WorldWideScience

Sample records for forest ecological structure

  1. Ecological consequences of forest elephant declines for Afrotropical forests.

    Science.gov (United States)

    Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, Mark

    2017-10-27

    Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. © 2017 Society for Conservation Biology.

  2. A comparison of structural characteristics and ecological factors between forest reserves and managed silver fir - Norway spruce forests in Slovenia

    International Nuclear Information System (INIS)

    Marinšek, A.; Diaci, J.

    2011-01-01

    In order to examine ecological, floristic and structural differences between the forest stands of managed and unmanaged silver fir - Norway spruce forests (Bazzanio trilobatae-Abietetum albae), twelve sample plots (25x25 m) were established in forest reserves and managed forests. Within the plots, subplots and microplots we conducted phytosociological and pedological surveys, analyses of the stand structure, natural regeneration and estimation of solar radiation. We determined that there are no significant differences in floristic composition and ecological factors between managed forest and forest reserve stands. The only variables that were significantly different were the solar radiation variables (ISF; TSF; DSF), vertical structure (cover indexes (CI)) and stand basal area. Small differences in the composition and the structure of the vegetation indicate that, as far as ecosystematic changes are concerned, managing these forests is not as significant as the soil conditions. Solar radiation had a major influence on natural regeneration. Indirect solar radiation seemed to be more important than direct solar radiation. We found a statistically significant positive correlation between silver fir and Norway spruce regeneration and indirect solar radiation and confirmed that the management of light is a significant factor in the management of regeneration. Another trend that was detected was an increase in the number of beech, which will have quite a large proportion in the upper tree layer of the next generation, especially in forest reserves

  3. A tool for assessing ecological status of forest ecosystem

    Science.gov (United States)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  4. Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok

    Directory of Open Access Journals (Sweden)

    Montathip Sommeechai

    2018-01-01

    Full Text Available Rapid urbanization has changed the structure and function of natural ecosystems, especially floodplain ecosystems in SE Asia. The ecological structure of vegetation stands and the usefulness of satellite images was investigated to characterize a disturbed tropical urban forest located in the Chao Phraya River lower floodplain, Thailand. Nine sample plots were established on the Bang Kachao Peninsula (BKP within 4 tropical forest types in an urban area: rehabilitation forest, home-garden agroforestry, mangrove and park. The tree habitats were beach forest, swamp forest, moist evergreen forest, dry evergreen forest, mangrove forest and abandoned orchard or home-garden. Normalized difference vegetation index (NDVI values obtained from Landsat 7 satellite images were correlated with plant structure from field surveys. NDVI had the highest relationship with stand factors for number of families, number of species, Shannon-Weiner index and total basal area. Linear regression predicted well the correlation between NDVI and stand factors for families and basal area. NDVI trends reflected urban tropical forest typing and biodiversity, being high in rehabilitation and mangrove forests, moderate in home-gardens and low in parks. We suggest that the application of NDVI for assessments can be useful for future planning, monitoring and management of the BKP and hence may contribute for increasing biodiversity and complexity of these urban forests.

  5. [Basic theory and research method of urban forest ecology].

    Science.gov (United States)

    He, Xingyuan; Jin, Yingshan; Zhu, Wenquan; Xu, Wenduo; Chen, Wei

    2002-12-01

    With the development of world economy and the increment of urban population, the urban environment problem hinders the urban sustainable development. Now, more and more people realized the importance of urban forests in improving the quality of urban ecology. Therefore, a new subject, urban forest ecology, and correlative new concept frame in the field formed. The theoretic foundation of urban forest ecology derived from the mutual combination of theory relating to forest ecology, landscape ecology, landscape architecture ecology and anthrop-ecology. People survey the development of city from the view of ecosystem, and regard the environment, a colony of human, animals and plants, as main factors of the system. The paper introduces systematically the urban forest ecology as follows: 1) the basic concept of urban forest ecology; 2) the meaning of urban forest ecology; 3) the basic principle and theoretic base of urban forest ecology; 4) the research method of urban forest ecology; 5) the developmental expectation of urban forest ecology.

  6. Forest Fire Ecology.

    Science.gov (United States)

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  7. Ecological modeling for forest management in the Shawnee National Forest

    Science.gov (United States)

    Richard G. Thurau; J.F. Fralish; S. Hupe; B. Fitch; A.D. Carver

    2008-01-01

    Land managers of the Shawnee National Forest in southern Illinois are challenged to meet the needs of a diverse populace of stakeholders. By classifying National Forest holdings into management units, U.S. Forest Service personnel can spatially allocate resources and services to meet local management objectives. Ecological Classification Systems predict ecological site...

  8. How livestock and flooding mediate the ecological integrity of working forests in Amazon River floodplains.

    Science.gov (United States)

    Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G

    2016-01-01

    The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major

  9. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA

    Science.gov (United States)

    Boucher, P.; Saenz, E.; Li, Z.

    2018-01-01

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock (Tsuga canadensis) canopy health affected by an invasive insect, the hemlock woolly adelgid (Adelges tsugae). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study. PMID:29503723

  10. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA.

    Science.gov (United States)

    Orwig, D A; Boucher, P; Paynter, I; Saenz, E; Li, Z; Schaaf, C

    2018-04-06

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock ( Tsuga canadensis ) canopy health affected by an invasive insect, the hemlock woolly adelgid ( Adelges tsugae ). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study.

  11. Forest restoration: a global dataset for biodiversity and vegetation structure.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael

    2016-08-01

    Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the

  12. The Cultural Ecology Protection and Management of Urban Forests in China

    OpenAIRE

    ZHANG, Ying; SONG, Weiming; CHEN, Ke; GUO, Chunjing

    2013-01-01

    Forests have economic, ecological, social and cultural functions. Forests Cultural ecology, the counterpart of forest ecology, is the integration of human spirit formed on the basis of natural forest and living systems. In recent years, China's urbanization rate has increased from 28% in 1993 to 45.68% in 2008, and ecological protection of urban forest has made great progress, but insufficient attention was paid to the forest cultural ecology protection and the relevant regulatory was not w...

  13. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests in

  14. Methods of ecological capability evaluation of forest

    International Nuclear Information System (INIS)

    Hosseini, M.; Makhdoum, M.F.; Akbarnia, M.; Saghebtalebi, Kh.

    2000-01-01

    In this research common methods of ecological capability evaluation of forests were reviewed and limitations for performance were analysed. Ecological capability of forests is an index that show site potential in several role of wood production, soil conservation, flood control, biodiversity, conservation and water supply. This index is related to ecological characteristics of land, such as soil, micro climate, elevation, slope and aspect that affect potential of sites. Suitable method of ecological capability evaluation must be chosen according to the objective of forestry. Common methods for ecological capability evaluation include plant and animal diversity, site index curve, soil and land form, inter branches, index plants, leave analyses, analyses regeneration and ecological mapping

  15. Forest economics, natural disturbances and the new ecology

    Science.gov (United States)

    Thomas P. Holmes; Robert J. Huggett; John M. Pye

    2008-01-01

    The major thesis of this chapter is that the economic analysis of forest disturbances will be enhanced by linking economic and ecologic models. Although we only review a limited number of concepts drawn generally from mathematical and empirical ecology, the overarching theme we present is that ecological models of forest disturbance processes are complex and not...

  16. Toward a social-ecological theory of forest macrosystems for improved ecosystem management

    Science.gov (United States)

    Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.

    2018-01-01

    The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?

  17. Promoting biodiversity values of small forest patches in agricultural landscapes: Ecological drivers and social demand.

    Science.gov (United States)

    Varela, Elsa; Verheyen, Kris; Valdés, Alicia; Soliño, Mario; Jacobsen, Jette B; De Smedt, Pallieter; Ehrmann, Steffen; Gärtner, Stefanie; Górriz, Elena; Decocq, Guillaume

    2018-04-01

    Small forest patches embedded in agricultural (and peri-urban) landscapes in Western Europe play a key role for biodiversity conservation with a recognized capacity of delivering a wide suite of ecosystem services. Measures aimed to preserve these patches should be both socially desirable and ecologically effective. This study presents a joint ecologic and economic assessment conducted on small forest patches in Flanders (Belgium) and Picardie (N France). In each study region, two contrasted types of agricultural landscapes were selected. Open field (OF) and Bocage (B) landscapes are distinguished by the intensity of their usage and higher connectivity in the B landscapes. The social demand for enhancing biodiversity and forest structure diversity as well as for increasing the forest area at the expenses of agricultural land is estimated through an economic valuation survey. These results are compared with the outcomes of an ecological survey where the influence of structural features of the forest patches on the associated herbaceous diversity is assessed. The ecological and economic surveys show contrasting results; increasing tree species richness is ecologically more important for herbaceous diversity in the patch, but both tree species richness and herbaceous diversity obtain insignificant willingness to pay estimates. Furthermore, although respondents prefer the proposed changes to take place in the region where they live, we find out that social preferences and ecological effectiveness do differ between landscapes that represent different intensities of land use. Dwellers where the landscape is perceived as more "degraded" attach more value to diversity enhancement, suggesting a prioritization of initiatives in these area. In contrast, the ecological analyses show that prioritizing the protection and enhancement of the relatively better-off areas is more ecologically effective. Our study calls for a balance between ecological effectiveness and welfare

  18. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Chazdon, Robin L; Lindenmayer, David B; Sansevero, Jerônimo B B; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E; Strassburg, Bernardo B N

    2017-11-01

    Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biomass, and height) tested. Restoration success for biodiversity and vegetation structure was 34 to 56% and 19 to 56% higher in natural regeneration than in active restoration systems, respectively, after controlling for key biotic and abiotic factors (forest cover, precipitation, time elapsed since restoration started, and past disturbance). Biodiversity responses were based primarily on ecological metrics of abundance and species richness (74%), both of which take far less time to achieve restoration success than similarity and composition. This finding challenges the widely held notion that natural forest regeneration has limited conservation value and that active restoration should be the default ecological restoration strategy. The proposition that active restoration achieves greater restoration success than natural regeneration may have arisen because previous comparisons lacked controls for biotic and abiotic factors; we also did not find any difference between active restoration and natural regeneration outcomes for vegetation structure when we did not control for these factors. Future policy priorities should align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective, and compatible with socioeconomic incentives for tropical forest restoration.

  19. Modeling Forest Succession among Ecological Land Units in Northern Minnesota

    Directory of Open Access Journals (Sweden)

    George Host

    1998-12-01

    Full Text Available Field and modeling studies were used to quantify potential successional pathways among fine-scale ecological classification units within two geomorphic regions of north-central Minnesota. Soil and overstory data were collected on plots stratified across low-relief ground moraines and undulating sand dunes. Each geomorphic feature was sampled across gradients of topography or soil texture. Overstory conditions were sampled using five variable-radius point samples per plot; soil samples were analyzed for carbon and nitrogen content. Climatic, forest composition, and soil data were used to parameterize the sample plots for use with LINKAGES, a forest growth model that simulates changes in composition and soil characteristics over time. Forest composition and soil properties varied within and among geomorphic features. LINKAGES simulations were using "bare ground" and the current overstory as starting conditions. Northern hardwoods or pines dominated the late-successional communities of morainal and dune landforms, respectively. The morainal landforms were dominated by yellow birch and sugar maple; yellow birch reached its maximum abundance in intermediate landscape positions. On the dune sites, pine was most abundant in drier landscape positions, with white spruce increasing in abundance with increasing soil moisture and N content. The differences in measured soil properties and predicted late-successional composition indicate that ecological land units incorporate some of the key variables that govern forest composition and structure. They further show the value of ecological classification and modeling for developing forest management strategies that incorporate the spatial and temporal dynamics of forest ecosystems.

  20. Ecological Values of Mangrove Forest Ecosystem

    OpenAIRE

    Kusmana, Cecep

    1996-01-01

    Research on quantification of ecological values of mangrove forest ecosystem are urgently needed, due to its importance as the basics for utilization and management of resources. From the ecological point of vlew, the main prohlem of mangrove ecosystem is rarity and inconsistency of data and limited accurate methods inquantifying ecological values of that ecosystem. Results show that mangrove has the significant ecological values on coastal ecosystem. However, there must be further research t...

  1. Opposing resonses to ecological gradients structure amphibian and reptile communities across a temperate grassland-savanna-forest landscape

    Science.gov (United States)

    Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.

    2014-01-01

    Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.

  2. Ecological Sustainability of Birds in Boreal Forests

    Directory of Open Access Journals (Sweden)

    Gerald Niemi

    1998-12-01

    Full Text Available We review characteristics of birds in boreal forests in the context of their ecological sustainability under both natural and anthropogenic disturbances. We identify the underlying ecological factors associated with boreal bird populations and their variability, review the interactions between boreal bird populations and disturbance, and describe some tools on how boreal bird populations may be conserved in the future. The boreal system has historically been an area with extensive disturbance such as fire, insect outbreaks, and wind. In addition, the boreal system is vulnerable to global climate change as well as increasing pressure on forest and water resources. Current knowledge indicates that birds play an important role in boreal forests, and sustaining these populations affords many benefits to the health of boreal forests. Many issues must be approached with caution, including the lack of knowledge on our ability to mimic natural disturbance regimes with management, our lack of understanding on fragmentation due to logging activity, which is different from permanent conversion to other land uses such as agriculture or residential area, and our lack of knowledge on what controls variability in boreal bird populations or the linkage between bird population fluctuations and productivity. The essential role that birds can provide is to clarify important ecological concerns and variables that not only will help to sustain bird populations, but also will contribute to the long-term health of the boreal forest for all species, including humans.

  3. Community Based Ecological Monitoring of Non Timber Forest ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Community Based Ecological Monitoring of Non Timber Forest Products in the Nilgiri ... This project will allow Keystone Foundation to design, implement and test a ... traders, forest department officials and other stakeholders in the process.

  4. Adaptive economic and ecological forest management under risk

    Science.gov (United States)

    Joseph Buongiorno; Mo Zhou

    2015-01-01

    Background: Forest managers must deal with inherently stochastic ecological and economic processes. The future growth of trees is uncertain, and so is their value. The randomness of low-impact, high frequency or rare catastrophic shocks in forest growth has significant implications in shaping the mix of tree species and the forest landscape...

  5. Disturbance ecology and forest management: A review of the literature

    Science.gov (United States)

    Paul Rogers

    1996-01-01

    This review of the disturbance ecology literature, and how it pertains to forest management, is a resource for forest managers and researchers interested in disturbance theory, specific disturbance agents, their interactions, and appropriate methods of inquiry for specific geographic regions. Implications for the future of disturbance ecology-based management are...

  6. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests

    OpenAIRE

    Crouzeilles, Renato; Ferreira, Mariana S.; Chazdon, Robin L.; Lindenmayer, David B.; Sansevero, Jerônimo B. B.; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E.; Strassburg, Bernardo B. N.

    2017-01-01

    Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biom...

  7. Proceedings from the conference on the ecology and management of high-elevation forests in the central and southern Appalachian Mountains

    Science.gov (United States)

    James S. Rentch; Thomas M. Schuler

    2010-01-01

    The proceedings includes 18 peer-reviewed papers and 41 abstracts pertaining to acid deposition and nutrient cycling, ecological classification, forest dynamics, avifauna, wildlife and fisheries, forests pests, climate change, old-growth forest structure, regeneration, and restoration.

  8. Eco-experiential quality of urban forests: Combining ecological, restorative and aesthetic perspectives

    OpenAIRE

    Hauru, Kaisa

    2015-01-01

    In this thesis I combined perspectives from urban forest ecology, environmental psychology and empirical aesthetics to determine whether ecologically beneficial urban forest planning and management can also be experientially good. The thesis consists of four interrelated papers, three of which are empirical research papers and the fourth a theoretical review article. All empirical work was performed in boreal forests in Helsinki, the capital of Finland. In the ecological part of the thes...

  9. Ecological indicators of Tuber aestivum habitats in temperate European beech forests

    Czech Academy of Sciences Publication Activity Database

    Moser, B.; Büntgen, Ulf; Molinier, V.; Peter, M.; Sproll, L.; Stobbe, U.; Tegel, W.; Egli, S.

    2017-01-01

    Roč. 29, oct (2017), s. 59-66 ISSN 1754-5048 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : Burgundy truffle * Carpinus betulus forest * Ecological indicator values * Fagus sylvatica forest * Potential distribution of Tuber aestivum * Truffle ecology Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.219, year: 2016

  10. Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains

    Science.gov (United States)

    Tamara Heartsill Scalley

    2017-01-01

    The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously...

  11. Panthers and Forests in South Florida: an Ecological Perspective

    Directory of Open Access Journals (Sweden)

    E. Jane Comiskey

    2002-06-01

    terms of spatial landscape patterns, highlighting the limitations of daytime telemetry data for characterizing overall habitat use. We conclude that the forest-centered view of panther habitat selection is based on an uncritical evaluation of telemetry data collected prior to the recent population expansion and on the unsupported assumption that day bed habitats are representative of nighttime habitat use. We find that numerous factors contribute to habitat suitability and population density and distribution, and that P. concolor in Florida, as elsewhere in their range, are habitat generalists, exploiting the broad spectrum of available habitats for hunting, resting, mating, travel, denning, and dispersal. Whereas panthers readily use forested habitat with understory and prey, we find no support for the view that only the forested land within a habitat mosaic is potential panther habitat, or for the contention that only forested habitats are used by panthers within existing home ranges. We suggest a more ecologically consistent management and recovery paradigm based on maintaining the integrity of the system of overlapping home ranges that characterizes panther social structure and satisfies breeding requirements. Such a paradigm focuses on the requirements for reproductive success of a small population in a changing environment.

  12. Structural characterization of the gallery forest of the Guisa Agroforestry Experimental Station

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez Sosa

    2018-01-01

    Full Text Available The work was carried out in the gallery forest of the Cupaynicú stream, belonging to the Guisa Agroforestry Experimental Station, with the objective of characterizing its structure. Eight parcels of 500 m2 were randomly raised, in them the species were identified, their height and diameter were measured. The flora was analyzed through the origin of the species and the frequency histogram. The structure of the forest was analyzed through the diametric structure and the Value Index of Ecological Importance, the vertical structure was described taking into consideration the forest strata as well as the preparation of the canopy diagram. A descriptive analysis of the parameters diameter, height and basal area was made to study the parametric structure. The richness of the riparian forest was evidenced by the registry of 25 families, 40 genera and 43 species, as well as the predominance of the Meliaceae family followed by Lauraceae, Mimosaceae and Sapindaceae, which reflects the high timber value, melliferous and ecological of the same. The species Roystonea regia, Sterculiaapetala, Dendropanaxarboreus, Andirainermis and Mangifera indica, determine the physiognomy of the gallery Forest. The trees reach 33 cm in diameter and 18.27 m in height on average, although the presence of trees with 30 m is the most frequent, which denotes the irregular structure of the forest.

  13. Ecological studies on rain forest in Northern Suriname

    NARCIS (Netherlands)

    Schulz, J.P.

    1960-01-01

    During the years 1955-1957 ecological data were collected in various types of mesophytic forest occurring in the northern half of central Suriname (fig. 1). Physiognomically as well as floristically these forests correspond with the type of vegetation which in the other parts of tropical America

  14. Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains

    OpenAIRE

    Tamara Heartsill Scalley

    2017-01-01

    The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously measured tropical forest plots is presented. Long-term measurements, 72 years at the leeward site, and 25 years at windward site, o...

  15. VT Ecological Land Types - Green Mountain National Forest - lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The EcologicOther_ELT (Ecological Land Type) data layer was developed by the Green Mountain National Forest in the early 1980's from aerial...

  16. VT Ecological Land Types - Green Mountain National Forest - polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The EcologicOther_ELT (Ecological Land Type) data layer was developed by the Green Mountain National Forest in the early 1980's from aerial...

  17. Granulated wood ash to forest soil - Ecological effects

    International Nuclear Information System (INIS)

    Rosen, K.; Eriksson, H.; Clarholm, M.; Lundkvist, H.; Rudebeck, A.

    1993-01-01

    This report describes research concerning ecological effects of wood ash recycling to forest soils. The main part of the minerals in the wood fuels are retained in the ashes after combustion. By returning the ashes back to the cleared forest areas, the mineral losses can be reduced. Adding ashes and limestone is a method to vitalize acidified forest soils and restore the production capacity. 48 refs, 26 figs, 8 tabs

  18. Political Modernization in China's Forest Governance? Payment Schemes for Forest Ecological Services in Liaoning

    NARCIS (Netherlands)

    Liang, D.; Mol, A.P.J.

    2013-01-01

    Payment for environmental services (PES) schemes are increasingly being introduced in developed and developing countries for the ecological conservation of forests also. Such payment schemes resemble a new mode of forest governance labelled political modernization, in which centralized and

  19. VALUE OF ECOLOGIC COMPONENT IN FOREST MANAGEMENT DECISION MAKING. CASE STUDY: FORESTS ADJACENT TO BUCHAREST, ROMANIA

    Directory of Open Access Journals (Sweden)

    Carmen Valentina RADULESCU

    2016-06-01

    Full Text Available To say environment management is, nowadays, of outmost importance for any ecosystem concerned in an understatement; nevertheless, in Romania, especially – as least, since the present paper analyses Romanian ecologic statu quo – improving forest management, so to speak, in Romania, is all the more important, since social and economic decisionmaking as to forests (e.g. forests close to Romania’s capital, Bucharest includes necessarily an ecologic component. The main issue is how to make this component as visible and important as posible, without simultaneously reducing the economic and social components.

  20. Soedra's ecological forest management plans. Effects on production and economy

    International Nuclear Information System (INIS)

    Viklund, E.

    1998-01-01

    In 1995 SOEDRA Skog, Sweden's largest forest owners association, started making ecological forest management plans, Groena skogsbruksplaner. The ecological forest management plans are divided into different compartments in which the management is adapted to the present ecological conditions. The stands are divided into four different categories depending on the different values of nature conservation. The object of this study was to find an easy method to quantify and describe the effects of nature conservation on economy and forest production in SOEDRA:s ecological forest management plans. The developed and purposed method, called PLAN-metoden, does not consider the interests, measures beyond the period of the plan, or losses due to snow or wind. It calculates the difference between the purposed measures in the ecological management plan and an alternative with management according to the requirements of the present Forestry Act. The economic effects of nature conservation varies between a net profit of 0,3% and a cost of 9,1% when calculated with the cash-flow method. The average decrease of possible cutting of merchantable timber was 11,3% and varies between 3,1 and 32,9%. The average decrease of cutting possibilities was 12,9% and varies between a decrease of 0,7% and a decrease of 28,3% when calculated with a present value method. Mainly mature, well-stocked compartments, which are considered not to be managed in the future, give rise to high costs. Properties with unprofitable thinnings and costly scarification, regeneration and cleaning seem to be favoured by the nature conservation in the plans. The Ecological management plans are expected to be of great importance to the members of SOEDRA. The interest in nature conservation is larger than that of economical issues. In order to avoid unsatisfactory results the planning should be accomplished in close personal contact with the forest owner Examination paper 1998-1. 21 refs, 2 figs, 39 tabs

  1. A Quantitative Index of Forest Structural Sustainability

    Directory of Open Access Journals (Sweden)

    Jonathan A. Cale

    2014-07-01

    Full Text Available Forest health is a complex concept including many ecosystem functions, interactions and values. We develop a quantitative system applicable to many forest types to assess tree mortality with respect to stable forest structure and composition. We quantify impacts of observed tree mortality on structure by comparison to baseline mortality, and then develop a system that distinguishes between structurally stable and unstable forests. An empirical multivariate index of structural sustainability and a threshold value (70.6 derived from 22 nontropical tree species’ datasets differentiated structurally sustainable from unsustainable diameter distributions. Twelve of 22 species populations were sustainable with a mean score of 33.2 (median = 27.6. Ten species populations were unsustainable with a mean score of 142.6 (median = 130.1. Among them, Fagus grandifolia, Pinus lambertiana, P. ponderosa, and Nothofagus solandri were attributable to known disturbances; whereas the unsustainability of Abies balsamea, Acer rubrum, Calocedrus decurrens, Picea engelmannii, P. rubens, and Prunus serotina populations were not. This approach provides the ecological framework for rational management decisions using routine inventory data to objectively: determine scope and direction of change in structure and composition, assess excessive or insufficient mortality, compare disturbance impacts in time and space, and prioritize management needs and allocation of scarce resources.

  2. From "Forest Fires" and "Hunting" to Disturbing "Habitats" and "Food Chains": Do Young Children Come Up with Any Ecological Interpretations of Human Interventions within a Forest?

    Science.gov (United States)

    Ergazaki, Marida; Andriotou, Eirini

    2010-01-01

    This study aims at highlighting young children's reasoning about human interventions within a forest ecosystem. Our focus is particularly set on whether preschoolers are able to come up with any basic ecological interpretations of human actions upon forest plants or animals and how. Conducting individual, semi-structured interviews with 70…

  3. Ecological pattern of lichen species abundance in mixed forests of Eastern Romania

    Directory of Open Access Journals (Sweden)

    Ioana Vicol

    2016-12-01

    Full Text Available The importance of this study consists in the knowledge of the ecological attributes characteristic to mixed forestry habitats and how they affect the structure of the lichen species abundances. The field activities were performed within five forest habitat types from Moldavia Province, characterised mainly by oak mixed forests, riparian mixed forests and mixed beech forests. The habitat variables, tree variables and the lichen species abundances were analysed to get informations on the structural disimilarities, on the one hand, and relationships on the other hand. Within this study no significant disimilarities were found out from abundance lichen species point of view. The lichen species abundances are a result of interactions between components of their microhabitat and macrohabitat. The correlation analysis pointed out the preferences of lichen species to their host trees, especially Quercus and Fraxinus, altitude and tree level variables as are aspect and mosses coverage. The regression analysis has highlighted that the changes in lichen species abundances are caused by macrohabitat level predictors such as host trees represented by Fraxinus. This study demonstrates that, structure of lichen species is influenced by attributes of mixed forest habitats; therefore maintaining the diversity of tree species and ensuring the continuous occurrence of forestry land is necessary for lichen and their habitat conservation.

  4. Analysis of the changes in forest ecosystem functions, structure and composition in the Black Sea region of Turkey

    Institute of Scientific and Technical Information of China (English)

    Sedat Kele(s); (I)dris Durusoy; Günay Çakir

    2017-01-01

    We used geographical information system to analyze changes in forest ecosystem functions, structure and composition in a typical department of forest man-agement area consisting of four forest management plan-ning units in Turkey. To assess these effects over a 25 year period we compiled data from three forest management plans that were made in 1986, 2001 and 2011. Temporal changes in forest ecosystem functions were estimated based on the three pillars of forest sustainability: eco-nomics, ecology and socio-culture. We assessed a few indicators such as land-use and forest cover, forest types, tree species, development stage, stand age classes, crown closure, growing stock and its increment, and timber bio-mass. The results of the case study suggested a shift in forest values away from economic values toward ecologi-cal and socio-cultural values over last two planning peri-ods. Forest ecosystem structure improved, due mainly to increasing forest area, decreasing non-forest areas (espe-cially in settlement and agricultural areas), forestation on forest openings, rehabilitation of degraded forests, con-version of even-aged forests to uneven-aged forests and conversion of coppice forests to high forests with greater growing stock increments. There were also favorable changes in forest management planning approaches.

  5. Tropical forest transitions: structural changes in forest area, composition and landscape

    NARCIS (Netherlands)

    Wiersum, K.F.

    2014-01-01

    Most studies on tropical forest dynamics focus on the processes of deforestation and forest degradation and its associated ecological impacts; comparatively little attention is given to the emergence of forest transitions. This review gives an overview of forest transitions in the tropics as

  6. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  7. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  8. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included)

    In English, one or 2 pages.

    Functional ecology of tropical forest recovery

    Currently in the

  9. Disturbance and productivity interactions mediate stability of forest composition and structure

    Science.gov (United States)

    Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam; Craig P. Wilcox

    2017-01-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with...

  10. EUFODOS: European Forest Downstream Services - Improved Information on Forest Structure and Damage

    Science.gov (United States)

    Hirschmugl, M.; Gallaun, H.; Wack, R.; Granica, K.; Schardt, M.

    2013-05-01

    Forests play a key role in the European economy and environment. This role incorporates ecological functions which can be affected by the occurrence of insect infestations, forest fire, heavy snowfall or windfall events. Local or Regional Authorities (LRAs) thus require detailed information on the degradation status of their forests to be able to take appropriate measures for their forest management plans. In the EUFODOS project, state-of-the-art satellite and laser scanning technologies are used to provide forest authorities with cost-effective and comprehensive information on forest structure and damage. One of the six test sites is located in the Austrian province of Styria where regional forest authorities have expressed a strong need for detailed forest parameters in protective forest. As airborne laser-scanning data is available, it will be utilized to derive detailed forest parameters such as the upper forest border line, tree height, growth classes, forest density, vertical structure or volume. At the current project status, the results of (i) the forest border line, (ii) the segmentation of forest stands and (iii) the tree top detection are available and presented including accuracy assessment and interim results are shown for timber volume estimations. The final results show that the forest border can be mapped operationally with an overall accuracy of almost 99% from LiDAR data. For the segmentation of forest stands, a comparison of the automatically derived result with visual-manual delineation showed in general a more detailed segmentation result, but for all visual-manual segments a congruence of 87% within a 4 m buffer. Tree top detections were compared to stem numbers estimated based on angle-count samplings in a field campaign, which led to a correlation coefficient (R) of 0.79.

  11. Ecology of Missouri Forests. Instructional Unit. Conservation Education Series.

    Science.gov (United States)

    Jackson, Jim

    This unit is designed to help science, social studies, vocational agriculture, and other teachers incorporate forest ecology concepts into their subject matter. The unit includes: (1) topic outline; (2) unit objectives; (3) background information on climate and soils, levels of a deciduous forest, age classes, food and energy relationships, forest…

  12. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Science.gov (United States)

    Briggs, Jenny S.; Fornwalt, Paula J.; Feinstein, Jonas A.

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor ecological restoration treatments intended to offset the effects of many decades of anthropogenic stressors. We initiated a novel study to expand the scope of treatment effectiveness monitoring efforts in one of the first CFLR landscapes, Colorado’s Front Range. We used a Before/After/Control/Impact framework to evaluate the short-term consequences of treatments on numerous ecological properties. We collected pre-treatment and one year post-treatment data on NF and partner agencies’ lands, in 66 plots distributed across seven treatment units and nearby untreated areas. Our results reflected progress toward several treatment objectives: treated areas had lower tree density and basal area, greater openness, no increase in exotic understory plants, no decrease in native understory plants, and no decrease in use by tree squirrels and ungulates. However, some findings suggested the need for adaptive modification of both treatment prescriptions and monitoring protocols: treatments did not promote heterogeneity of stand structure, and monitoring methods may not have been robust enough to detect changes in surface fuels. Our study highlights both the effective aspects of these restoration treatments, and the importance of initiating and continuing collaborative science-based monitoring to improve the outcomes of broad-scale forest restoration efforts.

  13. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    Science.gov (United States)

    Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.

  14. Forest climbing plants of West Africa: diversity, ecology and management

    NARCIS (Netherlands)

    Bongers, F.J.J.M.; Parren, M.P.E.; Traoré, D.

    2005-01-01

    Climbing plants, including lianas, represent a fascinating component of the ecology of tropical forests. This book focuses on the climbing plants of West African forests. Based on original research, it presents information on the flora (including a checklist), diversity (with overviews at several

  15. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    Science.gov (United States)

    Emily J. Silver; Anthony W. D' Amato; Shawn Fraver; Brian J. Palik; John B. Bradford

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types....

  16. Structure and productivity of mixed spruce and fir forests on Mt. Kopaonik

    Directory of Open Access Journals (Sweden)

    Šljukić Biljana

    2017-01-01

    Full Text Available The subject of this research are mixed forests of spruce and fir in the area of NP Kopaonik, which belong to the community of spruce and fir - Abieti-Piceetum abietis Mišić et Popović, 1978. The basis for the study of the structural development and production potential of these forests are data from 12 sample plots, with the average size of 0.18 ha. In terms of coenoecological affiliation all the sample plots belong to the group of ecological units - forests of spruce and fir (Abieti-Piceetum abietis, Mišić et Popović, 1978 on acid brown and brown podzolic soils, which are differentiated into 5 ecological units: Abieti-Piceetum abietis oxalidetosum on brown podzolic soil, Abieti-Piceetum abietis oxalidetosum on acid brown soil, Abieti-Piceetum abietis vaccinietosum on brown podzolic soil, Abieti-Piceetum abietis typicum on brown podzolic soil and Abieti-Piceetum abietis Dr.ymetosum on brown pozolic soil. In structural terms, these forests are characterized by very diverse structural forms, ranging from the structure of even-aged stands to typical multi-storey, unevenaged-aged stands. The form of cumulative curves of tree distribution is in most cases determined by spruce as the dominant species. At the same time, thin and medium-thick trees dominate, while the presence of stems with large dimensions is minimal. The average volume of these forestse is 777 m3•ha-1, with a mixture ratio of 0.7: 0.3 in favor of spruce. The average value of the current volume increment is 14 m3•ha-1, with a 68% share of spruce and 32% of fir. The percentage of increment ranges from 1.6% to 2.5% in all sample plots and is somewhat higher for fir. The site potential, stand characteristics and relations among the tree species have resulted in structural complexity, high productivity and ecological stability of these forests. Therefore, future forest management should avoid radical measures and procedures that would violate the established relationships and

  17. EUFODOS: European Forest Downstream Services – Improved Information on Forest Structure and Damage

    Directory of Open Access Journals (Sweden)

    M. Hirschmugl

    2013-05-01

    Full Text Available Forests play a key role in the European economy and environment. This role incorporates ecological functions which can be affected by the occurrence of insect infestations, forest fire, heavy snowfall or windfall events. Local or Regional Authorities (LRAs thus require detailed information on the degradation status of their forests to be able to take appropriate measures for their forest management plans. In the EUFODOS project, state-of-the-art satellite and laser scanning technologies are used to provide forest authorities with cost-effective and comprehensive information on forest structure and damage. One of the six test sites is located in the Austrian province of Styria where regional forest authorities have expressed a strong need for detailed forest parameters in protective forest. As airborne laser-scanning data is available, it will be utilized to derive detailed forest parameters such as the upper forest border line, tree height, growth classes, forest density, vertical structure or volume. At the current project status, the results of (i the forest border line, (ii the segmentation of forest stands and (iii the tree top detection are available and presented including accuracy assessment and interim results are shown for timber volume estimations. The final results show that the forest border can be mapped operationally with an overall accuracy of almost 99% from LiDAR data. For the segmentation of forest stands, a comparison of the automatically derived result with visual-manual delineation showed in general a more detailed segmentation result, but for all visual-manual segments a congruence of 87% within a 4 m buffer. Tree top detections were compared to stem numbers estimated based on angle-count samplings in a field campaign, which led to a correlation coefficient (R of 0.79.

  18. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives.

    Science.gov (United States)

    Joly, Carlos A; Metzger, Jean Paul; Tabarelli, Marcelo

    2014-11-01

    The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. A mixed-methods analysis of social-ecological feedbacks between urbanization and forest persistence

    Directory of Open Access Journals (Sweden)

    Todd BenDor

    2014-09-01

    Full Text Available We examined how social-ecological factors in the land-change decision-making process influenced neighboring decisions and trajectories of alternative landscape ecologies. We decomposed individual landowner decisions to conserve or develop forests in the rapidly growing Charlotte, North Carolina, U.S. region, exposing and quantifying the effects of forest quality, and social and cultural dynamics. We tested the hypothesis that the intrinsic value of forest resources, e.g., cultural attachment to land, influence woodland owners' propensity to sell. Data were collected from a sample of urban, nonindustrial private forest (U-NIPF owners using an individualized survey design that spatially matched land-owner responses to the ecological and timber values of their forest stands. Cluster analysis (n = 126 revealed four woodland owner typologies with widely ranging views on the ecosystem, cultural, and historical values of their forests. Classification tree analysis revealed woodland owners' willingness to sell was characterized by nonlinear, interactive factors, including sense of place values regarding the retention of native vegetation, the size of forest holdings, their connectedness to nature, 'pressure' from surrounding development, and behavioral patterns, such as how often landowners visit their land. Several ecological values and economic factors were not found to figure in the decision to retain forests. Our study design is unique in that we address metropolitan forest persistence across urban-rural and population gradients using a unique individualized survey design that richly contextualizes survey responses. Understanding the interplay between policies and landowner behavior can also help resource managers to better manage and promote forest persistence. Given the region's paucity of policy tools to manage the type and amount of development, the mosaic of land cover the region currently enjoys is far from stable.

  20. Fire ecology of Montana forest habitat types east of the Continental Divide

    Science.gov (United States)

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  1. DEPENDENCE OF GRASS COVER TAXONOMIC AND ECOLOGICAL STRUCTURE ON THE ANTHROPOGENIC IMPACT IN FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    N. V. Miroshnik

    2016-01-01

    revealed the domination of plant species that are tolerant to transformed forest conditions due to drastic anthropogenic changes of ecological regimes in Chygyryn's Bor. Key words: grass cover, Chigirin's Bor, anthropogenic impact, forest ecosystem, industrial transformation and degradation of grass cover.

  2. Synergy Between Traditional Ecological Knowledge and Conservation Science Supports Forest Preservation in Ecuador

    Directory of Open Access Journals (Sweden)

    C. Dustin Becker

    2003-12-01

    Full Text Available Meeting the desires of individuals while sustaining ecological "public goods" is a central challenge in natural resources conservation. Indigenous communities routinely make common property decisions balancing benefits to individuals with benefits to their communities. Such traditional knowledge offers insight for conservation. Using surveys and field observations, this case study examines aspects of indigenous institutions and ecological knowledge used by rural Ecuadorians to manage a forest commons before and after interacting with two U.S.-based conservation NGOs: Earthwatch Institute and People Allied for Nature. The rural farming community of Loma Alta has legal property rights to a 6842-ha watershed in western Ecuador. This self-governing community curtailed destruction of their moist forest commons, but not without the influence of modern scientific ecological knowledge. When Earthwatch Institute scientists provided evidence that forest clearing would reduce water supply to the community, villagers quickly modified land allocation patterns and set rules of use in the forest establishing the first community-owned forest reserve in western Ecuador. This case demonstrates that synergy between traditional knowledge and western knowledge can result in sustaining both ecosystem services and biodiversity in a forest commons.

  3. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  4. Traditional and formal ecological knowledge to assess harvesting and conservation of a Mexican Tropical Dry Forest.

    Science.gov (United States)

    Monroy-Ortiz, Columba; García-Moya, Edmundo; Romero-Manzanares, Angélica; Luna-Cavazos, Mario; Monroy, Rafael

    2018-05-15

    This research integrates Traditional and Formal Ecological Knowledge (TEK / FEK) of a Tropical Dry Forest in central Mexico, in order to assess harvesting and conservation of the non-timber forest species. We were interested in: knowing the structure and diversity of the forest community; identifying which are the tree resources of common interest to the users through participatory workshops. A further interest was to identify those resources which are important to local people in terms of preservation; explaining the relationship of the species with some environmental factors; and visualizing which management practices endanger or facilitate the conservation of species. Studied areas were defined and labelled on a map drawn by local informants, where they indicated those plant species of common interest for preservation. Ethnobotanical techniques were used to reveal the TEK and assess harvesting and conservation of the species. With the FEK through community and population ecology, we detected the importance of five environmental factors, obtained various ecological indicators of the vegetation, and studied the population structure of the relevant species. The FEK was analyzed using descriptive and multivariate statistics. As a result, low density and small basal area of trees were registered. Species richness and diversity index were similar to other natural protected areas in Mexico. Tree species harvested shown an asymmetric distribution of diameters. Harvesting, elevation, and accessibility were the most influential factors on tree density. FEK demonstrated that TEK is helpful for the assessment of forest harvesting. Ecological analysis complemented the local knowledge detecting that Lysiloma tergemina is a species non-identified for the people as interesting, although we discover that it is a threatened species by over-harvesting. Haematoxylum brasiletto was identified as important for conservation due to its scarcity and medicinal use. Our results advanced

  5. Current status of mangrove forest in the lot No. 2 Baitiquirí Ecological Reserve, Guantánamoológica Baitiquirí, Guantánamo

    Directory of Open Access Journals (Sweden)

    Orfelina Rodríguez Leyva

    2016-12-01

    Full Text Available The study was conducted in the mangrove forest of the Reserve Ecological Baitiquirí, belonging to the Flora and Fauna Guantanamo Company located in the municipality of San Antonio del Sur, in order to assess the current state of the mangrove forest in the lot number two of the reservation. To comply with the objective was characterized dasometric different parameters, natural regeneration and mortality, as well as the determination of the main problems affecting the forest with community participation were evaluated. As important result was obtained that the mangrove species present in the forest of the Reserve Ecological Baitiquirí are poor structurally, with less than six meters diameters less than nine centimeters heights, being the species Conocarpus erectus L. var. sericius the most important from the ecological point of view. Besides the problems with greater incidence by actors of the community in the mangrove forest they were: coastal erosion and desertification.

  6. Felling-system and regeneration of pine forests on ecological-genetic-geographical basis

    Directory of Open Access Journals (Sweden)

    S. N. Sannikov

    2015-12-01

    Full Text Available A conception of the adaptation of Scots pine populations to the natural regeneration on open sites with the mosaic retained stand and mineralized soil surface on the basis of the ecological-genetic-geographical investigations in the forests of the Russia and the theory of petropsammofitness-pyrofitness (Sannikov S. N., 1983 has been substantiated. The methods of clear cuts with the seeding from surrounding forest, seed curtains and sufficiently extent of the substrate preparation for the pine selfsown have been selected and elaborated as a main organization principle of the system «felling-regeneration» in the plains pine forests of the forest zone. High regeneration efficiency of this system with the application of original aggregate for the optimal mineralization of the soil substrate (with its synchronous loosing has been shown on the example of dominating pine forest types in the subzone for-forest-steppe of the Western Siberia. The silvicultural-ecological and reproductive-genetic advantages of retaining seed curtains instead of separate seed trees have been substantiated. The basic parameters of the system «felling-regeneration», which guarantee a sufficient success of the following pine regeneration in the for-forest-steppe subzone, have been determined with the help of the methods of the mathematical imitation modeling of the pine selfsown density depending on the area and localization of seed curtains, surrounding forest and the extent of the substrate mineralization. The zonal differentiated system of the fellings and measures for the regeneration optimization in the climatically substituting pine forest types in the Western Siberia has been elaborated according to the parameters, studied earlier, on the ecological-genetic-geographical basis. The principles of this system in forest zone come to the clear strip-fellings with insemination of cuts from the seed curtains and forest walls, and to the hollow-fellings with the

  7. Wetland management strategies lead to tradeoffs in ecological structure and function

    Directory of Open Access Journals (Sweden)

    Ariane L. Peralta

    2017-12-01

    Full Text Available Anthropogenic legacy effects often occur as a consequence of land use change or land management and can leave behind long-lasting changes to ecosystem structure and function. This legacy is described as a memory in the form of ecological structure or ecological interactions that remains at a location from a previous condition. We examined how forested floodplain restoration strategy, based on planting intensity, influenced wetland community structure and soil chemical and physical factors after 15 years. The site was divided into 15 strips, and strips were assigned to one of five restoration treatments: plantings of acorns, 2-year-old seedlings, 5-ft bareroot trees, balled and burlapped trees, and natural seed bank regeneration. Our community composition survey revealed that plots planted with bareroot or balled and burlapped trees developed closed tree canopies with little herbaceous understory, while acorn plantings and natural colonization plots developed into dense stands of the invasive species reed canary grass (RCG; 'Phalaris arundinacea'. Restoration strategy influenced bacterial community composition but to a lesser degree compared to the plant community response, and riverine hydrology and restoration strategy influenced wetland soil conditions. Soil ammonium concentrations and pH were similar across all wetland restoration treatments, while total organic carbon was highest in forest and RCG-dominated plots compared to mixed patches of trees and open areas. The differences in restoration strategy and associated economic investment resulted in ecological tradeoffs. The upfront investment in larger, more mature trees (i.e., bareroot, balled and burlapped led to floodplain forested communities, while cheaper, more passive planting strategies (i.e., seedlings, seedbank, or acorns resulted in dense stands of invasive RCG, despite the similar floodplain hydrology across all sites. Therefore, recovery of multiple ecosystem services that

  8. The Contribution of Traditional Ecological Knowledge and Practices to Forest Management: The Case of Northeast Asia

    Directory of Open Access Journals (Sweden)

    Seongjun Kim

    2017-12-01

    Full Text Available This study aims to introduce the potential applicability of traditional ecological knowledge and community forestry in Northeast Asia, including China, Japan, and South Korea. In ancient Northeast Asia, forest policies and practices were based on Fengshui (an old Chinese concept regarding the flow of vital forces, with which forests were managed under community forestry. However, these traditional systems diminished in the twentieth century owing to the decline of traditional livelihood systems and extreme deforestation. Recently, legacies from traditional ecological knowledge and community forestry have been revisited and incorporated into forest policies, laws, and management practices because of growing needs for sustainable forest use in China, Japan, and Korea. This reevaluation of traditional ecological knowledge and community forestry has provided empirical data to help improve forestry systems. Although traditional ecological knowledge and community forestry in Northeast Asia have been scarcely theorized, they play a significant role in modifying forest management practices in the face of socioeconomic changes.

  9. Geospatial Assessment of Forest Fragmentation and its Implications for Ecological Processes in Tropical Forests

    Directory of Open Access Journals (Sweden)

    Adepoju Kayode Adewale

    2017-11-01

    Full Text Available The study assessed the patterns of spatio-temporal configuration imposed on a forest landscape in Southwestern Nigeria due to fragmentation for the period 1986 – 2010 in order to understand the relationship between landscape patterns and the ecological processes influencing the distribution of species in tropical forest environment. Time-series Landsat TM and ETM satellite images and forest inventory data were pre-processed and classified into four landuse/landcover categories using maximum likelihood classification algorithm. Fragstats software was used for the computation of seven landscape and six class level metrics to provide indicators of fragmentation and landscape connectivity from the classified images.

