Information System (INIS)
Tamminen, P.; Aro, A.; Salemaa, M.
2007-09-01
The aim of the inventory was to determine the status of the forest soils and to map the current nutrient status of forest vegetation on Olkiluoto Island in order to create a basis for monitoring future changes in the forests and to provide data for a biospheric description of the island. The study was carried out on 94 FEH plots, which were selected from the forest extensive monitoring network (FET plots) on the basis of the forest site type distribution and tree stand characteristics measured on the island during 2002 - 2004. Forest soils on Olkiluoto are very young and typical of soils along the Finnish coast, i.e. stony or shallow soils overlying bedrock, but with more nutrients than the forest soils inland. In addition to nutrients, the heavy metal concentrations are clearly higher on Olkiluoto than the average values for Finnish forest soils. The soil in the alder stands growing along the seashore is different from the other soils on Olkiluoto and the control soils inland. These soils are less acidic and have large reserves of sodium, magnesium and nitrogen. Macronutrient concentrations in vascular plant species were relatively similar to those reported for Southern Finland. However, it is obvious that the accumulation of particulate material on the vegetation, especially on forest floor bryophytes, has increased due to emissions derived from the construction of roads, drilling and rock crushing, as well as the other industrial activities on Olkiluoto Island. Leaf and needle analysis indicated that the tree stands had, in the main, a good nutrient status on Olkiluoto Island. The surveying methods used on Olkiluoto are better suited to detect systematic changes over a larger area or within a group of sample plots than the changes on individual plots. (orig.)
Victor A. Rudis
2000-01-01
Scant information exists about the spatial extent of human impact on forest resource supplies, i.e., depreciative and nonforest uses. I used observations of ground-sampled land use and intrusions on forest land to map the probability of resource use and human impact for broad areas. Data came from a seven State survey region (Alabama, Arkansas, Louisiana, Mississippi,...
Victor A. Rudis
2000-01-01
Scant information exists about the spatial extent of human impact on forest resource supplies, i.e., depreciative and nonforest uses. I used observations of ground-sampled land use and intrusions on forest land to map the probability of resource use and human impact for broad areas. Data came from a seven-state survey region (Alabama, Arkansas, Louisiana, Mississippi,...
Iowa's Forest Resources in 1999
Joseph T. II Boykin
2002-01-01
The North Central Research Station's Forest Inventory and Analysis Program began fieldwork for the fourth forest inventory of Iowa in 1999. This inventory initiates a new annual inventory system. This Research Note contains preliminary estimates of Iowa's forest resources prepared from data gathered during the first year of the inventory.
Healey, S. P.; Zhao, F. R.; McCarter, J. B.; Frescino, T.; Goeking, S.
2017-12-01
International reporting of American forest carbon trends depends upon the Forest Service's nationally consistent network of inventory plots. Plots are measured on a rolling basis over a 5- to 10-year cycle, so estimates related to any variable, including carbon storage, reflect conditions over a 5- to 10-year window. This makes it difficult to identify the carbon impact of discrete events (e.g., a bad fire year; extraction rates related to home-building trends), particularly if the events are recent.We report an approach to make inventory estimates more sensitive to discrete and recent events. We use a growth model (the Forest Vegetation Simulator - FVS) that is maintained by the Forest Service to annually update the tree list for every plot, allowing all plots to contribute to a series of single-year estimates. Satellite imagery from the Landsat platform guides the FVS simulations by providing information about which plots have been disturbed, which are recovering from disturbance, and which are undergoing undisturbed growth. The FVS model is only used to "update" plot tree lists until the next field measurement is made (maximum of 9 years). As a result, predicted changes are usually small and error rates are low. We present a pilot study of this system in Idaho, which has experienced several major fire events in the last decade. Empirical estimates of uncertainty, accounting for both plot sampling error and FVS model error, suggest that this approach greatly increases temporal specificity and sensitivity to discrete events without sacrificing much estimate precision at the level of a US state. This approach has the potential to take better advantage of the Forest Service's rolling plot measurement schedule to report carbon storage in the US, and it offers the basis of a system that might allow near-term, forward-looking analysis of the effects of hypothetical forest disturbance patterns.
Louis R. Iverson; Mark W. Schwartz
1994-01-01
Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.
G. Geof Wang; Zhi-Ping Wang; Aaron D. Stottlemyer; Thomas A. Waldrop
2013-01-01
Both the National Fire Plan (http://199.134.225.50/nwcc/t2_wa4/ pdf/RuralAssistance.pdf) and the Healthy Forest Initiative (http://www.fs.fed.us/projects/ hfi/2003/august/documents/hfi-fact-sheet. pdf) call for reduction of hazardous fuels. Consequently, estimations of forest fuel loading at various scales become necessary. The Forest Inventory and Analysis (FIA)...
Thomas Brandeis; Stanley Zarnoch; Christopher Oswalt; Jeffery Stringer
2017-01-01
Hardwood lumber harvested from the temperate broadleaf and mixed broadleaf/conifer forests of the east-central United States is an important economic resource. Forest industry stakeholders in this region have a growing need for accurate, reliable estimates of high-quality wood volume. While lower-graded timber has an increasingly wide array of uses, the forest products...
Projecting Timber Inventory at the Product Level
Lawrence Teeter; Xiaoping Zhou
1999-01-01
Current timber inventory projections generally lack information on inventory by product classes. Most models available for inventory projection and linked to supply analyses are limited to projecting aggregate softwood and hardwood. The research presented describes a methodology for distributing the volume on each FIA (USDA Forest Service Forest Inventory and Analysis...
Sonja Oswalt; Chengquan Huang; Hua Shi; James Vogelmann; Zhiliang Zhu; Samuel N. Goward; John Coulston
2009-01-01
Landsat images have been widely used for assessing forest characteristics and dynamics. Recently, significant progress has been made towards indepth exploration of the rich Landsat archive kept by the U.S. Geological Survey to improve our under standing of forest disturbance and recovery processes. In this study, we used Landsat images to map forest disturbances at...
W. Brad Smith
2009-01-01
This article takes a brief chronological look at resource inventory and reporting and links to international influences. It explores events as drivers of more consistent data within the United States and highlights key dates and events in the evolution of inventory policy and practice. From King George to L?Ecole nationale forestiere to the Food and Agriculture...
Directory of Open Access Journals (Sweden)
Yong Chen
2016-06-01
Full Text Available The aim of this paper was to validate factors affecting the in-stand landscape quality and how important each factor was in determining scenic beauty of natural secondary forests. The study was limited to 23 stand-level cases of natural secondary forests in Shen Zhen city in southern China. Typical samples of photographs and public estimations were applied to evaluate scenic beauty inside the natural secondary forests. The major factors were then selected by multiple linear-regression analysis and a model between scenic beauty estimation (SBE values and in-stand landscape features was established. Rise in crown density, fall in plant litter, glow in color of trunk, fall in arbor richness, and rise in visible distance increased scenic beauty values of in-stand landscape. These five factors significantly explained the differences in scenic beauty, and together accounted for 45% of total variance in SBEs. Personal factors (e.g. gender, age and education did not significantly affect the ratings of landscape photos, although variations of landscape quality were affected by some personal factors. Results of this study will assist policymakers, silviculturists and planners in landscape design and management of natural secondary forests in Shenzhen city. People can improve the scenic beauty values by pruning branches and clearing plant litter, which subsequently improve the forest health and contribute to forest recreation.
Directory of Open Access Journals (Sweden)
Ralf Lauterbach
Full Text Available Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008-2010 in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming.
George L. McCaskill
2014-01-01
This publication provides an overview of the forest resources in Pennsylvania based upon inventories conducted by the USDA Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. Information about the national and regional FIA program is available online at http://fia.fs.fed.us. Since 1999, FIA has implemented an annual inventory...
Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.
2017-12-01
The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These
Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, de R.W.
2008-01-01
Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many
2011-07-21
... Reservation, New Mexico (hereinafter referred to as ``The Tribes''). History and Description of the Remains... History, Chicago, IL AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The U.S. Department of Agriculture, Forest Service, Gila National Forest and the Field Museum of Natural History have...
Kevin M. Potter; Barbara S. Crane; William W. Hargrove
2015-01-01
A variety of threats, most importantly climate change and insect and disease infestation, will increase the likelihood that forest tree species could experience population-level extirpation or species-level extinction during the next century. Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation) is a cooperative effort...
C.W. Woodall; L.S. Heath; J.E. Smith
2008-01-01
Concerns over the effect of greenhouse gases and consequent international agreements and regional/national programs have spurred the need for comprehensive assessments of forest ecosystem carbon stocks. Down and dead woody (DDW) materials are a substantial component of forest carbon stocks; however, few surveys of DDW carbon stocks have been conducted at national-...
Winston P. Smith; Keith M. Endres
2012-01-01
We monitored 15 radio-collared raccoons (Procyon lotor) on Davies Island in March 1987 - May 1988 to determine the extent to which individual tree attributes or spatial configuration of plant associations (habitat types) across the land-scape influenced den use. Of 1091 verified den sites, 428 were in tree cavities. Raccoon occurrence among 4 cover...
Mauya, Ernest William; Hansen, Endre Hofstad; Gobakken, Terje; Bollandsås, Ole Martin; Malimbwi, Rogers Ernest; Næsset, Erik
2015-12-01
Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent research in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on model prediction accuracy and its implication when used in a model-assisted inferential framework. The results showed that the prediction accuracy of the model improved as the plot size increased. The adjusted R 2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%. Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals. Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based AGB, decreased with increasing plot size in the range from 200 to 3000 m 2 . The variance ratio of field-based estimates relative to model-assisted variance ranged from 1.7 to 7.7. This study showed that the relative improvement in precision of AGB estimation when increasing field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.
Anomalous dismeter distribution shifts estimated from FIA inventories through time
Francis A. Roesch; Paul C. Van Deusen
2010-01-01
In the past decade, the United States Department of Agriculture Forest Serviceâs Forest Inventory and Analysis Program (FIA) has replaced regionally autonomous, periodic, state-wide forest inventories using various probability proportional to tree size sampling designs with a nationally consistent annual forest inventory design utilizing systematically spaced clusters...
Energy Technology Data Exchange (ETDEWEB)
Quirós Segovia, M.; Condés Ruiz, S.; Drápela, K.
2016-07-01
Aim of the study: The main objective of this study was to test Geographically Weighted Regression (GWR) for developing height-diameter curves for forests on a large scale and to compare it with Linear Mixed Models (LMM). Area of study: Monospecific stands of Pinus halepensis Mill. located in the region of Murcia (Southeast Spain). Materials and Methods: The dataset consisted of 230 sample plots (2582 trees) from the Third Spanish National Forest Inventory (SNFI) randomly split into training data (152 plots) and validation data (78 plots). Two different methodologies were used for modelling local (Petterson) and generalized height-diameter relationships (Cañadas I): GWR, with different bandwidths, and linear mixed models. Finally, the quality of the estimated models was compared throughout statistical analysis. Main results: In general, both LMM and GWR provide better prediction capability when applied to a generalized height-diameter function than when applied to a local one, with R2 values increasing from around 0.6 to 0.7 in the model validation. Bias and RMSE were also lower for the generalized function. However, error analysis showed that there were no large differences between these two methodologies, evidencing that GWR provides results which are as good as the more frequently used LMM methodology, at least when no additional measurements are available for calibrating. Research highlights: GWR is a type of spatial analysis for exploring spatially heterogeneous processes. GWR can model spatial variation in tree height-diameter relationship and its regression quality is comparable to LMM. The advantage of GWR over LMM is the possibility to determine the spatial location of every parameter without additional measurements. Abbreviations: GWR (Geographically Weighted Regression); LMM (Linear Mixed Model); SNFI (Spanish National Forest Inventory). (Author)
Masoudi, Abolfazl; Koprowski, John Lad; Bhattarai, Upendra Raj; Wang, Dun
2018-02-01
Entomopathogenic fungi are considered to be a safe microbiological pesticide alternative to chemical control. Efforts are underway to understand precisely their taxonomy and natural distribution through mycological and biodiversity studies based on molecular markers. Here, we present descriptions of the diversity of the entomopathogenic fungi in the genera Metarhizium and Beauveria found along the elevational gradients of the Qinling subtropical and temperate forests of Shaanxi province in China, using morphological aspects and molecular markers. Molecular characterization using the Mz_IGS3 intergenic region revealed that Metarhizium isolates phylogenetically clustered in the PARB clade with four different distinguishable species, but the 5'-TEF gene allowed only ambiguous delimitation of Metarhizium species. Beauveria isolates were characterized by sequence analyses of the translation elongation factor 1-α and the Bloc region. The richness of Metarhizium species decreased with increasing elevation, with Metarhizium robertsii s.l. being the most abundant species along the elevational gradient. Our bioassay suggests that certain species of Metarhizium are significantly pathogenic to the insect model Tenebrio molitor at both the adult and larvae stages and could potentially serve as a control of insect pests of forests.
R. Justin DeRose; W. Shih-Yu (Simon) Wang; John D. Shaw
2012-01-01
Increment cores collected as part of the periodic inventory in the Intermountain West were examined for their potential to represent growth and be a proxy for climate (precipitation) over a large region (Utah). Standardized and crossdated time-series created from pinyon pine (n=249) and Douglas-fir (n=274) increment cores displayed spatiotemporal patterns in growth...
Susan J. Crocker; Gary J. Brand; Brett J. Butler; David E. Haugen; Dick C. Little; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall
2009-01-01
The first full, annualized inventory of Illinois' forests reports more than 4.5 million acres of forest land with an average of 459 trees per acre. Forest land is dominated by oak/hickory forest types, which occupy 65 percent of total forest land area. Seventy-two percent of forest land consists of sawtimber, 20 percent contains poletimber, and 8 percent contains...
Patrick D. Miles; David Heinzen; Manfred E. Mielke; Christopher W. Woodall; Brett J. Butler; Ron J. Piva; Dacia M. Meneguzzo; Charles H. Perry; Dale D. Gormanson; Charles J. Barnett
2011-01-01
The second full annual inventory of Minnesota's forests reports 17 million acres of forest land with an average volume of more than 1,000 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies nearly 30 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 35 percent...
Ronald E. McRoberts
2009-01-01
Nearest neighbors techniques have been shown to be useful for predicting multiple forest attributes from forest inventory and Landsat satellite image data. However, in regions lacking good digital land cover information, nearest neighbors selected to predict continuous variables such as tree volume must be selected without regard to relevant categorical variables such...
Ronald E. McRoberts
2010-01-01
Satellite image-based maps of forest attributes are of considerable interest and are used for multiple purposes such as international reporting by countries that have no national forest inventory and small area estimation for all countries. Construction of the maps typically entails, in part, rectifying the satellite images to a geographic coordinate system, observing...
Directory of Open Access Journals (Sweden)
Jean-Matthieu Monnet
2014-09-01
Full Text Available Continuous maps of forest parameters can be derived from airborne laser scanning (ALS remote sensing data. A prediction model is calibrated between local point cloud statistics and forest parameters measured on field plots. Unfortunately, inaccurate positioning of field measures lead to a bad matching of forest measures with remote sensing data. The potential of using tree diameter and position measures in cross-correlation with ALS data to improve co-registration is evaluated. The influence of the correction on ALS models is assessed by comparing the accuracy of basal area prediction models calibrated or validated with or without the corrected positions. In a coniferous, uneven-aged forest with high density ALS data and low positioning precision, the algorithm co-registers 91% of plots within two meters from the operator location when at least the five largest trees are used in the analysis. The new coordinates slightly improve the prediction models and allow a better estimation of their accuracy. In a forest with various stand structures and species, lower ALS density and differential Global Navigation Satellite System measurements, position correction turns out to have only a limited impact on prediction models.
James E. Smith; Coeli M. Hoover
2017-01-01
The carbon reports in the Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) provide two alternate approaches to carbon estimates for live trees (Rebain 2010). These are (1) the FFE biomass algorithms, which are volumebased biomass equations, and (2) the Jenkins allometric equations (Jenkins and others 2003), which are diameter based. Here, we...
DEFF Research Database (Denmark)
Baden, Maria; Särkinen, Tiina; Conde, Dalia Amor
2016-01-01
The Chiquibul Forest Reserve and National Park in Belize is a priority conservation area within the ‘Maya Forest’ in Central America. Although taxonomic data are essential for the development of conservation plans in the region, there is limited knowledge of the existing species in the area. Here...
Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith
2011-01-01
We examined spatial patterns of changes in forest area and nonsoil carbon (C) dynamics affected by land use/cover change (LUC) and harvests in 24 northern states of the United States using an integrated methodology combining remote sensing and ground inventory data between 1992 and 2001. We used the Retrofit Change Product from the Multi-Resolution Land Characteristics...
Mauro, Francisco; Monleon, Vicente J; Temesgen, Hailemariam; Ford, Kevin R
2017-01-01
Forest inventories require estimates and measures of uncertainty for subpopulations such as management units. These units often times hold a small sample size, so they should be regarded as small areas. When auxiliary information is available, different small area estimation methods have been proposed to obtain reliable estimates for small areas. Unit level empirical best linear unbiased predictors (EBLUP) based on plot or grid unit level models have been studied more thoroughly than area level EBLUPs, where the modelling occurs at the management unit scale. Area level EBLUPs do not require a precise plot positioning and allow the use of variable radius plots, thus reducing fieldwork costs. However, their performance has not been examined thoroughly. We compared unit level and area level EBLUPs, using LiDAR auxiliary information collected for inventorying 98,104 ha coastal coniferous forest. Unit level models were consistently more accurate than area level EBLUPs, and area level EBLUPs were consistently more accurate than field estimates except for large management units that held a large sample. For stand density, volume, basal area, quadratic mean diameter, mean height and Lorey's height, root mean squared errors (rmses) of estimates obtained using area level EBLUPs were, on average, 1.43, 2.83, 2.09, 1.40, 1.32 and 1.64 times larger than those based on unit level estimates, respectively. Similarly, direct field estimates had rmses that were, on average, 1.37, 1.45, 1.17, 1.17, 1.26, and 1.38 times larger than rmses of area level EBLUPs. Therefore, area level models can lead to substantial gains in accuracy compared to direct estimates, and unit level models lead to very important gains in accuracy compared to area level models, potentially justifying the additional costs of obtaining accurate field plot coordinates.
K.J.W. Dooley; T.J. Brandeis
2014-01-01
This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Texas A&M Forest Service. Forest resource estimates are based on field data collected using the FIA annualized sample design and...
All flies (Diptera) collected for one year from a four-hectare (150 X 266 meter) patch of cloud forest at 1600 meters above sea level at Zurquí de Moravia, San José Province, Costa Rica (hereafter referred to as Zurquí), revealed an astounding 4,348 species. These amount to more than half the number...
V. Carter; A. Brunelle; J. Shaw
2014-01-01
In the late 1860s, Euro-American settlement and related activities, including logging, began affecting the composition and structure of forests of the western United States. These impacts were likely to be most substantial along the corridor of the trans-continental railroad. Construction and maintenance of the railroad created a high dependence for wood, especially...
Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum
2015-01-01
Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...
International Nuclear Information System (INIS)
Melin, J.
1997-01-01
Forests have the capacity to trap and retain radionuclides for a substantial period of time. The dynamic behaviour of nutrients, pollution and radionuclides in forests is complex. The rotation period of a forest stand in the Nordic countries is about 100 years, whilst the time for decomposition of organic material in a forest environment can be several hundred years. This means that any countermeasure applied in the forest environment must have an effect for several decades, or be reapplied continuously for long periods of time. To mitigate the detrimental effect of a contaminated forest environment on man, and to minimise the economic loss in trade of contaminated forest products, it is necessary to understand the mechanisms of transfer of radionuclides through the forest environment. It must also be stressed that any countermeasure applied in the forest environment must be evaluated with respect to long, as well as short term, negative effects, before any decision about remedial action is taken. Of the radionuclides studied in forests in the past, radiocaesium has been the main contributor to dose to man. In this document, only radiocaesium will be discussed since data on the impact of other radionuclides on man are too scarce for a proper evaluation. (EG)
Heller, R. C. (Principal Investigator); Aldrich, R. C.; Driscoll, R. S.; Francis, R. E.; Weber, F. P.
1974-01-01
The author has identified the following significant results. Results of photointerpretation indicated that ERTS is a good classifier of forest and nonforest lands (90 to 95 percent accurate). Photointerpreters could make this separation as accurately as signature analysis of the computer compatible tapes. Further breakdowns of cover types at each site could not be accurately classified by interpreters (60 percent) or computer analysts (74 percent). Exceptions were water, wet meadow, and coniferous stands. At no time could the large bark beetle infestations (many over 300 meters in size) be detected on ERTS images. The ERTS wavebands are too broad to distinguish the yellow, yellow-red, and red colors of the dying pine foliage from healthy green-yellow foliage. Forest disturbances could be detected on ERTS color composites about 90 percent of the time when compared with six-year-old photo index mosaics. ERTS enlargements (1:125,000 scale, preferably color prints) would be useful to forest managers of large ownerships over 5,000 hectares (12,500 acres) for broad area planning. Black-and-white enlargements can be used effectively as aerial navigation aids for precision aerial photography where maps are old or not available.
Energy Technology Data Exchange (ETDEWEB)
Herrero, C.; Monleon, V.J.; Gómez, N.; Bravo, F.
2016-07-01
Aim of the study: The aim of this study was to 1) estimate the amount of dead wood in managed beech (Fagus sylvatica L.) stands in northern Iberian Peninsula and 2) evaluate the most appropriate volume equation and the optimal transect length for sampling downed wood. Area of study: The study area is the Aralar Forest in Navarra (Northern Iberian Peninsula). Material and methods: The amount of dead wood by component (downed logs, snags, stumps and fine woody debris) was inventoried in 51 plots across a chronosequence of stand ages (0-120 years old). Main results: The average volume and biomass of dead wood was 24.43 m3 ha-1 and 7.65 Mg ha-1, respectively. This amount changed with stand development stage [17.14 m3 ha-1 in seedling stage; 34.09 m3 ha-1 inpole stage; 22.54 m3 ha-1 in mature stage and 24.27 m3 ha-1 in regular stand in regeneration stage], although the differences were not statistically significant for coarse woody debris. However, forest management influenced the amount of dead wood, because the proportion of mass in the different components and the decay stage depended on time since last thinning. The formula based on intersection diameter resulted on the smallest coefficient of variation out of seven log-volume formulae. Thus, the intersection diameter is the preferred method because it gives unbiased estimates, has the greatest precision and is the easiest to implement in the field. Research highlights: The amount of dead wood, and in particular snags, was significantly lower than that in reserved forests. Results of this study showed that sampling effort should be directed towards increasing the number of transects, instead of increasing transect length or collecting additional piece diameters that do not increase the accuracy or precision of DWM volume estimation. (Author)
The new forest carbon accounting framework for the United States
Domke, G. M.; Woodall, C. W.; Coulston, J.; Wear, D. N.; Healey, S. P.; Walters, B. F.