  10. Structure and resilience of fungal communities in Alaskan boreal forest soils

    Science.gov (United States)

    D. Lee Taylor; Ian C. Herriott; Kelsie E. Stone; Jack W. McFarland; Michael G. Booth; Mary Beth Leigh

    2010-01-01

    This paper outlines molecular analyses of soil fungi within the Bonanza Creek Long Term Ecological Research program. We examined community structure in three studies in mixed upland, black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) forests and examined taxa involved in cellulose...

  11. Effects of sulphur pollution on forest floor invertebrates (community structure, structural heterogeneity, edge effects, decomposition, Callioplus euoplus, Pterostichus adstrictus, Scaphinotus marginatus)

    Energy Technology Data Exchange (ETDEWEB)

    Carcamo, H. A.

    1997-12-31

    The distribution of insects and other invertebrates was studied in forests under varying regimes of exposure to sulfur compounds in the vicinity of two sour gas plants and at sharp acidification gradients in pine and aspen forests located near a sulfur block. Results showed no effect on most invertebrates at moderate levels of sulfur deposition. At this level, structural heterogeneity of the forest floor was more influential than sulfur levels in determining the macroarthropoid community structure. By contrast, high sulphur contamination and subsequent acidification had a clear negative effect on earthworms, and various species of spiders. Ground beetles and certain epigeic spiders along the sharp acidification gradient at the pine forest were considered vulnerable but resistant and favoured. These results suggested that ecological specialists were most vulnerable to acidification effects, while ecological generalists have been more successful in resisting the effects of acidification. It was also shown that indirect effects at the landscape, habitat or forest type, and microhabitat level, were more important in the case of most of the arthropods than the direct effects. Only earthworms, snails and some Collembola were negatively affected through direct acidity effects.

  12. Effects of sulphur pollution on forest floor invertebrates (community structure, structural heterogeneity, edge effects, decomposition, Callioplus euoplus, Pterostichus adstrictus, Scaphinotus marginatus)

    International Nuclear Information System (INIS)

    Carcamo, H. A.

    1997-01-01

    The distribution of insects and other invertebrates was studied in forests under varying regimes of exposure to sulfur compounds in the vicinity of two sour gas plants and at sharp acidification gradients in pine and aspen forests located near a sulfur block. Results showed no effect on most invertebrates at moderate levels of sulfur deposition. At this level, structural heterogeneity of the forest floor was more influential than sulfur levels in determining the macroarthropoid community structure. By contrast, high sulphur contamination and subsequent acidification had a clear negative effect on earthworms, and various species of spiders. Ground beetles and certain epigeic spiders along the sharp acidification gradient at the pine forest were considered vulnerable but resistant and favoured. These results suggested that ecological specialists were most vulnerable to acidification effects, while ecological generalists have been more successful in resisting the effects of acidification. It was also shown that indirect effects at the landscape, habitat or forest type, and microhabitat level, were more important in the case of most of the arthropods than the direct effects. Only earthworms, snails and some Collembola were negatively affected through direct acidity effects

  13. Cumulative ecological and socioeconomic effects of forest policies in coastal Oregon.

    Science.gov (United States)

    T.A. Spies; K.N. Johnson; K.M. Burnett; J.L. Ohmann; B.C. McComb; G.H. Reeves; P. Bettinger; J.D. Kline; B. Garber-Yonts

    2007-01-01

    Forest biodiversity policies in multiownership landscapes are typically developed in an uncoordinated fashion with little consideration of their interactions or possible unintended cumulative effects. We conducted an assessment of some of the ecological and socioeconomic effects of recently enacted forest management policies in the 2.3-million-ha Coast Range...

  14. Emerging Themes in the Ecology and Management of North American Forests

    International Nuclear Information System (INIS)

    Sharik, T.L.; Adair, W.; Baker, F.A.

    2010-01-01

    The 7th North American Forest Ecology Workshop, consisting of 149 presentations in 16 oral sessions and a poster session, reflected a broad range of topical areas currently under investigation in forest ecology and management. There was an overarching emphasis on the role of disturbance, both natural and anthropogenic, in the dynamics of forest ecosystems, and the recognition that legacies from past disturbances strongly influence future trajectories. Climate was invoked as a major driver of ecosystem change. An emphasis was placed on application of research findings for predicting system responses to changing forest management initiatives. Several needs emerged from the discussions regarding approaches to the study of forest ecosystems, including (1) consideration of variable spatial and temporal scales, (2) long-term monitoring, (3) development of universal databases more encompassing of time and space to facilitate meta-analyses, (4) combining field studies and modeling approaches, (5) standardizing methods of measurement and assessment, (6) guarding against oversimplification or over generalization from limited site-specific results, (7) greater emphasis on plant-animal interactions, and (8) better alignment of needs and communication of results between researchers and managers.

  15. Emerging Themes in the Ecology and Management of North American Forests

    Directory of Open Access Journals (Sweden)

    Terry L. Sharik

    2010-01-01

    Full Text Available The 7th North American Forest Ecology Workshop, consisting of 149 presentations in 16 oral sessions and a poster session, reflected a broad range of topical areas currently under investigation in forest ecology and management. There was an overarching emphasis on the role of disturbance, both natural and anthropogenic, in the dynamics of forest ecosystems, and the recognition that legacies from past disturbances strongly influence future trajectories. Climate was invoked as a major driver of ecosystem change. An emphasis was placed on application of research findings for predicting system responses to changing forest management initiatives. Several “needs” emerged from the discussions regarding approaches to the study of forest ecosystems, including (1 consideration of variable spatial and temporal scales, (2 long-term monitoring, (3 development of universal databases more encompassing of time and space to facilitate meta-analyses, (4 combining field studies and modeling approaches, (5 standardizing methods of measurement and assessment, (6 guarding against oversimplification or overgeneralization from limited site-specific results, (7 greater emphasis on plant-animal interactions, and (8 better alignment of needs and communication of results between researchers and managers.

  16. Emerging themes in the ecology and management of North American forests

    Science.gov (United States)

    Sharik, Terry L.; Adair, William; Baker, Fred A.; Battaglia, Michael; Comfort, Emily J.; D'Amato, Anthony W.; Delong, Craig; DeRose, R. Justin; Ducey, Mark J.; Harmon, Mark; Levy, Louise; Logan, Jesse A.; O'Brien, Joseph; Palik, Brian J.; Roberts, Scott D.; Rogers, Paul C.; Shinneman, Douglas J.; Spies, Thomas; Taylor, Sarah L.; Woodall, Christopher; Youngblood, Andrew

    2010-01-01

    The 7th North American Forest Ecology Workshop, consisting of 149 presentations in 16 oral sessions and a poster session, reflected a broad range of topical areas currently under investigation in forest ecology and management. There was an overarching emphasis on the role of disturbance, both natural and anthropogenic, in the dynamics of forest ecosystems, and the recognition that legacies from past disturbances strongly influence future trajectories. Climate was invoked as a major driver of ecosystem change. An emphasis was placed on application of research findings for predicting system responses to changing forest management initiatives. Several “needs” emerged from the discussions regarding approaches to the study of forest ecosystems, including (1) consideration of variable spatial and temporal scales, (2) long-term monitoring, (3) development of universal databases more encompassing of time and space to facilitate meta-analyses, (4) combining field studies and modeling approaches, (5) standardizing methods of measurement and assessment, (6) guarding against oversimplification or overgeneralization from limited site-specific results, (7) greater emphasis on plant-animal interactions, and (8) better alignment of needs and communication of results between researchers and managers.

  17. Chemical ecology and management of bark beetles in western coniferous forests

    Science.gov (United States)

    Christopher J. Fettig

    2013-01-01

    The future looks bright for the development and use of semiochemical-based tools in forests, particularly in remote and sensitive areas where other management techniques (e.g., the use of insecticides) may not be appropriate. This editorial provides an concise overview of chemical ecology and management of bark beetles in western coniferous forests.

  18. Ecology and silviculture of the spruce-fir forests of eastern North America

    Science.gov (United States)

    Marinus. Westveld

    1953-01-01

    Using the climax forest as a guide to growing the species best suited to the climate and the site, the author offers a silvicultural system for managing the spruce-fir forests of eastern North America. Based on ecological principles, such silviculture is aimed to bring about forests that are inherently healthy and have a natural resistance to insects and disease.

  19. Ecology and silvicultural management for the rehabilitation in rain forests of low altitude on complex metamorphic

    Directory of Open Access Journals (Sweden)

    Gonzalo Cantos Cevallos

    2018-01-01

    Full Text Available In order to characterize ecology and silvicultural management for the rehabilitation of the low altitude rain forest on a metamorphic complex, Quibiján-Naranjal del Toa sector, a floristic inventory was carried out, 36 sample plots of 20 x 25 m in the forest in both sides of Toa's riverside. Tree species with d1,3 e» 5 cm were measured, a total of 1507 individuals represented in 52 species belonging to 49 genera and 24 families were identified and evaluated. Both forests were statistically compared in terms of richness, composition, structure, diversity and abundance, with a high alpha and beta diversity. The species with the highest value index of ecological importance were determined. The families Fabaceae, Moraceae, Lauraceae and Meliaceae are the most representative in terms of species and genera. The most important species are Hibiscus elatus, Calophyllum utile, Carapa guianensis, Buhenavia capitata, y Guarea guara, among others, which stand out as the most abundant. Economic occupation was adequate in a few plots and incomplete in most of the sampling units. Taking into account the results obtained, we propose silvicultural actions aimed at sustainable forest management through the application of improvement shorts and the method of enrichment in dense spaced-groups for the rehabilitation and the achievement of the expected multiethane forest.

  20. Faunal impact on vegetation structure and ecosystem function in mangrove forests

    DEFF Research Database (Denmark)

    Cannicci, S.; Burrows, Damien; Fratini, Sara

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  1. Structure and Composition of a Dry Mixed-Conifer Forest in Absence of Contemporary Treatments, Southwest, USA

    Directory of Open Access Journals (Sweden)

    Douglas Cram

    2017-09-01

    Full Text Available Dry mixed-conifer forests in the Southwest occupy an important ecological and hydrological role in upper watersheds. In the absence of reoccurring fire and silvicultural treatments over the last 50 years, we quantified forest structure and composition on prevailing north and south aspects of a dry mixed-conifer forest in southcentral New Mexico using mixed models and ordination analysis in preparation for an experiment in ecological restoration. Results indicated overstory and midstory were dominated by Douglas-fir (Pseudotsuga menziesii and shade tolerant/fire intolerant white fir (Abies concolor with interspersed mature aspen on north aspects, and Douglas-fir and Southwestern white pine (Pinus strobiformis on south aspects. Ponderosa pine (Pinus ponderosa, which was historically co-dominant with Douglas-fir on north and south aspects, was subdominant on south aspects and almost entirely absent on north aspects. Regeneration was dominated by white fir saplings and seedlings on north aspects while ponderosa pine was completely absent. South aspect saplings and seedlings were characterized by Douglas-fir and Southwestern white pine, but almost no ponderosa pine. Ordination analysis characterized the effect of aspect on species composition. Understanding contemporary forest structure and composition is important when planning for desired future conditions that are to be achieved through ecological restoration using silvicultural techniques designed to foster resilience.

  2. Collaborative restoration effects on forest structure in ponderosa pine-dominated forests of Colorado

    Science.gov (United States)

    Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown

    2018-01-01

    In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Service’s Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...

  3. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Science.gov (United States)

    Jennifer S. Briggs; Paula J. Fornwalt; Jonas A. Feinstein

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor...

  4. Community stand structure of rehabilitated forest at Kenaboi Forest Reserve, Negeri Sembilan, Malaysia

    Science.gov (United States)

    Fatma, N. A. H.; Wan Juliana, W. A.; Shaharuddin, M. I.; Wickneswari, R.

    2016-11-01

    A descriptive study of species composition, community structure and biomass was conducted in compartment 107, which is a rehabilitated area at Kenaboi Forest Reserve, Jelebu, Negeri Sembilan. The objective is to determine the forest structure and species composition in a rehabilitated area of Kenaboi FR since enrichment planting had done. A sample plot of 1 hectare was censused and a total of 395 trees with diameter ≥ 5 cm DBH were recorded. A total of 285 individual trees were identified belonging to 20 families and the commonest family was Dipterocarpaceae with 193 individuals. The highest tree density per ha was Shorea acuminata at 33% followed by S. parvifolia, 10% and S. leprosula, 6%. The biggest tree was Artocarpus elasticus Reinw. ex Blume with a diameter of 101 cm. The total basal area was 34.48 m2/ha, whereby the highest basal area was between 45 - 54.9 cm DBH class that contributed 10.21 m2/ha (30%). The total biomass estimation (above ground and below ground) was 792.57 t/ha. Dipterocarpaceae contributed the highest total biomass at 545.14 t/ha with S. acuminata contributed the highest total biomass of 330.45 t/ha. This study will contribute to the knowledge of regeneration forest especially on how the ecological process restoring the biodiversity and ecosystem functioning in rehabilitated forest by practicing the enrichment planting of native species.

  5. Ecological consequences of anthropogenic pressure in Wari-Maro Forest Reserve (Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Aubin Guénolé Amagnide

    2015-12-01

    Full Text Available This study assessed ecological consequences of anthropogenic pressure on Wari-Maro Forest Reserve (WMFR. The dynamics of forest cover has been assessed using a diachronic analysis of land cover maps from the Landsat satellite images of 1986, 1995 and 2006. Structural patterns of the forest has been described using forest inventory data with twenty five 1ha plots having two 50 m x 30 m plots set up inside and positioned at the opposite corners of the leading diagonal within each 1 ha plot. Established plots allowed identifying the most targeted species in illegal logging. Plots of 0.15 ha established inside each 1 ha plot helped assessing the volume of trees from which we derived carbon stock and carbon loss using conversion and expansion factors. For the two periods 1986 to 1995 and 1995 to 2006, there was a decline in forest cover which slowed down in the second decade (0.196 %.year-1 and 0.083 %.year-1 respectively. The two vegetation types of the WMFR were mainly distinguished by Lorey's mean height (12.81 m in woodland and 12.44 m in tree-savannah. Top five targeted species in illegal logging activities were: Pterocarpus erinaceus Poir., Afzelia africana Sm., Isoberlinia spp., Anogeissus leiocarpa Guill. and Daniellia oliveri (Rolfe Hutch. & Dalziel. Results also showed mean values of carbon stock and carbon losses for the whole forest of 147.84 tons C.ha-1 and 17.57 tons C.ha-1 respectively and did not depend on vegetation type. Results from this study suggest that management strategies should focus on selectively logged species. Monitoring should also be enhanced to ensure conservation of resources of the reserve which are at high risks of extinction due to selective logging rates. Keywords: anthropogenic pressure, forest cover, structure, carbon stock, Wari-Maro forest reserve, Benin.

  6. Genetic structure and diversity of the black and rufous sengiin Tanzanian coastal forests

    Czech Academy of Sciences Publication Activity Database

    Sabuni, C. A.; Van Houtte, N.; Gryseels, S.; Maganga, S. L. S.; Makundi, R. H.; Leirs, H.; Goüy de Bellocq, Joëlle

    2016-01-01

    Roč. 300, č. 4 (2016), s. 305-313 ISSN 0952-8369 Institutional support: RVO:68081766 Keywords : Rhynchocyon petersi * vulnerable * conservation genetics * coastal forests * Beamys hindei * genetic structure * genetic diversity * habitat fragmentation Subject RIV: EH - Ecology, Behaviour Impact factor: 2.186, year: 2016

  7. Stand structure and dead wood characterization in cork forest of Calabria region (southern Italy

    Directory of Open Access Journals (Sweden)

    Barreca L

    2010-07-01

    Full Text Available The cork forests are one the most interesting forest ecosystems in the Mediterranean area. Their distribution and ecological characteristics have undergone a significant transformation after the significant changes following the development and establishment of agricultural crops. Currently, only a few stands, which survive in hard to reach places, prove the wide spread distribution of this species was also in the recent past. This study describes the stand structure of some cork forests in Calabria region (southern Italy. In order, to characterize the vertical structure Latham index has been applied, while for the description of the horizontal distribution NBSI group indices has been used. Detailed surveys on dead wood were also conducted determining the occurring volume and its decay stage according to the decay classes system proposed by Hunter. The aim of this study is to provide guidelines for sustainable management of cork forests, improving and promoting the structural complexity and functional efficiency of these forest stands.

  8. Long-term impacts of prescribed fire on stand structure, growth, mortality, and individual tree vigor in Pinus resinosa forests

    Science.gov (United States)

    Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell

    2016-01-01

    Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...

  9. Ecological and distributional notes on hummingbirds from Bolivian lowland forests

    OpenAIRE

    Abrahamczyk, S; Kessler, M

    2010-01-01

    Little is known about the distribution, ecology and behaviour of hummingbirds in the Andean foothills of Bolivia, where many lowland hummingbird species reach their south-western distributional limits. In November 2007 – October 2008, we surveyed hummingbirds at six sites along a 660-km transect, from tropical Amazonian humid forest to subtropical spiny forest of the Gran Chaco. In total, we found 21 hummingbird species. For ten of these, we provide new information on latitudinal and eleva...

  10. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    Science.gov (United States)

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.

  11. [Structural recovering in Andean successional forests from Porce (Antioquia, Colombia)].

    Science.gov (United States)

    Yepes, Adriana P; del Valle, Jorge I; Jaramillo, Sandra L; Orrego, Sergio A

    2010-03-01

    Places subjected to natural or human disturbance can recover forest through an ecological process called secondary succession. Tropical succession is affected by factors such as disturbances, distance from original forest, surface configuration and local climate. These factors determine the composition of species and the time trend of the succession itself. We studied succession in soils used for cattle ranching over various decades in the Porce Region of Colombia (Andean Colombian forests). A set of twenty five permanent plots was measured, including nine plots (20 x 50 m) in primary forests and sixteen (20 x 25 m) in secondary forests. All trees with diameter > or =1.0 cm were measured. We analyzed stem density, basal area, above-ground biomass and species richness, in a successional process of ca. 43 years, and in primary forests. The secondary forests' age was estimated in previous studies, using radiocarbon dating, aerial photographs and a high-resolution satellite image analysis (7 to >43 years). In total, 1,143 and 1,766 stems were measured in primary and secondary forests, respectively. Basal area (5.7 to 85.4 m2 ha(-1)), above-ground biomass (19.1 to 1,011.5 t ha(-1)) and species richness (4 to 69) directly increased with site age, while steam density decreased (3,180 to 590). Diametric distributions were "J-inverted" for primary forests and even-aged size-class structures for secondary forests. Three species of palms were abundant and exclusive in old secondary forests and primary forests: Oenocarpus mapora, Euterpe precatoria and Oenocarpus bataua. These palms happened in cohorts after forest disturbances. Secondary forest structure was 40% in more than 43 years of forest succession and indicate that many factors are interacting and affecting the forests succession in the area (e.g. agriculture, cattle ranching, mining, etc.).

  12. Using structured decision making with landowners to address private forest management and parcelization: balancing multiple objectives and incorporating uncertainty

    Science.gov (United States)

    Paige F. B. Ferguson; Michael J. Conroy; John F. Chamblee; Jeffrey Hepinstall-Cymerman

    2015-01-01

    Parcelization and forest fragmentation are of concern for ecological, economic, and social reasons. Efforts to keep large, private forests intact may be supported by a decision-making process that incorporates landowners’ objectives and uncertainty. We used structured decision making (SDM) with owners of large, private forests in Macon County, North Carolina....

  13. Ecological Impacts of Deforestation and Forest Degradation in the Peat Swamp Forests of Northwestern Borneo

    Science.gov (United States)

    Nguyen, Ha Thanh

    Tropical peatlands have some of the highest carbon densities of any ecosystem and are under enormous development pressure. This dissertation aimed to provide better estimates of the scales and trends of ecological impacts from tropical peatland deforestation and degradation across more than 7,000 hectares of both intact and disturbed peatlands in northwestern Borneo. We combined direct field sampling and airborne Light Detection And Ranging (LiDAR) data to empirically quantify forest structures and aboveground live biomass across a largely intact tropical peat dome. The observed biomass density of 217.7 +/- 28.3 Mg C hectare-1 was very high, exceeding many other tropical rainforests. The canopy trees were 65m in height, comprising 81% of the aboveground biomass. Stem density was observed to increase across the 4m elevational gradient from the dome margin to interior with decreasing stem height, crown area and crown roughness. We also developed and implemented a multi-temporal, Landsat resolution change detection algorithm for identify disturbance events and assessing forest trends in aseasonal tropical peatlands. The final map product achieved more than 92% user's and producer's accuracy, revealing that after more than 25 years of management and disturbances, only 40% of the area was intact forest. Using a chronosequence approach, with a space for time substitution, we then examined the temporal dynamics of peatlands and their recovery from disturbance. We observed widespread arrested succession in previously logged peatlands consistent with hydrological limits on regeneration and degraded peat quality following canopy removal. We showed that clear-cutting, selective logging and drainage could lead to different modes of regeneration and found that statistics of the Enhanced Vegetation Index and LiDAR height metrics could serve as indicators of harvesting intensity, impacts, and regeneration stage. Long-term, continuous monitoring of the hydrology and ecology of

  14. Traditional and local ecological knowledge about forest biodiversity in the Pacific Northwest.

    Science.gov (United States)

    Susan Charnley; A. Paige Fischer; Eric T. Jones

    2008-01-01

    This paper synthesizes the existing literature about traditional and local ecological knowledge relating to biodiversity in Pacific Northwest forests in order to assess what is needed to apply this knowledge to forest biodiversity conservation efforts. We address four topics: (1) views and values people have relating to biodiversity, (2) the resource use and management...

  15. Non-indigenous plant species and their ecological range in Central European pine (Pinus sylvestris L.) forests

    OpenAIRE

    Zerbe , Stefan; Wirth , Petra

    2006-01-01

    International audience; In this study, forest ecosystems were analysed with regard to the occurrence and ecological range of non-indigenous plant species. Pine forests in the NE German lowland, which naturally and anthropogenically occur on a broad range of different sites, were taken as an example. The analysis is based on a data set of about 2 300 vegetation plots. The ecological range was assessed applying Ellenberg's ecological indicator values. Out of a total of 362 taxa recorded in the ...

  16. The influence of the interactions between anthropogenic activities and multiple ecological factors on land surface temperatures of urban forests

    Science.gov (United States)

    Ren, Y.

    2017-12-01

    Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots

  17. Caatinga Revisited: Ecology and Conservation of an Important Seasonal Dry Forest

    Science.gov (United States)

    de Albuquerque, Ulysses Paulino; de Lima Araújo, Elcida; El-Deir, Ana Carla Asfora; de Lima, André Luiz Alves; Souto, Antonio; Bezerra, Bruna Martins; Ferraz, Elba Maria Nogueira; Maria Xavier Freire, Eliza; Sampaio, Everardo Valadares de Sá Barreto; Las-Casas, Flor Maria Guedes; de Moura, Geraldo Jorge Barbosa; Pereira, Glauco Alves; de Melo, Joabe Gomes; Alves Ramos, Marcelo; Rodal, Maria Jesus Nogueira; Schiel, Nicola; de Lyra-Neves, Rachel Maria; Alves, Rômulo Romeu Nóbrega; de Azevedo-Júnior, Severino Mendes; Telino Júnior, Wallace Rodrigues; Severi, William

    2012-01-01

    Besides its extreme climate conditions, the Caatinga (a type of tropical seasonal forest) hosts an impressive faunal and floristic biodiversity. In the last 50 years there has been a considerable increase in the number of studies in the area. Here we aimed to present a review of these studies, focusing on four main fields: vertebrate ecology, plant ecology, human ecology, and ethnobiology. Furthermore, we identify directions for future research. We hope that the present paper will help defining actions and strategies for the conservation of the biological diversity of the Caatinga. PMID:22919296

  18. Caatinga Revisited: Ecology and Conservation of an Important Seasonal Dry Forest

    Directory of Open Access Journals (Sweden)

    Ulysses Paulino de Albuquerque

    2012-01-01

    Full Text Available Besides its extreme climate conditions, the Caatinga (a type of tropical seasonal forest hosts an impressive faunal and floristic biodiversity. In the last 50 years there has been a considerable increase in the number of studies in the area. Here we aimed to present a review of these studies, focusing on four main fields: vertebrate ecology, plant ecology, human ecology, and ethnobiology. Furthermore, we identify directions for future research. We hope that the present paper will help defining actions and strategies for the conservation of the biological diversity of the Caatinga.

  19. Quantifying Physiological, Behavioral and Ecological Consequences of Hypoxic Events in Kelp Forest

    Science.gov (United States)

    Litvin, S. Y.; Beers, J. M.; Woodson, C. B.; Leary, P.; Fringer, O. B.; Goldbogen, J. A.; Micheli, F.; Monismith, S. G.; Somero, G. N.

    2016-02-01

    Rocky reef kelp forests that extend along the coast of central California, like many habitats in upwelling systems, often experience inundations of low dissolved oxygen (DO) or hypoxic waters. These events have the potential to influence the structure and function of coastal ecosystems. The ecological consequences of hypoxia for these systems will be mediated by physiological thresholds and behavioral responses of resident organisms in the context of the spatial and temporal variability of DO, and other potential stressors. Our research focuses on Sebastes (i.e. rockfish) because of their commercial, recreational and ecological importance, high abundance across near shore habitats and the potentially severe impacts of physiological stress due to hypoxia. In the lab, to investigate how hypoxic events physiologically effect rockfish, we exposed young of the year (YOY) of 5 species and two life stages of blue rockfish, S. mystinus (YOY and 1+), to DO concentrations representative of upwelling conditions and measured a suite of whole organisms and tissue level responses including metabolic rate, ventilation, tissue-level metabolism, and blood biochemistry. Results demonstrate species and life stage specific differences in physiological stress under upwelling driven hypoxic conditions and suggest YOY rockfishes may currently be living near their physiological limits. In the laboratory we further explored if physiological impacts result in behavioral consequences by examining the startle response of YOY rockfish, a relative measure of predator avoidance ability, under a range of DO concentrations and exposure durations. To further explore behavioral responses of rockfish to low in DO within the kelp forest we are using two approaches, monitoring the vertical distribution of fish communities across the water column using an acoustic imaging camera (ARIS 3000, Soundmetrics Inc.) and acoustic tagging, with 3-D positioning ability (VPS, VEMCO Inc.), of larger blue rockfish

  20. Ecological review of some problems in the sphere of forest use within the Russian Federation

    International Nuclear Information System (INIS)

    Sokolov, P.A.

    1997-01-01

    The forests of the Russian Federation play some very important roles even in global level: they are an important element of our environment and they are a valuable renewable resource. Forest ecosystems are very effective in preventing erosion, in protecting water ecosystems, and in maintaining their balance. They are also a very important element of biodiversity protection and they are a significant buffer of coal. The state of the forests has a great impact on the ecological environment within the Russian Federation as a whole, as well as in certain regions, especially in forest regions. Taking into consideration the multifunctional character of forests, the interests of different groups, different levels of authority, Ministries and Committees, forest policy and practice do not always coincide, and conflicting situations appear. Forest policy should take into account these interests, find the ways for solving problems, and the management system should take all necessary steps to successfully apply the forest policy. The state of the forests within the Russian Federation is proof of the Federation's forest policy and management practice having come to a crisis with their negative ecological impacts. (orig.)

  1. Ecological review of some problems in the sphere of forest use within the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, P.A. [State Environment Protection Committee of the Russian Federation (Russian Federation)

    1997-12-31

    The forests of the Russian Federation play some very important roles even in global level: they are an important element of our environment and they are a valuable renewable resource. Forest ecosystems are very effective in preventing erosion, in protecting water ecosystems, and in maintaining their balance. They are also a very important element of biodiversity protection and they are a significant buffer of coal. The state of the forests has a great impact on the ecological environment within the Russian Federation as a whole, as well as in certain regions, especially in forest regions. Taking into consideration the multifunctional character of forests, the interests of different groups, different levels of authority, Ministries and Committees, forest policy and practice do not always coincide, and conflicting situations appear. Forest policy should take into account these interests, find the ways for solving problems, and the management system should take all necessary steps to successfully apply the forest policy. The state of the forests within the Russian Federation is proof of the Federation`s forest policy and management practice having come to a crisis with their negative ecological impacts. (orig.)

  2. Ecological and economic impacts of forest policies: interactions across forestry and agriculture.

    Science.gov (United States)

    R.J. Alig; D.M. Adams; B.A. McCarl

    1998-01-01

    A linked model of the US forest and agriculture sectors was used to examine the economic and ecological impacts of two forest policies: a minimum harvest age limitation and a reduced public harvest policy. Simulated private responses to both policies indicate that landowners could undertake a range of adjustments to minimize their welfare impacts, but imposition of...

  3. Random forests for classification in ecology

    Science.gov (United States)

    Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J.

    2007-01-01

    Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature. ?? 2007 by the Ecological Society of America.

  4. 77 FR 65167 - Blacksmith Ecological Restoration Project, Eldorado National Forest, Placer and El Dorado...

    Science.gov (United States)

    2012-10-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Blacksmith Ecological Restoration Project, Eldorado... comments to 7600 Wentworth Springs Rd., Georgetown, CA 95634 Attention: Blacksmith Ecological Restoration... (PSD). In preparation for prescribed fire, perimeter line construction would be needed where roads...

  5. Beech forests of Azerbaijan: The modern condition, age structure and regeneration

    Directory of Open Access Journals (Sweden)

    Z.M. Hasanov

    2017-12-01

    Full Text Available Azerbaijan is a country with low forest cover, only 11.8% of the territory is covered with forests. All forests perform important water-soil-protection functions. In forests, naturally grow 107 species of trees and 328 shrubs species. Despite the fact that there are many species in dendroflora, only 10 tree species have economic value for the forest sector of the country. Beech (31.68%, oak (27.40% and hornbeam (26.01% are growing in 85.09% of forested areas. Beech forests are spread on 327 thousand hectares from 989,5 of total forest lands of he Republic. Beech forests are a source of high-quality wood and beech nuts. All beech forests grow in mountains at heights of 600–800 and 1600–1800 m above the sea level and performing important ecological functions. Until recently there were no problems with natural renewal of the beech forests, but now the regeneration of beech forests is alarming. In recent years, the productivity and density of beech forests decreased substantially, the natural regeneration proceeds unsatisfactorily and, consequently, reduction of beech forests takes place. We have researched 33,8 thousand hectares of beech forests of the Lesser Caucasus, their natural regeneration and made analysis of age structure of forests. Keywords: Fagus orientalis, Beech forests, Silviculture, Natural regeneration, Age class

  6. Ecology and management of morels harvested from the forests of western North America.

    Science.gov (United States)

    David Pilz; Rebecca McLain; Susan Alexander; Luis Villarreal-Ruiz; Shannon Berch; Tricia L. Wurtz; Catherine G. Parks; Erika McFarlane; Blaze Baker; Randy Molina; Jane E. Smith

    2007-01-01

    Morels are prized edible mushrooms that fruit, sometimes prolifically, in many forest types throughout western North America. They are collected for personal consumption and commercially harvested as valuable special (nontimber) forest products. Large gaps remain, however, in our knowledge about their taxonomy, biology, ecology, cultivation, safety, and how to manage...

  7. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    DEFF Research Database (Denmark)

    Cannicci, S.; Burows, D.; Fratini, S.

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  8. New ecology, global change, and forest politics

    International Nuclear Information System (INIS)

    Sampson, N.

    1993-01-01

    Ecosystems constantly change. Some changes are caused by natural conditions that evolve at a very slow pace including climate change, species evolution and migration, and soil formation. Forests don't always respond to gradual changes in gradual ways, though gradual change may be hidden for years within the normal variation in the ecosystem. The industrial age has resulted in a rapid and continuing buildup of atmospheric gases such as carbon dioxide, methane, and chlorofluorocarbons which trap heat in the greenhouse effect. Industrial processes also emit oxides of nitrogen and sulfur that change atmospheric chemistry and alter the nutrient input into ecosystems. Natural forests face a hard time adjusting to a rate of climatic change that is 3 to 10 times faster than species can migrate and that increases the occurrence of major windstorms. In the forest ecosystem where trees are removed or destroyed under rapid climatic change, conditions may not return to their original state, even if we try to restore it. When the ecosystem changes faster than the bureaucracy of the management agency, a serious problem exists. New understandings of ecology and global change may force new ways of thinking in these situations

  9. Structural breakdown of specialized plant-herbivore interaction networks in tropical forest edges

    Directory of Open Access Journals (Sweden)

    Bruno Ximenes Pinho

    2017-10-01

    Full Text Available Plant-herbivore relationships are essential for ecosystem functioning, typically forming an ecological network with a compartmentalized (i.e. modular structure characterized by highly specialized interactions. Human disturbances can favor habitat generalist species and thus cause the collapse of this modular structure, but its effects are rarely assessed using a network-based approach. We investigate how edge proximity alters plant-insect herbivore networks by comparing forest edge and interior in a large remnant (3.500 ha of the Brazilian Atlantic forest. Given the typical dominance of pioneer plants and generalist herbivores in edge-affected habitats, we test the hypothesis that the specialized structure of plant-herbivore networks collapse in forest edges, resulting in lower modularity and herbivore specialization. Despite no differences in the number of species and interactions, the network structure presented marked differences between forest edges and interior. Herbivore specialization, modularity and number of modules were significantly higher in forest interior than edge-affected habitats. When compared to a random null model, two (22.2% and eight (88.8% networks were significantly modular in forest edge and interior, respectively. The loss of specificity and modularity in plant-herbivore networks in forest edges may be related to the loss of important functions, such as density-dependent control of superior plant competitors, which is ultimately responsible for the maintenance of biodiversity and ecosystem functions. Our results support previous warnings that focusing on traditional community measures only (e.g. species diversity may overlook important modifications in species interactions and ecosystem functioning.

  10. Historical, ecological, and governance aspects of intensive forest biomass harvesting in Denmark

    DEFF Research Database (Denmark)

    Stupak, Inge; Raulund-Rasmussen, Karsten

    2016-01-01

    forests would be a more useful reference for ecological processes and biodiversity. However, pristine forests are almost non-existent in Europe, and non-intervention, self-regulating forests provide an alternative. Governance and positions of non-governmental organizations in Denmark focus more on general...... forest management impacts and conservation of light-demanding biodiversity associated with historic coppicing and grazing than on intensive harvesting. The energy sector drives the development of new governance to verify forest biomass sustainability, but the national knowledge base for such verification...... is limited. As part of a larger solution, we suggest establishing a network of non-intervention, self-regulating forests that can serve as a reference for long-term research and monitoring of intensive harvesting impacts. This would support the application of adaptive management strategies, and continuous...

  11. Remnant trees affect species composition but not structure of tropical second-growth forest.

    Science.gov (United States)

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  12. Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains

    Directory of Open Access Journals (Sweden)

    Tamara Heartsill Scalley

    2017-06-01

    Full Text Available The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously measured tropical forest plots is presented. Long-term measurements, 72 years at the leeward site, and 25 years at windward site, of stem density are similar to initial and pre-hurricane values at both sites. For 10 years post-hurricane Hugo (1989, stem density increased at both sites. Following that increase period, stem density has remained at 1400 to 1600 stems/ha in the leeward site, and at 1200 stems/ha in the windward site. The forests had similar basal area values before hurricane Hugo in 1989, but these sites are following different patterns of basal area accumulation. The leeward forest site continues to accumulate and increase basal area with each successive measurement, currently above 50 m2/ha. The windward forest site maintains its basal area values close to an asymptote of 35 m2/ha. Currently, the most abundant species at both sites is the sierra palm. Ordinations to explore variation in tree species composition through time present the leeward site with a trajectory of directional change, while at the windward site, the composition of species seems to be converging to pre-hurricane conditions. The observed differences in forest structure and composition from sites differently affected by hurricane disturbance provide insight into how particular forest characteristics respond at shorter or longer time scales in relation to previous site conditions and intensity of disturbance effects.

  13. Forest Typification to Characterize the Structure and Composition of Old-growth Evergreen Forests on Chiloe Island, North Patagonia (Chile

    Directory of Open Access Journals (Sweden)

    Jan R. Bannister

    2013-11-01

    Full Text Available The Evergreen forest type develops along the Valdivian and North-Patagonian phytogeographical regions of the south-central part of Chile (38° S–46° S. These evergreen forests have been scarcely studied south of 43° S, where there is still a large area made up of old-growth forests. Silvicultural proposals for the Evergreen forest type have been based on northern Evergreen forests, so that the characterization of the structure and composition of southern Evergreen forests, e.g., their typification, would aid in the development of appropriate silvicultural proposals for these forests. Based on the tree composition of 46 sampled plots in old-growth forests in an area of >1000 ha in southern Chiloé Island (43° S, we used multivariate analyses to define forest groups and to compare these forests with other evergreen forests throughout the Archipelago of North-Patagonia. We determined that evergreen forests of southern Chiloé correspond to the North-Patagonian temperate rainforests that are characterized by few tree species of different shade tolerance growing on fragile soils. We discuss the convenience of developing continuous cover forest management for these forests, rather than selective cuts or even-aged management that is proposed in the current legislation. This study is a contribution to forest classification for both ecologically- and forestry-oriented purposes.

  14. Community ecology of tropical forest snails: 30 years after Solem

    NARCIS (Netherlands)

    Schilthuizen, M.

    2011-01-01

    Since Solem’s provocative claim in the early 1980s that land snails in tropical forests are neither abundant nor diverse, at least 30 quantitative-ecological papers on tropical land snail communities have appeared. Jointly, these papers have shown that site diversity is, in fact, high in tropical

  15. Waveform- and Terrestrial Lidar Assessment of the Usual (Structural) Suspects in a Forest Canopy

    Science.gov (United States)

    van Aardt, J. A.; Romanczyk, P.; Kelbe, D.; van Leeuwen, M.; Cawse-Nicholson, K.; Gough, C. M.; Kampe, T. U.

    2015-12-01

    Forest inventory has evolved from standard stem diameter-height relationships, to coarse canopy metrics, to more involved ecologically-meaningful variables, such as leaf area index (LAI) and even canopy radiative transfer as a function of canopy gaps, leaf clumping, and leaf angle distributions. Accurate and precise measurement of the latter set of variables presents a challenge to the ecological and modeling communities; however, relatively novel remote sensing modalities, e.g., waveform lidar (wlidar) and terrestrial lidar systems (TLS), have the potential to adress this challenge. Research teams at Rochester Institute of Technology (RIT) and the Virginia Commonwealth University (VCU) have been collaborating with the National Ecological Observation Network (NEON) to assess vegetation canopy structure and variation at the University of Michigan Biological Research Station and the NEON Northeast domain (Harvard Forest, MA). Airborne small-footprint wlidar data, in-situ TLS data, and first-principles, physics-based simulation tools are being used to study (i) the impact of vegetation canopy geometric elements on wlidar signals (twigs and petioles have been deemed negligible), (ii) the analysis of airborne wlidar data for top-down assessment of canopy metrics such as LAI, and (iii) our ability to extract "bottom-up" canopy structure from TLS using scans registered to each other using a novel marker-free registration approach (e.g., basal area: R2=0.82, RMSE=7.43 m2/ha). Such studies indicate that we can potentially assess radiative transfer through vegetation canopies remotely using a vertically-stratified approach with wlidar, and augment such an approach via rapid-scan TLS technology to gain a better understanding of fine-scale variation in canopy structure. This in turn is key to quantifying and modeling radiative transfer based on understanding of forest canopy structural change as a function of ecosystem development, climate, and anthropogenic drivers.

  16. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    Science.gov (United States)

    James W. N. Steenberg; Andrew A. Millward; David J. Nowak; Pamela J. Robinson; Alexis Ellis

    2016-01-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to...

  17. Extra-zonal beech forests in Tuscany: structure, diversity and synecologic features

    Directory of Open Access Journals (Sweden)

    Viciani D

    2011-07-01

    Full Text Available The present paper focuses on the structural, synecological and floristic diversity features of beech-dominated forest communities in four major areas of the Antiapenninic Tyrrhenian system in Tuscany: Metalliferous hills, mountains to the south of Mt. Amiata, volcanic area of the upper Lente valley and Mt. Cetona. These are relict woodlands of Holo-Pleistocene origin with a special ecological and conservation value due to their extrazonal location in lowland submediterranean areas. Results show substantial among-area differences in structure, synecology and plant species composition, but in general a potential for coppices to reach the tall forest stage, as demonstrated by the old-growth stands of Pietraporciana and Sassoforte. Compared with montane Apenninic beechwoods, the relatively rich flora of the studied communities include thermophilous species with a southern Apennine-Balkan distribution, making their syntaxonomical position unclear. Closer affinities are found with the calcicolous Beech Forests of the association and with the silicicolous ones of the . Based on the Natura 2000 system, all the examined communities belong to the priority Habitat “Apennine beech forests with and ” (code: 9210*. Due their relict nature, these biotopes appear vulnerable to climate changes and to a production-oriented forest management. Criteria of naturalistic silviculture should instead promote the dynamic development of these communities towards tall forests and their natural regeneration.

  18. Assessment of traditional ecological knowledge and beliefs in the utilisation of important plant species: The case of Buhanga sacred forest, Rwanda

    Directory of Open Access Journals (Sweden)

    Runyambo Irakiza

    2016-07-01

    Full Text Available Traditional ecological knowledge is an integrated part of the African people and indeed the Rwandese for cultural purpose. Buhanga sacred forest is a relict forest of tremendous ecological importance to Rwandan society located in Musanze District. The aim of this study was to assess the traditional ecological knowledge and belief in the utilisation of some important plant species for the conservation of Buhanga sacred forest. Ecological information about ethnomedicinal and traditional practices were collected following structured questionnaire through interview involving eight traditional healers and three focus group discussions. Data were collected from the natural habitats, home gardens, farmlands and roadsides of Buhanga sacred forest. A total of 45 botanical taxa belonging to 28 families were reported to be used by the local community. Species such as Brillantaisia cicatricosa and Senna septemtrionalis were the popular species cited by traditional healers to treat human and animal diseases and ailments, respectively. The results of the study indicated that because of the cultural norms and values associated with the sacred forest, this has led to non-exploitation. The study presents key sites and plant species in which their use and belief can lead to their conservation. However, not only is it imperative to conserve traditional local knowledge for biocultural conservation motives but there is also need to train traditional healers on how to domesticate indigenous species as conservation measure because some species have become susceptible to extinction. Conservation implications: Highlighting indigenous species investigated in this research will provide a powerful tool for ensuring biodiversity conservation through community participation in a country of high population density in Africa. Some plant species that provided satisfactory Local Health Traditions among communities surrounding Buhanga can contribute as good material for further

  19. Ecological scale and forest development: squirrels, dietary fungi, and vascular plants in managed and unmanaged forests.

    Science.gov (United States)

    A.B. Carey; J. Kershner; B. Biswell; L.S. Dominguez de Toledo

    1999-01-01

    Understanding ecological processes and their spatial scales is key to managing ecosystems for biodiversity, especially for species associated with late-seral forest. We focused on 2 species of squirrel (Sciuridae: northern flying squirrel, Glaucomys sabrinus, and Townsend's chipmunk, Tamias townsendii) in a crosssectional survey of managed and natural stands in...

  20. Influences of climate, fire, and topography on contemporary age structure patterns of Douglas-fir at 205 old forest sites in western Oregon

    Science.gov (United States)

    Nathan J. Poage; Peter J. Weisberg; Peter C. Impara; John C. Tappeiner; Thomas S. Sensenig

    2009-01-01

    Knowledge of forest development is basic to understanding the ecology, dynamics, and management of forest ecosystems. We hypothesized that the age structure patterns of Douglas-fir at 205 old forest sites in western Oregon are extremely variable with long and (or) multiple establishment periods common, and that these patterns reflect variation in regional-scale climate...

  1. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology

    Science.gov (United States)

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...

  2. Silviculture-ecology of forest-zone hardwoods in the Sierra Nevada

    Science.gov (United States)

    Philip M. McDonald; John C. Tappeiner

    1996-01-01

    Although the principal hardwood species in the forest zone of the Sierra Nevada (California black oak, tanoak, Pacific madrone, and canyon live oak) are key components of many ecosystems, they have received comparatively little study. Currently they are underutilized and unmanaged. This paper brings together what is known on the silviculture-ecology of these species...

  3. Radioactive cesium in a boreal forest ecosystem. Ecological concepts in radioecology

    International Nuclear Information System (INIS)

    Palo, R.T.

    1991-01-01

    Radioecology is traditionally viewing ecosystems as process functional units while modern ecology focus more on interactions among populations and communities. Taken separately they may lead to incomplete conclusion about radionuclide behaviour and give a too simplified view of the system. I adopt an hierarchical approach by focusing on the forest ecosystem, populations and individuals. I present a theoretical framework commonly used in analysis of herbivore- plant interactions and give an example on how individual behaviour perturbate to higher levels of ecological organizations. (au) (20 refs.)

  4. Forest carbon trading : legal, policy, ecological and aboriginal issues

    International Nuclear Information System (INIS)

    Elgie, S.

    2005-01-01

    Canada's forest ecosystems store 88 billion tonnes of carbon, with trees alone storing 13 billion tonnes, twice the global annual carbon emissions. Carbon trading could affect forest management. Certain types of forest carbon project will offer cost-effective carbon sequestration options. This paper addresses current concerns about forest carbon trading such as phony carbon gains, biodiversity impact and increased fossil fuel emissions. Statistics were presented with information on global carbon stocks. The Kyoto Protocol requires that Canada must count all changes in forest carbon stocks resulting from afforestation, reforestation or deforestation, and that Canada has the option of counting carbon stock changes from forest management. The decision must be made by 2006, and considerations are whether to present projected net source or sink, or whether to count current commercially managed areas or all timber productive areas. An outline of federal constitutional authority power regarding Kyoto was presented, including limits and risks of trade and treaty powers. The economics of forest carbon were outlined with reference to increasing forest carbon storage. A two-pronged approach was advised, with avoided logging and plantation and intensive management securing carbon and timber benefits. Examples of pre-Kyoto pilots were presented, including the SaskPower project, the Little Red River Cree project and the Labrador Innu project. The disadvantages of offset trading were presented. It was concluded that forest carbon markets are part of a larger vision for sustainable development in Canada's north, especially for aboriginal peoples, and may indicate a growing market for ecological services. Constitutional limits to federal power to regulate carbon trading are not insurmountable, but require care. Ownerships of forest carbon rights raises important policy and legal issues, including aboriginal right, efficiency and equity. An estimated cost of forest carbon projects

  5. Setting Priorities for Urban Forest Planning. A Comprehensive Response to Ecological and Social Needs for the Metropolitan Area of Rome (Italy

    Directory of Open Access Journals (Sweden)

    Giulia Capotorti

    2015-04-01

    Full Text Available Urban forests represent key elements of green infrastructure and provide essential ecosystem services in both the ecological and social spheres. Therefore, forestation planning plays a decisive role in the sustainable development strategies of metropolitan areas and addresses the challenge of maintaining biodiversity while improving human health and well-being. The aim of this work is to present a methodological approach that can be used to identify priorities in urban forest planning and can provide comprehensive responses to ecological and social needs in any metropolitan context. The approach, which is based on interdisciplinary principles of landscape ecology, ecosystem geography and dynamic plant sociology, has been adopted in the Municipality of Rome (Italy. The first step entails defining an ecological framework for forestation plans by means of the ecological land classification and assessment of landscape conservation status. The second step entails setting forestation priorities according to both ecological and social criteria. The application of the method proved to effectively select limited areas requiring intervention within an extensive metropolitan area. Furthermore, it provided responses to sustainability issues such as long-term maintenance of restored habitats, landscape perspective of planning, greening of urban agriculture, improvement in urban resilience, and cost-effective improvement in ecosystem services provision.