2015-12-01
The forest carbon accounting system used in recent National Greenhouse Gas Inventories (NGHGI) was developed more than a decade ago when the USDA Forest Service, Forest Inventory and Analysis annual inventory system was in its infancy and contemporary questions regarding the terrestrial sink (e.g., attribution) did not exist. The time has come to develop a new framework that can quickly address new questions, enables forest carbon analytics, and uses all the inventory information (e.g., disturbances and land use change) while having the flexibility to engage a wider breadth of stakeholders and partner agencies. The Forest Carbon Accounting Framework (FCAF) is comprised of a forest dynamics module and a land use dynamics module. Together these modules produce data-driven estimates of carbon stocks and stock changes in forest ecosystems that are sensitive to carbon sequestration, forest aging, and disturbance effects as well as carbon stock transfers associated with afforestation and deforestation. The new accounting system was used in the 2016 NGHGI report and research is currently underway to incorporate emerging non-live tree carbon pool data, remotely sensed information, and auxiliary data (e.g., climate information) into the FCAF.
Art Borkent; Brian V. Brown; Peter H. Adler; Dalton de Souza Amorim; Kevin Barber; Daniel Bickel; Stephanie Boucher; Scott E. Brooks; John Burger; Zelia L. Burington; Renato S. Capellari; Daniel N. R. Costa; Jeffrey M. Cumming; Greg Curler; Carl W. Dick; John H. Epler; Eric Fisher; Stephen D. Gaimari; Jon Gelhaus; David A. Grimaldi; John Hash; Martin Hauser; Heikki Hippa; Sergio Ibanez-Bernal; Mathias Jaschhof; Elena P. Kameneva; Peter H. Kerr; Valery Korneyev; Cheslavo A. Korytkowski; Giar-Ann Kung; Gunnar Mikalsen Kvifte; Owen Lonsdale; Stephen A. Marshall; Wayne N. Mathis; Verner Michelsen; Stefan Naglis; Allen L. Norrbom; Steven Paiero; Thomas Pape; Alessandre Pereira-Colavite; Marc Pollet; Sabrina Rochefort; Alessandra Rung; Justin B. Runyon; Jade Savage; Vera C. Silva; Bradley J. Sinclair; Jeffrey H. Skevington; John O. Stireman; John Swann; F. Christian Thompson; Pekka Vilkamaa; Terry Wheeler; Terry Whitworth; Maria Wong; D. Monty Wood; Norman Woodley; Tiffany Yau; Thomas J. Zavortink; Manuel A. Zumbado
2018-01-01
Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurquà de Moravia, San José Province, Costa Rica (hereafter referred to as ZurquÃ), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America....
The National Inventory of Down Woody Materials: Methods, Outputs, and Future Directions
Christopher W. Woodall
2003-01-01
The Forest Inventory and Analysis Program (FIA) of the USDA Forest Service conducts a national inventory of forests of the United States. A subset of FIA permanent inventory plots are sampled every year for numerous forest health indicators ranging fiom soils to understory vegetation. Down woody material (DWM) is an FIA indicator that refines estimation of forest...
Forests and Forest Cover - MDC_NaturalForestCommunity
NSGIC Local Govt | GIS Inventory — A point feature class of NFCs - Natural Forest Communities. Natural Forest Community shall mean all stands of trees (including their associated understory) which...
Wisconsin's forest resources, 2005
Charles, H. (Hobie) Perry; Gary J. Brand
2006-01-01
The annual forest inventory of Wisconsin continues, and this document reports 2001-05 moving averages for most variables and comparisons between 2000 and 2005 for growth, removals, and mortality. Summary resource tables can be generated through the Forest Inventory Mapmaker website at http://ncrs2.fs.fed.us/4801/fiadb/index. htm. Estimates from this inventory show a...
Odigie, Kingsley O.; Flegal, A. Russell
2014-01-01
The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlation...
Richard H. Widmann; Charles R. Dye; Gregory W. Cook
2007-01-01
A report on the forest inventory of West Virginia conducted in 1999-2001 by the Forest Inventory and Analysis unit of the Northeastern Research Station. Discusses the current condition and changes from previous inventories for forest area, timber volume, tree species, mortality and growth and removals. Graphics depict data at the state level and by county where...
Ronald J. Piva; W. Keith Moser; Douglas D. Haugan; Gregory J. Josten; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Mark H. Hansen; Dacia M. Meneguzzo; Charles H. Perry; Christopher W. Woodall
2009-01-01
The first completed annual inventory of South Dakota's forests reports almost 1.7 million acres of forest land. Softwood forests make up 74 percent of the total forest land area; the ponderosa pine forest type by itself accounts for 69 percent of the total.
Brett J. Butler
2016-01-01
This report provides an overview of forest resources in Connecticut based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. Estimates are based on field data collected using the FIA annualized sample design. Results are for the measurement years 2010-2015 with comparisons made to 2005-...
T.J. Brandeis; A.J. Hartsell; K.C. Randolph; C.M. Oswalt
2018-01-01
This resource update provides an overview of forest resources in Virginia based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Virginia Department of Forestry.
Andy Hartsell
2016-01-01
This resource update provides an overview of forest resources in Alabama based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Alabama Forestry Commission. Estimates are based on field data collected using the FIA annualized sample design and are updated yearly....
Charles H. Perry
2014-01-01
This resource update provides an overview of forest resources in Wisconsin based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Wisconsin Department of Natural Resources. Data estimates are based on field data collected using the FIA annualized sample design and...
Richard H. Widmann
2015-01-01
This resource update provides an overview of the forest resources in Pennsylvania based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. Estimates are based on field data collected using the FIA annualized sample design and are updated yearly (see footnote 1 on page 4). Information about...
Richard H. Widmann
2016-01-01
This resource update provides an overview of the forest resources in Pennsylvania based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station (NRS). Estimates are based on field data collected using the FIA annualized sample design and are updated yearly1(see footnote 1, page 2). Information...
Mark D. Nelson; Matt Brewer; Dacia M. Meneguzzo; Kathryne. Clark
2016-01-01
This resource update provides an overview of forest resources in Iowa based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Iowa Department of Natural Resources. Estimates are based on field data collected using the FIA annualized sample design and are updated...
Odigie, Kingsley O; Flegal, A Russell
2014-01-01
The amounts of labile trace metals: [Co] (3 to 11 µg g-1), [Cu] (15 to 69 µg g-1), [Ni] (6 to 15 µg g-1), [Pb] (7 to 42 µg g-1), and [Zn] (65 to 500 µg g-1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.
Directory of Open Access Journals (Sweden)
Kingsley O Odigie
Full Text Available The amounts of labile trace metals: [Co] (3 to 11 µg g-1, [Cu] (15 to 69 µg g-1, [Ni] (6 to 15 µg g-1, [Pb] (7 to 42 µg g-1, and [Zn] (65 to 500 µg g-1 in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.
Odigie, Kingsley O.; Flegal, A. Russell
2014-01-01
The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change. PMID:25259524
Charles S. Paulson
2018-01-01
This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the USDA Forest Service, Forest Inventory and Analysis (FIA) program within the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...
David E. Haugen
2016-01-01
This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...
Thomas J. Brandeis
2015-01-01
This resource update provides an overview of forest resources in east Texas derived from an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program at the Southern Research Station in cooperation with the Texas A&M Forest Service. These estimates are based on field data collected using the FIA annualized sample design and are...
Kerry Dooley
2018-01-01
This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station (SRS) in cooperation with Texas A&M Forest Service. The 254 counties of Texas are consolidated into seven FIA survey unitsâSoutheast (unit 1),...
David E. Haugen
2014-01-01
This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...
Forests of North Carolina, 2013
Mark J. Brown
2015-01-01
This periodic resource update provides an overview of forest resources in North Carolina based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the North Carolina Forest Service. Data estimates are based on field data collected using the FIA annualized sample design...
D.E. Haugen; S.A. Pugh
2014-01-01
This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...
Forests of North Carolina, 2014
Mark Brown; Samuel Lambert
2016-01-01
This periodic resource update provides an overview of forest resources in North Carolina based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the North Carolina Forest Service. Data estimates are based on field data collected using the FIA annualized sample design...
Directory of Open Access Journals (Sweden)
Fábio G. Gonçalves
2010-10-01
Full Text Available AbstractIn this study, we test whether an existing classification technique based on the integration of LANDSAT ETM+ and forest inventory data enables detailed characterization of successional stages in a tropical wet forest site. The specific objectives were: (1 to map forest age classes across the La Selva Biological Station in Costa Rica; and (2 to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation hight entropy (a surrogate for forest age and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (0.129. Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and late successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels. ResumoNesse estudo, testamos se uma técnica de classificação existente, baseada na integração de imagens LANDSAT ETM+ e os dados de inventário florestal, permite a caracterização detalhada dos estádios sucessionais em uma área de floresta tropical úmida. Os objetivos específicos foram: (1 mapear classes de idade florestal na Estação Biológica La Selva, na Costa Rica, e (2 quantificar as incertezas da abordagem proposta em relação aos dados de campo e mapas de vegetação existente. Apesar de terem sido detectadas relações significativas entre dados ETM+ e medidas de entropia da altura da vegetação (um substituto para a idade florestal o sistema de classificação testados nesse estudo não se demonstrou adequado para caracterizar a variação espacial em idade em La Selva, como evidenciado pela matriz de erro e o baixo coeficiente Kappa (0,129. Fatores que afetam o desempenho da
Directory of Open Access Journals (Sweden)
H. Gu
2016-11-01
Full Text Available Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbances have highly diverse impacts on forest carbon dynamics, making them a challenge to quantify and report. Time since disturbance is a key intermediate determinant that aids the assessment of disturbance-driven carbon emissions and removals legacies. We propose a new methodology of quantifying time since disturbance and carbon flux across forested landscapes in the Pacific Northwest (PNW at a fine scale (30 m by combining remote sensing (RS-based disturbance year, disturbance type, and above-ground biomass with forest inventory data. When a recent disturbance is detected, time since disturbance can be directly determined by combining three RS-derived disturbance products, or time since the last stand clearing can be inferred from a RS-derived 30 m biomass map and field inventory-derived species-specific biomass accumulation curves. Net ecosystem productivity (NEP is further mapped based on carbon stock and flux trajectories derived from the Carnegie-Ames-Stanford Approach (CASA model in our prior work that described how NEP changes with time following harvest, fire, or bark beetle disturbances of varying severity. Uncertainties from biomass map and forest inventory data were propagated by probabilistic sampling to provide a statistical distribution of stand age and NEP for each forest pixel. We mapped mean, standard deviation, and statistical distribution of stand age and NEP at 30 m in the PNW region. Our map indicated a net ecosystem productivity of 5.9 Tg C yr−1 for forestlands circa 2010 in the study area, with net uptake in relatively mature (> 24 years old forests (13.6 Tg C yr−1 overwhelming net negative NEP from tracts that had recent harvests (−6.4 Tg C yr−1, fires (−0.5 Tg C yr−1, and bark beetle
A framework for reporting tree cover attributes in agricultural landscapes
Dacia M. Meneguzzo; Greg C. Liknes
2012-01-01
The definition of forest land used by the USDA Forest Serviceâs Forest Inventory and Analysis program includes area, width, and density requirements. These requirements frequently exclude from the inventory any trees occupyingnarrow riparian corridors or linear tree plantings (e.g., windbreaks and shelterbelts). With recent attention being paid to such topics as bio-...
Carbon Flux of Down Woody Materials in Forests of the North Central United States
International Nuclear Information System (INIS)
Woodall, C.W.