  6. Climate-driven disparities among ecological interactions threaten kelp forest persistence.

    Science.gov (United States)

    Provost, Euan J; Kelaher, Brendan P; Dworjanyn, Symon A; Russell, Bayden D; Connell, Sean D; Ghedini, Giulia; Gillanders, Bronwyn M; Figueira, WillIAM; Coleman, Melinda A

    2017-01-01

    The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs. © 2016 John Wiley & Sons Ltd.

  7. Forest fires and their consequences in the central ecological zone of the Baikal natural territory

    Directory of Open Access Journals (Sweden)

    Makarenko E. L.

    2016-07-01

    Full Text Available fires in the forests of the central ecological zone are the main disaster, which disturb forests’ ecosystems and reduce the environmental impact of forests. Through statistical analysis the author identified as follows: forest fire situation (square, frequency, and timber loss for the period from 2011 to 2015. Moreover, the research includes the information about the dynamic patterns and main causes of fire.

  8. Forest owner representation of forest management and perception of resource efficiency: a structural equation modeling study

    Directory of Open Access Journals (Sweden)

    Andrej Ficko

    2015-03-01

    Full Text Available Underuse of nonindustrial private forests in developed countries has been interpreted mostly as a consequence of the prevailing noncommodity objectives of their owners. Recent empirical studies have indicated a correlation between the harvesting behavior of forest owners and the specific conceptualization of appropriate forest management described as "nonintervention" or "hands-off" management. We aimed to fill the huge gap in knowledge of social representations of forest management in Europe and are the first to be so rigorous in eliciting forest owner representations in Europe. We conducted 3099 telephone interviews with randomly selected forest owners in Slovenia, asking them whether they thought they managed their forest efficiently, what the possible reasons for underuse were, and what they understood by forest management. Building on social representations theory and applying a series of structural equation models, we tested the existence of three latent constructs of forest management and estimated whether and how much these constructs correlated to the perception of resource efficiency. Forest owners conceptualized forest management as a mixture of maintenance and ecosystem-centered and economics-centered management. None of the representations had a strong association with the perception of resource efficiency, nor could it be considered a factor preventing forest owners from cutting more. The underuse of wood resources was mostly because of biophysical constraints in the environment and not a deep-seated philosophical objection to harvesting. The difference between our findings and other empirical studies is primarily explained by historical differences in forestland ownership in different parts of Europe and the United States, the rising number of nonresidential owners, alternative lifestyle, and environmental protectionism, but also as a consequence of our high methodological rigor in testing the relationships between the constructs

  9. Predicting temperate forest stand types using only structural profiles from discrete return airborne lidar

    Science.gov (United States)

    Fedrigo, Melissa; Newnham, Glenn J.; Coops, Nicholas C.; Culvenor, Darius S.; Bolton, Douglas K.; Nitschke, Craig R.

    2018-02-01

    Light detection and ranging (lidar) data have been increasingly used for forest classification due to its ability to penetrate the forest canopy and provide detail about the structure of the lower strata. In this study we demonstrate forest classification approaches using airborne lidar data as inputs to random forest and linear unmixing classification algorithms. Our results demonstrated that both random forest and linear unmixing models identified a distribution of rainforest and eucalypt stands that was comparable to existing ecological vegetation class (EVC) maps based primarily on manual interpretation of high resolution aerial imagery. Rainforest stands were also identified in the region that have not previously been identified in the EVC maps. The transition between stand types was better characterised by the random forest modelling approach. In contrast, the linear unmixing model placed greater emphasis on field plots selected as endmembers which may not have captured the variability in stand structure within a single stand type. The random forest model had the highest overall accuracy (84%) and Cohen's kappa coefficient (0.62). However, the classification accuracy was only marginally better than linear unmixing. The random forest model was applied to a region in the Central Highlands of south-eastern Australia to produce maps of stand type probability, including areas of transition (the 'ecotone') between rainforest and eucalypt forest. The resulting map provided a detailed delineation of forest classes, which specifically recognised the coalescing of stand types at the landscape scale. This represents a key step towards mapping the structural and spatial complexity of these ecosystems, which is important for both their management and conservation.

  10. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability.

    Science.gov (United States)

    Pennington, R Toby; Lavin, Matt

    2016-04-01

    A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    José Carlos Morante-Filho

    Full Text Available Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists and specific food resources (frugivores and insectivores to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%. At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  12. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Science.gov (United States)

    Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  13. Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium.

    Directory of Open Access Journals (Sweden)

    Věra Pavelková Řičánková

    Full Text Available Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts.

  14. Deer herbivory reduces web-building spider abundance by simplifying forest vegetation structure

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Roberson

    2016-09-01

    Full Text Available Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.

  15. Study on the planning principles of urban forest

    Institute of Scientific and Technical Information of China (English)

    Dai Xing'an; Zhang Qingfei

    2006-01-01

    The urban forest is the main body for the urban forestry management. There are not unified rules and standards for the planning of the urban forest yet in China. This paper discusses the planning principles of the urban forest: the priority of the ecological function, the adaptation to local conditions, the optimization in the whole system, the mutual dependence of forest and city, the culture continuance and recreation satisfaction, sustainable development and operability, etc. This paper takes Changsha as an example to elaborate the planning principles of the urban forest.Firstly, Changsha urban forest ecosphere is composed of the eco-garden, the round-the-city forest belt, the ecological isolation belt, the green channel, the landscape of the rivers and streams, the forest park, the biodiversity reserve and the eco-forest in suburb area. It aims to make every kind of ecological essential factors organically merge into the complex city ecosystem to build an eco-city, to strengthen the connection of wide-open space with various habitats spots, to protnote resident's accessibility, to perfect landscape ecology, and to make full use of the ecological function of urban forest. When we construct the urban forest, we must optimize the comprehensive benefit and make the urban forest structure and the layout in the best condition in order to build the harmonious green city for both man and nature to realize the whole optimization of the city system by the complex functions of the urban forest in ecology, environmental protection, landscape, recreation, etc.

  16. Quantitative retrieving forest ecological parameters based on remote sensing in Liping County of China

    Science.gov (United States)

    Tian, Qingjiu; Chen, Jing M.; Zheng, Guang; Xia, Xueqi; Chen, Junying

    2006-09-01

    Forest ecosystem is an important component of terrestrial ecosystem and plays an important role in global changes. Aboveground biomass (AGB) of forest ecosystem is an important factor in global carbon cycle studies. The purpose of this study was to retrieve the yearly Net Primary Productivity (NPP) of forest from the 8-days-interval MODIS-LAI images of a year and produce a yearly NPP distribution map. The LAI, DBH (diameter at breast height), tree height, and tree age field were measured in different 80 plots for Chinese fir, Masson pine, bamboo, broadleaf, mix forest in Liping County. Based on the DEM image and Landsat TM images acquired on May 14th, 2000, the geometric correction and terrain correction were taken. In addition, the "6S"model was used to gain the surface reflectance image. Then the correlation between Leaf Area Index (LAI) and Reduced Simple Ratio (RSR) was built. Combined with the Landcover map, forest stand map, the LAI, aboveground biomass, tree age map were produced respectively. After that, the 8-days- interval LAI images of a year, meteorology data, soil data, forest stand image and Landcover image were inputted into the BEPS model to get the NPP spatial distribution. At last, the yearly NPP spatial distribution map with 30m spatial resolution was produced. The values in those forest ecological parameters distribution maps were quite consistent with those of field measurements. So it's possible, feasible and time-saving to estimate forest ecological parameters at a large scale by using remote sensing.

  17. Ecological restoration of peatlands in steppe and forest-steppe areas

    Science.gov (United States)

    Minayeva, Tatiana; Sirin, Andrey; Dugarjav, Chultem

    2016-04-01

    Peatlands in the arid and semi-arid regions of steppe and forest steppe belt of Eurasia have some specific features. That demands the special approach to their management and restoration. The distribution of peatlands under conditions of dry climate is very limited and they are extremely vulnerable. Peatlands in those regions are found in the highlands where temperate conditions still present, in floodplains where they can get water from floods and springs, or in karst areas. Peatlands on watersheds present mainly remains from the more humid climate periods. Water and carbon storage as well as maintenance of the specific biodiversity are the key ecosystem natural functions of peatlands in the steppe and forest steppe. The performance of those functions has strong implications for people wellness and livelihood. Anyhow, peatlands are usually overlooked and poorly represented in the systems of natural protected areas. Land management plans, mitigation and restoration measures for ecosystems under use do not usually include special measures for peatlands. Peatlands'use depends on the traditional practices. Peat extraction is rather limited in subhumid regions but still act as one of the threats to peatlands. The most of peatlands are used as pastures and grasslands. In densely populated areas large part of peatlands are transformed to the arable lands. In many cases peatlands of piedmonts and highlands are affected by industrial developments: road construction, mining of subsoil resources (gold, etc.). Until now, the most of peatlands of steppe and forest steppe region are irreversibly lost, what also effects water regime, lands productivity, biodiversity status. To prevent further dramatic changes the ecological restoration approach should be introduced in the subhumid regions. The feasibility study to assess the potential for introducing ecological restoration techniques for peatlands in the arid and semi-arid conditions had been undertaken in steppe and forest

  18. Social-ecological dynamics of the small scale fisheries in Sundarban Mangrove Forest, Bangladesh

    OpenAIRE

    Mohammad Mojibul Hoque Mozumder; Md. Mostafa Shamsuzzaman; Md. Rashed-Un-Nabi; Ehsanul Karim

    2018-01-01

    The Sundarban Mangrove Forest (SMF) is an intricate ecosystem containing the most varied and profuse natural resources of Bangladesh. This study presents empirical research, based on primary and secondary data, regarding the social-ecological system (SES), social-ecological dynamics, different stakeholders and relevant management policies of small-scale or artisanal fisheries such as the SMF; showing how, despite extensive diversification, the livelihood activities of the artisanal fishers in...

  19. Patterns of forest phylogenetic community structure across the United States and their possible forest health implications

    Science.gov (United States)

    Kevin M. Potter; Frank H. Koch

    2014-01-01

    The analysis of phylogenetic relationships among co-occurring tree species offers insights into the ecological organization of forest communities from an evolutionary perspective and, when employed regionally across thousands of plots, can assist in forest health assessment. Phylogenetic clustering of species, when species are more closely related than expected by...

  20. Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies.

    Science.gov (United States)

    Duguy, Beatriz; Alloza, José Antonio; Baeza, M Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V

    2012-12-01

    Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.

  1. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield

    Directory of Open Access Journals (Sweden)

    Lionel Hernández

    2012-03-01

    Full Text Available There have been several ecological studies in forests of the Guayana Shield, but so far none had examined the changes in structure and composition of evergreen forests with altitude. This study describes and analyzes the structure, species composition and soil characteristics of forest stands at different altitudinal zones in Southeastern Venezuelan Guayana, in order to explain the patterns and the main factors that determine the structure and composition of evergreen forests along the altitudinal gradient. Inventories of 3 948 big (>10cm DBH and 1 328 small (5-10cm DBH woody stems were carried out in eleven plots, ranging from 0.1 to 1.0ha, along a 188km long transect with elevations between 290 and 1 395masl. It has been found that 1 hemiepihytes become more dominant and lianas reduce their dominance with increasing altitude and 2 the forest structure in the study area is size-dependent. Five families and 12 genera represented only 9% of the total number of families and genera, respectively, recorded troughout the gradient, but the two groups of taxa comprised more than 50% of the Importance Value (the sum of the relative density and the relative dominance of all measured stems. Moreover, the results suggest that low species richness seems to be associated with the dominance of one or few species. Stand-level wood density (WD of trees decreased significantly with increasing elevation. WD is an indicator of trees’life history strategy. Its decline suggests a change in the functional composition of the forest with increasing altitude. The Canonical Correspondence Analysis (CCA indicated a distinction of the studied forests on the basis of their altitudinal levels and geographic location, and revealed different ecological responses by the forests, to environmental variables along the altitudinal gradient. The variation in species composition, in terms of basal area among stands, was controlled primarily by elevation and secondarily by rainfall

  2. Forest Productivity and Diversity: Using Ecological Theory and Landscape Models to Guide Sustainable Forest Management

    Energy Technology Data Exchange (ETDEWEB)

    Huston, M.A.

    1998-11-01

    Sustainable forest management requires maintaining or increasing ecosystem productivity, while preserving or restoring natural levels of biodiversity. Application of general concepts from ecological theory, along with use of mechanistic, landscape-based computer models, can contribute to the successful achievement of both of these objectives. Ecological theories based on the energetics and dynamics of populations can be used to predict the general distribution of individual species, the diversity of different types of species, ecosystem process rates and pool sizes, and patterns of spatial and temporal heterogeneity over a broad range of environmental conditions. This approach requires subdivision of total biodiversity into functional types of organisms, primarily because different types of organisms respond very differently to the spatial and temporal variation of environmental conditions on landscapes. The diversity of species of the same functional type (particularly among plants) tends to be highest at relatively low levels of net primary productivity, while the total number of different functional types (particularly among animals) tends to be highest at high levels of productivity (e.g., site index or potential net primary productivity). In general, the diversity of animals at higher trophic levels (e.g., predators) reaches its maximum at much higher levels of productivity than the diversity of lower trophic levels (e.g., plants). This means that a single environment cannot support high diversity of all types of organisms. Within the framework of the general patterns described above, the distributions, population dynamics, and diversity of organisms in specific regions can be predicted more precisely using a combination of computer simulation models and GIS data based on satellite information and ground surveys. Biophysical models that use information on soil properties, climate, and hydrology have been developed to predict how the abundance and spatial

  3. Volcano ecology at Chaiten, Chile: geophysical processes interact with forest ecosystems

    Science.gov (United States)

    Swanson, F. J.; Crisafulli, C.; Jones, J. A.; Lara, A.

    2010-12-01

    The May 2008 eruption of Chaiten Volcano (Chile) offers many insights into volcano ecology -ecological responses to volcanic and associated hydrologic processes and ecosystem development in post-eruption landscapes. Varied intensities of pyroclastic density currents (PDC) and thickness of tephra fall deposits (to 50+ cm) created strong gradients of disturbance in several hundred square kilometers of native forest in a sector north to southeast from the volcano. A gradient from tree removal to toppled forest to standing, scorched forest extends 1.5 km northward from the caldera rim along the trajectory of a PDC. Close to the vent (e.g., 2 km NE from rim) a rain of ca. 10 cm of gravel tephra stripped foliage and twigs from tree canopies; farther away (23 km SE) 10 cm of fine tephra loaded the canopy, causing extensive fall of limbs >8 cm diameter. Even in the severely disturbed, north-flank PDC zone, surviving bamboo, ferns, and other herbs sprouted from pre-eruption soil and other refugia; sprouts of new foliage appeared on the boles and major limbs of several species of toppled and scorched, standing trees; animals including vertebrates (rodents and amphibians) and terrestrial invertebrates (e.g., insects and arachnids) either survived or quickly recolonized; and a diverse fungal community began decomposing the vast dead wood resource. During the second growing season we documented the presence of some plant species that had colonized by seed. Within two years after the eruption secondary ecological disturbances resulting from channel change and overbank deposition of fluvially transported tephra created new patches of damaged forest in riparian zones of streams draining the north flank and along the Rio Rayas and Rio Chaiten. These features parallel observations in the intensively-studied, post-1980-eruption landscape of Mount St. Helens over a similar time period. However, several aspects of ecological response to the two eruptions differ because of differences

  4. Dipterocarps and Mycorrhiza. An ecological adaptation and a factor in forest regeneration

    NARCIS (Netherlands)

    Smits, W.Th.M.

    1983-01-01

    Each dipterocarp has its own species of fungus, forming an ectomycorrhiza. From literature and experiments (in East Kalimantan and in vitro) ecological consequences are explored. These help explain the clumping of dipterocarp trees in the forest, the lack of hybrids, the poor dispersal, and

  5. Structural analysis of the drivers and barriers to forest management in the Slovak regions of Podpoľanie and Kysuce

    Directory of Open Access Journals (Sweden)

    Navrátil Rudolf

    2016-09-01

    Full Text Available The paper presents an application of structural analysis in search of key drivers and barriers of forest management in two Slovak regions: Podpoľanie and Kysuce. A comparison with factors identified in selected European regions is also presented. First, various relevant factors affecting forest management were selected for both regions. The selections draw on the pool of primary data (structured in-person interviews and secondary data (qualitative analysis of national and European documents. Second, factors were grouped according to the STEEP categories (Society, Technology, Economy, Ecology, and Policy. Subsequently, factors were rigorously assessed by the regional stakeholders in participatory workshops, and their answers were analysed by structural analysis with the help of Parmenides EIDOS™ software. The results show that in both Slovak regions political, economic, and ecological factors dominated over social and technological factors. The comparison with selected European regions revealed that in the Slovak and other European regions, the Policy category dominated due to having the highest number of factors and their overall impact on forest management. In contrast, the least important societal domain was Technology in both the Slovak and other European regions. However, while stakeholders across the selected European regions perceived the Society domain as significant, stakeholders in both Slovak regions perceived the Economy and Ecology domains as more significant.

  6. Floristic and structural analysis of premontane humid forests in Amalfi (Antioquia, Colombia)

    International Nuclear Information System (INIS)

    Ariza Cortes, William; Toro Murillo, Juan Lazaro; Lores Medina, Angelica

    2009-01-01

    The floristic composition and the structure of a humid hill forest were determined. The forest is located in the northernmost area of the Colombian Central Mountain Range. The methodology proposed by ISA-JAUM was employed in this study, from a 0.1 ha sample. Moreover, plant material was collected from clear spots, stubbles and grasslands. A total of 421 vascular plants species were found. Two hundred and thirty eight of these come from the 0.1 ha sample and only 150 had DBH> 2.5 cm, which highlights the benefits of the sample method employed, since it was possible to record a large number of epiphytic and herbaceous elements in the forest. In general, the composition matches what was previously reported in similar areas. The families Melastomataceae (32), Lauraceae (31), Rubiaceae (29) and Araceae (15) were the ones holding the largest number of species. New chorological records for the state of Antioquia were reported in this study; for instance, Colombobalanus excelsa (Fagaceae). High density of individuals (388) was found at structural level. The patterns of height and diametrical classes followed the typical distribution of disetaneous tropical forests, in which the largest amount of individuals occur in the lowest classes and few species with individuals having the greatest diameters and heights account for the major ecological weight in the forest. Despite the great diversity documented, these forests are currently subject to an intensive process of fragmentation and loss of coverage.

  7. Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective

    Science.gov (United States)

    Allen, Craig D.; Savage, Melissa; Falk, Donald A.; Suckling, Kieran F.; Swetnam, Thomas W.; Schulke, Todd; Stacey, Peter B.; Morgan, Penelope; Hoffman, Martos; Klingel, Jon T.

    2002-01-01

    The purpose of this paper is to promote a broad and flexible perspective on ecological restoration of Southwestern (U.S.) ponderosa pine forests. Ponderosa pine forests in the region have been radically altered by Euro-American land uses, including livestock grazing, fire suppression, and logging. Dense thickets of young trees now abound, old-growth and biodiversity have declined, and human and ecological communities are increasingly vulnerable to destructive crown fires. A consensus has emerged that it is urgent to restore more natural conditions to these forests. Efforts to restore Southwestern forests will require extensive projects employing varying combinations of young-tree thinning and reintroduction of low-intensity fires. Treatments must be flexible enough to recognize and accommodate: high levels of natural heterogeneity; dynamic ecosystems; wildlife and other biodiversity considerations; scientific uncertainty; and the challenges of on-the-ground implementation. Ecological restoration should reset ecosystem trends toward an envelope of “natural variability,” including the reestablishment of natural processes. Reconstructed historic reference conditions are best used as general guides rather than rigid restoration prescriptions. In the long term, the best way to align forest conditions to track ongoing climate changes is to restore fire, which naturally correlates with current climate. Some stands need substantial structural manipulation (thinning) before fire can safely be reintroduced. In other areas, such as large wilderness and roadless areas, fire alone may suffice as the main tool of ecological restoration, recreating the natural interaction of structure and process. Impatience, overreaction to crown fire risks, extractive economics, or hubris could lead to widespread application of highly intrusive treatments that may further damage forest ecosystems. Investments in research and monitoring of restoration treatments are essential to refine

  8. Long-term ecological research of glacial lakes in the Bohemian Forest and their catchments

    Czech Academy of Sciences Publication Activity Database

    Vrba, Jaroslav; Kopáček, Jiří; Tahovská, K.; Šantrůčková, H.

    2015-01-01

    Roč. 21, č. 1 (2015), s. 53-71 ISSN 1211-7420 Institutional support: RVO:60077344 Keywords : atmospheric acidification * biological recovery * nutrients * soil * water * forest dieback Subject RIV: EH - Ecology, Behaviour

  9. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    Science.gov (United States)

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely

  10. Spatio-Temporal Changes in Structure for a Mediterranean Urban Forest: Santiago, Chile 2002 to 2014

    Directory of Open Access Journals (Sweden)

    Francisco J. Escobedo

    2016-06-01

    Full Text Available There is little information on how urban forest ecosystems in South America and Mediterranean climates change across both space and time. This study statistically and spatially analyzed the spatio-temporal dynamics of Santiago, Chile’s urban forest using tree and plot-level data from permanent plots from 2002 to 2014. We found mortality, ingrowth, and tree cover remained stable over the analysis period and similar patterns were observed for basal area (BA and biomass. However, tree cover increased, and was greater in the highest socioeconomic stratum neighborhoods while it dropped in the medium and low strata. Growth rates for the five most common tree species averaged from 0.12 to 0.36 cm·year−1. Spatially, tree biomass and BA were greater in the affluent, northeastern sections of the city and in southwest peri-urban areas. Conversely, less affluent central, northwest, and southern areas showed temporal losses in BA and biomass. Overall, we found that Santiago’s urban forest follows similar patterns as in other parts of the world; affluent areas tend to have more and better managed urban forests than poorer areas, and changes are primarily influenced by social and ecological drivers. Nonetheless, care is warranted when comparing urban forest structural metrics measured with similar sampling-monitoring approaches across ecologically disparate regions and biomes.

  11. Notes on the ecology and status of some forest mammals in four ...

    African Journals Online (AJOL)

    Notes on the ecology and status of some forest mammals in four Eastern Arc Mountains, Tanzania. Norbert J Cordeiro, Nathalie Seddon, David R Capper, Jonathan MM Ekstrom, Kim M Howell, Isabel S Isherwood, Charles AM Msuya, Jonas T Mushi, Andrew W Perkin, Robert G Pople, William T Stanley ...

  12. Morphology and ecology of sibon snakes (Squamata: Dipsadidae) from two forests in Central America

    OpenAIRE

    Todd R. Lewis; Rowland K. Griffin; Paul B. C. Grant; Alex Figueroa; Julie M. Ray; Kirsty E. Graham; Gabriel David

    2013-01-01

    Physical measurements, abundance, and ecological observations were recorded for Sibon annulatus,S. argus, S. longifrens, and S. nebulatus at two Neotropical habitats: a lowland swamp forest in Costa Rica and a montane cloud forest in Panama. Fourty-four and 58 adult snakes were recorded from Costa Rica and Panama, respectively. Differences in morphology and body condition showed minimal significant differences among species from both geographical locations. Observations of feeding, reproducti...

  13. African savanna-forest boundary dynamics

    DEFF Research Database (Denmark)

    Cuni Sanchez, Aida; White, Lee J. T.; Calders, Kim

    2016-01-01

    -term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4...... substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst...... the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multidecadal monitoring...

  14. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  15. Structure of a forested urban park: implications for strategic management.

    Science.gov (United States)

    Millward, Andrew A; Sabir, Senna

    2010-11-01

    Informed management of urban parks can provide optimal conditions for tree establishment and growth and thus maximize the ecological and aesthetic benefits that trees provide. This study assesses the structure, and its implications for function, of the urban forest in Allan Gardens, a 6.1 ha downtown park in the City of Toronto, Canada, using the Street Tree Resource Analysis Tool for Urban Forest Managers (STRATUM). Our goal is to present a framework for collection and analysis of baseline data that can inform a management strategy that would serve to protect and enhance this significant natural asset. We found that Allan Garden's tree population, while species rich (43), is dominated by maple (Acer spp.) (48% of all park trees), making it reliant on very few species for the majority of its ecological and aesthetic benefits and raising disease and pest-related concerns. Age profiles (using size as a proxy) showed a dominance of older trees with an inadequate number of individuals in the young to early middle age cohort necessary for short- to medium-term replacement. Because leaf area represents the single-most important contributor to urban tree benefits modelling, we calculated it separately for every park tree, using hemispheric photography, to document current canopy condition. These empirical measurements were lower than estimates produced by STRATUM, especially when trees were in decline and lacked full canopies, highlighting the importance of individual tree condition in determining leaf area and hence overall forest benefits. Stewardship of natural spaces within cities demands access to accurate and timely resource-specific data. Our work provides an uncomplicated approach to the acquisition and interpretation of these data in the context of a forested urban park. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Soil and water related forest ecosystem services and resilience of social ecological system in the Central Highlands of Ethiopia

    Science.gov (United States)

    Tekalign, Meron; Muys, Bart; Nyssen, Jan; Poesen, Jean

    2014-05-01

    In the central highlands of Ethiopia, deforestation and forest degradation are occurring and accelerating during the last century. The high population pressure is the most repeatedly mentioned reason. However, in the past 30 years researchers agreed that the absence of institutions, which could define the access rights to particular forest resources, is another underlying cause of forest depletion and loss. Changing forest areas into different land use types is affecting the biodiversity, which is manifested through not proper functioning of ecosystem services. Menagesha Suba forest, the focus of this study has been explored from various perspectives. However the social dimension and its interaction with the ecology have been addressed rarely. This research uses a combined theoretical framework of Ecosystem Services and that of Resilience thinking for understanding the complex social-ecological interactions in the forest and its influence on ecosystem services. For understanding the history and extent of land use land cover changes, in-depth literature review and a GIS and remote sensing analysis will be made. The effect of forest conversion into plantation and agricultural lands on soil and above ground carbon sequestration, fuel wood and timber products delivery will be analyzed with the accounting of the services on five land use types. The four ecosystem services to be considered are Supporting, Provisioning, Regulating, and Cultural services as set by the Millennium Ecosystem Assessment. A resilience based participatory framework approach will be used to analyze how the social and ecological systems responded towards the drivers of change that occurred in the past. The framework also will be applied to predict future uncertainties. Finally this study will focus on the possible interventions that could contribute to the sustainable management and conservation of the forest. An ecosystem services trade-off analysis and an environmental valuation of the water

  17. [Effects of climate change on forest succession].

    Science.gov (United States)

    Wang, Jijun; Pei, Tiefan

    2004-10-01

    Forest regeneration is an important process driven by forest ecological dynamic resources. More and more concern has been given to forest succession issues since the development of forest succession theory during the early twentieth century. Scientific management of forest ecosystem entails the regulations and research models of forest succession. It is of great practical and theoretical significance to restore and reconstruct forest vegetation and to protect natural forest. Disturbances are important factors affecting regeneration structure and ecological processes. They result in temporal and spatial variations of forest ecosystem, and change the efficiencies of resources. In this paper, some concepts about forest succession and disturbances were introduced, and the difficulties of forest succession were proposed. Four classes of models were reviewed: Markov model, GAP model, process-based equilibrium terrestrial biosphere models (BIOME series models), and non-linear model. Subsequently, the effects of climate change on forest succession caused by human activity were discussed. At last, the existing problem and future research directions were proposed.

  18. Sustainability and economics: The Adirondack Park experience, a forest economic-ecological model, and solar energy policy

    Science.gov (United States)

    Erickson, Jon David

    The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.

  19. Challenges of ecological restoration

    DEFF Research Database (Denmark)

    Halme, Panu; Allen, Katherine A.; Aunins, Ainars

    2013-01-01

    we introduce northern forests as an ecosystem, discuss the historical and recent human impact and provide a brief status report on the ecological restoration projects and research already conducted there. Based on this discussion, we argue that before any restoration actions commence, the ecology......The alarming rate of ecosystem degradation has raised the need for ecological restoration throughout different biomes and continents. North European forests may appear as one of the least vulnerable ecosystems from a global perspective, since forest cover is not rapidly decreasing and many...... on Biological Diversity. Several northern countries are now taking up this challenge by restoring forest biodiversity with increasing intensity. The ecology and biodiversity of boreal forests are relatively well understood making them a good model for restoration activities in many other forest ecosystems. Here...

  20. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    Science.gov (United States)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  1. Assessing Urban Forest Structure, Ecosystem Services, and Economic Benefits on Vacant Land

    Directory of Open Access Journals (Sweden)

    Gunwoo Kim

    2016-07-01

    Full Text Available An urban forest assessment is essential for developing a baseline from which to measure changes and trends. The most precise way to assess urban forests is to measure and record every tree on a site, but although this may work well for relatively small populations (e.g., street trees, small parks, it is prohibitively expensive for large tree populations. Thus, random sampling offers a cost-effective way to assess urban forest structure and the associated ecosystem services for large-scale assessments. The methodology applied to assess ecosystem services in this study can also be used to assess the ecosystem services provided by vacant land in other urban contexts and improve urban forest policies, planning, and the management of vacant land. The study’s findings support the inclusion of trees on vacant land and contribute to a new vision of vacant land as a valuable ecological resource by demonstrating how green infrastructure can be used to enhance ecosystem health and promote a better quality of life for city residents.

  2. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning.

    Science.gov (United States)

    Malhi, Yadvinder; Jackson, Tobias; Patrick Bentley, Lisa; Lau, Alvaro; Shenkin, Alexander; Herold, Martin; Calders, Kim; Bartholomeus, Harm; Disney, Mathias I

    2018-04-06

    Terrestrial laser scanning (TLS) opens up the possibility of describing the three-dimensional structures of trees in natural environments with unprecedented detail and accuracy. It is already being extensively applied to describe how ecosystem biomass and structure vary between sites, but can also facilitate major advances in developing and testing mechanistic theories of tree form and forest structure, thereby enabling us to understand why trees and forests have the biomass and three-dimensional structure they do. Here we focus on the ecological challenges and benefits of understanding tree form, and highlight some advances related to capturing and describing tree shape that are becoming possible with the advent of TLS. We present examples of ongoing work that applies, or could potentially apply, new TLS measurements to better understand the constraints on optimization of tree form. Theories of resource distribution networks, such as metabolic scaling theory, can be tested and further refined. TLS can also provide new approaches to the scaling of woody surface area and crown area, and thereby better quantify the metabolism of trees. Finally, we demonstrate how we can develop a more mechanistic understanding of the effects of avoidance of wind risk on tree form and maximum size. Over the next few years, TLS promises to deliver both major empirical and conceptual advances in the quantitative understanding of trees and tree-dominated ecosystems, leading to advances in understanding the ecology of why trees and ecosystems look and grow the way they do.

  3. Effect of selective logging on floristic and structural composition in a forest fragment from Amazon Biome

    Directory of Open Access Journals (Sweden)

    Karen Janones da Rocha

    2017-04-01

    Full Text Available This study was conducted in one region of a Seasonal Semideciduous Forest located in Tapurah (Mato Grosso State, Brazil with the aim of studying its floristic and structural composition. The fixed area method was applied to 10 × 250 m clusters, allocating and measuring five clusters with five subunits of 500 m² each. Species with a diameter at breast height greater than or equal to 10 cm were considered, and the sample sufficiency of the floristic survey was verified by a species accumulation curve. The similarities between the sample subunits were calculated by the Jaccard Similarity Index, and the species diversity with the Shannon Diversity Index and Pielou Evenness Index. The horizontal vegetation structure was characterized by density, frequency, dominance and the values of ecological importance, and diametric distribution were assessed by the Spiegel procedure. The families Vochysiaceae, Fabaceae and Sapindaceae were highly represented, and Qualea paraensis, Aspidosperma discolor and Matayba arborescens were the most important species. A high diversity and low ecological dominance were found, and the diametric structure of the trees presented a negative exponential distribution. In general, the structure, floristic composition and richness of vegetation correspond to a forest with stable and autoregenerative community after selective logging.

  4. Ecological factors governing the distribution of soil microfungi in some forest soils of Pachmarhi Hills, India

    Directory of Open Access Journals (Sweden)

    Shashi Chauhan

    2014-01-01

    Full Text Available An ecological study of the microfungi occurring in the various forest soils of Pachmarhi Hills, India has been carried-out by the soil plate technique. Soil samples from 5 different forest communities viz., moist deciduous forest dominated by tree ferns, Diospyros forest, Terminalia forest, Shorea forest and scrub forest dominated by Acacia and Dalbergia sp. were collected during October, 1983. Some physico-chemical characteristics of the soil were analysed and their role in distribution of fungi in 5 soil types was studied and discussed. 43 fungal species were isolated, of which Asperigillus niger I and Penicillium janthinellum occurred in all the 5 soil types. Statistically, none of the edaphic factors showed positive significant correlation with the number of fungi.

  5. Soils characterisation along ecological forest zones in the Eastern Himalayas

    Science.gov (United States)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg

    2017-04-01

    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead

  6. Quantifying Forest Ecosystem Services Tradeoff—Coupled Ecological and Economic Models

    Science.gov (United States)

    Haff, P. K.; Ling, P. Y.

    2015-12-01

    Quantification of the effect of carbon-related forestland management activities on ecosystem services is difficult, because knowledge about the dynamics of coupled social-ecological systems is lacking. Different forestland management activities, such as various amount, timing, and methods of harvesting, and natural disturbances events, such as wind and fires, create shocks and uncertainties to the forest carbon dynamics. A spatially explicit model, Landis-ii, was used to model the forest succession for different harvest management scenarios at the Grandfather District, North Carolina. In addition to harvest, the model takes into account of the impact of natural disturbances, such as fire and insects, and species competition. The result shows the storage of carbon in standing biomass and in wood product for each species for each scenario. In this study, optimization is used to analyze the maximum profit and the number of tree species that each forest landowner can gain at different prices of carbon, roundwood, and interest rates for different harvest management scenarios. Time series of roundwood production of different types were estimated using remote sensing data. Econometric analysis is done to understand the possible interaction and relations between the production of different types of roundwood and roundwood prices, which can indicate the possible planting scheme that a forest owner may make. This study quantifies the tradeoffs between carbon sequestration, roundwood production, and forest species diversity not only from an economic perspective, but also takes into account of the forest succession mechanism in a species-diverse region. The resulting economic impact on the forest landowners is likely to influence their future planting decision, which in turn, will influence the species composition and future revenue of the landowners.

  7. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  8. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example.

    Science.gov (United States)

    J.F. Franklin; T.A. Spies; R.V. Pelt; A.B. Carey; D.A. Thornburgh; D.R. Berg; D.B. Lindenmayer; M.E. Harmon; W.S. Keeton; D.C. Shaw; K. Bible; J. Chen

    2002-01-01

    Forest managers need a comprehensive scientific understanding of natural stand development processes when designing silvicultural systems that integrate ecological and economic objectives, including a better appreciation of the nature of disturbance regimes and the biological legacies, such as live trees, snags, and logs, that they leave behind. Most conceptual forest...

  9. Simulation and optimization of forest ecological security of Beijing: an application of system dynamics model%北京市森林生态安全情景模拟与优化调控研究

    Institute of Scientific and Technical Information of China (English)

    鲁莎莎; 郭丽婷; 陈英红; 陈妮; 张珉珊; 关兴良

    2017-01-01

    sustainable vitality of forest resources,maintaining the stability and health of the forest ecological environment,and guiding the orderly development of social economy (Scenario 4),the forest ecological security of Beijing will be significantly improved.In order to improve the forest ecological security of Beijing,the government might attach more attention to the following five aspects:(1) appropriately controlling the growth rate of population as well as the private vehicles;(2) adjusting the industrial structure and optimizing the energy consumption structure;(3) formulating scientific and reasonable forestry policy,that is increasing investment in forestry development and reasonable setting forest cutting quota;(4) strengthening technical innovation and collaboration so as to effectively control and treat the pollution;(5) constructing an persistent ecological security assessment institution and safeguard mechanism.%在界定森林生态安全内涵的基础上,构建森林生态安全综合评价指标体系,建立基于SD模型的森林生态安全情景分析和调控模型,设计了林业政策扶持型、社会经济中速发展型、环境管理强化型、森林一社会经济一环境协调发展型等4种发展情景,并对各情景下的森林生态安全状况进行了仿真和动态评价分析.研究表明:初始状态中(即情景0),2000-2020年北京市森林生态安全综合评估值(FES)呈波动上升趋势,2013年达到最佳状态为0.527,但到2020年小幅下降到0.519,森林生态系统安全状况改善并不明显.与情景0相比,情景1~4均不同程度地提升了北京市森林生态安全水平,到2020年FES分别达到0.541,0.525,0.559和0.604,且森林资源的数量和质量也均有不同程度地改善.4种调控方案的模拟结果显示,北京市森林生态安全受林业政策实施、森林资源禀赋、社会经济发展和环境治理等因素的综合影响.

  10. Ecological and Socio-Economic Contribution of Mt. Elgon Forest Park, Eastern Uganda

    Directory of Open Access Journals (Sweden)

    Buyinza Mukadasi

    2013-01-01

    Full Text Available This paper explores the ecological and socio-economic contribution of Mt. Elgon forest park, eastern Uganda. An effort was taken to evaluate the importance of Mt. Elgon forest park resources to the local people by using the local plant knowledge to value the forest park resources. An integrated approach of participatory rural appraisal (PRA, Participatory Resource Valuation (PRV, household survey, group discussions and forest walks were conducted during the months of June to December, 2008 in Mutushet and Kortek Parishes, Kapchorwa District. Using random sampling methods, 120 respondents were selected and interviewed. Ten forest uses were identified with the highest dependence being in the supply of timber for income and domestic building poles, the latter having the highest average annual household value of UGx. 67919 (US$37. The forest use most valued in both Mutushet and Koterk was medicine with an average annual household value of UGx. 60,371 (US$ 33 and UGx. 75,464 (US$ 42 respectively. The forest provision of medicine, domestic building materials, soil conservation, bush meat, charcoal and timber was more valued in Koterk, while provision of firewood, honey and pasture were more valued in Mutushet. The forest’s provision of food was valued equally in the two areas with an average annual value of UGx. 30,186 per household. Forest park resources accounted for 55% of the household income. Participatory valuation approaches are ecommended for estimation of forest park resources’ value in a non-cash economy.

  11. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte

    2016-09-15

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. ARGICULTURAL LAND PROTECTION FUND AND FOREST FUND AS ECOLOGICAL FUNDS

    OpenAIRE

    Bartosz Bartniczak

    2009-01-01

    Funds for environmental protection and water management, Agricultural Land Protection Fund and Forest Fund make up the Polish system of special fund in environment protection. The main aim of this article is to analyze the activity of two latest funds. The article tries to answer the question whether that funds could be considered as ecological funds. The author described incomes and outlays of that funds and showed which reform should be done in Polish special funds system.

  13. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  14. Long-term ecological reflections: writers, philosophers, and scientists meet in the forest.

    Science.gov (United States)

    Jonathan Thompson

    2008-01-01

    Over the past 7 years, a strong collaboration has emerged between the H.J. Andrews Experimental Forest ecosystem research group and the Spring Creek Project for Ideas, Nature, and the Written Word, an independently funded program for nature writing based in the Department of Philosophy, Oregon State University. The program is called Long-Term Ecological Reflections and...

  15. Vegetation Succession on Degraded Sites in the Pomacochas Basin (Amazonas, N Peru—Ecological Options for Forest Restoration

    Directory of Open Access Journals (Sweden)

    Helge Walentowski

    2018-02-01

    Full Text Available The Andes of northern Peru are still widely covered with forests, but increasingly suffer from habitat fragmentation. Subsequent soil degradation often leads to the abandonment of overused forests and pastures. Ecological knowledge on the restoration potential, e.g., on dependencies of soil conditions and altitude, is scarce. Therefore, we compared soil and vegetation patterns along nine transects within the upper Pomacochas Basin, which is an important biodiversity corridor along the Andes, between remaining forests, succession sites and pastures. Anthropogenic successional and disturbance levels, geological substrate, and altitude have the most important ecological impacts on vegetation and tree species composition. Species responded to sandstone versus calcareous substrates, but also to depths of the organic soil layer, and light conditions. The absence of organic layers under pastures contrasted with the accumulation of thick organic layers under forest cover. Vegetation composition at succession sites revealed certain starting points (herbal stage, bush stage, or secondary forest for restoration that will determine the length of regeneration paths. Pre-forest patches of Alchornea sp. and Parathesis sp. may act as habitat stepping stones for expeditiously restoring biocorridors for wildlife. The key findings can contribute to the sustainable use and conservation of biodiversity in a fragile ecoregion.

  16. An ecological classification system for the central hardwoods region: The Hoosier National Forest

    Science.gov (United States)

    James E. Van Kley; George R. Parker

    1993-01-01

    This study, a multifactor ecological classification system, using vegetation, soil characteristics, and physiography, was developed for the landscape of the Hoosier National Forest in Southern Indiana. Measurements of ground flora, saplings, and canopy trees from selected stands older than 80 years were subjected to TWINSPAN classification and DECORANA ordination....

  17. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    Science.gov (United States)

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  18. Major characteristics of mixed fir and beech virgin forests in the National park Biogradska Gora in Montenegro

    Directory of Open Access Journals (Sweden)

    Čurović Milić

    2011-01-01

    Full Text Available In order to manage forest ecosystems at a sufficiently high biodiversity level it is necessary to study the ecological, structural and production characteristics of virgin forests. The research was directed towards identifying the characteristics of mixed fir and beech forests (Abieti-Fagetum s. lat. in the area of the strict reserve of the National Park Biogradska Gora in Montenegro. Basic characteristics of these forests were researched in the process of definition of forest types. In this manner, it is for the first time that a realistic base for typological management of forests and forest ecosystems with similar ecological and structural characteristics was provided for the specific sites.

  19. Missing data in forest ecology and management: advances in quantitative methods [Preface

    Science.gov (United States)

    Tara Barrett; Matti Maltomo

    2012-01-01

    In recent years, substantial progress has been made for handling missing data issues for applications in forest ecology and management, particularly in the area of imputation techniques. A session on this topic was held at the XXlll IUFRO World Congress in Seoul, South Korea, on August 23-28, 2010, resulting in this special issue of six papers that address recent...

  20. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  1. From State-controlled to Polycentric Governance in Forest Landscape Restoration: The Case of the Ecological Forest Purchase Program in Yong'an Municipality of China.

    Science.gov (United States)

    Long, Hexing; Liu, Jinlong; Tu, Chengyue; Fu, Yimin

    2018-07-01

    Forest landscape restoration is emerging as an effective approach to restore degraded forests for the provision of ecosystem services and to minimize trade-offs between conservation and rural livelihoods. Policy and institutional innovations in China illustrate the governance transformation of forest landscape restoration from state-controlled to polycentric governance. Based on a case study of the Ecological Forest Purchase Program in Yong'an municipality, China's Fujian Province, this paper explores how such forest governance transformation has evolved and how it has shaped the outcomes of forest landscape restoration in terms of multi-dimensionality and actor configurations. Our analysis indicates that accommodating the participation of multiple actors and market-based instruments facilitate a smoother transition from state-centered to polycentric governance in forest landscape restoration. Governance transitions for forest landscape restoration must overcome a number of challenges including ensurance of a formal participation forum, fair participation, and a sustainable legislative and financial system to enhance long-term effectiveness.

  2. Morphology and ecology of sibon snakes (Squamata: Dipsadidae from two forests in Central America

    Directory of Open Access Journals (Sweden)

    Todd R. Lewis

    2013-06-01

    Full Text Available Physical measurements, abundance, and ecological observations were recorded for Sibon annulatus,S. argus, S. longifrens, and S. nebulatus at two Neotropical habitats: a lowland swamp forest in Costa Rica and a montane cloud forest in Panama. Fourty-four and 58 adult snakes were recorded from Costa Rica and Panama, respectively. Differences in morphology and body condition showed minimal significant differences among species from both geographical locations. Observations of feeding, reproduction, abundance, distribution and a new size record for S. annulatus are discussed.

  3. Population genetics meets ecological genomics and community ecology in Cornus Florida

    Science.gov (United States)

    Understanding evolutionary/ecological consequences of alien pests on native forests is important to conservation. Cornus florida L. subsp. florida is an ecologically important understory tree in forests of the eastern United States but faces heavy mortality from dogwood anthracnose. Understanding ge...

  4. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    Science.gov (United States)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients

  5. Social-ecological dynamics of the small scale fisheries in Sundarban Mangrove Forest, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Mojibul Hoque Mozumder

    2018-01-01

    Full Text Available The Sundarban Mangrove Forest (SMF is an intricate ecosystem containing the most varied and profuse natural resources of Bangladesh. This study presents empirical research, based on primary and secondary data, regarding the social-ecological system (SES, social-ecological dynamics, different stakeholders and relevant management policies of small-scale or artisanal fisheries such as the SMF; showing how, despite extensive diversification, the livelihood activities of the artisanal fishers in the SMF all depend on the forest itself. Regardless of this critical importance of mangroves, however, deforestation continues due to immature death of mangroves, illegal logging, increased salinity, natural disasters and significant household consumption of mangrove wood by local people. As the mangroves are destroyed fish stocks, and other fishery resources are reduced, leading to moves of desperation among those whose livelihood has traditionally been fishing. The present study also considers several risks and shock factors in the fishers' livelihood: attacks by wild animals (especially tigers and local bandits, illness, natural disasters, river bank erosion, and the cost of paying off corrupt officials. The artisanal fishers of the SMF have adopted different strategies for coping with these problems: developing partnerships, violating the fisheries management laws and regulations, migrating, placing greater responsibility on women, and bartering fishing knowledge and information. This study shows how the social component (human, the ecological component (mangrove resources and the interphase aspects (local ecological knowledge, stakeholder's interest, and money lenders or middle man roles of the SMF as an SES are linked in mutual interaction. It furthermore considers how the social-ecological dynamics of the SMF have negative impacts on artisanal fishermen's livelihoods. Hence there is an urgency to update existing policies and management issues for the

  6. Patchwork policy, fragmented forests: In-situ oil sands, industrial development, and the ecological integrity of Alberta's boreal forest

    International Nuclear Information System (INIS)

    MacCrimmon, G.; Marr-Laing, T.

    2000-05-01

    Environmental impacts of current oil sands industry activities and the potential cumulative impacts of new in-situ oil sands development on the boreal forest of northeastern Alberta are reviewed. The objective is to improve understanding of the impacts of existing industrial activity on the broader boreal forest ecosystem, and the environmental implications of further disturbance to this ecosystem from future development of heavy and conventional fossil fuel reserves in the province. The report also outlines elements of a boreal forest use framework that could assist in managing industrial activity within ecologically sustainable limits and makes recommendations for specific actions that need to be taken by government and industry to guide future development decisions. The top 50 key landscape areas of interest in the province, identified by the World Wildlife Federation, based primarily on a series of reports by Alberta Environmental Protection, are briefly described. Implications of failure to act are also outlined. 138 end-notes, 8 tabs., 16 figs

  7. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  8. Forest health in Canada, Montane cordillera ecozone 2003

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.; Garbutt, R.; Hirvonen, H.; Pinnell, H.

    2004-07-01

    This paper describes the key forest health issues affecting the 6 main forest types in Canada's Montane Cordillera ecozone in the central interior of British Columbia and the Alberta Foothills. In order to protect and conserve biological diversity, the Canadian Council of Forest Ministers adopted national criteria to measure sustainable forest management. This report describes the Montane Cordillera landscape conditions, pre-industrial ecological influences, current ecological influences, and the impact of invasive alien insects and diseases on the diversity of tree species. Pine forests in the Montane Cordillera ecozone are threatened by the mountain pine beetle. Fire suppression has also resulted in ecological changes to forests in the Montane Cordillera, including an increase in Douglas-firs, gradual replacement of Lodgepole pine forests, and reduced health of Ponderosa pine ecosystems. Alien insects are being monitored by provincial forestry agencies through annual surveys. They are also being controlled through localized treatment programs. The impact of land use practices such as forest harvesting on forest structure and composition was also addressed. It was noted that the unrestricted movement of wood and forestry products also increases the threat of invasive alien diseases and insects. The trees in this ecozone have not been damaged by air pollution. refs., tabs., figs.

  9. [Regional ecological construction and mission of landscape ecology].

    Science.gov (United States)

    Xiao, Duning; Xie, Fuju; Wei, Jianbing

    2004-10-01

    The eco-construction on regional and landscape scale is the one which can be used to specific landscape and intercrossing ecosystem in specific region including performing scientific administration of ecosystem and optimizing environmental function. Recently, the government has taken a series of significant projects into action, such as national forest protection item, partly forest restoration, and adjustment of water, etc. Enforcing regional eco-construction and maintaining the ecology security of the nation have become the strategic requisition. In various regions, different eco-construction should be applied, for example, performing ecological safeguard measure in ecological sensitive zone, accommodating the ecological load in ecological fragile zone, etc., which can control the activities of human being, so that, sustainable development can be reached. Facing opportunity and challenge in the development of landscape ecology, we have some key topics: landscape pattern of ecological security, land use and ecological process, landscape changes under human activity stress, quantitative evaluation of the influence on human being activities, evaluation of zonal ecological security and advance warning of ecological risk, and planning and optimizing of model in landscape eco-construction.

  10. Urban forests and green spaces of Tbilisi and ecological problems of the city

    Directory of Open Access Journals (Sweden)

    T.K. Patarkalashvili

    2017-06-01

    Full Text Available The increase in urbanization is the most dramatic factor in today's world and it did not passed round Tbilisi, the capital of Georgia, too. Since the sixties of the 20th century the population of the city nearly doubled and today is about 1.3–1.4 million. Many problems that may not have been so evident in the past, became obvious and dramatic today. These problems concern urban forests and green spaces of the city because they shrank considerably and as the result, deteriorated ecological situation. Today, their role in improvement of city climate is little. In the Soviet period the main polluters of the air considered factories and plants, but today, after breaking of the Soviet Union and closing or destruction of all factories and plants, the increasing number of light vehicles, especially outdated once, manufactured before 1999(67% are the main source of pollution(80%. The article highlights the historical development of Tbilisi urban forests and green spaces and outlines some challenges and prospects of ecological condition of the city.

  11. Seed ecology and regeneration in dry Afromontane forests of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Teketay, D. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Vegetation Ecology

    1996-12-31

    Various aspects of seed and regeneration ecology: germination requirements of seeds, seed longevity in the soil, soil seed banks in forests, gaps and arable land as well as density, survival and growth of seedlings were investigated within the dry Afromontane region in Ethiopia. In laboratory germination tests, 60% of the species studied exhibited some degree of initial dormancy and the optimum constant temperature for germination was between 20 and 25 deg C in the majority of the species. A few species showed a requirement for fluctuating temperatures and germination was suppressed or completely inhibited in several, mainly small-seeded, species when they were incubated in darkness or in light filtered through green leaves. Hard-seeded species required scarification treatments to improve germination, indicating seed-coat imposed dormancy. Dry storage reduced the germinability of seeds in a few species, suggesting a recalcitrant behaviour, while seeds of many species remained unaffected. During four years of storage in forest soils, seeds of 2 out of 8 species germinated in the soil almost completely within a year, 2 of the species maintained nearly full viability, while 4 were intermediate. The generally high levels of dormancy and somewhat extended viability of seeds in the soil may have been selected for under a climate of seasonal drought and unreliable rainfall that characterizes the dry Afromontane region. Dry Afromontane forests have a potential to recover in relatively short time after natural and man-made disturbances, e.g. after carefully managed selective cutting. However, the common practice of clearing forests and converting them into permanent arable land destroys the sources of regrowth thereby preventing regeneration of the forest vegetation. Therefore, the fate of dry Afromontane forests depends on the protection, careful management and conservation of the remaining patches. 102 refs, 4 figs, 1 tab

  12. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula.

    Science.gov (United States)

    Vilà-Cabrera, Albert; Martínez-Vilalta, Jordi; Vayreda, Jordi; Retana, Javier

    2011-06-01

    The demographic rates of tree species typically show large spatial variation across their range. Understanding the environmental factors underlying this variation is a key topic in forest ecology, with far-reaching management implications. Scots pine (Pinus sylvestris L.) covers large areas of the Northern Hemisphere, the Iberian Peninsula being its southwestern distribution limit. In recent decades, an increase in severe droughts and a densification of forests as a result of changes in forest uses have occurred in this region. Our aim was to use climate and stand structure data to explain mortality and growth patterns of Scots pine forests across the Iberian Peninsula. We used data from 2392 plots dominated by Scots pine, sampled for the National Forest Inventory of Spain. Plots were sampled from 1986 to 1996 (IFN2) and were resampled from 1997 to 2007 (IFN3), allowing for the calculation of growth and mortality rates. We fitted linear models to assess the response of growth and mortality rates to the spatial variability of climate, climatic anomalies, and forest structure. Over the period of approximately 10 years between the IFN2 and IFN3, the amount of standing dead trees increased 11-fold. Higher mortality rates were related to dryness, and growth was reduced with increasing dryness and temperature, but results also suggested that effects of climatic stressors were not restricted to dry sites only. Forest structure was strongly related to demographic rates, suggesting that stand development and competition are the main factors associated with demography. In the case of mortality, forest structure interacted with climate, suggesting that competition for water resources induces tree mortality in dry sites. A slight negative relationship was found between mortality and growth, indicating that both rates are likely to be affected by the same stress factors. Additionally, regeneration tended to be lower in plots with higher mortality. Taken together, our results

  13. Field sampling and data analysis methods for development of ecological land classifications: an application on the Manistee National Forest.

    Science.gov (United States)

    George E. Host; Carl W. Ramm; Eunice A. Padley; Kurt S. Pregitzer; James B. Hart; David T. Cleland

    1992-01-01

    Presents technical documentation for development of an Ecological Classification System for the Manistee National Forest in northwest Lower Michigan, and suggests procedures applicable to other ecological land classification projects. Includes discussion of sampling design, field data collection, data summarization and analyses, development of classification units,...

  14. Status of the Southern Carpathian forests in the long-term ecological research network

    Science.gov (United States)

    Ovidiu Badea; Andrzej Bytnerowicz; Diana Silaghi; Stefan Neagu; Ion Barbu; Carmen Iacoban; Corneliu Iacob; Gheorghe Guiman; Elena Preda; Ioan Seceleanu; Marian Oneata; Ion Dumitru; Viorela Huber; Horia Iuncu; Lucian Dinca; Stefan Leca; Ioan Taut

    2012-01-01

    Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006–2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O 3 ) was high indicating a potential for phytotoxicity. Ammonia (NH 3 ) concentrations rose to levels that could contribute to...

  15. Spatial Ecology of Puerto Rican Boas (Epicrates inornatus) in a Hurricane Impacted Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Javier E. Mercado Bernard Parresol Esteban Terranova 2

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month...

  16. Floristic inventory of a zone of ecological tension in the Atlantic Forest of Northeastern Brazil

    OpenAIRE

    Mendes, Kalinne; Gomes, Polyhanna; Alves, Marccus

    2010-01-01

    Abstract The Serra de Itabaiana National Park, Sergipe, is situated in a transition area between Atlantic Forest and the Caatinga and is considered by the Ministério do Meio Ambiente to be extremely important for the conservation of the Atlantic Forest flora. The paucity of floristic information from Sergipe state and areas of ecological tension motivated this floristic survey in the only National Park in the state. Botanical collections were made from 2006 to 2009, in six expedictions, by me...

  17. Ecological consequences of alternative fuel reduction treatments in seasonally dry forests: the national fire and fire surrogate study

    Science.gov (United States)

    J.D. McIver; C.J. Fettig

    2010-01-01

    This special issue of Forest Science features the national Fire and Fire Surrogate study (FFS), a niultisite, multivariate research project that evaluates the ecological consequences of prescribed fire and its mechanical surrogates in seasonally dry forests of the United States. The need for a comprehensive national FFS study stemmed from concern that information on...

  18. Preliminary ecological study of plant species of Lokame Natural Forest (Nord Ubangi Province, Democratic Republic of the Congo): A special emphasis on Non-timber Forest Products

    OpenAIRE

    Koto-te-Nyiwa Ngbolua,

    2017-01-01

    A preliminary ecological study with a special emphasis on Non-timber forest products (NTFPs) was conducted between 2014 and 2015 on both anks of Lokame River in Lokame forest. The results showed that the Lokame natural forest has a very rich and diversified in NTFPs. Data collected over a total area of 2 ha identified 20 families and 25 different plant species producing NTFPs and 914 individuals, of which 39% are food, 38% for different uses, 14% for aphrodisiacs and 9% as medicinal. A compar...

  19. Detecting Changes in Forest Structure over Time with Bi-Temporal Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Timo Melkas

    2012-10-01

    Full Text Available Changes to stems caused by natural forces and timber harvesting constitute an essential input for many forestry-related applications and ecological studies, especially forestry inventories based on the use of permanent sample plots. Conventional field measurement is widely acknowledged as being time-consuming and labor-intensive. More automated and efficient alternatives or supportive methods are needed. Terrestrial laser scanning (TLS has been demonstrated to be a promising method in forestry field inventories. Nevertheless, the applicability of TLS in recording changes in the structure of forest plots has not been studied in detail. This paper presents a fully automated method for detecting changes in forest structure over time using bi-temporal TLS data. The developed method was tested on five densely populated forest plots including 137 trees and 50 harvested trees in point clouds. The present study demonstrated that 90 percent of tree stem changes could be automatically located from single-scan TLS data. These changes accounted for 92 percent of the changed basal area. The results indicate that the processing of TLS data collected at different times to detect tree stem changes can be fully automated.

  20. Small mammal populations and ecology in the Kings River Sustainable Forest Ecosystems Project area

    Science.gov (United States)

    William F. Jr. Laudenslayer; Roberta J. Fargo

    2002-01-01

    Small mammals are important components of woodlands and forests. Since 1992, we have been studying several aspects of small mammal ecology in oak woodlands in western foothills of the southern Sierra Nevada. Assemblages of small, nocturnal mammal species are dominated by the brush mouse (Peromyscus boylii), California mouse (P. californicus...

  1. Vegetation and Ecological Characteristics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest

    Science.gov (United States)

    Malcolm North; Brian Oakley; Jiquan Chen; Heather Erickson; Andrew Gray; Antonio Izzo; Dale Johnson; Siyan Ma; Jim Marra; Marc Meyer; Kathryn Purcell; Tom Rambo; Dave Rizzo; Brent Roath; Tim. Schowalter

    2002-01-01

    Detailed analysis of mixed-conifer and red fir forests were made from extensive, large vegetation sampling, systematically conducted throughout the Teakettle Experimental Forest. Mixed conifer is characterized by distinct patch conditions of closed-canopy tree clusters, persistent gaps and shrub thickets. This heterogeneous spatial structure provides contrasting...

  2. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    Science.gov (United States)

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.

  3. Ecological Factors Influencing Norway Spruce Regeneration on Nurse Logs in a Subalpine Virgin Forest

    Directory of Open Access Journals (Sweden)

    Sophie Stroheker

    2018-03-01

    Full Text Available Regeneration of Picea abies in high-elevation mountain forests often depends on the presence of coarse woody debris (CWD, as logs provide sites with more favorable conditions for spruce regeneration compared to the forest floor. However, there is little quantitative knowledge on the factors that are conducive to or hindering spruce establishment on CWD. We examined spruce regeneration on CWD by sampling 303 plots (50 cm × 50 cm each on 56 downed logs in a virgin forest in the Swiss Alps. Variables describing microsite conditions were measured, and fungi were isolated from wood samples. To investigate the relationship between the ecological factors and establishment success, two models were fitted with seedling and sapling density as response variables, respectively. Besides log diameter, the models identified different ecological factors as significant for seedling and sapling establishment, i.e., regeneration depends on different factors in different development stages. Seedling density depended on the type of rot, log inclination, and decay stage. Sapling density depended mainly on light availability, cover by bark and moss, the time of tree fall, and the distance between the log surface and the forest floor. A total of 22 polypore fungi were isolated from the wood samples, four of them being threatened species. White- and brown-rot fungi were found in all decay stages. The visual assessment of the type of rot in the field corresponded in only 15% of cases to the type of rot caused by the isolated fungi; hence caution is needed when making field assessments of rot types.

  4. Natural regeneration ecology of a secondary altimontane spruce forests at Jelendol

    OpenAIRE

    Rozman, Elizabeta; Diaci, Jurij

    2008-01-01

    Natural regeneration of altimontane spruce forests at Jelendol is retarded dueto many factors. In autumn 2003, gaps of different size and parts of the surrounding stand were covered with a 5 x 5 grid m to define sampling plots. Atotal of 227 plots with 1,5 x 1,5 m in size were installed to analyse generalregeneration conditions and inhibitors. The following ecological parameters were estimated on each plot: micro relief, inclination, soil depth,ground cover, direct and diffuse solar radiation...

  5. Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape.

    Science.gov (United States)

    Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A

    2017-09-01

    Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase

  6. Identification of a system of ecologically homogeneous areas and of priority intervention levels for forest plantation planning in Sicily

    Directory of Open Access Journals (Sweden)

    Pizzurro GM

    2008-10-01

    Full Text Available Afforestation and reforestation activities in Sicily have been widespreaded in the last century. The results of forestation activities indicate the need to adopt a operational tools to promote the extension of forest surface at regional and sub-regional levels. In this view, with the aim to produce useful tools for forest plantation planning, the entire regional area was analysed and ecologically homogeneous areas have been identified to join and target arboriculture and/or forestation plantation activities, to choose tree and shrub species for different environments and to identify priority areas of intervention. The map of Rivas-Martinez bioclimate and the map of litological types were used as basic information layers to map pedo-climatic homogeneous areas. In order to mitigate disruptive hydrogeological effects and to reduce desertification risk and forest fragmentation, the Corine Land Cover map (CLC2000, the hydrogeological bond map and the desertification risk map were used to identify areas characterized by urgent need of forest activities at high priority level. A total of 23 ecologically homogeneous areas have been identified in Sicily, while more than a quarter of the regional surface has been characterized as highest priority intervention level. At sub-regional level, the target of the analysis was carried out at administrative province and at hydrographic basin level.

  7. The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions

    Science.gov (United States)

    David J. Nowak; Daniel E. Crane

    2000-01-01

    The Urban Forest Effects (UFORE) computer model was developed to help managers and researchers quantify urban forest structure and functions. The model quantifies species composition and diversity, diameter distribution, tree density and health, leaf area, leaf biomass, and other structural characteristics; hourly volatile organic compound emissions (emissions that...

  8. Restoration treatments in urban park forests drive long-term changes in vegetation trajectories.

    Science.gov (United States)

    Johnson, Lea R; Handel, Steven N

    2016-04-01

    Municipalities are turning to ecological restoration of urban forests as a measure to improve air quality, ameliorate urban heat island effects, improve storm water infiltration, and provide other social and ecological benefits. However, community dynamics following urban forest restoration treatments are poorly documented. This study examines the long-term effects of ecological restoration undertaken in New York City, New York, USA, to restore native forest in urban park natural areas invaded by woody non-native plants that are regional problems. In 2009 and 2010, we sampled vegetation in 30 invaded sites in three large public parks that were restored 1988-1993, and 30 sites in three large parks that were similarly invaded but had not been restored. Data from these matched plots reveal that the restoration treatment achieved its central goals. After 15-20 years, invasive species removal followed by native tree planting resulted in persistent structural and compositional shifts, significantly lower invasive species abundance, a more complex forest structure, and greater native tree recruitment. Together, these findings indicate that successional trajectories of vegetation dynamics have diverged between restored forests and invaded forests that were not restored. In addition, the data suggest that future composition of these urban forest patches will be novel assemblages. Restored and untreated sites shared a suite of shade-intolerant, quickly-growing tree species that colonize disturbed sites, indicating that restoration treatments created sites hospitable for germination and growth of species adapted to high light conditions and disturbed soils. These findings yield an urban perspective on the use of succession theory in ecological restoration. Models of ecological restoration developed in more pristine environments must be modified for use in cities. By anticipating both urban disturbances and ecological succession, management of urban forest patches can be

  9. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    Science.gov (United States)

    Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter

  10. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon.

    Science.gov (United States)

    Soriano, Marlene; Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households' local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well.

  11. Diversity in forest management to reduce wildfire losses: implications for resilience

    Directory of Open Access Journals (Sweden)

    Susan Charnley

    2017-03-01

    Full Text Available This study investigates how federal, state, and private corporate forest owners in a fire-prone landscape of southcentral Oregon manage their forests to reduce wildfire hazard and loss to high-severity wildfire. We evaluate the implications of our findings for concepts of social-ecological resilience. Using interview data, we found a high degree of "response diversity" (variation in forest management decisions and behaviors to reduce wildfire losses between and within actor groups. This response diversity contributed to heterogeneous forest conditions across the landscape and was driven mainly by forest management legacies, economics, and attitudes toward wildfire (fortress protection vs. living with fire. We then used an agent-based landscape model to evaluate trends in forest structure and fire metrics by ownership. Modeling results indicated that, in general, U.S. Forest Service management had the most favorable outcomes for forest resilience to wildfire, and private corporate management the least. However, some state and private corporate forest ownerships have the building blocks for developing fire-resilient forests. Heterogeneity in social-ecological systems is often thought to favor social-ecological resilience. We found that despite high social and ecological heterogeneity in our study area, most forest ownerships do not exhibit characteristics that make them resilient to high-severity fire currently or in the future under current management. Thus, simple theories about resilience based on heterogeneity must be informed by knowledge of the environmental and social conditions that comprise that heterogeneity. Our coupled human and natural systems (CHANS approach enabled us to understand connections among the social, economic, and ecological components of a multiownership, fire-prone ecosystem, and to identify how social-ecological resilience to wildfire might improve through interventions to address key constraints in the system. Our

  12. Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna

    Science.gov (United States)

    Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  13. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    Science.gov (United States)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  14. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea

    Science.gov (United States)

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest. PMID:26800267

  15. Flying Under the LiDAR: Relating Forest Structure to Bat Community Diversity

    Science.gov (United States)

    Swanson, A. C.; Weishampel, J. F.

    2015-12-01

    Bats are important to many ecological processes such as pollination, insect (and by proxy, disease) control, and seed dispersal and can be used to monitor ecosystem health. However, they are facing unprecedented extinction risks from habitat degradation as well as pressures from pathogens (e.g., white-nose syndrome) and wind turbines. LiDAR allows ecologists to measure structural variables of forested landscapes with increased precision and accuracy at broader spatial scales than previously possible. This study used airborne LiDAR to classify forest habitat/canopy structure at the Ordway-Swisher Biological Station (OSBS) in north central Florida. LiDAR data were acquired by the NEON airborne observation platform in summer 2014. OSBS consists of open-canopy pine savannas, closed-canopy hardwood hammocks, and seasonally wet prairies. Multiple forest structural parameters (e.g., mean, maximum, and standard deviation of height returns) were derived from LiDAR point clouds using the USDA software program FUSION. K-means clustering was used to segregate each 5x5 m raster across the ~3765 ha OSBS area into six different clusters based on the derived canopy metrics. Cluster averages for maximum, mean, and standard deviation of return heights ranged from 0 to 19.4 m, 0 to 15.3 m, and 0 to 3.0 m, respectively. To determine the relationships among these landscape-canopy features and bat species diversity and abundances, AnaBat II bat detectors were deployed from May to September in 2015 stratified by these distinct clusters. Bat calls were recorded from sunset to sunrise during each sampling period. Species were identified using AnalookW. A statistical regression model selection approach was performed in order to evaluate how forest attributes such as understory clutter, open regions, open and closed canopy, etc. influence bat communities. This knowledge provides a deeper understanding of habitat-species interactions to better manage survival of these species.

  16. FLORISTIC AND STRUCTURAL CHARACTERIZATION OF GALLERY FOREST FRAGMENTS OF UPPER ARAGUAIA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Christian Dias Cabacinha

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814575The forests of upper Araguaia river basin are daily exposed to degradation agents due to intense agriculture practices. Twenty two fragments (of 10 until 169 ha were surveyed according to point-centered quarter method to characterize vegetation structure and to create a database to forest restoration. One hundred and nine (109 species, belonging to 78 genus and 42 families, were sampled where 73.4% revealed zoochorous dispersal pattern, and 69.7% were classified to initial sucessional category. Shannon index and Pielou equability index were 3.86 nats. ind-1 and 0.82, respectively. Density and total basal area estimated were 1,351 trees.ha-1 and 19.28 m2.ha-1. The areas showed lower richness, Shannon and Pielou heterogeneity indices, lower basal area, and high number of species of intermediate stage of ecological sucession and colonization of cerrado and cerradão species in disturbed areas, altering the original landscape. Such situation, added to the importance of those areas for the biodiversity conservation and ecological services (mainly relative to the water, demands protection actions and management that use the great regenerative potential of the area, given by the existence of a great number of initial secondary species and the prevalence of zoochoric species.

  17. Shifts in Forest Structure in Northwest Montana from 1972 to 2015 Using the Landsat Archive from Multispectral Scanner to Operational Land Imager

    Directory of Open Access Journals (Sweden)

    Shannon L. Savage

    2018-03-01

    Full Text Available There is a pressing need to map changes in forest structure from the earliest time period possible given forest management policies and accelerated disturbances from climate change. The availability of Landsat data from over four decades helps researchers study an ecologically meaningful length of time. Forest structure is most often mapped utilizing lidar data, however these data are prohibitively expensive and cover a narrow temporal window relative to the Landsat archive. Here we describe a technique to use the entire length of the Landsat archive from Multispectral Scanner to Operational Land Imager (M2O to produce three novel outcomes: (1 we used the M2O dataset and standard change vector analysis methods to classify annual forest structure in northwestern Montana from 1972 to 2015, (2 we improved the accuracy of each yearly forest structure classification by applying temporal continuity rules to the whole time series, with final accuracies ranging from 97% to 68% respectively for two and six-category classifications, and (3 we demonstrated the importance of pre-1984 Landsat data for long-term change studies. As the Landsat program continues to acquire Earth imagery into the foreseeable future, time series analyses that aid in classifying forest structure accurately will be key to the success of any land management changes in the future.

  18. Conservation success as a function of good alignment of social and ecological structures and processes.

    Science.gov (United States)

    Bodin, Orjan; Crona, Beatrice; Thyresson, Matilda; Golz, Anna-Lea; Tengö, Maria

    2014-10-01

    How to create and adjust governing institutions so that they align (fit) with complex ecosystem processes and structures across scales is an issue of increasing concern in conservation. It is argued that lack of such social-ecological fit makes governance and conservation difficult, yet progress in explicitly defining and rigorously testing what constitutes a good fit has been limited. We used a novel modeling approach and data from case studies of fishery and forest conservation to empirically test presumed relationships between conservation outcomes and certain patterns of alignment of social-ecological interdependences. Our approach made it possible to analyze conservation outcome on a systems level while also providing information on how individual actors are positioned in the complex web of social-ecological interdependencies. We found that when actors who shared resources were also socially linked, conservation at the level of the whole social-ecological system was positively affected. When the scales at which individual actors used resources and the scale at which ecological resources were interconnected to other ecological resources were aligned through tightened feedback loops, conservation outcome was better than when they were not aligned. The analysis of individual actors' positions in the web of social-ecological interdependencies was helpful in understanding why a system has a certain level of social-ecological fit. Results of analysis of positions showed that different actors contributed in very different ways to achieve a certain fit and revealed some underlying difference between the actors, for example in terms of actors' varying rights to access and use different ecological resources. © 2014 Society for Conservation Biology.

  19. Empirical test of the influence of global warming and forest disturbance on ant fauna at the Gwangneung Forest Long Term Ecological Research site, South Korea

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kwon

    2014-09-01

    Full Text Available This study examined the effects of forest disturbance and climate change on the ant fauna at the Long Term Ecological Research site in Gwangneung Forest, Korea in 2003 and 2012. After forest disturbance, the occurrence and abundance of ants belonging to the functional groups of forest ground forager and soil and litter dweller are predicted to decrease, while the occurrence and abundance of ants belonging to the open land forager and forest vegetation forager functional groups are predicted to increase. In terms of the effects of climate change, if the optimum temperature of the ants is lower than the annual average temperature in the survey area, the occurrence and abundance of the ants are predicted to decrease and vice versa. Ant surveys were carried out using pitfall traps. Changes in the dominant species, occurrence, and abundance mostly corresponded to the predictions for forest disturbance, but did not match the prediction for an increase in temperature.

  20. Relationships of three species of bats impacted by white-nose syndrome to forest condition and management

    Science.gov (United States)

    Silvis, Alexander; Perry, Roger W.; Ford, W. Mark

    2016-01-01

    Forest management activities can have substantial effects on forest structure and community composition and response of wildlife therein. Bats can be highly influenced by these structural changes, and understanding how forest management affects day-roost and foraging ecology of bats is currently a paramount conservation issue. With populations of many cave-hibernating bat species in eastern North America declining as a result of white-nose syndrome (WNS), it is increasingly critical to understand relationships among bats and forest-management activities. Herein, we provide a comprehensive literature review and synthesis of: (1) responses of northern long-eared (Myotis septentrionalis) and tri-colored (Perimyotis subflavus) bats—two species affected by WNS that use forests during summer—to forest management, and (2) an update to a previous review on the ecology of the endangered Indiana bat (Myotis sodalis).

  1. HOW ECOLOGICAL COMMUNITIES ARE STRUCTURED: A REVIEW ON ECOLOGICAL ASSEMBLY RULES

    Directory of Open Access Journals (Sweden)

    Gabriel Jaime Colorado Zuluaga

    Full Text Available Whether biological communities are deterministic or stochastic assemblages of species has long been a central topic of ecology. The widely demonstrated presence of structural patterns in nature may imply the existence of rules that regulate the organization of ecological communities. In this review, I present a compilation of major assembly rules that fundament, in a great proportion, the community assembly theory. Initially, I present a general overview of key concepts associated to the assembly of communities, in particular the origin of assembly rules, definition, the problem of scale and underlying mechanisms in the structure of ecological communities. Subsequently, two major approaches or paradigms (i.e. species-based and trait-based for the assembly of communities are discussed. Finally, major tested assembly rules are explored and discussed under the light of available published literature.

  2. Higher stability in forest-atmosphere exchange observed in a structurally diverse forest.

    Science.gov (United States)

    Tamrakar, R.; Rayment, M.; Moyano, F.; Herbst, M.; Mund, M.; Knohl, A.

    2016-12-01

    We tested the hypothesis that structurally diverse forests have greater stability on exchange processes with the atmosphere compared to forests with less diverse structure. In a case study, we assessed how net ecosystem exchange (NEE) and normalized maximum assimilation (Amax) varied over time in two forests in Germany based on 11 years of continuous eddy flux measurements. The two sites differ in structure as well as in species composition: one (Hainich) is an unmanaged, uneven-aged and heterogeneous mixed beech forest (65% beech), the other (Leinefelde) is a managed, even-aged and homogeneous pure beech stand. The two selected forests are of similar mean ages (about 130 years old) and exposed to similar air temperatures and vapour pressure deficits. Even though Hainich (the unmanaged forest) received higher rainfall (720 ± 134 mm vs 599±166 mm), the soil water availability showed no significant difference between both sites. Based on detailed biomass inventory, trees in Hainich are well distributed in all diameter at breast height (dbh) classes (10 to 90cm dbh) whereas in Leinefelde (the managed forest) trees are mostly confined to dbh classes of 40 to 55 cm. Our results showed a strong difference in inter-annual variability of NEE, which was lower in the unmanaged than in the managed site (coefficient of variation (CV) of 0.13 and 0.27, respectively). The lowest NEE was observed in both sites in 2004, a mast year and a year after the strong summer drought of 2003. The variation in the inter-annual normalized maximum assimilation (Amax) was lower in Hainich (standard deviation of 2.5 compared to 3.9 µmol m-2 s-1). Also, the seasonal course of Amax differed between the two forests which could explain why the mixed forest was more affected by the late summer drought of 2003, despite showing a more conservative carbon budget than the pure stand in the long term. The interannual anomaly in Amax was correlated with fruit production, the latter being larger in

  3. Climate limits across space and time on European forest structure

    Science.gov (United States)

    Moreno, A. L. S.; Neumann, M.; Hasenauer, H.

    2017-12-01

    The impact climate has on forests has been extensively studied. However, the large scale effect climate has on forest structures, such as average diameters, heights and basal area are understudied in a spatially explicit manner. The limits, tipping points and thresholds that climate places on forest structures dictate the services a forest may provide, the vulnerability of a forest to mortality and the potential value of the timber there within. The majority of current research either investigates climate impacts on forest pools and fluxes, on a tree physiological scale or on case studies that are used to extrapolate results and potential impacts. A spatially explicit study on how climate affects forest structure over a large region would give valuable information to stakeholders who are more concerned with ecosystem services that cannot be described by pools and fluxes but require spatially explicit information - such as biodiversity, habitat suitability, and market values. In this study, we quantified the limits that climate (maximum, minimum temperature and precipitation) places on 3 forest structures, diameter at breast height, height, and basal area throughout Europe. Our results show clear climatic zones of high and low upper limits for each forest structure variable studied. We also spatially analyzed how climate restricts the potential bio-physical upper limits and creates tipping points of each forest structure variable and which climate factors are most limiting. Further, we demonstrated how the climate change has affected 8 individual forests across Europe and then the continent as a whole. We find that diameter, height and basal area are limited by climate in different ways and that areas may have high upper limits in one structure and low upper limits in another limitted by different climate variables. We also found that even though individual forests may have increased their potential upper limit forest structure values, European forests as a whole

  4. Towards an ecologically sustainable energy production based on forest biomass - Forest fertilisation with nutrient rich organic waste matter

    Energy Technology Data Exchange (ETDEWEB)

    Roegaard, Pia-Maria; Aakerback, Nina; Sahlen, Kenneth; Sundell, Markus [Swedish Polytechnic, Vasa (Finland)

    2006-07-15

    The project is a collaboration between Swedish Univ. of Agricultural Sciences, Faculty of Forest Sciences in Umeaa, Swedish Polytechnic, Finland in Vaasa and the Finnish Forest Research Institute in Kannus. Today there are pronounced goals within the EU that lead towards an ecologically sustainable community and there is also a global goal to decrease net carbon dioxide emissions. These goals involve among other things efforts to increase the use of renewable biofuel as energy source. This will result in an enlarged demand for biomass for energy production. Therefore, the forest resources in the Nordic countries will be required for energy production to a far greater extent in the future. One way to meet this increased tree biomass demand is to increase forest tree growth through supply of nutrients, of which nitrogen is the most important. Organic nutrient rich waste matter from the society, such as sewage sludge and mink and fox manure compost from fur farms might be used as forest fertilizer. This would result in increased supply of renewable tree biomass, decreased net carbon dioxide emissions, increased forest ecosystem carbon sequestration, decreased methane emissions from sewage sludge landfill and decreased society costs for sludge landfill or incineration. Therefore, the purpose of this project is to develop methods for forest fertilisation with nutrient rich organic waste matter from municipal wastewater, sludge and manure from mink and fox farms. The project may be divided into three main parts. The first part is the chemical composition of the fertiliser with the objective to increase the nitrogen content in sludge-based fertilisers and in compost of mink and fox manure. The second part involves the technique and logistics for forest fertilisation i.e., to develop application equipment that may be integrated in existing forest technical systems. The third part consists of field fertilisation investigations and an environmental impact assessment

  5. Ecological Value of Soil Organic Matter at Tropical Evergreen Aglaia-Streblus Forest of Meru Betiri National Park, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Hari Sulistiyowati

    2016-09-01

    Full Text Available As part of carbon pools, forest soil stores soil organic matter (SOM that contains many elements including organic C, N, P, and K. These elements contribute nutrients for biogeochemical cycles within the ecosystem. This study was done to determine the ecological value of forest soil organic matter at tropical evergreen Aglaia-Streblus forest of Meru Betiri National Park (MBNP, East Java, Indonesia. The data were sampled along gradient topography in Pringtali tropical forest of TMBNP. Direct measurements of soil moisture, temperature, and pH were taken in the field. The soil samples were extracted from 6 points of soil solum using soil auger, and then oven-dried to get value of dry-weight. The elements content of organic C, N, P, and K were analyzed and estimated at the laboratory. The ecoval of SOM was appraised using developed ecological valuation tool. The result showed that SOM contributed higher ecoval of organic C (66.03 Mg ha-1 than other elements. Compared to P and K elements, N had the highest stock of element content. However, comparing to other two tropical forest ecosystems of Asia the ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features.The ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features. The ecovals contributed about 2.440,64 - 6.955,50 USD or 31.271.923,73 - 89.120.837,23 IDR per hectare of ecological value (d to the ecosystem. This value was mainly contributed by organic C stock in the TMBNP forest SOM. It means the forest SOM had higher element content of organic C than N, P, and K elements. This d value is an indicator for TMBNP to protect the SOM elements meaning protecting their resources to sustain the biogeochemical cycles in the forest ecosystem. All the management and policy correlated to this protected area should consider this valuable information for their plan and actions.

  6. Economic structure and performance of forest-based industries

    International Nuclear Information System (INIS)

    O'Laughlin, J.

    1989-01-01

    This paper reports on the economic structure, conduct, and performance of industries dependent on the nation's forests that are topics of special importance for research. A major challenge to research involving industrial organization of forest-based industries is to link descriptions of structure, conduct, and industrial performance in ways that facilitate public and private policy making. Not to be overlooked is the need to continue efforts to monitor changes in structure and conduct dimensions at the national level and to conduct baseline studies of industry structure-conduct-performance at regional, state, and local levels. Specifically needed is research that will improve understanding of restructuring within the wood-based industry; definitions of the wood-based industry and segments thereof; linkages between structure and regional economic development; timberland as a managerial and economic variable; structural consequences of technological innovations; corporate strategies as related to performance; structural dimensions in an international setting; and structure and performance of nonwood-based forest industries. Economics research focused in such directions will go far toward improving the manner in which the nation's many forest industries organize and conduct their activities

  7. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests

    OpenAIRE

    Barbier, N.; Couteron, Pierre; Proisy, Christophe; Malhi, Y.; Gastellu-Etchegorry, J. P.

    2010-01-01

    Aim The size structure of a forest canopy is an important descriptor of the forest environment that may yield information on forest biomass and ecology. However, its variability at regional scales is poorly described or understood because of the still prohibitive cost of very high-resolution imagery as well as the lack of an appropriate methodology. We here employ a novel approach to describe and map the canopy structure of tropical forests. Location Amazonia. Methods We apply Fourier transfo...

  8. Contrasting patterns of fine-scale herb layer species composition in temperate forests

    Czech Academy of Sciences Publication Activity Database

    Chudomelová, Markéta; Zelený, D.; Li, C.-F.

    2017-01-01

    Roč. 80, APR 2017 (2017), s. 24-31 ISSN 1146-609X Institutional support: RVO:67985939 Keywords : spatial structures * environmental heterogenity * oak forest Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.652, year: 2016

  9. Eighty-eight years of change in a managed ponderosa pine forest

    Science.gov (United States)

    Helen Y. Smith; Stephen F. Arno

    1999-01-01

    This publication gives an overview of structural and other ecological changes associated with forest management and fire suppression since the early 1900's in a ponderosa pine forest, the most widespread forest type in the Western United States. Three sources of information are presented: (1) changes seen in a series of repeat photographs taken between 1909 and...

  10. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds.

    Science.gov (United States)

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah

    2016-01-01

    Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales

  11. Dictionary of forest structural terminology

    CSIR Research Space (South Africa)

    Geldenhuys, CJ

    1988-01-01

    Full Text Available This report lists and defines attributes (both functional and structural) that have been used in other structural classifications of forest vegetation. Field techniques are summarized. The recommended use of each attribute and technique is presented...

  12. Identifying Social-ecological Linkages to Develop a Community Fire Plan in Mexico

    Directory of Open Access Journals (Sweden)

    Rachel A.S Sheridan

    2015-01-01

    Full Text Available Community forestry in rural Mexico presents a unique opportunity to study the linkages and feedback within coupled social-ecological systems due to the fact that agrarian or indigenous communities control approximately half of the national territory of Mexico. We used social and ecological diagnostic tools to develop a fire management strategy for a communal forest containing an endemic piñón pine species, Pinus cembroides subs. orizabensis, in the state of Tlaxcala, Mexico. The ecological diagnostic was done through fuel inventory, forest structure sampling, and fire behaviour modelling. The social assessment was conducted through household interviews, community workshops, and direct participant observation. The ecological fire hazard was quantified and coupled with the social assessment to develop a fire management plan. Vertical fuel continuity and flashy surface fuels created a high fire hazard. Modelled fire behaviour showed a rapid rate of spread and high flame lengths under multiple scenarios. Relative impunity for starting forest fires, poor community and inter-agency organisation, and lack of project continuity across organisational sectors appear to be the most significant social limiting factors for wildfire management. Combining both social and ecological diagnostic tools provides a comprehensive understanding of the actual risks to forests, and identifies realistic community-supported options for conservation on cooperatively managed lands.

  13. Ecological and evolutionary effects of stickleback on community structure.

    Directory of Open Access Journals (Sweden)

    Simone Des Roches

    Full Text Available Species' ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus. We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density and evolutionary (phenotypic diversity and specialization factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities.

  14. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    Science.gov (United States)

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a

  15. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Directory of Open Access Journals (Sweden)

    Michael Palace

    Full Text Available Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar. This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs and calculated a series of parameters including entropy, Fast Fourier Transform (FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m. Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1. We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1. Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included

  16. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy

  17. Community Litter Arthropods Associated cerrado and gallery forest, in the Ecological Station Sierra Das Araras - Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Daniela Cristina Zardo

    2015-12-01

    Full Text Available The litter arthropod fauna distinguishes itself by its importance in nutrient cycling and organic matter degradation. This invertebrate fauna has been emphasized as crucial for the processes that structure ecosystems. This study aims to evaluate and compare the arthropod fauna composition, richness and abundance in litter of two environments: the savanna and the gallery forest at Serra das Araras Ecological Station , Mato Grosso. To collect the arthropods a 120m transects for each habitat was delimited, divided into six points in each environment. For all the litter collection points, we marked a plot measuring 1.0 x 1.0 m, totalizing 6m2 for an environment, where the arthropods found were identified by order level, and the individuals were grouped into morphospecies. The total arthropods richness found in the savanna and in the gallery forest areas was 38 morphospecies, 28 morphospecies were found in the savanna and 20 in the gallery forest, with total abundance of 381 individuals, being 226 individuals collected in the savanna and 155 individuals in the gallery forest. The more abundant morphospecies in the savanna and gallery forest belonged to Hymenoptera and Isoptera orders, with 10 and 4 morphospecies and abundance of 263 and 78 individuals respectively. The greatest organism richness and abundance occurred in the savanna, because it is a tropical environment with the greatest biodiversity, especially regarding its insect fauna, and this diversity is primarily concerned with the variety of habitats that the environment provides , which gives the species shelter, food and reproduction sites.

  18. Developing a Forest Health Index for public engagement and decision support using local climatic, ecological, and socioeconomic data

    Science.gov (United States)

    Arnott, J. C.; Katzenberger, J.; Cundiff, J.

    2013-12-01

    Forest health is an oft-used term without a generally accepted definition. Nonetheless, the concept of forest health continues to permeate scientific, resource management, and public discourse, and it is viewed as a helpful communication device for engagement on issues of concern to forests and their surrounding communities. Notwithstanding the challenges associated with defining the concept of 'forest health,' we present a model for assessing forest health at a watershed scale. Utilizing the Roaring Fork Valley, Colorado--a mountain watershed of 640,000 forested acres--as a case study, we have created a Forest Health Index that integrates a range of climatic, ecological, and socioeconomic data into an assessment organized along a series of public goals including, 1) Ecosystem Services, 2) Public Health & Safety, 3) Sustainable Use & Management, and 4) Ecological Integrity. Methods for this index were adopted from an earlier effort called the Ocean Health Index by Halpern et al, 2012. Indicators that represent drivers of change, such as temperature and precipitation, as well as effects of change, such as primary productivity and phenology, were selected. Each indicator is assessed by comparing a current status of that indicator to a reference scenario obtained through one of the following methods: a) statistical analysis of baseline data from the indicator record, b) commonly accepted normals, thresholds, limits, concentrations, etc., and c) subjective expert judgment. The result of this assessment is a presentation of graphical data and accompanying ratings that combine to form an index of health for the watershed forest ecosystem. We find this product to have potential merit for communities working to assess the range of conditions affecting forest health as well as making sense of the outcomes of those affects. Here, we present a description of the index methodology, data results from engagement with forest watershed stakeholders, example results of data

  19. The structure, distribution, and biomass of the world's forests

    Science.gov (United States)

    Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Robert B. Jackson

    2013-01-01

    Forests are the dominant terrestrial ecosystem on Earth. We review the environmental factors controlling their structure and global distribution and evaluate their current and future trajectory. Adaptations of trees to climate and resource gradients, coupled with disturbances and forest dynamics, create complex geographical patterns in forest assemblages and structures...

  20. Testing for change in structural elements of forest inventories

    Science.gov (United States)

    Melinda Vokoun; David Wear; Robert Abt

    2009-01-01

    In this article we develop a methodology to test for changes in the underlying relationships between measures of forest productivity (structural elements) and site characteristics, herein referred to as structural changes, using standard forest inventories. Changes in measures of forest growing stock volume and number of trees for both...

  1. Newtonian boreal forest ecology

    OpenAIRE

    Hari, Pertti; Aakala, Tuomas; Aalto, Juho; Bäck, Jaana; Hollmén, Jaakko; Jõgiste, Kalev; Koupaei, Kourosh Kabiri; Kähkönen, Mika A.; Korpela, Mikko; Kulmala, Liisa; Nikinmaa, Eero; Pumpanen, Jukka; Salkinoja-Salonen, Mirja; Schiestl-Aalto, Pauliina; Simojoki, Asko

    2017-01-01

    Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by...

  2. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    2016-01-01

    Full Text Available The Brazilian Atlantic Forest is one of the world's biodiversity hotspots, and is currently highly fragmented and disturbed due to human activities. Variation in environmental conditions in the Atlantic Forest can influence the distribution of species, which may show associations with some environmental features. Dung beetles (Coleoptera: Scarabaeinae are insects that act in nutrient cycling via organic matter decomposition and have been used for monitoring environmental changes. The aim of this study is to identify associations between the spatial distribution of dung beetle species and Atlantic Forest structure. The spatial distribution of some dung beetle species was associated with structural forest features. The number of species among the sampling sites ranged widely, and few species were found in all remnant areas. Principal coordinates analysis indicated that species composition, abundance and biomass showed a spatially structured distribution, and these results were corroborated by permutational multivariate analysis of variance. The indicator value index and redundancy analysis showed an association of several dung beetle species with some explanatory environmental variables related to Atlantic Forest structure. This work demonstrated the existence of a spatially structured distribution of dung beetles, with significant associations between several species and forest structure in Atlantic Forest remnants from Southern Brazil. Keywords: Beta diversity, Species composition, Species diversity, Spatial distribution, Tropical forest

  3. Ecological contingency in the effects of climatic warming on forest herb communities

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  4. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Peter [The Ohio State Univ., Columbus, OH (United States); Bohrer, Gil [The Ohio State Univ., Columbus, OH (United States); Gough, Christopher [Virginia Commonwealth Univ., Richmond, VA (United States); Nadelhoffer, Knute [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest C storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation

  5. Assessment of ecological passages along road networks within the Mediterranean forest using GIS-based multi criteria evaluation approach.