2010-01-01
Across large scales, the carbon (C) flux of down woody material (DWM) detrital pools has largely been simulated based on forest stand attributes (e.g., stand age and forest type). The annual change in forest DWM C stocks and other attributes (e.g., size and decay class changes) was assessed using a forest inventory in the north central United States to provide an empirical assessment of strategic-scale DWM C flux. Using DWM inventory data from the USDA Forest Service's Forest Inventory and Analysis program, DWM C stocks were found to be relatively static across the study region with an annual flux rate not statistically different from zero. Mean C flux rates across the study area were -0.25, -0.12, -0.01, and -0.04 (Mg/ha/yr) for standing live trees, standing dead trees, coarse woody debris, and fine woody debris, respectively. Flux rates varied in their both magnitude and status (emission/sequestration) by forest types, latitude, and DWM component size. Given the complex dynamics of DWM C flux, early implementation of inventory re measurement, and relatively low sample size, numerous future research directions are suggested.
Richard H. Widmann; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Douglas M. Griffith; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall
2012-01-01
The first full annual inventory of West Virginia's forests reports 12.0 million acres of forest land or 78 percent of the State's land area. The area of forest land has changed little since 2000. Of this land, 7.2 million acres (60 percent) are held by family forest owners. The current growing-stock inventory is 25 billion cubic feet--12 percent more than in...
Forest resources of Mississippi’s national forests, 2006
Sonja N. Oswalt
2011-01-01
This bulletin describes forest resource characteristics of Mississippiâs national forests, with emphasis on DeSoto National Forest, following the 2006 survey completed by the U.S. Department of Agriculture Forest Service, Forest Inventory and Analysis program. Mississippiâs national forests comprise > 1 million acres of forest land, or about 7 percent of all forest...
Charles H. (Hobie) Perry; Vern A. Everson; Ian K. Brown; Jane Cummings-Carlson; Sally E. Dahir; Edward A. Jepsen; Joe Kovach; Michael D. Labissoniere; Terry R. Mace; Eunice A. Padley; Richard B. Rideout; Brett J. Butler; Susan J. Crocker; Greg C. Liknes; Randall S. Morin; Mark D. Nelson; Barry T. (Ty) Wilson; Christopher W. Woodall
2008-01-01
The first full, annualized inventory of Wisconsin's forests was completed in 2004 after 6,478 forested plots were visited. There are more than 16.0 million acres of forest land in the Wisconsin, nearly half of the State's land area; 15.8 million acres meet the definition of timberland. The total area of both forest land and timberland continues an upward...
Directory of Open Access Journals (Sweden)
Vladimir Antonio Silva
2013-12-01
Full Text Available Lands (broader concept than soils, including all elements of the environment: soils, geology, topography, climate, water resources, flora and fauna, and the effects of anthropogenic activities of the state of Minas Gerais are in different soil, climate and socio-economics conditions and suitability for the production of agricultural goods is therefore distinct and mapping of agricultural suitability of the state lands is crucial for planning guided sustainability. Geoprocessing uses geographic information treatment techniques and GIS allows to evaluate geographic phenomena and their interrelationships using digital maps. To evaluate the agricultural suitability of state lands, we used soil maps, field knowledge, forest inventories and databases related to Ecological-Economic Zoning (EEZ of Minas Gerais, to develop a map of land suitability in GIS. To do this, we have combined the maps of soil fertility, water stress, oxygen deficiency, vulnerability to erosion and impediments to mechanization. In terms of geographical expression, the main limiting factor of lands is soil fertility, followed by lack of water, impediments to mechanization and vulnerability to erosion. Regarding agricultural suitability, the group 2 (regular suitability for crops is the most comprehensive, representing 45.13% of the state. For management levels A and B, low and moderate technological level, respectively, the most expressive suitability class is the regular, followed by the restricted class and last, the adequate class, while for the management level C (high technological level the predominant class is the restricted. The predominant most intensive use type is for crops, whose area increases substantially with capital investment and technology (management levels B and C.
Christopher W. Woodall; Mark N. Webb; Barry T. Wilson; Jeff Settle; Ron J. Piva; Charles H. Perry; Dacia M. Meneguzzo; Susan J. Crocker; Brett J. Butler; Mark Hansen; Mark Hatfield; Gary Brand; Charles. Barnett
2011-01-01
The second full annual inventory of Indiana's forests reports more than 4.75 million acres of forest land with an average volume of more than 2,000 cubic feet per acre. Forest land is dominated by the white oak/red oak/hickory forest type, which occupies nearly a third of the total forest land area. Seventy-six percent of forest land consists of sawtimber, 16...
Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho
2015-07-01
This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.
Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard
2015-01-01
Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...
Inventory of aspen trees in spruce dominated stands in conservation area
Directory of Open Access Journals (Sweden)
Matti Maltamo
2015-05-01
Full Text Available Background The occurrence of aspen trees increases the conservation value of mature conifer dominated forests. Aspens typically occur as scattered individuals among major tree species, and therefore the inventory of aspens is challenging. Methods We characterized aspen populations in a boreal nature reserve using diameter distribution, spatial pattern, and forest attributes: volume, number of aspens, number of large aspen stems and basal area median diameter. The data were collected from three separate forest stands in Koli National Park, eastern Finland. At each site, we measured breast height diameter and coordinates of each aspen. The comparison of inventory methods of aspens within the three stands was based on simulations with mapped field data. We mimicked stand level inventory by locating varying numbers of fixed area circular plots both systematically and randomly within the stands. Additionally, we also tested if the use of airborne laser scanning (ALS data as auxiliary information would improve the accuracy of the stand level inventory by applying the probability proportional to size sampling to assist the selection of field plot locations. Results The results showed that aspens were always clustered, and the diameter distributions indicated different stand structures in the three investigated forest stands. The reliability of the volume and number of large aspen trees varied from relative root mean square error figures above 50% with fewer sample plots (5–10 to values of 25%–50% with 10 or more sample plots. Stand level inventory estimates were also able to detect spatial pattern and the shape of the diameter distribution. In addition, ALS-based auxiliary information could be useful in guiding the inventories, but caution should be used when applying the ALS-supported inventory technique. Conclusions This study characterized European aspen populations for the purposes of monitoring and management of boreal conservation areas. Our
Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges
Directory of Open Access Journals (Sweden)
Chandra Giri
2016-09-01
Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.
A new Link for Geographic analyses of Inventory Data
David Reed; Kurt Pregitzer; Scott A. Pugh; Patrick D. Miles
2001-01-01
The USDA Forest Service Forest Inventory and Analysis (FIA)data are widely used throughout the United States for analyses of forest status and trends, landscape-level forest composition, and other forest characteristics. A new software product, FIAMODEL, is available for analyzing FIA data within the ArcView? (ESRI, Inc.)geographic information system. The software...
Michigan's forests, 2004: statistics and quality assurance
Scott A. Pugh; Mark H. Hansen; Gary Brand; Ronald E. McRoberts
2010-01-01
The first annual inventory of Michigan's forests was completed in 2004 after 18,916 plots were selected and 10,355 forested plots were visited. This report includes detailed information on forest inventory methods, quality of estimates, and additional tables. An earlier publication presented analyses of the inventoried data (Pugh et al. 2009).
MODIS Based Estimation of Forest Aboveground Biomass in China
Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong
2015-01-01
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195
MODIS Based Estimation of Forest Aboveground Biomass in China.
Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong
2015-01-01
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.
MODIS Based Estimation of Forest Aboveground Biomass in China.
Directory of Open Access Journals (Sweden)
Guodong Yin
Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.
ORGEST: Regional guidelines and silvicultural models for sustainable forest management
Energy Technology Data Exchange (ETDEWEB)
Piqué, Míriam; Vericat, Pau; Beltrán, Mario
2017-11-01
Aim of the study: To develop regional guidelines for sustainable forest management. Area of the study: Forests of Catalonia (NE Spain). Material and methods: The process of developing the forest management guidelines (FMG) started by establishing a thorough classification of forest types at stand level. This classification hinges on two attributes: tree species composition and site quality based on ecological variables, which together determine potential productivity. From there, the management guidelines establish certain objectives and silvicultural models for each forest type. The forest type classifications, like the silvicultural models, were produced using both existing and newly-built growth models based on data from the National Forest Inventory (NFI) and expert knowledge. The effort involved over 20 expert working groups in order to better integrate the expertise and vision of different sectorial agents. Main results: The FMG consist in quantitative silvicultural models that include typical silvicultural variables, technical descriptions of treatments and codes of good practice. Guidelines now cover almost all forest types in Catalonia (spanning up to 90% of the Catalan forest area). Different silvicultural models have been developed for pure and mixed stands, different site quality classes (2–3 classes per species), and even- and multi-aged stands. Research highlights: FMG: i) orient the management of private and public forests, (ii) provide a technical scaffold for efficient allocation/investment of public subsidies in forest management, and (iii) bridge forest planning instruments at regional (strategic-tactical) and stand (operational) level.
ORGEST: Regional guidelines and silvicultural models for sustainable forest management
International Nuclear Information System (INIS)
Piqué, Míriam; Vericat, Pau; Beltrán, Mario
2017-01-01
Aim of the study: To develop regional guidelines for sustainable forest management. Area of the study: Forests of Catalonia (NE Spain). Material and methods: The process of developing the forest management guidelines (FMG) started by establishing a thorough classification of forest types at stand level. This classification hinges on two attributes: tree species composition and site quality based on ecological variables, which together determine potential productivity. From there, the management guidelines establish certain objectives and silvicultural models for each forest type. The forest type classifications, like the silvicultural models, were produced using both existing and newly-built growth models based on data from the National Forest Inventory (NFI) and expert knowledge. The effort involved over 20 expert working groups in order to better integrate the expertise and vision of different sectorial agents. Main results: The FMG consist in quantitative silvicultural models that include typical silvicultural variables, technical descriptions of treatments and codes of good practice. Guidelines now cover almost all forest types in Catalonia (spanning up to 90% of the Catalan forest area). Different silvicultural models have been developed for pure and mixed stands, different site quality classes (2–3 classes per species), and even- and multi-aged stands. Research highlights: FMG: i) orient the management of private and public forests, (ii) provide a technical scaffold for efficient allocation/investment of public subsidies in forest management, and (iii) bridge forest planning instruments at regional (strategic-tactical) and stand (operational) level.
Assessing Precision in Conventional Field Measurements of Individual Tree Attributes
Directory of Open Access Journals (Sweden)
Ville Luoma
2017-02-01
Full Text Available Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh, and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5% and 0.5 m (2.9%, respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.
Brian F. Walters
2016-01-01
This resource update provides an overview of forest resources in South Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station (NRS) in cooperation with the South Dakota Department of Agriculture, Resource Conservation and Forestry Division. Estimates are based on field data...
Brian F. Walters
2015-01-01
This resource update provides an overview of forest resources in South Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station (NRS) in cooperation with the South Dakota Department of Agriculture, Resource Conservation and Forestry Division. Estimates are based on field data...
Brian F. Walters
2014-01-01
This resource update provides an overview of forest resources in South Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the South Dakota Department of Agriculture, Resource Conservation and Forestry Division. Estimates are based on field data collected...
Lunn, T
1996-05-01
The purpose of this presentation is to help you reduce the inventory in your operation. We will accomplish that task by discussing six specific methods that companies have used successfully to reduce their inventory. One common attribute of these successes is that they also build teamwork among the people. Every business operation today is concerned with methods to improve customer service. The real trick is to accomplish that task without increasing inventory. We are all concerned with improving our skills at keeping inventory low.
International Nuclear Information System (INIS)
Weiler, T.