    Science.gov (United States)

    Gülci, Sercan; Akay, Abdullah Emin

    2015-12-01

    Major roads cause barrier effect and fragmentation on wildlife habitats that are suitable places for feeding, mating, socializing, and hiding. Due to wildlife collisions (Wc), human-wildlife conflicts result in lost lives and loss of biodiversity. Geographical information system (GIS)-based multi criteria evaluation (MCE) methods have been successfully used in short-term planning of road networks considering wild animals. Recently, wildlife passages have been effectively utilized as road engineering structures provide quick and certain solutions for traffic safety and wildlife conservation problems. GIS-based MCE methods provide decision makers with optimum location for ecological passages based on habitat suitability models (HSMs) that classify the areas based on ecological requirements of target species. In this study, ecological passages along Motorway 52 within forested areas in Mediterranean city of Osmaniye in Turkey were evaluated. Firstly, HSM coupled with nine eco-geographic decision variables were developed based on ecological requirements of roe deer (Capreolus capreolus) that were chosen as target species. Then specified decision variables were evaluated using GIS-based weighted linear combination (WLC) method to estimate movement corridors and mitigation points along the motorway. In the solution process, two linkage nodes were evaluated for eco-passages which were determined based on the least-cost movement corridor intersecting with the motorway. One of the passages was identified as a natural wildlife overpass while the other was suggested as underpass construction. The results indicated that computer-based models provide accurate and quick solutions for positioning ecological passages to reduce environmental effects of road networks on wild animals.

  6. Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    Science.gov (United States)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for

  7. Current and historical forest conditions and disturbance regimes in the Hoosier-Shawnee ecological assessment area

    Science.gov (United States)

    George R. Parker; Charles M. Ruffner

    2004-01-01

    We review the historical and current status of forests in the Hoosier-Shawnee Ecological Assessment Area. Native American people influenced the vegetation through fire and agricultural clearing across the region until the early 1800s when European settlers arrived. Clearing of the land for agriculture peaked in the early 1900s after which badly eroded land was...

  8. Ecology of soil arthropod fauna in tropical forests: A review of studies from Puerto Rico

    Science.gov (United States)

    Grizelle Gonzalez; María F. Barberena

    2017-01-01

    The majority of ecological studies in the tropics deal with organisms participating in grazing food webs, while few deal with the diversity of invertebrates in the soil, leaf litter or dead wood that participate in detrital food webs. For tropical forests, the status of information on soil animal diversity is limited, especially when compared to other ecosystems such...

  9. Distribution and Conservation of Davilla (Dilleniaceae in Brazilian Atlantic Forest Using Ecological Niche Modeling

    Directory of Open Access Journals (Sweden)

    Ismael Martins Pereira

    2014-01-01

    Full Text Available We have modeled the ecological niche for 12 plant species belonging to the genus Davilla (Dilleniaceae which occur in the Atlantic Forest of Brazil. This group includes endemic species lianas threatened by extinction and is therefore a useful indicator for forest areas requiring conservation. The aims are to compare the distribution and richness of species within the protected areas, assessing the degree of protection and gap analysis of reserves for this group. We used the Maxent algorithm with environmental and occurrence data, and produced geographic distribution maps. The results show that high species richness occurs in forest and coastal forest of Espírito Santo to Bahia states. The endemic species comprise D. flexuosa, D. macrocarpa, D. flexuosa, D. grandifolia, and D. sessilifolia. In the Atlantic Forest of southeastern Brazil, the following endemic species occur: D. tintinnabulata and D. glaziovii, with this latter species being included in the “red list” due habitat loss and predatory extractivism. The indicators of species richness in the coastal region of Bahia correspond with floristic inventories that point to this area having a high biodiversity. Although this region has several protected areas, there are gaps in reserves, which, combined with anthropogenic threats and fragmentation, have caused several problems for biodiversity.

  10. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Directory of Open Access Journals (Sweden)

    F. J. Bohn

    2018-03-01

    Full Text Available Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP. It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q and a species distribution index (ΩAWP. ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length. The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a

  11. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Science.gov (United States)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant

  12. Emergence Unites Ecology and Society

    Directory of Open Access Journals (Sweden)

    Ronald L. Trosper

    2005-06-01

    Full Text Available The effort to combine analysis of ecosystems and social systems requires a firm theoretical basis. When humans are present in an ecosystem, their actions affect emergent structures; this paper examines forms of emergence that account for the presence of humans. Humans monitor and regulate ecosystems based on their cultural systems. Cultural systems consist of concepts linked in complicated ways that can form consistent world views, can contain inconsistencies, and may or may not accurately model the properties of a social-ecological system. Consequently, human monitoring and regulating processes will differ, depending on cultural systems. Humans, as agents, change or maintain pre-existing material and cultural emergent structures. The presentation is illustrated with a case study of fire-prone forests. The paper shows that explicit attention to emergence serves very well in unifying the following requirements for social-ecological analysis: coherent and observable definitions of sustainability; ways to link ecological and social phenomena; ways to understand cultural reasons for stability and instability in dynamic social-ecological systems; and ways to include human self-evaluation and culture within dynamic models of social-ecological systems. Analysis of cultural emergent structures clarifies many differences in assumptions among the fields of economics, sociology, political science, ecology, and ecological economics. Because it can be readily applied to empirical questions, the framework provides a good way to organize policy analysis that is not dominated by one or another discipline.

  13. Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems

    Directory of Open Access Journals (Sweden)

    Max Messinger

    2016-07-01

    Full Text Available Unmanned aerial vehicles (UAVs can provide new ways to measure forests and supplement expensive or labor-intensive inventory methods. Forest carbon, a key uncertainty in the global carbon cycle and also important for carbon conservation programs, is typically monitored using manned aircraft or extensive forest plot networks to estimate aboveground carbon density (ACD. Manned aircraft are only cost-effective when applied to large areas (>100,000 ha, while plot networks are most effective for total C stock estimation across large areas, not for quantifying spatially-explicit variation. We sought to develop an effective method for frequent and accurate ACD estimation at intermediate scales (100–100,000 ha that would be sensitive to small-scale disturbance. Using small UAVs, we collected imagery of 516 ha of lowland forest in the Peruvian Amazon. We then used a structure-from-motion (SFM approach to create a 3D model of forest canopy. Comparing SFM- and airborne Light Detection and Ranging (LiDAR-derived estimates of canopy height and ACD, we found that SFM estimates of top-of-canopy height (TCH and ACD were highly correlated with previous LiDAR estimates (r = 0.86–0.93 and r = 0.73–0.94 for TCH and ACD, respectively, at 0.1–4 ha grain sizes, with r = 0.92 for ACD determination at the 1 ha scale, despite SFM and LiDAR measurements being separated by two years in a dynamic forest. SFM and LiDAR estimates of mean TCH and mean ACD were highly similar, differing by only 0.4% and 0.04%, respectively, within mature forest. The technique allows inexpensive, near-real-time monitoring of ACD for ecological studies, payment for ecosystem services (PES ventures, such as reducing emissions from deforestation and forest degradation (REDD+, forestry enterprises, and governance.

  14. Automatic structure classification of small proteins using random forest

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2010-07-01

    Full Text Available Abstract Background Random forest, an ensemble based supervised machine learning algorithm, is used to predict the SCOP structural classification for a target structure, based on the similarity of its structural descriptors to those of a template structure with an equal number of secondary structure elements (SSEs. An initial assessment of random forest is carried out for domains consisting of three SSEs. The usability of random forest in classifying larger domains is demonstrated by applying it to domains consisting of four, five and six SSEs. Results Random forest, trained on SCOP version 1.69, achieves a predictive accuracy of up to 94% on an independent and non-overlapping test set derived from SCOP version 1.73. For classification to the SCOP Class, Fold, Super-family or Family levels, the predictive quality of the model in terms of Matthew's correlation coefficient (MCC ranged from 0.61 to 0.83. As the number of constituent SSEs increases the MCC for classification to different structural levels decreases. Conclusions The utility of random forest in classifying domains from the place-holder classes of SCOP to the true Class, Fold, Super-family or Family levels is demonstrated. Issues such as introduction of a new structural level in SCOP and the merger of singleton levels can also be addressed using random forest. A real-world scenario is mimicked by predicting the classification for those protein structures from the PDB, which are yet to be assigned to the SCOP classification hierarchy.

  15. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia

    OpenAIRE

    Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu

    2015-01-01

    Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in se...

  16. Structural Dynamics of Tropical Moist Forest Gaps

    Science.gov (United States)

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an

  17. Using traditional ecological knowledge as a basis for targeted forest inventory: paper birch (Betula papyrifera) in the US Great Lakes Region

    Science.gov (United States)

    Marla R. Emery; Alexandra Wrobel; Mark H. Hansen; Michael Dockry; W. Keith Moser; Kekek Jason Stark; Jonathan H. Gilbert

    2014-01-01

    Traditional ecological knowledge (TEK) has been proposed as a basis for enhanced understanding of ecological systems and their management. TEK also can contribute to targeted inventories of resources not included in standard mensuration. We discuss the results of a cooperative effort between the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) and USDA Forest...

  18. Biomass estimation as a function of vertical forest structure and forest height: potential and limitations for radar remote sensing

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Biber, Peter; Pretzsch, Hans

    2010-01-01

    One common method to estimate biomass is measuring forest height and applying allometric equations to get forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this purpose vertical biomass profiles were calculated usi...

  19. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    Science.gov (United States)

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  20. Evaluating the use of local ecological knowledge to monitor hunted tropical-forest wildlife over large spatial scales

    Directory of Open Access Journals (Sweden)

    Luke Parry

    2015-09-01

    Full Text Available Monitoring the distribution and abundance of hunted wildlife is critical to achieving sustainable resource use, yet adequate data are sparse for most tropical regions. Conventional methods for monitoring hunted forest-vertebrate species require intensive in situ survey effort, which severely constrains spatial and temporal replication. Integrating local ecological knowledge (LEK into monitoring and management is appealing because it can be cost-effective, enhance community participation, and provide novel insights into sustainable resource use. We develop a technique to monitor population depletion of hunted forest wildlife in the Brazilian Amazon, based on the local ecological knowledge of rural hunters. We performed rapid interview surveys to estimate the landscape-scale depletion of ten large-bodied vertebrate species around 161 Amazonian riverine settlements. We assessed the explanatory and predictive power of settlement and landscape characteristics and were able to develop robust estimates of local faunal depletion. By identifying species-specific drivers of depletion and using secondary data on human population density, land form, and physical accessibility, we then estimated landscape- and regional-scale depletion. White-lipped peccary (Tayassu pecari, for example, were estimated to be absent from 17% of their putative range in Brazil's largest state (Amazonas, despite 98% of the original forest cover remaining intact. We found evidence that bushmeat consumption in small urban centers has far-reaching impacts on some forest species, including severe depletion well over 100 km from urban centers. We conclude that LEK-based approaches require further field validation, but have significant potential for community-based participatory monitoring as well as cost-effective, large-scale monitoring of threatened forest species.

  1. Assessing the Effects of the Urban Forest Restoration Effort of MillionTreesNYC on the Structure and Functioning of New York City Ecosystems

    Directory of Open Access Journals (Sweden)

    P. Timon McPhearson

    2010-01-01

    Full Text Available Current forest restoration practices for New York City’s (NYC MillionTreesNYC Initiative on public parkland include site preparation with extensive invasive species removal and tree and shrub planting with the goal of creating new multi-layered forests. We have launched a long-term investigation of these sites in order to understand the primary physical, chemical, and biological responses of urban ecosystems to MillionTreesNYC forest restoration practices. This research will examine high and low diversity tree and understory planting combinations in permanent experimental forest restoration plots across NYC. The study assesses how the interactions between soil heterogeneity, plant population dynamics, and forest restoration management strategies drive urban forest ecosystem structure and functioning. Working in collaboration with the NYC Department of Parks & Recreation (NYC Parks and the MillionTreesNYC tree planting campaign, we are examining different restoration strategies to assess how restoration practices affect the ecological development trajectories of newly established forests in NYC.

  2. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  3. Forest and water relationships: hydrologic implications of forestation campaigns in China

    Science.gov (United States)

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James Vose

    2005-01-01

    Reforestation and afforestation (referred to forestation thereafter) campaigns in the past two decades have resulted in great increases in both forest land area and forest ecosystem productivity in China. Although the ecological benefits of forests are well accepted, the hydrologic consequences of man-made forests by forestation are unclear. Debate and confusion on the...

  4. Forest health in Canada, Atlantic Maritime ecozone 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.E.; Loo, J.; DesRochers, P.; Hirvonen, H.

    2004-07-01

    This paper describes the key forest health issues affecting Canada's Atlantic Maritime ecozone which includes 9 main forest types known collectively as the Acadian Forest. In order to protect and conserve biological diversity, the Canadian Council of Forest Ministers adopted national criteria to measure sustainable forest management. This report describes the Acadian Forest landscape conditions, pre-industrial ecological influences, current ecological influences, and the impact of invasive alien insects and diseases on the diversity of tree species. Spruce trees in the Atlantic Maritime ecozone are threatened by the brown spruce longhorn beetle and pine trees are threatened by a pine shoot beetle recently introduced to North America from Asia. Diseases are also attacking the butternut, beech and dutch trees. The impact of land use practices such as forest harvesting on forest structure and composition was also addressed along with the impact of air pollution and climate change. It was noted that there is a direct relationship between deteriorating air quality and decline in mountain paper birch. Some of the anticipated impacts from climate change include a greater incidence of vector borne diseases resulting from the migration of new insect species in a warmer Canadian climate. An increase in extreme weather events such as ice storms may also weaken trees. refs., tabs., figs.

  5. Globalization and structural change in the U.S. forest sector: an evolving context for sustainable forest management

    Science.gov (United States)

    Peter Ince; Albert Schuler; Henry Spelter; William Luppold

    2007-01-01

    This report examines economic implications for sustainable forest management of globalization and related structural changes in the forest sector of the United States. Globalization has accelerated structural change in the U.S. forest sector, favored survival of larger and more capital-intensive enterprises, and altered historical patterns of resource use.

  6. Biology and Ecology of Alchisme grossa in a Cloud Forest of the Bolivian Yungas

    OpenAIRE

    Torrico-Bazoberry, Daniel; Caceres-Sanchez, Liliana; Saavedra-Ulloa, Daniela; Flores-Prado, Luis; Niemeyer, Hermann M.; Pinto, Carlos F.

    2014-01-01

    Treehoppers (Membracidae) exhibit different levels of sociality, from solitary to presocial. Although they are one of the best biological systems to study the evolution of maternal care in insects, information on the biology of species in this group is scarce. This work describes the biology and ecology of Alchisme grossa (Fairmaire) (Hemiptera: Membracidae) in a rain cloud forest of Bolivia. This subsocial membracid utilizes two host-plant species, Brugmansia suaveolens (Humb. & Bonpl. ex Wi...

  7. Hurricane Impacts on Ecological Services and Economic Values of Coastal Urban Forest: A Case Study of Pensacola, Florida

    Science.gov (United States)

    As urbanized areas continue to grow and green spaces dwindle, the importance of urban forests increases for both ecologically derived health benefits and for their potential to mitigate climate change. This study examined pre- and post- hurricane conditions of Pensacola's urban f...

  8. [Madison School Forests Ecology Series.

    Science.gov (United States)

    Madison Public Schools, WI.

    Each of these three booklets is to be used in conjunction with a field trip in the Madison, Wisconsin area, and to serve as a guide for presenting the filmstrips for each excursion. "Madison School Forests" emphasizes plant succession in a natural oak community. "Three Layers of Green in the Madison School Forest" emphasizes…

  9. Cordilleran forest scaling dynamics and disturbance regimes quantified by aerial lidar

    Science.gov (United States)

    Swetnam, Tyson L.

    Semi-arid forests are in a period of rapid transition as a result of unprecedented landscape scale fires, insect outbreaks, drought, and anthropogenic land use practices. Understanding how historically episodic disturbances led to coherent forest structural and spatial patterns that promoted resilience and resistance is a critical part of addressing change. Here my coauthors and I apply metabolic scaling theory (MST) to examine scaling behavior and structural patterns of semi-arid conifer forests in Arizona and New Mexico. We conceptualize a linkage to mechanistic drivers of forest assembly that incorporates the effects of low-intensity disturbance, and physiologic and resource limitations as an extension of MST. We use both aerial LiDAR data and field observations to quantify changes in forest structure from the sub-meter to landscape scales. We found: (1) semi-arid forest structure exhibits MST-predicted behaviors regardless of disturbance and that MST can help to quantitatively measure the level of disturbance intensity in a forest, (2) the application of a power law to a forest overstory frequency distribution can help predict understory presence/absence, (3) local indicators of spatial association can help to define first order effects (e.g. topographic changes) and map where recent disturbances (e.g. logging and fire) have altered forest structure. Lastly, we produced a comprehensive set of above-ground biomass and carbon models for five distinct forest types and ten common species of the southwestern US that are meant for use in aerial LiDAR forest inventory projects. This dissertation presents both a conceptual framework and applications for investigating local scales (stands of trees) up to entire ecosystems for diagnosis of current carbon balances, levels of departure from historical norms, and ecological stability. These tools and models will become more important as we prepare our ecosystems for a future characterized by increased climatic variability

  10. Analysis of forest structure using thematic mapper simulator data

    Science.gov (United States)

    Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.

    1986-01-01

    The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.

  11. Floating Forests: Validation of a Citizen Science Effort to Answer Global Ecological Questions

    Science.gov (United States)

    Rosenthal, I.; Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Researchers undertaking long term, large-scale ecological analyses face significant challenges for data collection and processing. Crowdsourcing via citizen science can provide an efficient method for analyzing large data sets. However, many scientists have raised questions about the quality of data collected by citizen scientists. Here we use Floating-Forests (http://floatingforests.org), a citizen science platform for creating a global time series of giant kelp abundance, to show that ensemble classifications of satellite data can ensure data quality. Citizen scientists view satellite images of coastlines and classify kelp forests by tracing all visible patches of kelp. Each image is classified by fifteen citizen scientists before being retired. To validate citizen science results, all fifteen classifications are converted to a raster and overlaid on a calibration dataset generated from previous studies. Results show that ensemble classifications from citizen scientists are consistently accurate when compared to calibration data. Given that all source images were acquired by Landsat satellites, we expect this consistency to hold across all regions. At present, we have over 6000 web-based citizen scientists' classifications of almost 2.5 million images of kelp forests in California and Tasmania. These results are not only useful for remote sensing of kelp forests, but also for a wide array of applications that combine citizen science with remote sensing.

  12. ECOLOGICAL STRUCTURE OF ORIBATID MITE COMMUNITIES IN ACER PLATANOIDES L. STAND ON THE REMEDIATED SITE OF PAVLOGRADSKAYA MINE (PAVLOGRAD, THE DNIPROPETROVSK REGION

    Directory of Open Access Journals (Sweden)

    Y. L. Kulbachko

    2014-04-01

    Full Text Available Species composition and features of ecological structure of oribatid mite communities were studied on various options of bulk artificial-mixed soil in Acer platanoides L. stand growing on the remediated site of Pavlogradskaya mine (Pavlograd, Dnipropetrovsk Region. The ecological structure of oribatid population generally was damaged and this is typical for the man-modified ecosystems. Oribatid mite density in maple litter was higher than in the top layer of bulk soil (loess loam and chernozem by 4.1–7.4 times. Species abundance of oribatid mite was almost equal in maple litter and bulk soil. Punctoribates liber Pavlitshenko, 1991 prevailed generally as eudominant species in oribatid mite structure in Acer platanoides stand. The representatives of unspecialized life-forms were dominated among the oribatid life-forms in the remediated site with chernozem bulk. Key words: oribatid mites, forest remediation, mine dumps.

  13. Effects of Habitat Structure, Plant Cover, and Successional Stage on the Bat Assemblage of a Tropical Dry Forest at Different Spatial Scales

    Directory of Open Access Journals (Sweden)

    Luiz A. D. Falcão

    2018-05-01

    Full Text Available Bats play a fundamental role in ecosystem functioning since they are responsible for several ecological services such as seed dispersal and pollination. Therefore, assessing the effects of habitat structure at different scales on the bat assemblage is extremely important for supporting conservation strategies. The objective of the present study was to investigate the effects of habitat structure at multiple spatial scales on the bat assemblages and their variation along a gradient of secondary succession in a Brazilian tropical dry forest. Our results suggest that bat abundance is higher in areas close to mature forests, which shows the important role of those habitats as refuges for the regional bat fauna (in a fragmented landscape and for the maintenance of ecosystem services provided by this group in tropical dry forests in a landscape context. In addition, bat abundance was lower in protected areas whose surroundings were better preserved (greater forest extension. This unexpected finding could result from an altered behavior in areas under a strong influence of a fruit crop matrix. Finally, we showed that the effects of the surroundings depend on the successional stage of the area under analysis. Late forests are more susceptible to variations in the forest cover in their surroundings, which show the higher fragility of these environments.

  14. Using the forest, people, fire agent-based social network model to investigate interactions in social-ecological systems

    Science.gov (United States)

    Paige Fischer; Adam Korejwa; Jennifer Koch; Thomas Spies; Christine Olsen; Eric White; Derric Jacobs

    2013-01-01

    Wildfire links social and ecological systems in dry-forest landscapes of the United States. The management of these landscapes, however, is bifurcated by two institutional cultures that have different sets of beliefs about wildfire, motivations for managing wildfire risk, and approaches to administering policy. Fire protection, preparedness, and response agencies often...

  15. ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies

    Science.gov (United States)

    Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman

    2013-01-01

    Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...

  16. Individual and Interactive Influences of Anthropogenic and Ecological Factors on Forest PM2.5 Concentrations at an Urban Scale

    Directory of Open Access Journals (Sweden)

    Guoliang Yun

    2018-03-01

    Full Text Available Integration of Landsat images and multisource data using spatial statistical analysis and geographical detector models can reveal the individual and interactive influences of anthropogenic activities and ecological factors on concentrations of atmospheric particulate matter less than 2.5 microns in diameter (PM2.5. This approach has been used in many studies to estimate biomass and forest disturbance patterns and to monitor carbon sinks. However, the approach has rarely been used to comprehensively analyze the individual and interactive influences of anthropogenic factors (e.g., population density, impervious surface percentage and ecological factors (e.g., canopy density, stand age, and elevation on PM2.5 concentrations. To do this, we used Landsat-8 images and meteorological data to retrieve quantitative data on the concentrations of particulates (PM2.5, then integrated a forest management planning inventory (FMPI, population density distribution data, meteorological data, and topographic data in a Geographic Information System database, and applied a spatial statistical analysis model to identify aggregated areas (hot spots and cold spots of particulates in the urban area of Jinjiang city, China. A geographical detector model was used to analyze the individual and interactive influences of anthropogenic and ecological factors on PM2.5 concentrations. We found that particulate concentration hot spots are mainly distributed in urban centers and suburbs, while cold spots are mainly distributed in the suburbs and exurban region. Elevation was the dominant individual factor affecting PM2.5 concentrations, followed by dominant tree species and meteorological factors. A combination of human activities (e.g., population density, impervious surface percentage and multiple ecological factors caused the dominant interactive effects, resulting in increased PM2.5 concentrations. Our study suggests that human activities and multiple ecological factors

  17. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    Science.gov (United States)

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  18. Using ecological zones to increase the detail of Landsat classifications

    Science.gov (United States)

    Fox, L., III; Mayer, K. E.

    1981-01-01

    Changes in classification detail of forest species descriptions were made for Landsat data on 2.2 million acres in northwestern California. Because basic forest canopy structures may exhibit very similar E-M energy reflectance patterns in different environmental regions, classification labels based on Landsat spectral signatures alone become very generalized when mapping large heterogeneous ecological regions. By adding a seven ecological zone stratification, a 167% improvement in classification detail was made over the results achieved without it. The seven zone stratification is a less costly alternative to the inclusion of complex collateral information, such as terrain data and soil type, into the Landsat data base when making inventories of areas greater than 500,000 acres.

  19. Reconciling Biodiversity Conservation and Timber Production in Mixed Uneven-Aged Mountain Forests: Identification of Ecological Intensification Pathways.

    Science.gov (United States)

    Lafond, Valentine; Cordonnier, Thomas; Courbaud, Benoît

    2015-11-01

    Mixed uneven-aged forests are considered favorable to the provision of multiple ecosystem services and to the conciliation of timber production and biodiversity conservation. However, some forest managers now plan to increase the intensity of thinning and harvesting operations in these forests. Retention measures or gap creation are considered to compensate potential negative impacts on biodiversity. Our objectives were to assess the effect of these management practices on timber production and biodiversity conservation and identify potential compensating effects between these practices, using the concept of ecological intensification as a framework. We performed a simulation study coupling Samsara2, a simulation model designed for spruce-fir uneven-aged mountain forests, an uneven-aged silviculture algorithm, and biodiversity models. We analyzed the effect of parameters related to uneven-aged management practices on timber production, biodiversity, and sustainability indicators. Our study confirmed that the indicators responded differently to management practices, leading to trade-offs situations. Increasing management intensity had negative impacts on several biodiversity indicators, which could be partly compensated by the positive effect of retention measures targeting large trees, non-dominant species, and deadwood. The impact of gap creation was more mitigated, with a positive effect on the diversity of tree sizes and deadwood but a negative impact on the spruce-fir mixing balance and on the diversity of the understory layer. Through the analysis of compensating effects, we finally revealed the existence of possible ecological intensification pathways, i.e., the possibility to increase management intensity while maintaining biodiversity through the promotion of nature-based management principles (gap creation and retention measures).

  20. Interpreting participatory Fuzzy Cognitive Maps as complex networks in the social-ecological systems of the Amazonian forests

    Science.gov (United States)

    Varela, Consuelo; Tarquis, Ana M.; Blanco-Gutiérrez, Irene; Estebe, Paloma; Toledo, Marisol; Martorano, Lucieta

    2015-04-01

    Social-ecological systems are linked complex systems that represent interconnected human and biophysical processes evolving and adapting across temporal and spatial scales. In the real world, social-ecological systems pose substantial challenges for modeling. In this regard, Fuzzy Cognitive Maps (FCMs) have proven to be a useful method for capturing the functioning of this type of systems. FCMs are a semi-quantitative type of cognitive map that represent a system composed of relevant factors and weighted links showing the strength and direction of cause-effects relationships among factors. Therefore, FCMs can be interpreted as complex system structures or complex networks. In this sense, recent research has applied complex network concepts for the analysis of FCMs that represent social-ecological systems. Key to FCM the tool is its potential to allow feedback loops and to include stakeholder knowledge in the construction of the tool. Also, previous research has demonstrated their potential to represent system dynamics and simulate the effects of changes in the system, such as policy interventions. For illustrating this analysis, we have developed a series of participatory FCM for the study of the ecological and human systems related to biodiversity conservation in two case studies of the Amazonian region, the Bolivia lowlands of Guarayos and the Brazil Tapajos National forest. The research is carried out in the context of the EU project ROBIN1 and it is based on the development of a series of stakeholder workshops to analyze the current state of the socio-ecological environment in the Amazonian forest, reflecting conflicts and challenges for biodiversity conservation and human development. Stakeholders included all relevant actors in the local case studies, namely farmers, environmental groups, producer organizations, local and provincial authorities and scientists. In both case studies we illustrate the use of complex networks concepts, such as the adjacency

  1. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  2. Assessment of a subtropical riparian forest focusing on botanical, meteorological, ecological characterization and chemical analysis of rainwater

    Directory of Open Access Journals (Sweden)

    Vanessa Graeff

    2018-05-01

    Full Text Available Riparian forests are heterogeneous environments, in which epiphytes find ideal conditions to develop. These plants absorb the necessary nutrients for survival from the atmosphere, and their occurrence and distribution can be influenced by the quality and quantity of precipitation. The objective of this research was to perform an integrated analysis of botanical, meteorological and chemical precipitation parameters so as to compare them in fragments of the riparian forest in the lower (São Leopoldo-SL and upper (Caraá-CA stretches of the Rio dos Sinos Hydrographic Basin (RSHB, RS, Brazil. Rainwater was chemically analyzed, the community structure of epiphytic ferns was surveyed and the ecological characterization was evaluated through the Rapid Habitat Assessment Protocol (RHAP. The results showed that the chemical composition of rainwater is influenced by the environment of each area. In the upper stretch (CA, for instance, the main contribution is that of marine ions, while in the lower stretch (SL, the most impacting aspects are urbanization and industrialization. Similarly, the results depict a reduction of richness and a simplification of the community structure of epiphytic ferns and their environmental quality according to the RHAP categories, towards the base level of the RSHB. The integrated analysis, in which different methods were applied, proved to be an efficient tool to evaluate environmental quality. This analysis considers that a greater number of biotic and abiotic variables may be applied in different scenarios.

  3. Examining alternative landscape metrics in ecological forest planning: a case for capercaillie in Catalonia

    OpenAIRE

    Palahi, M.; Pukkala, T.; Pascual, L.; Trasobares, A.

    2004-01-01

    This study examined the performance of four different landscape metrics in a landscape ecological forest planning situation in Catalonia: (1) proportion of suitable habitat (non-spatial) (%H); (2) spatial autocorrelation; (3) the proportion of habitat-habitat boundary of the total compartment boundary (H-H) and (4) the proportion of habitat-non-habitat boundary (H-nonH). They were analysed in a case study problem that aimed at the maintenance and improvement of capercaillie habitats in two si...

  4. Aspects of the ecology of Penelope superciliaris temminck, 1815 (Aves: Cracidae in the Araripe National Forest, Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    T. N. Thel

    Full Text Available Abstract Guans are large frugivorous birds that inhabit Neotropical forests and play a fundamental role in seed dispersal and forest regeneration. Despite their ecological importance, the natural populations of these birds are increasingly threatened by deforestation and hunting pressure. The present study was conducted in the Araripe National Forest, Ceará (Brazil, with the objective of estimating population parameters (density and total population size in the Rusty-margined Guan (Penelope superciliaris and the White-browed Guan (Penelope jacucaca, as well as providing data on their feeding ecology, including seasonal variation and fruit morphology. The study was based on the monthly collection of data between November, 2011, and October, 2012. Population parameters were estimated using line transect surveys, while feeding ecology was studied by direct observation, and the collection of plant and fecal samples. The estimated population density of P. superciliaris was 19.17 individuals/km2 (CV=13.98%, with a mean of 0.13 sightings per 10 km walked. Penelope jacucaca was not encountered during the surveys. A total of 14 plant species were recorded in the diet of P. superciliaris, 12 by direct observation, and two from fecal samples. Fruit diameter varied from 6.3±1.35 mm (Miconia albicans to 29.9±1.7 mm (Psidium sp.. Yellow was the most frequent fruit color (41.6%, n=5, with two species each (16.6% providing black, green, and red fruits. Fleshy fruits of the baccate (50.0%, n=6 and drupe (33.3%, n=4 types were the most consumed. The data on population parameters and feeding ecology collected in the present study provide an important database for the development of effective management strategies by environmental agencies for the conservation of the populations of the two guan species.

  5. Floristic Composition and Structure of Yegof Mountain Forest, South ...

    African Journals Online (AJOL)

    Floristic Composition and Structure of Yegof Mountain Forest, South Wollo, Ethiopia. S Mohammed, B Abraha. Abstract. In this study, Floristic composition, diversity, population structure and regeneration status of woody plant species of Yegof Forest in South Wollo Zone, Amhara Regional State, Ethiopia were analyzed.

  6. Spatial variation and prediction of forest biomass in a heterogeneous landscape

    Institute of Scientific and Technical Information of China (English)

    S.Lamsal; D.M.Rizzo; R.K.Meentemeyer

    2012-01-01

    Large areas assessments of forest biomass distribution are a challenge in heterogeneous landscapes,where variations in tree growth and species composition occur over short distances.In this study,we use statistical and geospatial modeling on densely sampled forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur,California.We estimated biomass in 280 forest plots (one plot per 2.85 km2) and measured an array of ecological (vegetation community type,distance to edge,amount of surrounding non-forest vegetation,soil properties,fire history) and physiographic drivers (elevation,potential soil moisture and solar radiation,proximity to the coast) of tree growth at each plot location.Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 km.Regression tree (RT) models showed that both physiographic and ecological factors influenced biomass distribution.Across randomly selected sample densities (sample size 112 to 280),ecological effects of vegetation community type and distance to forest edge,and physiographic effects of elevation,potentialsoil moisture and solar radiation were the most consistent predictors of biomass.Topographic moisture index and potential solar radiation had a positive effect on biomass,indicating the importance of topographicallymediated energy and moisture on plant growth and biomass accumulation.RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals.Regression kriging model,developed from RT combined with kriging of regression residuals,was used to map biomass across the Big Sur.This study demonstrates how statistical and geospatial modeling can be used to discriminate the relative importance of physiographic and ecologic effects on forest biomass and develop

  7. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    Science.gov (United States)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  8. Approaches to Ecologically Based Forest Management on Private Lands

    Science.gov (United States)

    John Kotar

    1997-01-01

    The management philosophy advocated by many public agencies today has become known as "ecosystem management." Under this philosophy, maintenance of ecosystem structure and functions becomes the primary goal, while production of commodities and services is viewed as a useful byproduct. However, any effort to assure sustainability and health of American forests...

  9. Assessing Ecological Impacts According to Land Use Change

    Science.gov (United States)

    Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.

    2015-12-01

    Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.

  10. Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆

    Science.gov (United States)

    Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.

    2017-01-01

    Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25–115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more

  11. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  12. Cicada emergence in southwestern riparian forest: Influences of wildfire and vegetation composition

    Science.gov (United States)

    D. Max Smith; Jeffrey Kelly; Deborah M. Finch

    2006-01-01

    Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown....

  13. Geotechnology and landscape ecology applied to the selection of potential forest fragments for seed harvesting.

    Science.gov (United States)

    Santos, Alexandre Rosa Dos; Antonio Alvares Soares Ribeiro, Carlos; de Oliveira Peluzio, Telma Machado; Esteves Peluzio, João Batista; de Queiroz, Vagner Tebaldi; Figueira Branco, Elvis Ricardo; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Santos Mota, Pedro Henrique; Ferreira da Silva, Samuel; Vargas, Rozimelia; de Carvalho, José Romário; Macedo, Leandro Levate; da Silva Araújo, Cintia; de Almeida, Samira Luns Hatum

    2016-12-01

    The Atlantic Forest biome is recognized for its biodiversity and is one of the most threatened biomes on the planet, with forest fragmentation increasing due to uncontrolled land use, land occupation, and population growth. The most serious aspect of the forest fragmentation process is the edge effect and the loss of biodiversity. In this context, the aim of this study was to evaluate the dynamics of forest fragmentation and select potential forest fragments with a higher degree of conservation for seed harvesting in the Itapemirim river basin, Espírito Santo State, Brazil. Image classification techniques, forest landscape ecology, and multi-criteria analysis were used to evaluate the evolution of forest fragmentation to develop the landscape metric indexes, and to select potential forest fragments for seed harvesting for the years 1985 and 2013. According to the results, there was a reduction of 2.55% of the occupancy of the fragments in the basin between the years 1985 and 2013. For the years 1985 and 2013, forest fragment units 2 and 3 were spatialized with a high potential for seed harvesting, representing 6.99% and 16.01% of the total fragments, respectively. The methodology used in this study has the potential to be used to support decisions for the selection of potential fragments for seed harvesting because selecting fragments in different environments by their spatial attributes provides a greater degree of conservation, contributing to the protection and conscious management of the forests. The proposed methodology can be adapted to other areas and different biomes of the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparison of the population structure of the fiddler crab Uca vocator (Herbst, 1804 from three subtropical mangrove forests

    Directory of Open Access Journals (Sweden)

    Karine Delevati Colpo

    2004-03-01

    Full Text Available The population structure of U. vocator was investigated during a one-year period in three mangrove forests in southeast Brazil. The study specifically addressed comparisons on individual size , juvenile recruitment and sex-ratio. The structure of the mangrove forests, i.e. density, basal area, and diameter, and the physical properties of sediments, i.e. texture and organic matter contents, were also examined. A catch-per-unit-effort (CPUE technique was used to sample the crab populations using 15-min sampling periods by two people. Males always outnumbered females, probably due to ecological and behavioural attributes of these crabs. The median size of fiddler crabs differed among the sampled populations. The mangroves at Indaiá and Itamambuca showed higher productivity than those at Itapanhaú, where oil spills impacting the shore were reported. Marked differences were found regarding individual size , either their size at the onset of sexual maturity or their asymptotic size, suggesting that food availability may be favouring growth in the studied populations.

  15. Recovery of Forest and Phylogenetic Structure in Abandoned Cocoa Agroforestry in the Atlantic Forest of Brazil.

    Science.gov (United States)

    Rolim, Samir Gonçalves; Sambuichi, Regina Helena Rosa; Schroth, Götz; Nascimento, Marcelo Trindade; Gomes, José Manoel Lucio

    2017-03-01

    Cocoa agroforests like the cabrucas of Brazil's Atlantic forest are among the agro-ecosystems with greatest potential for biodiversity conservation. Despite a global trend for their intensification, cocoa agroforests are also being abandoned for socioeconomic reasons especially on marginal sites, because they are incorporated in public or private protected areas, or are part of mandatory set-asides under Brazilian environmental legislation. However, little is known about phylogenetic structure, the processes of forest regeneration after abandonment and the conservation value of former cabruca sites. Here we compare the vegetation structure and composition of a former cabruca 30-40 years after abandonment with a managed cabruca and mature forest in the Atlantic forest region of Espirito Santo, Brazil. The forest in the abandoned cabruca had recovered a substantial part of its original structure. Abandoned cabruca have a higher density (mean ± CI95 %: 525.0 ± 40.3 stems per ha), basal area (34.0 ± 6.5 m 2 per ha) and species richness (148 ± 11.5 species) than managed cabruca (96.0 ± 17.7; 24.15 ± 3.9 and 114.5 ± 16.0, respectively) but no significant differences to mature forest in density (581.0 ± 42.2), basal area (29.9.0 ± 3.3) and species richness (162.6 ± 15.5 species). Thinning (understory removal) changes phylogenetic structure from evenness in mature forest to clustering in managed cabruca, but after 30-40 years abandoned cabruca had a random phylogenetic structure, probably due to a balance between biotic and abiotic filters at this age. We conclude that abandoned cocoa agroforests present highly favorable conditions for the regeneration of Atlantic forest and could contribute to the formation of an interconnected network of forest habitat in this biodiversity hotspot.

  16. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure

    Science.gov (United States)

    McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.

    2017-01-01

    Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.

  17. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Kathryn Riley

    2011-11-01

    Full Text Available We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age.

  18. Institutions for sustainable forest governance: Robustness, equity, and cross-level interactions in Mawlyngbna, Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Christoph Oberlack

    2015-09-01

    Full Text Available This study adopts Ostrom’s Social-Ecological Systems (SES framework in empirical fieldwork to explain how local forestry institutions affect forest ecosystems and social equity in the community of Mawlyngbna in North-East India. Data was collected through 26 semi-structured interviews, participatory timeline development, policy documents, direct observation, periodicals, transect walks, and a concurrent forest-ecological study in the village. Results show that Mawlyngbna's forests provide important sources of livelihood benefits for the villagers. However, ecological disturbance and diversity varies among the different forest ownership types and forest-based livelihood benefits are inequitably distributed. Based on a bounded rationality approach, our analysis proposes a set of causal mechanisms that trace these observed social-ecological outcomes to the attributes of the resource system, resource units, actors and governance system. We analyse opportunities and constraints of interactions between the village, regional, and state levels. We discuss how Ostrom’s design principles for community-based resource governance inform the explanation of robustness but have a blind spot in explaining social equity. We report experiences made using the SES framework in empirical fieldwork. We conclude that mapping cross-level interactions in the SES framework needs conceptual refinement and that explaining social equity of forest governance needs theoretical advances.

  19. Forest Health Detectives

    Science.gov (United States)

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  20. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  1. Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography

    Directory of Open Access Journals (Sweden)

    Victor Cazcarra-Bes

    2017-11-01

    Full Text Available Synthetic Aperture Radar Tomography (TomoSAR allows the reconstruction of the 3D reflectivity of natural volume scatterers such as forests, thus providing an opportunity to infer structure information in 3D. In this paper, the potential of TomoSAR data at L-band to monitor temporal variations of forest structure is addressed using simulated and experimental datasets. First, 3D reflectivity profiles were extracted by means of TomoSAR reconstruction based on a Compressive Sensing (CS approach. Next, two complementary indices for the description of horizontal and vertical forest structure were defined and estimated by means of the distribution of local maxima of the reconstructed reflectivity profiles. To assess the sensitivity and consistency of the proposed methodology, variations of these indices for different types of forest changes in simulated as well as in real scenarios were analyzed and assessed against different sources of reference data: airborne Lidar measurements, high resolution optical images, and forest inventory data. The forest structure maps obtained indicated the potential to distinguish between different forest stages and the identification of different types of forest structure changes induced by logging, natural disturbance, or forest management.

  2. Effects of climate and forest structure on palms, bromeliads and bamboos in Atlantic Forest fragments of Northeastern Brazil.

    Science.gov (United States)

    Hilário, R R; Toledo, J J

    2016-01-01

    Palms, bromeliads and bamboos are key elements of tropical forests and understanding the effects of climate, anthropogenic pressure and forest structure on these groups is crucial to forecast structural changes in tropical forests. Therefore, we investigated the effects of these factors on the abundance of these groups in 22 Atlantic forest fragments of Northeastern Brazil. Abundance of bromeliads and bamboos were assessed through indexes. Palms were counted within a radius of 20 m. We also obtained measures of vegetation structure, fragment size, annual precipitation, precipitation seasonality and human population density. We tested the effects of these predictors on plant groups using path analysis. Palm abundance was higher in taller forests with larger trees, closed canopy and sparse understory, which may be a result of the presence of seed dispersers and specific attributes of local palm species. Bromeliads were negatively affected by both annual precipitation and precipitation seasonality, what may reflect adaptations of these plants to use water efficiently, but also the need to capture water in a regular basis. Bamboos were not related to any predictor variable. As climate and forest structure affected the abundance of bromeliads and palms, human-induced climatic changes and disturbances in forest structure may modify the abundance of these groups. In addition, soil properties and direct measurements of human disturbance should be used in future studies in order to improve the predictability of models about plant groups in Northeastern Atlantic Forest.

  3. Community structure of vascular plants, arthropods, amphibians, and mollusks in managed forests of the Pacific Northwest (USA)

    Science.gov (United States)

    Stephanie J. Wessell-Kelly; Deanna H. Olson

    2013-01-01

    Increasing global demands on forest resources are driving large-scale shifts toward plantation forestry. Simultaneously balancing resource extraction and ecological sustainability objectives in plantation forests requires the incorporation of innovative silvicultural strategies such as leave islands (green-tree retention clusters). Our primary research goal was to...

  4. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    Science.gov (United States)

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.

    2005-01-01

    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  5. Ecological and reproductive aspects of Aparasphenodon brunoi (Anura: Hylidae in an ombrophilous forest area of the Atlantic Rainforest Biome, Brazil

    Directory of Open Access Journals (Sweden)

    Laura Gomez-Mesa

    2017-10-01

    Full Text Available ABSTRACT Presented is the first information on the ecological and reproductive aspects of the treefrog, Aparasphenodon brunoi Miranda-Ribeiro, 1920, living in ombrophilous forest areas of the Atlantic Rainforest, Brazil. We recorded the species’ daily activity and over the course of a year, population density during the year, microhabitat usage, diet, and some reproductive features (quantity, diameter and mean mass of oocytes, mean reproductive effort of female. Field sampling was conducted monthly from June 2015 to July 2016. Searches for treefrogs were systematic, using visual encounter surveys along 14 plots RAPELD long term research modules established in the forest. For each captured individual, we recorded the hour, microhabitat used, and perch height. The diet of the population was ascertained based on 15 individuals collected outside the study plot areas. Treefrogs used seven different types of microhabitats in the forest but the preferred microhabitats were tree-trunks and lianas. The amount of accumulated rainfall and air temperature interacted to explain the number of A. brunoi individuals active throughout the year. The reproductive strategy for females of this comparatively large arboreal frog in the ombrophilous forest is to produce clutches with a large number (900.8 ± 358.1 of relatively small-sized eggs. We conclude that in the ombrophious forest of the Vale Natural Reserve, A. brunoi is a nocturnal arboreal treefrog active throughout the year but activity increases during the wet season as a result of increased precipitation. In the forest, treefrogs tend to perch mainly on tree-trunks and lianas about 1 m above ground, where it feeds preferably on relatively large bodied arthropod prey. When living in the ombrophilous forest of the Atlantic rainforest, A. brunoi may change some features of its ecology (e.g. marked difference in the use of bromeliads compared to when living in restinga habitats.

  6. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests

    Science.gov (United States)

    Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu

    2009-01-01

    Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...

  7. A Bayesian approach to landscape ecological risk assessment applied to the upper Grande Ronde watershed, Oregon

    Science.gov (United States)

    Kimberley K. Ayre; Wayne G. Landis

    2012-01-01

    We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...

  8. Understory dwarf bamboo affects microbial community structures and soil properties in a Betula ermanii forest in northern Japan

    Czech Academy of Sciences Publication Activity Database

    Kong, B.; Chen, L.; Kasahara, Y.; Sumida, A.; Ono, K.; Wild, Jan; Nagatake, A.; Hatano, R.; Hara, T.