1981-01-01
An overview is presented of the attributes of gluons, deducible from experimental data. Particular attention is given to the photon-gluon fusion model of charm leptoproduction. The agreement with QCD and theoretical prejudice is qualitatively good
Forest statistics for Iowa, 1990.
Gary J. Brand; John T. Walkowiak
1991-01-01
Reports results of the third inventory of Iowa that was completed in 1990. Highlights the results of the inventory and contains detailed tables of forest area, timber volume, growth, removals, mortality, and ownership.
Randall S. Morin; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Mark D. Nelson; Charles H. (Hobie) Perry; Ronald J. Piva; James E. Smith; Jim Westfall; Richard H. Widmann; Christopher W. Woodall
2016-01-01
The annual inventory of West Virginia's forests, completed in 2013, covers nearly 12.2 million acres of forest land with an average volume of more than 2,300 cubic feet per acre. This report is based data collected from 2,808 plots located across the State. Forest land is dominated by the oak/hickory forest-type group, which occupies 74 percent of total forest...
Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall
2013-01-01
The second full annual inventory of Illinois' forests, completed in 2010, reports more than 4.8 million acres of forest land and 97 tree species. Forest land is dominated by oak/hickory and elm/ash/cottonwood forest-type groups, which occupy 93 percent of total forest land area. The volume of growing stock on timberland totals 7.2 billion cubic feet. The average...
Dacia M Meneguzzo; Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Greg C. Liknes; Andrew J. Lister; Tonya W. Lister; Ronald J. Piva; Barry T. (Ty) Wilson; Christopher W. Woodall
2012-01-01
The second full annual inventory of Nebraska's forests reports more than 1.5 million acres of forest land and 39 tree species. Forest land is dominated by the elm/ash/cottonwood and oak/hickory forest types, which occupy nearly half of the total forest land area. The volume of growing stock on timberland currently totals 1.1 billion cubic feet. The average annual...
Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Gary J. Brand; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall; Bill. Zipse
2011-01-01
The first full annual inventory of New Jersey's forests reports more than 2.0 million acres of forest land and 83 tree species. Forest land is dominated by oak-hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.4 billion cubic feet. The average...
Susan J. Crocker; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Ronald J. Piva; Rachel Riemann; James E. Smith; Christopher W. Woodall; William. Zipse
2017-01-01
The second full annual inventory of New Jerseyâs forests reports more than 2.0 million acres of forest land and 77 tree species. Forest land is dominated by oak/hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.3 billion cubic feet. Average annual net...
Scott A. Pugh; Lawrence D. Pedersen; Douglas C. Heym; Ronald J. Piva; Christopher W. Woodall; Charles J. Barnett; Cassandra M. Kurtz; W. Keith. Moser
2012-01-01
The seventh inventory of Michigan's forests, completed in 2009, describes more than 19.9 million acres of forest land. The data in this report are based on visits to 7,516 forested plots from 2005 to 2009. Timberland accounts for 97 percent of this forest land, and 62 percent is privately owned. The sugar maple/beech/yellow birch forest type accounts for 18...
Thomas J. Brandeis; Jeffery A. Turner; NO-VALUE
2013-01-01
This report presents the results of the fourth forest inventory of the islands of the Commonwealth of Puerto Rico. Forest area on mainland Puerto Rico held steady, or increased slightly, from 2004 to 2009. This change would seem to indicate that the rate of forest cover increase on mainland Puerto Rico has slowed since the forest inventory began in 1980. But the...
Effect of inventory method on niche models: random versus systematic error
Heather E. Lintz; Andrew N. Gray; Bruce McCune
2013-01-01
Data from large-scale biological inventories are essential for understanding and managing Earth's ecosystems. The Forest Inventory and Analysis Program (FIA) of the U.S. Forest Service is the largest biological inventory in North America; however, the FIA inventory recently changed from an amalgam of different approaches to a nationally-standardized approach in...
Forests and Forest Cover - DCNR - State Forest Lands 2015
NSGIC Education | GIS Inventory — The state forest boundry coverage is being updated frequently. It is derived from survey descriptions and will be, and has been in certain areas, adjusted to GPS...
Sharma, Sanjay
2017-01-01
This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.
USDA FS Inventoried Roadless Areas in New Mexico, Sept. 2000
Earth Data Analysis Center, University of New Mexico — This dataset contains all National Forest Inventoried Roadless Areas (IRAs) for New Mexico. The IRA data was originally submitted to GSTC by all national forests...
Directory of Open Access Journals (Sweden)
V. A. Usoltsev
2016-08-01
Full Text Available For the main tree species in North America, Europe and Japan, a number of thousands of allometric equations for single-tree biomass estimation using mostly tree height and stem diameter at breast height are designed that are intended for terrestrial forest mensuration. However, an innovative airborne laser method of the forest canopy sensing allows processing of on-line a number of morphological indices of trees, to combine them with the biomass allometric models and to evaluate the forest carbon pools. The database of 28 wood and shrub species containing 2.4 thousand definitions is compiled for the first time in the forests of Eurasia, and on its basis, the allometric transcontinental models of fractional structure of biomass of two types and dual use are developed. The first of them include as regressors the tree height and crown diameter and are intended for airborne laser location, while the latter have a traditional appointment for terrestrial forest biomass taxation using tree height and stem diameter. Those and others explain, in most cases, more than 90 % of tree biomass variability. Processing speed of laser location, incommensurable with the terrestrial mensuration, gives the possibility of assessing the change of carbon pool of forests on some territories during periodic overflights. The proposed information can be useful when implementing activities on climate stabilization, as well as in the validation of the simulation results when evaluating the carbon depositing capacity of forests.
Liu, Ziqi; Smola, Alexander J.; Soska, Kyle; Wang, Yu-Xiang; Zheng, Qinghua; Zhou, Jun
2016-01-01
In this paper we describe an algorithm for estimating the provenance of hacks on websites. That is, given properties of sites and the temporal occurrence of attacks, we are able to attribute individual attacks to joint causes and vulnerabilities, as well as estimating the evolution of these vulnerabilities over time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are co...
US forest carbon calculation tool: forest-land carbon stocks and net annual stock change
James E. Smith; Linda S. Heath; Michael C. Nichols
2007-01-01
The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...
Using FIA inventory plot data to assess NTFP production possibilities
Jobriath Kauffman; James Chamberlain; Stephen. Prisley
2015-01-01
The US Forest Service, Forest Inventory and Analysis (FIA) program collects data on a wealth of variables related to trees and understory species in forests. Some of these trees and plants produce non-timber forest products (NTFPs; e.g., seeds, fruit, bark, sap, roots) that are harvested for their culinary and medicinal values. As example, the cones of Pinus...
Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around all...
Comparison of interferometric and stereo-radargrammetric 3D metrics in mapping of forest resources
Karila, K.; Karjalainen, M.; Yu, X.; Vastaranta, M.; Holopainen, M.; Hyyppa, J.
2015-04-01
Accurate forest resources maps are needed in diverse applications ranging from the local forest management to the global climate change research. In particular, it is important to have tools to map changes in forest resources, which helps us to understand the significance of the forest biomass changes in the global carbon cycle. In the task of mapping changes in forest resources for wide areas, Earth Observing satellites could play the key role. In 2013, an EU/FP7-Space funded project "Advanced_SAR" was started with the main objective to develop novel forest resources mapping methods based on the fusion of satellite based 3D measurements and in-situ field measurements of forests. During the summer 2014, an extensive field surveying campaign was carried out in the Evo test site, Southern Finland. Forest inventory attributes of mean tree height, basal area, mean stem diameter, stem volume, and biomass, were determined for 91 test plots having the size of 32 by 32 meters (1024 m2). Simultaneously, a comprehensive set of satellite and airborne data was collected. Satellite data also included a set of TanDEM-X (TDX) and TerraSAR-X (TSX) X-band synthetic aperture radar (SAR) images, suitable for interferometric and stereo-radargrammetric processing to extract 3D elevation data representing the forest canopy. In the present study, we compared the accuracy of TDX InSAR and TSX stereo-radargrammetric derived 3D metrics in forest inventory attribute prediction. First, 3D data were extracted from TDX and TSX images. Then, 3D data were processed as elevations above the ground surface (forest canopy height values) using an accurate Digital Terrain Model (DTM) based on airborne laser scanning survey. Finally, 3D metrics were calculated from the canopy height values for each test plot and the 3D metrics were compared with the field reference data. The Random Forest method was used in the forest inventory attributes prediction. Based on the results InSAR showed slightly better
A model of forest floor carbon mass for United States forest types
James E. Smith; Linda S. Heath
2002-01-01
Includes a large set of published values of forest floor mass and develop large-scale estimates of carbon mass according to region and forest type. Estimates of average forest floor carbon mass per hectare of forest applied to a 1997 summary forest inventory, sum to 4.5 Gt carbon stored in forests of the 48 contiguous United States.
Blaise George Grden
1979-01-01
This paper is an investigation of the Visual Management System (VMS) and the Visual Resource Inventory and Evaluation Process (VRIEP). Questionnaires were developed and sent to persons who were experienced with VMS and/or VRIEP. VMS has been found easier to under-stand and apply than VRIEP. The methodology of VRIEP has been found to he a more complete approach than...
Carbon sequestration in wood products: a method for attribution to multiple parties
International Nuclear Information System (INIS)
Tonn, Bruce; Marland, Gregg
2007-01-01
When forest is harvested some of the forest carbon ends up in wood products. If the forest is managed so that the standing stock of the forest remains constant over time, and the stock of wood products is increasing, then carbon dioxide is being removed from the atmosphere in net and this should be reflected in accounting for greenhouse gas emissions. We suggest that carbon sequestration in wood products requires cooperation of multiple parties; from the forest owner to the product manufacturer to the product user, and perhaps others. Credit for sequestering carbon away from the atmosphere could acknowledge the contributions of these multiple parties. Accounting under a cap-and-trade or tax system is not necessarily an inventory system, it is a system designed to motivate and/or reward an environmental objective. We describe a system of attribution whereby credits for carbon sequestration would be shared among multiple, contributing parties. It is hoped that the methodology outlined herein proves attractive enough to parties concerned to spur them to address the details of such a system. The system of incentives one would choose for limiting or controlling greenhouse gas emissions could be quite different, depending on how the attribution for emissions and sequestration is chosen
Directory of Open Access Journals (Sweden)
José A. Delgado
2012-01-01
Full Text Available Forest structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area are important for the assessment of wood volume and biomass and represent key forest inventory attributes. Forest inventory information is required to support sustainable management, carbon accounting, and policy development activities. Digital image processing of remotely sensed imagery is increasingly utilized to assist traditional, more manual, methods in the estimation of forest structural attributes over extensive areas, also enabling evaluation of change over time. Empirical attribute estimation with remotely sensed data is frequently employed, yet with known limitations, especially over complex environments such as Mediterranean forests. In this study, the capacity of high spatial resolution (HSR imagery and related techniques to model structural parameters at the stand level (n = 490 in Mediterranean pines in Central Spain is tested using data from the commercial satellite QuickBird-2. Spectral and spatial information derived from multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively served to model structural parameters. Classification and Regression Tree Analysis (CART was selected for the modeling of attributes. Accurate models were produced of quadratic mean diameter (QMD (R2 = 0.8; RMSE = 0.13 m with an average error of 17% while basal area (BA models produced an average error of 22% (RMSE = 5.79 m2/ha. When the measured number of trees per unit area (N was categorized, as per frequent forest management practices, CART models correctly classified 70% of the stands, with all other stands classified in an adjacent class. The accuracy of the attributes estimated here is expected to be better when canopy cover is more open and attribute values are at the lower end of the range present, as related in the pattern of the residuals found in this study. Our findings indicate that attributes derived from
George L. McCaskill; William H. McWilliams; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Christopher W. Woodall
2011-01-01
The second annual inventory of Maine's forests was completed in 2008 after more than 3,160 forested plots were measured. Forest land occupies almost 17.7 million acres, which represents 82 percent of the total land area of Maine. The dominant forest-type groups are maple/beech/yellow birch, spruce/fir, white/red/jack pine, and aspen/white birch. Statewide volume...