    2017-01-01

    Roč. 32, č. 2 (2017), s. 103-111 ISSN 1342-6311 Institutional support: RVO:67985939 Keywords : boreal forest * bacteria * microclimate * Sasa kurilensis * fungi * high-throughput sequencing Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.909, year: 2016

  9. Considering Future Potential Regarding Structural Diversity in Selection of Forest Reserves.

    Directory of Open Access Journals (Sweden)

    Johanna Lundström

    Full Text Available A rich structural diversity in forests promotes biodiversity. Forests are dynamic and therefore it is crucial to consider future structural potential when selecting reserves, to make robust conservation decisions. We analyzed forests in boreal Sweden based on 17,599 National Forest Inventory (NFI plots with the main aim to understand how effectiveness of reserves depends on the time dimension in the selection process, specifically by considering future structural diversity. In the study both the economic value and future values of 15 structural variables were simulated during a 100 year period. To get a net present structural value (NPSV, a single value covering both current and future values, we used four discounting alternatives: (1 only considering present values, (2 giving equal importance to values in each of the 100 years within the planning horizon, (3 applying an annual discount rate considering the risk that values could be lost, and (4 only considering the values in year 100. The four alternatives were evaluated in a reserve selection model under budget-constrained and area-constrained selections. When selecting young forests higher structural richness could be reached at a quarter of the cost over almost twice the area in a budget-constrained selection compared to an area-constrained selection. Our results point to the importance of considering future structural diversity in the selection of forest reserves and not as is done currently to base the selection on existing values. Targeting future values increases structural diversity and implies a relatively lower cost. Further, our results show that a re-orientation from old to young forests would imply savings while offering a more extensive reserve network with high structural qualities in the future. However, caution must be raised against a drastic reorientation of the current old-forest strategy since remnants of ancient forests will need to be prioritized due to their role for

  10. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    Science.gov (United States)

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  11. Wild European apple (Malus sylvestris (L.) Mill.) population dynamics: insight from genetics and ecology in the Rhine Valley. Priorities for a future conservation programme.

    Science.gov (United States)

    Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe

    2014-01-01

    The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically "pure" populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple.

  12. Wild European Apple (Malus sylvestris (L.) Mill.) Population Dynamics: Insight from Genetics and Ecology in the Rhine Valley. Priorities for a Future Conservation Programme

    Science.gov (United States)

    Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe

    2014-01-01

    The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically “pure” populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple. PMID:24827575

  13. Fighting over forest: interactive governance of conflicts over forest and tree resources in Ghana’s high forest zone

    NARCIS (Netherlands)

    Derkyi, M.A.A.

    2012-01-01

    Based on eight case studies, this book analyses conflicts over forests and trees in Ghana’s high forest zone and ways of dealing with them. It thereby addresses the full range of forest and tree-based livelihoods. Combining interactive governance theory with political ecology and conflict theories,

  14. 36 CFR 219.20 - Ecological sustainability.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Ecological sustainability... Sustainability § 219.20 Ecological sustainability. To achieve ecological sustainability, the responsible official... diversity and species diversity are components of ecological sustainability. The planning process must...

  15. Global change and landscape structure in Ukraine: Ecological and socio-economic implications

    Science.gov (United States)

    Shvidenko, Anatoly; Lakyda, Petro; Schepaschenko, Dmitry; Vasylyshyn, Roman; Marchuk, Yuiry

    2013-04-01

    The current land cover of Ukraine is very heterogeneous. While on average forest covers 15.9% of its land, substantial part of the country is basically forestless. The agricultural potential of Ukraine is high. However, in spite of the fact that 68% of the arable land in Ukraine consists of the famous Ukrainian black soils (chernozems), the quality of the country's arable land (69.5% of the total land) is not satisfactory. The country has the highest over the globe share of the tilled land (~80% of the agricultural land in the country) and processes of soil erosion impact about one third of arable land. Air pollution, soil and water contamination are widespread. Substantial problems are generated by the Chernobyl disaster. Overall, about half of the country is in the critical and pre-critical ecological situation. Climatic predictions suppose that the country will live in much warmer and drier climate by end of this century. Taking into account that major pat of Ukraine lies in the xeric belt, the expected climatic change generates divers risks for both environment and vegetation ecosystems of the country, particularly for forests and agriculture. The presentation considers the role of forests and trees outside of forests in transition to integrated ecosystem management and sustainable structure of landscapes within two scenarios of socio-economic development for the next 20 yeas. The "business-as-usual" scenario prolongs tendencies of dynamics of the land-use and forest sectors during the last 20 years. This scenario leads to further deterioration of quality of land and environment in Ukraine. The "progressive" scenario is considered as a crucial initial step of adaptation to climatic change and includes a system of pressing measures which are needed to decrease destructive processes that are observed at the landscape level. It is shown that it would require development of 1.62 M ha of protective forests including 0.62 M ha on unstable elements of landscapes

  16. TALL HERB SPRUCE FORESTS AS CLIMAX COMMUNITIES ON LOWLAND SWAMPS OF BRYANSK POLESIE

    Directory of Open Access Journals (Sweden)

    O. I. Evstigneev

    2017-09-01

    Full Text Available Nettle grey alder forests are a dominant forest type on lowland swamps in the Bryansk Polesie. They are formed as a result of repeated cuttings in the place of tall herb spruce forests. Tall herb spruce forests are very rare communities in the vegetation cover in this area due to clear cutting, melioration and peat extraction. An assessment of the succession status of tall herb spruce forests and nettle grey alder forests was carried out in this paper. The criteria of climax state and succession state of communities, developed for Eastern European forests, were used. These criteria are based on the degree of intensity of the following signs in the community: 1 the completeness of species composition of tree synusia; 2 the ontogenetic structure of tree species cenopopulation; 3 the gap-mosaic stand structure; 4 the diversity of microsites in soil cover; 5 the completeness of species composition and ecological-coenotic diversity of vascular species. We showed that tall herb spruce forest, as opposed to black alder forest, is close to communities of the climax type. This is evidenced by the following features of cenosis: firstly, all tree species in the area that covers the Bryansk Polesie and that are able to grow on lowland swamps are represented in the spruce forest (Alnus glutinosa, Betula pubescens, Fraxinus excelsior, Padus avium, Picea abies, Salix pentandra, Sorbus aucuparia, Ulmus glabra. Secondly, a steady turnover of generations is carried out in the cenopopulations of main edificators (Picea abies and Alnus glutinosa. This is evidenced by the complete and left-sided structure of their ontogenetic spectrum. Thirdly, a system of asynchronously developing gaps (parcels, which are formed on the site of old tree falls, is formed in the community. This ensures the continuous renewal of spruce and alder populations and creates conditions for the regeneration of other tree species. Fourthly, the structure of biogenic microsites has been formed

  17. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    Data from the first inventory in secondary and old-growth forests were ... Structural changes in secondary forests are less known in West Africa, and ... temporal succession from one time spatial ..... s = number of species sampled per hectare; S = species richness of the whole forest; NF = the number of taxonomic families,.

  18. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  19. Fire ecology of Scots pine in Northwest Europe

    NARCIS (Netherlands)

    Hille, M.G.

    2006-01-01

    Keywords: biodiversity, fire ecology, fuel modelling, succession, tree regenerationIn this thesis the ecological consequences of forest fire are studied in North-west European Scots pine {Pinus sylvestris) forests. The focus is on post-fire succession, and the factors and mechanisms that influence

  20. Civic Ecology Education and Resilient Societies: A Survey of Forest Fires in Greece

    Science.gov (United States)

    Papaspiliou, Konstantina; Skanavis, Constantina; Giannoulis, Christos

    2014-01-01

    Forest fires, as all natural disasters, have the potential to seriously affect both the environment and the social structure of a local community. Unlike some of the natural disasters, such as hurricanes, tornados and tsunamis which are unpredictable, the phenomenon of forest fires could be easily predicted and controlled, since the causes are…

  1. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.

  2. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Science.gov (United States)

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby . Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  3. Radio-ecological conditions of band coniferous forests

    International Nuclear Information System (INIS)

    Strilchuk, Yu.G.; Osintsev, A.Yu.; Kuzin, D.E.; Bryantseva, N.V.; Tonevitskaya, O.V.; Zhadyranova, A.A.; Kashirskij, V.V.; Korovina, O.Yu.; Lukashenko, S.N.

    2008-01-01

    Full text: Band coniferous forests are located at the right bank of Irtysh river in two oblasts of Kazakhstan - East Kazakhstan and Pavlodar.This is a unique and only forest of this type. Something similar to this natural treasure with climate-regulating, sanitary, soil-protective, water-preserving functions can be found in Canada only. Total area of the band forest comprises 870500 hectares. The forest is mainly presented by pines (Pinus silvestris). These forests are of relict nature and are of great environmental, social and economic value. The band forests located in northern, north-western and western parts of SNTS were subjected several time to radioactive impacts from atmospheric nuclear tests performed at SNTS. Nuclear clouds from 12 ground and 28 atmospheric explosions passed over these territories. Four nuclear tests performed on 29th of August 1949, 29th of July 1955, 7th of August 1962 and 26th of November 1962 resulted in higher radiation dose rates registered on land there. It seems that this particular tests stipulated radioactive contamination of the forests. The first nuclear test performed on 29th of August 1949 resulted in considerable radioactive contamination of the band forests. Contamination was registerd in Novopokrovskij and Beskaragajskij districts of Semipalatinsk oblast as well as in several districts of Altai Territory. The second test that could bring radioactive contamination to the forests was performed on 7th of August 1962 when instead of planned atmospheric explosion, there was achieved surface explosion with comparatively high radioactive contamination of the lands towards Altai Territory. Within the State program ''Forest preservation and expansion of forest in the Republic of Kazakhstan'' there was performed in 2006 a radiological surveying of the lands in pipe forest of near-Irtysh region. There were studied soil and vegetation as well as woods of the band coniferous forests. Part of territory, wherethrough nuclear clouds went

  4. Tatra's forests will recover from catastrophe for decades

    International Nuclear Information System (INIS)

    Haluza, I.

    2004-01-01

    Windy tornado in Tatra's national park (TANAP, High Tatras, Slovakia) at the end of 2004 caused extensive ecological catastrophe and economic losses. Wind has totally damaged the trees in more than one fourth of forest area, which is administrated by state forests of TANAP. Next fourth of forest area has impaired structure. Mostly coniferous forests have fallen down not only in High Tatras, but also in Horehronie, Kysuce, Orava and Spis. According to estimates around 2.5 million cubic meters of wood have lain on the ground in High Tatras. This wood must be precipitately processed. In another regions totally from 800 to 900 thousands cubic meters are overcame by wind. Ecological catastrophe has come in High Tatras. Totally damaged large forests areas need to be recovered for long decades. 90 per cent of annual Slovakian wood cutting represents totally 2.5 million cubic meters. The state will invest in forest recovery from sale of calamity stuff. Reforestation of one hectare of forest costs from 80 to 90 thousands Slovak crowns (∼2666-3000 USD). Another remedies at the age to five years represent from 40 to 50 thousands Slovak crowns (1333-16666 USD). Around 1.6 billion Slovak crown (∼53.333 million USD) will be needed for reforestation of 12 thousands hectares of TANAP

  5. Terrestrial Ecology Guide.

    Science.gov (United States)

    Morrison, James W., Ed.; Hall, James A., Ed.

    This collection of study units focuses on the study of the ecology of land habitats. Considered are such topics as map reading, field techniques, forest ecosystem, birds, insects, small mammals, soils, plant ecology, preparation of terrariums, air pollution, photography, and essentials of an environmental studies program. Each unit contains…

  6. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Montesino Pouzols, Federico; Mönkkönen, Mikko

    2016-01-01

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current......, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future....

  7. Analysis of ecological thresholds in a temperate forest undergoing dieback.

    Directory of Open Access Journals (Sweden)

    Philip Martin

    Full Text Available Positive feedbacks in drivers of degradation can cause threshold responses in natural ecosystems. Though threshold responses have received much attention in studies of aquatic ecosystems, they have been neglected in terrestrial systems, such as forests, where the long time-scales required for monitoring have impeded research. In this study we explored the role of positive feedbacks in a temperate forest that has been monitored for 50 years and is undergoing dieback, largely as a result of death of the canopy dominant species (Fagus sylvatica, beech. Statistical analyses showed strong non-linear losses in basal area for some plots, while others showed relatively gradual change. Beech seedling density was positively related to canopy openness, but a similar relationship was not observed for saplings, suggesting a feedback whereby mortality in areas with high canopy openness was elevated. We combined this observation with empirical data on size- and growth-mediated mortality of trees to produce an individual-based model of forest dynamics. We used this model to simulate changes in the structure of the forest over 100 years under scenarios with different juvenile and mature mortality probabilities, as well as a positive feedback between seedling and mature tree mortality. This model produced declines in forest basal area when critical juvenile and mature mortality probabilities were exceeded. Feedbacks in juvenile mortality caused a greater reduction in basal area relative to scenarios with no feedback. Non-linear, concave declines of basal area occurred only when mature tree mortality was 3-5 times higher than rates observed in the field. Our results indicate that the longevity of trees may help to buffer forests against environmental change and that the maintenance of old, large trees may aid the resilience of forest stands. In addition, our work suggests that dieback of forests may be avoidable providing pressures on mature and juvenile trees do

  8. Planing of land use of structural elements of ecological network at local level

    Directory of Open Access Journals (Sweden)

    Tretiak V.

    2016-05-01

    Full Text Available and Management projecting of structural elements of land use of the ecological network on the territory of the village council begins with ecological and landscape micro zoning of the territory of village council, held during the preparatory work for the drafting of land and are finished by the formation of environmentally homogeneous regions, to which the system components of ecological network are tied, as well as environmental measures in the form of local environmental restrictions (encumbrances in land usage and other natural resources. Additionally organization and territorial measures are projected that increase the ecological sustainability of the area: key, binders, buffer areas and renewable ecological network. The regional scheme of ecological network is intended for usage while projecting of creation of new territories that fall under special protection, for defining the tasks as for changing the category of land in the land use planning documents, for development of specifications regarding the reproduction of natural systems on conservation ready lands withdrawn from agricultural use, for accounting the problems of formation the areas of ecological network in forest management and land management projects, while development of the projects of areas organization of natural - reserve fund, in the definition of wetlands of international importance, in determining the habitats of various plants and animals of various categories of protection in accordance with international conventions and national laws - regulations, in planning targeted actions in the conservation of landscape and biological diversity. The main stages of designing local ecological network are: • inventory and identification of rights for land and other natural resources, drawing created territories and objects of natural reserve fund and other areas of natural systems on the planning and cartographic materials, which are under special protection; • rationale of

  9. Proceedings of the first international congress of ecology: structure, functioning, and management of ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Ninety-six papers were presented; one paper, dealing with ecosystems stability, was abstracted and indexed separately for Energy Research Abstracts. Other subjects included are of interest to limnologists, biologists, botanists, zoologists, microbiologists, and agriculturists. An interdiscipline approach discussed subjects such as energy flow, productivity, diversity, stability and maturity from their different points of view. Special reports are included on systems analysis, remote sensing and methods of experimentation with ecosystems. Biological control, parasitic system, aerobiology and human ecology are also treated in relation to general ecology. Tropical forests are treated with ecological consequences of deforestation for vegetation, soil and aquatic systems in the tropics. In these proceedings, contributions to the plenary sessions are represented only in the form of abstracts. Full texts and summaries of the discussions will be published in a separate book: Unifying Concepts of Ecology. (PCS)

  10. Ecological forestry in the Southeast: Understanding the ecology of fuels

    Science.gov (United States)

    R.J. Mitchell; J.K. Hiers; J. O’Brien; G. Starr

    2009-01-01

    Fire is a dominant disturbance within many forested ecosystems worldwide. Understanding the complex feedbacks among vegetation as a fuel for fire, the effects of fuels on fire behavior, and the impact of fire behavior on future vegetation are critical for sustaining biodiversity in fire-dependent forests. Nonetheless, understanding in fire ecology has been limited in...

  11. Estimating tropical forest structure using LIDAR AND X-BAND INSAR

    Science.gov (United States)

    Palace, M. W.; Treuhaft, R. N.; Keller, M. M.; Sullivan, F.; Roberto dos Santos, J.; Goncalves, F. G.; Shimbo, J.; Neumann, M.; Madsen, S. N.; Hensley, S.

    2013-12-01

    Tropical forests are considered the most structurally complex of all forests and are experiencing rapid change due to anthropogenic and climatic factors. The high carbon stocks and fluxes make understanding tropical forests highly important to both regional and global studies involving ecosystems and climate. Large and remote areas in the tropics are prime targets for the use of remotely sensed data. Radar and lidar have previously been used to estimate forest structure, with an emphasis on biomass. These two remote sensing methods have the potential to yield much more information about forest structure, specifically through the use of X-band radar and waveform lidar data. We examined forest structure using both field-based and remotely sensed data in the Tapajos National Forest, Para, Brazil. We measured multiple structural parameters for about 70 plots in the field within a 25 x 15 km area that have TanDEM-X single-pass horizontally and vertically polarized radar interferometric data. High resolution airborne lidar were collected over a 22 sq km portion of the same area, within which 33 plots were co-located. Preliminary analyses suggest that X-band interferometric coherence decreases by about a factor of 2 (from 0.95 to 0.45) with increasing field-measured vertical extent (average heights of 7-25 m) and biomass (10-430 Mg/ha) for a vertical wavelength of 39 m, further suggesting, as has been observed at C-band, that interferometric synthetic aperture radar (InSAR) is substantially more sensitive to forest structure/biomass than SAR. Unlike InSAR coherence versus biomass, SAR power at X-band versus biomass shows no trend. Moreover, airborne lidar coherence at the same vertical wavenumbers as InSAR is also shown to decrease as a function of biomass, as well. Although the lidar coherence decrease is about 15% more than the InSAR, implying that lidar penetrates more than InSAR, these preliminary results suggest that X-band InSAR may be useful for structure and

  12. Characterizing Tropical Forest Structure using Field-based Measurements and a Terrestrial Lidar

    Science.gov (United States)

    Palace, M. W.; Sullivan, F.; Ducey, M. J.; Herrick, C.

    2015-12-01

    Forest structure comprises numerous quantifiable components of forest biometric characteristics, one of which is tree architecture. This structural component is important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using multiple linear regressions, all of which converged on statistically significant relationships with the strongest relationship being for mean crown depth (r2 = 0.87, p information on tropical forest structure.

  13. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    Science.gov (United States)

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  14. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil

    Directory of Open Access Journals (Sweden)

    AC. Silva

    Full Text Available In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh, total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  15. Norway spruce (Picea abies/L./Karst.) health status on various forest soil ecological series in Silesian Beskids obtained by grid or selective survey

    Czech Academy of Sciences Publication Activity Database

    Samec, Pavel; Edwards-Jonášová, Magda; Cudlín, Pavel

    2017-01-01

    Roč. 10, 1-2 (2017), s. 57-66 ISSN 1803-2451 R&D Projects: GA MŠk LD15044; GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : spruce decline * survey design * defoliation * forest site ecological series Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) https://beskydy.mendelu.cz/10/1/0057/

  16. Producing edible landscapes in Seattle's urban forest

    Science.gov (United States)

    Rebecca McLain; Melissa Poe; Patrick T. Hurley; Joyce Lecompte-Mastenbrook; Marla R. Emery

    2012-01-01

    Over the next decades, green infrastructure initiatives such as tree planting campaigns, and ecological restoration will dramatically change the species composition, species distribution and structure of urban forests across the United States. These impending changes are accompanied by a demand for urban public spaces where people can engage in practices such as...

  17. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Science.gov (United States)

    Rittenhouse, Chadwick D; Pidgeon, Anna M; Albright, Thomas P; Culbert, Patrick D; Clayton, Murray K; Flather, Curtis H; Huang, Chengquan; Masek, Jeffrey G; Stewart, Susan I; Radeloff, Volker C

    2010-08-02

    Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may

  18. Percent Forest Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCTFuture) generally indicate healthier ecosystems and cleaner surface water....

  19. Behaviour and Ecology of Male Aye-Ayes (Daubentonia madagascariensis) in the Kianjavato Classified Forest, South-Eastern Madagascar.

    Science.gov (United States)

    Randimbiharinirina, Doménico Roger; Raharivololona, Brigitte M; Hawkins, Melissa T R; Frasier, Cynthia L; Culligan, Ryan R; Sefczek, Timothy M; Randriamampionona, Richard; Louis, Edward E

    2018-01-01

    Previous studies found that aye-ayes (Daubentonia madagascariensis) consume a variety of non-invertebrate resources, supporting the hypothesis that aye-ayes are too large-bodied to focus feeding efforts on insects. However, these conclusions were based on introduced populations, with little known about aye-aye behaviour and ecology in its natural habitat. This study investigates activity budgets, diet, and home range/territories of 2 male aye-ayes in the Kianjavato Classified Forest, a disturbed forest in south-eastern Madagascar, from October 2013 to October 2014. We used radiotelemetry and focal-animal sampling methods to collect behavioural data. We recorded GPS coordinates of the focal animal every 20 min, calculating the home range size for each individual. Results showed that male aye-ayes spent most of their time feeding and travelling. Their feeding time primarily focussed on larvae and adult insects from various substrates, and to a lesser extent Canarium spp. seeds. Home range sizes of the 2 males varied between individuals, overlapped greatly, and appeared to be related to the location of females. Our findings indicate that aye-aye behaviours are strongly indicative of insect-centric feeding ecology. © 2018 S. Karger AG, Basel.

  20. In situ conservation and landscape genetics in forest species

    Directory of Open Access Journals (Sweden)

    Martín L.M.

    2012-03-01

    Full Text Available Conservation of forest genetic resources is essential for sustaining the environmental and productive values of forests. One of the environmental values is the conservation of the diversity that is assessed through the amount of genetic diversity stored by forests, their structure and dynamics. The current need for forest conservation and management has driven a rapid expansion of landscape genetics discipline that combines tools from molecular genetics, landscape ecology and spatial statistics and is decisive for improving not only ecological knowledge but also for properly managing population genetic resources. The objective of this study is to show the way to establish the safeguard of genetic diversity through this approach using the results obtained in sweet chestnut (Castanea sativa Mill. that has provided a better understanding on the species genetic resources. In this respect, we will show how the information provided by different types of molecular markers (genomic and genic offer more accurate indication on the distribution of the genetic diversity among and within populations assuming different evolutionary drivers.

  1. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks.

    Science.gov (United States)

    McIntyre, Patrick J; Thorne, James H; Dolanc, Christopher R; Flint, Alan L; Flint, Lorraine E; Kelly, Maggi; Ackerly, David D

    2015-02-03

    We document changes in forest structure between historical (1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees (Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

  2. 36 CFR 219.19 - Ecological, social, and economic sustainability.

    Science.gov (United States)

    2010-07-01

    ... economic sustainability. 219.19 Section 219.19 Parks, Forests, and Public Property FOREST SERVICE..., Social, and Economic Sustainability § 219.19 Ecological, social, and economic sustainability. Sustainability, composed of interdependent ecological, social, and economic elements, embodies the Multiple-Use...

  3. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  4. 3D Forest structure analysis from optical and LIDAR data / Análise 3D da estrutura da floresta com dados ópticos e da LIDAR

    Directory of Open Access Journals (Sweden)

    Stefan Lang

    2006-10-01

    Full Text Available In Austria about half of the entire area (46 % is covered by forests. The majority of these forests are highly managed and controlled in growth. Besides timber production, forest ecosystems play a multifunctional role including climate control, habitat provision and, especially in Austria, protection of settlements. The interrelationships among climatic, ecological, social and economic dimensions of forests require technologies for monitoring both the state and the development of forests. This comprises forest structure, species and age composition and, forest integrity in general. Assessing forest structure for example enables forest managers and natural risk engineers to evaluate whether a forest can fulfill its protective function or not. Traditional methods for assessing forest structure like field inventories and aerial photo interpretation are intrinsically limited in providing spatially continuous information over a large area. The Centre for Geoinformatics (Z_GIS in collaboration with the National Park Bayerischer Wald, Germany and the Stand Montafon, Austria, has tested and applied advanced approaches of integrating multispectral optical data and airborne laser scanning (ALS data for (1 forest stand delineation, (2 single tree detection and (3 forest structure analysis. As optical data we used RGBI line scanner data and CIR air-photos. ALS data were raw point data (10 pulses per sqm and normalized crown models (nCM at 0.5 m and 1 m resolution. (1 Automated stand delineation was done by (a translating a key for manual mapping of forest development phases into a rule-based system via object-relationship modeling (ORM; and (b by performing multi-resolution segmentation and GIS analysis. (2 Strategies for single tree detection using raw ALS data included (a GIS modelling based on a region-growth local maxima algorithm and (b object-based image analysis using super class information class-specific rule sets. (3 Vertical forest structure has

  5. Bioecological principles of maintaining stability in mountain forest ecosystems of the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    T. V. Parpan

    2016-09-01

    Full Text Available The forest cover of the Carpathians has been deeply transformed by productive activities over the past centuries. The forest cover, age and species structure of its ecosystems have been changed. Beech and fir forests were replaced by spruce monocultures. Consequently, nitrogen and mineral elements cycles changed, the genetic and population structures altered and the eco-stabilizing function of forests decreased. These negative trends make it desirable to process the bioecological principles of maintenance the stability of mountain forest ecosystems. The proposed bioecological principles of support and recovery of stability of forest ecosystems are part of the paradigm of mountain dendrology and silviculture. The strategy is based on maintaining bio-ecological and population-genetical features of the main forest forming species, evolutionary typological classification of the forests, landscape and environmental specifics of the mountain part of the Ukrainian Carpathians, features of virgin, old growth and anthropogenically disturbed forest structures, as well as performing the functional role of forest ecosystems. Support for landscape ecosystem stability involves the conservation, selective, health and gradual cutting, formation of forest stands which are close to natural conditions and focusing on natural regeneration (a basis for stable mountain forest ecosystems.

  6. An index for the assessment of degraded Mediterranean forest ecosystems

    Directory of Open Access Journals (Sweden)

    Giuseppe Modica

    2015-12-01

    Full Text Available Aim of study: Diagnosing the degradation degree of forest ecosystems is the basis for restoration strategies. However, there is no literature documenting how to quantify the forest degradation degree by using synthetic indicators, also because there is not a widely accepted definition for "forest degradation" and "degraded forest". Although there are many definitions of forest degradation that converge on the loss of ecosystem services, still today there are no largely accepted methods that give operational guidance to help in defining it. In the present research, with the aim to assess the degree of forest degradation, an integrated index - FDI, Forest Degradation Index - was developed.Area of study: In this first application, the FDI was applied and validated at stand level in two different Mediterranean forest types in two different case studies: Madonie and Nedrodi regional Parks (Sicily, Italy. The first dominated by sessile oak [Quercus petraea (Matt. Liebl. subsp. austrotyrrhenica Brullo, Guarino & Siracusa], the second dominated by cork oak (Quercus suber L..Material and methods: FDI is a synthetic index structured starting from representative and relatively easily detectable parameters. Here, we propose a set of six indicators that should be assessed to determine the forest degradation: Structural Index (SI, Canopy Cover (CC, Natural Regeneration Density (NRD, Focal Species of Degradation (FSD, Coarse Woody Debris (CWD, and Soil Depth (SD. FDI, here proposed and discussed, has been based on a MCDA (Multi-Criteria Decision Analysis approach using the Analytic Hierarchy Process (AHP technique, and implemented in order to contribute in finding simple indicators useful for forest restoration purposes that have an eco-functional basis.Main results: An integrated index of forest degradation has been defined. FDI values are comprised in the closed interval [0, 10], ranging from class I (Higher ecological functionality to class IV (Lower

  7. The relation between forest structure and soil burn severity

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; David S. Pilliod

    2006-01-01

    A study funded through National Fire Plan evaluates the relation between pre-wildfire forest structure and post-wildfire soil burn severity across three forest types: dry, moist, and cold forests. Over 73 wildfires were sampled in Idaho, Oregon, Montana, Colorado, and Utah, which burned between 2000 and 2003. Because of the study’s breadth, the results are applicable...

  8. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe.

    Science.gov (United States)

    Seibold, Sebastian; Brandl, Roland; Buse, Jörn; Hothorn, Torsten; Schmidl, Jürgen; Thorn, Simon; Müller, Jörg

    2015-04-01

    To reduce future loss of biodiversity and to allocate conservation funds effectively, the major drivers behind large-scale extinction processes must be identified. A promising approach is to link the red-list status of species and specific traits that connect species of functionally important taxa or guilds to resources they rely on. Such traits can be used to detect the influence of anthropogenic ecosystem changes and conservation efforts on species, which allows for practical recommendations for conservation. We modeled the German Red List categories as an ordinal index of extinction risk of 1025 saproxylic beetles with a proportional-odds linear mixed-effects model for ordered categorical responses. In this model, we estimated fixed effects for intrinsic traits characterizing species biology, required resources, and distribution with phylogenetically correlated random intercepts. The model also allowed predictions of extinction risk for species with no red-list category. Our model revealed a higher extinction risk for lowland and large species as well as for species that rely on wood of large diameter, broad-leaved trees, or open canopy. These results mirror well the ecological degradation of European forests over the last centuries caused by modern forestry, that is the conversion of natural broad-leaved forests to dense conifer-dominated forests and the loss of old growth and dead wood. Therefore, conservation activities aimed at saproxylic beetles in all types of forests in Central and Western Europe should focus on lowlands, and habitat management of forest stands should aim at increasing the amount of dead wood of large diameter, dead wood of broad-leaved trees, and dead wood in sunny areas. © 2014 Society for Conservation Biology.

  9. Precision of Nest Method in Estimating Orangutan Population and Determination of Important Ecological Factors for Management of Conservation Forest

    Directory of Open Access Journals (Sweden)

    Yanto Santosa

    2012-04-01

    Full Text Available Orangutan as an umbrella species is closely interlinked with sustainable forest management meaning that the protection of this species has implications on the protection of other species and maintain ecosystem stability.  The total natural habitat required to support orangutan’s population could only be determined by the appropriate population size. It is associated with the carrying capacity to accommodate or fulfill the habitat requirements of a wildlife population. Selection and delineation of core and wilderness zones as habitat preference should be based on the results of preference test shown by the spatial distribution of orangutan population. Value of the coefficient  of  variation (CV was used to observe the precision of the population estimation and to identify important ecological factors in selection of nesting trees.  The study resulted in varied CV spatial values for various habitat types: 22.60%,  11.20%, and 13.30% for heath, lowland dipterocarp, and peat swamp forest, respectively. In the other side, CV temporal values for various habitat types were 5.35%, 22.60%, and 17.60% for heath, lowland dipterocarp, and peat swamp forest, respectively. This indicated that the population density in each type of forest ecosystems had a variation based on location and did not varied according to time of survey.  The use of  nest survey technique showed good reliable results in estimating orangutan population density.  Efforts to improve the precision of estimation can be done by formulating r value as the harmonic average of nest production rates and t as the average of nest decay time per nest category. Selection of habitat preference and nest trees were influenced by food availability thus should form important consideration in conducting nest survey to avoid bias in estimating orangutan populations.Keywords: conservation forest management, nest survey, orangutan, population size, ecological factors

  10. Forest structure following tornado damage and salvage logging in northern Maine, USA

    Science.gov (United States)

    Shawn Fraver; Kevin J. Dodds; Laura S. Kenefic; Rick Morrill; Robert S. Seymour; Eben Sypitkowski

    2017-01-01

    Understanding forest structural changes resulting from postdisturbance management practices such as salvage logging is critical for predicting forest recovery and developing appropriate management strategies. In 2013, a tornado and subsequent salvage operations in northern Maine, USA, created three conditions (i.e., treatments) with contrasting forest structure:...

  11. Forests and competing land uses in Kenya

    Science.gov (United States)

    Allaway, James; Cox, Pamela M. J.

    1989-03-01

    Indigenous forests in Kenya, as in other developing countries, are under heavy pressure from competing agricultural land uses and from unsustainable cutting. The problem in Kenya is compounded by high population growth rates and an agriculturally based economy, which, even with efforts to control birth rates and industrialize, will persist into the next century. Both ecological and economic consequences of these pressures need to be considered in land-use decision making for land and forest management to be effective. This paper presents one way to combine ecological and economic considerations. The status of principal forest areas in Kenya is summarized and competing land uses compared on the basis of ecological functions and economic analysis. Replacement uses do not match the ecological functions of forest, although established stands of tree crops (forest plantations, fuel wood, tea) can have roughly comparable effects on soil and water resources. Indigenous forests have high, although difficult to estimate, economic benefits from tourism and protection of downstream agricultural productivity. Economic returns from competing land uses range widely, with tea having the highest and fuel wood plantations having returns comparable to some annual crops and dairying. Consideration of ecological and economic factors together suggests some trade-offs for improving land allocation decisions and several management opportunities for increasing benefits or reducing costs from particular land uses. The evaluation also suggests a general strategy for forest land management in Kenya.

  12. Seasonality and structure of the arthropod community in a forested ...

    African Journals Online (AJOL)

    The structure of an arthropod community in the forest floor vegetation was studied in a low altitude (about 700 m a.s.l.) forest valley in the Uluguru Mountains near Morogoro, Tanzania, by monthly sweep net sampling during one year (December 1996-November 1997). The community structure of arthropods changed ...

  13. Visualizing the Forest in a Boreal Forest Landscape—The Perspective of Swedish Municipal Comprehensive Planning

    Directory of Open Access Journals (Sweden)

    Camilla Thellbro

    2017-05-01

    Full Text Available At the international policy level, there is a clear link between access to information about forests and the work towards sustainable land use. However, involving forests in planning for sustainable development (SuD at the Swedish local level, by means of municipal comprehensive planning (MCP, is complicated by sector structure and legislation. Currently, there is a gap or hole in the MCP process when it comes to use and access to knowledge about forest conditions and forest land use. This hole limits the possibilities to formulate well-informed municipal visions and goals for sustainable forest land use as well as for overall SuD. Here we introduce an approach for compilation and presentation of geographic information to increase the preconditions for integrating forest information into Swedish MCP. We produce information about forest ownership patterns and forest conditions in terms of age and significant ecological and social values in forests for a case study municipality. We conclude that it is possible to effectively compile geographic and forest-related information to fill the hole in the municipal land use map. Through our approach, MCP could be strengthened as a tool for overall land use planning and hence as a base in SuD planning.

  14. The Use of Traditional Ecological Knowledge in Forest Management: an Example from India

    Directory of Open Access Journals (Sweden)

    Lucy Rist

    2010-03-01

    Full Text Available Many forest communities possess considerable knowledge of the natural resources they use. Such knowledge can potentially inform scientific approaches to management, either as a source of baseline data to fill information gaps that cannot otherwise be addressed or to provide alternative management approaches from which scientists and managers might learn. In general, however, little attention has been given to the relevance of quantitative forms of such knowledge for resource management. Much discussion has focused on the integration of traditional ecological knowledge (TEK into management, but less attention has been paid to identifying specific areas where it is most useful and where it may be most problematic. We contrasted scientific data with information from TEK in the context of a threat to the sustainable harvesting of a nontimber forest product (NTFP of livelihood importance in southern India, specifically, a fruit tree infected by mistletoe. The efficiency of deriving information from NTFP harvesters compared to scientific field studies was assessed. We further evaluated the potential of TEK to provide novel solutions to the management problem in question, the degree to which TEK could provide quantitative information, and the biases that might be associated with information derived from TEK. TEK complemented previously gathered ecological data by providing concordant and additional information, but also contradicted some results obtained using a scientific approach. TEK also gave a longer-term perspective with regard to NTFP harvesting patterns. Combining information on historical and current harvesting trends for the NTFP with official data suggests that current assessments of sustainability may be inaccurate and that the use of diverse information sources may provide an effective approach to assessing the status of harvested resources.

  15. Hierarchical structure of ecological and non-ecological processes of differentiation shaped ongoing gastropod radiation in the Malawi Basin.

    Science.gov (United States)

    Van Bocxlaer, Bert

    2017-09-13

    Ecological processes, non-ecological processes or a combination of both may cause reproductive isolation and speciation, but their specific roles and potentially complex interactions in evolutionary radiations remain poorly understood, which defines a central knowledge gap at the interface of microevolution and macroevolution. Here I examine genome scans in combination with phenotypic and environmental data to disentangle how ecological and non-ecological processes contributed to population differentiation and speciation in an ongoing radiation of Lanistes gastropods from the Malawi Basin. I found a remarkable hierarchical structure of differentiation mechanisms in space and time: neutral and mutation-order processes are older and occur mainly between regions, whereas more recent adaptive processes are the main driver of genetic differentiation and reproductive isolation within regions. The strongest differentiation occurs between habitats and between regions, i.e. when ecological and non-ecological processes act synergistically. The structured occurrence of these processes based on the specific geographical setting and ecological opportunities strongly influenced the potential for evolutionary radiation. The results highlight the importance of interactions between various mechanisms of differentiation in evolutionary radiations, and suggest that non-ecological processes are important in adaptive radiations, including those of cichlids. Insight into such interactions is critical to understanding large-scale patterns of organismal diversity. © 2017 The Author(s).

  16. Bridging the Gap Between Economics and Ecology

    Directory of Open Access Journals (Sweden)

    Larry Leefers

    1998-12-01

    Full Text Available Economics and ecology are often presented as opposing disciplines. Both fields have strengths and weaknesses. A new transdisciplinary field, ecological economics, attempts to bring together the strengths of both disciplines with a vision for a sustainable future. In this paper, we focus on one particular concept championed by ecological economists, natural capital. In particular, our interest is on the institutionalization of this concept through the United Nation's Satellite System for Integrated Environmental and Economic Accounting (SEEA. SEEA is an international convention that incorporates natural resource accounting as a complement to the traditional System of National Accounts (SNA. In the case of boreal forests, the stocks and flows of forest resources can be assessed to determine prospects for sustainability. To provide a context for how natural resource accounting may be applied to boreal forests, we review the origin and purpose of natural resource accounting, summarize several cases in which natural resource accounting has been applied, and present an example of stocks and flows from Michigan's (United States boreal forest resources. Natural resource accounting work from Canada, Finland, Norway, and other countries with boreal forests should be compiled and analyzed to provide more insights regarding circumpolar forest conditions.

  17. Status and Trends for the U.S. Forest Products Sector: A Technical Document Supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Kenneth E. Skog; David B. McKeever; Peter J. Ince; James L. Howard; Henry N. Spelter; Albert T. Schuler

    2012-01-01

    Forest products sector products and income help sustain the social, economic, and ecological benefits of forestry in the United States. Solidwood products consumption increased with population between 1965 and 2008 and varied with housing starts. Lumber's share declined from 83% to 70%, and structural panels' share increased from 9% to 17%. Paper and...

  18. Disturbing forest disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Volney, W.J.A.; Hirsch, K.G. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2005-10-01

    This paper described the role that disturbances play in maintaining the ecological integrity of Canadian boreal forests. Potential adaptation options to address the challenges that these disturbances present were also examined. Many forest ecosystems need fire for regeneration, while other forests rely on a cool, wet disintegration process driven by insects and commensal fungi feeding on trees to effect renewal. While there are characteristic natural, temporal and spatial patterns to these disturbances, recent work has demonstrated that the disturbances are being perturbed by climatic change that has been compounded by anthropogenic disturbances in forests. Fire influences species composition and age structure, regulates forest insects and diseases, affects nutrient cycling and energy fluxes, and maintains the productivity of different habitats. Longer fire seasons as a result of climatic change will lead to higher intensity fires that may more easily evade initial attacks and become problematic. Fire regimes elevated beyond the range of natural variation will have a dramatic effect on the regional distribution and functioning of forest ecosystems and pose a threat to the safety and prosperity of people. While it was acknowledged that if insect outbreaks were to be controlled on the entire forest estate, the productivity represented by dead wood would be lost, it was suggested that insects such as the forest tent caterpillar and the spruce bud worm may also pose a greater threat as the climate gets warmer and drier. Together with fungal associates, saproxylic arthropods are active in nutrient cycling and ultimately determine the fertility of forest sites. It was suggested that the production of an age class structure and forest mosaic would render the forest landscape less vulnerable to the more negative aspects of climate change on vegetation response. It was concluded that novel management design paradigms are needed to successfully reduce the risk from threats

  19. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  20. A practical introduction to Random Forest for genetic association studies in ecology and evolution.

    Science.gov (United States)

    Brieuc, Marine S O; Waters, Charles D; Drinan, Daniel P; Naish, Kerry A

    2018-03-05

    Large genomic studies are becoming increasingly common with advances in sequencing technology, and our ability to understand how genomic variation influences phenotypic variation between individuals has never been greater. The exploration of such relationships first requires the identification of associations between molecular markers and phenotypes. Here, we explore the use of Random Forest (RF), a powerful machine-learning algorithm, in genomic studies to discern loci underlying both discrete and quantitative traits, particularly when studying wild or nonmodel organisms. RF is becoming increasingly used in ecological and population genetics because, unlike traditional methods, it can efficiently analyse thousands of loci simultaneously and account for nonadditive interactions. However, understanding both the power and limitations of Random Forest is important for its proper implementation and the interpretation of results. We therefore provide a practical introduction to the algorithm and its use for identifying associations between molecular markers and phenotypes, discussing such topics as data limitations, algorithm initiation and optimization, as well as interpretation. We also provide short R tutorials as examples, with the aim of providing a guide to the implementation of the algorithm. Topics discussed here are intended to serve as an entry point for molecular ecologists interested in employing Random Forest to identify trait associations in genomic data sets. © 2018 John Wiley & Sons Ltd.

  1. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  2. Vegetation and Lepidoptera in Seasonally Dry Tropical Forests. Community structure along climate zones, forest succession and seasonality in the Southern Yucatán, Mexico

    NARCIS (Netherlands)

    Essens, T.; Leyequien, E.; Pozo, C.

    2010-01-01

    Seasonally dry tropical forests are worldwide recognized as important ecosystems for biodiversity conservation. Increasing agricultural activities (e.g., slash-and-burn agriculture) leads to a heterogeneous landscape matrix; and as ecological succession takes over in abandoned fields, plant and

  3. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Directory of Open Access Journals (Sweden)

    Chadwick D Rittenhouse

    2010-08-01

    Full Text Available Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance.We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period and modest losses in abundance (-28.7 - -10.2 individuals per route that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States.Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years. Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United

  4. Development of ecological restoration experiments in fire adapted forests at Grand Canyon National Park

    Science.gov (United States)

    Thomas A. Heinlein; W. Wallace Covington; Peter Z. Fule; Margaret H. Moore; Hiram B. Smith

    2000-01-01

    The management of national park and wilderness areas dominated by forest ecosystems adapted to frequent, low-intensity fires, continues to be a tremendous challenge. Throughout the inland West and particularly in the Southwest, ponderosa pine (Pinus ponderosa) and mixed conifer forests have become dense and structurally homogeneous after periods of...

  5. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest

    NARCIS (Netherlands)

    Slik, J.W.F.; Bernard, C.S.; Beek, van M.; Breman, F.C.; Eichhorn, K.A.O.

    2008-01-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent

  6. Some ecological implications of a neem (azadirachtin) insecticide disturbance to zooplankton communities in forest pond enclosures.

    Science.gov (United States)

    Kreutzweiser, David P; Sutton, Trent M; Back, Richard C; Pangle, Kevin L; Thompson, Dean G

    2004-04-28

    A neem-based insecticide, Neemix 4.5, was applied to forest pond enclosures at concentrations of 10, 17, and 28 microg l(-1) azadirachtin (the active ingredient). At these test concentrations, significant, concentration-dependent reductions in numbers of adult copepods were observed, but immature copepod and cladoceran populations were unaffected. There was no evidence of recovery of adult copepods within the sampling season (May to October). The ecological significance of this disturbance to the zooplankton community was examined by determining biomass as a measure of food availability for higher predators, plankton community respiration, dissolved oxygen (DO) concentrations, and conductivity as functional indicators of ecosystem stress, and zooplankton food web stability as a measure of effects on trophic structure. The selective removal or reduction of adult copepods was sufficient to measurably reduce total zooplankton biomass for several weeks mid-season. During the period of maximal impact (about 4-9 weeks after the applications), total plankton community respiration was significantly reduced, and this appeared to contribute to significant, concentration-dependent increases in dissolved oxygen and decreases in conductivity among treated enclosures. The reductions in adult copepods resulted in negative effects on zooplankton food web stability through eliminations of a trophic link and reduced interactions and connectance. Comparing the results here to those from a previous study with tebufenozide, which was selectively toxic to cladocerans and had little effect on food web stability, indicates that differential sensitivity among taxa can influence the ecological significance of pesticide effects on zooplankton communities.

  7. Social-ecological innovation in remote mountain areas: Adaptive responses of forest-dependent communities to the challenges of a changing world.

    Science.gov (United States)

    Melnykovych, Mariana; Nijnik, Maria; Soloviy, Ihor; Nijnik, Albert; Sarkki, Simo; Bihun, Yurij

    2018-02-01

    To better understand how constantly changing human-environment interactions could be better organized to respond to current challenges, we examined the Ukrainian Carpathians as an example case of complex forest social-ecological systems (FSES). We did it by interviewing diverse and relevant local stakeholder (N=450). In particular, we strived to: i) outline how people and nature are linked and interact in coupled FSES; ii) examine the preferences of stakeholders on the forests and associated ecosystem services (ES); iii) map key drivers threatening well-being of FSES and iv) identify potential responses to address the challenges at a local scale. To answer these questions we followed a mixed method route by integrating qualitative (participatory) and quantitative data collection and analyses, with further application of a Driving Force-Pressure-State-Impact-Response (DPSIR) framework in combination with the ES approach in order to assess benefits, threats to these benefits, and responses regarding the studied FSES. We found that the key benefit from FSES is timber and non-wood forest products (like berries and mushrooms), but also various regulating services were ranked highly by respondents. To explore social-ecological innovation, with potential responses of forest-dependent communities to challenges they face, we employed a commonly used assumption that governance must fit to the particular characteristics of FSES in order to enable sustainability. For the particular case of the Ukrainian Carpathians, we identified and discussed the following five nonconformities or "misfits" threatening sustainability: 1) Spatial misfit in legislation; 2) Poor contextualization; 3) Trap of the single ES; 4) Participatory misfit; and 5) Robbing the commons. By conceptualizing those key threats, we proposed responses for sustainability. The findings contributed to an advanced understanding of complex FSES, their key challenges and potential solutions in order to secure well

  8. H.J. Andrews Experimental Forest.

    Science.gov (United States)

    Art McKee; Pamela. Druliner

    1998-01-01

    The H.J. Andrews Experimental Forest is a world renowned center for research and education about the ecology and management of forests and streams. Located about 50 miles (80 km) east of Eugene, Oregon, the Andrews Experimental Forest lies in the Blue River Ranger District of the Willamette National Forest. Established in 1948, the Experimental Forest is administered...