Mark D. Nelson; Charles J. Barnett; Matt Brewer; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Dale D. Gormanson; Cassandra M. Kurtz; Tonya W. Lister; Stephen Matthews; William H. McWilliams; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Ronald J. Piva; Rachel Riemann; James E. Smith; Brian F. Walters; Jim Westfall; Christopher W. Woodall
2016-01-01
The third full annual inventory of Iowa's forests (2009-2013) indicates that just under 3 million acres of forest land exists in the State, 81 percent of which is in family forest ownership. Almost all of Iowa's forest land is timberland (96 percent), with an average volume of more than 1,000 cubic feet of growing stock per acre on timberland and more than 1,...
Kansas's forests, 2005: statistics, methods, and quality assurance
Patrick D. Miles; W. Keith Moser; Charles J. Barnett
2011-01-01
The first full annual inventory of Kansas's forests was completed in 2005 after 8,868 plots were selected and 468 forested plots were visited and measured. This report includes detailed information on forest inventory methods and data quality estimates. Important resource statistics are included in the tables. A detailed analysis of Kansas inventory is presented...
Nebraska's forests, 2005: statistics, methods, and quality assurance
Patrick D. Miles; Dacia M. Meneguzzo; Charles J. Barnett
2011-01-01
The first full annual inventory of Nebraska's forests was completed in 2005 after 8,335 plots were selected and 274 forested plots were visited and measured. This report includes detailed information on forest inventory methods, and data quality estimates. Tables of various important resource statistics are presented. Detailed analysis of the inventory data are...
Coulston, John W; Wear, David N; Vose, James M
2015-01-23
Over the past century forest regrowth in Europe and North America expanded forest carbon (C) sinks and offset C emissions but future C accumulation is uncertain. Policy makers need insights into forest C dynamics as they anticipate emissions futures and goals. We used land use and forest inventory data to estimate how forest C dynamics have changed in the southeastern United States and attribute changes to land use, management, and disturbance causes. From 2007-2012, forests yielded a net sink of C because of net land use change (+6.48 Tg C yr(-1)) and net biomass accumulation (+75.4 Tg C yr(-1)). Forests disturbed by weather, insect/disease, and fire show dampened yet positive forest C changes (+1.56, +1.4, +5.48 Tg C yr(-1), respectively). Forest cutting caused net decreases in C (-76.7 Tg C yr(-1)) but was offset by forest growth (+143.77 Tg C yr(-1)). Forest growth rates depend on age or stage of development and projected C stock changes indicate a gradual slowing of carbon accumulation with anticipated forest aging (a reduction of 9.5% over the next five years). Additionally, small shifts in land use transitions consistent with economic futures resulted in a 40.6% decrease in C accumulation.
Iowa's forest resources in 2003
Earl C. Leatherberry; Gary J. Brand; Steve Pennington
2005-01-01
Reports the initial results of all five annual panels (1999-2003) of the fourth inventory of Iowa`s forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, mortality, and removals; and health.
Directory of Open Access Journals (Sweden)
Ngawang Jamba
2018-01-01
Full Text Available The Himalayan Kingdom of Bhutan, located in one of the global biodiversity hotspots, is endowed with abundant floral wealth, including a wide array of medicinal plants (MPs. However, over-exploitation of these resources is widespread, and only a few studies have assessed the richness and diversity of Bhutanese forests and in particular about the MP resources. A vegetation survey was conducted in Tshothang Chiwog, south-eastern Bhutan to characterize the floristic structure of the broad-leaf mixed coniferous forests with a special focus on MPs. A questionnaire survey involving 40 farmers was also conducted to assess the ethnobotanical and socioeconomic aspects of MP extraction. A total of 157 plant species (38 trees, 19 shrubs, 85 herbs and ferns, and 15 climbers, representing 74 families and 137 genera were identified from the study area, of which 69 species (14 trees, 10 shrubs, 38 herbs and ferns, and seven climbers, belonging to 41 families and 69 genera were medicinally important. The most species-rich families of medicinal plants were: Asteraceae (eight spp., Apiaceae (four spp., Polygonaceae, Brassicaceae, Zingiberaceae, and Urticaceae (three species each. Herbaceous flora exhibited the highest diversity (Simpson diversity index, D = 0.97 and Shannon-Weiner index, H′ = 5.82, followed by trees and shrubs (D = 0.95 and 0.92 and H′ = 4.86 and 3.97, respectively. All but one herb showed abundance-to-frequency ratio (A/F ≥0.05, signifying a contagious distribution pattern (large aggregated distribution. Girth class distribution of trees followed an inverse J-shaped pattern. Results of the ethnobotanic study documented 55 MPs. MP collection, as reported by the interviewees, generally improved the socioeconomic status of the people of Tshothang Chiwog. Apart from improving the livelihood security of the local people, aspects relating to health care and culture are also important. Respondents were also concerned about the declining MP wealth
The U.S. forest carbon accounting framework: stocks and stock change, 1990-2016
Christopher W. Woodall; John W. Coulston; Grant M. Domke; Brian F. Walters; David N. Wear; James E. Smith; Hans-Erik Andersen; Brian J. Clough; Warren B. Cohen; Douglas M. Griffith; Stephen C. Hagen; Ian S. Hanou; Michael C. Nichols; Charles H. (Hobie) Perry; Matthew B. Russell; Jim Westfall; Barry T. (Ty) Wilson
2015-01-01
As a signatory to the United Nations Framework Convention on Climate Change, the United States annually prepares an inventory of carbon that has been emitted and sequestered among sectors (e.g., energy, agriculture, and forests). For many years, the United States developed an inventory of forest carbon by comparing contemporary forest inventories to inventories that...
Directory of Open Access Journals (Sweden)
Milne R.
2000-01-01
Full Text Available Afforestation in the UK has been significant and continuing since 1920 (up to 30,000 ha per year. Planting data is used to drive a dynamic process-based carbon accounting model (C-Flow to estimate removals of atmospheric CO2 to these forests. It is assumed that the afforestation can be represented by the characteristics of Sitka spruce for conifers and beech for broadleaves. The present area of forest considered for these estimates is 1.6 millions ha. In 1990 the uptake to trees, litter, soil and products was 2.6 terragramme C, rising to 2.8 terragramme C in 1998. Deforestation is believed to be small. Supporting measurements show that the model predicts long term uptake by conifers well but that losses from planted peat shortly after establishment need further consideration. Process modelling of beech growth suggests that it is primarily dependant on atmospheric CO2 concentration and not on stomatal control per se. UK research priorities relevant to preparation of GHG (greenhouse gas Inventories are presented.
Douglas D. Piirto; Mitchell Haydon; Steve Auten; Benjamin Han; Samantha Gill; Wally Mark; Dale Holderman
2017-01-01
The 1,295 ha (3,200 ac) Swanton Pacific Ranch (Swanton) and the associated Valencia Tract in Santa Cruz County have been managed by California Polytechnic State University, San Luis Obispo (Cal Poly) since 1987. Swantonâs Valencia Tract is a 239 ha (591 ac) property located north of Watsonville, California. Cal Poly forest managers have conducted two harvest...
An overview of inventory and monitoring and the Role of FIA in National Assessments
W. Brad Smith
2006-01-01
This paper presents a brief conceptual overview of inventory and monitoring and the role of the Forest Inventory and Analysis (FIA) program in national assessments. FIA has become a focal point of national inventory and monitoring and kept national leadership as well as forest resource research and management professionals apprised, through periodic reports to Congress...
Rebuilding our legacy inventories: identifying the good and fixing the bad
Dave Gilbert; Keith Tudor; Sam Otukol; Karen Jahraus
2000-01-01
Several challenges faced the Province of British Columbia in the early 1990's as we undertook a major redesign of our inventory systems: a provincial legislated demand requiring the chief forester to develop and maintain an inventory of the land and forests in British Columbia; existing inventories of the 94.5 million ha of the province; the need to meet new...
Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo
2009-01-01
New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...
International Nuclear Information System (INIS)
Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto; Yamaguchi, Yasushi; Chen, Xuehong
2015-01-01
This study compared five widely used globally gridded biomass burning emissions inventories for the 2002–2011 period (Global Fire Emissions Database 3 (GFED3), Global Fire Emissions Database 4 (GFED4), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0) and Global Inventory for Chemistry-Climate studies-GFED4 (G-G)). Average annual CO_2 emissions range from 6521.3 to 9661.5 Tg year"−"1 for five inventories, with extensive amounts in Africa, South America and Southeast Asia. Coefficient of Variation for Southern America, Northern and Southern Africa are 30%, 39% and 48%. Globally, the majority of CO_2 emissions are released from savanna burnings, followed by forest and cropland burnings. The largest differences among the five inventories are mainly attributable to the overestimation of CO_2 emissions by FINN1.0 in Southeast Asia savanna and cropland burning, and underestimation in Southern Africa savanna and Amazon forest burning. The overestimation in Africa by G-G also contributes to the differences. - Highlights: • Five widely used global biomass burning emissions inventories were compared. • Global CO_2 emissions compared well while regional differences are large. • The largest differences were found in Southeast Asia and Southern Africa. • Savanna burning emission was the largest contributor to the global emissions. • Variations in savanna burning emission led to the differences among inventories. - Differences of the five biomass burning CO_2 emissions inventories were found in Southeast Asia and Southern Africa due to the variations in savanna burning emissions estimation.
PROKOPOVÁ, Nikola
2017-01-01
The subject of this thesis is optimization of inventory in selected organization. Inventory optimization is a very important topic in each organization because it reduces storage costs. At the beginning the inventory theory is presented. It shows the meaning and types of inventory, inventory control and also different methods and models of inventory control. Inventory optimization in the enterprise can be reached by using models of inventory control. In the second part the company on which is...
The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...
Kansas' forest resources, 2005
W. Keith Moser; Gary J. Brand; Melissa Powers
2007-01-01
The USDA Forest Service, Northern Research Station, Forest Inventory and Analysis (NRS-FIA) program is changing to a Web-based, dynamically linked reporting system. As part of the process, this year NRS-FIA is producing this abbreviated summary of 2005 data. This resource bulletin reports on area, volume, and biomass using data from 2001 through 2005. Estimates from...
Inventory of trees in nonforest areas in the Great Plains states
Andrew Lister; Chip Scott; Steve Rasmussen
2009-01-01
The U.S. Forest Service's Forest Inventory and Analysis (FIA) program collects information on trees in areas that meet its definition of forest. However, the inventory excludes trees in areas that do not meet this definition, such as those found in isolated patches, in areas with sparse or predominantly herbaceous vegetation, in narrow strips (e.g., shelterbelts...
Projecting other public inventories for the 2005 RPA timber assessment update.
Xiaoping Zhou; John R. Mills; Richard W. Haynes
2007-01-01
This study gives an overview of the current inventory status and the projection of future forest inventories on other public timberland. Other public lands are lands administered by state, local, and federal government but excluding National Forest System lands. These projections were used as part of the 2005 USDA Forest Service Resource Planning Act timber assessment...
The hexagon/panel system for selecting FIA plots under an annual inventory
Gary J. Brand; Mark D. Nelson; Daniel G. Wendt; Kevin K. Nimerfro
2000-01-01
Forest Inventory and Analysis (FIA) is changing to an annual nationwide forest inventory. This paper describes the sampling grid used to distribute FIA plots across the landscape and to allocate them to a particular measurement year. We also describe the integration of the F1A and Forest Health Monitoring (FHM) plot networks.
Fred Baker; Mark Hansen; John D. Shaw; Manfred Mielke; Dixon Shelstad
2012-01-01
We surveyed black spruce stands within 0.5 miles of US Forest Service Forest Inventory and Analysis (FIA) plots and compared dwarf mistletoe status with that of the FIA and Minnesota Department of Natural Resources (DNR) forest inventories. Our results differed from FIA results in 3 of 16 stands with FIA plots, with FIA most often not recording dwarf mistletoe in...
Characterizing Virginia's private forest owners and their forest lands.
Thomas W. Birch; Sandra S. Hodge; Michael T. Thompson
1998-01-01
A recently completed forest inventory and two woodland owner surveys have given us insight about the owners of private forest lands in Virginia. There is increasing parcelization of forested lands and an increase in the number of nonindustrial private (NIPF) landowners in Virginia. More than half of the private owners have harvested timber from their holdings at some...
VT County Forest Data 1966-1997
Vermont Center for Geographic Information — (Link to Metadata) This datalayer contains Vermont forestry estimate data, by county, primarily obtained from the Vermont Forest Inventory and Analysis (FIA),...
Does participatory forest management promote sustainable forest utilisation in Tanzania?
DEFF Research Database (Denmark)
Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik
2014-01-01
Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability...... of forest utilisation under PFM, using estimates of forest condition and extraction rates based on forest inventories and 480 household surveys from 12 forests; seven under Community Based Forest Management (CBFM), three under Joint Forest Management (JFM) and two under government management (non......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...
Directory of Open Access Journals (Sweden)
Sebastian Paulick
2017-05-01
Full Text Available Background Tropical forests play an important role in the global carbon (C cycle. However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood. Montane forests are highly endangered due to logging, land-use and climate change. Our objective was to analyse how the carbon balance changes during forest succession. Methods In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models. We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions (ravines and lower slopes vs upper slopes and ridges. Results The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange (NEE of 9.3 Mg C∙(ha∙yr−1 during its early successional stage (0–100 years. In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C∙(ha∙yr –1. The simulated variability of the NEE was within the range of the field data. We discovered several forest attributes (e.g., basal area or the relative amount of pioneer trees that can serve as predictors for NEE for young forest stands (0–100 years but not for those in the late successional stage (500–1,000 years. In case of young forest stands these correlations are high, especially between stand basal area and NEE. Conclusion In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity. To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests. With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes
Du, Hua Qiang; Sun, Xiao Yan; Han, Ning; Mao, Fang Jie
2017-10-01
By synergistically using the object-based image analysis (OBIA) and the classification and regression tree (CART) methods, the distribution information, the indexes (including diameter at breast, tree height, and crown closure), and the aboveground carbon storage (AGC) of moso bamboo forest in Shanchuan Town, Anji County, Zhejiang Province were investigated. The results showed that the moso bamboo forest could be accurately delineated by integrating the multi-scale ima ge segmentation in OBIA technique and CART, which connected the image objects at various scales, with a pretty good producer's accuracy of 89.1%. The investigation of indexes estimated by regression tree model that was constructed based on the features extracted from the image objects reached normal or better accuracy, in which the crown closure model archived the best estimating accuracy of 67.9%. The estimating accuracy of diameter at breast and tree height was relatively low, which was consistent with conclusion that estimating diameter at breast and tree height using optical remote sensing could not achieve satisfactory results. Estimation of AGC reached relatively high accuracy, and accuracy of the region of high value achieved above 80%.
19 CFR 146.93 - Inventory control and recordkeeping system.
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Inventory control and recordkeeping system. 146.93... § 146.93 Inventory control and recordkeeping system. (a) Attribution. All final products removed from or... provided for under § 146.95(b) of this subpart. (3) Other inventory method. An operator may use the FIFO...
2012-01-01
Abstract Background Human beings employ a combination of morphological, sensorial, utilitarian, cultural and ecological characters when they identify and classify organisms. Ethnotaxonomy has provided a store of information about the characters cultures employ when they identify and classify a vast diversity of taxonomic groups. Nevertheless, some more research is needed to provide a comparison of the characters employed in the description of taxons, and an analysis of the extent to which those descriptors are represented. Stingless bees constitute a diverse group of social insects that have been widely studied from an ethnobiological perspective due to their utilitarian and cultural importance. The objective of this study is to identify the elements local people consider when characterizing stingless bees, and how important these elements are in the study of local classifications. Methods The methodology used involves semi-structured interviews and trips with the informants to rural areas. Locally known ethnospecies are characterized, descriptive traits and salient criteria used in those characterizations are identified, and the frequency of reference of descriptive traits and salient criteria are estimated. Besides, the descriptive traits used for each ethnospecies are compared, and the contribution of the characterizations as a heuristic strategy in the study of folk classification systems is analyzed. Results The use of 19 biological descriptors (grouped according to 4 salient criteria) and of comparisons among ethnospecies was found. Results suggest the existence of group and specific descriptors. Researchers identified which ethnospecies are considered similar, how less important traits contribute to descriptions, the relation between specific descriptors and ethnospecies, the presence of cognitive prototypes, and the most relevant salient properties from the emic perspective. Conclusions The estimated importance of attributes descriptors allowed us to
Directory of Open Access Journals (Sweden)
Zamudio Fernando
2012-02-01
Full Text Available Abstract Background Human beings employ a combination of morphological, sensorial, utilitarian, cultural and ecological characters when they identify and classify organisms. Ethnotaxonomy has provided a store of information about the characters cultures employ when they identify and classify a vast diversity of taxonomic groups. Nevertheless, some more research is needed to provide a comparison of the characters employed in the description of taxons, and an analysis of the extent to which those descriptors are represented. Stingless bees constitute a diverse group of social insects that have been widely studied from an ethnobiological perspective due to their utilitarian and cultural importance. The objective of this study is to identify the elements local people consider when characterizing stingless bees, and how important these elements are in the study of local classifications. Methods The methodology used involves semi-structured interviews and trips with the informants to rural areas. Locally known ethnospecies are characterized, descriptive traits and salient criteria used in those characterizations are identified, and the frequency of reference of descriptive traits and salient criteria are estimated. Besides, the descriptive traits used for each ethnospecies are compared, and the contribution of the characterizations as a heuristic strategy in the study of folk classification systems is analyzed. Results The use of 19 biological descriptors (grouped according to 4 salient criteria and of comparisons among ethnospecies was found. Results suggest the existence of group and specific descriptors. Researchers identified which ethnospecies are considered similar, how less important traits contribute to descriptions, the relation between specific descriptors and ethnospecies, the presence of cognitive prototypes, and the most relevant salient properties from the emic perspective. Conclusions The estimated importance of attributes descriptors
Hyperspectral sensing of forests
Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash
2007-11-01
Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.
Ronald J. Piva; Thomas B. Treiman; Brett J. Butler; Susan J. Crocker; Dale D. Gormanson; Douglas M. Griffith; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Charles H. (Hobie) Perry; Rachel Riemann; James E. Smith; Brian F. Walters; Christopher W. Woodall
2016-01-01
The third full cycle of annual inventories (2009-2013) of Missouri's forests, completed in 2013, reports that there are an estimated 15.5 million acres of forest land in the State. An estimated 60 percent of the forest land area is in sawtimber size stands, 30 percent are pole timber size, and 10 percent are seedling/sapling size or nontstocked. The net volume of...
George L. McCaskill; Thomas Albright; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Richard H. Widmann; Christopher W. Woodall
2016-01-01
The third 5-year annualized inventory of Maine's forests was completed in 2013 after more than 3170 forested plots were measured. Maine contains more than 17.6 million acres of forest land, an area that has been quite stable since 1960, covering more than 82 percent of the total land area. The number of live trees greater than 1 inch in diameter are approaching 24...
Thomas A. Albright; William H. McWilliams; Richard H. Widmann; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; Shawn Lehman; Tonya W. Lister; Patrick D. Miles; Randall S. Morin; Rachel Riemann; James E. Smith
2017-01-01
This report summarizes the third cycle of annualized inventory of Pennsylvania with field data collected from 2009 through 2014. Pennsylvania has 16.9 million acres of forest land dominated by sawtimber stands of oak/hickory and maple/beech/birch forest-type groups. Volumes continue to increase as the forests age with an average of 2,244 cubic feet per acre on...
International Nuclear Information System (INIS)
Leigh, C.
2000-01-01
The purpose of the inventory abstraction as directed by the development plan (CRWMS M and O 1999b) is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M and O 1999c, 1999d). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) (NRC 1999) key technical issue (KTI): ''The rate at which radionuclides in SNF [Spent Nuclear Fuel] are released from the EBS [Engineered Barrier System] through the oxidation and dissolution of spent fuel'' (Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the accessible environment. The inventory abstraction is important in assessing system performance because
International Nuclear Information System (INIS)
Ragan, G.
2001-01-01
The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M andO 2000e for/ICN--02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M andO 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release
Status and future of the forest health indicators program of the USA
Christopher William Woodall; Michael C. Amacher; William A. Bechtold; John W. Coulston; Sarah Jovan; Charles H. Perry; KaDonna C. Randolph; Beth K. Schulz; Gretchen C. Smith; Susan. Will-Wolf
2011-01-01
For two decades, the US Department of Agriculture, Forest Service, has been charged with implementing a nationwide field-based forest health monitoring effort. Given its extensive nature, the monitoring program has been gradually implemented across forest health indicators and inventoried states. Currently, the Forest Service's Forest Inventory and Analysis...
Anomaly detection for analysis of annual inventory data: a quality control approach
Francis A. Roesch; Paul C. Van Deusen
2010-01-01
Annual forest inventories present special challenges and opportunities for those analyzing the data arising from them. Here, we address one question currently being asked by analysts of the US Forest Serviceâs Forest Inventory and Analysis Programâs quickly accumulating annual inventory data. The question is simple but profound: When combining the next yearâs data for...
Forest statistics for Arkansas' Ouachita counties - 1995
James F. Rosson; Jack D. London
1997-01-01
Periodic surveys of forest resources are authorized by the Forest Service and Rangeland Renewable Resources Research Act of 1978. These surveys are a continuing, nationwide undertaking by the Regional Experiment Stations of the USDA Forest Service. In the Southern United States, these surveys are conducted by the two Forest Inventory and Analysis (FIA) Research Work...
Caldwell, P.; Elliott, K.; Hartsell, A.; Miniat, C.
2016-12-01
Climate change and disturbances are threatening the ability of forested watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Forested watersheds in the eastern US have undergone significant change over the 20th century due to natural and introduced disturbances and a legacy of land use. We hypothesize that changes in forest age and species composition (i.e., forest change) associated with these disturbances may have altered forest water use and thus streamflow (Q) due to inherent differences in transpiration among species and forest ages. To test this hypothesis, we quantified changes in Q from 1960 to 2012 in 202 US Geological Survey forested reference watersheds across the eastern US, and separated the effect of changes in climate from forest change using Auto-Regressive Integrated Moving Average (ARIMA) time series modeling. We linked changes in Q to forest disturbance, forest ages and species composition using the Landsat-based North American Forest Dynamics dataset and plot-level USDA Forest Service Forest Inventory and Analysis (FIA) data. We found that 172 of the 202 sites (85%) exhibited changes in Q not accounted for by climate that we attributed to forest change and/or land use change. Among these, 76 (44%) had declining Q due to forest change (mostly in the southeastern US) while 96 (56%) had increasing Q (mostly in the mid-Atlantic and northeastern US). Across the 172 sites with forest-related changes in Q, 34% had at least 10% of the watershed area disturbed at least once from 1986-2010. In a case study of three watersheds, FIA data indicated that changes in forest structure and species composition explained observed changes in Q beyond climate effects. Our results suggest that forest-related changes in Q may have significant implications for water supply in the region and may inform forest management strategies to mitigate climate change impacts on water resources.
Forest report 2017; Waldzustandsbericht 2017
Energy Technology Data Exchange (ETDEWEB)
NONE
2017-11-01
This forest condition report of Hesse (Germany) includes the following topics: forest condition survey for all tree species, forest in the in the Rhine-Main area, weather and climate, insects and fungi, forestry environment monitoring, site information for the Federal Forest Inventory in Hesse, infiltrated substances, development of soil acidification on intensive monitoring areas in northwestern Germany, and the substrate group basalt/diabase.
Forest statistics for Southwest-South Alabama counties - 1990
William H. McWilliams; Patrick E. Miller; John S. Vissage
1990-01-01
Tabulated results were derived from data obtained during a recent forest inventory of southeast Alabama (fig. 1). Core tables (1 to 25) are compatible among Forest Inventory and Analysis units in the Eastern U.S. Other tables (26 to 43) supplement the information contained in the core tables. Comparisons are made between results of the 1990 inventory and previous...
Dictionary of forest structural terminology
CSIR Research Space (South Africa)
Geldenhuys, CJ
1988-01-01
Full Text Available This report lists and defines attributes (both functional and structural) that have been used in other structural classifications of forest vegetation. Field techniques are summarized. The recommended use of each attribute and technique is presented...
Directory of Open Access Journals (Sweden)
Michel de S. Schütte
2007-03-01
Full Text Available As formigas são componentes funcionais importantes em florestas tropicais devido aos papéis ecológicos que exercem, à grande biomassa e à riqueza de espécies. Embora a Mata Atlântica seja um dos ecossistemas mais bem estudados no Brasil, ainda faltam informações sobre a diversidade de formigas nos fragmentos florestais do Estado do Rio de Janeiro. A riqueza e composição da assembléia de formigas em floresta ombrófila de encosta na ilha da Marambaia (RJ foi estudada através de um inventário estruturado em uma área de 0,6 ha. Armadilhas do tipo "pitfall" e coletas manuais foram empregadas na serapilheira e sobre a vegetação entre os meses de janeiro e julho de 2004. Um total de 29 gêneros e 82 espécies foi encontrado na amostragem. A abundância e a riqueza de espécies foram maiores nas amostras de março do que de julho. Já a eqüitatividade e diversidade de formigas nas amostras não foram influenciadas pela época da coleta. As amostras de formigas em galhos mortos adicionaram seis espécies à lista, acrescentando informações sobre a biologia das espécies. As amostras sobre plantas totalizaram 32 espécies de formigas, das quais 12 foram exclusivas, como as espécies de Pseudomyrmex e algumas de Crematogaster e Pachycondyla. Este estudo pretende contribuir para o desenvolvimento de prioridades conservacionistas em um dos ecossistemas mais ameaçados do mundo.Ants are an important functional component in tropical forest due to their ecological roles, biomass and species diversity. Although the Atlantic Forest is one of the best studied ecosystems in Brazil, there is a lack of information about ant diversity in forest fragments of the state of Rio de Janeiro. The composition and richness of the ant fauna from atlantic slope rain-forest in Marambaia island-RJ were assessed by the structured inventory in an area of 0.6 ha. Pitfalls traps and hand collecting were used for sampling ants in the litter and on vegetation from
Size and frequency of natural forest disturbances and the Amazon forest carbon balance
F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips
2014-01-01
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...
South Dakota's forests, 2005: statistics, methods, and quality assurance
Patrick D. Miles; Ronald J. Piva; Charles J. Barnett
2011-01-01
The first full annual inventory of South Dakota's forests was completed in 2005 after 8,302 plots were selected and 325 forested plots were visited and measured. This report includes detailed information on forest inventory methods and data quality estimates. Important resource statistics are included in the tables. A detailed analysis of the South Dakota...
North Dakota's forests, 2005: statistics, methods, and quality assurance
Patrick D. Miles; David E. Haugen; Charles J. Barnett
2011-01-01
The first full annual inventory of North Dakota's forests was completed in 2005 after 7,622 plots were selected and 164 forested plots were visited and measured. This report includes detailed information on forest inventory methods and data quality estimates. Important resource statistics are included in the tables. A detailed analysis of the North Dakota...
Application of mapped plots for single-owner forest surveys
Paul C. Van Deusen; Francis Roesch
2009-01-01
Mapped plots are used for the nation forest inventory conducted by the U.S. Forest Service. Mapped plots are also useful foro single ownership inventoires. Mapped plots can handle boundary overlap and can aprovide less variable estimates for specified forest conditions. Mapping is a good fit for fixed plot inventories where the fixed area plot is used for both mapping...
Coeli M. Hoover; James E. Smith
2012-01-01
The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide...
Directory of Open Access Journals (Sweden)
S. H. Chiang
2016-06-01
Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface
Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn
2016-06-01
Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled
Forests and Forest Cover - DCNR - State Forest Wild and Natural Areas 2015
NSGIC Education | GIS Inventory — The wild and natural areas layer was derived from the state forest boundary coverage which is being updated frequently. It is derived from survey descriptions and...
A Quantitative Index of Forest Structural Sustainability
Directory of Open Access Journals (Sweden)
Jonathan A. Cale
2014-07-01
Full Text Available Forest health is a complex concept including many ecosystem functions, interactions and values. We develop a quantitative system applicable to many forest types to assess tree mortality with respect to stable forest structure and composition. We quantify impacts of observed tree mortality on structure by comparison to baseline mortality, and then develop a system that distinguishes between structurally stable and unstable forests. An empirical multivariate index of structural sustainability and a threshold value (70.6 derived from 22 nontropical tree species’ datasets differentiated structurally sustainable from unsustainable diameter distributions. Twelve of 22 species populations were sustainable with a mean score of 33.2 (median = 27.6. Ten species populations were unsustainable with a mean score of 142.6 (median = 130.1. Among them, Fagus grandifolia, Pinus lambertiana, P. ponderosa, and Nothofagus solandri were attributable to known disturbances; whereas the unsustainability of Abies balsamea, Acer rubrum, Calocedrus decurrens, Picea engelmannii, P. rubens, and Prunus serotina populations were not. This approach provides the ecological framework for rational management decisions using routine inventory data to objectively: determine scope and direction of change in structure and composition, assess excessive or insufficient mortality, compare disturbance impacts in time and space, and prioritize management needs and allocation of scarce resources.
Lane, Patrick
2016-04-01
Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub
Estimating Preferences for Wood Products with Environmental Attributes
Directory of Open Access Journals (Sweden)
Masaji Sakagami
2018-01-01
Full Text Available Tropical deforestation and forest degradation are serious problems for the global environment; as a result, sustainable forest management and forest certification have become important. In this study, using a choice experiment, we investigated, on the demand side, consumers’ preferences and willingness to pay (WTP for certified wood products that attempt to address public concerns regarding deforestation and forest degradation. Specifically, we investigated how estimates of consumers’ preferences and WTP were influenced by product attributes such as quality, certification, and price. To the authors’ knowledge, few studies of this kind have been conducted, particularly in Japan. The study’s main finding was that Japanese consumers were willing to pay a premium for certified wood products with attributes related to sustainable forest management; most preferred were products with attributes related to preserving biodiversity. These findings indicate that consumers are willing to pay a premium for products that contribute to solving the problems of deforestation and forest degradation.
Da Cunha, Luiz Vital F Cruz; De Albuquerque, Ulysses P
2006-03-01
An ethnobotanical study was executed in the rural community of the Municipality of "Rio Formoso", starting from the forest inventory accomplished in an Atlantic Forest remnant adjacent to the studied community. Using the methodology of quantitative ethnobotany allied to the ecological parameters (richness, relative frequency, relative density, relative dominance and importance value index) the following results were obtained: 42 inventoried species gathered in 26 families, presented from 1 to 27 means of use for the community. The largest use of the plants is related to obtaining wood in order to be used in house building, firewood production and charcoal. The largest use value was attributed to the Vouacapoua virgilioides (Kunth) Kuntze. The most frequent species were Tapirira guianensis Aubl. (Anacardiaceae), Thyrsodium schomburgkianum Benth. (Anacardiaceae), Schefflera morototoni (Aubl.) Maguire, Steyem. & Frodin (Araliaceae) and Dialium guianense (Aubl.) Sandwith. (Leg-Caesalpinioideae).
Evaluating kriging as a tool to improve moderate resolution maps of forest biomass
Elizabeth A. Freeman; Gretchen G. Moisen
2007-01-01
The USDA Forest Service, Forest Inventory and Analysis program (FIA) recently produced a nationwide map of forest biomass by modeling biomass collected on forest inventory plots as nonparametric functions of moderate resolution satellite data and other environmental variables using Cubist software. Efforts are underway to develop methods to enhance this initial map. We...
Leveraging FIA data for analysis beyond forest reports: examples from the world of carbon
Brian F. Walters; Grant M. Domke; Christopher W. Woodall
2015-01-01
The Forest Inventory and Analysis program of the USDA Forest Service is the go-to source for data to estimate carbon stocks and stock changes for the annual national greenhouse gas inventory (NGHGI) of the United States. However, the different pools of forest carbon have not always been estimated directly from FIA measurements. As part of the new forest carbon...
Goring, Simon J; Mladenoff, David J; Cogbill, Charles V; Record, Sydne; Paciorek, Christopher J; Jackson, Stephen T; Dietze, Michael C; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S; Williams, John W
2016-01-01
EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest
Directory of Open Access Journals (Sweden)
Simon J Goring
Full Text Available EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US. More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km reconstructions of pre-settlement (1800s forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan, using 19th Century Public Land Survey System (PLSS, with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection.We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA data to show the prevalence of lost forests (pre-settlement forests with no current analog, and novel forests (modern forests with no past analogs. Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical
Nevada Photo-Based Inventory Pilot (NPIP) resource estimates (2004-2005)
Tracey S. Frescino; Gretchen G. Moisen; Paul L. Patterson; Elizabeth A. Freeman; James Menlove
2016-01-01
The complex nature of broad-scale, strategic-level inventories, such as the Forest Inventory and Analysis program (FIA) of the USDA Forest Service, demands constant evolution and evaluation of methods to get the best information possible while continuously increasing efficiency. The State of Nevada is predominantly comprised of nonforested Federal lands with a small...
Impact of professional foresters on timber harvests on West Virginia nonindustrial private forests
Stuart A. Moss; Eric. Heitzman
2013-01-01
Timber harvests conducted on 90 nonindustrial private forest properties in West Virginia were investigated to determine the effects that professional foresters have on harvest and residual stand attributes. Harvests were classified based on the type of forester involved: (1) consulting/state service foresters representing landowners, (2) industry foresters representing...
The relative contributions of forest growth and areal expansion to forest biomass carbon
P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang
2016-01-01
Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...
Interagency Rare Plant Team inventory results - 1998 through 2003
Deborah J. Clark; David A. Tait
2007-01-01
Fishlake National Forest, Dixie National Forest, Bureau of Land Management - Richfield Field Office, and Capitol Reef National Park became partners in an Interagency Agreement to inventory and monitor threatened, endangered, and sensitive plant species shared by these agencies. From 1998 to 2003, the Interagency Rare Plant Team surveyed and recorded over 650 new...