  9. The world’s urban forests history, composition, design, function and management

    CERN Document Server

    McBride, Joe R

    2017-01-01

    The purpose of this book is to examine urban forests in cities around the world. It will ask questions about the history, composition, structure, and management of trees in urban areas. Data for this book was collected in 33 cities across broad geographical areas known as biomes. Constraints and opportunities imposed on urban forest composition, design, and management by the ecological characteristics of these biomes will be examined. The book will also address the cultural and historical factors that influenced the characteristics of urban forests around the world.

  10. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    Directory of Open Access Journals (Sweden)

    Benoit de Thoisy

    Full Text Available Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity.

  11. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. African Savanna-Forest Boundary Dynamics: A 20-Year Study

    Science.gov (United States)

    Cuni-Sanchez, Aida; White, Lee J. T.; Calders, Kim; Jeffery, Kathryn J.; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L.; Lewis, Simon L.

    2016-01-01

    Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types. PMID:27336632

  13. [Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone, China.

    Science.gov (United States)

    Chen, Xiao Ping; Chen, Wen Bo

    2016-05-01

    Large-scale ecological patches play an important role in regional biodiversity conservation. However, with the rapid progress of China's urbanization, human disturbance on the environment is becoming stronger. Large-scale ecological patches will degrade not only in quantity, but also in quality, threatening the connections among them due to isolation and seriously affecting the biodiversity protection. Taking Poyang Lake Eco-economic Zone as a case, this paper established the potential ecological corridors by minimum cost model and GIS technique taking the impacts of landscape types, slope and human disturbance into consideration. Then, based on gravity quantitative model, we analyzed the intensity of ecological interactions between patches, and the potential ecological corridors were divided into two classes for sake of protection. Finally, the important ecological nodes and breaking points were identified, and the structure of the potential ecological network was analyzed. The results showed that forest and cropland were the main landscape types of ecological corridor composition, interaction between ecological patches differed obviously and the structure of the composed regional ecological network was complex with high connectivity and closure. It might provide a scientific basis for the protection of biodiversity and ecological network optimization in Poyang Lake Eco-economic Zone.

  14. [Characterization of High Andean forest edges and implications for their ecological restoration (Colombia)].

    Science.gov (United States)

    Montenegro, Alba Lucía; Vargas Ríos, Orlando

    2008-09-01

    The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia): 1) edge of Chusquea scandens, 2) "paramizado", and 3) old edge, characterized for being in a later successional state. Two forest patches were chosen for each edge type and 13 criteria were analyzed; these were of topographic order, micro-environmental order, vegetation structure and species composition. In each patch the vegetation was evaluated by means of two 60 m transects perpendicular to the edge and along the matrix-edge-interior of the forest gradient. All woody plant species were identified and counted to determine their abundance. Environmental variables (air temperature, relative humidity, wind speed, and light radiation) were measured in one of the transects. Three of the 13 criteria were of little importance in shaping the type of edge habitat (slope, patch shape and area). The others were closely related with the micro-environmental conditions and in turn with the vegetation structure and composition; this relationship confers particular characteristics to each edge type. The microclimate and floristic edge limits coincided; edges extend between 10 and 20 m into the forest depending on the edge type. The paramizado edge has the smallest environmental self-regulation capacity and is more exposed to fluctuations of the studied variables, because of its greatest exposition to the wind action and loss of the tallest trees (between 10 and 15 m) which regulate the understorey microclimate. This low environmental buffer capacity prevents the establishing of mature forest species (for example, Schefflera sp. and Oreopanax bogotensis

  15. Newtonian boreal forest ecology: The Scots pine ecosystem as an example.

    Directory of Open Access Journals (Sweden)

    Pertti Hari

    Full Text Available Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.

  16. Nutrient intake and balancing among female Colobus angolensis palliatus inhabiting structurally distinct forest areas: Effects of group, season, and reproductive state.

    Science.gov (United States)

    Dunham, Noah T; Rodriguez-Saona, Luis E

    2018-06-08

    Understanding intraspecific behavioral and dietary variation is critical for assessing primate populations' abilities to persist in habitats characterized by increasing anthropogenic disturbances. While it is evident that some species exhibit considerable dietary flexibility (in terms of species-specific plant parts) in relation to habitat disturbance, it is unclear if primates are characterized by similar variation and flexibility regarding nutrient intake. This study examined the effects of group, season, and reproductive state on nutrient intake and balancing in adult female Colobus angolensis palliatus in the Diani Forest, Kenya. During July 2014 to December 2015, estimates of nutrient intake were recorded for eight females from three groups inhabiting structurally and ecologically distinct forest areas differing in tree species composition and density. There were differences in metabolizable energy (ME) and macronutrient intakes among groups, seasons, and reproductive states. Most notably, females inhabiting one of the more disturbed forest areas consumed less ME and macronutrients compared to females in the more intact forest area. Contrary to prediction, females in early lactation consumed significantly less ME and macronutrients compared to non-lactating and late lactation females. Despite differences in macronutrient intake, the relative contribution of macronutrients to ME were generally more conservative among groups, seasons, and reproductive states. Average daily intake ratios of non-protein energy to available protein ranged from approximately 3.5:1-4.3:1 among groups. These results indicate that female C. a. palliatus demonstrate a consistent nutrient balancing strategy despite significant intergroup differences in consumption of species-specific plant parts. Data from additional colobine species inhabiting different forest types are required to assess the extent to which nutrient balancing is constrained by phylogeny or is more flexible to local

  17. 省域森林生态安全评价——基于5省的经验数据%Evaluation of the provincial forest ecological security based on empirical data from five provinces

    Institute of Scientific and Technical Information of China (English)

    顾艳红; 张大红

    2017-01-01

    Ecological security is an important component of national security.The ecological situation in some areas has reached a point of extreme gravity.Air pollution,water pollution,soil pollution,and other environmental problems have garnered increasing attention of the government and citizens.The people in these places are eager to improve the ecological environment.As an important part of the terrestrial ecosystem,forests safeguard the ecology and provide resources for the survival and development of human society;thus,forests play an important role in the national ecological security.Based on the interaction among the forest ecosystem,nature,and human society,an evaluation index system of the provincial ecological security was established from four aspects,such as the status of forest resources,geo-climatic conditions,socio-economic pressure,the level of forest resource management practices and response to pressure.Accordingly,the annual forest ecological security situation (2004-2014) of Guizhou Province,Hubei Province,Zhejiang Province,Jilin Province and Qinghai Province was evaluated based on the forest ecological security index model.The results indicated that the status of forest resources was the major factor among the four indices.The overall situation of the forest ecological security in the five provinces listed above tended to improve over the study period.However,significant differences were observed among them.The status of the forest ecological security in Jilin Province was superior to that of the other provinces,while Qinghai exhibited significantly lower values of the Forest Ecological Security Index (FESI).In the process of economic development,afforestation,protection of existing forests,especially the natural forest,should be strengthened to maintain the forest ecological security

  18. Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion

    Directory of Open Access Journals (Sweden)

    Michael Alonzo

    2018-03-01

    Full Text Available The vast extent and inaccessibility of boreal forest ecosystems are barriers to routine monitoring of forest structure and composition. In this research, we bridge the scale gap between intensive but sparse plot measurements and extensive remote sensing studies by collecting forest inventory variables at the plot scale using an unmanned aerial vehicle (UAV and a structure from motion (SfM approach. At 20 Forest Inventory and Analysis (FIA subplots in interior Alaska, we acquired overlapping imagery and generated dense, 3D, RGB (red, green, blue point clouds. We used these data to model forest type at the individual crown scale as well as subplot-scale tree density (TD, basal area (BA, and aboveground biomass (AGB. We achieved 85% cross-validation accuracy for five species at the crown level. Classification accuracy was maximized using three variables representing crown height, form, and color. Consistent with previous UAV-based studies, SfM point cloud data generated robust models of TD (r2 = 0.91, BA (r2 = 0.79, and AGB (r2 = 0.92, using a mix of plot- and crown-scale information. Precise estimation of TD required either segment counts or species information to differentiate black spruce from mixed white spruce plots. The accuracy of species-specific estimates of TD, BA, and AGB at the plot scale was somewhat variable, ranging from accurate estimates of black spruce TD (+/−1% and aspen BA (−2% to misallocation of aspen AGB (+118% and white spruce AGB (−50%. These results convey the potential utility of SfM data for forest type discrimination in FIA plots and the remaining challenges to develop classification approaches for species-specific estimates at the plot scale that are more robust to segmentation error.

  19. Forest structure and carbon dynamics in Amazonian tropical rain forests.

    Science.gov (United States)

    Vieira, Simone; de Camargo, Plinio Barbosa; Selhorst, Diogo; da Silva, Roseana; Hutyra, Lucy; Chambers, Jeffrey Q; Brown, I Foster; Higuchi, Niro; dos Santos, Joaquim; Wofsy, Steven C; Trumbore, Susan E; Martinelli, Luiz Antonio

    2004-08-01

    Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha(-1) respectively), less biodiversity (Shannon-Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha(-1)) than the Manaus site (626 trees ha(-1), 180.1 Mg C ha(-1)), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41-45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha(-1) year(-1). At all sites, trees in the 10-30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha(-1) year(-1) in Manaus (40% of annual mean) and 0.9 Mg C ha(-1) year(-1) (33% of

  20. Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia

    Science.gov (United States)

    Higgins, Mark A.; Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Knapp, David E.; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso

    2015-01-01

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602

  1. Regional-scale drivers of forest structure and function in northwestern Amazonia.

    Directory of Open Access Journals (Sweden)

    Mark A Higgins

    Full Text Available Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging data and VSWIR (Visible to Shortwave Infrared imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.

  2. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size

    Science.gov (United States)

    Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou

    2017-01-01

    Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624

  3. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.

    Directory of Open Access Journals (Sweden)

    Orou G Gaoue

    Full Text Available Non-timber forest products (NTFPs are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae across two contrasting ecological regions (dry vs. moist in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high. Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.

  4. Abundance and population structure of eastern worm snakes in forest stands with various levels of overstory tree retention

    Science.gov (United States)

    Zachary I. Felix; Yong Wang; Callie Jo Schweitzer

    2010-01-01

    In-depth analyses of a species’ response to canopy retention treatments can provide insight into reasons for observed changes in abundance. The eastern worm snake (Carphophis amoenus amoenus Say) is common in many eastern deciduous forests, yet little is known about the ecology of the species in managed forests. We examined the relationship between...

  5. Coarse woody debris facilitates oak recruitment in Bialowieza Primeval Forest, Poland

    NARCIS (Netherlands)

    Smit, Christian; Kuijper, Dries P. J.; Prentice, David; Wassen, Martin J.; Cromsigt, Joris P. G. M.

    2012-01-01

    While oaks contribute to the ecology and economy of temperate lowland forests, recruitment into larger size classes is generally scarce. Ungulate herbivory is a limiting factor for tree recruitment, thus natural structures protecting against ungulates may be important for recruitment success. We

  6. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    Science.gov (United States)

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  7. Ecological implications of a flower size/number trade-off in tropical forest trees.

    Directory of Open Access Journals (Sweden)

    Chris J Kettle

    2011-02-01

    Full Text Available In angiosperms, flower size commonly scales negatively with number. The ecological consequences of this trade-off for tropical trees remain poorly resolved, despite their potential importance for tropical forest conservation. We investigated the flower size number trade-off and its implications for fecundity in a sample of tree species from the Dipterocarpaceae on Borneo.We combined experimental exclusion of pollinators in 11 species, with direct and indirect estimates of contemporary pollen dispersal in two study species and published estimates of pollen dispersal in a further three species to explore the relationship between flower size, pollinator size and mean pollen dispersal distance. Maximum flower production was two orders of magnitude greater in small-flowered than large-flowered species of Dipterocarpaceae. In contrast, fruit production was unrelated to flower size and did not differ significantly among species. Small-flowered species had both smaller-sized pollinators and lower mean pollination success than large-flowered species. Average pollen dispersal distances were lower and frequency of mating between related individuals was higher in a smaller-flowered species than a larger-flowered confamilial. Our synthesis of pollen dispersal estimates across five species of dipterocarp suggests that pollen dispersal scales positively with flower size.Trade-offs embedded in the relationship between flower size and pollination success contribute to a reduction in the variance of fecundity among species. It is therefore plausible that these processes could delay competitive exclusion and contribute to maintenance of species coexistence in this ecologically and economically important family of tropical trees. These results have practical implications for tree species conservation and restoration. Seed collection from small-flowered species may be especially vulnerable to cryptic genetic erosion. Our findings also highlight the potential for

  8. Spatial-temporal changes in trees outside forests

    DEFF Research Database (Denmark)

    Novotný, M.; Skaloš, J.; Plieninger, T.

    2017-01-01

    Trees outside forests act as ecologically valuable elements in the rural landscapes of Europe. This study proposes a new classification system for trees outside forest elements based on the shape and size of the patches and their location in fields. Using this system, the study evaluates the spat......Trees outside forests act as ecologically valuable elements in the rural landscapes of Europe. This study proposes a new classification system for trees outside forest elements based on the shape and size of the patches and their location in fields. Using this system, the study evaluates...

  9. Better Few than Hungry: Flexible Feeding Ecology of Collared Lemurs Eulemur collaris in Littoral Forest Fragments

    Science.gov (United States)

    Donati, Giuseppe; Kesch, Kristina; Ndremifidy, Kelard; Schmidt, Stacey L.; Ramanamanjato, Jean-Baptiste; Borgognini-Tarli, Silvana M.; Ganzhorn, Joerg U.

    2011-01-01

    Background Frugivorous primates are known to encounter many problems to cope with habitat degradation, due to the fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their conspecifics in a more intact habitat, Sainte Luce. Methodology/Principal Findings Lemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000, respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to counteract a clear reduction in both food quality and size of feeding trees. Conclusions/Significance Our findings indicate that collared lemurs in littoral forest fragments modified their behavior to cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully considered when relocating lemurs or when selecting suitable areas for

  10. Combining aesthetic with ecological values for landscape sustainability.

    Science.gov (United States)

    Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian

    2014-01-01

    Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment.

  11. Simulating historical disturbance regimes and stand structures in old-forest ponderosa pine/Douglas-fir forests

    Science.gov (United States)

    Mike Hillis; Vick Applegate; Steve Slaughter; Michael G. Harrington; Helen Smith

    2001-01-01

    Forest Service land managers, with the collaborative assistance from research, applied a disturbance based restoration strategy to rehabilitate a greatly-altered, high risk Northern Rocky Mountain old-forest ponderosa pine-Douglas-fir stand. Age-class structure and fire history for the site have been documented in two research papers (Arno and others 1995, 1997)....

  12. Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purús region of central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Haugaasen Torbjørn

    2006-01-01

    Full Text Available Despite a natural history interest in the early 1900s, relatively little ecological research has been carried out in the Rio Purús basin of central Amazonia, Brazil. Here we describe a new study area in the region of Lago Uauaçú with an emphasis on the climate, forest structure and composition, and soil characteristics between adjacent unflooded (terra firme and seasonally inundated forests; situated within both the white-water (várzea and black-water (igapó drainage systems that dominate the landscape. The climate was found to be typical of that of the central Amazon. Várzea forest soils had high concentrations of nutrients, while terra firme and igapó soils were comparatively nutrient-poor. Terra firme forests were the most floristically diverse forest type, whereas várzea was intermediate, and igapó the most species-poor. The Lecythidaceae was the most important family in terra firme while the Euphorbiaceae was the most important in both várzea and igapó. There were significant differences between forest types in terms of number of saplings, canopy cover and understorey density. In contrasting our results with other published information, we conclude that the Lago Uauaçú region consists of a typical central Amazonian forest macro-mosaic, but is a unique area with high conservation value due to the intimate juxtaposition of terra firme, várzea and igapó forests.

  13. Proceedings 19th Central Hardwood Forest Conference

    Science.gov (United States)

    John W. Groninger; Eric J. Holzmueller; Clayton K. Nielsen; Daniel C., eds. Dey

    2014-01-01

    Proceedings from the 2014 Central Hardwood Forest Conference in Carbondale, IL. The published proceedings include 27 papers and 47 abstracts pertaining to research conducted on biofuels and bioenergy, forest biometrics, forest ecology and physiology, forest economics, forest health including invasive species, forest soils and hydrology, geographic information systems,...

  14. Simulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia

    Directory of Open Access Journals (Sweden)

    Ksenia Brazhnik

    2017-02-01

    Full Text Available Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire in tandem with a spatially-explicit, individually-based gap dynamics model SIBBORK (SIBerian BOReal forest simulator calibrated to Krasnoyarsk Region. DISTURB-F simulates the effect of forest fire on the boreal ecosystem, namely the mortality of all or only the susceptible trees (loss of biomass, i.e., carbon within the forested landscape. The fire module captures some important feedbacks between climate, fire and vegetation structure. We investigated the potential climate-driven changes in the fire regime and vegetation in middle and south taiga in central Siberia, a region with extensive boreal forest and rapidly changing climate. The output from this coupled simulation can be used to estimate carbon losses from the ecosystem as a result of fires of different sizes and intensities over the course of secondary succession (decades to centuries. Furthermore, it may be used to assess the post-fire carbon storage capacity of potential future forests, the structure and composition of which may differ significantly from current Eurasian boreal forests due to regeneration under a different climate.

  15. Forest fires

    International Nuclear Information System (INIS)

    Fuller, M.

    1991-01-01

    This book examines the many complex and sensitive issues relating to wildland fires. Beginning with an overview of the fires of 1980s, the book discusses the implications of continued drought and considers the behavior of wildland fires, from ignition and spread to spotting and firestorms. Topics include the effects of weather, forest fuels, fire ecology, and the effects of fire on plants and animals. In addition, the book examines firefighting methods and equipment, including new minimum impact techniques and compressed air foam; prescribed burning; and steps that can be taken to protect individuals and human structures. A history of forest fire policies in the U.S. and a discussion of solutions to fire problems around the world completes the coverage. With one percent of the earth's surface burning every year in the last decade, this is a penetrating book on a subject of undeniable importance

  16. Legal protection for the forest. An ecological orientation of the law appears to be a necessity. Rechtsschutz fuer den Wald. Oekologische Orientierung des Rechts als Notwendigkeit der Ueberlebenssicherung

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, W. (ed.)

    1986-01-01

    For years the signs indicating a disastrous dying of trees have been increasing. Environmental associations talk about a 'national cultural disaster'. An 'ecological holocaust' feared by so many would have fatal consequences for water, air, many animal and plant species and, of course, for mankind itself. Forestry already suffers major losses. The legal sciences have so far kept away from any attempt to cope with the death of the forest. This is to be regretted all the more as it has been instrumental in laying down the law caused the critical situation of the forest. In this book authors with different scientific backgrounds discuss the problems in order to find new legal remedies for the ailing forest. An 'ecological orientation' of the law appears to be a necessity.

  17. Terrestrial Ecology Section

    International Nuclear Information System (INIS)

    Harris, W.F.

    1978-01-01

    Studies on ecological effects of coal combustion included the following: episodic air pollution stress; interaction of gaseous pollutants and acid precipitation; and brimstone: preliminary results from SO 2 effects on forest growth. Studies on fate and transport of contaminants included deposition of aerosol-associated trace elements to a deciduous forest; hydrologic source areas; and environmental behavior of mercury. The environmental research park is described and forest resource management is discussed. Ecosystem analysis studies included hydrology of Walker branch; water budget of an oak-hickory forest; nutrient release from decaying wood; transpiration of the tulip poplar; and atmospheric CO 2 and its interaction with biospheric changes

  18. Geospatial analysis of forest fragmentation in Uttara Kannada District, India

    Institute of Scientific and Technical Information of China (English)

    Ramachandra T V; Bharath Setturu; Subash Chandran

    2016-01-01

    Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological,economic and cultural attributes. These complex interactions help in the sustenance of natural resources through bio-geochemical and hydrological cycling. The ecosystem functions are altered with changes in the landscape structure. Fragmentation of large contiguous forests to small and isolated forest patches either by natural phenomena or anthropogenic activities leads to drastic changes in forest patch sizes, shape, connectivity and internal heterogeneity, which restrict the movement leading to inbreeding among Meta populations with extirpation of species.Methods: Landscape dynamics are assessed through land use analysis by way of remote sensing data acquired at different time periods. Forest fragmentation is assessed at the pixel level through computation of two indicators,i.e., Pf(the ratio of pixels that are forested to the total non-water pixels in the window) and Pff(the proportion of all adjacent(cardinal directions only) pixel pairs that include at least one forest pixel, for which both pixels are forested).Results: Uttara Kannada District has the distinction of having the highest forest cover in Karnataka State, India. This region has been experiencing changes in its forest cover and consequent alterations in functional abilities of its ecosystem. Temporal land use analyses show the trend of deforestation, evident from the reduction of evergreen-semi evergreen forest cover from 57.31 %(1979) to 32.08 %(2013) Forest fragmentation at the landscape level shows a decline of interior forests 64.42 %(1979) to 25.62 %(2013) and transition of non-forest categories such as crop land, plantations and built-up areas, amounting now to 47.29 %. PCA prioritized geophysical and socio variables responsible for changes in the landscape structure at local levels.Conclusion: Terrestrial forest ecosystems in Uttara Kannada District of Central Western Ghats have been

  19. Shifting conceptions of complexity in forest management and silviculture

    Science.gov (United States)

    Robert T. Fahey; Brandon C. Alveshere; Julia I. Burton; Anthony W. D' Amato; Yvette L. Dickinson; William S. Keeton; Christel C. Kern; Andrew J. Larson; Brian J. Palik; Klaus J. Puettmann; Michael R. Saunders; Christopher R. Webster; Jeff W. Atkins; Christopher M. Gough; Brady S. Hardiman

    2018-01-01

    In the past several decades, a trend in forestry and silviculture has been toward promoting complexity in forest ecosystems, but how complexity is conceived and described has shifted over time as new ideas and terminology have been introduced. Historically, ecologically-focused silviculture has focused largely on manipulation of structural complexity, but often with...

  20. Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    Chagnon, Pierre-Luc; U'Ren, Jana M; Miadlikowska, Jolanta; Lutzoni, François; Arnold, A Elizabeth

    2016-01-01

    Understanding the factors that shape community assembly remains one of the most enduring and important questions in modern ecology. Network theory can reveal rules of community assembly within and across study systems and suggest novel hypotheses regarding the formation and stability of communities. However, such studies generally face the challenge of disentangling the relative influence of factors such as interaction type and environmental conditions on shaping communities and associated networks. Endophytic and endolichenic symbioses, characterized by microbial species that occur within healthy plants and lichen thalli, represent some of the most ubiquitous interactions in nature. Fungi that engage in these symbioses are hyperdiverse, often horizontally transmitted, and functionally beneficial in many cases, and they represent the diversification of multiple phylogenetic groups. We evaluated six measures of ecological network structure for >4100 isolates of endophytic and endolichenic fungi collected systematically from five sites across North America. Our comparison of these co-occurring interactions in biomes ranging from tundra to subtropical forest showed that the type of interactions (i.e., endophytic vs. endolichenic) had a much more pronounced influence on network structure than did environmental conditions. In particular, endophytic networks were less nested, less connected, and more modular than endolichenic networks in all sites. The consistency of the network structure within each interaction type, independent of site, is encouraging for current efforts devoted to gathering metadata on ecological network structure at a global scale. We discuss several mechanisms potentially responsible for such patterns and draw attention to knowledge gaps in our understanding of networks for diverse interaction types.

  1. Guidelines of handling and management of forest fragments in the municipality of Murcia

    International Nuclear Information System (INIS)

    Zapata Perez, V. M.; Robledano, F.; Jimenez, M. V.; Farinos, P.

    2009-01-01

    Most forest systems in the municipality of Murcia are old afforestations with Pinus halepensis. In many sites, the unsuitability of the habitat for this species has led to a poor tree development, and to a strong competence for resources that increases environmental stress. We have studied patches of forests protected by the municipality of Murcia (Forest Parks of Majal Blanco, Montepinar and Los Polvorines) and other unprotected patches close to these. The objective was to study their composition, structure and ecological dynamics. (Author) 3 refs.

  2. Coordination of physiological and structural traits in Amazon forest trees

    Science.gov (United States)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf

  3. Boreal Forests of Kamchatka: Structure and Composition

    OpenAIRE

    Eichhorn, Markus P.

    2010-01-01

    Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-domi...

  4. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia.

    Science.gov (United States)

    Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu

    2015-02-19

    Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    Science.gov (United States)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire

  6. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    OpenAIRE

    J. I. Nirmal Kumar,; Kanti Patel,; Rohit Bhoi Kumar

    2011-01-01

    Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (≥ 3.0 cm DBH); 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The fo...

  7. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest.

    Science.gov (United States)

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B

    2016-08-15

    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Edge Detection from RGB-D Image Based on Structured Forests

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available This paper looks into the fundamental problem in computer vision: edge detection. We propose a new edge detector using structured random forests as the classifier, which can make full use of RGB-D image information from Kinect. Before classification, the adaptive bilateral filter is used for the denoising processing of the depth image. As data sources, information of 13 channels from RGB-D image is computed. In order to train the random forest classifier, the approximation measurement of the information gain is used. All the structured labels at a given node are mapped to a discrete set of labels using the Principal Component Analysis (PCA method. NYUD2 dataset is used to train our structured random forests. The random forest algorithm is used to classify the RGB-D image information for extracting the edge of the image. In addition to the proposed methodology, the quantitative comparisons of different algorithms are presented. The results of the experiments demonstrate the significant improvements of our algorithm over the state of the art.

  9. Chocolate and The Consumption of Forests: A Cross-National Examination of Ecologically Unequal Exchange in Cocoa Exports

    Directory of Open Access Journals (Sweden)

    Mark D. Noble

    2017-08-01

    Full Text Available This study explores the potential links between specialization in cocoa exports and deforestation in developing nations through the lens of ecologically unequal exchange. Although chocolate production was once considered to have only minimal impacts on forests, recent reports suggest damaging trends due to increased demand and changing cultivation strategies. I use two sets of regression analyses to show the increased impact of cocoa export concentration on deforestation over time for less-developed nations. Overall, the results confirm that cocoa exports are associated with deforestation in the most recent time period, and suggest that specialization in cocoa exports is an important form of ecologically unequal exchange, where the environmental costs of chocolate consumption in the Global North are externalized to nations in the Global South, further impairing possibilities for successful or sustainable development.

  10. Boreal Forests of Kamchatka: Structure and Composition

    Directory of Open Access Journals (Sweden)

    Markus P. Eichhorn

    2010-09-01

    Full Text Available Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-dominant B. ermanii forests. Basal area ranged from 7.8–38.1 m2/ha and average tree height from 8.3–24.7 m, both being greater in lowland forests. Size distributions varied considerably among plots, though they were consistently more even for L. cajanderi than B. platyphylla. Upland sites also contained a dense subcanopy of Pinus pumila averaging 38% of ground area. Soil characteristics differed among plots, with upland soils being of lower pH and containing more carbon. Comparisons are drawn with boreal forests elsewhere and the main current threats assessed. These forests provide a potential baseline to contrast with more disturbed regions elsewhere in the world and therefore may be used as a target for restoration efforts or to assess the effects of climate change independent of human impacts.

  11. Changes in Species Composition in Alder Swamp Forest Following Forest Dieback

    Directory of Open Access Journals (Sweden)

    Remigiusz Pielech

    2018-06-01

    Full Text Available It is generally hypothesized that forest dieback is a characteristic of alder swamp forests (alder carrs, Alnion glutinosae alliance. Different internal and external factors may trigger this process, including human disturbance, changes in river discharge, unusually severe and prolonged flooding, terminal age of an even-aged alder forest (ca. 100–150 years and others. Although forest dieback in this type of forest may cause major changes in environmental conditions, the influence of this change on the floristic composition has not been well recognized. The study aimed to detect any possible changes in floristic variation in alder swamp forest following forest dieback. Vegetation plots in alder swamp forests affected by forest dieback were resurveyed 20 years after a previous study. PERMANOVA was used to test the significance of the compositional change and nonmetric multidimensional scaling (NMDS with passively fitted means of the Ellenberg’s Indicator Values were used to interpret its ecological meaning. In addition, different structural and diversity indices were compared, including species richness, percentage cover of vegetation layers, Shannon and Simpson diversity and evenness. Finally, we analyzed changes in the frequency of vascular plant species using Chi square tests. We recorded clear and significant compositional changes following alder swamp forest dieback. This change was most related to the gradient of moisture, followed by the gradients of light and temperature. The analysis of the individual species showed that the species of hummocks declined, while the species of hollows increased. Moreover, the current communities are dominated by some hydrophytes that were not recorded 20 years ago. Forest dieback resulted in profound changes in the hydrological regime. The observed changes are consistent with a model of cyclic succession as proposed for alder swamps. In addition, we conclude that the natural forest dynamics have to be

  12. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    Science.gov (United States)

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  13. Learning in Virtual Forest: A Forest Ecosystem in the Web-Based Learning Environment

    Science.gov (United States)

    Jussila, Terttu; Virtanen, Viivi

    2014-01-01

    Virtual Forest is a web-based, open-access learning environment about forests designed for primary-school pupils between the ages of 10 and 13 years. It is pedagogically designed to develop an understanding of ecology, to enhance conceptual development and to give a holistic view of forest ecosystems. Various learning tools, such as concept maps,…

  14. Historical patterns in lichen communities of montane quaking aspen forests

    Science.gov (United States)

    Paul C. Rogers; Dale L. Bartos; Ronald J. Ryel

    2011-01-01

    Climate shifts and resource exploitation in Rocky Mountain forests have caused profound changes in quaking aspen (Populus tremuloides Michx.) structure and function since Euro-American settlement. It therefore seems likely that commensurate shifts in dependent epiphytes would follow major ecological transitions. In the current study, we merge several lines of inquiry...

  15. Two countries, one forest: Working beyond political boundaries in the Northern Appalachian/Acadian Forest

    Science.gov (United States)

    James Sullivan

    2007-01-01

    Two Countries, One Forest (2C1Forest) is a collaboration of conservation organizations and researchers committed to the long-term ecological health of the Northern Appalachian/ Acadian ecoregion of the United States and Canada.

  16. COMPLEX NETWORK SIMULATION OF FOREST NETWORK SPATIAL PATTERN IN PEARL RIVER DELTA

    Directory of Open Access Journals (Sweden)

    Y. Zeng

    2017-09-01

    Full Text Available Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network’s power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network’s degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network’s main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc. for networking a standard and base datum.

  17. The ecology and management of moist mixed-conifer forests in eastern Oregon and Washington: a synthesis of the relevant biophysical science and implications for future land management

    Science.gov (United States)

    Peter Stine; Paul Hessburg; Thomas Spies; Marc Kramer; Christopher J. Fettig; Andrew Hansen; John Lehmkuhl; Kevin O' Hara; Karl Polivka; Peter Singleton; Susan Charnley; Andrew Merschel; Rachel. White

    2014-01-01

    Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances...

  18. Forests on the edge: evaluating contributions of and threats to America's private forest lands

    Science.gov (United States)

    Mark Hatfield; Ronald E. McRoberts; Dacia M. Meneguzzo; Mike Dechter; < i> et al< /i>

    2007-01-01

    The Forests on the Edge project, sponsored by the U.S. Department of Agriculture Forest Service, uses geographic information systems to construct and analyze maps depicting ecological, social, and economic contributions of America's private forest lands and threats to those contributions. Watersheds across the conterminous United States are ranked relative to the...

  19. North American Forest Futures 2018-2090: Scenarios for Building a More Resilient Forest Sector

    Science.gov (United States)

    David N. Bengston; Jonathan Peck; Robert Olson; Melissa Barros; Richard A. Birdsey; Daniel R. Williams; Juan Carlos Leyva Reyes; Francisco José Zamudio

    2018-01-01

    North American forests and forest management institutions are experiencing a wide range of significant ecological disturbances and socioeconomic changes, which point to the need for enhanced resilience. A critical capacity for resilience in institutions is strategic foresight. This article reports on a project of the North American Forest Commission to use Futures...

  20. The effects of forest structure on occurrence and abundance of three owl species (Aves: Strigidae in the Central Amazon forest

    Directory of Open Access Journals (Sweden)

    Obed G. Barros

    2009-03-01

    Full Text Available We investigated how forest structure affects the occurrence and abundance of three owl species: the crested owl Lophostrix cristata Daudin, 1800, the Amazon pygmy owl Glaucidium hardyi Vielliard, 1990, and the tawny-bellied screech owl Megascops watsonii Cassin, 1849. We surveyed the owls mostly between 07:00 and 11:00 pm from July 2001 to April 2002, in eighteen 8 km transects along trails at the Ducke Reserve, Manaus, Central Amazon, Brazil. We staked out 50 x 50 m plots where the presence and absence of the owls were recorded. We compared some components of the forest structure between plots where owls were present and plots where they were absent. The spatial variation in these components were related to the occurrence and abundance of the owls using models of multiple logistic and multiple linear regressions analysis, respectively. Lophostrix cristata is rare in many other areas of the Amazon forest, but it was the most abundant in our study area. Lophostrix cristata and G. hardyi were more concentrated along the uplands (central plateau, which divide the reserve into two drainage water-basins. Megascops watsonii was distributed mainly in the southeastern part of the reserve. Glaucidium hardyi was more often found in areas with larger canopy openness. In areas with higher abundance of snags, there was significantly higher occurrence of L. cristata and M. watsonii. Megascops watsonii was also more abundant in areas with higher abundance of forest trees and in areas bearing shallower leaf litter on the forest floor. This study is the first to analyze at large spatial scale the effects of forest structure on neotropical forest top predator nocturnal birds. The results indicate that forest structure can affect the occurrence and abundance of owls in the Amazon forest.

  1. Gap Dynamics and Structure of Two Old-Growth Beech Forest Remnants in Slovenia

    Science.gov (United States)

    Rugani, Tihomir; Diaci, Jurij; Hladnik, David

    2013-01-01

    Context Due to a long history of intensive forest exploitation, few European beech (Fagus sylvatica L.) old-growth forests have been preserved in Europe. Material and Methods We studied two beech forest reserves in southern Slovenia. We examined the structural characteristics of the two forest reserves based on data from sample plots and complete inventory obtained from four previous forest management plans. To gain a better understanding of disturbance dynamics, we used aerial imagery to study the characteristics of canopy gaps over an 11-year period in the Kopa forest reserve and a 20-year period in the Gorjanci forest reserve. Results The results suggest that these forests are structurally heterogeneous over small spatial scales. Gap size analysis showed that gaps smaller than 500 m2 are the dominant driving force of stand development. The percentage of forest area in canopy gaps ranged from 3.2 to 4.5% in the Kopa forest reserve and from 9.1 to 10.6% in the Gorjanci forest reserve. These forests exhibit relatively high annual rates of coverage by newly established (0.15 and 0.25%) and closed (0.08 and 0.16%) canopy gaps. New gap formation is dependant on senescent trees located throughout the reserve. Conclusion We conclude that these stands are not even-sized, but rather unevenly structured. This is due to the fact that the disturbance regime is characterized by low intensity, small-scale disturbances. PMID:23308115

  2. Cost-effective age structure and geographical distribution of boreal forest reserves.

    Science.gov (United States)

    Lundström, Johanna; Ohman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald

    2011-02-01

    1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied.2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area.3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0-14 years than in forests 15-69 years.4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area.5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class.6.Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost

  3. Avian studies and research opportunities in the Luquillo Experimental Forest: a tropical rain forest in Puerto Rico

    Science.gov (United States)

    Joseph Wunderle, Jr; Wayne J. Arendt

    2011-01-01

    The Luquillo Experimental Forest (LEF) located on the Caribbean island of Puerto Rico has a rich history of ecological research, including a variety of avian studies, and is one of the most active ecological research sites in the Neotropics. The LEF spans an elevational range from 100 to 1075mover which five life zones and four forest types are found in a warm, humid...

  4. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  5. Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review

    Directory of Open Access Journals (Sweden)

    J. M. Barbosa

    2014-01-01

    Full Text Available Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB. New remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful for regional or global analyses.

  6. "A Lot of It Comes from the Heart": The Nature and Integration of Ecological Knowledge in Tribal and Nontribal Forest Management

    Science.gov (United States)

    John Bussey; Mae A. Davenport; Marla R. Emery; Clint Carroll

    2016-01-01

    This article explores the generation, transmission, and nature of ecological knowledge used by tribal and nontribal natural resource management agency personnel who collectively manage a 666,542-acre forest in northern Minnesota. Using key informant interviews and an adapted grounded theory analysis, we documented the forms of knowledge participants expressed in their...

  7. Ecological consistency across space: a synthesis of the ecological aspects of Dromiciops gliroides in Argentina and Chile.

    Science.gov (United States)

    Fontúrbel, Francisco E; Franco, Marcela; Rodríguez-Cabal, Mariano A; Rivarola, M Daniela; Amico, Guillermo C

    2012-11-01

    Dromiciops gliroides is an arboreal marsupial found in the temperate forests of South America (36-43 °S). This species is the sole extant representative of the order Microbiotheria, and is a key seed disperser of many native plant species, including the keystone mistletoe Tristerix corymbosus. Here, we synthesized the current knowledge on the ecological aspects of this species, and compared the available information from Argentina and Chile. Population density (23 ± 2 (mean ± SE) individual/ha) and home range (1.6 ± 0.6 ha) appear to be relatively similar across a marked ecological gradient in the mainland, but lower densities (7 ± 2 individual/ha) and smaller home ranges (0.26 ± 0.04 ha) were detected at island sites. We detected regional variation in body condition in Chile, but there were no significant differences across a wider E-W gradient. Movement patterns fit a random walk model; such behavior might have important consequences in shaping plant's spatial patterns. Although our data suggest that D. gliroides is more tolerant to habitat disturbance than previously thought, its incapability to disperse across non-forested areas suggests that the rapid rate of habitat loss and fragmentation that characterizes southern temperate forests likely poses a serious threat to this species. These ecological similarities are surprising given that forests studied receive dramatically different rainfall and correspond to distinct forest types. The evidence synthetized here dispels some of the myths about this species but also stresses the need for more comprehensive ecological studies across its distribution range.

  8. Environmental research programme. Ecological research. Annual report 1994. Urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, terrestrial ecosystem research, environmental pollution and health

    International Nuclear Information System (INIS)

    1995-01-01

    In the annual report 1994 of the Federal Ministry of Research and Technology, the points of emphasis of the ecological research programme and their financing are discussed. The individual projects in the following subject areas are described in detail: urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, other ecosystems and landscapes, terrestrial ecosystem research, environmental pollution and human health and cross-sectional activities in ecological research. (vhe) [de

  9. Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize.

    Science.gov (United States)

    Ross, Nanci J

    2011-01-01

    Ecology and ethnobotany were integrated to assess the impact of ancient Maya tree-dominated home gardens (i.e., "forest gardens"), which contained a diversity of tree species used for daily household needs, on the modern tree species composition of a Mesoamerican forest. Researchers have argued that the ubiquity of these ancient gardens throughout Mesoamerica led to the dominance of species useful to Maya in the contemporary forest, but this pattern may be localized depending on ancient land use. The tested hypothesis was that species composition would be significantly different between areas of dense ancient residential structures (high density) and areas of little or no ancient settlement (low density). Sixty-three 400-m2 plots (31 high density and 32 low density) were censused around the El Pilar Archaeological Reserve in northwestern Belize. Species composition was significantly different, with higher abundances of commonly utilized "forest garden" species still persisting in high-density forest areas despite centuries of abandonment. Subsequent edaphic analyses only explained 5% of the species composition differences. This research provides data on the long-term impacts of Maya forests gardens for use in development of future conservation models. For Mesoamerican conservation programs to work, we must understand the complex ecological and social interactions within an ecosystem that developed in intimate association with humans.

  10. Keragaman Dan Kelimpahan Jenis Kodok Serta Hubungannya Dengan Vegetasi Pada Lahan Basah "Ecology Park", Kampus Lipicibinong [Diversity and Abundance of Non-forest Frogs and Their Relationship with Wetland Vegetation in Ecology Park, Lipi Campus Cibinong

    OpenAIRE

    Kurniati, Hellen

    2010-01-01

    Previous ecological studies have revealed the types of non-forest frog commonly occupying habitats that have been modified by humans are still severely limited. For that purpose the research was conducted in the wetland area of Ecology Park in LIPI Campus Cibinong which is located at S 06" 29' 40.2"; E 106° 51' 06.3" with 165 meters altitude above sea level (asl) over seven months (May-November 2009) by monitoring 14 times during the study period (July-November).The transect method was used t...

  11. Morphological Variation and Ecological Structure of Iroko (Milicia excelsa Welw. C.C. Berg) Populations across Different Bio geographical Zones in Benin

    International Nuclear Information System (INIS)

    Ouinsavi, C.; Sokpon, N.

    2010-01-01

    Iroko (Milicia excelsa) is a commercially important timber tree species formerly known by local people in Benin. Because of the highly attractive technological properties of its wood and its multipurpose uses, the species was subjected to intensive human pressure. Apart from strong climate oscillation during the Pleistocene, human caused habitat fragmentation through continuous land clearing for agriculture, extensive forests exploitation and urbanization induced the occurrence of many isolated forest plots and trees species among which Milicia excelsa trees. As fragmentation was proved to have deleterious effects on genetic diversity within a species and its morphological structure, it was of interest to investigate the current demographic, morphological and genetic structure of M. excelsa before coming up with conservation strategies. In the current study, morphological variation and ecological structure of M. excelsa populations were assessed in Benin using transect sampling method and multivariate analyses including principal component, cluster and canonical discriminant analyses. On the basis of morphological parameters, M. excelsa individuals and populations were clustered into four and discrimination of groups indicated that most of variations were highly related to edaphic factors and annual rainfall. Erratic diameter distribution was found for many populations although most of them showed bell shaped diameter distribution.

  12. Multidecadal analysis of forest growth and albedo in boreal Finland

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Stenberg, P.; Mottus, M.; Manninen, T.; Rautiainen, M.

    2016-01-01

    Roč. 52, OCT (2016), s. 296-305 ISSN 0303-2434 R&D Projects: GA MŠk(CZ) LM2010007; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Albedo * fAPAR * LAI * NDVI * Time series * Seasonal trends * Forest structure Subject RIV: EH - Ecology, Behaviour Impact factor: 3.930, year: 2016

  13. Ecological units of the Northern Region: Subsections

    Science.gov (United States)

    John A. Nesser; Gary L. Ford; C. Lee Maynard; Debbie Dumroese

    1997-01-01

    Ecological units are described at the subsection level of the Forest Service National Hierarchical Framework of Ecological Units. A total of 91 subsections are delineated on the 1996 map "Ecological Units of the Northern Region: Subsections," based on physical and biological criteria. This document consists of descriptions of the climate, geomorphology,...

  14. Image fusion for enhanced forest structural assessment

    CSIR Research Space (South Africa)

    Roberts, JW

    2011-01-01

    Full Text Available This research explores the potential benefits of fusing active and passive medium resolution satellite-borne sensor data for forest structural assessment. Image fusion was applied as a means of retaining disparate data features relevant to modeling...

  15. Mapping forest structure, species gradients and growth in an urban area using lidar and hyperspectral imagery

    Science.gov (United States)

    Gu, Huan

    Urban forests play an important role in the urban ecosystem by providing a range of ecosystem services. Characterization of forest structure, species variation and growth in urban forests is critical for understanding the status, function and process of urban ecosystems, and helping maximize the benefits of urban ecosystems through management. The development of methods and applications to quantify urban forests using remote sensing data has lagged the study of natural forests due to the heterogeneity and complexity of urban ecosystems. In this dissertation, I quantify and map forest structure, species gradients and forest growth in an urban area using discrete-return lidar, airborne imaging spectroscopy and thermal infrared data. Specific objectives are: (1) to demonstrate the utility of leaf-off lidar originally collected for topographic mapping to characterize and map forest structure and associated uncertainties, including aboveground biomass, basal area, diameter, height and crown size; (2) to map species gradients using forest structural variables estimated from lidar and foliar functional traits, vegetation indices derived from AVIRIS hyperspectral imagery in conjunction with field-measured species data; and (3) to identify factors related to relative growth rates in aboveground biomass in the urban forests, and assess forest growth patterns across areas with varying degree of human interactions. The findings from this dissertation are: (1) leaf-off lidar originally acquired for topographic mapping provides a robust, potentially low-cost approach to quantify spatial patterns of forest structure and carbon stock in urban areas; (2) foliar functional traits and vegetation indices from hyperspectral data capture gradients of species distributions in the heterogeneous urban landscape; (3) species gradients, stand structure, foliar functional traits and temperature are strongly related to forest growth in the urban forests; and (4) high uncertainties in our

  16. Forest operations for ecosystem management

    Science.gov (United States)

    Robert B. Rummer; John Baumgras; Joe McNeel

    1997-01-01

    The evolution of modern forest resource management is focusing on ecologically sensitive forest operations. This shift in management strategies is producing a new set of functional requirements for forest operations. Systems to implement ecosystem management prescriptions may need to be economically viable over a wider range of piece sizes, for example. Increasing...

  17. Geospatial analysis of forest fragmentation in Uttara Kannada District, India

    Directory of Open Access Journals (Sweden)

    Ramachandra T V

    2016-04-01

    Full Text Available Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological, economic and cultural attributes. These complex interactions help in the sustenance of natural resources through bio-geochemical and hydrological cycling. The ecosystem functions are altered with changes in the landscape structure. Fragmentation of large contiguous forests to small and isolated forest patches either by natural phenomena or anthropogenic activities leads to drastic changes in forest patch sizes, shape, connectivity and internal heterogeneity, which restrict the movement leading to inbreeding among Meta populations with extirpation of species. Methods: Landscape dynamics are assessed through land use analysis by way of remote sensing data acquired at different time periods. Forest fragmentation is assessed at the pixel level through computation of two indicators, i.e., Pf (the ratio of pixels that are forested to the total non-water pixels in the window and Pff (the proportion of all adjacent (cardinal directions only pixel pairs that include at least one forest pixel, for which both pixels are forested. Results: Uttara Kannada District has the distinction of having the highest forest cover in Karnataka State, India. This region has been experiencing changes in its forest cover and consequent alterations in functional abilities of its ecosystem. Temporal land use analyses show the trend of deforestation, evident from the reduction of evergreen - semi evergreen forest cover from 57.31 % (1979 to 32.08 % (2013 Forest fragmentation at the landscape level shows a decline of interior forests 64.42 % (1979 to 25.62 % (2013 and transition of non-forest categories such as crop land, plantations and built-up areas, amounting now to 47.29 %. PCA prioritized geophysical and socio variables responsible for changes in the landscape structure at local levels. Conclusion: Terrestrial forest ecosystems in Uttara Kannada District of Central

  18. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    Science.gov (United States)

    Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...

  19. Amazonian landscapes and the bias in field studies of forest structure and biomass.

    Science.gov (United States)

    Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul

    2014-12-02

    Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.

  20. A dataset of forest biomass structure for Eurasia.

    Science.gov (United States)

    Schepaschenko, Dmitry; Shvidenko, Anatoly; Usoltsev, Vladimir; Lakyda, Petro; Luo, Yunjian; Vasylyshyn, Roman; Lakyda, Ivan; Myklush, Yuriy; See, Linda; McCallum, Ian; Fritz, Steffen; Kraxner, Florian; Obersteiner, Michael

    2017-05-16

    The most comprehensive dataset of in situ destructive sampling measurements of forest biomass in Eurasia have been compiled from a combination of experiments undertaken by the authors and from scientific publications. Biomass is reported as four components: live trees (stem, bark, branches, foliage, roots); understory (above- and below ground); green forest floor (above- and below ground); and coarse woody debris (snags, logs, dead branches of living trees and dead roots), consisting of 10,351 unique records of sample plots and 9,613 sample trees from ca 1,200 experiments for the period 1930-2014 where there is overlap between these two datasets. The dataset also contains other forest stand parameters such as tree species composition, average age, tree height, growing stock volume, etc., when available. Such a dataset can be used for the development of models of biomass structure, biomass extension factors, change detection in biomass structure, investigations into biodiversity and species distribution and the biodiversity-productivity relationship, as well as the assessment of the carbon pool and its dynamics, among many others.

  1. Proceedings, 15th central hardwood forest conference

    Science.gov (United States)

    David S. Buckley; Wayne K. Clatterbuck; [Editors

    2007-01-01

    Proceedings of the 15th central hardwood forest conference held February 27–March 1, 2006, in Knoxville, TN. Includes 86 papers and 30 posters pertaining to forest health and protection, ecology and forest dynamics, natural and artificial regeneration, forest products, wildlife, site classification, management and forest resources, mensuration and models, soil and...

  2. Age structure and disturbance legacy of North American forests

    Directory of Open Access Journals (Sweden)

    Y. Pan

    2011-03-01

    Full Text Available Most forests of the world are recovering from a past disturbance. It is well known that forest disturbances profoundly affect carbon stocks and fluxes in forest ecosystems, yet it has been a great challenge to assess disturbance impacts in estimates of forest carbon budgets. Net sequestration or loss of CO2 by forests after disturbance follows a predictable pattern with forest recovery. Forest age, which is related to time since disturbance, is a useful surrogate variable for analyses of the impact of disturbance on forest carbon. In this study, we compiled the first continental forest age map of North America by combining forest inventory data, historical fire data, optical satellite data and the dataset from NASA's Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS project. A companion map of the standard deviations for age estimates was developed for quantifying uncertainty. We discuss the significance of the disturbance legacy from the past, as represented by current forest age structure in different regions of the US and Canada, by analyzing the causes of disturbances from land management and nature over centuries and at various scales. We also show how such information can be used with inventory data for analyzing carbon management opportunities. By combining geographic information about forest age with estimated C dynamics by forest type, it is possible to conduct a simple but powerful analysis of the net CO2 uptake by forests, and the potential for increasing (or decreasing this rate as a result of direct human intervention in the disturbance/age status. Finally, we describe how the forest age data can be used in large-scale carbon modeling, both for land-based biogeochemistry models and atmosphere-based inversion models, in order to improve the spatial accuracy of carbon cycle simulations.

  3. Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    Directory of Open Access Journals (Sweden)

    Mark W Schwartz

    Full Text Available Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1 whether the forest appears in transition toward increased hardwood composition; 2 if conifers appear stressed by recent climate change relative to hardwoods; and 3 how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.

  4. Climate-induced forest dieback as an emergent global phenomenon: Organized oral session at the Ecological Society of America/Society of Ecological Restoration Joint Meeting; San Jose, California, 5-10 August 2007

    Science.gov (United States)

    Allen, Craig D.; Breshears, David D.

    2007-01-01

    An organized oral session at the annual meeting of the Ecological Society of America in San Jose, Calif., posed this question: Is climate-induced drought stress triggering increasing rates and unusual patterns of forest die-off at a global scale? Twenty-nine researchers representing five continents reported on patterns, mechanisms, and projections of forest mortality.Observations include widespread forest dieback or reductions in tree cover and biodiversity in response to drought and warmer temperatures in the African Sahel (Patrick Gonzalez, The Nature Conservancy), Mediterranean and alpine Europe (Jorge Castro, Universidad de Granada), and Argentinean Patagonia (Thomas Kitzberger, Universidad Nacional del Comahue). In contrast, although much Eucalyptus mortality has resulted from recent droughts in Australia, warming trends have been less pronounced in the Southern Hemisphere and it is unclear if contemporary climate-induced tree mortality differs from previous historical drought impacts (Rod Fensham, Queensland Herbarium).

  5. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  6. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  7. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  8. Recreational transformation of the herbaceous layer in an urban forest ecosystem of Central Podolia

    Directory of Open Access Journals (Sweden)

    O. I. Blinkova

    2017-05-01

    Full Text Available This article examines the impact of recreational activities on herbaceous cover of forests on the example of an urban environment in Central Podolia. The features of changes in environmental conditions of ecotypes of an urban forest have been shown through the systematic, biomorphological and ecomorphic structure of the herbaceous cover, the ratio of ecological groups, changes in type of ecological strategy of species, assessment of ecological fractions valences, and phytodiversity. We found 78 species of vascular plants. The most diverse families are Asteraceae, Poaceae and Lamiaceae. The biomorphological range of phytodiversity of the intensive recreational zone is characterized by a high proportion of adventive and ruderal species, dominance of vegetative mobile species, forming of monodominant groups and disturbed distribution of all spectrum types for coenotic morphs. Perennial hemicryptophytes dominate in the spectrum of life forms. The share of therophytes increased along the gradient of recreational transformation. Unrosellate herbal plants dominate in the structure of aboveground shoots and leaf placement, plants that don’t have special modifications dominate in the structures of underground shoots. Helophytes dominated in the analysis of heliomorphic plants. Mesophytes dominated almost everywhere. The share of hydrocontrastophobes increased with a gradual removal from places of recreation. Changes in acidomorphic and nitromorphic structures of plants were not found. Types of transitional groups of ecological strategies, including CR-, CS-, and CRS-strategies prevailed. The share of patiens diminished. Exsplerents from all types of primary ecological strategies dominated. Analysis of ecological valence fractions showed that species of hemi-euryvalent and euryvalent fractions dominate among hydromorphs, hemi-euryvalent species dominate among ecogroups of scale variability humidification of soil, hemystenovalences species dominate among

  9. Ecological perspective: Linking ecology, GIS, and remote sensing to ecosystem management

    Science.gov (United States)

    Allen, Craig D.; Sample, V. Alaric

    1994-01-01

    Awareness of significant human impacts on the ecology of Earth's landscapes is not new (Thomas 1956). Over the past decade (Forman and Godron 1986, Urban et a1. 1987) applications of geographic information systems (GIS) and remote sensing technologies have supported a rapid rise in landscape.stale research. The heightened recognition within the research community of the ecological linkages between local sites and larger spatial scales has spawned increasing calls for more holistic management of landscapes (Noss 1983, Harris 1984, Risser 1985, Norse et al. 1986, Agee and Johnson 1988, Franklin 1989, Brooks and Grant 1992, Endangered Species Update-Special Issue 1993, Crow 1994, Grumbine 1994). As a result agencies such as the U.S. Forest Service, U.S. Fish and Wildlife Service, and National Park Service are now converging on "ecosystem management" as a new paradigm to sustainably manage wildlands and maintain biodiversity. However, as this transition occurs, several impediments to implementation of this new paradigm persist, including(1) significant uncenainty among many land managers about the definition and goals of ecosystem management,(2) inadequate ecological information on the past and present processes and structural conditions of target ecosystems,(3) insufficient experience on the part of land managers with the rapidly diversifying array of GIS and remote sensing tools to effectively use them to support ecology-based land management, and(4) a paucity of intimate, long-term relationships between people (including land managers) and the particular landscape communities to which they belong.This chapter provides an ecological perspective on these issues as applied to ecosystem management in a southwestern U.S. landscape.

  10. MAIN LAND USE PLANNING APPROACHES TO STRUCTURAL ELEMENTS LOCAL ECOLOGICAL NETWORK

    Directory of Open Access Journals (Sweden)

    TretiakV.M.

    2016-08-01

    Full Text Available In modern conditions of social development, changes in land eco-system of economic relations in Ukraine, the problem of providing conditions for the creation of sustainable land use and creation of protected areas get the status of special urgency. Ideology establishment of ecological networks became logical continuation of environmental thought in general. Considering the methodological approach to the establishment of ecological networks we can constitute, that it is an environmental frame of spatial infrastructure, land conservation and environmental areas, major part of land is the basis of the structural elements of ecological network. Designing an ecological network is made through developing regional schemes of Econet formation, regional and local schemes for establishing an ecological network areas, settlements and other areas. Land Management uses design of structural elements of the ecological network in the village council, as a rule, begins with ecological and landscape mikrozonationof the village council, held during the preparatory work for the land drafting and finishing the formation of environmentally homogeneous regions, which represents the tied system components of ecological network, environmental measures in the form of local environmental restrictions (encumbrances to use land and other natural resources. Additionally, there are some project organization and territorial measures that increase the sustainability area, such as: key, binders, buffer areas and renewable ecological network. Land management projects on the formation of structural elements of ecological network as territorial restrictions (encumbrances in land are used within the territories Councils determined the location and size of land: - Protection zones around especially valuable natural objects of cultural heritage, meteorological stations, etc. in order to protect them from adverse human impacts; - Protection zones along telecommunication lines, power

  11. Variability of the tree-rings structure of Gmelin’s larch at northern tree line (peninsula of Taymyr

    Directory of Open Access Journals (Sweden)

    V. V. Fakhrutdinova

    2017-04-01

    Full Text Available The study of tree-ring cell structure changes as the result of tree adaptation to varying environmental conditions becomes increasingly important to predict future vegetation shifts under projected climate changes. The estimate of intrapopulation annual variability of wood anatomy characteristics is particularly informative. It helps to divide the contribution of different ecological factors to total features dispersion. In this work, a comparative analysis of individual and climatic variability of tree ring structure characteristics of Gmelin’s larch Larix gmelinii (Rupr. growth within northernmost forest was carried out. The trees from forest-tundra boundary has greater radial growth intensity, forms the bigger conductive zone in rings with wider mean lumen area in comparison with trees from closed forest. This result can be explained by adaptive features and height ecological xylem plasticity of larch. The tree rings structure of larch from boundary with tundra is determined by largely current weather conditions. Is because these ones evince high adaptive plasticity on the level of xylem structure. The xylem reflects joint changes of climate factors and local ecological conditions. The trees from closed forest are characterized by larger individual variability. The local conditions in oldest forest (for example, bad hydrothermal soil conditions inhibit the radial growth and sensitivity to environmental factors. In this case, the trees on individual level are tended to save the normal functioning of water-transport system. The significant differences in ratio individual to climate variability of tree ring structure characteristics can be caused by the different in the level of ecological habitat heterogeneity or the different in the level genetic within-population heterogeneity.

  12. Discriminating Natural Variation from Legacies of Disturbance in Semi-Arid Forests, Southwestern USA

    Science.gov (United States)

    Swetnam, T. L.; Lynch, A. M.; Falk, D. A.; Yool, S. R.; Guertin, D. P.

    2014-12-01

    Characterizing differences in existing vegetation driven by natural variation versus disturbance legacies could become a critical component of applied forest management practice with important implications for monitoring ecologic succession and eco-hydrological interactions within the critical zone. Here we characterize variations in aerial LiDAR derived forest structure at individual tree scale in Arizona and New Mexico. Differences in structure result from both topographic and climatological variations and from natural and human related disturbances. We chose a priori undisturbed and disturbed sites that included preservation, development, logging and wildfire as exemplars. We compare two topographic indices, the topographic position index (TPI) and topographic wetness index (TWI), to two local indicators of spatial association (LISA): the Getis-Ord Gi and Anselin's Moran I. We found TPI and TWI correlate well to positive z-scores (tall trees in tall neighborhoods) in undisturbed areas and that disturbed areas are clearly defined by negative z-scores, in some cases better than what is visible from traditional orthophotography and existing GIS maps. These LISA methods also serve as a robust technique for creating like-clustered stands, i.e. common stands used in forest inventory monitoring. This research provides a significant advancement in the ability to (1) quantity variation in forest structure across topographically complex landscapes, (2) identify and map previously unrecorded disturbance locations, and (3) quantify the different impacts of disturbance within the perimeter of a stand or event at ecologically relevant scale.

  13. Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology.

    Science.gov (United States)

    Swenson, Nathan G; Enquist, Brian J

    2009-08-01

    Species diversity is promoted and maintained by ecological and evolutionary processes operating on species attributes through space and time. The degree to which variability in species function regulates distribution and promotes coexistence of species has been debated. Previous work has attempted to quantify the relative importance of species function by using phylogenetic relatedness as a proxy for functional similarity. The key assumption of this approach is that function is phylogenetically conserved. If this assumption is supported, then the phylogenetic dispersion in a community should mirror the functional dispersion. Here we quantify functional trait dispersion along several key axes of tree life-history variation and on multiple spatial scales in a Neotropical dry-forest community. We next compare these results to previously reported patterns of phylogenetic dispersion in this same forest. We find that, at small spatial scales, coexisting species are typically more functionally clustered than expected, but traits related to adult and regeneration niches are overdispersed. This outcome was repeated when the analyses were stratified by size class. Some of the trait dispersion results stand in contrast to the previously reported phylogenetic dispersion results. In order to address this inconsistency we examined the strength of phylogenetic signal in traits at different depths in the phylogeny. We argue that: (1) while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function; and (2) the previously used metric of phylogenetic signal provided erroneous inferences about trait dispersion when married with patterns of phylogenetic dispersion.

  14. Large-scale determinants of diversity across Spanish forest habitats: accounting for model uncertainty in compositional and structural indicators

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Quller, E.; Torras, O.; Alberdi, I.; Solana, J.; Saura, S.

    2011-07-01

    An integral understanding of forest biodiversity requires the exploration of the many aspects it comprises and of the numerous potential determinants of their distribution. The landscape ecological approach provides a necessary complement to conventional local studies that focus on individual plots or forest ownerships. However, most previous landscape studies used equally-sized cells as units of analysis to identify the factors affecting forest biodiversity distribution. Stratification of the analysis by habitats with a relatively homogeneous forest composition might be more adequate to capture the underlying patterns associated to the formation and development of a particular ensemble of interacting forest species. Here we used a landscape perspective in order to improve our understanding on the influence of large-scale explanatory factors on forest biodiversity indicators in Spanish habitats, covering a wide latitudinal and attitudinal range. We considered six forest biodiversity indicators estimated from more than 30,000 field plots in the Spanish national forest inventory, distributed in 213 forest habitats over 16 Spanish provinces. We explored biodiversity response to various environmental (climate and topography) and landscape configuration (fragmentation and shape complexity) variables through multiple linear regression models (built and assessed through the Akaike Information Criterion). In particular, we took into account the inherent model uncertainty when dealing with a complex and large set of variables, and considered different plausible models and their probability of being the best candidate for the observed data. Our results showed that compositional indicators (species richness and diversity) were mostly explained by environmental factors. Models for structural indicators (standing deadwood and stand complexity) had the worst fits and selection uncertainties, but did show significant associations with some configuration metrics. In general

  15. Management strategies for bark beetles in conifer forests

    Science.gov (United States)

    Christopher Fettig; Jacek  Hilszczański

    2015-01-01

    Several species of bark beetles (Coleoptera: Curculionidae, Scolytinae) are capable of causing significant amounts of tree mortality in conifer forests throughout much of the world.  In most cases, these events are part of the ecology of conifer forests and positively influence many ecological processes, but the economic and social implications can be...

  16. INTEGRATED SUSTAINABLE MANGROVE FOREST MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2015-07-01

    Full Text Available Mangrove forest as a renewable resource must be managed based on sustainable basis in which the benefits of ecological, economic and social from the forest have to equity concern in achieving the optimum forest products and services in fulfill the needs of recent generation without destruction of future generation needs and that does not undesirable effects on the physical and social environment. This Sustainable Forest Management (SFM practices needs the supporting of sustainability in the development of social, economic and environment (ecological sounds simultaneously, it should be run by the proper institutional and regulations. In operational scale, SFM need integration in terms of knowledge, technical, consultative of stakeholders, coordination among sectors and other stakeholders, and considerations of ecological inter-relationship in which mangroves as an integral part of both a coastal ecosystem and a watershed (catchment area. Some tools have been developed to measure the performent of SFM, such as initiated by ITTO at 1992 and followed by Ministry of Forestry of Indonesia (1993, CIFOR (1995, LEI (1999, FSC (1999, etc., however, the true nuance of SFM’s performance is not easy to be measured. 

  17. The Bonobo Pan paniscus (Mammalia: Primates: Hominidae nesting patterns and forest canopy layers in the Lake Tumba forests and Salonga National Park, Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Bila-Isia Inogwabini

    2015-10-01

    Full Text Available The description and differentiation of habitat types is a major concern in ecology.  This study examined relationships between Bonobo Pan paniscus nesting patterns and forest structure in the Lake Tumba Swampy Forests. Data on presence of fresh Bonobo nests, canopy cover, canopy structure, tree densities and tree basal areas were collected systematically along 134 transects at 400m and 800m intervals, and the leaf-covered area (LCA was calculated for each of seven forest types. I observed a significant correlation between bonobo nests and mixed mature forest/closed understory forest type (r=-0.730, df = 21, p <0.05, but not mixed mature forest/open understory, old secondary forest and young secondary forest.  Basal areas of non-nesting trees along transects did not differ significantly from those in sites where bonobos nested.  Higher LCA (55% and 55% occurred in nesting sites when compared with non-nesting sites (39% and 42% at elevations 4–8 m and 8–16 m above the soil.  There was greater leaf cover in the understorey at sites where bonobos did not nest, while there was greater leaf cover in the mid-storey at sites where bonobos did nest.  

  18. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  19. Unveiling current Guanaco distribution in chile based upon niche structure of phylogeographic lineages: Andean puna to subpolar forests.

    Science.gov (United States)

    González, Benito A; Samaniego, Horacio; Marín, Juan Carlos; Estades, Cristián F

    2013-01-01

    Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2)) with lineages-level (65,321 km(2)). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides a scientific tool to further develop large scale plans for habitat conservation and preservation of intraspecific genetic variability for this far ranging South American camelid, which inhabits a diversity of ecoregion types from Andean puna to subpolar forests.

  20. Ecological requirements of Abies alba in the French Alps derived from dendro-ecological analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, C.; Michalet, R.; Desplanque, C.; Petetin, A.; Aime, S. [Univ. Joseph Fourier, Grenoble (France). Centre de Biologie Alpine

    1999-06-01

    We used dendro-ecological techniques to investigate fundamental relationships between climate and growth of Abies alba (silver fir) in eastern France. Seven Abies forests in the Trieves region of the French Alps were chosen to represent a wide range of ecological conditions based on the results of previous forest vegetation surveys. In each forest, four trees were sampled in each of five different stands with two cores per tree. These 280 cores were studied using two separate dendro-ecological methods: the pointer years method (based on extreme growth events), and correlation functions between tree ring-widths and monthly climatic data. Data from 11 meteorological stations were combined to provide a regional analysis of precipitation and minimum and maximum temperatures. The two dendro-ecological methods appear to be complementary, as the first technique emphasizes common and low intensity linear correlations between ring-widths and climatic variations, and the second method emphasizes extreme and unusual climatic events such as exceptionally cold or dry years. Across all sites, drought in the previous year was consistently correlated with a low growth rate; however, other climatic variables varied substantially among sites. For example, drought in the current year reduced growth more in the low elevation sites than in the high elevation sites and severe winter frost reduced growth the most in the high altitude sites and the driest site. Moreover, certain growth responses are better correlated with the age of the stands, the canopy closure and the floristic composition of the community than the abiotic factors, emphasizing the value of dendro-ecological sampling based on phytosociological units 63 refs, 4 figs, 1 tab

  1. Determinants of plant community assembly in a mosaic of landscape units in central Amazonia: ecological and phylogenetic perspectives.

    Directory of Open Access Journals (Sweden)

    María Natalia Umaña

    Full Text Available The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace and flooded forests (Igapó. We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.

  2. Determinants of Plant Community Assembly in a Mosaic of Landscape Units in Central Amazonia: Ecological and Phylogenetic Perspectives

    Science.gov (United States)

    Umaña, María Natalia; Norden, Natalia; Cano, Ángela; Stevenson, Pablo R.

    2012-01-01

    The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties. PMID:23028844

  3. Long-term structural and biomass dynamics of virgin Tsuga canadensis-Pinus strobus forests after hurricane disturbance.

    Science.gov (United States)

    D'Amato, Anthony W; Orwig, David A; Foster, David R; Barker Plotkin, Audrey; Schoonmaker, Peter K; Wagner, Maggie R

    2017-03-01

    in the region that also lack abundant white pine. Results highlight the importance of disturbance legacies in affecting forest structural conditions over extended periods following stand-replacing events and underscore that post-disturbance salvage logging can alter ecosystem development for decades. Moreover, the dominant role of old-growth P. strobus in live and detrital biomass pools before and after the hurricane, respectively, demonstrate the disproportionate influence this species likely had on carbon storage at localized scales prior to the widespread, selective harvesting of large P. strobus across the region in the 18th and 19th centuries. © 2017 by the Ecological Society of America.

  4. Amount of Forest Edge at a 2 Hectare Scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and...

  5. Amount of Forest Edge at a 65 Hectare Scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and...

  6. Forecasting forest development through modeling based on the legacy of forest structure over the past 43 years

    Directory of Open Access Journals (Sweden)

    E.Z. Baskent

    2013-07-01

    Full Text Available Aim of study: Sustainable management of forest ecosystems requires comprehensive coverage of data to reflect both the historical legacy and the future development of forests.  This study focuses on analyzing the spatio-temporal dynamics of forests over the past 43 years to help better forecast the future development of forest under various management strategies.Area of study: The area is situated in Karaisalı district of Adana city in the southeastern corner of Turkey.Material and methods: The historical pattern from 1969 to 2012 was assessed with digital forest cover type maps, produced with high resolution aerial photo interpretation using Geographic Information Systems (GIS. The forest development over the next 120 years was forecasted using ecosystem-based multiple use forest management model (ETÇAP to understand the cause-effect relationships under various management strategies.Main results: The result showed that over the past 43 years while total forest areas decreased about 1194 ha (4%, the productive forest areas increased about 5397 ha (18% with a decrease of degraded forest (5824 ha, 20% and increase of maquis areas (2212 ha, 7%.The forecast of forest development under traditional management strategy resulted in an unsustainable forest due to broken initial age class structure, yet generated more total harvest (11% due to 88% relaxing of even timber flow constraint. While more volume could be harvested under traditional management conditions, the sustainability of future forest is significantly jeopardized.Research highlights: This result trongly implies that it is essential adopting modeling techniques to understand forest dynamics and forecast the future development comprehensively.Keywords: Forest management; simulation; optimization; forest dynamics; land use change.

  7. The social structural foundations of adaptation and transformation in social-ecological systems

    Directory of Open Access Journals (Sweden)

    Michele L. Barnes

    2017-12-01

    Full Text Available Social networks are frequently cited as vital for facilitating successful adaptation and transformation in linked social-ecological systems to overcome pressing resource management challenges. Yet confusion remains over the precise nature of adaptation vs. transformation and the specific social network structures that facilitate these processes. Here, we adopt a network perspective to theorize a continuum of structural capacities in social-ecological systems that set the stage for effective adaptation and transformation. We begin by drawing on the resilience literature and the multilayered action situation to link processes of change in social-ecological systems to decision making across multiple layers of rules underpinning societal organization. We then present a framework that hypothesizes seven specific social-ecological network configurations that lay the structural foundation necessary for facilitating adaptation and transformation, given the type and magnitude of human action required. A key contribution of the framework is explicit consideration of how social networks relate to ecological structures and the particular environmental problem at hand. Of the seven configurations identified, three are linked to capacities conducive to adaptation and three to transformation, and one is hypothesized to be important for facilitating both processes. We discuss how our theoretical framework can be applied in practice by highlighting existing empirical examples from related environmental governance contexts. Further extension of our hypotheses, particularly as more data become available, can ultimately help guide the design of institutional arrangements to be more effective at dealing with change.

  8. Keystone Species, Forest and Landscape: A Model to Select Protected Areas

    Science.gov (United States)

    Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos

    2017-06-01

    The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.

  9. Forecasting forest development through modeling based on the legacy of forest structure over the past 43 years

    Energy Technology Data Exchange (ETDEWEB)

    Baskent, E. Z.; Celik, D. A.

    2013-09-01

    Aim of study: Sustainable management of forest ecosystems requires comprehensive coverage of data to reflect both the historical legacy and the future development of forests. This study focuses on analyzing the spatio-temporal dynamics of forests over the past 43 years to help better forecast the future development of forest under various management strategies. Area of study: The area is situated in Karaisalt district of Adana city in the southeastern corner of Turkey. Material and methods: The historical pattern from 1969 to 2012 was assessed with digital forest cover type maps, produced with high resolution aerial photo interpretation using Geographic Information Systems (GIS). The forest development over the next 120 years was forecasted using ecosystem-based multiple use forest management model (ETCAP) to understand the cause-effect relationships under various management strategies. Main results: The result showed that over the past 43 years while total forest areas decreased about 1,194 ha (4%), the productive forest areas increased about 5,397 ha (18%) with a decrease of degraded forest (5,824 ha, 20%) and increase of maquis areas (2,212 ha, 7%).The forecast of forest development under traditional management strategy resulted in an unsustainable forest due to broken initial age class structure, yet generated more total harvest (11%) due to 88% relaxing of even timber flow constraint. While more volume could be harvested under traditional management conditions, the sustainability of future forest is significantly jeopardized. Research highlights: This result trongly implies that it is essential adopting modeling techniques to understand forest dynamics and forecast the future development comprehensively. (Author)

  10. Anthropogenic landforms of warfare origin and their ecological significance: the Verdun Forest, NE France

    Science.gov (United States)

    De Matos Machado, Rémi; Amat, Jean-Paul; Arnaud-Fassetta, Gilles; Bétard, François; Bilodeau, Clélia; Jacquemot, Stéphanie; Toumazet, Jean-Pierre

    2017-04-01

    By its unprecedented industrial character, the First World War marked landscapes like no other conflict in the world. As a result of artillery bombardment and building facilities, the relief suffered major disturbances giving rise to millions anthropogenic landforms of warfare origin on the Western front: shell craters, trenches, shelters and gun sites. This landscape made of bumps and holes that dominated the lands of West Flanders and North-eastern France during the four years of war took chaotic aspects on the great battle sites. In some areas, substrate crushing by repeated bombings resulted in a field lowering of several metres. Although these geomorphological legacies of war are still present on these scarred lands, their effects on local environment and on present-day biodiversity patterns are not fully understood. On the battlefield of Verdun, where a huge number and range of conflict-induced landforms may be observed, special attention is being paid to the ecological significance of these anthropogenic landforms in a current landscape matrix dominated by forest. In 2013, an airborne LiDAR mission conducted over the battlefield has brought to light the relief inherited from the fighting that was until now concealed by the Verdun forest planted in the 1930's. Through a digital terrain model (DTM) with centimetre level accuracy, it is now possible to observe the smallest traces of the fighting. A first programmatic mapping work allowed to inventory and to locate these reliefs on the whole 10,000 hectares covered by the DTM. Also, the calculation of their geometry enabled us to quantify the erosion rate due to the military activities on the battlefield. On the basis of these morphometric measurements, a typology was developed to better appreciate the morphological diversity of conflict-induced landforms. The results show that these anthropogenic landforms are generally hollow. Because of this particular morphology, the conflict-induced landforms provide

  11. Forests in a water limited world under climate change

    International Nuclear Information System (INIS)

    Mátyás, Csaba; Sun, Ge

    2014-01-01

    The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses. (paper)

  12. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  13. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    Science.gov (United States)

    Passmore, Heather A; Bruna, Emilio M; Heredia, Sylvia M; Vasconcelos, Heraldo L

    2012-01-01

    The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  14. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    Directory of Open Access Journals (Sweden)

    Heather A Passmore

    Full Text Available The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions.We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments.We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  15. Directions of improvement for public administration institutional structure in field of ecology at regional level

    Directory of Open Access Journals (Sweden)

    O. I. Matyushenko

    2017-06-01

    Full Text Available Based on the analysis of the organizational structure of public authorities at national and regional level involved in the process of governance in the environmental field as well as their legal security it was found that at the regional level, in regions there are different units (departments, management authorities, divisions, sectors that coordinate the process of public administration in the environmental field. In order to offer its own structure unit of state administration, to deal with environmental issues it is analyzed the organizational structures of central executive authority in the field of ecology - the Ministry of Ecology and Natural Resources of Ukraine at the national level and the organizational structures of departments / offices of Ecology and Natural Resources regional administrations respectively, at the regional level. As it is determined there is no typical structure of the regional state administration unit in Ukraine. Recognized that departments and sectors uniting at the high level is chaotic, unsystematic and apparently dictated by different reasons (financial, personal and psychological, corruption etc., not the content of (the logic of and structural accountability to senior management level. It is offered the author organizational structure for the Ecology and Natural Resources Department of Regional State Administration. It is suggested that this Department consists of three units: Department of Ecology (Department of environmental monitoring and audit department of environmental security department of planning and coordination of international projects in the environmental field; Department of Natural Resources (Department of Conservation of Natural Resources, Department of Protected Areas and Ecological Network Development, Department of Environmental Economics; Management support of the Department (Legal, Financial and Economic Division, Department of Administration Department, a department of scientific and

  16. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.

    Science.gov (United States)

    Homann, Peter S; Darbyshire, Robyn L; Bormann, Bernard T; Morrissette, Brett A

    2015-11-03

    Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cut) in Douglas-fir dominated forest of southwestern Oregon. In the absence of wildfire, O-horizon Hg decreased by 60% during the 14 years after clearcutting, possibly the result of decreased atmospheric deposition due to the smaller-stature vegetative canopy; in contrast, no change was observed in mature unthinned and thinned forest. Wildfire decreased O-horizon Hg by >88% across all forest structures and decreased mineral-soil (0 to 66 mm depth) Hg by 50% in thinned forest and clear-cut. The wildfire-associated soil Hg loss was positively related to the amount of surface fine wood that burned during the fire, the proportion of area that burned at >700 °C, fire severity as indicated by tree mortality, and soil C loss. Loss of soil Hg due to the 200,000 ha wildfire was more than four times the annual atmospheric Hg emissions from human activities in Oregon.

  17. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    Science.gov (United States)

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  18. [Estimation of Shenyang urban forest green biomass].

    Science.gov (United States)

    Liu, Chang-fu; He, Xing-yuan; Chen, Wei; Zhao, Gui-ling; Xu, Wen-duo

    2007-06-01

    Based on ARC/GIS and by using the method of "planar biomass estimation", the green biomass (GB) of Shenyang urban forests was measured. The results demonstrated that the GB per unit area was the highest (3.86 m2.m(-2)) in landscape and relaxation forest, and the lowest (2.27 m2.m(-2)) in ecological and public welfare forest. The GB per unit area in urban forest distribution area was 2.99 m2.m(-2), and that of the whole Shenyang urban area was 0.25 m2.m(-2). The total GB of Shenyang urban forests was about 1.13 x 10(8) m2, among which, subordinated forest, ecological and public welfare forest, landscape and relaxation forest, road forest, and production and management forest accounted for 36.64% , 23.99% , 19.38% , 16.20% and 3.79%, with their GB being 4. 15 x 10(7), 2.72 x 10(7), 2.20 x 10(7), 1.84 x 10(7) and 0.43 x 10(7) m2, respectively. The precision of the method "planar biomass estimation" was 91.81% (alpha = 0.05) by credit test.

  19. Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986-1994

    International Nuclear Information System (INIS)

    Ipatyev, V.; Bulavik, I.; Baginsky, V.; Goncharenko, G.; Dvornik, A.

    1999-01-01

    This paper reports basic features of radionuclide migration and the prediction of the radionuclide redistribution and accumulation by forest phytocoenoses after the Chernobyl Nuclear Power Plant (CNPP) accident. The current ecological condition of forest ecosystems is evaluated and scientific aspects of forest management in the conditions of the large-scale radioactive contamination are discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery

    CSIR Research Space (South Africa)

    Cho, Moses A

    2009-06-01

    Full Text Available The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast-height (DBH), mean tree height and tree density of a closed canopy beech forest...

  1. Research on Land Ecological Condition Investigation and Monitoring Technology

    Science.gov (United States)

    Lv, Chunyan; Guo, Xudong; Chen, Yuqi

    2017-04-01

    The ecological status of land reflects the relationship between land use and environmental factors. At present, land ecological situation in China is worrying. According to the second national land survey data, there are about 149 million acres of arable land located in forests and grasslands area in Northeast and Northwest of China, Within the limits of the highest flood level, at steep slope above 25 degrees; about 50 million acres of arable land has been in heavy pollution; grassland degradation is still serious. Protected natural forests accounted for only 6% of the land area, and forest quality is low. Overall, the ecological problem has been eased, but the local ecological destruction intensified, natural ecosystem in degradation. It is urgent to find out the situation of land ecology in the whole country and key regions as soon as possible. The government attaches great importance to ecological environment investigation and monitoring. Various industries and departments from different angles carry out related work, most of it about a single ecological problem, the lack of a comprehensive surveying and assessment of land ecological status of the region. This paper established the monitoring index system of land ecological condition, including Land use type area and distribution, quality of cultivated land, vegetation status and ecological service, arable land potential and risk, a total of 21 indicators. Based on the second national land use survey data, annual land use change data and high resolution remote sensing data, using the methods of sample monitoring, field investigation and statistical analysis to obtain the information of each index, this paper established the land ecological condition investigation and monitoring technology and method system. It has been improved, through the application to Beijing-Tianjin-Hebei Urban Agglomeration, the northern agro-pastoral ecological fragile zone, and 6 counties (cities).

  2. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  3. Assessment of Different Remote Sensing Data for Forest Structural Attributes Estimation in the Hyrcanian forests

    Energy Technology Data Exchange (ETDEWEB)

    Nourian, N.; Shataee-Joibary, S.; Mohammadi, J.

    2016-07-01

    Aim of the study: The objective of the study was the comparative assessment of various spatial resolutions of optical satellite imagery including Landsat-TM, ASTER, and Quickbird data to estimate the forest structure attributes of Hyrcanian forests, Golestan province, northernIran. Material and methods: The 112 square plots with area of0.09 ha were measured using a random cluster sampling method and then stand volume, basal area, and tree stem density were computed using measured data. After geometric and atmospheric corrections of images, the spectral attributes from original and different synthetic bands were extracted for modelling. The statistical modelling was performed using CART algorithm. Performance assessment of models was examined using the unused validation plots by RMSE and bias measures. Main Results: The results showed that model of Quickbird data for stand volume, basal area, and tree stem density had a better performance compared to ASTER and TM data. However, estimations by ASTER and TM imagery had slightly similar results for all three parameters. Research highlights: This study exposed that the high-resolution satellite data are more useful for forest structure attributes estimation in the Hyrcanian broadleaves forests compared with medium resolution images without consideration of images costs. However, regarding to be free of the most medium resolution data such as ASTER and TM,ETM+ or OLI images, these data can be used with slightly similar results. (Author)

  4. PARTICIPATORY FOREST MANAGEMENT FOR THE SUSTAINABLE MANAGEMENT OF THE SUNDARBANS MANGROVE FOREST

    OpenAIRE

    Anjan Kumer Dev Roy; Khorshed Alam

    2012-01-01

    Peopleâs participation in forest management has become successful in many countries of the world. The Sundarbans is the single largest mangrove forest in the world, bearing numerous values and holding importance from economic, social and ecological perspectives. It is the direct and indirect sources of the livelihood of 3.5 million people. As a reserve forest, government is always providing extra care through state monopolies for its management with the introduction of policies and guidelines...

  5. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data

    Science.gov (United States)

    Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin

    2010-01-01

    LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...

  6. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    Science.gov (United States)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  7. Dictionary of applied ecology. English-German, German-English

    International Nuclear Information System (INIS)

    1994-01-01

    The book comprises about 14.000 terms of the following subject fields: Fundamentals (ecological factors, ecosystems and mark hazard factors, dynamics of ecosystems), environmental toxicology, environmental analysis (chemical methods of analysis, biological indicators), models and forecasts for ecosystems, environmental technology (waste water treatment, air pollution abatement, soil regeneration, landfill reclamation, recycling technologies, low-waste technologies), special ecological problems (forest ecology, landscape ecology), and environmental law. (orig.) [de

  8. Location and description of transects for ecological studies in floodplain forests of the lower Suwannee River, Florida

    Science.gov (United States)

    Lewis, L.J.; Light, H.M.; Darst, M.R.

    2001-01-01

    Twelve transects were established in floodplain forests along the lower Suwannee River, Florida, as the principal data collection sites for a comprehensive study conducted by the U.S. Geological Survey and the Suwannee River Water Management District from 1996 to 2001. Data collected along the 12 transects included hydrologic conditions, land-surface elevations, soils, and vegetation of floodplain forests in relation to river flow. Transect locations are marked in the field with permanent markers at approximately 30 meter intervals. Detailed descriptions of the 12 transects and their locations are provided so that they can be used for future ecological studies. Descriptions of the transects include contact information necessary for access to the property on which the transects are located, maps showing transect locations and routes from the nearest city or major road, small scale maps of each transect showing marker locations, latitude and longitude of each marker, compass bearings of each transect line and graphs showing land-surface elevations of the transect with marker locations.

  9. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China.

    Science.gov (United States)

    Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha

    2017-03-01

    Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.

  10. Structure and floristic composition of Miombo woodland in Mocuba district, Mozambique

    Directory of Open Access Journals (Sweden)

    Salvador José António Nanvonamuquitxo

    2017-08-01

    Full Text Available To ensuresustainable use of natural forests, it is necessary the development of appropriate silvicultural techniques, based on the ecology of each type of plant formation. This study aimed to characterize the horizontal structure of a Miombo forest, located in Mocuba District, Zambézia province in Mozambique, aiming to provide technical support to the development of efficient management systems forest. The forest inventory was conducted using systematic sampling process, in which the horizontal structure was characterized taking into account the forest highlighting the floristic composition, phytosociology, species diversity and diameter distribution. In the area were foud 1090 individuals from 34 species, 29 genera and 12 families. The most important species in accordance with the ecological importance value index were Fabaceae family such BrachystegiaspiciformisBenth., CordylaafricanaLour., Burkeaafricana Hook., Pterocarpusangolensis DC., which make up about 58% of all species in the area. The behavior observed for the Shannon-Wienner (H ' and Pielou (J' diversity index of 0,88 and 0,85 respectively, showed that the study area exhibits low diversity of species compared to studies in similar forests. The diameter distribution adjusted by the Meyer function showed a deficit of individuals in class 12,5 cm and 17,5 cm as a result of underutilization of individuals of lower diametric class by the local community, however, this is showing good resilience of its structure.

  11. The influence of forest management on vulnerability of forests to severe weather

    Science.gov (United States)

    Robert H. Beach; Erin O. Sills; Tzu-Ming Liu; Subhrendu. Pattanayak

    2010-01-01

    Excessive wind, ice, and snow regularly cause major disturbances to forests in many parts of the world, significantly impacting both ecological conditions and economic returns to forest landowners. These events cause immediate losses for landowners, and the broken and uprooted trees left in the wake of a storm increase the risk that wildfires, disease, and pest...

  12. The Italian forest sites of FunDivEUROPE: a new FP7 project on the functional significance of forest biodiversity in Europe

    Directory of Open Access Journals (Sweden)

    Bussotti F

    2012-12-01

    Full Text Available The Italian forest sites of FunDivEUROPE: a new FP7 project on the functional significance of forest biodiversity in Europe. FunDivEUROPE is a new project aiming at a deeper understanding of the role of forest diversity on ecosystem functions and service provisioning for society. This project combines three scientific platforms: experimental, exploratory and inventory. The exploratory platform is based on the observation of a broad range of properties, traits and ecological processes on a network of ca. 240 natural forest sites representing a gradient of tree species diversity in six focal regions of Europe (Spain, Italy, Germany, Poland, Finland and Romania. The Italian sites are located on the hills of central and Southern Tuscany and represent the category “thermophilous deciduous forest”. Almost one year of fieldwork was needed to select and characterize 36 plots measuring 30 x 30 m. Selection was based on criteria concerning tree mixtures and richness, structural parameters and main environmental variables. The main features of these sites are synthetically presented in this paper together with a short description of the project structure and scope. The aim is also to enhance dissemination of the potential implications for a sustainable forest management in Italy.

  13. From savanna to campus woodlot: the historical ecology of farm woodlots in southern Illinois

    Science.gov (United States)

    C. M. Ruffner; A. Trieu; S. Chandy; M. D. Davis; D. Fishel; G. Gipson; J. Lhotka; K. Lynch; P. Perkins; S. van de Gevel; W. Watson; E. White

    2003-01-01

    The historical ecology of Thompson Woods, a 4.1 ha forest remnant on the campus of Southern Illinois University-Carbondale, was investigated through stand structure analysis, dendroecology, and historical records. Historical records indicate the area was a savanna ecosystem prior to European settlement dominated by large, open grown mixed oak-hickory trees. No trees in...

  14. Utilisation and Management Changes in South Kyrgyzstan's Mountain Forests

    Institute of Scientific and Technical Information of China (English)

    Matthias Schmidt

    2005-01-01

    Using political ecology as its conceptual framework, this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan's walnut-fruit forests over the last century. The aim of this study on human-environment interactions is to investigate the relationship between actors on the one side, their interests and demands, and the forests and forested lands on the other. Forest resource utilisation and management - and even the recognition of different forest products as resources - are connected with political and socio-economic conditions that change with time. The walnut-fruit forests of South Kyrgyzstan are unique, characterised by high biodiversity and a multiplicity of usable products; and they have been utilised for a long time. Centralised and formal management of the forests started with the Russian occupation and was strengthened under Soviet rule, when the region became a part of the USSR. During this era, a state forest administration that was structured from Moscow all the way down to the local level drew up detailed plans and developed procedures for utilising the different forest products. Since the collapse of the Soviet Union, the socio-political and economic frame conditions have changed significantly, which has brought not only the sweeping changes in the managing institutions, but also the access rights and interests in the forest resources. At present, the region is suffering from a high unemployment rate, which has resulted in the forests' gaining considerable importance in the livelihood strategies of the local population. Political and economic liberalization, increased communication and trans-regional exchange relations have opened the door for international companies and agents interested in the valuable forest products. Today, walnut wood and burls, walnuts, wild apples and mushrooms are all exported to various countries in the world. Scientists and members of various international organisations stress the ecological

  15. Forest disturbances under climate change

    Czech Academy of Sciences Publication Activity Database

    Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, Jan; Ascoli, D.; Petr, M.; Honkaniemi, J.; Lexer, M. J.; Trotsiuk, V.; Mairota, P.; Svoboda, M.; Fabrika, M.; Nagel, T.A.; Reyer, C. P. O.

    2017-01-01

    Roč. 7, č. 6 (2017), s. 395-402 ISSN 1758-678X R&D Projects: GA MŠk(CZ) LD15158 Institutional support: RVO:67985939 Keywords : climate change * disturbance * forest Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 19.304, year: 2016

  16. Managing artisanal and small-scale mining in forest areas: perspectives from a poststructural political ecology.

    Science.gov (United States)

    Hirons, Mark

    2011-01-01

    Artisanal and small-scale mining (ASM) is an activity intimately associated with social deprivation and environmental degradation, including deforestation. This paper examines ASM and deforestation using a broadly poststructural political ecology framework. Hegemonic discourses are shown to consistently influence policy direction, particularly in emerging approaches such as Corporate Social Responsibility and the Forest Stewardship Council. A review of alternative discourses reveals that the poststructural method is useful for critiquing the international policy arena but does not inform new approaches. Synthesis of the analysis leads to conclusions that echo a growing body of literature advocating for policies to become increasingly sensitive to local contexts, synergistic between actors at difference scales, and to be integrated across sectors.

  17. Novel and Lost Forests in the Upper Midwestern United States, from New Estimates of Settlement-Era Composition, Stem Density, and Biomass.

    Science.gov (United States)

    Goring, Simon J; Mladenoff, David J; Cogbill, Charles V; Record, Sydne; Paciorek, Christopher J; Jackson, Stephen T; Dietze, Michael C; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S; Williams, John W

    2016-01-01

    EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest

  18. Novel and Lost Forests in the Upper Midwestern United States, from New Estimates of Settlement-Era Composition, Stem Density, and Biomass.

    Directory of Open Access Journals (Sweden)

    Simon J Goring

    Full Text Available EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US. More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km reconstructions of pre-settlement (1800s forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan, using 19th Century Public Land Survey System (PLSS, with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection.We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA data to show the prevalence of lost forests (pre-settlement forests with no current analog, and novel forests (modern forests with no past analogs. Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical

  19. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    Directory of Open Access Journals (Sweden)

    Dennis C Odion

    Full Text Available There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in

  20. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    Science.gov (United States)

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa