WorldWideScience

Sample records for forecast model developed

  1. Development of Ensemble Model Based Water Demand Forecasting Model

    Science.gov (United States)

    Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop

    2014-05-01

    In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)

  2. Development of rainfall-runoff forecast model | Oyebode | Journal of ...

    African Journals Online (AJOL)

    This study developed a neurofuzzy-based rainfall-runoff forecast model for river basin and evaluated the performance of the model. This was with a view to capturing the behaviour of hydrological and meterological variables involved in rainfall-runoff process to improve forecast accuracy of rainfallrunoff. Three hydrological ...

  3. Development of a sales forecasting model for canopy windows

    OpenAIRE

    2014-01-01

    M.Com. (Business Management) Forecasting is an important function used in a wide range of business planning or decision-making situations. The purpose ofthis study was to build a sales forecasting model that would be practical and cost effective, from the various forecasting methods and techniques available. Various forecast models, methods and techniques are outlined in the initial part of this study by the author. The author has outlined some of the fundamentals and limitations that unde...

  4. Development of Seasonal ARIMA Models for Traffic Noise Forecasting

    Directory of Open Access Journals (Sweden)

    Guarnaccia Claudio

    2017-01-01

    Full Text Available In this paper, a time series analysis approach is adopted to monitor and predict a traffic noise levels dataset, measured in a site of Messina, Italy. In general, acoustical noise shows a high prediction complexity, since its slope is strongly related to the variability of the sources and to intrinsic randomness. In the analysed site the predominant source is road traffic, that has a periodic and non-stationary behaviour. The study of the time evolution of this hazardous agent is very useful to assess the impact to human health and activities. The time series models adopted in this paper are of the stochastic seasonal ARIMA class; these types of model are based on the strong periodicity registered in the acoustical equivalent levels. The observed periodicity is related to the highly variability of urban traffic in the different days of the week. Three different seasonal ARIMA models are proposed and calibrated on a rich dataset of 800 sound level measurements. The predictive capabilities of these techniques are encouraging. The implemented models show a good forecasting performances in terms of low residuals, i.e. difference between observed and estimated noise values. The residuals are analysed by means of statistical indexes, plots and tests.

  5. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S [Earth Sciences Department. Barcelona Supercomputing Center. Barcelona (Spain); Cuevas, E [Izanaa Atmospheric Research Center. Agencia Estatal de Meteorologia, Tenerife (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: carlos.perez@bsc.es

    2009-03-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  6. Development of Spreadsheet Models for Forecasting Manpower Stocks and Flows

    National Research Council Canada - National Science Library

    Earl, Michael

    1998-01-01

    The computerized manpower planning models developed in this thesis were designed to be used by students taking the Manpower Personnel Models course, OS4701, in the Manpower Systems Analysis Curriculum...

  7. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  8. Development of a Multi-Model Ensemble Scheme for the Tropical Cyclone Forecast

    Science.gov (United States)

    Jun, S.; Lee, W. J.; Kang, K.; Shin, D. H.

    2015-12-01

    A Multi-Model Ensemble (MME) prediction scheme using selected and weighted method was developed and evaluated for tropical cyclone forecast. The analyzed tropical cyclone track and intensity data set provided by Korea Meteorological Administration and 11 numerical model outputs - GDAPS, GEPS, GFS (data resolution; 50 and 100 km), GFES, HWRF, IFS(data resolution; 50 and 100 km), IFS EPS, JGSM, and TEPS - during 2011-2014 were used for this study. The procedure suggested in this study was divided into two stages: selecting and weighting process. First several numerical models were chosen based on the past model's performances in the selecting stage. Next, weights, referred to as regression coefficients, for each model forecasts were calculated by applying the linear and nonlinear regression technique to past model forecast data in the weighting stage. Finally, tropical cyclone forecasts were determined by using both selected and weighted multi-model values at that forecast time. The preliminary result showed that selected MME's improvement rate (%) was more than 5% comparing with non-selected MME at 72 h track forecast.

  9. Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain

    Science.gov (United States)

    Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna

    2016-11-01

    Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.

  10. Development of a Statistical Model for Forecasting Episodes of Visibility Degradation in the Denver Metropolitan Area.

    Science.gov (United States)

    Reddy, P. J.; Barbarick, D. E.; Osterburg, R. D.

    1995-03-01

    In 1990, the State of Colorado implemented a visibility standard of 0.076 km1 of beta extinction for the Denver metropolitan area. Meteorologists with Colorado's Air Pollution Control Division forecast high pollution days associated with visibility impairment as well as those due to high levels of the federal criteria pollutants. Visibility forecasts are made from a few hours up to about 26 h in advance of the period of interest. Here we discuss the key microscale, mesoscale, and synoptic-scale features associated with episodes of visibility impairment. Data from special studies, case studies, and the 22 NOAA Program for Regional Observing and Forecasting Services mesonet sites have been invaluable in identifying patterns associated with extremes in visibility conditions. A preliminary statistical forecast model has been developed using variables that represent many of these patterns. Six variables were selected from an initial pool of 27 to be used in a model based on linear logistic regression. These six variables include forecast measures of snow cover, surface pressures and a surface pressure gradient in eastern Colorado, relative humidity, and 500-mb ridge position. The initial testing of the model has been encouraging. The model correctly predicted 76% of the good visibility days and 67% of the poor visibility days for a test set of 171 days.

  11. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  12. Development of modelling and forecasting in geology. (Volume 2)

    International Nuclear Information System (INIS)

    Seguin, J.J.; Fourniguet, J.; Peaudecerf, P.

    1990-01-01

    To access the long-term safety of radioactive waste disposal systems, validation of predictive models is essential and large efforts should be given to barriers, particularly geologic barriers. This work appears in the form of four volumes, the subject of the second part is described below. HERODE (calculation of relief altitude under erosion process from 0 to 100000 years) is a weathering and erosion computerized simulation. The model describes materials and rocks transport and also substratum weathering process. FORTRAN 77 is the software language. 31 figs., 6 tabs., 40 refs

  13. Development of modelling and forecasting in geology (Volume 4)

    International Nuclear Information System (INIS)

    Courbouleix, S.; Colleau, A.; Defaut, B.; Fourniguet, J.; Peaudecerf, P.

    1990-01-01

    To access the long-term safety of radioactive waste disposal systems, validation of predictive models is essential and large efforts should be given to barriers, particularly geologic barriers. This work appears in the form of four volumes, the subject of the fourth part is described below. The purpose of this study is to find actual climates which can represent past climates in Europe, during Plio-Quaternary Palynology technics is the most adapted to restore ancient climates. A climatic index, Q n is defined as a function of yearly rainfalls, monthly extreme temperatures and aridity. A climatic diagram is built with climatic index Q n along X axis and a function of the yearly mean temperature along Y axis. This original method can ensure vegetation determination from climate and vice versa. Erosion and Weathering values may be determined after model calibration. 23 figs., 21 refs

  14. Development of modelling and forecasting in geology. (Volume 1)

    International Nuclear Information System (INIS)

    Afzali, H.; Fourniguet, J.; Peaudecerf, P.

    1990-01-01

    To assess the long-term safety of radioactive waste disposal systems, validation of predictive models is essential and large efforts should be given to barriers, particularly geologic barriers. This work appears in the form of four volumes, the subject of the first part is described below. Soils and rocks erosion depends upon climate, relief, lithology and human activities (deforesting). In the world, mechanical erosion is evaluated from 5 to 8 cm per 1000 years (mean denudation ratio). Rocks weathering solubilize chemical elements in the running water and rocks fracturation becomes more easily under erosion effects. Alteration front progress is 0.3-3 cm per 1000 years in temperate zones and 4-7 cm per 1000 years in tropical zones. 5 figs., 14 tabs., 80 refs

  15. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models

    Energy Technology Data Exchange (ETDEWEB)

    Intharathirat, Rotchana, E-mail: rotchana.in@gmail.com [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, KlongLuang, Pathumthani 12120 (Thailand); Abdul Salam, P., E-mail: salam@ait.ac.th [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, KlongLuang, Pathumthani 12120 (Thailand); Kumar, S., E-mail: kumar@ait.ac.th [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, KlongLuang, Pathumthani 12120 (Thailand); Untong, Akarapong, E-mail: akarapong_un@hotmail.com [School of Tourism Development, Maejo University, Chiangmai (Thailand)

    2015-05-15

    Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period.

  16. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models

    International Nuclear Information System (INIS)

    Intharathirat, Rotchana; Abdul Salam, P.; Kumar, S.; Untong, Akarapong

    2015-01-01

    Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period

  17. Predicting the local impacts of energy development: a critical guide to forecasting methods and models

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, D.; O' Hare, M.

    1977-05-01

    Models forecasting second-order impacts from energy development vary in their methodology, output, assumptions, and quality. As a rough dichotomy, they either simulate community development over time or combine various submodels providing community snapshots at selected points in time. Using one or more methods - input/output models, gravity models, econometric models, cohort-survival models, or coefficient models - they estimate energy-development-stimulated employment, population, public and private service needs, and government revenues and expenditures at some future time (ranging from annual to average year predictions) and for different governmental jurisdictions (municipal, county, state, etc.). Underlying assumptions often conflict, reflecting their different sources - historical data, comparative data, surveys, and judgments about future conditions. Model quality, measured by special features, tests, exportability and usefulness to policy-makers, reveals careful and thorough work in some cases and hurried operations with insufficient in-depth analysis in others.

  18. Development of a remote sensing-based rice yield forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H.

    2016-11-01

    This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh. (Author)

  19. Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities

    Science.gov (United States)

    Lv, Baolei; Cobourn, W. Geoffrey; Bai, Yuqi

    2016-12-01

    Empirical regression models for next-day forecasting of PM2.5 and O3 air pollution concentrations have been developed and evaluated for three large Chinese cities, Beijing, Nanjing and Guangzhou. The forecast models are empirical nonlinear regression models designed for use in an automated data retrieval and forecasting platform. The PM2.5 model includes an upwind air quality variable, PM24, to account for regional transport of PM2.5, and a persistence variable (previous day PM2.5 concentration). The models were evaluated in the hindcast mode with a two-year air quality and meteorological data set using a leave-one-month-out cross validation method, and in the forecast mode with a one-year air quality and forecasted weather dataset that included forecasted air trajectories. The PM2.5 models performed well in the hindcast mode, with coefficient of determination (R2) values of 0.54, 0.65 and 0.64, and normalized mean error (NME) values of 0.40, 0.26 and 0.23 respectively, for the three cities. The O3 models also performed well in the hindcast mode, with R2 values of 0.75, 0.55 and 0.73, and NME values of 0.29, 0.26 and 0.24 in the three cities. The O3 models performed better in summertime than in winter in Beijing and Guangzhou, and captured the O3 variations well all the year round in Nanjing. The overall forecast performance of the PM2.5 and O3 models during the test year varied from fair to good, depending on location. The forecasts were somewhat degraded compared with hindcasts from the same year, depending on the accuracy of the forecasted meteorological input data. For the O3 models, the model forecast accuracy was strongly dependent on the maximum temperature forecasts. For the critical forecasts, involving air quality standard exceedences, the PM2.5 model forecasts were fair to good, and the O3 model forecasts were poor to fair.

  20. Application of a mesoscale forecasting model (NMM) coupled to the CALMET to develop forecast meteorology to use with the CALPUFF air dispersion model

    International Nuclear Information System (INIS)

    Radonjic, Z.; Telenta, B.; Kirklady, J.; Chambers, D.; Kleb, H.

    2006-01-01

    An air quality assessment was undertaken as part of the Environmental Assessment for the Port Hope Area Initiative. The assessment predicted potential effects associated with the remediation efforts for historic low-level radioactive wastes and construction of Long-Term Waste Management Facilities (LTWMFs) for both the Port Hope and Port Granby Projects. A necessary element of air dispersion modelling is the development of suitable meteorological data. For the Port Hope and Port Granby Projects, a meteorological station was installed in close proximity to the location of the recommended LTWMF in Port Hope. The recommended location for the Port Granby LTWMF is approximately 10 km west of the Port Hope LTWMF. Concerns were raised regarding the applicability of data collected for the Port Hope meteorological station to the Port Granby Site. To address this concern, a new method for processing meteorological data, which coupled mesoscale meteorological forecasting data the U.S. EPA CALMET meteorological data processor, was applied. This methodology is possible because a new and advanced mesoscale forecasting modelling system enables extensive numerical calculations on personal computers. As a result of this advancement, mesoscale forecasting systems can now be coupled with the CALMET meteorological data processor and the CALPUFF air dispersion modelling system to facilitate wind field estimations and air dispersion analysis. (author)

  1. Development of a dust deposition forecast model for a mine tailings impoundment

    Science.gov (United States)

    Stovern, Michael

    Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms

  2. Macroeconomic models, forecasting, and policymaking

    OpenAIRE

    Pescatori, Andrea; Zaman, Saeed

    2011-01-01

    Models of the macroeconomy have gotten quite sophisticated, thanks to decades of development and advances in computing power. Such models have also become indispensable tools for monetary policymakers, useful both for forecasting and comparing different policy options. Their failure to predict the recent financial crisis does not negate their use, it only points to some areas that can be improved.

  3. Accessing and constructing driving data to develop fuel consumption forecast model

    Science.gov (United States)

    Yamashita, Rei-Jo; Yao, Hsiu-Hsen; Hung, Shih-Wei; Hackman, Acquah

    2018-02-01

    In this study, we develop a forecasting models, to estimate fuel consumption based on the driving behavior, in which vehicles and routes are known. First, the driving data are collected via telematics and OBDII. Then, the driving fuel consumption formula is used to calculate the estimate fuel consumption, and driving behavior indicators are generated for analysis. Based on statistical analysis method, the driving fuel consumption forecasting model is constructed. Some field experiment results were done in this study to generate hundreds of driving behavior indicators. Based on data mining approach, the Pearson coefficient correlation analysis is used to filter highly fuel consumption related DBIs. Only highly correlated DBI will be used in the model. These DBIs are divided into four classes: speed class, acceleration class, Left/Right/U-turn class and the other category. We then use K-means cluster analysis to group to the driver class and the route class. Finally, more than 12 aggregate models are generated by those highly correlated DBIs, using the neural network model and regression analysis. Based on Mean Absolute Percentage Error (MAPE) to evaluate from the developed AMs. The best MAPE values among these AM is below 5%.

  4. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models.

    Science.gov (United States)

    Intharathirat, Rotchana; Abdul Salam, P; Kumar, S; Untong, Akarapong

    2015-05-01

    In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435-44,994 tonnes per day in 2013 to 55,177-56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development and Application of Econometric Models for Forecasting and Analysis of Monetary Policy Scenarios

    OpenAIRE

    Malugin, Vladimir; Demidenko , Mikhail; Kalechits, Dmitry; Miksjuk , Alexei; Tsukarev , Taras

    2009-01-01

    A system of econometric models designed for forecasting target monetary indicators as well as conducting monetary policy scenarios analysis is presented. The econometric models integrated in the system are represented in the error correction form and are interlinked by means of monetary policy instruments variables, common exogenous variables characterizing external shocks, and monetary policy target endogenous variables. Forecast accuracy estimates and monetary policy analysis results are pr...

  6. Battlescale Forecast Model Sensitivity Study

    National Research Council Canada - National Science Library

    Sauter, Barbara

    2003-01-01

    .... Changes to the surface observations used in the Battlescale Forecast Model initialization led to no significant changes in the resulting forecast values of temperature, relative humidity, wind speed, or wind direction...

  7. Development of polynomial regression models for composite dynamic envelopes’ thermal performance forecasting

    International Nuclear Information System (INIS)

    Mavromatidis, Lazaros Elias; Bykalyuk, Anna; Lequay, Hervé

    2013-01-01

    Highlights: ► Original software for composite dynamic envelope’s thermal performance forecasting. ► Construction of two hypothetical composite dynamic wall’s prototypes. ► Different simulation scenarios based on fractional factorial simulation design. ► Development of polynomial regression models. ► Validation and evaluation of polynomial regression models. - Abstract: The building envelope’s insulating efficiency is always a key element regarding the energy consumption control of the whole building. This article aims to propose a simple method based on classic and fractional factorial simulation plans to obtain regression models in the form of polynomial functions that link the angle, the thermal conductivity and the thickness of each envelope’s component to the overall wall’s thermal resistance. Original software that combines classic and novel modeling techniques has been used in order to have a precise and validated numerical investigation that focuses in a variety of possible composite dynamic wall’s configurations. For the purposes of this study, the combined radiation/conduction heat transfer finite volume numerical model was updated complex enough to predict the temperature distribution and heat transfer in composite envelopes for a variety of inclination angles. The model takes into account the coupling between the solid conduction of both solid and fibrous systems and the gaseous conduction and radiation. The radiation heat transfer through each insulating layer has been modeled via the two flux approximation in order to take into account both optically thick and optically thin materials, as well as potential reflective surfaces currently used on composite wall’s applications. Different simulation scenarios have been conceived according to basic fractional factorial simulation plans in order to obtain valid empirical polynomial functions. To validate this statistical forecast system, many simulation scenarios were carried out and

  8. LMDzT-INCA dust forecast model developments and associated validation efforts

    International Nuclear Information System (INIS)

    Schulz, M; Cozic, A; Szopa, S

    2009-01-01

    The nudged atmosphere global climate model LMDzT-INCA is used to forecast global dust fields. Evaluation is undertaken in retrospective for the forecast results of the year 2006. For this purpose AERONET/Photons sites in Northern Africa and on the Arabian Peninsula are chosen where aerosol optical depth is dominated by dust. Despite its coarse resolution, the model captures 48% of the day to day dust variability near Dakar on the initial day of the forecast. On weekly and monthly scale the model captures respectively 62% and 68% of the variability. Correlation coefficients between daily AOD values observed and modelled at Dakar decrease from 0.69 for the initial forecast day to 0.59 and 0.41 respectively for two days ahead and five days ahead. If one requests that the model should be able to issue a warning for an exceedance of aerosol optical depth of 0.5 and issue no warning in the other cases, then the model was wrong in 29% of the cases for day 0, 32% for day 2 and 35% for day 5. A reanalysis run with archived ECMWF winds is only slightly better (r=0.71) but was in error in 25% of the cases. Both the improved simulation of the monthly versus daily variability and the deterioration of the forecast with time can be explained by model failure to simulate the exact timing of a dust event.

  9. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    Science.gov (United States)

    Zavodsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use

  10. Development of Hydrological Model of Klang River Valley for flood forecasting

    Science.gov (United States)

    Mohammad, M.; Andras, B.

    2012-12-01

    This study is to review the impact of climate change and land used on flooding through the Klang River and to compare the changes in the existing river system in Klang River Basin with the Storm water Management and Road Tunnel (SMART) which is now already operating in the city centre of Kuala Lumpur. Klang River Basin is the most urbanized region in Malaysia. More than half of the basin has been urbanized on the land that is prone to flooding. Numerous flood mitigation projects and studies have been carried out to enhance the existing flood forecasting and mitigation project. The objective of this study is to develop a hydrological model for flood forecasting in Klang Basin Malaysia. Hydrological modelling generally requires large set of input data and this is more often a challenge for a developing country. Due to this limitation, the Tropical Rainfall Measuring Mission (TRMM) rainfall measurement, initiated by the US space agency NASA and Japanese space agency JAXA was used in this study. TRMM data was transformed and corrected by quantile to quantile transformation. However, transforming the data based on ground measurement doesn't make any significant improvement and the statistical comparison shows only 10% difference. The conceptual HYMOD model was used in this study and calibrated using ROPE algorithm. But, using the whole time series of the observation period in this area resulted in insufficient performance. The depth function which used in ROPE algorithm are then used to identified and calibrated using only unusual event to observed the improvement and efficiency of the model.

  11. Developing a Model for Forecasting Road Traffic Accident (RTA Fatalities in Yemen

    Directory of Open Access Journals (Sweden)

    Karim Fareed M. A.

    2017-12-01

    Full Text Available The aim of this paper is to develop a model for forecasting RTA fatalities in Yemen. The yearly fatalities was modeled as the dependent variable, while the number of independent variables included the population, number of vehicles, GNP, GDP and Real GDP per capita. It was determined that all these variables are highly correlated with the correlation coefficient (r ≈ 0.9; in order to avoid multicollinearity in the model, a single variable with the highest r value was selected (real GDP per capita. A simple regression model was developed; the model was very good (R2=0.916; however, the residuals were serially correlated. The Prais-Winsten procedure was used to overcome this violation of the regression assumption. The data for a 20-year period from 1991-2010 were analyzed to build the model; the model was validated by using data for the years 2011-2013; the historical fit for the period 1991 - 2011 was very good. Also, the validation for 2011-2013 proved accurate.

  12. Developing a Model for Forecasting Road Traffic Accident (RTA) Fatalities in Yemen

    Science.gov (United States)

    Karim, Fareed M. A.; Abdo Saleh, Ali; Taijoobux, Aref; Ševrović, Marko

    2017-12-01

    The aim of this paper is to develop a model for forecasting RTA fatalities in Yemen. The yearly fatalities was modeled as the dependent variable, while the number of independent variables included the population, number of vehicles, GNP, GDP and Real GDP per capita. It was determined that all these variables are highly correlated with the correlation coefficient (r ≈ 0.9); in order to avoid multicollinearity in the model, a single variable with the highest r value was selected (real GDP per capita). A simple regression model was developed; the model was very good (R2=0.916); however, the residuals were serially correlated. The Prais-Winsten procedure was used to overcome this violation of the regression assumption. The data for a 20-year period from 1991-2010 were analyzed to build the model; the model was validated by using data for the years 2011-2013; the historical fit for the period 1991 - 2011 was very good. Also, the validation for 2011-2013 proved accurate.

  13. Developing a forecast model of solar proton flux profiles for well-connected events

    Science.gov (United States)

    Ji, E. Y.; Moon, Y. J.; Park, J.

    2014-12-01

    We have developed a forecast model of solar proton flux profile (> 10 MeV channel) for well-connected events. Among 136 solar proton events (SPEs) from 1986 to 2006, we select 49 well-connected ones that are all associated with single X-ray flares stronger than M1 class and start to increase within four hours after their X-ray peak times. These events show rapid increments in proton flux. By comparing several empirical functions, we select a modified Weibull curve function to approximate a SPE flux profile, which is similar to the particle injection rate. The parameters (peak value, rise time and decay time) of this function are determined by the relationship between X-ray flare parameters (peak flux, impulsive time, and emission measure) and SPE parameters. For 49 well-connected SPEs, the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.65 with the RMS error of 0.55 pfu in the log10. In addition, we have developed another forecast model based on flare and CME parameters using 22 SPEs. The used CME parameters are linear speed and angular width. As a result, we find that the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.83 with the RMS error of 0.35 pfu in the log10. From the relationship between the model error and CME acceleration, we find that CME acceleration is also an important factor for predicting proton flux profiles.

  14. Development of a tropical ecological forecasting strategy for ENSO based on the ACME modeling framework

    Science.gov (United States)

    Hoffman, F. M.; Xu, M.; Collier, N.; Xu, C.; Christoffersen, B. O.; Luo, Y.; Ricciuto, D. M.; Levine, P. A.; Randerson, J. T.

    2016-12-01

    The El Niño Southern Oscillation (ENSO) is an irregular periodic climate fluctuation, occurring every eight to 12 years, that is driven by variations in sea surface temperatures (SSTs) over the tropical eastern Pacific Ocean and extending westward across the equatorial Pacific. El Niño, the warming phase of ENSO, has strong effects on the global carbon cycle. Strong drying conditions in the Asia-Pacific region and western South America during El Niño lead to reduced ecosystem productivity and increased mortality and fire risk. The intensity of the 2015-2016 ENSO event rivaled or exceeded that of the 1997-1998 event, which was the strongest well-observed El Niño on record. We performed a set of simulations using the U.S. Department of Energy's Accelerated Climate Modeling for Energy (ACMEv0.3) model, forced with prescribed sea surface temperatures, to study the responses and feedbacks of drought effects on terrestrial ecosystems induced by both of these events. The ACME model was configured to run with active atmosphere and land models alongside the "data" ocean and thermodynamic sea ice models. The Community Atmosphere Model used the Spectral Element dynamical core (CAM-SE) operating on the ne30 ( 1°) grid, and the ACME Land Model (ALM) was equivalent to the Community Land Model with prognostic biogeochemistry (CLM4.5-BGC). Using Optimal Interpolation SSTs (OISSTv2) and predicted SST anomalies from NCEP's Climate Forecast System (CFSv2) as forcing, we conducted a transient simulation from 1995 to 2020, following a spin up simulation, and analyzed the ENSO impacts on tropical terrestrial ecosystems for the 5-year periods centered on these two strong ENSO events. During the transient simulation, we saved the resulting atmospheric forcing, which included prognostic biosphere-atmosphere interactions, every three hours for use in future offline simulation for model development and testing. We will present simulation results, focusing on hydroclimatic anomalies as

  15. Forecasting Individual Headache Attacks Using Perceived Stress: Development of a Multivariable Prediction Model for Persons With Episodic Migraine.

    Science.gov (United States)

    Houle, Timothy T; Turner, Dana P; Golding, Adrienne N; Porter, John A H; Martin, Vincent T; Penzien, Donald B; Tegeler, Charles H

    2017-07-01

    To develop and validate a prediction model that forecasts future migraine attacks for an individual headache sufferer. Many headache patients and physicians believe that precipitants of headache can be identified and avoided or managed to reduce the frequency of headache attacks. Of the numerous candidate triggers, perceived stress has received considerable attention for its association with the onset of headache in episodic and chronic headache sufferers. However, no evidence is available to support forecasting headache attacks within individuals using any of the candidate headache triggers. This longitudinal cohort with forecasting model development study enrolled 100 participants with episodic migraine with or without aura, and N = 95 contributed 4626 days of electronic diary data and were included in the analysis. Individual headache forecasts were derived from current headache state and current levels of stress using several aspects of the Daily Stress Inventory, a measure of daily hassles that is completed at the end of each day. The primary outcome measure was the presence/absence of any headache attack (head pain > 0 on a numerical rating scale of 0-10) over the next 24 h period. After removing missing data (n = 431 days), participants in the study experienced a headache attack on 1613/4195 (38.5%) days. A generalized linear mixed-effects forecast model using either the frequency of stressful events or the perceived intensity of these events fit the data well. This simple forecasting model possessed promising predictive utility with an AUC of 0.73 (95% CI 0.71-0.75) in the training sample and an AUC of 0.65 (95% CI 0.6-0.67) in a leave-one-out validation sample. This forecasting model had a Brier score of 0.202 and possessed good calibration between forecasted probabilities and observed frequencies but had only low levels of resolution (ie, sharpness). This study demonstrates that future headache attacks can be forecasted for a diverse group of

  16. Development and evaluation of the operational Air-Quality forecast model for Austria ALARO-CAMx

    Science.gov (United States)

    Flandorfer, Claudia; Hirtl, Marcus; Krüger, Bernd C.

    2014-05-01

    The Air-Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences (BOKU) in Vienna by order of the regional governments since 2005. The modeling system is currently a combination of the meteorological model ALARO and the photochemical dispersion model CAMx. Two modeling domains are used with the highest resolution (5 km) in the alpine region. Various extensions with external data sources have been conducted in the past to improve the daily forecasts of the model. Since 2013 O3- and PM10-observations from the Austrian measurement network have been assimilated daily using optimum interpolation. Dynamic chemical boundary conditions are obtained from Air-Quality forecasts provided by ECMWF in the frame of MACC-II. Additionally the latest available high resolved emission inventories for Austria are combined with TNO and EMEP data. The biogenic emissions are provided by the SMOKE model. ZAMG provides daily forecasts of O3, PM10 and NO2 to the regional governments of Austria. The evaluation of these forecasts is done for the summer 2013 with the main focus on the forecasts of ozone. The measurements of the Air-Quality stations are compared with the punctual forecasts at the sites of the station and with the area forecasts for every province of Austria. In the summer of 2013, two heat waves occurred. The first very short heat wave was in June 2013. During this period one exceedance of the alert threshold value for ozone occurred. The second heat wave took place from the end of July to the mid of August. Due to very high temperatures (new temperature record for Austria measured in Bad Deutsch-Altenburg with 40.5°C) and long dryness episodes the information threshold value has been exceeded several times in the eastern regions of Austria. The alert threshold value has been exceeded one time in this period. For the evaluation, the results for the second heat wave episode in Eastern Austria will be discussed

  17. Mathematical Development and Evaluation of Forecasting Models for Accuracy of Inflation in Developing Countries: A Case of Vietnam

    Directory of Open Access Journals (Sweden)

    Nhu-Ty Nguyen

    2015-01-01

    Full Text Available Inflation is a key element of a national economy, and it is also a prominent and important issue influencing the whole economy in terms of marketing. This is a complex problem requiring a large investment of time and wisdom to attain positive results. Thus, appropriate tools for forecasting inflation variables are crucial significant for policy making. In this study, both clarified value calculation and use of a genetic algorithm to find the optimal parameters are adopted simultaneously to construct improved models: ARIMA, GM(1,1, Verhulst, DGM(1,1, and DGM(2,1 by using data of Vietnamese inflation output from January 2005 to November 2013. The MAPE, MSE, RMSE, and MAD are four criteria with which the various forecasting models results are compared. Moreover, to see whether differences exist, Friedman and Wilcoxon tests are applied. Both in-sample and out-of-sample forecast performance results show that the ARIMA model has highly accurate forecasting in Raw Materials Price (RMP and Gold Price (GP, whereas, the calculated results of GM(1,1 and DGM(1,1 are suitable to forecast Consumer Price Index (CPI. Therefore, the ARIMA, GM(1,1, and DGM(1,1 can handle the forecast accuracy of the issue, and they are suitable in modeling and forecasting of inflation in the case of Vietnam.

  18. Forecasting elections in Europe: Synthetic models

    Directory of Open Access Journals (Sweden)

    Michael S. Lewis-Beck

    2015-01-01

    Full Text Available Scientific work on national election forecasting has become most developed for the United States case, where three dominant approaches can be identified: Structuralists, Aggregators, and Synthesizers. For European cases, election forecasting models remain almost exclusively Structuralist. Here we join together structural modeling and aggregate polling results, to form a hybrid, which we label a Synthetic Model. This model contains a political economy core, to which poll numbers are added (to tap omitted variables. We apply this model to a sample of three Western European countries: Germany, Ireland, and the United Kingdom. This combinatory strategy appears to offer clear forecasting gains, in terms of lead and accuracy.

  19. Demand forecast model based on CRM

    Science.gov (United States)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  20. Development and Implementation of Universal Cloud/Radiation Parameterizations in Navy Operational Forecast Models

    Science.gov (United States)

    2013-09-30

    www.eas.purdue.edu/research/clew/index.html LONG-TERM GOALS Improve the simulation of atmospheric radiation energy fields in Navy operational weather...parameters to RRTMG whereas Figures 5 through 12 show the output shortwave and longwave radiation fluxes and cooling rates. Results are identical to... Radiation Parameterizations in Navy Operational Forecast Models Harshvardhan Dept. of Earth, Atmospheric & Planetary Sciences Purdue University West

  1. Development of a drought forecasting model for the Asia-Pacific region using remote sensing and climate data: Focusing on Indonesia

    Science.gov (United States)

    Rhee, Jinyoung; Kim, Gayoung; Im, Jungho

    2017-04-01

    Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models

  2. NYHOPS Forecast Model Results

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 3D Marine Nowcast/Forecast System for the New York Bight NYHOPS subdomain. Currents, waves, surface meteorology, and water conditions.

  3. NEW CAR DEMAND MODELING AND FORECASTING USING BASS DIFFUSION MODEL

    OpenAIRE

    Zuhaimy Ismail; Noratikah Abu

    2013-01-01

    Forecasting model of new product demand has been developed and applied to forecast new vehicle demand in Malaysia. Since the publication of the Bass model in 1969, innovation of new diffusion theory has sparked considerable research among marketing science scholars, operational researchers and mathematicians. The building of Bass diffusion model for forecasting new product within the Malaysian society is presented in this study. The proposed model represents the spread level of new Proton car...

  4. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran

    Science.gov (United States)

    Najafi, Husain; Massah Bavani, Ali Reza; Wanders, Niko; Wood, Eric; Irannejad, Parviz; Robertson, Andrew

    2017-04-01

    Water resource managers can utilize reliable seasonal forecasts for allocating water between different users within a water year. In the west of Iran where a decline of renewable water resources has been observed, basin-wide water management has been the subject of many inter-provincial conflicts in recent years. The problem is exacerbated when the environmental water requirements is not provided leaving the Hoor-al-Azim marshland in the downstream dry. It has been argued that information on total seasonal rainfall can support the Iranian Ministry of Energy within the water year. This study explores the skill of the North America Multi Model Ensemble for Karkheh River Basin in the of west Iran. NMME seasonal precipitation and temperature forecasts from eight models are evaluated against PERSIANN-CDR and Climate Research Unit (CRU) datasets. Analysis suggests that anomaly correlation for both precipitation and temperature is greater than 0.4 for all individual models. Lead time-dependent seasonal forecasts are improved when a multi-model ensemble is developed for the river basin using stepwise linear regression model. MME R-squared exceeds 0.6 for temperature for almost all initializations suggesting high skill of NMME in Karkheh river basin. The skill of MME for rainfall forecasts is high for 1-month lead time for October, February, March and October initializations. However, for months when the amount of rainfall accounts for a significant proportion of total annual rainfall, the skill of NMME is limited a month in advance. It is proposed that operational regional water companies incorporate NMME seasonal forecasts into water resource planning and management, especially during growing seasons that are essential for agricultural risk management.

  5. Development of visibility forecasting modelling framework for the lower fraser valley of British Columbia using Canada's regional air quality deterministic prediction system.

    Science.gov (United States)

    So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith

    2018-01-17

    Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modelling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hour lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction over twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulphate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on post-processed air quality forecasts without additional statistical modelling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode

  6. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  7. Econometric models for forecasting of macroeconomic indices

    OpenAIRE

    Sukhanova, E. I.; Shirnaeva, S. Y.; Mokronosov, A. G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices development in the past and their cause and effect interrelations. The aim of the article is to build econometric models for macroeconomic indices forec...

  8. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  9. Development of the Manpower Demand Forecast Model of Nuclear Industry Using the System Dynamics Method - Operation Sector

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Ahn, Nam Sung

    2010-01-01

    Recently, the resource management of nuclear engineering manpower has become an important issue in Korean nuclear industry. The government's plan for increasing the number of domestic nuclear power plants and the recent success of nuclear power plant export to UAE (United Arab Emirates) will increase demand for nuclear engineers in Korea. Accordingly, the Korean government decided to supplement 2,246 engineers in the public sector of nuclear industry in the year 2010 to resolve the manpower shortage problem in the short term. However, the experienced engineers which are essentially important in the nuclear industry cannot be supplied in the short term. Therefore, development of the long term manpower demand forecast model of nuclear industry is needed. The system dynamics (SD) is useful method for forecasting nuclear manpower demand. It is because the time-delays which is important in constructing plants and in recruiting and training of engineers, and the feedback effect including the qualitative factor can be effectively considered in the SD method. Especially, the qualitative factor like 'Productivity' is very important concept in Human Resource Management (HRM) but it cannot be easily considered in the other methods. In this paper, the concepts of the nuclear manpower demand forecast model using the SD method are presented and the some simulation results are being discussed especially for the 'Operation Sector'

  10. Development of the Manpower Demand Forecast Model of Nuclear Industry Using the System Dynamics Method - Operation Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Suk [Future and Challenges Inc., Seoul (Korea, Republic of); Ahn, Nam Sung [SolBridge International School of Business, Daejeon (Korea, Republic of)

    2010-10-15

    Recently, the resource management of nuclear engineering manpower has become an important issue in Korean nuclear industry. The government's plan for increasing the number of domestic nuclear power plants and the recent success of nuclear power plant export to UAE (United Arab Emirates) will increase demand for nuclear engineers in Korea. Accordingly, the Korean government decided to supplement 2,246 engineers in the public sector of nuclear industry in the year 2010 to resolve the manpower shortage problem in the short term. However, the experienced engineers which are essentially important in the nuclear industry cannot be supplied in the short term. Therefore, development of the long term manpower demand forecast model of nuclear industry is needed. The system dynamics (SD) is useful method for forecasting nuclear manpower demand. It is because the time-delays which is important in constructing plants and in recruiting and training of engineers, and the feedback effect including the qualitative factor can be effectively considered in the SD method. Especially, the qualitative factor like 'Productivity' is very important concept in Human Resource Management (HRM) but it cannot be easily considered in the other methods. In this paper, the concepts of the nuclear manpower demand forecast model using the SD method are presented and the some simulation results are being discussed especially for the 'Operation Sector'

  11. Real-time Social Internet Data to Guide Forecasting Models

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, Sara Y. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematical approaches and heterogeneous data streams.

  12. Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in Beijing, China.

    Science.gov (United States)

    Zhai, Binxu; Chen, Jianguo

    2018-04-18

    A stacked ensemble model is developed for forecasting and analyzing the daily average concentrations of fine particulate matter (PM 2.5 ) in Beijing, China. Special feature extraction procedures, including those of simplification, polynomial, transformation and combination, are conducted before modeling to identify potentially significant features based on an exploratory data analysis. Stability feature selection and tree-based feature selection methods are applied to select important variables and evaluate the degrees of feature importance. Single models including LASSO, Adaboost, XGBoost and multi-layer perceptron optimized by the genetic algorithm (GA-MLP) are established in the level 0 space and are then integrated by support vector regression (SVR) in the level 1 space via stacked generalization. A feature importance analysis reveals that nitrogen dioxide (NO 2 ) and carbon monoxide (CO) concentrations measured from the city of Zhangjiakou are taken as the most important elements of pollution factors for forecasting PM 2.5 concentrations. Local extreme wind speeds and maximal wind speeds are considered to extend the most effects of meteorological factors to the cross-regional transportation of contaminants. Pollutants found in the cities of Zhangjiakou and Chengde have a stronger impact on air quality in Beijing than other surrounding factors. Our model evaluation shows that the ensemble model generally performs better than a single nonlinear forecasting model when applied to new data with a coefficient of determination (R 2 ) of 0.90 and a root mean squared error (RMSE) of 23.69μg/m 3 . For single pollutant grade recognition, the proposed model performs better when applied to days characterized by good air quality than when applied to days registering high levels of pollution. The overall classification accuracy level is 73.93%, with most misclassifications made among adjacent categories. The results demonstrate the interpretability and generalizability of

  13. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    Science.gov (United States)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  14. Recent developments in the applications of the Regional Atmospheric Modeling System (RAMS) for emergency response planning and operational forecasting at the Kennedy Space Center

    International Nuclear Information System (INIS)

    Lyons, W.A.; Tremback, C.J.

    1996-01-01

    The authors will summarize ten years of developing and applying the Regional Atmospheric Modeling System (RAMS) to emergency response and operational dispersion forecasting at the Kennedy Space Center (KSC). RAMS forms the core of two workstation-based operational systems, ERDAS (the Emergency Response Dose Assessment System) and PROWESS (Parallelized RAMS Operational Weather Simulation System) which are undergoing extensive operational testing prior to potential deployment as part of the range forecasting system at KSC. RAMS has been interfaced with HYPACT (the Hybrid Particle and Concentration Transport Model) to produce detailed 3-D dispersion forecasts from a variety of sources including cold spills, routine launch operations, and explosive conflagrations of launch vehicles

  15. On the Influence of Weather Forecast Errors in Short-Term Load Forecasting Models

    OpenAIRE

    Fay, D.; Ringwood, John; Condon, M.

    2004-01-01

    Weather information is an important factor in load forecasting models. This weather information usually takes the form of actual weather readings. However, online operation of load forecasting models requires the use of weather forecasts, with associated weather forecast errors. A technique is proposed to model weather forecast errors to reflect current accuracy. A load forecasting model is then proposed which combines the forecasts of several load forecasting models. This approach allows the...

  16. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time

    Science.gov (United States)

    Prasad, Kanchan; Gorai, Amit Kumar; Goyal, Pramila

    2016-03-01

    This study aims to develop adaptive neuro-fuzzy inference system (ANFIS) for forecasting of daily air pollution concentrations of five air pollutants [sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particular matters (PM10)] in the atmosphere of a Megacity (Howrah). Air pollution in the city (Howrah) is rising in parallel with the economics and thus observing, forecasting and controlling the air pollution becomes increasingly important due to the health impact. ANFIS serve as a basis for constructing a set of fuzzy IF-THEN rules, with appropriate membership functions to generate the stipulated input-output pairs. The ANFIS model predictor considers the value of meteorological factors (pressure, temperature, relative humidity, dew point, visibility, wind speed, and precipitation) and previous day's pollutant concentration in different combinations as the inputs to predict the 1-day advance and same day air pollution concentration. The concentration value of five air pollutants and seven meteorological parameters of the Howrah city during the period 2009 to 2011 were used for development of the ANFIS model. Collinearity tests were conducted to eliminate the redundant input variables. A forward selection (FS) method is used for selecting the different subsets of input variables. Application of collinearity tests and FS techniques reduces the numbers of input variables and subsets which helps in reducing the computational cost and time. The performances of the models were evaluated on the basis of four statistical indices (coefficient of determination, normalized mean square error, index of agreement, and fractional bias).

  17. Operational models for forecasting Dst

    Science.gov (United States)

    Watanabe, S.; Sagawa, E.; Ohtaka, K.; Shimazu, H.

    We have constructed operational models for forecasting the geomagnetic storm index (Dst) two hours in advance from six parameters: the velocity and density of the solar wind, the magnitude of the interplanetary magnetic field (IMF), and the x, y, and z components of the IMF. Our models use an Elman-type neural network, and we forecast space weather by using real-time solar-wind data from the Advanced Composition Explorer spacecraft.The models have worked well since April of 1998 and the Dst values forecast using them have been made available to the public at http://www.crl.go.jp/uk/uk223/service/nnw/index.html. From February to October 1998 there were 11 storms with minimum Dst values below -80 nT, and for ten the difference between the forecast minimum Dst and the Dst calculated from data measured by ground stations was less than 23%.For the storm starting on 19 October, however, the difference was 40% because of the weak correlation between the ACE environment and the earth's environment during this event.The Dst depends on the orientation of the IMF relative to the solar magnetospheric x-y plane and seems to be relatively large when the y component of the IMF is positive and perhaps also when the x component is positive.

  18. Mesoscale model forecast verification during monsoon 2008

    Indian Academy of Sciences (India)

    The systematic error in the 850 hPa temperature indicates that largely the WRF model forecasts feature warm bias and the MM5 model forecasts feature cold bias. Features common to all the three models include warm bias over northwest India and cold bias over southeast peninsula. The 850 hPa specific humidity forecast ...

  19. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  20. Development and validation of a regional coupled forecasting system for S2S forecasts

    Science.gov (United States)

    Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.

    2017-12-01

    Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.

  1. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    2011-01-01

    This paper proposes a methodology for dynamic modelling and forecasting of realized covariance matrices based on fractionally integrated processes. The approach allows for flexible dependence patterns and automatically guarantees positive definiteness of the forecast. We provide an empirical appl...

  2. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  3. Uncertainty Analysis of Multi-Model Flood Forecasts

    Directory of Open Access Journals (Sweden)

    Erich J. Plate

    2015-12-01

    Full Text Available This paper demonstrates, by means of a systematic uncertainty analysis, that the use of outputs from more than one model can significantly improve conditional forecasts of discharges or water stages, provided the models are structurally different. Discharge forecasts from two models and the actual forecasted discharge are assumed to form a three-dimensional joint probability density distribution (jpdf, calibrated on long time series of data. The jpdf is decomposed into conditional probability density distributions (cpdf by means of Bayes formula, as suggested and explored by Krzysztofowicz in a series of papers. In this paper his approach is simplified to optimize conditional forecasts for any set of two forecast models. Its application is demonstrated by means of models developed in a study of flood forecasting for station Stung Treng on the middle reach of the Mekong River in South-East Asia. Four different forecast models were used and pairwise combined: forecast with no model, with persistence model, with a regression model, and with a rainfall-runoff model. Working with cpdfs requires determination of dependency among variables, for which linear regressions are required, as was done by Krzysztofowicz. His Bayesian approach based on transforming observed probability distributions of discharges and forecasts into normal distributions is also explored. Results obtained with his method for normal prior and likelihood distributions are identical to results from direct multiple regressions. Furthermore, it is shown that in the present case forecast accuracy is only marginally improved, if Weibull distributed basic data were converted into normally distributed variables.

  4. Medium-term hydrologic forecasting in mountain basins using forecasting of a mesoscale numerical weather model

    Science.gov (United States)

    Castro Heredia, L. M.; Suarez, F. I.; Fernandez, B.; Maass, T.

    2016-12-01

    For forecasting of water resources, weather outputs provide a valuable source of information which is available online. Compared to traditional ground-based meteorological gauges, weather forecasts data offer spatially and temporally continuous data not yet evaluated and used in the forecasting of water resources in mountainous regions in Chile. Nevertheless, the use of this non-conventional data has been limited or null in developing countries, basically because of the spatial resolution, despite the high potential in the management of water resources. The adequate incorporation of these data in hydrological models requires its evaluation while taking into account the features of river basins in mountainous regions. This work presents an integrated forecasting system which represents a radical change in the way of making the streamflow forecasts in Chile, where the snowmelt forecast is the principal component of water resources management. The integrated system is composed of a physically based hydrological model, which is the prediction tool itself, together with a methodology for remote sensing data gathering that allows feed the hydrological model in real time, and meteorological forecasts from NCEP-CFSv2. Previous to incorporation of meteorological forecasts into the hydrological model, the weather outputs were evaluated and downscaling using statistical downscaling methods. The hydrological forecasts were evaluated in two mountain basins in Chile for a term of six months for the snowmelt period. In every month an assimilation process was performed, and the hydrological forecast was improved. Each month, the snow cover area (from remote sensing) and the streamflow observed were used to assimilate the model parameters in order to improve the next hydrological forecast using meteorological forecasts. The operation of the system in real time shows a good agreement between the streamflow and the snow cover area observed. The hydrological model and the weather

  5. Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model

    Science.gov (United States)

    Attarzadeh, Iman; Ow, Siew Hock

    Nowadays, mature software companies are more interested to have a precise estimation of software metrics such as project time, cost, quality, and risk at the early stages of software development process. The ability to precisely estimate project time and costs by project managers is one of the essential tasks in software development activities, and it named software effort estimation. The estimated effort at the early stage of project development process is uncertain, vague, and often the least accurate. It is because that very little information is available at the beginning stage of project. Therefore, a reliable and precise effort estimation model is an ongoing challenge for project managers and software engineers. This research work proposes a novel soft computing model incorporating Constructive Cost Model (COCOMO) to improve the precision of software time and cost estimation. The proposed artificial neural network model has good generalisation, adaption capability, and it can be interpreted and validated by software engineers. The experimental results show that applying the desirable features of artificial neural networks on the algorithmic estimation model improves the accuracy of time and cost estimation and estimated effort can be very close to the actual effort.

  6. Dynamics and forecast in a simple model of sustainable development for rural populations.

    Science.gov (United States)

    Angulo, David; Angulo, Fabiola; Olivar, Gerard

    2015-02-01

    Society is becoming more conscious on the need to preserve the environment. Sustainable development schemes have grown rapidly as a tool for managing, predicting and improving the growth path in different regions and economy sectors. We introduce a novel and simple mathematical model of ordinary differential equations (ODEs) in order to obtain a dynamical description for each one of the sustainability components (economy, social development and environment conservation), together with their dependence with demographic dynamics. The main part in the modeling task is inspired by the works by Cobb, Douglas, Brander and Taylor. This is completed through some new insights by the authors. A model application is presented for three specific geographical rural regions in Caldas (Colombia).

  7. An investigation of forecast horizon and observation fit's influence on an econometric rate forecast model in the liner shipping industry

    DEFF Research Database (Denmark)

    Nielsen, P.; Jiang, L. P.; Rytter, N. G. M.

    2014-01-01

    This paper evaluates the influence of forecast horizon and observation fit on the robustness and performance of a specific freight rate forecast model used in the liner shipping industry. In the first stage of the research, a forecast model used to predict container freight rate development is pr...

  8. New interval forecast for stationary autoregressive models ...

    African Journals Online (AJOL)

    In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...

  9. Forecasting Market Shares from Models for Sales

    NARCIS (Netherlands)

    D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2000-01-01

    textabstractDividing forecasts of brand sales by a forecast of category sales, when they are generated from brand specific sales-response models, renders biased forecasts of the brands' market shares. In this paper we therefore propose an easy-to-apply simulation-based method which results in

  10. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  11. Pollen Forecast and Dispersion Modelling

    Science.gov (United States)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    Bologna, Italy). With pollen and meteorological dataset was created a provisional model for Poaceae. A PLSDA (Partial Least Squares Discriminant Analysis) approach was used in order to predict Poaceae pollen critical concentration (Brighetti et al. 2013) To preserve spatial correlation between pollens and PM10, we choose a Multiavariate Linear Spatial Interpolation Method to quantify pollen concentration in function of PM10, wind, rain and temperature. A test and validation procedure have been conducted to estimate the error associated to the pollen concentration. Validation for the year 2012 shows a good agreement between measured and estimated data , in each area depending of orography and of road traffic (r >0.83, 1%< RRMSE <5% ). This study aims to be a added value to agro-meteorological data in a different branch from the classic sector of defence and of crop production, emphasizing the importance of monitoring and forecast the pollen dispersal in urban areas, evaluated its effect on health and quality of life. In the health area the combined analysis between climate, pollution and dispersal of pollen allows to realize significant operational tools and to develop a reference for subsequent implementations.

  12. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management

    Science.gov (United States)

    Apel, Heiko; Abdykerimova, Zharkinay; Agalhanova, Marina; Baimaganbetov, Azamat; Gavrilenko, Nadejda; Gerlitz, Lars; Kalashnikova, Olga; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2018-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived every month from

  13. Probabilistic Solar Forecasting Using Quantile Regression Models

    Directory of Open Access Journals (Sweden)

    Philippe Lauret

    2017-10-01

    Full Text Available In this work, we assess the performance of three probabilistic models for intra-day solar forecasting. More precisely, a linear quantile regression method is used to build three models for generating 1 h–6 h-ahead probabilistic forecasts. Our approach is applied to forecasting solar irradiance at a site experiencing highly variable sky conditions using the historical ground observations of solar irradiance as endogenous inputs and day-ahead forecasts as exogenous inputs. Day-ahead irradiance forecasts are obtained from the Integrated Forecast System (IFS, a Numerical Weather Prediction (NWP model maintained by the European Center for Medium-Range Weather Forecast (ECMWF. Several metrics, mainly originated from the weather forecasting community, are used to evaluate the performance of the probabilistic forecasts. The results demonstrated that the NWP exogenous inputs improve the quality of the intra-day probabilistic forecasts. The analysis considered two locations with very dissimilar solar variability. Comparison between the two locations highlighted that the statistical performance of the probabilistic models depends on the local sky conditions.

  14. A simulation model for forecasting downhill ski participation

    Science.gov (United States)

    Daniel J. Stynes; Daniel M. Spotts

    1980-01-01

    The purpose of this paper is to describe progress in the development of a general computer simulation model to forecast future levels of outdoor recreation participation. The model is applied and tested for downhill skiing in Michigan.

  15. Forecasting project schedule performance using probabilistic and deterministic models

    Directory of Open Access Journals (Sweden)

    S.A. Abdel Azeem

    2014-04-01

    Full Text Available Earned value management (EVM was originally developed for cost management and has not widely been used for forecasting project duration. In addition, EVM based formulas for cost or schedule forecasting are still deterministic and do not provide any information about the range of possible outcomes and the probability of meeting the project objectives. The objective of this paper is to develop three models to forecast the estimated duration at completion. Two of these models are deterministic; earned value (EV and earned schedule (ES models. The third model is a probabilistic model and developed based on Kalman filter algorithm and earned schedule management. Hence, the accuracies of the EV, ES and Kalman Filter Forecasting Model (KFFM through the different project periods will be assessed and compared with the other forecasting methods such as the Critical Path Method (CPM, which makes the time forecast at activity level by revising the actual reporting data for each activity at a certain data date. A case study project is used to validate the results of the three models. Hence, the best model is selected based on the lowest average percentage of error. The results showed that the KFFM developed in this study provides probabilistic prediction bounds of project duration at completion and can be applied through the different project periods with smaller errors than those observed in EV and ES forecasting models.

  16. A Forecast Model for Unemployment by Education

    DEFF Research Database (Denmark)

    Tranæs, Torben; Larsen, Anders Holm; Groes, Niels

    1994-01-01

    We present a dynamic forecast model for the labour market: demand for labour by education and the distribution of labour by education among industries are determined endogenously with overall demand by industry given exogenously. The model is derived from a simple behavioural equation based on a ...... for educational groups, where the initial forecast year is a change point for unemployment....

  17. Forecasting German Car Sales Using Google Data and Multivariate Models

    OpenAIRE

    Fantazzini, Dean; Toktamysova, Zhamal

    2015-01-01

    Long-term forecasts are of key importance for the car industry due to the lengthy period of time required for the development and production processes. With this in mind, this paper proposes new multivariate models to forecast monthly car sales data using economic variables and Google online search data. An out-of-sample forecasting comparison with forecast horizons up to 2 years ahead was implemented using the monthly sales of ten car brands in Germany for the period from 2001M1 to 2014M6. M...

  18. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  19. Stochastic model of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-01-01

    hypothesis of the existence of phenomenon change trends, the next step in the methodology of forecasting is the determination of a specific growth curve that describes the regularity of the development in time. These curves of growth are obtained by the analytical representation (expression of dynamic lines. There are two basic stages in the process of expression and they are: - The choice of the type of curve the shape of which corresponds to the character of the dynamic order variation - the determination of the number of values (evaluation of the curve parameters. The most widespread method of forecasting is the trend extrapolation. The basis of the trend extrapolation is the continuing of past trends in the future. The simplicity of the trend extrapolation process, on the one hand, and the absence of other information on the other hand, are the main reasons why the trend extrapolation is used for forecasting. The trend extrapolation is founded on the following assumptions: - The phenomenon development can be presented as an evolutionary trajectory or trend, - General conditions that influenced the trend development in the past will not undergo substantial changes in the future. Spare parts demand forecasting is constantly being done in all warehouses, workshops, and at all levels. Without demand forecasting, neither planning nor decision making can be done. Demand forecasting is the input for determining the level of reserve, size of the order, ordering cycles, etc. The question that arises is the one of the reliability and accuracy of a forecast and its effects. Forecasting 'by feeling' is not to be dismissed if there is nothing better, but in this case, one must be prepared for forecasting failures that cause unnecessary accumulation of certain spare parts, and also a chronic shortage of other spare parts. All this significantly increases costs and does not provide a satisfactory supply of spare parts. The main problem of the application of this model is that each

  20. Development of demand functions and their inclusion in linear programming forecasting models

    International Nuclear Information System (INIS)

    Chamberlin, J.H.

    1976-05-01

    The purpose of the paper is to present a method for including demand directly within a linear programming model, and to use this method to analyze the effect of the Liquid Metal Fast Breeder Reactor upon the nuclear energy system

  1. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    Science.gov (United States)

    Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle

    2013-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.

  2. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  3. The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models

    NARCIS (Netherlands)

    Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M.

    2015-01-01

    The numerical weather prediction of radiation fog is challenging, as many models typically show large biases for the timing of the onset and dispersal of the fog, as well as for its depth and liquid water content. To understand the role of physical processes, i.e. turbulence, radiation, land-surface

  4. On the clustering of climate models in ensemble seasonal forecasting

    Science.gov (United States)

    Yuan, Xing; Wood, Eric F.

    2012-09-01

    Multi-model ensemble seasonal forecasting system has expanded in recent years, with a dozen coupled climate models around the world being used to produce hindcasts or real-time forecasts. However, many models are sharing similar atmospheric or oceanic components which may result in similar forecasts. This raises questions of whether the ensemble is over-confident if we treat each model equally, or whether we can obtain an effective subset of models that can retain predictability and skill as well. In this study, we use a hierarchical clustering method based on inverse trigonometric cosine function of the anomaly correlation of pairwise model hindcasts to measure the similarities among twelve American and European seasonal forecast models. Though similarities are found between models sharing the same atmospheric component, different versions of models from the same center sometimes produce quite different temperature forecasts, which indicate that detailed physics packages such as radiation and land surface schemes need to be analyzed in interpreting the clustering result. Uncertainties in clustering for different forecast lead times also make reducing redundant models more complicated. Predictability analysis shows that multi-model ensemble is not necessarily better than a single model, while the cluster ensemble shows consistent improvement against individual models. The eight model-based cluster ensemble forecast shows comparable performance to the total twelve model ensemble in terms of probabilistic forecast skill for accuracy and discrimination. This study also manifests that models developed in U.S. and Europe are more independent from each other, suggesting the necessity of international collaboration in enhancing multi-model ensemble seasonal forecasting.

  5. Regional Model Nesting Within GFS Daily Forecasts Over West Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben

    2010-01-01

    The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger

  6. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    Science.gov (United States)

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  7. Developing a Universal Navy Uniform Adoption Model for Use in Forecasting

    Science.gov (United States)

    2015-12-01

    Insignia , Svc Hat & Cap 1 Insignia , Collar, Service E2 1 Insignia , Collar, Service E2 1 Insignia , Collar, Service E3 1 Insignia , Collar, Service E3 1 Jumper...Blue 5 Undershirts, Ctn, Wh 4 Ball Cap 2 Undershirts, Ctn, Blue 5 Insignia 1 Ball Cap 2 PT Shirt 2 Insignia 1 PT Shorts 2 Lingerie...durables. Management Science, 15(5), 215–227. The Bass Diffusion Model is considered in this study when applying auto - regressive techniques for the

  8. Operational Streamflow Forecasts Development Using GCM Predicted Precipitation Fields

    Science.gov (United States)

    Arumugam, S.; Lall, U.

    2004-12-01

    Monthly updates of streamflow forecasts are required for deriving reservoir operation strategies as well as for quantifying surplus and shortfall for the allocated water contracts. In this study, an operational streamflow forecasts are developed using Atmospheric General Circulation Models (AGCM) predicted precipitation for managing the Angat Reservoir System, Philippines. The methodology employs principal components regression (PCR) for downscaling the AGCM predicted precipitation fields to monthly streamflow forecasts. The performance of this downscaling approach is analyzed with AGCM being forced using the observed sea surface temperature (SST) conditions as well under persisted SST conditions. The ability of downscaled streamflow forecasts in explaining the intraseasonal variability is also explored. Conditional distribution of streamflows obtained from the PCR downscaling approach is also compared with a simple, semi-parametric resampling algorithm that obtains ensembles of streamflow forecasts by identifying similar conditions in that season's climatic predictors state space.

  9. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  10. Development of a Cloud Forecast Scheme for the GL Baseline Global Spectral Model

    Science.gov (United States)

    1989-12-20

    Kaplan et al. ’ 3 ). Furthermore, in response to large moist biases in early GL assimilation experiments, GL developed improved methods for vertically...139, ADA179792. 13 Kaplan , L.D., Hoffman, R.N., Isaacs, R.G., Rosen, R.D., Salstein, D.A., and Wang, W.-C. (1983) Outlook for Improved Numerical...agreement between the total cloud 1t0r-cas- h )i it o’lei and (s1,,erved total Cloud arnounts (in terms of cloud cima - toiogles and 5,,~eh.oiiiprnsoiis

  11. Development of mathematical models for forecasting hydraulic loads of water and wastewater networks

    Energy Technology Data Exchange (ETDEWEB)

    Studzinki, Jan [Polish Academy of Sciences, Warsaw (Poland). Systems Research Institute; Bartkiewicz, Lidia [Technical Univ. Kielce (Poland); Stachura, Marcin [Warsaw University of Technology (Poland)

    2013-07-01

    In municipal waterworks the operation of water and wastewater networks decides about the functioning of the sewage treatment plant that is the last element of the whole water and sewage system. The both networks are connected each other and the work of the water net affects the operation of the wastewater one. The parameters which are important for right leading of all waterworks objects are their hydraulic loads that have to be not exceeded. Too large loads can cause accidents in the wastewater net or the treatment plant and an early knowledge of them is of importance for undertaking some counteractions. In the paper different algorithms to model hydraulic loads of municipal water and wastewater nets are described and compared regarding their computation velocity and accuracy. Some exemplary computations have been done with some real data received from a Polish water company. (orig.)

  12. Econometric Models for Forecasting of Macroeconomic Indices

    Science.gov (United States)

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  13. NAVO NCOM Relocatable Model: Fukushima Regional Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary NCOM Relocatable 1km forecast model for Fukushima Region. USERS ARE REMINDED TO USE THE FUKUSHIMA 1KM NCOM DATA WITH CAUTION. THE MODEL WAS INITIATED ON...

  14. Improving wave forecasting by integrating ensemble modelling and machine learning

    Science.gov (United States)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  15. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  16. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  17. Combining SKU-level sales forecasts from models and experts

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2009-01-01

    textabstractWe study the performance of SKU-level sales forecasts which linearly combine statistical model forecasts and expert forecasts. Using a large and unique database containing model forecasts for monthly sales of various pharmaceutical products and forecasts given by about fifty experts, we

  18. PETRA. The Forecast Model. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The aim of the PETRA project was to develop a model that could recreate the main aspects involved in the demand for travel. The attainment of this objective requires that the model system should retain a high degree of detail and be based on disaggregate models. This was both to ensure an accurate representation of the underlying behavioural intentions, and allow analysis of the underlying travel demand and related aspects across a number of dimensions. This has been achieved in all main respects. The model system is capable of close reproduction of the observed behaviour and generally responds as expected to changes, exhibiting consistent and plausible reactions. The dis-aggregation of the forecast population, according to the various criteria, allows the model to clearly illustrates the behavioural differences between different population segments. Thus, it seems reasonable to conclude that PETRA is capable of detailed analyses of the distributional and behavioural effects of policy changes. (au) EFP-94. 20 refs.

  19. Nambe Pueblo Water Budget and Forecasting model.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  20. Solid waste forecasting using modified ANFIS modeling.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; K N A, Maulud

    2015-10-01

    Solid waste prediction is crucial for sustainable solid waste management. Usually, accurate waste generation record is challenge in developing countries which complicates the modelling process. Solid waste generation is related to demographic, economic, and social factors. However, these factors are highly varied due to population and economy growths. The objective of this research is to determine the most influencing demographic and economic factors that affect solid waste generation using systematic approach, and then develop a model to forecast solid waste generation using a modified Adaptive Neural Inference System (MANFIS). The model evaluation was performed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (R²). The results show that the best input variables are people age groups 0-14, 15-64, and people above 65 years, and the best model structure is 3 triangular fuzzy membership functions and 27 fuzzy rules. The model has been validated using testing data and the resulted training RMSE, MAE and R² were 0.2678, 0.045 and 0.99, respectively, while for testing phase RMSE =3.986, MAE = 0.673 and R² = 0.98. To date, a few attempts have been made to predict the annual solid waste generation in developing countries. This paper presents modeling of annual solid waste generation using Modified ANFIS, it is a systematic approach to search for the most influencing factors and then modify the ANFIS structure to simplify the model. The proposed method can be used to forecast the waste generation in such developing countries where accurate reliable data is not always available. Moreover, annual solid waste prediction is essential for sustainable planning.

  1. Description of the Battlescale Forecast Model

    National Research Council Canada - National Science Library

    Henmi, Teizi

    1998-01-01

    .... Army Integrated Meteorological System Block II software. The Battlescale Forecast Model can be used operationally over any part of the world by using meteorological data obtained through the Automated Weather Distribution System...

  2. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  3. A Modeling Framework for Improved Agricultural Water Supply Forecasting

    Science.gov (United States)

    Leavesley, G. H.; David, O.; Garen, D. C.; Lea, J.; Marron, J. K.; Pagano, T. C.; Perkins, T. R.; Strobel, M. L.

    2008-12-01

    The National Water and Climate Center (NWCC) of the USDA Natural Resources Conservation Service is moving to augment seasonal, regression-equation based water supply forecasts with distributed-parameter, physical process models enabling daily, weekly, and seasonal forecasting using an Ensemble Streamflow Prediction (ESP) methodology. This effort involves the development and implementation of a modeling framework, and associated models and tools, to provide timely forecasts for use by the agricultural community in the western United States where snowmelt is a major source of water supply. The framework selected to support this integration is the USDA Object Modeling System (OMS). OMS is a Java-based modular modeling framework for model development, testing, and deployment. It consists of a library of stand-alone science, control, and database components (modules), and a means to assemble selected components into a modeling package that is customized to the problem, data constraints, and scale of application. The framework is supported by utility modules that provide a variety of data management, land unit delineation and parameterization, sensitivity analysis, calibration, statistical analysis, and visualization capabilities. OMS uses an open source software approach to enable all members of the scientific community to collaboratively work on addressing the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. A long-term goal in the development of these water-supply forecasting capabilities is the implementation of an ensemble modeling approach. This would provide forecasts using the results of multiple hydrologic models run on each basin.

  4. Modeling and forecasting petroleum futures volatility

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2006-01-01

    Forecasts of oil price volatility are important inputs into macroeconometric models, financial market risk assessment calculations like value at risk, and option pricing formulas for futures contracts. This paper uses several different univariate and multivariate statistical models to estimate forecasts of daily volatility in petroleum futures price returns. The out-of-sample forecasts are evaluated using forecast accuracy tests and market timing tests. The TGARCH model fits well for heating oil and natural gas volatility and the GARCH model fits well for crude oil and unleaded gasoline volatility. Simple moving average models seem to fit well in some cases provided the correct order is chosen. Despite the increased complexity, models like state space, vector autoregression and bivariate GARCH do not perform as well as the single equation GARCH model. Most models out perform a random walk and there is evidence of market timing. Parametric and non-parametric value at risk measures are calculated and compared. Non-parametric models outperform the parametric models in terms of number of exceedences in backtests. These results are useful for anyone needing forecasts of petroleum futures volatility. (author)

  5. Forecast of useful energy for the TIMES-Norway model

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-25

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  6. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic......In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...

  7. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  8. Recent advances in operational seasonal forecasting in South Africa: Models, infrastructure and networks

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available The various institutions involved with seasonal forecast development and production are discussed. New modelling approaches and the establishment of infrastructures to improve forecast dissemination are discussed....

  9. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  10. Short-Termed Integrated Forecasting System: 1993 Model documentation report

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

  11. Modeling olive-crop forecasting in Tunisia

    Science.gov (United States)

    Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji

    2017-05-01

    Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.

  12. FORECASTING BY ECONOMETRIC MODELS AS SUPPORT TO MANAGEMENT

    OpenAIRE

    TINDE DOBRODOLAC

    2011-01-01

    In the contemporary environment characterized by the dynamic structure of factors and the unpredictability of the relations existing between them, the central problem is the selection of strategic goals. Forecasting is the necessary precursor to the planning process and includes research into the future course of events. Numerous methods and techniques of forecasting are used nowadays. Econometric models can be used successfully for predicting the future development of a phenomenon, and there...

  13. Electricity price forecasting through transfer function models

    International Nuclear Information System (INIS)

    Nogales, F.J.; Conejo, A.J.

    2006-01-01

    Forecasting electricity prices in present day competitive electricity markets is a must for both producers and consumers because both need price estimates to develop their respective market bidding strategies. This paper proposes a transfer function model to predict electricity prices based on both past electricity prices and demands, and discuss the rationale to build it. The importance of electricity demand information is assessed. Appropriate metrics to appraise prediction quality are identified and used. Realistic and extensive simulations based on data from the PJM Interconnection for year 2003 are conducted. The proposed model is compared with naive and other techniques. Journal of the Operational Research Society (2006) 57, 350-356.doi:10.1057/palgrave.jors.2601995; published online 18 May 2005. (author)

  14. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Chiriac, Roxana; Voev, Valeri

    . We provide an empirical application of the model, in which we show by means of stochastic dominance tests that the returns from an optimal portfolio based on the model's forecasts second-order dominate returns of portfolios optimized on the basis of traditional MGARCH models. This result implies...

  15. Forecasting Inflation through Econometrics Models: An Empirical ...

    African Journals Online (AJOL)

    This article aims at modeling and forecasting inflation in Pakistan. For this purpose a number of econometric approaches are implemented and their results are compared. In ARIMA models, adding additional lags for p and/or q necessarily reduced the sum of squares of the estimated residuals. When a model is estimated ...

  16. State-level electricity demand forecasting model. [For 1980, 1985, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H. D.

    1978-01-01

    This note briefly describes the Oak Ridge National Laboratory (ORNL) state-level electricity demand (SLED) forecasting model developed for the Nuclear Regulatory Commission. Specifically, the note presents (1) the special features of the model, (2) the methodology used to forecast electricity demand, and (3) forecasts of electricity demand and average price by sector for 15 states for 1980, 1985, 1990.

  17. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  18. Experts' adjustment to model-based forecasts: Does the forecast horizon matter?

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2007-01-01

    textabstractExperts may have domain-specific knowledge that is not included in a statistical model and that can improve forecasts. While one-step-ahead forecasts address the conditional mean of the variable, model-based forecasts for longer horizons have a tendency to convert to the unconditional

  19. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    Science.gov (United States)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  20. Validation of Model Forecasts of the Ambient Solar Wind

    Science.gov (United States)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  1. Mountain range specific analog weather forecast model for ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 5. Mountain range specific ... Mountain range specific analog weather forecast model is developed utilizing surface weather observations of reference stations in each mountain range in northwest Himalaya (NW-Himalaya).The model searches past ...

  2. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.

    2003-01-01

    Using error diagrams, we quantify the forecasting of characteristic-earthquake occurence in a recently introduced minimalist model. Initially we connect the earthquake alarm at a fixed time after the occurence of a characteristic event. The evaluation of this strategy leads to a one...

  3. Mesoscale model forecast verification during monsoon 2008

    Indian Academy of Sciences (India)

    There have been very few mesoscale modelling studies of the Indian monsoon, with focus on the verification and intercomparison of the operational real time forecasts. With the exception of Das et al (2008), most of the studies in the literature are either the case studies of tropical cyclones and thunderstorms or the sensitivity ...

  4. Evaluation of the Mountain Wave Forecast Model's Stratospheric Turbulence Simulations

    National Research Council Canada - National Science Library

    Allen, Mark

    2003-01-01

    .... The Air Force Weather Agency (AFWA) requested a product with the capability of forecasting Stratoturb at 30, 50, and 70 mb using model data currently available, To facilitate their request, the Mountain Wave Forecast Model (MWFM...

  5. Derivative Process Model of Development Power in Industry: Empirical Research and Forecast for Chinese Software Industry and US Economy

    OpenAIRE

    Feng Dai; Bao- hua Sun; Jie Sun

    2004-01-01

    Based on concept and theory of Development Power [1], this paper analyzes the transferability and the diffusibility of industrial development power, points out that the chaos is the extreme of DP releasing and order is the highest degree of DP accumulating, puts forward A-C strength, the index of adjusting and controlling strength, and sets up the derivative process model for industrial development power on the Partial Distribution [2]-[4]. By the derivative process model, a kind of time seri...

  6. Air Quality Forecasts Using the NASA GEOS Model

    Science.gov (United States)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  7. Forecasting energy consumption using a grey model improved by incorporating genetic programming

    International Nuclear Information System (INIS)

    Lee, Yi-Shian; Tong, Lee-Ing

    2011-01-01

    Energy consumption is an important economic index, which reflects the industrial development of a city or a country. Forecasting energy consumption by conventional statistical methods usually requires the making of assumptions such as the normal distribution of energy consumption data or on a large sample size. However, the data collected on energy consumption are often very few or non-normal. Since a grey forecasting model, based on grey theory, can be constructed for at least four data points or ambiguity data, it can be adopted to forecast energy consumption. In some cases, however, a grey forecasting model may yield large forecasting errors. To minimize such errors, this study develops an improved grey forecasting model, which combines residual modification with genetic programming sign estimation. Finally, a real case of Chinese energy consumption is considered to demonstrate the effectiveness of the proposed forecasting model.

  8. A numerical forecast model for road meteorology

    Science.gov (United States)

    Meng, Chunlei

    2017-05-01

    A fine-scale numerical model for road surface parameters prediction (BJ-ROME) is developed based on the Common Land Model. The model is validated using in situ observation data measured by the ROSA road weather stations of Vaisala Company, Finland. BJ-ROME not only takes into account road surface factors, such as imperviousness, relatively low albedo, high heat capacity, and high heat conductivity, but also considers the influence of urban anthropogenic heat, impervious surface evaporation, and urban land-use/land-cover changes. The forecast time span and the update interval of BJ-ROME in vocational operation are 24 and 3 h, respectively. The validation results indicate that BJ-ROME can successfully simulate the diurnal variation of road surface temperature both under clear-sky and rainfall conditions. BJ-ROME can simulate road water and snow depth well if the artificial removing was considered. Road surface energy balance in rainy days is quite different from that in clear-sky conditions. Road evaporation could not be neglected in road surface water cycle research. The results of sensitivity analysis show solar radiation correction coefficient, asphalt depth, and asphalt heat conductivity are important parameters in road interface temperatures simulation. The prediction results could be used as a reference of maintenance decision support system to mitigate the traffic jam and urban water logging especially in large cities.

  9. Generalized martingale model of the uncertainty evolution of streamflow forecasts

    Science.gov (United States)

    Zhao, Tongtiegang; Zhao, Jianshi; Yang, Dawen; Wang, Hao

    2013-07-01

    Streamflow forecasts are dynamically updated in real-time, thus facilitating a process of forecast uncertainty evolution. Forecast uncertainty generally decreases over time and as more hydrologic information becomes available. The process of forecasting and uncertainty updating can be described by the martingale model of forecast evolution (MMFE), which formulates the total forecast uncertainty of a streamflow in one future period as the sum of forecast improvements in the intermediate periods. This study tests the assumptions, i.e., unbiasedness, Gaussianity, temporal independence, and stationarity, of MMFE using real-world streamflow forecast data. The results show that (1) real-world forecasts can be biased and tend to underestimate the actual streamflow, and (2) real-world forecast uncertainty is non-Gaussian and heavy-tailed. Based on these statistical tests, this study proposes a generalized martingale model GMMFE for the simulation of biased and non-Gaussian forecast uncertainties. The new model combines the normal quantile transform (NQT) with MMFE to formulate the uncertainty evolution of real-world streamflow forecasts. Reservoir operations based on a synthetic forecast by GMMFE illustrates that applications of streamflow forecasting facilitate utility improvements and that special attention should be focused on the statistical distribution of forecast uncertainty.

  10. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2017-09-01

    Full Text Available Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts from the GloSea5 model (1996 to 2009 are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region. Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 % in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows, whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70

  11. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Science.gov (United States)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast

  12. Multiobjective Optimization for the Forecasting Models on the Base of the Strictly Binary Trees

    OpenAIRE

    Nadezhda Astakhova; Liliya Demidova; Evgeny Nikulchev

    2016-01-01

    The optimization problem dealing with the development of the forecasting models on the base of strictly binary trees has been considered. The aim of paper is the comparative analysis of two optimization variants which are applied for the development of the forecasting models. Herewith the first optimization variant assumes the application of one quality indicator of the forecasting model named as the affinity indicator and the second variant realizes the application of two quality indicators ...

  13. Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts

    Science.gov (United States)

    Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar

    2017-02-01

    Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.

  14. Comparison of Conventional and ANN Models for River Flow Forecasting

    Science.gov (United States)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  15. Short-term integrated forecasting system : 1993 model documentation report

    Science.gov (United States)

    1993-12-01

    The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the U.S. Energy Department (DOE) developed the STIFS model to generate shor...

  16. A Model for Understanding Management Manpower: Forecasting and Planning

    Science.gov (United States)

    Deckard, Noble S.; Lessey, Kenneth W.

    1975-01-01

    The authors, realizing the importance of continuous organizational reappraisal of manpower needs and strengths, have developed a model based on supply of management manpower and demand for management manpower. Without a manpower forecasting/planning program, the future needs of the organization are reduced to guesswork. (EA)

  17. Development of a post-processing methodology for reliable, skillful probabilistic quantitative precipitation forecasts with multi-model ensembles and short training data sets.

    Science.gov (United States)

    Hamill, Thomas M.; Scheuerer, Michael

    2017-04-01

    While many previous studies have shown the benefits and improved forecast reliability from combining predictions from multi-model ensemble systems, our experience is that MMEs of global ensemble precipitation forecasts are still highly unreliable when verified against point observations of precipitation or against high-resolution precipitation analyses. This unreliability is caused by a lack of model resolution as well as systematic errors in the mean precipitation amount. These errors may vary from one ensemble prediction system to the next, and perhaps member by member for some ensemble systems. They can vary from one location to the next and the error is commonly different for light vs. heavy precipitation. MMEs also typically under-forecast the precipitation spread. Typically, producing skillful and reliable post-processed forecast guidance of probabilistic precipitation is challenging with short training data sets given the intermittency of precipitation and the relative rarity of high precipitation. Pooling of training data can increase the sample size needed for effective post-processing, but at the expense of providing geographically relevant adjustments for systematic error. A novel approach for generating probabilistic precipitation forecasts is demonstrated here using global MMEs. The key component is the selective supplementation of training data at every location where a forecast is desired using the training data at other "supplemental locations". These supplemental locations are chosen on the basis of a similarity of terrain characteristics and precipitation climatology, under the presumption that the forecast errors from coarse-resolution prediction systems are often related to mis-representation of terrain-related detail. With training sample size thus enlarged, post-processing is based on quantile mapping for removal of amount-dependent bias and best-member dressing for addressing spread issues. Algorithmic details and the results of the

  18. Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques

    Directory of Open Access Journals (Sweden)

    Fakhri J. Hasanov

    2016-12-01

    Full Text Available Policymakers in developing and transitional economies require sound models to: (i understand the drivers of rapidly growing energy consumption and (ii produce forecasts of future energy demand. This paper attempts to model electricity demand in Azerbaijan and provide future forecast scenarios—as far as we are aware this is the first such attempt for Azerbaijan using a comprehensive modelling framework. Electricity consumption increased and decreased considerably in Azerbaijan from 1995 to 2013 (the period used for the empirical analysis—it increased on average by about 4% per annum from 1995 to 2006 but decreased by about 4½% per annum from 2006 to 2010 and increased thereafter. It is therefore vital that Azerbaijani planners and policymakers understand what drives electricity demand and be able to forecast how it will grow in order to plan for future power production. However, modeling electricity demand for such a country has many challenges. Azerbaijan is rich in energy resources, consequently GDP is heavily influenced by oil prices; hence, real non-oil GDP is employed as the activity driver in this research (unlike almost all previous aggregate energy demand studies. Moreover, electricity prices are administered rather than market driven. Therefore, different cointegration and error correction techniques are employed to estimate a number of per capita electricity demand models for Azerbaijan, which are used to produce forecast scenarios for up to 2025. The resulting estimated models (in terms of coefficients, etc. and forecasts of electricity demand for Azerbaijan in 2025 prove to be very similar; with the Business as Usual forecast ranging from about of 19½ to 21 TWh.

  19. AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Н. Білак

    2012-04-01

    Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.

  20. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  1. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  2. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  3. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  4. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  5. Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice

    NARCIS (Netherlands)

    Callot, Laurent A.F.; Kock, Anders B.; Medeiros, Marcelo C.

    2017-01-01

    We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso-type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast

  6. Risky Business: Development, Communication and Use of Hydroclimatic Forecasts

    Science.gov (United States)

    Lall, U.

    2012-12-01

    Inter-seasonal and longer hydroclimatic forecasts have been made increasingly in the last two decades following the increase in ENSO activity since the early 1980s and the success in seasonal ENSO forecasting. Yet, the number of examples of systematic use of these forecasts and their incorporation into water systems operation continue to be few. This may be due in part to the limited skill in such forecasts over much of the world, but is also likely due to the limited evolution of methods and opportunities to "safely" use uncertain forecasts. There has been a trend to rely more on "physically based" rather than "physically informed" empirical forecasts, and this may in part explain the limited success in developing usable products in more locations. Given the limited skill, forecasters have tended to "dumb" down their forecasts - either formally or subjectively shrinking the forecasts towards climatology, or reducing them to tercile forecasts that serve to obscure the potential information in the forecast. Consequently, the potential utility of such forecasts for decision making is compromised. Water system operating rules are often designed to be robust in the face of historical climate variability, and consequently are adapted to the potential conditions that a forecast seeks to inform. In such situations, there is understandable reluctance by managers to use the forecasts as presented, except in special cases where an alternate course of action is pragmatically appealing in any case. In this talk, I review opportunities to present targeted forecasts for use with decision systems that directly address climate risk and the risk induced by unbiased yet uncertain forecasts, focusing especially on extreme events and water allocation in a competitive environment. Examples from Brazil and India covering surface and ground water conjunctive use strategies that could potentially be insured and lead to improvements over the traditional system operation and resource

  7. Model for Adjustment of Aggregate Forecasts using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Taracena–Sanz L. F.

    2010-07-01

    Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.

  8. Two empirical models for short-term forecast of Kp

    Science.gov (United States)

    Luo, B.; Liu, S.; Gong, J.

    2017-03-01

    In this paper, two empirical models are developed for short-term forecast of the Kp index, taking advantage of solar wind-magnetosphere coupling functions proposed by the research community. Both models are based on the data for years 1995 to 2004. Model 1 mainly uses solar wind parameters as the inputs, while model 2 also utilizes the previous measured Kp value. Finally, model 1 predicts Kp with a linear correlation coefficient (r) of 0.91, a prediction efficiency (PE) of 0.81, and a root-mean-square (RMS) error of 0.59. Model 2 gives an r of 0.92, a PE of 0.84, and an RMS error of 0.57. The two models are validated through out-of-sample test for years 2005 to 2013, which also yields high forecast accuracy. Unlike in the other models reported in the literature, we are taking the response time of the magnetosphere to external solar wind at the Earth explicitly in the modeling. Statistically, the time delay in the models turns out to be about 30 min. By introducing this term, both the accuracy and lead time of the model forecast are improved. Through verification and validation, the models can be used in operational geomagnetic storm warnings with reliable performance.

  9. Limited Area Forecasting and Statistical Modelling for Wind Energy Scheduling

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg

    forecast accuracy for operational wind power scheduling. Numerical weather prediction history and scales of atmospheric motion are summarised, followed by a literature review of limited area wind speed forecasting. Hereafter, the original contribution to research on the topic is outlined. The quality...... control of wind farm data used as forecast reference is described in detail, and a preliminary limited area forecasting study illustrates the aggravation of issues related to numerical orography representation and accurate reference coordinates at ne weather model resolutions. For the o shore and coastal...... sites studied limited area forecasting is found to deteriorate wind speed prediction accuracy, while inland results exhibit a steady forecast performance increase with weather model resolution. Temporal smoothing of wind speed forecasts is shown to improve wind power forecast performance by up to almost...

  10. Forecasting with nonlinear time series model: A Monte-Carlo ...

    African Journals Online (AJOL)

    In this paper, we propose a new method of forecasting with nonlinear time series model using Monte-Carlo Bootstrap method. This new method gives better result in terms of forecast root mean squared error (RMSE) when compared with the traditional Bootstrap method and Monte-Carlo method of forecasting using a ...

  11. Temperature sensitivity of a numerical pollen forecast model

    Science.gov (United States)

    Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone

    2016-04-01

    Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.

  12. Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa

    Directory of Open Access Journals (Sweden)

    Tadesse Kassahun Birhanu

    2017-12-01

    Full Text Available Knowledge of future river flow information is fundamental for development and management of a river system. In this study, Waterval River flow was forecasted by SARIMA model using GRETL statistical software. Mean monthly flows from 1960 to 2016 were used for modelling and forecasting. Different unit root and Mann–Kendall trend analysis proved the stationarity of the observed flow time series. Based on seasonally differenced correlogram characteristics, different SARIMA models were evaluated; their parameters were optimized, and diagnostic check up of forecasts was made using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AI and Hannan–Quinn (HQ criteria, SARIMA (3, 0, 2 x (3, 1, 312 model was selected for Waterval River flow forecasting. Comparison of forecast performance of SARIMA models with that of computational intelligent forecasting techniques was recommended for future study.

  13. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Hendrik F. [IBM, Yorktown Heights, NY (United States). Thomas J. Watson Research Center

    2017-05-31

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  14. The long-run forecasting of energy prices using the model of shifting trend

    International Nuclear Information System (INIS)

    Radchenko, Stanislav

    2005-01-01

    Developing models for accurate long-term energy price forecasting is an important problem because these forecasts should be useful in determining both supply and demand of energy. On the supply side, long-term forecasts determine investment decisions of energy-related companies. On the demand side, investments in physical capital and durable goods depend on price forecasts of a particular energy type. Forecasting long-run rend movements in energy prices is very important on the macroeconomic level for several developing countries because energy prices have large impacts on their real output, the balance of payments, fiscal policy, etc. Pindyck (1999) argues that the dynamics of real energy prices is mean-reverting to trend lines with slopes and levels that are shifting unpredictably over time. The hypothesis of shifting long-term trend lines was statistically tested by Benard et al. (2004). The authors find statistically significant instabilities for coal and natural gas prices. I continue the research of energy prices in the framework of continuously shifting levels and slopes of trend lines started by Pindyck (1999). The examined model offers both parsimonious approach and perspective on the developments in energy markets. Using the model of depletable resource production, Pindyck (1999) argued that the forecast of energy prices in the model is based on the long-run total marginal cost. Because the model of a shifting trend is based on the competitive behavior, one may examine deviations of oil producers from the competitive behavior by studying the difference between actual prices and long-term forecasts. To construct the long-run forecasts (10-year-ahead and 15-year-ahead) of energy prices, I modify the univariate shifting trends model of Pindyck (1999). I relax some assumptions on model parameters, the assumption of white noise error term, and propose a new Bayesian approach utilizing a Gibbs sampling algorithm to estimate the model with autocorrelation. To

  15. An artificial neural network model for rainfall forecasting in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    N. Q. Hung

    2009-08-01

    Full Text Available This paper presents a new approach using an Artificial Neural Network technique to improve rainfall forecast performance. A real world case study was set up in Bangkok; 4 years of hourly data from 75 rain gauge stations in the area were used to develop the ANN model. The developed ANN model is being applied for real time rainfall forecasting and flood management in Bangkok, Thailand. Aimed at providing forecasts in a near real time schedule, different network types were tested with different kinds of input information. Preliminary tests showed that a generalized feedforward ANN model using hyperbolic tangent transfer function achieved the best generalization of rainfall. Especially, the use of a combination of meteorological parameters (relative humidity, air pressure, wet bulb temperature and cloudiness, the rainfall at the point of forecasting and rainfall at the surrounding stations, as an input data, advanced ANN model to apply with continuous data containing rainy and non-rainy period, allowed model to issue forecast at any moment. Additionally, forecasts by ANN model were compared to the convenient approach namely simple persistent method. Results show that ANN forecasts have superiority over the ones obtained by the persistent model. Rainfall forecasts for Bangkok from 1 to 3 h ahead were highly satisfactory. Sensitivity analysis indicated that the most important input parameter besides rainfall itself is the wet bulb temperature in forecasting rainfall.

  16. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  17. A Comparison Study of Return Ratio-Based Academic Enrollment Forecasting Models. Professional File. Article 129, Spring 2013

    Science.gov (United States)

    Zan, Xinxing Anna; Yoon, Sang Won; Khasawneh, Mohammad; Srihari, Krishnaswami

    2013-01-01

    In an effort to develop a low-cost and user-friendly forecasting model to minimize forecasting error, we have applied average and exponentially weighted return ratios to project undergraduate student enrollment. We tested the proposed forecasting models with different sets of historical enrollment data, such as university-, school-, and…

  18. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Shelton Peiris

    2017-12-01

    Full Text Available This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV components in order to develop the General Long Memory SV (GLMSV model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV model to three exchange rate return series and conjecture that the results of out-of-sample forecasts adequately confirm the use of GLMSV model in certain financial applications.

  19. Using phenomenological models for forecasting the 2015 Ebola challenge

    Directory of Open Access Journals (Sweden)

    Bruce Pell

    2018-03-01

    .08 compared to 0.10, averaged across all scenarios and time points. Conclusions: Our findings further support the consideration of transmission models that incorporate flexible early epidemic growth profiles in the forecasting toolkit. Such models are particularly useful for quickly evaluating a developing infectious disease outbreak using only case incidence time series of the early phase of an infectious disease outbreak. Keywords: Logistic growth model, Richards model, Generalized Richards model, Ebola challenge

  20. A Novel Hybrid BND-FOA-LSSVM Model for Electricity Price Forecasting

    Directory of Open Access Journals (Sweden)

    Weishang Guo

    2017-09-01

    Full Text Available Accurate electricity price forecasting plays an important role in the profits of electricity market participants and the healthy development of electricity market. However, the electricity price time series hold the characteristics of volatility and randomness, which make it quite hard to forecast electricity price accurately. In this paper, a novel hybrid model for electricity price forecasting was proposed combining Beveridge-Nelson decomposition (BND method, fruit fly optimization algorithm (FOA, and least square support vector machine (LSSVM model, namely BND-FOA-LSSVM model. Firstly, the original electricity price time series were decomposed into deterministic term, periodic term, and stochastic term by using BND model. Then, these three decomposed terms were forecasted by employing LSSVM model, respectively. Meanwhile, to improve the forecasting performance, a new swarm intelligence optimization algorithm FOA was used to automatically determine the optimal parameters of LSSVM model for deterministic term forecasting, periodic term forecasting, and stochastic term forecasting. Finally, the forecasting result of electricity price can be obtained by multiplying the forecasting values of these three terms. The results show the mean absolute percentage error (MAPE, root mean square error (RMSE and mean absolute error (MAE of the proposed BND-FOA-LSSVM model are respectively 3.48%, 11.18 Yuan/MWh and 9.95 Yuan/MWh, which are much smaller than that of LSSVM, BND-LSSVM, FOA-LSSVM, auto-regressive integrated moving average (ARIMA, and empirical mode decomposition (EMD-FOA-LSSVM models. The proposed BND-FOA-LSSVM model is effective and practical for electricity price forecasting, which can improve the electricity price forecasting accuracy.

  1. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  2. The use of HBV model for flash flood forecasting

    Directory of Open Access Journals (Sweden)

    M. Kobold

    2006-01-01

    Full Text Available The standard conceptual HBV model was originally developed with daily data and is normally operated on daily time step. But many floods in Slovenia are usually flash floods as result of intense frontal precipitation combined with orographic enhancement. Peak discharges are maintained only for hours or even minutes. To use the HBV model for flash flood forecasting, the version of HBV-96 has been applied on the catchment with complex topography with the time step of one hour. The recording raingauges giving hourly values of precipitation have been taken in calibration of the model. The uncertainty of simulated runoff is mainly the result of precipitation uncertainty associated with the mean areal precipitation and is higher for mountainous catchments. Therefore the influence of number of raingauges used to derive the areal precipitation by the method of Thiessen polygons was investigated. The quantification of hydrological uncertainty has been performed by analysis of sensitivity of the HBV model to error in precipitation input. The results show that an error of 10% in the amount of precipitation causes an error of 17% in the peak of flood wave. The polynomial equations showing the relationship between the errors in rainfall amounts and peak discharges were derived for two water stations on the Savinja catchment. Simulated discharges of half-yearly runs demonstrate the applicability of the HBV model for flash flood forecasting using the mesoscale meteorological forecasts of ALADIN/SI model as input precipitation data.

  3. Development of KASI Geomagnetic Storm Forecast System using Coronagraph Data

    Science.gov (United States)

    Baek, Ji-Hye; Choi, SeongHwan; Park, Jongyeob; Kim, Roksoon; Kim, Sujin; Kim, Jihun

    2017-08-01

    We present Korea Astronomy and Space Science Institute (KASI) Geomagnetic Storm Forecast System. The aim of the system is to calculate the CME arrival time and predict the geoeffectiveness of the CME. To implement the system, we use the Large Angle and Spectrometric Coronagraph (LASCO) C2 and C3 data, the HMI magnetogram data of Solar Dynamics Observatory(SDO), and CACTUS CME list. The system consists of servers, which are to download, process, and publish data, data handling programs and web service. We apply an image differencing technique on LASCO data to determine speed and earthward direction parameters of CMEs. KASI Geomagnetic Storm Forecast Model has installed and being tested at Community Coordinated Modeling Center (CCMC) of NASA/GSFC. We expect that users can predict CME arrival time and geoeffectiveness of the CME easily and fast using the system. In order to improve the forecast performance of the system, we plan to incorporate advanced coronagraph data which will be developed and installed on ISS by KASI and NASA in collaboration.

  4. A Novel Hybrid BND-FOA-LSSVM Model for Electricity Price Forecasting

    OpenAIRE

    Weishang Guo; Zhenyu Zhao

    2017-01-01

    Accurate electricity price forecasting plays an important role in the profits of electricity market participants and the healthy development of electricity market. However, the electricity price time series hold the characteristics of volatility and randomness, which make it quite hard to forecast electricity price accurately. In this paper, a novel hybrid model for electricity price forecasting was proposed combining Beveridge-Nelson decomposition (BND) method, fruit fly optimization algorit...

  5. Tourism Demand Modelling and Forecasting: A Review of Recent Research

    OpenAIRE

    Song, H; Li, G

    2008-01-01

    This paper reviews the published studies on tourism demand modelling and forecasting since 2000. One of the key findings of this review is that the methods used in analysing and forecasting the demand for tourism have been more diverse than those identified by other review articles. In addition to the most popular time-series and econometric models, a number of new techniques have emerged in the literature. However, as far as the forecasting accuracy is concerned, the study shows that there i...

  6. Models of Investor Forecasting Behavior — Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Federico Bonetto

    2017-12-01

    Full Text Available Different forecasting behaviors affect investors’ trading decisions and lead to qualitatively different asset price trajectories. It has been shown in the literature that the weights that investors place on observed asset price changes when forecasting future price changes, and the nature of their confidence when price changes are forecast, determine whether price bubbles, price crashes, and unpredictable price cycles occur. In this paper, we report the results of behavioral experiments involving multiple investors who participated in a market for a virtual asset. Our goal is to study investors’ forecast formation. We conducted three experimental sessions with different participants in each session. We fit different models of forecast formation to the observed data. There is strong evidence that the investors forecast future prices by extrapolating past price changes, even when they know the fundamental value of the asset exactly and the extrapolated forecasts differ significantly from the fundamental value. The rational expectations hypothesis seems inconsistent with the observed forecasts. The forecasting models of all participants that best fit the observed forecasting data were of the type that cause price bubbles and cycles in dynamical systems models, and price bubbles and cycles ended up occurring in all three sessions.

  7. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    Directory of Open Access Journals (Sweden)

    Alp Ustundag

    2009-12-01

    Full Text Available Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI with multiple linear regression (MLR to predict product sales for the largest Turkish paint producer. In the hybrid model, three different AI methods, fuzzy rule-based system (FRBS, artificial neural network (ANN and adaptive neuro fuzzy network (ANFIS, are used and compared to each other. The results indicate that FRBS yields better forecasting accuracy in terms of root mean squared error (RMSE and mean absolute percentage error (MAPE.

  8. Development of a forecasting model for brucellosis spreading in the Italian cattle trade network aimed to prioritise the field interventions.

    Directory of Open Access Journals (Sweden)

    L Savini

    Full Text Available Brucellosis caused by Brucella abortus is an important zoonosis that constitutes a serious hazard to public health. Prevention of human brucellosis depends on the control of the disease in animals. Livestock movement data represent a valuable source of information to understand the pattern of contacts between holdings, which may determine the inter-herds and intra-herd spread of the disease. The manuscript addresses the use of computational epidemic models rooted in the knowledge of cattle trade network to assess the probabilities of brucellosis spread and to design control strategies. Three different spread network-based models were proposed: the DFC (Disease Flow Centrality model based only on temporal cattle network structure and unrelated to the epidemiological disease parameters; a deterministic SIR (Susceptible-Infectious-Recovered model; a stochastic SEIR (Susceptible-Exposed-Infectious-Recovered model in which epidemiological and demographic within-farm aspects were also modelled. Containment strategies based on farms centrality in the cattle network were tested and discussed. All three models started from the identification of the entire sub-network originated from an infected farm, up to the fifth order of contacts. Their performances were based on data collected in Sicily in the framework of the national eradication plan of brucellosis in 2009. Results show that the proposed methods improves the efficacy and efficiency of the tracing activities in comparison to the procedure currently adopted by the veterinary services in the brucellosis control, in Italy. An overall assessment shows that the SIR model is the most suitable for the practical needs of the veterinary services, being the one with the highest sensitivity and the shortest computation time.

  9. Development of a forecasting model for brucellosis spreading in the Italian cattle trade network aimed to prioritise the field interventions.

    Science.gov (United States)

    Savini, L; Candeloro, L; Conte, A; De Massis, F; Giovannini, A

    2017-01-01

    Brucellosis caused by Brucella abortus is an important zoonosis that constitutes a serious hazard to public health. Prevention of human brucellosis depends on the control of the disease in animals. Livestock movement data represent a valuable source of information to understand the pattern of contacts between holdings, which may determine the inter-herds and intra-herd spread of the disease. The manuscript addresses the use of computational epidemic models rooted in the knowledge of cattle trade network to assess the probabilities of brucellosis spread and to design control strategies. Three different spread network-based models were proposed: the DFC (Disease Flow Centrality) model based only on temporal cattle network structure and unrelated to the epidemiological disease parameters; a deterministic SIR (Susceptible-Infectious-Recovered) model; a stochastic SEIR (Susceptible-Exposed-Infectious-Recovered) model in which epidemiological and demographic within-farm aspects were also modelled. Containment strategies based on farms centrality in the cattle network were tested and discussed. All three models started from the identification of the entire sub-network originated from an infected farm, up to the fifth order of contacts. Their performances were based on data collected in Sicily in the framework of the national eradication plan of brucellosis in 2009. Results show that the proposed methods improves the efficacy and efficiency of the tracing activities in comparison to the procedure currently adopted by the veterinary services in the brucellosis control, in Italy. An overall assessment shows that the SIR model is the most suitable for the practical needs of the veterinary services, being the one with the highest sensitivity and the shortest computation time.

  10. Forecasting natural gas consumption in China by Bayesian Model Averaging

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-11-01

    Full Text Available With rapid growth of natural gas consumption in China, it is in urgent need of more accurate and reliable models to make a reasonable forecast. Considering the limitations of the single model and the model uncertainty, this paper presents a combinative method to forecast natural gas consumption by Bayesian Model Averaging (BMA. It can effectively handle the uncertainty associated with model structure and parameters, and thus improves the forecasting accuracy. This paper chooses six variables for forecasting the natural gas consumption, including GDP, urban population, energy consumption structure, industrial structure, energy efficiency and exports of goods and services. The results show that comparing to Gray prediction model, Linear regression model and Artificial neural networks, the BMA method provides a flexible tool to forecast natural gas consumption that will have a rapid growth in the future. This study can provide insightful information on natural gas consumption in the future.

  11. Modeling and forecasting natural gas demand in Bangladesh

    International Nuclear Information System (INIS)

    Wadud, Zia; Dey, Himadri S.; Kabir, Md. Ashfanoor; Khan, Shahidul I.

    2011-01-01

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: → Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. → Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. → Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. → Demand forecasts reveal large divergence from previous estimates, which is important for planning. → Attempts to model demand for end-use sectors were successful only for the industrial sector.

  12. Developing long-term scenario forecasts to support electricity generation investment decisions

    CSIR Research Space (South Africa)

    Koen, Renée

    2014-09-01

    Full Text Available models to develop scenario forecasts for South African load profiles (hour-to-hour changes in the electricity demand), which can then be used to support decisions regarding the electricity generation capacity required. Although historical load profile...

  13. An Hourly Streamflow Forecasting Model Coupled with an Enforced Learning Strategy

    Directory of Open Access Journals (Sweden)

    Ming-Chang Wu

    2015-10-01

    Full Text Available Floods, one of the most significant natural hazards, often result in loss of life and property. Accurate hourly streamflow forecasting is always a key issue in hydrology for flood hazard mitigation. To improve the performance of hourly streamflow forecasting, a methodology concerning the development of neural network (NN based models with an enforced learning strategy is proposed in this paper. Firstly, four different NNs, namely back propagation network (BPN, radial basis function network (RBFN, self-organizing map (SOM, and support vector machine (SVM, are used to construct streamflow forecasting models. Through the cross-validation test, NN-based models with superior performance in streamflow forecasting are detected. Then, an enforced learning strategy is developed to further improve the performance of the superior NN-based models, i.e., SOM and SVM in this study. Finally, the proposed flow forecasting model is obtained. Actual applications are conducted to demonstrate the potential of the proposed model. Moreover, comparison between the NN-based models with and without the enforced learning strategy is performed to evaluate the effect of the enforced learning strategy on model performance. The results indicate that the NN-based models with the enforced learning strategy indeed improve the accuracy of hourly streamflow forecasting. Hence, the presented methodology is expected to be helpful for developing improved NN-based streamflow forecasting models.

  14. A Simple Hybrid Model for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Suseelatha Annamareddi

    2013-01-01

    Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.

  15. Markov Chain Modelling for Short-Term NDVI Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Stepčenko Artūrs

    2016-12-01

    Full Text Available In this paper, the NDVI time series forecasting model has been developed based on the use of discrete time, continuous state Markov chain of suitable order. The normalised difference vegetation index (NDVI is an indicator that describes the amount of chlorophyll (the green mass and shows the relative density and health of vegetation; therefore, it is an important variable for vegetation forecasting. A Markov chain is a stochastic process that consists of a state space. This stochastic process undergoes transitions from one state to another in the state space with some probabilities. A Markov chain forecast model is flexible in accommodating various forecast assumptions and structures. The present paper discusses the considerations and techniques in building a Markov chain forecast model at each step. Continuous state Markov chain model is analytically described. Finally, the application of the proposed Markov chain model is illustrated with reference to a set of NDVI time series data.

  16. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  17. Structural forecasts for the Danish economy using a dynamic AAGE model

    DEFF Research Database (Denmark)

    Adams, Philip D; Andersen, Lill Thanning; Jacobsen, Lars Bo

    We describe how an applied dynamic general equilibrium model of the Danish economy has been developed to generate structural forecasts. The forecasts provide a microeconomic picture that is consistent with a macroeconomic scenario and the other inputs. We provide an overview of the inputs require...

  18. Deterministic and heuristic models of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-04-01

    Full Text Available Knowing the demand of spare parts is the basis for successful spare parts inventory management. Inventory management has two aspects. The first one is operational management: acting according to certain models and making decisions in specific situations which could not have been foreseen or have not been encompassed by models. The second aspect is optimization of the model parameters by means of inventory management. Supply items demand (asset demand is the expression of customers' needs in units in the desired time and it is one of the most important parameters in the inventory management. The basic task of the supply system is demand fulfillment. In practice, demand is expressed through requisition or request. Given the conditions in which inventory management is considered, demand can be: - deterministic or stochastic, - stationary or nonstationary, - continuous or discrete, - satisfied or unsatisfied. The application of the maintenance concept is determined by the technological level of development of the assets being maintained. For example, it is hard to imagine that the concept of self-maintenance can be applied to assets developed and put into use 50 or 60 years ago. Even less complex concepts cannot be applied to those vehicles that only have indicators of engine temperature - those that react only when the engine is overheated. This means that the maintenance concepts that can be applied are the traditional preventive maintenance and the corrective maintenance. In order to be applied in a real system, modeling and simulation methods require a completely regulated system and that is not the case with this spare parts supply system. Therefore, this method, which also enables the model development, cannot be applied. Deterministic models of forecasting are almost exclusively related to the concept of preventive maintenance. Maintenance procedures are planned in advance, in accordance with exploitation and time resources. Since the timing

  19. Empirical evaluation of a forecasting model for successful facilitation ...

    African Journals Online (AJOL)

    The forecasting model identified 8 key attributes for facilitation success based on performance measures from the 1999 Facilitator Customer Service Survey. During 2000 the annual Facilitator Customer Satisfaction Survey was employed to validate the findings of the forecasting model. A total of 1910 questionnaires were ...

  20. Forecasting labour supply and population: An integrated stochastic model

    OpenAIRE

    Fuchs, Johann; Söhnlein, Doris; Weber, Brigitte; Weber, Enzo

    2017-01-01

    This paper presents a stochastic integrated model to forecast the German population and labour supply until 2060. Within a cohort-component approach, the population forecast applies principal components to birth, mortality, emigration and immigration rates. The labour force participation rates are estimated by means of an econometric time series approach. All time series are forecast by bootstrapping. This allows fully integrated simulations and the possibility to illustrate the uncertainties...

  1. Honolulu, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Honolulu, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. King Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The King Cove, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  4. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  6. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  8. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  10. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  11. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  13. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  15. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. Mayaguez, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mayaguez, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  20. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  2. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  3. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  4. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  6. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  7. San Diego, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Diego, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  8. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Portland, Maine Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Portland, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  10. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  11. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. La Push, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Westport, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. Newport, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2008-01-01

    In a competitive electricity market, forecast of energy prices is a key information for the market participants. However, price signal usually has a complex behavior due to its nonlinearity, nonstationarity, and time variancy. In spite of all performed researches on this area in the recent years, there is still an essential need for more accurate and robust price forecast methods. In this paper, a combination of wavelet transform (WT) and a hybrid forecast method is proposed for this purpose. The hybrid method is composed of cascaded forecasters where each forecaster consists of a neural network (NN) and an evolutionary algorithms (EA). Both time domain and wavelet domain features are considered in a mixed data model for price forecast, in which the candidate input variables are refined by a feature selection technique. The adjustable parameters of the whole method are fine-tuned by a cross-validation technique. The proposed method is examined on PJM electricity market and compared with some of the most recent price forecast methods. (author)

  3. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    Science.gov (United States)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  4. Forecast model of landslides in a short time

    International Nuclear Information System (INIS)

    Sanchez Lopez, Reinaldo

    2006-01-01

    The IDEAM in development of their functions as member of the national technical committee for the prevention and disasters attention (SNPAD) accomplishes the follow-up, monitoring and forecast in real time of the environmental dynamics that in extreme situations constitute threats and natural risks. One of the frequent dynamics and of greater impact is related to landslides, those that affect persistently the life of the persons, the infrastructure, the socioeconomic activities and the balance of the environment. The landslide in Colombia and in the world are caused mainly by effects of the rain, due to that, IDEAM has come developing forecast model, as an instrument for risk management in a short time. This article presents aspects related to their structure, operation, temporary space resolution, products, results, achievements and projections of the model. Conceptually, the model is support by the principle of the dynamic temporary - space, of the processes that consolidate natural hazards, particularly in areas where the man has come building the risk. Structurally, the model is composed by two sub-models; the general susceptibility of the earthly model and the critical rain model as a denotative factor, that consolidate the hazard process. In real time, the model, works as a GIS, permitting the automatic zoning of the landslides hazard for issue public advisory warming to help makers decisions on the risk that cause frequently these events, in the country

  5. Precipitation forecasts and their uncertainty as input into hydrological models

    Directory of Open Access Journals (Sweden)

    M. Kobold

    2005-01-01

    Full Text Available Torrential streams and fast runoff are characteristic of most Slovenian rivers and extensive damage is caused almost every year by rainstorms affecting different regions of Slovenia. Rainfall-runoff models which are tools for runoff calculation can be used for flood forecasting. In Slovenia, the lag time between rainfall and runoff is only a few hours and on-line data are used only for now-casting. Predicted precipitation is necessary in flood forecasting some days ahead. The ECMWF (European Centre for Medium-Range Weather Forecasts model gives general forecasts several days ahead while more detailed precipitation data with the ALADIN/SI model are available for two days ahead. Combining the weather forecasts with the information on catchment conditions and a hydrological forecasting model can give advance warning of potential flooding notwithstanding a certain degree of uncertainty in using precipitation forecasts based on meteorological models. Analysis of the sensitivity of the hydrological model to the rainfall error has shown that the deviation in runoff is much larger than the rainfall deviation. Therefore, verification of predicted precipitation for large precipitation events was performed with the ECMWF model. Measured precipitation data were interpolated on a regular grid and compared with the results from the ECMWF model. The deviation in predicted precipitation from interpolated measurements is shown with the model bias resulting from the inability of the model to predict the precipitation correctly and a bias for horizontal resolution of the model and natural variability of precipitation.

  6. Urban Saturated Power Load Analysis Based on a Novel Combined Forecasting Model

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-03-01

    Full Text Available Analysis of urban saturated power loads is helpful to coordinate urban power grid construction and economic social development. There are two different kinds of forecasting models: the logistic curve model focuses on the growth law of the data itself, while the multi-dimensional forecasting model considers several influencing factors as the input variables. To improve forecasting performance, a novel combined forecasting model for saturated power load analysis was proposed in this paper, which combined the above two models. Meanwhile, the weights of these two models in the combined forecasting model were optimized by employing a fruit fly optimization algorithm. Using Hubei Province as the example, the effectiveness of the proposed combined forecasting model was verified, demonstrating a higher forecasting accuracy. The analysis result shows that the power load of Hubei Province will reach saturation in 2039, and the annual maximum power load will reach about 78,630 MW. The results obtained from this proposed hybrid urban saturated power load analysis model can serve as a reference for sustainable development for urban power grids, regional economies, and society at large.

  7. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...... and uses environmental conditions such as heating, ventilation, and temperature along with broiler behavior such as feed and water consumption. Training data and forecasting data is analyzed to explain when the model might fail at generalizing. We present ensemble broiler weight forecasts to day 7, 14, 21......, 28 and 34 from all preceding days and provide our interpretation of the results. Results indicate that the dynamic interconnection between environmental conditions and broiler growth can be captured by the model. Furthermore, we found that a comparable forecast can be obtained by using input data...

  8. Forecasting Austrian national elections: The Grand Coalition model

    Science.gov (United States)

    Aichholzer, Julian; Willmann, Johanna

    2014-01-01

    Forecasting the outcomes of national elections has become established practice in several democracies. In the present paper, we develop an economic voting model for forecasting the future success of the Austrian ‘grand coalition’, i.e., the joint electoral success of the two mainstream parties SPOE and OEVP, at the 2013 Austrian Parliamentary Elections. Our main argument is that the success of both parties is strongly tied to the accomplishments of the Austrian system of corporatism, that is, the Social Partnership (Sozialpartnerschaft), in providing economic prosperity. Using data from Austrian national elections between 1953 and 2008 (n=18), we rely on the following predictors in our forecasting model: (1) unemployment rates, (2) previous incumbency of the two parties, and (3) dealignment over time. We conclude that, in general, the two mainstream parties benefit considerably from low unemployment rates, and are weakened whenever they have previously formed a coalition government. Further, we show that they have gradually been losing a good share of their voter basis over recent decades. PMID:26339109

  9. Sol-Terra - AN Operational Space Weather Forecasting Model Framework

    Science.gov (United States)

    Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.

    2015-12-01

    The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within

  10. Wind power forecasting system EOlienne SPEO : development, preliminary results and integration at Hydro-Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Forcione, A.; Roberge, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ; Yu, W.; Glazer, A.; Benoit, R.; Plante, A.; Tran, L.D.; Chardon, L. [Environment Canada, Ottawa, ON (Canada)

    2007-07-01

    Wind generation forecasting at Hydro-Quebec was discussed with particular reference to the collaborative efforts between the utility's Research Institute and Environment Canada in developing the Systeme de Prevision EOlienne (SPEO). The European ANEMOS platform was installed at Hydro-Quebec Distribution in 2006. Operational forecasts using the Global Environmental Multi-scale model (GEM) from the Canadian Meteorological Centre served as input for SPEO. This presentation evaluated the performance of the forecasting model, and presented best approaches for long term use and continuous improvement. SPEO was developed to forecast wind and other atmospheric variables, and not generated power. The development of the software began in September 2006 with the development and integration of necessary components, followed by the calibration of the system, 15 months of operational forecasts, experimentation and final analysis in 2008. The GEM-global model provides 10 days and 240 hours of hourly forecasts with 35 km resolution, while the GEM-regional model provides 2 days and 48 hours of hourly forecasts with 15 km resolution. It was shown that the development of a good forecasting system depends entirely on the availability of a maximum number of observation sources, which for SPEO includes 13 Environment Canada stations and wind farm masts. The final value of a wind forecasting system also depends on compatibility with the electric system management tools and processes. Research is ongoing to improve SPEO through validation tools, integration of newly available observations, recalibration and experimentation. Future tasks will be to extend the 48 hour horizon, to optimize the number crunching efficiency and to characterize wind farms more precisely. figs.

  11. Electricity generation modeling and photovoltaic forecasts in China

    Science.gov (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  12. Electricity consumption forecasting in Italy using linear regression models

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio

    2009-01-01

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  13. Operational forecasting based on a modified Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  14. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  15. Developing a Seamless Hydrologic Forecast System: Integrating weather and climate prediction

    Science.gov (United States)

    Yuan, Xing; Wood, Eric; Liang, Miaoling

    2014-05-01

    Skilful and reliable forecasts of land surface hydrologic conditions from daily to seasonal scales will facilitate the management of reservoirs, agriculture and urban water resources, and provide early warning of flooding and droughts. With the improvement of numerical weather and climate predictions, dynamical model-based short-term or seasonal hydrologic forecasts have been widely implemented. However, limited dialogue exists between the hydrometeorological forecasting and the hydroclimate prediction communities. Given that the weather-climate prediction problem is seamless, and phenomena often occur at all time-scales, atmospheric scientists have been developing seamless prediction system in recent years using unified modeling systems to predict both weather and climate. Therefore, it is now time to develop seamless hydro-meteorological forecast systems that can provide forecast capability from flash flooding to seasonal droughts within a common system. Such a system would also allow one to investigate the interaction of hydroclimatic processes across scales and should enhance hydrologic predictability. In this presentation, several decades of 16-day reforecasts from NCEP's latest Global Forecast System (GFS) and 9-month reforecasts from its Climate Forecast System version 2 (CFSv2) will be used to investigate how the two-week weather forecast that has higher resolution and more observations in its data assimilation contributes to seasonal hydrologic predictability, and whether the seasonal climate forecast model that fully resolve the ocean-atmosphere-land coupling system is useful to extend the 1-2 week short-term hydrologic forecast up to 3-4 weeks. The Ohio basin in mid-western United States will be used as a case study.

  16. Combined Forecasts from Linear and Nonlinear Time Series Models

    NARCIS (Netherlands)

    N. Terui (Nobuhiko); H.K. van Dijk (Herman)

    1999-01-01

    textabstractCombined forecasts from a linear and a nonlinear model are investigated for time series with possibly nonlinear characteristics. The forecasts are combined by a constant coefficient regression method as well as a time varying method. The time varying method allows for a locally

  17. Combined forecasts from linear and nonlinear time series models

    NARCIS (Netherlands)

    N. Terui (Nobuhiko); H.K. van Dijk (Herman)

    1999-01-01

    textabstractCombined forecasts from a linear and a nonlinear model are investigated for time series with possibly nonlinear characteristics. The forecasts are combined by a constant coefficient regression method as well as a time varying method. The time varying method allows for a locally

  18. With string model to time series forecasting

    Science.gov (United States)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  19. Short-term forecasting model for aggregated regional hydropower generation

    International Nuclear Information System (INIS)

    Monteiro, Claudio; Ramirez-Rosado, Ignacio J.; Fernandez-Jimenez, L. Alfredo

    2014-01-01

    Highlights: • Original short-term forecasting model for the hourly hydropower generation. • The use of NWP forecasts allows horizons of several days. • New variable to represent the capacity level for generating hydroelectric energy. • The proposed model significantly outperforms the persistence model. - Abstract: This paper presents an original short-term forecasting model of the hourly electric power production for aggregated regional hydropower generation. The inputs of the model are previously recorded values of the aggregated hourly production of hydropower plants and hourly water precipitation forecasts using Numerical Weather Prediction tools, as well as other hourly data (load demand and wind generation). This model is composed of three modules: the first one gives the prediction of the “monthly” hourly power production of the hydropower plants; the second module gives the prediction of hourly power deviation values, which are added to that obtained by the first module to achieve the final forecast of the hourly hydropower generation; the third module allows a periodic adjustment of the prediction of the first module to improve its BIAS error. The model has been applied successfully to the real-life case study of the short-term forecasting of the aggregated hydropower generation in Spain and Portugal (Iberian Peninsula Power System), achieving satisfactory results for the next-day forecasts. The model can be valuable for agents involved in electricity markets and useful for power system operations

  20. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  1. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  2. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  3. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Craig, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Craig, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  5. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  7. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  8. Atka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atka, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  9. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  10. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  13. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Arena Cove, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arena Cove, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  15. Virginia Beach Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  18. Crescent City, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  19. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  1. A comparison of the VAR model and the PC factor model in forecasting inflation in Montenegro

    Directory of Open Access Journals (Sweden)

    Lipovina-Božović Milena

    2013-01-01

    Full Text Available Montenegro started using the euro in 2002 and regained independence in 2006. Its main economic partners are European countries, yet inflation movements in Montenegro do not coincide with consumer price fluctuations in the eurozone. Trying to develop a useful forecasting model for Montenegrin inflation, we compare the results of a three-variable vector autoregression (VAR model, and a principle component (PC factor model starting with twelve variables. The estimation period is January 2001 to December 2012, and the control months are the first six months of 2013. The results show that in forecasting inflation, despite a high level of Montenegrin economic dependence on international developments, more reliable forecasts are achieved with the use of additional information on a larger number of factors, which includes domestic economic activity.

  2. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Directory of Open Access Journals (Sweden)

    Radziukynas V.

    2016-04-01

    Full Text Available The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011 and planned wind power capacities (the year 2023.

  3. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  4. WALS Estimation and Forecasting in Factor-based Dynamic Models with an Application to Armenia

    OpenAIRE

    Poghosyan, Karen; Magnus, Jan R.

    2012-01-01

    Two model averaging approaches are used and compared in estimating and forecasting dynamic factor models, the well-known Bayesian model averaging (BMA) and the recently developed weighted average least squares (WALS). Both methods propose to combine frequentist estimators using Bayesian weights. We apply our framework to the Armenian economy using quarterly data from 20002010, and we estimate and forecast real GDP growth and inflation.

  5. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    Science.gov (United States)

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using

  6. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2016-02-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy.

  7. Forecasting Analysis of Shanghai Stock Index Based on ARIMA Model

    Directory of Open Access Journals (Sweden)

    Li Chenggang

    2017-01-01

    Full Text Available Prediction and analysis of the Shanghai Composite Index is conducive for investors to investing in the stock market, and providing investors with reference. This paper selects Shanghai Composite Index monthly closing price from Jan, 2005 to Oct, 2016 to construct ARIMA model. This paper carries on the forecast of the last three monthly closing price of Shanghai Stock Index that have occurred, and compared it with the actual value, which tests the accuracy and feasibility of the model in the short term Shanghai Stock Index forecast. At last, this paper uses the ARIMA model to forecast the Shanghai Composite Index closing price of the last two months in 2016.

  8. Dynamic Hybrid Model for Short-Term Electricity Price Forecasting

    Directory of Open Access Journals (Sweden)

    Marin Cerjan

    2014-05-01

    Full Text Available Accurate forecasting tools are essential in the operation of electric power systems, especially in deregulated electricity markets. Electricity price forecasting is necessary for all market participants to optimize their portfolios. In this paper we propose a hybrid method approach for short-term hourly electricity price forecasting. The paper combines statistical techniques for pre-processing of data and a multi-layer (MLP neural network for forecasting electricity price and price spike detection. Based on statistical analysis, days are arranged into several categories. Similar days are examined by correlation significance of the historical data. Factors impacting the electricity price forecasting, including historical price factors, load factors and wind production factors are discussed. A price spike index (CWI is defined for spike detection and forecasting. Using proposed approach we created several forecasting models of diverse model complexity. The method is validated using the European Energy Exchange (EEX electricity price data records. Finally, results are discussed with respect to price volatility, with emphasis on the price forecasting accuracy.

  9. METHODS OF FORECASTING OF SOCIAL AND ECONOMIC DEVELOPMENT OF THE MARKET OF SANATORIUM SERVICES

    Directory of Open Access Journals (Sweden)

    Oborin M. S.

    2015-12-01

    Full Text Available The role of predictive science at a present stage of development is defined. Features of forecasting in relation to difficult social and economic systems are specified. Need of increase of attention of the state to a problem of preservation of health of the nation is proved. Decrease in a role of health resort in the state health system and the decrease in public financing of this area accompanying it is established and proved. Need of studying of current state and development for the future of separate parameters of sanatorium systems and markets is proved. Current state of a question and degree of its study is presented: general condition of a readiness of scope of research; degree of a readiness of scope of research in relation to recreational and improving and sanatorium systems. Terminological components of research are expanded, including concepts methods of forecasting and model of forecasting are opened. The conditions and factors defining specifics of forecasting in the market of sanatorium services as difficult social and economic system are considered. Influence on specifics of forecasting of a factor of the hierarchical structure of the market of sanatorium services is opened. Influence of object and parameters of forecasting for the used forecasting methods is defined. The characteristic of influence on use of methods of forecasting of degree of availability of information is given. On the basis of the analysis of special and scientific literature classification and degree of applicability and priority of methods of forecasting to specifics of the market of sanatorium services, depending on the hierarchical level of the analysis is presented. The matrix of applicability and priority of use of methods of forecasting of the market of sanatorium services as one of components of methodology of the system analysis of current state and development in the future of the sanatorium industry at various hierarchical levels is offered.

  10. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia...

  11. Development and testing of improved statistical wind power forecasting methods.

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios

  12. Using synchronization to improve the forecasting of large relaxations in a cellular-automaton model

    DEFF Research Database (Denmark)

    González, Á.; Gómez, J.B.; Vázquez-Prada, M.

    2004-01-01

    A new forecasting strategy for stochastic systems is introduced. It is inspired by the concept of synchronization, developed in the area of Dynamical Systems, and by the earthquake forecasting algorithms in which different pattern recognition functions are used for identifying seismic premonitory...... system that efficiently marks the impending occurrence of a catastrophic event. The power of this method is quantitatively illustrated by forecasting the occurrence of the largest relaxations in the so-called Minimalist Model.......A new forecasting strategy for stochastic systems is introduced. It is inspired by the concept of synchronization, developed in the area of Dynamical Systems, and by the earthquake forecasting algorithms in which different pattern recognition functions are used for identifying seismic premonitory...

  13. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single

  14. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Basset, G.; Rosen, A.; Meenan, C.; Carlson, J.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, and identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  15. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A.; Carlson, J.; Meenan, C.

    1992-01-01

    This paper describes the Western Area Gaining and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  16. Forecasting Models for Hydropower Unit Stability Using LS-SVM

    Directory of Open Access Journals (Sweden)

    Liangliang Qiao

    2015-01-01

    Full Text Available This paper discusses a least square support vector machine (LS-SVM approach for forecasting stability parameters of Francis turbine unit. To achieve training and testing data for the models, four field tests were presented, especially for the vibration in Y-direction of lower generator bearing (LGB and pressure in draft tube (DT. A heuristic method such as a neural network using Backpropagation (NNBP is introduced as a comparison model to examine the feasibility of forecasting performance. In the experimental results, LS-SVM showed superior forecasting accuracies and performances to the NNBP, which is of significant importance to better monitor the unit safety and potential faults diagnosis.

  17. Medium Range Forecast (MRF) and Nested Grid Model (NGM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nested Grid Model (NGM) and Medium Range Forecast (MRF) Archive is historical digital data set DSI-6140, archived at the NOAA National Centers for Environmental...

  18. Evaluation and Application of the Weather Research and Forecast Model

    National Research Council Canada - National Science Library

    Passner, Jeffrey E

    2007-01-01

    ... by the U.S. Army Research Laboratory (ARL) to determine how accurate and robust the model is under a variety of meteorological conditions, with an emphasis on fine resolution, short-range forecasts in complex terrain...

  19. Human-model hybrid Korean air quality forecasting system.

    Science.gov (United States)

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the

  20. Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function

    Science.gov (United States)

    Kozel, Tomas; Stary, Milos

    2017-12-01

    The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for

  1. Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns

    Science.gov (United States)

    Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto

    2017-09-01

    Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.

  2. Modelling and forecasting Turkish residential electricity demand

    International Nuclear Information System (INIS)

    Dilaver, Zafer; Hunt, Lester C

    2011-01-01

    This research investigates the relationship between Turkish residential electricity consumption, household total final consumption expenditure and residential electricity prices by applying the structural time series model to annual data over the period from 1960 to 2008. Household total final consumption expenditure, real energy prices and an underlying energy demand trend are found to be important drivers of Turkish residential electricity demand with the estimated short run and the long run total final consumption expenditure elasticities being 0.38 and 1.57, respectively, and the estimated short run and long run price elasticities being -0.09 and -0.38, respectively. Moreover, the estimated underlying energy demand trend, (which, as far as is known, has not been investigated before for the Turkish residential sector) should be of some benefit to Turkish decision makers in terms of energy planning. It provides information about the impact of past policies, the influence of technical progress, the impacts of changes in consumer behaviour and the effects of changes in economic structure. Furthermore, based on the estimated equation, and different forecast assumptions, it is predicted that Turkish residential electricity demand will be somewhere between 48 and 80 TWh by 2020 compared to 40 TWh in 2008. - Research highlights: → Estimated short run and long run expenditure elasticities of 0.38 and 1.57, respectively. → Estimated short run and long run price elasticities of -0.09 and -0.38, respectively. → Estimated UEDT has increasing (i.e. energy using) and decreasing (i.e. energy saving) periods. → Predicted Turkish residential electricity demand between 48 and 80 TWh in 2020.

  3. Lightning Forecasts and Data Assimilation into Numerical Weather Prediction Models

    Science.gov (United States)

    MacGorman, D. R.; Mansell, E. R.; Fierro, A.; Ziegler, C.

    2012-12-01

    This presentation reviews two aspects of lightning in numerical weather prediction (NWP) models: forecasting lightning and assimilating lightning data into NWP models to improve weather forecasts. One of the earliest routine forecasts of lightning was developed for fire weather operations. This approach used a multi-parameter regression analysis of archived cloud-to-ground (CG) lightning data and archived NWP data to optimize the combination of model state variables to use in forecast equations for various CG rates. Since then, understanding of how storms produce lightning has improved greatly. As the treatment of ice in microphysics packages used by NWP models has improved and the horizontal resolution of models has begun approaching convection-permitting scales (with convection-resolving scales on the horizon), it is becoming possible to use this improved understanding in NWP models to predict lightning more directly. An important role for data assimilation in NWP models is to depict the location, timing, and spatial extent of thunderstorms during model spin-up so that the effects of prior convection that can strongly influence future thunderstorm activity, such as updrafts and outflow boundaries, can be included in the initial state of a NWP model run. Radar data have traditionally been used, but systems that map lightning activity with varying degrees of coverage, detail, and detection efficiency are now available routinely over large regions and reveal information about storms that is complementary to the information provided by radar. Because data from lightning mapping systems are compact, easily handled, and reliably indicate the location and timing of thunderstorms, even in regions with little or no radar coverage, several groups have investigated techniques for assimilating these data into NWP models. This application will become even more valuable with the launch of the Geostationary Lightning Mapper on the GOES-R satellite, which will extend routine

  4. Are traditional forecasting models suitable for hotels in Italian cities?

    OpenAIRE

    ELLERO, Andrea; PELLEGRINI, Paola

    2014-01-01

    The aim of this paper is to assess the performance of different widely-adopted models to forecast Italian hotel occupancy. In particular, the paper tests the different models for forecasting the demand in hotels located in urban areas, which typically experience both business and leisure demand, and whose demand is often affected by the presence of special events in the hotels themselves, or in their neighborhood.

  5. Inventory model using bayesian dynamic linear model for demand forecasting

    Directory of Open Access Journals (Sweden)

    Marisol Valencia-Cárdenas

    2014-12-01

    Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti

  6. Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yuqi Dong

    2016-12-01

    Full Text Available Accurate short-term electrical load forecasting plays a pivotal role in the national economy and people’s livelihood through providing effective future plans and ensuring a reliable supply of sustainable electricity. Although considerable work has been done to select suitable models and optimize the model parameters to forecast the short-term electrical load, few models are built based on the characteristics of time series, which will have a great impact on the forecasting accuracy. For that reason, this paper proposes a hybrid model based on data decomposition considering periodicity, trend and randomness of the original electrical load time series data. Through preprocessing and analyzing the original time series, the generalized regression neural network optimized by genetic algorithm is used to forecast the short-term electrical load. The experimental results demonstrate that the proposed hybrid model can not only achieve a good fitting ability, but it can also approximate the actual values when dealing with non-linear time series data with periodicity, trend and randomness.

  7. Spatio-temporal modeling for real-time ozone forecasting.

    Science.gov (United States)

    Paci, Lucia; Gelfand, Alan E; Holland, David M

    2013-05-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts.

  8. Long-term fashion forecast based on the sociological model of cyclic changes

    Directory of Open Access Journals (Sweden)

    А V Lebsak-Kleimans

    2010-09-01

    Full Text Available The concepts of social changes coined by classical sociology may be incorporated as the basis for the elaboration of social prognostication models which, in turn, may suitable for fashion forecast applied technologies development. In the framework of the given paper fashion is described as the phenomenon of collective behaviour. The principles of long-term fashion trends forecast are shown to be in line with the concepts of cyclic development.

  9. ECONOMIC FORECASTS BASED ON ECONOMETRIC MODELS USING EViews 5

    Directory of Open Access Journals (Sweden)

    Cornelia TomescuDumitrescu,

    2009-05-01

    Full Text Available The forecast of evolution of economic phenomena represent on the most the final objective of econometrics. It withal represent a real attempt of validity elaborate model. Unlike the forecasts based on the study of temporal series which have an recognizable inertial character the forecasts generated by econometric model with simultaneous equations are after to contour the future of ones of important economic variables toward the direct and indirect influences bring the bear on their about exogenous variables. For the relief of the calculus who the realization of the forecasts based on the econometric models its suppose is indicate the use of the specialized informatics programs. One of this is the EViews which is applied because it reduces significant the time who is destined of the econometric analysis and it assure a high accuracy of calculus and of the interpretation of results.

  10. Comparison of various models on cancer rate and forecasting ...

    African Journals Online (AJOL)

    In this research work, three models were identified; linear regression model, exponential growth model and the quadratic trend model and the results of the work compared. Data collected from Niger State Hospital Management Board was used for the forecast and the result revealed that the quadratic trend model gave the ...

  11. Development and application of a forecasting system to avoid spring frost damage in chiana valley

    Directory of Open Access Journals (Sweden)

    Gaetano Zipoli

    2011-02-01

    Full Text Available Late frost is one of the more serious adversity for Italian agriculture. Several methods have been developed to protect cultivations, but their application results particularly effective (also from an economic point of view only if supported by forecasting systems during the more susceptible period of the year. On these basis a forecasting system of late frost in Val di Chiana (an area in central Italy mainly cultivated with cereals and high quality fruits was developed. The system consists in an empirical model, based on a preventive agroclimatic analysis of the area to identify night cooling dynamics (for several meteorological conditions in the spring. A network of 10 thermohygrometric stations was installed in the area integrating the information obtained by a local agrometeorological station network. The final product was a forecasting bulletin emitted every three hours beginning from the 13:00 p.m. A validation of the system was performed for 2006 to verify the forecast skill.

  12. Development and application of a forecasting system to avoid spring frost damage in chiana valley

    Directory of Open Access Journals (Sweden)

    Simone Orlandini

    Full Text Available Late frost is one of the more serious adversity for Italian agriculture. Several methods have been developed to protect cultivations, but their application results particularly effective (also from an economic point of view only if supported by forecasting systems during the more susceptible period of the year. On these basis a forecasting system of late frost in Val di Chiana (an area in central Italy mainly cultivated with cereals and high quality fruits was developed. The system consists in an empirical model, based on a preventive agroclimatic analysis of the area to identify night cooling dynamics (for several meteorological conditions in the spring. A network of 10 thermohygrometric stations was installed in the area integrating the information obtained by a local agrometeorological station network. The final product was a forecasting bulletin emitted every three hours beginning from the 13:00 p.m. A validation of the system was performed for 2006 to verify the forecast skill.

  13. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers

  14. A complex autoregressive model and application to monthly temperature forecasts

    Directory of Open Access Journals (Sweden)

    X. Gu

    2005-11-01

    Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.

  15. An integrated system for wind energy forecast using meteorological models and statistical post-processing

    Science.gov (United States)

    Miranda, P.; Rodrigues, A.; Lopes, J.; Palma, J.; Tome, R.; Sousa, J.; Bessa, R.; Matos, J.

    2009-12-01

    With 3GW of installed wind turbines, corresponding to 23% of the total electric grid, and a 5-year plan that will grow that value above 5GW (near 40% of the grid), Portugal has been a recent success case for renewable energy development. Clearly such large share of wind energy in the national electric system implies a strong requirement for accurate wind forecasts, that can be used to forecast this highly variable energy source and allow for timely decision making in the energy markets, namely for on and off switching of alternative conventional sources. In the past 3 years, a system for 72h energy forecast in mainland Portugal was setup, using 6km resolution meteorological forecasts, forced by global GFS forecasts by NCEP. In the development phase, different boundary conditions (from NCEP and ECMWF) were tested, as well as different limited area models (namely MM5, Aladin, MesoNH and WRF) at resolutions from 12 to 2km, which were evaluated by comparison with wind observations at heights relevant for wind turbines (up to 80m) in different locations and for different synoptic conditions. The developed system, which works with a real time connection with wind farms, also includes a post-processing code that merges recent wind observations with the meteorological forecast, and converts the forecasted wind fields into forecasted energy, by incorporating empirical transfer functions of the wind farm. Wind conditions in Portugal are highly influenced by topography, as most wind farms are located in complex terrain, often in mountainous terrain, where stratification plays a significant role. Coastal effects are also highly relevant, especially during the Summer, where a strong diurnal cycle of the sea-breeze is superimposed on an equally strong boundary layer development, both with a significant impact on low level winds. These two ingredients tend to complicate wind forecasts, requiring fully developed meteorological models. In general, results from 2 full years of

  16. Forecasting regional house price inflation: a comparison between dynamic factor models and vector autoregressive models

    CSIR Research Space (South Africa)

    Das, Sonali

    2010-01-01

    Full Text Available This paper uses the dynamic factor model framework, which accommodates a large cross-section of macroeconomic time series, for forecasting regional house price inflation. In this study, the authors forecast house price inflation for five...

  17. Benchmarking hydrological models for low-flow simulation and forecasting on French catchments

    Science.gov (United States)

    Nicolle, P.; Pushpalatha, R.; Perrin, C.; François, D.; Thiéry, D.; Mathevet, T.; Le Lay, M.; Besson, F.; Soubeyroux, J.-M.; Viel, C.; Regimbeau, F.; Andréassian, V.; Maugis, P.; Augeard, B.; Morice, E.

    2014-08-01

    Low-flow simulation and forecasting remains a difficult issue for hydrological modellers, and intercomparisons can be extremely instructive for assessing existing low-flow prediction models and for developing more efficient operational tools. This research presents the results of a collaborative experiment conducted to compare low-flow simulation and forecasting models on 21 unregulated catchments in France. Five hydrological models (four lumped storage-type models - Gardenia, GR6J, Mordor and Presages - and one distributed physically oriented model - SIM) were applied within a common evaluation framework and assessed using a common set of criteria. Two simple benchmarks describing the average streamflow variability were used to set minimum levels of acceptability for model performance in simulation and forecasting modes. Results showed that, in simulation as well as in forecasting modes, all hydrological models performed almost systematically better than the benchmarks. Although no single model outperformed all the others for all catchments and criteria, a few models appeared to be more satisfactory than the others on average. In simulation mode, all attempts to relate model efficiency to catchment or streamflow characteristics remained inconclusive. In forecasting mode, we defined maximum useful forecasting lead times beyond which the model does not bring useful information compared to the benchmark. This maximum useful lead time logically varies between catchments, but also depends on the model used. Simple multi-model approaches that combine the outputs of the five hydrological models were tested to improve simulation and forecasting efficiency. We found that the multi-model approach was more robust and could provide better performance than individual models on average.

  18. Application of Markov Model in Crude Oil Price Forecasting

    Directory of Open Access Journals (Sweden)

    Nuhu Isah

    2017-08-01

    Full Text Available Crude oil is an important energy commodity to mankind. Several causes have made crude oil prices to be volatile. The fluctuation of crude oil prices has affected many related sectors and stock market indices. Hence, forecasting the crude oil prices is essential to avoid the future prices of the non-renewable natural resources to rise. In this study, daily crude oil prices data was obtained from WTI dated 2 January to 29 May 2015. We used Markov Model (MM approach in forecasting the crude oil prices. In this study, the analyses were done using EViews and Maple software where the potential of this software in forecasting daily crude oil prices time series data was explored. Based on the study, we concluded that MM model is able to produce accurate forecast based on a description of history patterns in crude oil prices.

  19. Short-Term Forecasting Models for Photovoltaic Plants: Analytical versus Soft-Computing Techniques

    OpenAIRE

    Monteiro, Claudio; Fernandez-Jimenez, L. Alfredo; Ramirez-Rosado, Ignacio J.; Muñoz-Jimenez, Andres; Lara-Santillan, Pedro M.

    2013-01-01

    We present and compare two short-term statistical forecasting models for hourly average electric power production forecasts of photovoltaic (PV) plants: the analytical PV power forecasting model (APVF) and the multiplayer perceptron PV forecasting model (MPVF). Both models use forecasts from numerical weather prediction (NWP) tools at the location of the PV plant as well as the past recorded values of PV hourly electric power production. The APVF model consists of an original modeling for adj...

  20. NOAA’s Nested Northern Gulf of Mexico Operational Forecast Systems Development

    Directory of Open Access Journals (Sweden)

    Eugene Wei

    2014-01-01

    Full Text Available The NOAA National Ocean Service’s (NOS Northern Gulf of Mexico Operational Forecast System (NGOFS became operational in March 2012. Implemented with the Finite Volume Coastal Ocean Model (FVCOM as its core three-dimensional oceanographic circulation model, NGOFS produces a real-time nowcast (−6 h to zero and six-hourly, two-day forecast guidance for water levels and three-dimensional currents, water temperature and salinity over the northern Gulf of Mexico continental shelf. Designed as a regional scale prediction system, NGOFS lacks sufficient spatial coverage and/or resolution to fully resolve hydrodynamic features in critical seaports and estuaries. To overcome this shortcoming and better support the needs of marine navigation, emergency response, and environmental management, two FVCOM-based, high-resolution, estuary-scale nested forecast modeling systems, namely the Northwest and Northeast Gulf of Mexico Operational Forecast Systems (NWGOFS and NEGOFS, have been developed through one-way nesting in NGOFS. Using the atmospheric forecast guidance from the NOAA (National Oceanic and Atmospheric Administration/NWS (National Weather Services’ North American Mesoscale (NAM Forecast System, US Geological Survey (USGS river discharge observations, and the NGOFS water level, current, water temperature and salinity as the surface, river, and open ocean boundary forcing, respectively, a six-month model hindcast for the period October 2010–March 2011 has been conducted. Modeled water levels, currents, salinity and water temperature are compared with observations using the NOS standard skill assessment software. Skill assessment scores indicated that NWGOFS and NEGOFS demonstrate improvement over NGOFS. The NWGOFS and NEGOFS are under real-time nowcast/forecast test and evaluation by NOS’s Center for Operational Oceanographic Products and Services (CO-OPS. The forecast systems are scheduled to be implemented operational on NOAA Weather

  1. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    International Nuclear Information System (INIS)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias; Zhang, Jie

    2017-01-01

    Highlights: • An ensemble model is developed to produce both deterministic and probabilistic wind forecasts. • A deep feature selection framework is developed to optimally determine the inputs to the forecasting methodology. • The developed ensemble methodology has improved the forecasting accuracy by up to 30%. - Abstract: With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by first layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.

  2. Pharmaceutical expenditure forecast model to support health policy decision making

    Science.gov (United States)

    Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and objective With constant incentives for healthcare payers to contain their pharmaceutical budgets, modelling policy decision impact became critical. The objective of this project was to test the impact of various policy decisions on pharmaceutical budget (developed for the European Commission for the project ‘European Union (EU) Pharmaceutical expenditure forecast’ – http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Methods A model was built to assess policy scenarios’ impact on the pharmaceutical budgets of seven member states of the EU, namely France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. The following scenarios were tested: expanding the UK policies to EU, changing time to market access, modifying generic price and penetration, shifting the distribution chain of biosimilars (retail/hospital). Results Applying the UK policy resulted in dramatic savings for Germany (10 times the base case forecast) and substantial additional savings for France and Portugal (2 and 4 times the base case forecast, respectively). Delaying time to market was found be to a very powerful tool to reduce pharmaceutical expenditure. Applying the EU transparency directive (6-month process for pricing and reimbursement) increased pharmaceutical expenditure for all countries (from 1.1 to 4 times the base case forecast), except in Germany (additional savings). Decreasing the price of generics and boosting the penetration rate, as well as shifting distribution of biosimilars through hospital chain were also key methods to reduce pharmaceutical expenditure. Change in the level of reimbursement rate to 100% in all countries led to an important increase in the pharmaceutical budget. Conclusions Forecasting pharmaceutical expenditure is a critical exercise to inform policy decision makers. The most important leverages identified by the model on pharmaceutical budget were driven by generic and biosimilar prices, penetration rate

  3. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    Science.gov (United States)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  4. Operational seasonal forecast system development in South Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2011-09-01

    Full Text Available -1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ????? ???????????????? ???????? ?????????? ? ? SON ROC analysis 0 0.5 1 Reg1 Reg2 Reg3 Reg 4 Reg5 Reg6 Reg7 Reg8 Regions RO C ar ea s Below-Normal Near-Normal Above-Normal DJF ROC analysis 0 0.5 1 Reg1 Reg2 Reg3 Reg 4 Reg5 Reg6 Reg7 Reg8 Regions RO C ar ea s Below-Normal Near...-Normal Above-Normal New objective multi-model forecast Old subjective consensus forecast MOS post-processing and forecast combination Multi-model ensemble of N1+N2+N3+N4 +N5 +N6 +N7 +N8 +N9 members Ensemble 1 CCAM at CSIR NRE N1 members Ensemble 2...

  5. Comparison of various models on cancer rate and forecasting ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this research work, three models were identified; linear regression model, exponential growth model and the quadratic trend model and the results of the work compared. Data collected from Niger State Hospital. Management Board was used for the forecast and the result revealed that the quadratic trend ...

  6. forecasting with nonlinear time series model: a monte-carlo ...

    African Journals Online (AJOL)

    PUBLICATIONS1

    with nonlinear time series model by comparing the RMSE with the traditional bootstrap and. Monte-Carlo method of forecasting. We use the logistic smooth transition autoregressive. (LSTAR) model as a case study. We first consider a linear model called the AR. (p) model of order p which satisfies the follow- ing linear ...

  7. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  8. Optimization of multi-model ensemble forecasting of typhoon waves

    Directory of Open Access Journals (Sweden)

    Shun-qi Pan

    2016-01-01

    Full Text Available Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles. The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the Optimization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.

  9. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  10. A Capacity Forecast Model for Volatile Data in Maintenance Logistics

    Science.gov (United States)

    Berkholz, Daniel

    2009-05-01

    Maintenance, repair and overhaul processes (MRO processes) are elaborate and complex. Rising demands on these after sales services require reliable production planning and control methods particularly for maintaining valuable capital goods. Downtimes lead to high costs and an inability to meet delivery due dates results in severe contract penalties. Predicting the required capacities for maintenance orders in advance is often difficult due to unknown part conditions unless the goods are actually inspected. This planning uncertainty results in extensive capital tie-up by rising stock levels within the whole MRO network. The article outlines an approach to planning capacities when maintenance data forecasting is volatile. It focuses on the development of prerequisites for a reliable capacity planning model. This enables a quick response to maintenance orders by employing appropriate measures. The information gained through the model is then systematically applied to forecast both personnel capacities and the demand for spare parts. The improved planning reliability can support MRO service providers in shortening delivery times and reducing stock levels in order to enhance the performance of their maintenance logistics.

  11. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models

    Science.gov (United States)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2015-10-01

    Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.

  12. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  13. Container Throughput Forecasting Using Dynamic Factor Analysis and ARIMAX Model

    Directory of Open Access Journals (Sweden)

    Marko Intihar

    2017-11-01

    Full Text Available The paper examines the impact of integration of macroeconomic indicators on the accuracy of container throughput time series forecasting model. For this purpose, a Dynamic factor analysis and AutoRegressive Integrated Moving-Average model with eXogenous inputs (ARIMAX are used. Both methodologies are integrated into a novel four-stage heuristic procedure. Firstly, dynamic factors are extracted from external macroeconomic indicators influencing the observed throughput. Secondly, the family of ARIMAX models of different orders is generated based on the derived factors. In the third stage, the diagnostic and goodness-of-fit testing is applied, which includes statistical criteria such as fit performance, information criteria, and parsimony. Finally, the best model is heuristically selected and tested on the real data of the Port of Koper. The results show that by applying macroeconomic indicators into the forecasting model, more accurate future throughput forecasts can be achieved. The model is also used to produce future forecasts for the next four years indicating a more oscillatory behaviour in (2018-2020. Hence, care must be taken concerning any bigger investment decisions initiated from the management side. It is believed that the proposed model might be a useful reinforcement of the existing forecasting module in the observed port.

  14. Functional dynamic factor models with application to yield curve forecasting

    KAUST Repository

    Hays, Spencer

    2012-09-01

    Accurate forecasting of zero coupon bond yields for a continuum of maturities is paramount to bond portfolio management and derivative security pricing. Yet a universal model for yield curve forecasting has been elusive, and prior attempts often resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which connects the dynamic factor model (DFM) framework with concepts from functional data analysis: a DFM with functional factor loading curves. This results in a model capable of forecasting functional time series. Further, in the yield curve context we show that the model retains economic interpretation. Model estimation is achieved through an expectation- maximization algorithm, where the time series parameters and factor loading curves are simultaneously estimated in a single step. Efficient computing is implemented and a data-driven smoothing parameter is nicely incorporated. We show that our model performs very well on forecasting actual yield data compared with existing approaches, especially in regard to profit-based assessment for an innovative trading exercise. We further illustrate the viability of our model to applications outside of yield forecasting.

  15. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

    Science.gov (United States)

    Yousif, Adil; Elfaki, Faiz

    2017-12-01

    The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

  16. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  17. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  18. Forecasting the Reference Evapotranspiration Using Time Series Model

    Directory of Open Access Journals (Sweden)

    H. Zare Abyaneh

    2016-10-01

    Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference

  19. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm

    International Nuclear Information System (INIS)

    Guo, Zhenhai; Chi, Dezhong; Wu, Jie; Zhang, Wenyu

    2014-01-01

    Highlights: • Impact of meteorological factors on wind speed forecasting is taken into account. • Forecasted wind speed results are corrected by the associated rules. • Forecasting accuracy is improved by the new wind speed forecasting strategy. • Robust of the proposed model is validated by data sampled from different sites. - Abstract: Wind energy has been the fastest growing renewable energy resource in recent years. Because of the intermittent nature of wind, wind power is a fluctuating source of electrical energy. Therefore, to minimize the impact of wind power on the electrical grid, accurate and reliable wind power forecasting is mandatory. In this paper, a new wind speed forecasting approach based on based on the chaotic time series modelling technique and the Apriori algorithm has been developed. The new approach consists of four procedures: (I) Clustering by using the k-means clustering approach; (II) Employing the Apriori algorithm to discover the association rules; (III) Forecasting the wind speed according to the chaotic time series forecasting model; and (IV) Correcting the forecasted wind speed data using the associated rules discovered previously. This procedure has been verified by 31-day-ahead daily average wind speed forecasting case studies, which employed the wind speed and other meteorological data collected from four meteorological stations located in the Hexi Corridor area of China. The results of these case studies reveal that the chaotic forecasting model can efficiently improve the accuracy of the wind speed forecasting, and the Apriori algorithm can effectively discover the association rules between the wind speed and other meteorological factors. In addition, the correction results demonstrate that the association rules discovered by the Apriori algorithm have powerful capacities in handling the forecasted wind speed values correction when the forecasted values do not match the classification discovered by the association rules

  20. Forecasting turbulent modes with nonparametric diffusion models: Learning from noisy data

    Science.gov (United States)

    Berry, Tyrus; Harlim, John

    2016-04-01

    In this paper, we apply a recently developed nonparametric modeling approach, the "diffusion forecast", to predict the time-evolution of Fourier modes of turbulent dynamical systems. While the diffusion forecasting method assumes the availability of a noise-free training data set observing the full state space of the dynamics, in real applications we often have only partial observations which are corrupted by noise. To alleviate these practical issues, following the theory of embedology, the diffusion model is built using the delay-embedding coordinates of the data. We show that this delay embedding biases the geometry of the data in a way which extracts the most stable component of the dynamics and reduces the influence of independent additive observation noise. The resulting diffusion forecast model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and when the observation noise vanishes. As in any standard forecasting problem, the forecasting skill depends crucially on the accuracy of the initial conditions. We introduce a novel Bayesian method for filtering the discrete-time noisy observations which works with the diffusion forecast to determine the forecast initial densities. Numerically, we compare this nonparametric approach with standard stochastic parametric models on a wide-range of well-studied turbulent modes, including the Lorenz-96 model in weakly chaotic to fully turbulent regimes and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. We show that when the only available data is the low-dimensional set of noisy modes that are being modeled, the diffusion forecast is indeed competitive to the perfect model.

  1. A review of forecasting models for new products

    Directory of Open Access Journals (Sweden)

    Marta Mas-Machuca

    2014-02-01

    Full Text Available Purpose. The main objective of this article is to present an up-to-date review of new product forecasting techniques. Design/methodology/approach: A systematic review of forecasting journals was carried out using the ISI-Web of Knowledge database. Several articles were retrieved and examined, and forecasting techniques relevant to this study were selected and assessed. Findings: The strengths, weaknesses and applications of the main forecasting models are discussed to examine trends and set future challenges. Research limitations/implications: A theoretical reference framework for forecasting techniques classified into judgmental, consumer/market research, cause-effect and artificial intelligence is proposed. Future research can assess these models qualitatively. Practical implications: Companies are currently motivated to launch new products and thus attract new customers to expand their market share.  In order to reduce uncertainty and risk, many companies go to extra lengths to forecast sales accurately using several techniques. Originality/value: This article outlines new lines of research on the improvement of new product performance which will aid managers in decision making and allow companies to sustain their competitive advantages in this challenging world.

  2. Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting

    Directory of Open Access Journals (Sweden)

    Bijay Neupane

    2017-01-01

    Full Text Available Forecasting of electricity prices is important in deregulated electricity markets for all of the stakeholders: energy wholesalers, traders, retailers and consumers. Electricity price forecasting is an inherently difficult problem due to its special characteristic of dynamicity and non-stationarity. In this paper, we present a robust price forecasting mechanism that shows resilience towards the aggregate demand response effect and provides highly accurate forecasted electricity prices to the stakeholders in a dynamic environment. We employ an ensemble prediction model in which a group of different algorithms participates in forecasting 1-h ahead the price for each hour of a day. We propose two different strategies, namely, the Fixed Weight Method (FWM and the Varying Weight Method (VWM, for selecting each hour’s expert algorithm from the set of participating algorithms. In addition, we utilize a carefully engineered set of features selected from a pool of features extracted from the past electricity price data, weather data and calendar data. The proposed ensemble model offers better results than the Autoregressive Integrated Moving Average (ARIMA method, the Pattern Sequence-based Forecasting (PSF method and our previous work using Artificial Neural Networks (ANN alone on the datasets for New York, Australian and Spanish electricity markets.

  3. Account of the uncertainty factor in forecasting nuclear power development

    International Nuclear Information System (INIS)

    Chernavskij, S.Ya.

    1979-01-01

    Minimization of total discounted costs for linear constraints is commonly used in forecasting nuclear energy growth. This approach is considered inadequate due to the uncertainty of exogenous variables of the model. A method of forecasting that takes into account the presence of uncertainty is elaborated. An example that demonstrates the expediency of the method and its advantage over the conventional approximation method used for taking uncertainty into account is given. In the framework of the example, the optimal strategy for nuclear energy growth over period of 500 years is determined

  4. Regressional modeling and forecasting of economic growth for arkhangelsk region

    Directory of Open Access Journals (Sweden)

    Robert Mikhailovich Nizhegorodtsev

    2012-12-01

    Full Text Available The regression models of GRP, considering the impact of three main factors: investment in fixed assets, wages amount, and, importantly, the innovation factor –the expenditures for research and development, are constructed in this paper on the empirical data for Arkhangelsk region. That approach permits to evaluate explicitly the contribution of innovation to economic growth. Regression analysis is the main research instrument, all calculations areperformedin the Microsoft Excel. There were made meaningful conclusions regarding the potential of the region's GRP growth by various factors, including impacts of positive and negative time lags. Adequate and relevant models are the base for estimation and forecasting values of the dependent variable (GRP and evaluating their confidence intervals. The invented method of research can be used in factor assessment and prediction of regional economic growth, including growth by expectations.

  5. Earthquake forecast models for Italy based on the RI algorithm

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Z. Nanjo

    2010-11-01

    Full Text Available This study provides an overview of relative-intensity (RI-based earthquake forecast models that have been submitted for the 5-year and 10-year testing classes and the 3-month class of the Italian experiment within the Collaboratory for the Study of Earthquake Predictability (CSEP. The RI algorithm starts as a binary forecast system based on the working assumption that future large earthquakes are considered likely to occur at sites of higher seismic activity in the past. The measure of RI is the simply counting of the number of past earthquakes, which is known as the RI of seismicity. To improve the RI forecast performance, we first expand the RI algorithm to become part of a general class of smoothed seismicity models. We then convert the RI representation from a binary system into a testable CSEP model that forecasts the numbers of earthquakes for the predefined magnitudes. Our parameter tuning for the CSEP models is based on the past seismicity. The final submission is a set of two numerical data files that were created by tuned 5-year and 10-year models and an executable computer code of a tuned 3-month model, to examine which testing class is more meaningful in terms of the RI hypothesis. The main purpose of our participation is to better understand the importance (or lack of importance of RI of seismicity for earthquake forecastability.

  6. A Hidden Markov Model for avalanche forecasting on Chowkibal ...

    Indian Academy of Sciences (India)

    ... different states of the model and Avalanche Activity Index (AAI) of a day, derived from the model input variables, as an observation. Validation of the model with independent data of two winters (2008–2009, 2009–2010) gives 80% accuracy for both day-1 and day-2. Comparison of various forecasting quality measures and ...

  7. A high resolution WRF model for wind energy forecasting

    Science.gov (United States)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  8. Short-Term Wind Power Interval Forecasting Based on an EEMD-RT-RVM Model

    OpenAIRE

    Haixiang Zang; Lei Fan; Mian Guo; Zhinong Wei; Guoqiang Sun; Li Zhang

    2016-01-01

    Accurate short-term wind power forecasting is important for improving the security and economic success of power grids. Existing wind power forecasting methods are mostly types of deterministic point forecasting. Deterministic point forecasting is vulnerable to forecasting errors and cannot effectively deal with the random nature of wind power. In order to solve the above problems, we propose a short-term wind power interval forecasting model based on ensemble empirical mode decomposition (EE...

  9. Evaluation of the performance of DIAS ionospheric forecasting models

    Directory of Open Access Journals (Sweden)

    Tsagouri Ioanna

    2011-08-01

    Full Text Available Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr. Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i the solar wind driven autoregression model for ionospheric short-term forecast (SWIF, which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii the geomagnetically correlated autoregression model (GCAM, which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007 at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.

  10. Short-range forecasts with the GISS model of the global atmosphere

    Science.gov (United States)

    Druyan, L. M.

    1974-01-01

    A nine-layer, primitive equation (PE) model of the global atmosphere developed at the Goddard Institute for Space Studies (GISS) has been used to generate six 48-hr forecasts during December 1972 and January 1973. Operational analyses north of 18 N and experimental global analyses made available by the National Meteorological Center (NMC), NOAA, were used as the initial conditions; the operational analyses were used to verify the forecasts at 12-hr intervals over the Northern Hemisphere north of 22 N. The combined analyses were used to verify the forecasts in the global domain. RMS errors of the sea-level pressure, 1000-mb heights, and vector geostrophic winds, and 500-mb heights and vector geostrophic winds indicate that the GISS forecasts have skill comparable to those made by operational PE models.

  11. The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes

    Directory of Open Access Journals (Sweden)

    Acacia S. Pepler

    2015-09-01

    Full Text Available Dynamical models are now widely used to provide forecasts of above or below average seasonal mean temperatures and precipitation, with growing interest in their ability to forecast climate extremes on a seasonal time scale. This study assesses the skill of the ENSEMBLES multi-model ensemble to forecast the 90th and 10th percentiles of both seasonal temperature and precipitation, using a number of metrics of ‘extremeness’. Skill is generally similar or slightly lower to that for seasonal means, with skill strongly influenced by the El Niño-Southern Oscillation. As documented in previous studies, much of the skill in forecasting extremes can be related to skill in forecasting the seasonal mean value, with skill for extremes generally lower although still significant. Despite this, little relationship is found between the skill of forecasting the upper and lower tails of the distribution of daily values.

  12. Forecasting global developments in the basic chemical industry for environmental policy analysis

    NARCIS (Netherlands)

    Broeren, M.L.M.; Saygin, D.; Patel, M.K.

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock

  13. Commercial demand for energy: a disaggregated approach. [Model validation for 1970-1975; forecasting to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.R.; Cohn, S.; Cope, J.; Johnson, W.S.

    1978-04-01

    This report describes the structure and forecasting accuracy of a disaggregated model of commercial energy use recently developed at Oak Ridge National Laboratory. The model forecasts annual commercial energy use by ten building types, five end uses, and four fuel types. Both economic (utilization rate, fuel choice, capital-energy substitution) and technological factors (equipment efficiency, thermal characteristics of buildings) are explicitly represented in the model. Model parameters are derived from engineering and econometric analysis. The model is then validated by simulating commercial energy use over the 1970--1975 time period. The model performs well both with respect to size of forecast error and ability to predict turning points. The model is then used to evaluate the energy-use implications of national commercial buildings standards based on the ASHRAE 90-75 recommendations. 10 figs., 12 tables, 14 refs.

  14. Improving the Performance of Water Demand Forecasting Models by Using Weather Input

    NARCIS (Netherlands)

    Bakker, M.; Van Duist, H.; Van Schagen, K.; Vreeburg, J.; Rietveld, L.

    2014-01-01

    Literature shows that water demand forecasting models which use water demand as single input, are capable of generating a fairly accurate forecast. However, at changing weather conditions the forecasting errors are quite large. In this paper three different forecasting models are studied: an

  15. WALS estimation and forecasting in factor-based dynamic models with an application to Armenia

    NARCIS (Netherlands)

    Poghosyan, K.; Magnus, J.R.

    2012-01-01

    Two model averaging approaches are used and compared in estimating and forecasting dynamic factor models, the well-known Bayesian model averaging (BMA) and the recently developed weighted average least squares (WALS). Both methods propose to combine frequentist estimators using Bayesian weights. We

  16. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    . Forthcoming: European Journal of Transport and Infrastructure Research, 15-3, 64-72. 4 The last paper4 examined uncertainty in the spatial composition of residence and workplace locations in the Danish National Transport Model. Despite the evidence that spatial structure influences travel behaviour...... to increase the quality of the decision process and to develop robust or adaptive plans. In fact, project evaluation processes that do not take into account model uncertainty produce not fully informative and potentially misleading results so increasing the risk inherent to the decision to be taken...

  17. Hydrological now- and forecasting : Integration of operationally available remotely sensed and forecasted hydrometeorological variables into distributed hydrological models

    NARCIS (Netherlands)

    Schuurmans, J.M.

    2008-01-01

    Keywords: hydrology, models, soil moisture, rainfall, radar, rain gauge, remote sensing, evapotranspiration, forecasting, numerical weather prediction, Netherlands, Langbroekerwetering, Lopikerwaard. Computer simulation models are an important tool for hydrologists. With these models they can

  18. Machine learning based switching model for electricity load forecasting

    International Nuclear Information System (INIS)

    Fan Shu; Chen Luonan; Lee, Weijen

    2008-01-01

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma

  19. Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    Science.gov (United States)

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586

  20. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale

    Science.gov (United States)

    Zhang, Shaojie; Zhao, Luqiang; Delgado-Tellez, Ricardo; Bao, Hongjun

    2018-03-01

    Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.

  1. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  2. Forecasting flood-prone areas using Shannon's entropy model

    Indian Academy of Sciences (India)

    Then, flood susceptibility forecasting map was provided and model accuracy evaluation was conducted using ROC curve and 30% flooding areas express good precision of the model (73.5%) for the study area. ... Department of Watershed Management Engineering, Faculty of Agriculture, Lorestan University, Lorestan, Iran.

  3. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  4. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  5. A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting

    Science.gov (United States)

    Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle

    2017-10-01

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

  6. Modelling and forecasting monthly and daily river discharge data using hybrid models and considering autoregressive heteroscedasticity

    Science.gov (United States)

    Szolgayova, Elena

    2010-05-01

    Hybrid modelling, used for simulation and forecasting of hydrological time series, involving both process-based and data-driven types of models combines the available domain knowledge and process physics with the recent advances in data driven tools. In this way, complex hydrological processes can be modelled and forecasted by decomposing the problem into several smaller sub - problems and using process physics based models where these are most appropriate, and data dictated tools (such as ANN, time series models or traditional statistics) for the residual data, when necessary. The fitting and forecasting performance of such models have to be explored case based. So far, only a few attempts to apply various nonlinear time series models within such a framework were reported in the hydrological modelling literature. This contribution presents results concerning the possibility to use GARCH type of models for such purposes. More specifically, error time series from two hydrological conceptual models were analyzed (applied on time series measured from the Hron and Morava Rivers in Slovakia), concentrating on the improvement of the modelling and forecasting performance of these models. The goal of investigation was to try to expand the knowledge in the time series modelling of hydrological model error time series with the aim to test and develop appropriate methods for various time steps from the GARCH family of models. In order to achieve this, following steps were taken: 1. The presence of heteroscedasticity was verified in time series. 2. A model from the GARCH family was fitted on the data, comparing the fit with a fit of an ARMA model. 3. One - step - ahead forecasts from the fitted models were produced, performing comparisons. The investigation of model properties and performances was thoroughly tested under various conditions of their future practical applications. In general, heteroscedasticity was present in the majority of the error time series of the

  7. A forecasting model for dengue incidence in the District of Gampaha, Sri Lanka.

    Science.gov (United States)

    Withanage, Gayan P; Viswakula, Sameera D; Nilmini Silva Gunawardena, Y I; Hapugoda, Menaka D

    2018-04-24

    Dengue is one of the major health problems in Sri Lanka causing an enormous social and economic burden to the country. An accurate early warning system can enhance the efficiency of preventive measures. The aim of the study was to develop and validate a simple accurate forecasting model for the District of Gampaha, Sri Lanka. Three time-series regression models were developed using monthly rainfall, rainy days, temperature, humidity, wind speed and retrospective dengue incidences over the period January 2012 to November 2015 for the District of Gampaha, Sri Lanka. Various lag times were analyzed to identify optimum forecasting periods including interactions of multiple lags. The models were validated using epidemiological data from December 2015 to November 2017. Prepared models were compared based on Akaike's information criterion, Bayesian information criterion and residual analysis. The selected model forecasted correctly with mean absolute errors of 0.07 and 0.22, and root mean squared errors of 0.09 and 0.28, for training and validation periods, respectively. There were no dengue epidemics observed in the district during the training period and nine outbreaks occurred during the forecasting period. The proposed model captured five outbreaks and correctly rejected 14 within the testing period of 24 months. The Pierce skill score of the model was 0.49, with a receiver operating characteristic of 86% and 92% sensitivity. The developed weather based forecasting model allows warnings of impending dengue outbreaks and epidemics in advance of one month with high accuracy. Depending upon climatic factors, the previous month's dengue cases had a significant effect on the dengue incidences of the current month. The simple, precise and understandable forecasting model developed could be used to manage limited public health resources effectively for patient management, vector surveillance and intervention programmes in the district.

  8. Use of MLCM3 Software for Flash Flood Modeling and Forecasting

    Directory of Open Access Journals (Sweden)

    Inna Pivovarova

    2018-01-01

    Full Text Available Accurate and timely flash floods forecasting, especially, in ungauged and poorly gauged basins, is one of the most important and challenging problems to be solved by the international hydrological community. In changing climate and variable anthropogenic impact on river basins, as well as due to low density of surface hydrometeorological network, flash flood forecasting based on “traditional” physically based, or conceptual, or statistical hydrological models often becomes inefficient. Unfortunately, most of river basins in Russia are poorly gauged or ungauged; besides, lack of hydrogeological data is quite typical. However, the developing economy and population safety necessitate issuing warnings based on reliable forecasts. For this purpose, a new hydrological model, MLCM3 (Multi-Layer Conceptual Model, 3 rd generation has been developed in the Russian State Hydrometeorological University. The model showed good results in more than 50 tested basins.

  9. Ionospheric scintillation forecasting model based on NN-PSO technique

    Science.gov (United States)

    Sridhar, M.; Venkata Ratnam, D.; Padma Raju, K.; Sai Praharsha, D.; Saathvika, K.

    2017-09-01

    The forecasting and modeling of ionospheric scintillation effects are crucial for precise satellite positioning and navigation applications. In this paper, a Neural Network model, trained using Particle Swarm Optimization (PSO) algorithm, has been implemented for the prediction of amplitude scintillation index (S4) observations. The Global Positioning System (GPS) and Ionosonde data available at Darwin, Australia (12.4634° S, 130.8456° E) during 2013 has been considered. The correlation analysis between GPS S4 and Ionosonde drift velocities (hmf2 and fof2) data has been conducted for forecasting the S4 values. The results indicate that forecasted S4 values closely follow the measured S4 values for both the quiet and disturbed conditions. The outcome of this work will be useful for understanding the ionospheric scintillation phenomena over low latitude regions.

  10. A national econometric forecasting model of the dental sector.

    Science.gov (United States)

    Feldstein, P J; Roehrig, C S

    1980-01-01

    The Econometric Model of the the Dental Sector forecasts a broad range of dental sector variables, including dental care prices; the amount of care produced and consumed; employment of hygienists, dental assistants, and clericals; hours worked by dentists; dental incomes; and number of dentists. These forecasts are based upon values specified by the user for the various factors which help determine the supply an demand for dental care, such as the size of the population, per capita income, the proportion of the population covered by private dental insurance, the cost of hiring clericals and dental assistants, and relevant government policies. In a test of its reliability, the model forecast dental sector behavior quite accurately for the period 1971 through 1977. PMID:7461974

  11. Seasonal forecasts of impact-relevant climate information indices developed as part of the EUPORIAS project

    Science.gov (United States)

    Spirig, Christoph; Bhend, Jonas

    2015-04-01

    Climate information indices (CIIs) represent a way to communicate climate conditions to specific sectors and the public. As such, CIIs provide actionable information to stakeholders in an efficient way. Due to their non-linear nature, such CIIs can behave differently than the underlying variables, such as temperature. At the same time, CIIs do not involve impact models with different sources of uncertainties. As part of the EU project EUPORIAS (EUropean Provision Of Regional Impact Assessment on a Seasonal-to-decadal timescale) we have developed examples of seasonal forecasts of CIIs. We present forecasts and analyses of the skill of seasonal forecasts for CIIs that are relevant to a variety of economic sectors and a range of stakeholders: heating and cooling degree days as proxies for energy demand, various precipitation and drought-related measures relevant to agriculture and hydrology, a wild fire index, a climate-driven mortality index and wind-related indices tailored to renewable energy producers. Common to all examples is the finding of limited forecast skill over Europe, highlighting the challenge for providing added-value services to stakeholders operating in Europe. The reasons for the lack of forecast skill vary: often we find little skill in the underlying variable(s) precisely in those areas that are relevant for the CII, in other cases the nature of the CII is particularly demanding for predictions, as seen in the case of counting measures such as frost days or cool nights. On the other hand, several results suggest there may be some predictability in sub-regions for certain indices. Several of the exemplary analyses show potential for skillful forecasts and prospect for improvements by investing in post-processing. Furthermore, those cases for which CII forecasts showed similar skill values as those of the underlying meteorological variables, forecasts of CIIs provide added value from a user perspective.

  12. Angola: Better forecasting | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-05-13

    May 13, 2016 ... In addition, sanitation conditions in these areas are poor, and the water is polluted. Diseases, such as cholera and malaria, are therefore more easily transmitted. The Development Workshop Angola team has collected – via satellite images, among others – the information required to establish a map of the ...

  13. Angola: Better forecasting | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-05-13

    May 13, 2016 ... But this happens to be in sectors with the greatest risk of flooding,” he says. ... The Development Workshop Angola team has collected – via satellite images, among others – the information required to establish a map of the risks challenging the coastal areas of Luanda, ... Morocco: The value of water.

  14. Predicting Power Outages Using Multi-Model Ensemble Forecasts

    Science.gov (United States)

    Cerrai, D.; Anagnostou, E. N.; Yang, J.; Astitha, M.

    2017-12-01

    Power outages affect every year millions of people in the United States, affecting the economy and conditioning the everyday life. An Outage Prediction Model (OPM) has been developed at the University of Connecticut for helping utilities to quickly restore outages and to limit their adverse consequences on the population. The OPM, operational since 2015, combines several non-parametric machine learning (ML) models that use historical weather storm simulations and high-resolution weather forecasts, satellite remote sensing data, and infrastructure and land cover data to predict the number and spatial distribution of power outages. A new methodology, developed for improving the outage model performances by combining weather- and soil-related variables using three different weather models (WRF 3.7, WRF 3.8 and RAMS/ICLAMS), will be presented in this study. First, we will present a performance evaluation of each model variable, by comparing historical weather analyses with station data or reanalysis over the entire storm data set. Hence, each variable of the new outage model version is extracted from the best performing weather model for that variable, and sensitivity tests are performed for investigating the most efficient variable combination for outage prediction purposes. Despite that the final variables combination is extracted from different weather models, this ensemble based on multi-weather forcing and multi-statistical model power outage prediction outperforms the currently operational OPM version that is based on a single weather forcing variable (WRF 3.7), because each model component is the closest to the actual atmospheric state.

  15. Comparing univariate techniques for tender price index forecasting: Box-Jenkins and neural network model

    Directory of Open Access Journals (Sweden)

    Olalekan Oshodi

    2017-09-01

    Full Text Available The poor performance of projects is a recurring event in the construction sector. Information gleaned from literature shows that uncertainty in project cost is one of the significant causes of this problem. Reliable forecast of construction cost is useful in mitigating the adverse effect of its fluctuation, however the availability of data for the development of multivariate models for construction cost forecasting remains a challenge. The study seeks to investigate the reliability of using univariate models for tender price index forecasting. Box-Jenkins and neural network are the modelling techniques applied in this study. The results show that the neural network model outperforms the Box-Jenkins model, in terms of accuracy. In addition, the neural network model provides a reliable forecast of tender price index over a period of 12 quarters ahead. The limitations of using the univariate models are elaborated. The developed neural network model can be used by stakeholders as a tool for predicting the movements in tender price index. In addition, the univariate models developed in the present study are particularly useful in countries where limited data reduces the possibility of applying multivariate models.

  16. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    Science.gov (United States)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  17. An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan

    Directory of Open Access Journals (Sweden)

    Syed Aziz Ur Rehman

    2017-11-01

    Full Text Available Energy planning and policy development require an in-depth assessment of energy resources and long-term demand forecast estimates. Pakistan, unfortunately, lacks reliable data on its energy resources as well do not have dependable long-term energy demand forecasts. As a result, the policy makers could not come up with an effective energy policy in the history of the country. Energy demand forecast has attained greatest ever attention in the perspective of growing population and diminishing fossil fuel resources. In this study, Pakistan’s energy demand forecast for electricity, natural gas, oil, coal and LPG across all the sectors of the economy have been undertaken. Three different energy demand forecasting methodologies, i.e., Autoregressive Integrated Moving Average (ARIMA, Holt-Winter and Long-range Energy Alternate Planning (LEAP model were used. The demand forecast estimates of each of these methods were compared using annual energy demand data. The results of this study suggest that ARIMA is more appropriate for energy demand forecasting for Pakistan compared to Holt-Winter model and LEAP model. It is estimated that industrial sector’s demand shall be highest in the year 2035 followed by transport and domestic sectors. The results further suggest that energy fuel mix will change considerably, such that oil will be the most highly consumed energy form (38.16% followed by natural gas (36.57%, electricity (16.22%, coal (7.52% and LPG (1.52% in 2035. In view of higher demand forecast of fossil fuels consumption, this study recommends that government should take the initiative for harnessing renewable energy resources for meeting future energy demand to not only avert huge import bill but also achieving energy security and sustainability in the long run.

  18. Intercomparison of mesoscale meteorological models for precipitation forecasting

    Directory of Open Access Journals (Sweden)

    E. Richard

    2003-01-01

    Full Text Available In the framework of the RAPHAEL EU project, a series of past heavy precipitation events has been simulated with different meteorological models. Rainfall hindcasts and forecasts have been produced by four models in use at various meteorological services or research centres of Italy, Canada, France and Switzerland. The paper is focused on the comparison of the computed precipitation fields with the available surface observations. The comparison is carried out for three meteorological situations which lead to severe flashflood over the Toce-Ticino catchment in Italy (6599 km2 or the Ammer catchment (709 km2 in Germany. The results show that all four models reproduced the occurrence of these heavy precipitation events. The accuracy of the computed precipitation appears to be more case-dependent than model-dependent. The sensitivity of the computed rainfall to the boundary conditions (hindcast v. forecast was found to be rather weak, indicating that a flood forecasting system based upon a numerical meteo-hydrological simulation could be feasible in an operational context. Keywords: meteorological models, precipitation forecast

  19. The management of subsurface uncertainty using probabilistic modeling of life cycle production forecasts and cash flows

    International Nuclear Information System (INIS)

    Olatunbosun, O. O.

    1998-01-01

    The subject pertains to the implementation of the full range of subsurface uncertainties in life cycle probabilistic forecasting and its extension to project cash flows using the methodology of probabilities. A new tool has been developed in the probabilistic application of Crystal-Ball which can model reservoir volumetrics, life cycle production forecasts and project cash flows in a single environment. The tool is modular such that the volumetrics and cash flow modules are optional. Production forecasts are often generated by applying a decline equation to single best estimate values of input parameters such as initial potential, decline rate, abandonment rate etc -or sometimes by results of reservoir simulation. This new tool provides a means of implementing the full range of uncertainties and interdependencies of the input parameters into the production forecasts by defining the input parameters as probability density functions, PDFs and performing several iterations to generate an expectation curve forecast. Abandonment rate is implemented in each iteration via a link to an OPEX model. The expectation curve forecast is input into a cash flow model to generate a probabilistic NPV. Base case and sensitivity runs from reservoir simulation can likewise form the basis for a probabilistic production forecast from which a probabilistic cash flow can be generated. A good illustration of the application of this tool is in the modelling of the production forecast for a well that encounters its target reservoirs in OUT/ODT situation and thus has significant uncertainties. The uncertainty in presence and size (if present) of gas cap and dependency between ultimate recovery and initial potential amongst other uncertainties can be easily implemented in the production forecast with this tool. From the expectation curve forecast, a probabilistic NPV can be easily generated. Possible applications of this tool include: i. estimation of range of actual recoverable volumes based

  20. WALS estimation and forecasting in factor-based dynamic models with an application to Armenia

    NARCIS (Netherlands)

    Poghosyan, K.; Magnus, J.R.

    2011-01-01

    Two model averaging approaches are used and compared in estimating and forecasting dynamic factor models, the well-known BMA and the recently developed WALS. Both methods propose to combine frequentist estimators using Bayesian weights. We apply our framework to the Armenian economy using quarterly

  1. Toward multi-day-ahead forecasting of suspended sediment concentration using ensemble models.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Jafari Nodoushan, Ehsan; Kalarestaghi, Naghi; Chau, Kwok Wing

    2017-12-01

    This study explores two ideas to made an improvement on the artificial neural network (ANN)-based models for suspended sediment forecasting in several time steps ahead. In this regard, both observed and forecasted time series are incorporated as input variables of the models when applied for more than one lead time. Secondly, least-square ensemble models employing multiple wavelet-ANN models are developed to increase the performance of the single model. For this purpose, different wavelet families are linked with the ANN model and performance of each model is evaluated using error measures. The Skagit River near Mount Vernon in Washington county is selected as the case study. The daily flow discharge and suspended sediment concentration (SSC) in the current day are considered as input variables to predict suspended sediment concentration in the next day. For more lead times, the input structure is updated by adding the forecast of SSC in the previous time step. Results of this study demonstrate that incorporating both observed and predicted variables in the input structure improves performance of conventional models in which those only employ observed time series as input variables. Moreover, ensemble model developed for each lead time outperforms the best single wavelet-ANN model which indicates superiority of the ensemble model over the other one. Findings of this study reveal that acceptable forecasts of daily suspended sediment concentration up to 3 days in advance can be achieved using the proposed methodology.

  2. Description of historical crop calendar data bases developed to support foreign commodity production forecasting project experiments

    Science.gov (United States)

    West, W. L., III (Principal Investigator)

    1981-01-01

    The content, format, and storage of data bases developed for the Foreign Commodity Production Forecasting project and used to produce normal crop calendars are described. In addition, the data bases may be used for agricultural meteorology, modeling of stage sequences and planting dates, and as indicators of possible drought and famine.

  3. A regime-switching stochastic volatility model for forecasting electricity prices

    DEFF Research Database (Denmark)

    Exterkate, Peter; Knapik, Oskar

    In a recent review paper, Weron (2014) pinpoints several crucial challenges outstanding in the area of electricity price forecasting. This research attempts to address all of them by i) showing the importance of considering fundamental price drivers in modeling, ii) developing new techniques...... for probabilistic (i.e. interval or density) forecasting of electricity prices, iii) introducing an universal technique for model comparison. We propose new regime-switching stochastic volatility model with three regimes (negative jump, normal price, positive jump (spike)) where the transition matrix depends...

  4. Robust Building Energy Load Forecasting Using Physically-Based Kernel Models

    Directory of Open Access Journals (Sweden)

    Anand Krishnan Prakash

    2018-04-01

    Full Text Available Robust and accurate building energy load forecasting is important for helping building managers and utilities to plan, budget, and strategize energy resources in advance. With recent prevalent adoption of smart-meters in buildings, a significant amount of building energy consumption data became available. Many studies have developed physics-based white box models and data-driven black box models to predict building energy consumption; however, they require extensive prior knowledge about building system, need a large set of training data, or lack robustness to different forecasting scenarios. In this paper, we introduce a new building energy forecasting method based on Gaussian Process Regression (GPR that incorporates physical insights about load data characteristics to improve accuracy while reducing training requirements. The GPR is a non-parametric regression method that models the data as a joint Gaussian distribution with mean and covariance functions and forecast using the Bayesian updating. We model the covariance function of the GPR to reflect the data patterns in different forecasting horizon scenarios, as prior knowledge. Our method takes advantage of the modeling flexibility and computational efficiency of the GPR while benefiting from the physical insights to further improve the training efficiency and accuracy. We evaluate our method with three field datasets from two university campuses (Carnegie Mellon University and Stanford University for both short- and long-term load forecasting. The results show that our method performs more accurately, especially when the training dataset is small, compared to other state-of-the-art forecasting models (up to 2.95 times smaller prediction error.

  5. A stochastic model for forecast consumption in master scheduling

    NARCIS (Netherlands)

    Weeda, P.J.; Weeda, P.J.

    1994-01-01

    This paper describes a stochastic model for the reduction of the initial forecast in the Master Schedule (MS) of an MRP system during progress of time by the acceptance of customer orders. Results are given for the expectation and variance of the number of yet unknown deliveries as a function of

  6. Inflation, Forecast Intervals and Long Memory Regression Models

    NARCIS (Netherlands)

    C.S. Bos (Charles); Ph.H.B.F. Franses (Philip Hans); M. Ooms (Marius)

    2001-01-01

    textabstractWe examine recursive out-of-sample forecasting of monthly postwar U.S. core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading

  7. Inflation, Forecast Intervals and Long Memory Regression Models

    NARCIS (Netherlands)

    Ooms, M.; Bos, C.S.; Franses, P.H.

    2003-01-01

    We examine recursive out-of-sample forecasting of monthly postwar US core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading indicators

  8. Interval forecasts of a novelty hybrid model for wind speeds

    Directory of Open Access Journals (Sweden)

    Shanshan Qin

    2015-11-01

    Full Text Available The utilization of wind energy, as a booming technology in the field of renewable energies, has been highly regarded around the world. Quantification of uncertainties associated with accurate wind speed forecasts is essential for regulating wind power generation and integration. However, it remains difficult work primarily due to the stochastic and nonlinear characteristics of wind speed series. Traditional models for wind speed forecasting mostly focus on generating certain predictive values, which cannot properly handle uncertainties. For quantifying potential uncertainties, a hybrid model constructed by the Cuckoo Search Optimization (CSO-based Back Propagation Neural Network (BPNN is proposed to establish wind speed interval forecasts (IFs by estimating the lower and upper bounds. The quality of IFs is assessed quantitatively using IFs coverage probability (IFCP and IFs normalized average width (IFNAW. Moreover, to assess the overall quality of IFs comprehensively, a tradeoff between informativeness (IFNAW and validity (IFCP of IFs is examined by coverage width-based criteria (CWC. As an applicative study, wind speeds from the Xinjiang Region in China are used to validate the proposed hybrid model. The results demonstrate that the proposed model can construct higher quality IFs for short-term wind speed forecasts.

  9. Intelligent Optimized Combined Model Based on GARCH and SVM for Forecasting Electricity Price of New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2014-01-01

    Full Text Available Daily electricity price forecasting plays an essential role in electrical power system operation and planning. The accuracy of forecasting electricity price can ensure that consumers minimize their electricity costs and make producers maximize their profits and avoid volatility. However, the fluctuation of electricity price depends on other commodities and there is a very complicated randomization in its evolution process. Therefore, in recent years, although large number of forecasting methods have been proposed and researched in this domain, it is very difficult to forecast electricity price with only one traditional model for different behaviors of electricity price. In this paper, we propose an optimized combined forecasting model by ant colony optimization algorithm (ACO based on the generalized autoregressive conditional heteroskedasticity (GARCH model and support vector machine (SVM to improve the forecasting accuracy. First, both GARCH model and SVM are developed to forecast short-term electricity price of New South Wales in Australia. Then, ACO algorithm is applied to determine the weight coefficients. Finally, the forecasting errors by three models are analyzed and compared. The experiment results demonstrate that the combined model makes accuracy higher than the single models.

  10. Structural Forecasts for the Danish Economy Using The Dynamic-AAGE Model

    DEFF Research Database (Denmark)

    Adams, Philip D; Andersen, Lill Thanning; Jacobsen, Lars Bo

    2002-01-01

    Dynamic-AAGE model is the dynamic version of the Agricultural Applied General Equilibrium (AAGE) model of the Danish economy. Each solution of Dynamic-AAGE produces a picture of the Danish economy at a high level of detail for a particular year. The model can also produce a sequence of annual...... solutions, linked together by ensuring, for example, that the quantities of opening capital stocks in any year equal the quantities of closing stocks in the previous year. Traditionally, applied general equilibrium (AGE) models like Dynamic-AAGE have been used to answer "what if" questions such as: how...... developed for MONASH has now been applied to Dynamic-AAGE to generate structural forecasts for the Danish economy. The starting point for the Dynamic-AAGE forecasts is a set of scenarios for the macro economy supplied by a specialist-forecasting agency, currently the Danish Economic Council. Expert...

  11. Different Models for Forecasting Wind Power Generation: Case Study

    Directory of Open Access Journals (Sweden)

    David Barbosa de Alencar

    2017-11-01

    Full Text Available Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA, Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.

  12. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Science.gov (United States)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  13. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  14. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  15. The Challenge of Forecasting Metropolitan Growth: Urban Characteristics Based Models versus Regional Dummy Based Models

    OpenAIRE

    NA

    2005-01-01

    This paper presents a study of errors in forecasting the population of Metropolitan Statistical Areas and the Primary MSAs of Consolidated Metropolitan Statistical Areas and New England MAs. The forecasts are for the year 2000 and are based on a semi-structural model estimated by Mills and Lubelle using 1970 to 1990 census data on population, employment and relative real wages. This model allows the testing of regional effects on population and employment growth. The year 2000 forecasts are f...

  16. Model of Cholera Forecasting Using Artificial Neural Network in Chabahar City, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Pezeshki

    2016-02-01

    Full Text Available Background: Cholera as an endemic disease remains a health issue in Iran despite decrease in incidence. Since forecasting epidemic diseases provides appropriate preventive actions in disease spread, different forecasting methods including artificial neural networks have been developed to study parameters involved in incidence and spread of epidemic diseases such as cholera. Objectives: In this study, cholera in rural area of Chabahar, Iran was investigated to achieve a proper forecasting model. Materials and Methods: Data of cholera was gathered from 465 villages, of which 104 reported cholera during ten years period of study. Logistic regression modeling and correlate bivariate were used to determine risk factors and achieve possible predictive model one-hidden-layer perception neural network with backpropagation training algorithm and the sigmoid activation function was trained and tested between the two groups of infected and non-infected villages after preprocessing. For determining validity of prediction, the ROC diagram was used. The study variables included climate conditions and geographical parameters. Results: After determining significant variables of cholera incidence, the described artificial neural network model was capable of forecasting cholera event among villages of test group with accuracy up to 80%. The highest accuracy was achieved when model was trained with variables that were significant in statistical analysis describing that the two methods confirm the result of each other. Conclusions: Application of artificial neural networking assists forecasting cholera for adopting protective measures. For a more accurate prediction, comprehensive information is required including data on hygienic, social and demographic parameters.

  17. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model

    Science.gov (United States)

    Mukhopadhyay, S.; Arumugam, S.

    2017-12-01

    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior

  18. FLOOD FORECASTING MODEL USING EMPIRICAL METHOD FOR A SMALL CATCHMENT AREA

    Directory of Open Access Journals (Sweden)

    CHANG L. JUN

    2016-05-01

    Full Text Available The two most destructive natural disasters in Malaysia are monsoonal and flash floods. Malaysia is located in the tropical area and received on average, around 2800 mm of rainfall every year. Due to this high amount, a reliable and timely flood forecasting system is necessary to provide early warning to minimize the destruction caused by flash flood. This study developed and checked the adaptability and adequacy of the flood forecasting model for 93 km2 catchment area, Kampung Kasipillay, in Kuala Lumpur. The Empirical Unit Hydrograph Model was used in this study and past rainfall data, water level and stagedischarge curve were used as inputs. A Rainfall-Runoff Model (RRM which transforms the rainfall to runoff hydrograph, was developed using excel. Since some data, such as properties of the watershed, are not always complete and precise, some model parameters were calibrated through trial and error processes to fine-tune the parameters of the model to get reliable estimation. The simulated unit hydrograph model was computed in prior runs of the flood forecasting model to estimate the model parameters. These calibrated parameters are used as constant variables for flood forecasting model when the runoff hydrograph was regenerated. The comparison between the observed and simulated hydrograph was investigated for the selected flood events and performance error was determined. The performance error achieved in this study of 15 flood events ranged from -2.06% to 5.82%.e.

  19. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    Science.gov (United States)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  20. Least square regression based integrated multi-parameteric demand modeling for short term load forecasting

    International Nuclear Information System (INIS)

    Halepoto, I.A.; Uqaili, M.A.

    2014-01-01

    Nowadays, due to power crisis, electricity demand forecasting is deemed an important area for socioeconomic development and proper anticipation of the load forecasting is considered essential step towards efficient power system operation, scheduling and planning. In this paper, we present STLF (Short Term Load Forecasting) using multiple regression techniques (i.e. linear, multiple linear, quadratic and exponential) by considering hour by hour load model based on specific targeted day approach with temperature variant parameter. The proposed work forecasts the future load demand correlation with linear and non-linear parameters (i.e. considering temperature in our case) through different regression approaches. The overall load forecasting error is 2.98% which is very much acceptable. From proposed regression techniques, Quadratic Regression technique performs better compared to than other techniques because it can optimally fit broad range of functions and data sets. The work proposed in this paper, will pave a path to effectively forecast the specific day load with multiple variance factors in a way that optimal accuracy can be maintained. (author)

  1. Forecasting wind-driven wildfires using an inverse modelling approach

    Directory of Open Access Journals (Sweden)

    O. Rios

    2014-06-01

    Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.

  2. Weather forecasting for Eastern Amazon with OLAM model

    Directory of Open Access Journals (Sweden)

    Renato Ramos da Silva

    2014-12-01

    Full Text Available The OLAM model has as its characteristics the advantage to represent simultaneously the global and regional meteorological phenomena using the application of a grid refinement scheme. During the REMAM project the model was applied for a few case studies to evaluate its performance on numerical weather prediction for the eastern Amazon region. Case studies were performed for the twelve months of the year of 2009. The model results for those numerical experiments were compared with the observed data for the region of study. Precipitation data analysis showed that OLAM is able to represent the average mean accumulated precipitation and the seasonal features of the events occurrence, but can't predict the local total amount of precipitation. However, individual evaluation for a few cases had shown that OLAM was able to represent the dynamics and forecast a few days in advance the development of coastal meteorological systems such as the squall lines that are one of the most important precipitating systems of the Amazon.

  3. Improved Mental Acuity Forecasting with an Individualized Quantitative Sleep Model

    Directory of Open Access Journals (Sweden)

    Brent D. Winslow

    2017-04-01

    Full Text Available Sleep impairment significantly alters human brain structure and cognitive function, but available evidence suggests that adults in developed nations are sleeping less. A growing body of research has sought to use sleep to forecast cognitive performance by modeling the relationship between the two, but has generally focused on vigilance rather than other cognitive constructs affected by sleep, such as reaction time, executive function, and working memory. Previous modeling efforts have also utilized subjective, self-reported sleep durations and were restricted to laboratory environments. In the current effort, we addressed these limitations by employing wearable systems and mobile applications to gather objective sleep information, assess multi-construct cognitive performance, and model/predict changes to mental acuity. Thirty participants were recruited for participation in the study, which lasted 1 week. Using the Fitbit Charge HR and a mobile version of the automated neuropsychological assessment metric called CogGauge, we gathered a series of features and utilized the unified model of performance to predict mental acuity based on sleep records. Our results suggest that individuals poorly rate their sleep duration, supporting the need for objective sleep metrics to model circadian changes to mental acuity. Participant compliance in using the wearable throughout the week and responding to the CogGauge assessments was 80%. Specific biases were identified in temporal metrics across mobile devices and operating systems and were excluded from the mental acuity metric development. Individualized prediction of mental acuity consistently outperformed group modeling. This effort indicates the feasibility of creating an individualized, mobile assessment and prediction of mental acuity, compatible with the majority of current mobile devices.

  4. Improved Mental Acuity Forecasting with an Individualized Quantitative Sleep Model.

    Science.gov (United States)

    Winslow, Brent D; Nguyen, Nam; Venta, Kimberly E

    2017-01-01

    Sleep impairment significantly alters human brain structure and cognitive function, but available evidence suggests that adults in developed nations are sleeping less. A growing body of research has sought to use sleep to forecast cognitive performance by modeling the relationship between the two, but has generally focused on vigilance rather than other cognitive constructs affected by sleep, such as reaction time, executive function, and working memory. Previous modeling efforts have also utilized subjective, self-reported sleep durations and were restricted to laboratory environments. In the current effort, we addressed these limitations by employing wearable systems and mobile applications to gather objective sleep information, assess multi-construct cognitive performance, and model/predict changes to mental acuity. Thirty participants were recruited for participation in the study, which lasted 1 week. Using the Fitbit Charge HR and a mobile version of the automated neuropsychological assessment metric called CogGauge, we gathered a series of features and utilized the unified model of performance to predict mental acuity based on sleep records. Our results suggest that individuals poorly rate their sleep duration, supporting the need for objective sleep metrics to model circadian changes to mental acuity. Participant compliance in using the wearable throughout the week and responding to the CogGauge assessments was 80%. Specific biases were identified in temporal metrics across mobile devices and operating systems and were excluded from the mental acuity metric development. Individualized prediction of mental acuity consistently outperformed group modeling. This effort indicates the feasibility of creating an individualized, mobile assessment and prediction of mental acuity, compatible with the majority of current mobile devices.

  5. An Experimental Investigation of FNN Model for Wind Speed Forecasting Using EEMD and CS

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2015-01-01

    Full Text Available With depletion of traditional energy and increasing environmental problems, wind energy, as an alternative renewable energy, has drawn more and more attention internationally. Meanwhile, wind is plentiful, clean, and environmentally friendly; moreover, its speed is a very important piece of information needed in the operations and planning of the wind power system. Therefore, choosing an effective forecasting model with good performance plays a quite significant role in wind power system. A hybrid CS-EEMD-FNN model is firstly proposed in this paper for multistep ahead prediction of wind speed, in which EEMD is employed as a data-cleaning method that aims to remove the high frequency noise embedded in the wind speed series. CS optimization algorithm is used to select the best parameters in the FNN model. In order to evaluate the effectiveness and performance of the proposed hybrid model, three other short-term wind speed forecasting models, namely, FNN model, EEMD-FNN model, and CS-FNN model, are carried out to forecast wind speed using data measured at a typical site in Shandong wind farm, China, over three seasons in 2011. Experimental results demonstrate that the developed hybrid CS-EEMD-FNN model outperforms other models with more accuracy, which is suitable to wind speed forecasting in this area.

  6. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    Science.gov (United States)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  7. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles.

    Science.gov (United States)

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.

  8. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles

    Science.gov (United States)

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605

  9. A Novel Fuzzy Document Based Information Retrieval Model for Forecasting

    Directory of Open Access Journals (Sweden)

    Partha Roy

    2017-06-01

    Full Text Available Information retrieval systems are generally used to find documents that are most appropriate according to some query that comes dynamically from users. In this paper a novel Fuzzy Document based Information Retrieval Model (FDIRM is proposed for the purpose of Stock Market Index forecasting. The novelty of proposed approach is a modified tf-idf scoring scheme to predict the future trend of the stock market index. The contribution of this paper has two dimensions, 1 In the proposed system the simple time series is converted to an enriched fuzzy linguistic time series with a unique approach of incorporating market sentiment related information along with the price and 2 A unique approach is followed while modeling the information retrieval (IR system which converts a simple IR system into a forecasting system. From the performance comparison of FDIRM with standard benchmark models it can be affirmed that the proposed model has a potential of becoming a good forecasting model. The stock market data provided by Standard & Poor’s CRISIL NSE Index 50 (CNX NIFTY-50 index of National Stock Exchange of India (NSE is used to experiment and validate the proposed model. The authentic data for validation and experimentation is obtained from http://www.nseindia.com which is the official website of NSE. A java program is under construction to implement the model in real-time with graphical users’ interface.

  10. Alaska North Slope regional gas hydrate production modeling forecasts

    Science.gov (United States)

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  11. Baseline data for the residential sector and development of a residential forecasting database

    Energy Technology Data Exchange (ETDEWEB)

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  12. Initial assessment of a multi-model approach to spring flood forecasting in Sweden

    Science.gov (United States)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2015-06-01

    Hydropower is a major energy source in Sweden and proper reservoir management prior to the spring flood onset is crucial for optimal production. This requires useful forecasts of the accumulated discharge in the spring flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialised set-up of the HBV model. In this study, a number of new approaches to spring flood forecasting, that reflect the latest developments with respect to analysis and modelling on seasonal time scales, are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for three main Swedish rivers over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for specific locations and lead times improvements of 20-30 % are found. When combining all forecasts in a weighted multi-model approach, a mean improvement over all locations and lead times of nearly 10 % was indicated. This demonstrates the potential of the approach and further development and optimisation into an operational system is ongoing.

  13. Forecasting monthly inflow discharge of the Iffezheim reservoir using data-driven models

    Science.gov (United States)

    Zhang, Qing; Aljoumani, Basem; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard

    2017-04-01

    to enhance this flexible approach to set up the model. As distinct from both stochastic models, the ANN and its related conjunction methods Wavelet-ANN (WANN) models are effective to handle non-linear systems and have been developed with antecedent flows as inputs to forecast up to 12-months lead-time for the Iffezheim reservoir. In the ANN and WANN models, the Feed Forward Back Propagation method (FFBP) is applied. The sigmoid activity and linear functions were used with several different neurons for the hidden layers and for the output layer, respectively. To compare the accuracy of the different models and identify the most suitable model for reliable forecasting, four quantitative standard statistical performance evaluation measures, the root mean square error (RMSE), the mean bias error (MAE) and the determination correlation coefficient (DC), are employed. The results reveal that the ARIMA (2, 1, 2) performs better than Fiering, ANN and WANN models. Further, the WANN model is found to be slightly better than the ANN model for forecasting monthly inflow of the Iffezheim reservoir. As a result, by using the ARIMA model, the predicted and observed values agree reasonably well.

  14. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  15. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge

    2014-01-01

    Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily

  16. A forecast comparison of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2005-01-01

    We compare 330 ARCH-type models in terms of their ability to describe the conditional variance. The models are compared out-of-sample using DM-$ exchange rate data and IBM return data, where the latter is based on a new data set of realized variance. We find no evidence that a GARCH(1,1) is outpe...

  17. Model Uncertainty and Exchange Rate Forecasting

    NARCIS (Netherlands)

    Kouwenberg, R.; Markiewicz, A.; Verhoeks, R.; Zwinkels, R.C.J.

    2017-01-01

    Exchange rate models with uncertain and incomplete information predict that investors focus on a small set of fundamentals that changes frequently over time. We design a model selection rule that captures the current set of fundamentals that best predicts the exchange rate. Out-of-sample tests show

  18. Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by States

    Science.gov (United States)

    Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah

    2017-05-01

    Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.

  19. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    Science.gov (United States)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53

  20. Using the Advanced Research Version of the Weather Research and Forecasting Model (WRF-ARW) to Forecast Turbulence at Small Scales

    National Research Council Canada - National Science Library

    Passner, Jeffrey E

    2008-01-01

    ...) as well as for longer-range forecasting support. The model utilized to investigate fine-scale weather processes, the Advanced Research version of the Weather Research and Forecasting model (WRF-ARW...

  1. Forecasting models for national economic planning

    CERN Document Server

    Heesterman, A R G

    1972-01-01

    This book is about the specification of linear econometric models, and for this reason some important related fields have been deliberately omitted. I did not want to discuss the problems of parameter-estimation, at least not in any detail, as there are other books on these problems written by specialized statisticians. This book is about the models them­ selves and macro-economic models in particular. A second related sub­ ject is the policy decision that can be made with the help of a model. While I did write a chapter on policy decisions, I limited myself to some extent because of my views on planning as such. The logical approach to this problem is in terms of mathematical programming, but our models and our ideas about the policies we want are too crude for its effective utilisation. A realistic formulation of the problem should involve non­ linearities in an essential way, the models I consider (and most existing models) are linear. At the present state of econometrics, I do not really believe in suc...

  2. Modelling and forecasting monthly swordfish catches in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Konstantinos I. Stergiou

    2003-04-01

    Full Text Available In this study, we used the X-11 census technique for modelling and forecasting the monthly swordfish (Xiphias gladius catches in the Greek Seas during 1982-1996 and 1997 respectively, using catches reported by the National Statistical Service of Greece (NSSG. Forecasts built with X-11 were also compared with those derived from ARIMA andWinter’s exponential smoothing (WES models. The X-11 method captured the features of the study series and outperformed the other two methods, in terms of both fitting and forecasting performance, for all the accuracy measures used. Thus, with the exception of October, November and December 1997, when the corresponding absolute percentage error(APE values were very high (as high as 178.6% because of the low level of the catches, monthly catches during the remaining months of 1997 were predicted accurately, with a mean APE of 12.5%. In contrast, the mean APE values of the other two methods for the same months were higher (ARIMA: 14.6%; WES: 16.6%. The overall good performance of X-11 andthe fact that it provides an insight into the various components (i.e. the seasonal, trend-cycle and irregular components of the time series of interest justify its use in fisheries research. The basic features of the swordfish catches revealed by the application of the X-11 method, the effect of the length of the forecasting horizon on forecasting accuracy and the accuracy of the catches reported by NSSG are also discussed.

  3. Modelling and Forecasting Cruise Tourism Demand to İzmir by Different Artificial Neural Network Architectures

    Directory of Open Access Journals (Sweden)

    Murat Cuhadar

    2014-03-01

    Full Text Available Abstract Cruise ports emerged as an important sector for the economy of Turkey bordered on three sides by water. Forecasting cruise tourism demand ensures better planning, efficient preparation at the destination and it is the basis for elaboration of future plans. In the recent years, new techniques such as; artificial neural networks were employed for developing of the predictive models to estimate tourism demand. In this study, it is aimed to determine the forecasting method that provides the best performance when compared the forecast accuracy of Multi-layer Perceptron (MLP, Radial Basis Function (RBF and Generalized Regression neural network (GRNN to estimate the monthly inbound cruise tourism demand to İzmir via the method giving best results. We used the total number of foreign cruise tourist arrivals as a measure of inbound cruise tourism demand and monthly cruise tourist arrivals to İzmir Cruise Port in the period of January 2005 ‐December 2013 were utilized to appropriate model. Experimental results showed that radial basis function (RBF neural network outperforms multi-layer perceptron (MLP and the generalised regression neural networks (GRNN in terms of forecasting accuracy. By the means of the obtained RBF neural network model, it has been forecasted the monthly inbound cruise tourism demand to İzmir for the year 2014.

  4. A statistical scheme to forecast the daily lightning threat over southern Africa using the Unified Model

    Science.gov (United States)

    Gijben, Morné; Dyson, Liesl L.; Loots, Mattheus T.

    2017-09-01

    Cloud-to-ground lightning data from the Southern Africa Lightning Detection Network and numerical weather prediction model parameters from the Unified Model are used to develop a lightning threat index (LTI) for South Africa. The aim is to predict lightning for austral summer days (September to February) by means of a statistical approach. The austral summer months are divided into spring and summer seasons and analysed separately. Stepwise logistic regression techniques are used to select the most appropriate model parameters to predict lightning. These parameters are then utilized in a rare-event logistic regression analysis to produce equations for the LTI that predicts the probability of the occurrence of lightning. Results show that LTI forecasts have a high sensitivity and specificity for spring and summer. The LTI is less reliable during spring, since it over-forecasts the occurrence of lightning. However, during summer, the LTI forecast is reliable, only slightly over-forecasting lightning activity. The LTI produces sharp forecasts during spring and summer. These results show that the LTI will be useful early in the morning in areas where lightning can be expected during the day.

  5. A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation

    Directory of Open Access Journals (Sweden)

    Yuan-Kang Wu

    2014-01-01

    Full Text Available The increasing use of solar power as a source of electricity has led to increased interest in forecasting its power output over short-time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, reserve usage, and peak load matching. However, the output of a photovoltaic (PV system is influenced by irradiation, cloud cover, and other weather conditions. These factors make it difficult to conduct short-term PV output forecasting. In this paper, an experimental database of solar power output, solar irradiance, air, and module temperature data has been utilized. It includes data from the Green Energy Office Building in Malaysia, the Taichung Thermal Plant of Taipower, and National Penghu University. Based on the historical PV power and weather data provided in the experiment, all factors that influence photovoltaic-generated energy are discussed. Moreover, five types of forecasting modules were developed and utilized to predict the one-hour-ahead PV output. They include the ARIMA, SVM, ANN, ANFIS, and the combination models using GA algorithm. Forecasting results show the high precision and efficiency of this combination model. Therefore, the proposed model is suitable for ensuring the stable operation of a photovoltaic generation system.

  6. Daily reservoir inflow forecasting combining QPF into ANNs model

    Science.gov (United States)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian

    2009-01-01

    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  7. Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper we consider the forecasting performance of a well-defined class of flexible models, the so-called single hidden-layer feedforward neural network models. A major aim of our study is to find out whether they, due to their flexibility, are as useful tools in economic forecasting as some...... previous studies have indicated. When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. In fact, their parameters are not even globally...... on the linearisation idea: the Marginal Bridge Estimator and Autometrics. Second, one must decide whether forecasting should be carried out recursively or directly. Comparisons of these two methodss exist for linear models and here these comparisons are extended to neural networks. Finally, a nonlinear model...

  8. Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting

    NARCIS (Netherlands)

    Rezaeianzadeh, M.; Stein, A.; Tabari, H.; Abghari, H.; Jalalkamali, N.; Hosseinipour, E.Z.; Singh, V.P.

    2013-01-01

    Artificial neural networks (ANNs) are used by hydrologists and engineers to forecast flows at the outlet of a watershed. They are employed in particular where hydrological data are limited. Despite these developments, practitioners still prefer conventional hydrological models. This study applied

  9. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay.

    Science.gov (United States)

    Jacobs, J M; Rhodes, M; Brown, C W; Hood, R R; Leight, A; Long, W; Wood, R

    2014-11-01

    To construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters of Chesapeake Bay for implementation in ecological forecasting systems. We evaluated and applied previously published qPCR assays to water samples (n = 1636) collected from Chesapeake Bay from 2007-2010 in conjunction with State water quality monitoring programmes. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  10. Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon-driven river basins

    Science.gov (United States)

    Sikder, Safat; Hossain, Faisal

    2016-09-01

    Some of the world's largest and flood-prone river basins experience a seasonal flood regime driven by the monsoon weather system. Highly populated river basins with extensive rain-fed agricultural productivity such as the Ganges, Indus, Brahmaputra, Irrawaddy, and Mekong are examples of monsoon-driven river basins. It is therefore appropriate to investigate how precipitation forecasts from numerical models can advance flood forecasting in these basins. In this study, the Weather Research and Forecasting model was used to evaluate downscaling of coarse-resolution global precipitation forecasts from a numerical weather prediction model. Sensitivity studies were conducted using the TOPSIS analysis to identify the likely best set of microphysics and cumulus parameterization schemes, and spatial resolution from a total set of 15 combinations. This identified best set can pinpoint specific parameterizations needing further development to advance flood forecasting in monsoon-dominated regimes. It was found that the Betts-Miller-Janjic cumulus parameterization scheme with WRF Single-Moment 5-class, WRF Single-Moment 6-class, and Thompson microphysics schemes exhibited the most skill in the Ganges-Brahmaputra-Meghna basins. Finer spatial resolution (3 km) without cumulus parameterization schemes did not yield significant improvements. The short-listed set of the likely best microphysics-cumulus parameterization configurations was found to also hold true for the Indus basin. The lesson learned from this study is that a common set of model parameterization and spatial resolution exists for monsoon-driven seasonal flood regimes at least in South Asian river basins.

  11. Modeling and forecasting electricity price jumps in the Nord Pool power market

    DEFF Research Database (Denmark)

    Knapik, Oskar

    i) price drivers, ii) persistence, iii) seasonality of electricity prices. The models are shown to outperform commonly-used benchmark. The paper shows how crucial for price jumps forecasting is to incorporate additional knowledge on price drivers like loads, temperature and water reservoir level......For risk management traders in the electricity market are mainly interested in the risk of negative (drops) or of positive (spikes) price jumps, i.e. the sellers face the risk of negative price jumps while the buyers face the risk of positive price jumps. Understanding the mechanism that drive...... extreme prices and forecasting of the price jumps is crucial for risk management and market design. In this paper, we consider the problem of the impact of fundamental price drivers on forecasting of price jumps in NordPool intraday market. We develop categorical time series models which take into account...

  12. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.

    2003-01-01

    -dimensional numerical exploration of the loss function. This first strategy is then refined by considering a classification of the seismic cycles of the model according to the presence, or not, of some factors related to the seismicity observed in the cycle. These factors, statistically speaking, enlarge or shorten...

  13. An efficient and simplified model for forecasting using SRM

    International Nuclear Information System (INIS)

    Asif, H.M.; Hyat, M.F.; Ahmad, T.

    2014-01-01

    Learning form continuous financial systems play a vital role in enterprise operations. One of the most sophisticated non-parametric supervised learning classifiers, SVM (Support Vector Machines), provides robust and accurate results, however it may require intense computation and other resources. The heart of SLT (Statistical Learning Theory), SRM (Structural Risk Minimization )Principle can also be used for model selection. In this paper, we focus on comparing the performance of model estimation using SRM with SVR (Support Vector Regression) for forecasting the retail sales of consumer products. The potential benefits of an accurate sales forecasting technique in businesses are immense. Retail sales forecasting is an integral part of strategic business planning in areas such as sales planning, marketing research, pricing, production planning and scheduling. Performance comparison of support vector regression with model selection using SRM shows comparable results to SVR but in a computationally efficient manner. This research targeted the real life data to conclude the results after investigating the computer generated datasets for different types of model building. (author)

  14. An Efficient and Simplified Model for Forecasting using SRM

    Directory of Open Access Journals (Sweden)

    Hafiz Muhammad Shahzad Asif

    2014-01-01

    Full Text Available Learning form continuous financial systems play a vital role in enterprise operations. One of the most sophisticated non-parametric supervised learning classifiers, SVM (Support Vector Machines, provides robust and accurate results, however it may require intense computation and other resources. The heart of SLT (Statistical Learning Theory, SRM (Structural Risk Minimization Principle can also be used for model selection. In this paper, we focus on comparing the performance of model estimation using SRM with SVR (Support Vector Regression for forecasting the retail sales of consumer products. The potential benefits of an accurate sales forecasting technique in businesses are immense. Retail sales forecasting is an integral part of strategic business planning in areas such as sales planning, marketing research, pricing, production planning and scheduling. Performance comparison of support vector regression with model selection using SRM shows comparable results to SVR but in a computationally efficient manner. This research targeted the real life data to conclude the results after investigating the computer generated datasets for different types of model building

  15. A short-range objective nocturnal temperature forecasting model

    Science.gov (United States)

    Sutherland, R. A.

    1980-01-01

    A relatively simple, objective, nocturnal temperature forecasting model suitable for freezing and near-freezing conditions has been designed so that a user, presumably a weather forecaster, can put in standard meteorological data at a particular location and receive an hour-by-hour prediction of surface and air temperatures for that location for an entire night. The user has the option of putting in his own estimates of wind speeds and background sky radiation which are treated as independent variables. An analysis of 141 test runs show that 57.4% of the time the model predicts to within 1 C for the best cases and to within 3 C for 98.0% of all cases.

  16. MODELLING CHALLENGES TO FORECAST URBAN GOODS DEMAND FOR RAIL

    Directory of Open Access Journals (Sweden)

    Antonio COMI

    2015-12-01

    Full Text Available This paper explores the new research challenges for forecasting urban goods demand by rail. In fact, the growing interest to find urban logistics solutions for improving city sustainability and liveability, mainly due to the reduction of urban road accessibility and environmental constraints, has pushed to explore solutions alternative to the road. Multimodal urban logistics, based on the use of railway, seem an interesting alternative solution, but it remained mainly at conceptual level. Few studies have explored the factors, that push actors to find competitive such a system with respect to the road, and modelling framework for forecasting the relative demand. Therefore, paper reviews the current literature, investigates the factors involved in choosing such a mode, and finally, recalls a recent modelling framework and hence proposes some advancements that allow to point out the rail transport alternative.

  17. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    Science.gov (United States)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  18. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus

    Science.gov (United States)

    Aquino, Ronald L.; Alcantara, Nialle Loui Mar T.; Addawe, Rizavel C.

    2017-11-01

    The Selar crumenophthalmus with the English name big-eyed scad fish, locally known as matang-baka, is one of the fishes commonly caught along the waters of La Union, Philippines. The study deals with the forecasting of catch volumes of big-eyed scad fish for commercial consumption. The data used are quarterly caught volumes of big-eyed scad fish from 2002 to first quarter of 2017. This actual data is available from the open stat database published by the Philippine Statistics Authority (PSA)whose task is to collect, compiles, analyzes and publish information concerning different aspects of the Philippine setting. Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Network (ANN) model and the Hybrid model consisting of ARIMA and ANN were developed to forecast catch volumes of big-eyed scad fish. Statistical errors such as Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) were computed and compared to choose the most suitable model for forecasting the catch volume for the next few quarters. A comparison of the results of each model and corresponding statistical errors reveals that the hybrid model, ARIMA-ANN (2,1,2)(6:3:1), is the most suitable model to forecast the catch volumes of the big-eyed scad fish for the next few quarters.

  19. Modeling and forecasting persistent financial durations

    Czech Academy of Sciences Publication Activity Database

    Žikeš, F.; Baruník, Jozef; Shenai, N.

    2017-01-01

    Roč. 36, č. 10 (2017), s. 1081-1110 ISSN 0747-4938 R&D Projects: GA ČR GA13-32263S Institutional support: RVO:67985556 Keywords : Long memory * multifractal models * price durations * realized volatility * whittle estimation Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 1.333, year: 2016 http://library.utia.cas.cz/separaty/2017/E/barunik-0478483.pdf

  20. Modeling and Forecasting Persistent Financial Durations

    Czech Academy of Sciences Publication Activity Database

    Žikeš, F.; Baruník, Jozef; Shenai, N.

    2017-01-01

    Roč. 36, č. 10 (2017), s. 1081-1110 ISSN 0747-4938 R&D Projects: GA ČR GA13-32263S EU Projects: European Commission 612955 - FINMAP Institutional support: RVO:67985556 Keywords : price durations * long memory * multifractal models * realized volatility * Whittle estimation Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 1.333, year: 2016 http://library.utia.cas.cz/separaty/2014/E/barunik-0434201.pdf

  1. Gas analysis modeling system forecast for the Energy Modeling Forum North American Natural Gas Market Study

    International Nuclear Information System (INIS)

    Mariner-Volpe, B.; Trapmann, W.

    1989-01-01

    The Gas Analysis Modeling System is a large computer-based model for analyzing the complex US natural gas industry, including production, transportation, and consumption activities. The model was developed and first used in 1982 after the passage of the NGPA, which initiated a phased decontrol of most natural gas prices at the wellhead. The categorization of gas under the NGPA and the contractual nature of the natural gas market, which existed at the time, were primary factors in the development of the basic structure of the model. As laws and regulations concerning the natural gas market have changed, the model has evolved accordingly. Recent increases in competition in the wellhead market have also led to changes in the model. GAMS produces forecasts of natural gas production, consumption, and prices annually through 2010. It is an engineering-economic model that incorporates several different mathematical structures in order to represent the interaction of the key groups involved in the natural gas market. GAMS has separate supply and demand components that are equilibrated for each year of the forecast by means of a detailed transaction network

  2. Comparison of ensemble post-processing approaches, based on empirical and dynamical error modelisation of rainfall-runoff model forecasts

    Science.gov (United States)

    Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.

    2012-04-01

    In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological

  3. IMD's model for forecasting monsoon in India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    CURRENT SCIENCE, VOL. 84, NO. 12, 25 JUNE 2003 Very few research lab or a tories presently engaged in developing transgenics have the required infrastructure, or the man a- gerial experience to e f ficiently generate the required bio - safety data...

  4. A Bayesian Technique for Selecting a Linear Forecasting Model

    OpenAIRE

    Ramona L. Trader

    1983-01-01

    The specification of a forecasting model is considered in the context of linear multiple regression. Several potential predictor variables are available, but some of them convey little information about the dependent variable which is to be predicted. A technique for selecting the "best" set of predictors which takes into account the inherent uncertainty in prediction is detailed. In addition to current data, there is often substantial expert opinion available which is relevant to the forecas...

  5. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Maui-Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Hawaiian islands of Oahu,...

  6. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  7. Forecasting of bioplastics market development in Russia based on in-depth analysis and data minimg

    OpenAIRE

    BAZHANOV N.N.

    2015-01-01

    The paper deals with the research of market opportunities for potential participants of Russian bioplastics market and with strategic market opportunities evaluation based on data analysis. The paper is aimed at is developing of model and methods of strategic forecasting based on data analysis for Russian bioplastics market. World’s and Russia’s market drivers, development trends and market opportunities for potential market participants were brought to light and analyzed in this research.

  8. An Improved Artificial Colony Algorithm Model for Forecasting Chinese Electricity Consumption and Analyzing Effect Mechanism

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2016-01-01

    Full Text Available Electricity consumption forecast is perceived to be a growing hot topic in such a situation that China’s economy has entered a period of new normal and the demand of electric power has slowed down. Therefore, exploring Chinese electricity consumption influence mechanism and forecasting electricity consumption are crucial to formulate electrical energy plan scientifically and guarantee the sustainable economic and social development. Research has identified medium and long term electricity consumption forecast as a difficult study influenced by various factors. This paper proposed an improved Artificial Bee Colony (ABC algorithm which combined with multivariate linear regression (MLR for exploring the influencing mechanism of various factors on Chinese electricity consumption and forecasting electricity consumption in the future. The results indicated that the improved ABC algorithm in view of the various factors is superior to traditional models just considering unilateralism in accuracy and persuasion. The overall findings cast light on this model which provides a new scientific and effective way to forecast the medium and long term electricity consumption.

  9. Do regional weather models contribute to better wind power forecasts? A few Norwegian case studies

    DEFF Research Database (Denmark)

    Bremnes, John Bjørnar; Giebel, Gregor

    2017-01-01

    In most operational wind power forecasting systems statistical methods are applied to map wind forecasts from numerical weather prediction (NWP) models into wind power forecasts. NWP models are complex mathematical models of the atmosphere that divide the earth’s surface into a grid. The spatial...... resolution of this grid determines how accurate meteorological processes can be modeled and thereby also limits forecast quality. In this study, two global and four regional operational NWP models with spatial horizontal resolutions ranging from 1 to 32 km were applied to make wind power forecasts up to 66...

  10. Heap Leaching: Modelling and Forecasting Using CFD Technology

    Directory of Open Access Journals (Sweden)

    Diane McBride

    2018-01-01

    Full Text Available Heap leach operations typically employ some form of modelling and forecasting tools to predict cash flow margins and project viability. However, these vary from simple spreadsheets to phenomenological models, with more complex models not commonly employed as they require the greatest amount of time and effort. Yet, accurate production modelling and forecasting are essential for managing production and potentially critical for successful operation of a complex heap, time and effort spent in setting up modelling tools initially may increase profitability in the long term. A brief overview of various modelling approaches is presented, but this paper focuses on the capabilities of a computational fluid dynamics (CFD model. Advances in computational capability allow for complex CFD models, coupled with leach kinetic models, to be applied to complex ore bodies. In this paper a comprehensive hydrodynamic CFD model is described and applied to chalcopyrite dissolution under heap operating conditions. The model is parameterized against experimental data and validated against a range of experimental leach tests under different thermal conditions. A three-dimensional ‘virtual’ heap, under fluctuating meteorological conditions, is simulated. Continuous and intermittent irrigation is investigated, showing copper recovery per unit volume of applied leach solution to be slightly increased for pulse irrigation.

  11. Local TEC Modelling and Forecasting using Neural Networks

    Science.gov (United States)

    Tebabal, A.; Radicella, S. M.; Nigussie, M.; Damtie, B.; Nava, B.; Yizengaw, E.

    2017-12-01

    Abstract Modelling the Earth's ionospheric characteristics is the focal task for the ionospheric community to mitigate its effect on the radio communication, satellite navigation and technologies. However, several aspects of modelling are still challenging, for example, the storm time characteristics. This paper presents modelling efforts of TEC taking into account solar and geomagnetic activity, time of the day and day of the year using neural networks (NNs) modelling technique. The NNs have been designed with GPS-TEC measured data from low and mid-latitude GPS stations. The training was conducted using the data obtained for the period from 2011 to 2014. The model prediction accuracy was evaluated using data of year 2015. The model results show that diurnal and seasonal trend of the GPS-TEC is well reproduced by the model for the two stations. The seasonal characteristics of GPS-TEC is compared with NN and NeQuick 2 models prediction when the latter one is driven by the monthly average value of solar flux. It is found that NN model performs better than the corresponding NeQuick 2 model for low latitude region. For the mid-latitude both NN and NeQuick 2 models reproduce the average characteristics of TEC variability quite successfully. An attempt of one day ahead forecast of TEC at the two locations has been made by introducing as driver previous day solar flux and geomagnetic index values. The results show that a reasonable day ahead forecast of local TEC can be achieved.

  12. A Probabilistic Short-Term Water Demand Forecasting Model Based on the Markov Chain

    Directory of Open Access Journals (Sweden)

    Francesca Gagliardi

    2017-07-01

    Full Text Available This paper proposes a short-term water demand forecasting method based on the use of the Markov chain. This method provides estimates of future demands by calculating probabilities that the future demand value will fall within pre-assigned intervals covering the expected total variability. More specifically, two models based on homogeneous and non-homogeneous Markov chains were developed and presented. These models, together with two benchmark models (based on artificial neural network and naïve methods, were applied to three real-life case studies for the purpose of forecasting the respective water demands from 1 to 24 h ahead. The results obtained show that the model based on a homogeneous Markov chain provides more accurate short-term forecasts than the one based on a non-homogeneous Markov chain, which is in line with the artificial neural network model. Both Markov chain models enable probabilistic information regarding the stochastic demand forecast to be easily obtained.

  13. Artificial neural network models' application for radioactive substances' migration forecasting in soil

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Khil'ko, O.S.; Kundas, S.P.

    2009-01-01

    The work is indicated to the use of artificial neural network (ANN) models in program complex SPS for radioactive substances' migration forecasting in soil. For the problem solution two ANN models are used. One of them forecasts radioactive substances' migration, another carries out forecasting of physical and chemical soil properties. Program complex SPS allows to achieve a low error of forecasting (no more than 5 %) and high training speed. (authors)

  14. A practical MGA-ARIMA model for forecasting real-time dynamic rain-induced attenuation

    Science.gov (United States)

    Gong, Shuhong; Gao, Yifeng; Shi, Houbao; Zhao, Ge

    2013-05-01

    novel and practical modified genetic algorithm (MGA)-autoregressive integrated moving average (ARIMA) model for forecasting real-time dynamic rain-induced attenuation has been established by combining genetic algorithm ideas with the ARIMA model. It is proved that due to the introduction of MGA into the ARIMA(1,1,7) model, the MGA-ARIMA model has the potential to be conveniently applied in every country or area by creating a parameter database used by the ARIMA(1,1,7) model. The parameter database is given in this paper based on attenuation data measured in Xi'an, China. The methods to create the parameter databases in other countries or areas are offered, too. Based on the experimental results, the MGA-ARIMA model has been proved practical for forecasting dynamic rain-induced attenuation in real time. The novel model given in this paper is significant for developing adaptive fade mitigation technologies at millimeter wave bands.

  15. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    Science.gov (United States)

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Optimizing Computing Platforms for Climate-Driven Ecological Forecasting Models

    Science.gov (United States)

    Farley, S. S.; Williams, J. W.

    2016-12-01

    Species distribution models are widely used, climate-driven ecological forecasting tools that use machine-learning techniques to predict species range shifts and ecological responses to 21st century climate change. As high-resolution modern and fossil biodiversity data becomes increasingly available and statistical learning methods become more computationally intensive, choosing the correct computing configuration on which to run these models becomes more important. With a variety of low-cost cloud and desktop computing options available, users of forecasting models must balance performance gains achieved by provisioning more powerful hardware with the cost of using these resources. We present a framework for estimating the optimal computing solution for a given modeling activity. We argue that this framework is capable of identifying the optimal computing solution - the one that maximizes model accuracy while minimizing resource cost and computing time. Our framework is built on constituent models of algorithm execution time, predictive skill, and computing cost. We demonstrate the results of the framework using four leading species distribution models: multivariate adaptive regression splines, generalized additive models, support vector machines, and boosted regression trees. The constituent models themselves are shown to have high predictive accuracy, and can be used independently to estimate the effects of using larger input datasets, such as those that incorporate data from the fossil record. When used together, our framework shows highly significant predictive ability, and is designed to be used by researchers to inform future computing provisioning strategies.

  17. Forecasting Demand Using Survival Modeling: an application to US prisons

    Directory of Open Access Journals (Sweden)

    Joanna Baker

    1994-11-01

    Full Text Available A systems approach to modeling demand which incorporates survival modeling is applied to the problem of prison population projection. The approach models the flow of inmates through the prison system and differs from earlier approaches by exploiting the differences in the incarceration hazard rates of individuals in the general population and those who have previously been incarcerated and explicitly considering the impact of constrained prison capacity on release policy and future admissions. The methodology capitalizes on the impact of recursion in the prison population and reduces the amount and complexity of data required for long-term forecasts.. First-time arrivals to prison are modeled as a Poisson process arising from the general population; recidivist arrivals are modeled using a failure model, where the reincarceration hazard rate is a function of age and race. The model is demonstrated for the state of North Carolina located in the Southeastern region of the United States. The effect of limited prison capacity on the mean of the time-served distribution is shown. The results demonstrate that an early release policy will generate an increase in prison admissions through the return to prison of former inmates. Further, the results show that a systems approach to modeling of prison demand which includes the non-linear effect of recidivism, i.e., survival modeling, has a significant impact on the accuracy of forecasts.

  18. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.

  19. Energy and electricity demand forecasting for nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1988-07-01

    This Guidebook is designed to be a reference document to forecast energy and electricity demand. It presents concepts and methodologies that have been developed to make an analytical approach to energy/electricity demand forecasting as part of the planning process. The Guidebook is divided into 6 main chapters: (Energy demand and development, energy demand analysis, electric load curve analysis, energy and electricity demand forecasting, energy and electricity demand forecasting tools used in various organizations, IAEA methodologies for energy and electricity demand forecasting) and 3 appendices (experience with case studies carried out by the IAEA, reference technical data, reference economic data). A bibliography and a glossary complete the Guidebook. Refs, figs and tabs

  20. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    International Nuclear Information System (INIS)

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  1. HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.

    Science.gov (United States)

    Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee

    2017-08-01

    Epilepsy forecasting has been extensively studied using high-order time series obtained from scalp-recorded electroencephalography (EEG). An accurate seizure prediction system would not only help significantly improve patients' quality of life, but would also facilitate new therapeutic strategies to manage epilepsy. This paper thus proposes an improved Kalman Filter (KF) algorithm to mine seizure forecasts from neural activity by modeling three properties in the high-order EEG time series: noise, temporal smoothness, and tensor structure. The proposed High-Order Kalman Filter (HOKF) is an extension of the standard Kalman filter, for which higher-order modeling is limited. The efficient dynamic of HOKF system preserves the tensor structure of the observations and latent states. As such, the proposed method offers two main advantages: (i) effectiveness with HOKF results in hidden variables that capture major evolving trends suitable to predict neural activity, even in the presence of missing values; and (ii) scalability in that the wall clock time of the HOKF is linear with respect to the number of time-slices of the sequence. The HOKF algorithm is examined in terms of its effectiveness and scalability by conducting forecasting and scalability experiments with a real epilepsy EEG dataset. The results of the simulation demonstrate the superiority of the proposed method over the original Kalman Filter and other existing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    Science.gov (United States)

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  3. Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model

    Science.gov (United States)

    Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd

    2017-09-01

    Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.

  4. Visibility Modeling and Forecasting for Abu Dhabi using Time Series Analysis Method

    Science.gov (United States)

    Eibedingil, I. G.; Abula, B.; Afshari, A.; Temimi, M.

    2015-12-01

    Land-Atmosphere interactions-their strength, directionality and evolution-are one of the main sources of uncertainty in contemporary climate modeling. A particularly crucial role in sustaining and modulating land-atmosphere interaction is the one of aerosols and dusts. Aerosols are tiny particles suspended in the air ranging from a few nanometers to a few hundred micrometers in diameter. Furthermore, the amount of dust and fog in the atmosphere is an important measure of visibility, which is another dimension of land-atmosphere interactions. Visibility affects all form of traffic, aviation, land and sailing. Being able to predict the change of visibility in the air in advance enables relevant authorities to take necessary actions before the disaster falls. Time Series Analysis (TAS) method is an emerging technique for modeling and forecasting the behavior of land-atmosphere interactions, including visibility. This research assess the dynamics and evolution of visibility around Abu Dhabi International Airport (+24.4320 latitude, +54.6510 longitude, and 27m elevation) using mean daily visibility and mean daily wind speed. TAS has been first used to model and forecast the visibility, and then the Transfer Function Model has been applied, considering the wind speed as an exogenous variable. By considering the Akaike Information Criterion (AIC) and Mean Absolute Percentage Error (MAPE) as a statistical criteria, two forecasting models namely univarite time series model and transfer function model, were developed to forecast the visibility around Abu Dhabi International Airport for three weeks. Transfer function model improved the MAPE of the forecast significantly.

  5. Estimates by bootstrap interval for time series forecasts obtained by theta model

    Directory of Open Access Journals (Sweden)

    Daniel Steffen

    2017-03-01

    Full Text Available In this work, are developed an experimental computer program in Matlab language version 7.1 from the univariate method for time series forecasting called Theta, and implementation of resampling technique known as computer intensive "bootstrap" to estimate the prediction for the point forecast obtained by this method by confidence interval. To solve this problem built up an algorithm that uses Monte Carlo simulation to obtain the interval estimation for forecasts. The Theta model presented in this work was very efficient in M3 Makridakis competition, where tested 3003 series. It is based on the concept of modifying the local curvature of the time series obtained by a coefficient theta (Θ. In it's simplest approach the time series is decomposed into two lines theta representing terms of long term and short term. The prediction is made by combining the forecast obtained by fitting lines obtained with the theta decomposition. The results of Mape's error obtained for the estimates confirm the favorable results to the method of M3 competition being a good alternative for time series forecast.

  6. Development of artificial intelligence approach to forecasting oyster norovirus outbreaks along Gulf of Mexico coast.

    Science.gov (United States)

    Chenar, Shima Shamkhali; Deng, Zhiqiang

    2018-02-01

    This paper presents an artificial intelligence-based model, called ANN-2Day model, for forecasting, managing and ultimately eliminating the growing risk of oyster norovirus outbreaks. The ANN-2Day model was developed using Artificial Neural Network (ANN) Toolbox in MATLAB Program and 15-years of epidemiological and environmental data for six independent environmental predictors including water temperature, solar radiation, gage height, salinity, wind, and rainfall. It was found that oyster norovirus outbreaks can be forecasted with two-day lead time using the ANN-2Day model and daily data of the six environmental predictors. Forecasting results of the ANN-2Day model indicated that the model was capable of reproducing 19years of historical oyster norovirus outbreaks along the Northern Gulf of Mexico coast with the positive predictive value of 76.82%, the negative predictive value of 100.00%, the sensitivity of 100.00%, the specificity of 99.84%, and the overall accuracy of 99.83%, respectively, demonstrating the efficacy of the ANN-2Day model in predicting the risk of norovirus outbreaks to human health. The 2-day lead time enables public health agencies and oyster harvesters to plan for management interventions and thus makes it possible to achieve a paradigm shift of their daily management and operation from primarily reacting to epidemic incidents of norovirus infection after they have occurred to eliminating (or at least reducing) the risk of costly incidents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Forecasting the yield curve - Forecast performance of the dynamic Nelson-Siegel model from 1971 to 2008

    OpenAIRE

    Molenaars, Tomas K.; Reinerink, Nick H.; Hemminga, Marcus A.

    2013-01-01

    We define a parameter representing the relative forecast performance to compare forecasting results of different methods. By using this parameter, we analyze the performance of the dynamic Nelson-Siegel model and, for comparison, the first order autoregressive (AR(1)) model applied to a set of US bond yield data that covers a time span from November 1971 to December 2008. As a reference, we take the random walk model applied to the yield data. Our findings indicate that none of the models can...

  8. A stochastic space-time rainfall forecasting system for real time flow forecasting I: Development of MTB conditional rainfall scenario generator

    Directory of Open Access Journals (Sweden)

    D. Mellor

    2000-01-01

    Full Text Available The need for the development of a method for generating an ensemble of rainfall scenarios, which are conditioned on the observed rainfall, and its place in the HYREX programme is discussed. A review of stochastic models for rainfall, and rainfall forecasting techniques, is followed by a justification for the choice of the Modified Turning Bands (MTB model in this context. This is a stochastic model of rainfall which is continuous over space and time, and which reproduces features of real rainfall fields at four distinct scales: raincells, cluster potential regions, rainbands and the overall outline of a storm at the synoptic scale. The model can be used to produce synthetic data sets, in the same format as data from a radar. An inversion procedure for inferring a construction of the MTB model which generates a given sequence of radar images is described. This procedure is used to generate an ensemble of future rainfall scenarios which are consistent with a currently observed storm. The combination of deterministic modelling at the large scales and stochastic modelling at smaller scales, within the MTB model, makes the system particularly suitable for short-term forecasts. As the lead time increases, so too does the variability across the set of generated scenarios. Keywords: MTB model, space-time rainfall field model, rainfall radar, HYREX, real-time flow forecasting

  9. Forecasting of Socio-Economic Development of the Russian Regions

    Directory of Open Access Journals (Sweden)

    Galina Yuryevna Gagarina

    2017-12-01

    Full Text Available The regional differentiation makes impossible the sustainable socio-economic development of the subjects of the Russian Federation without the monitoring public governance results in space and time. Despite the comprehensive approach of the current procedure, approved by the federal government, it does not adequately assess the executive authorities effectiveness. Its main problem is the impossibility to assume such important administrative function as forecasting the social and economic development of Russian territorial subjects. The authors propose an alternative methodology on the basis of the system economic theory. This technique is implemented in several consecutive stages. Firstly, we develop the system of 30 indicators. Secondly, we normalize the values of the indicators using the method of pattern. Thirdly, we calculate the index of the social and economic development of Russian regions for 2011–2015 assuming that the indicators are equal. Last, we group Russian regions into clusters according to the level of their social and economic development using neural network technologies (Kohonen selforganizing maps. Only 9 in 80 subjects of the Russian Federation (RF had the degree of realizing the social and economic potential higher than 40 % during the period under consideration. In 2011–2015, the most of regions had a low and lower than average level of social and economic development (with an aggregate share about 64.3 %. It means that, under current conditions, the majority of the RF regions have considerable reserves for realizing their social-economic potential. In particular, the absence of the territorial subjects with a high level of social and economic development proves that. The authors have simulated the social and economic situation of the RF subjects by means of an adequate Bayesian neural networks. The obtained results can be used as the basis for further research in the field of evaluating executive authorities

  10. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

    Science.gov (United States)

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-01-01

    The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  11. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.

    Science.gov (United States)

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-06-28

    The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  12. Oceanic sources of predictability for MJO propagation across the Maritime Continent in a subset of S2S forecast models

    Science.gov (United States)

    DeMott, C. A.; Klingaman, N. P.

    2017-12-01

    Skillful prediction of the Madden-Julian oscillation (MJO) passage across the Maritime Continent (MC) has important implications for global forecasts of high-impact weather events, such as atmospheric rivers and heat waves. The North American teleconnection response to the MJO is strongest when MJO convection is located in the western Pacific Ocean, but many climate and forecast models are deficient in their simulation of MC-crossing MJO events. Compared to atmosphere-only general circulation models (AGCMs), MJO simulation skill generally improves with the addition of ocean feedbacks in coupled GCMs (CGCMs). Using observations, previous studies have noted that the degree of ocean coupling may vary considerably from one MJO event to the next. The coupling mechanisms may be linked to the presence of ocean Equatorial Rossby waves, the sign and amplitude of Equatorial surface currents, and the upper ocean temperature and salinity profiles. In this study, we assess the role of ocean feedbacks to MJO prediction skill using a subset of CGCMs participating in the Subseasonal-to-Seasonal (S2S) Project database. Oceanic observational and reanalysis datasets are used to characterize the upper ocean background state for observed MJO events that do and do not propagate beyond the MC. The ability of forecast models to capture the oceanic influence on the MJO is first assessed by quantifying SST forecast skill. Next, a set of previously developed air-sea interaction diagnostics is applied to model output to measure the role of SST perturbations on the forecast MJO. The "SST effect" in forecast MJO events is compared to that obtained from reanalysis data. Leveraging all ensemble members of a given forecast helps disentangle oceanic model biases from atmospheric model biases, both of which can influence the expression of ocean feedbacks in coupled forecast systems. Results of this study will help identify areas of needed model improvement for improved MJO forecasts.

  13. A Feature Fusion Based Forecasting Model for Financial Time Series

    Science.gov (United States)

    Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie

    2014-01-01

    Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models. PMID:24971455

  14. Application of artificial intelligence models in water quality forecasting.

    Science.gov (United States)

    Yeon, I S; Kim, J H; Jun, K W

    2008-06-01

    The real-time data of the continuous water quality monitoring station at the Pyeongchang river was analyzed separately during the rainy period and non-rainy period. Total organic carbon data observed during the rainy period showed a greater mean value, maximum value and standard deviation than the data observed during the non-rainy period. Dissolved oxygen values during the rainy period were lower than those observed during the non-rainy period. It was analyzed that the discharge due to rain fall from the basin affects the change of the water quality. A model for the forecasting of water quality was constructed and applied using the neural network model and the adaptive neuro-fuzzy inference system. Regarding the models of levenberg-marquardt neural network, modular neural network and adaptive neuro-fuzzy inference system, all three models showed good results for the simulation of total organic carbon. The levenberg-marquardt neural network and modular neural network models showed better results than the adaptive neuro-fuzzy inference system model in the forecasting of dissolved oxygen. The modular neural network model, which was applied with the qualitative data of time in addition to quantitative data, showed the least error.

  15. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  16. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  17. Day-ahead wind speed forecasting using f-ARIMA models

    International Nuclear Information System (INIS)

    Kavasseri, Rajesh G.; Seetharaman, Krithika

    2009-01-01

    With the integration of wind energy into electricity grids, it is becoming increasingly important to obtain accurate wind speed/power forecasts. Accurate wind speed forecasts are necessary to schedule dispatchable generation and tariffs in the day-ahead electricity market. This paper examines the use of fractional-ARIMA or f-ARIMA models to model, and forecast wind speeds on the day-ahead (24 h) and two-day-ahead (48 h) horizons. The models are applied to wind speed records obtained from four potential wind generation sites in North Dakota. The forecasted wind speeds are used in conjunction with the power curve of an operational (NEG MICON, 750 kW) turbine to obtain corresponding forecasts of wind power production. The forecast errors in wind speed/power are analyzed and compared with the persistence model. Results indicate that significant improvements in forecasting accuracy are obtained with the proposed models compared to the persistence method. (author)

  18. Forecasting US renewables in the national energy modelling system

    International Nuclear Information System (INIS)

    Diedrich, R.; Petersik, T.W.

    2001-01-01

    The Energy information Administration (EIA) of the US Department of Energy (DOE) forecasts US renewable energy supply and demand in the context of overall energy markets using the National Energy Modelling System (NEMS). Renewables compete with other supply and demand options within the residential, commercial, industrial, transportation, and electricity sectors of the US economy. NEMS forecasts renewable energy for grid-connected electricity production within the Electricity Market Module (EM), and characterizes central station biomass, geothermal, conventional hydroelectric, municipal solid waste, solar thermal, solar photovoltaic, and wind-powered electricity generating technologies. EIA's Annual Energy Outlook 1998, projecting US energy markets, forecasts marketed renewables to remain a minor part of US energy production and consumption through to 2020. The USA is expected to remain primarily a fossil energy producer and consumer throughout the period. An alternative case indicates that biomass, wind, and to some extent geothermal power would likely increase most rapidly if the US were to require greater use of renewables for power supply, though electricity prices would increase somewhat. (author)

  19. Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community

    Science.gov (United States)

    Franz, K. J.; Hogue, T. S.

    2011-11-01

    The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP) systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE), and the Shuffle Complex Evolution Metropolis (SCEM). Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA) model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.

  20. Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community

    Directory of Open Access Journals (Sweden)

    K. J. Franz

    2011-11-01

    Full Text Available The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE, and the Shuffle Complex Evolution Metropolis (SCEM. Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.

  1. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanistic–empirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  2. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    Science.gov (United States)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  3. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks.

    Directory of Open Access Journals (Sweden)

    Da Liu

    Full Text Available Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN. Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.

  4. Diabatic forcing and intialization with assimilation of cloud water and rainwater in a forecast model

    Science.gov (United States)

    Raymond, William H.; Olson, William S.; Callan, Geary

    1995-01-01

    In this study, diabatic forcing, and liquid water assimilation techniques are tested in a semi-implicit hydrostatic regional forecast model containing explicit representations of grid-scale cloud water and rainwater. Diabatic forcing, in conjunction with diabatic contributions in the initialization, is found to help the forecast retain the diabatic signal found in the liquid water or heating rate data, consequently reducing the spinup time associated with grid-scale precipitation processes. Both observational Special Sensor Microwave/Imager (SSM/I) and model-generated data are used. A physical retrieval method incorporating SSM/I radiance data is utilized to estimate the 3D distribution of precipitating storms. In the retrieval method the relationship between precipitation distributions and upwelling microwave radiances is parameterized, based upon cloud ensemble-radiative model simulations. Regression formulae relating vertically integrated liquid and ice-phase precipitation amounts to latent heating rates are also derived from the cloud ensemble simulations. Thus, retrieved SSM/I precipitation structures can be used in conjunction with the regression-formulas to infer the 3D distribution of latent heating rates. These heating rates are used directly in the forecast model to help initiate Tropical Storm Emily (21 September 1987). The 14-h forecast of Emily's development yields atmospheric precipitation water contents that compare favorably with coincident SSM/I estimates.

  5. Perturbations of modeling and forecast of karachi coastal region seawater

    International Nuclear Information System (INIS)

    Hussain, M.A.; Abbas, S.; Ansari, M.R.K.; Zaffar, A.

    2013-01-01

    Global warming is now a stark reality affecting the humanity in many hazardous ways. Continuous floods in Pakistan in past two years are an eye opener in this regard. A great loss of property, agriculture and life as a result of these floods suggests for an intelligent monitoring of the future projections of climate change and global warming. This is necessary because the harmful impacts of natural hazards can be coped and alleviated with a good planning in advance. This monitoring demands for enhanced forecasting capabilities, use of better analytical techniques and a clear determination and study of the controlling factors. Karachi is a coastal city which is also the industrial hub of Pakistan. Moreover, it is among one of the largest metropolitans of the world. So expectedly is most suitable for the study of high level of complex natural and anthropogenic activities. It is peculiar in the sense that it has two summer seasons, a situation scarcely observable on the globe. Here, summer season seawater temperature fluctuations are studied with the help of Seasonal Autoregressive Integrated Moving Average (SARIMA) models and short- and long-term forecasts are made. Our short-term forecasts determine months for the summer wise temperature extremes. It appears that the months of May, June, July and August are the months of extreme temperature for the first summer and October is the month of extreme temperature for the second summer. The long-term forecasts predict that 2014, 2016, 2018, and 2019 will be the years of warm summers. The analysis appearing here would be useful for coastal-urban planners in emphasizing the impact of seawater extreme temperatures on urban industrial activities, etc. (author)

  6. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models.

    Science.gov (United States)

    Barzegar, Rahim; Fijani, Elham; Asghari Moghaddam, Asghar; Tziritis, Evangelos

    2017-12-01

    Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R 2 ), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Using High Resolution Model Data to Improve Lightning Forecasts across Southern California

    Science.gov (United States)

    Capps, S. B.; Rolinski, T.

    2014-12-01

    Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting

  8. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of Multiple Weather Models

    Science.gov (United States)

    Lu, S.; Hwang, Y.; Shao, X.; Hamann, H.

    2015-12-01

    Previously, we reported the application of a "weather situation" dependent multi-model blending approach to improve the forecast accuracy of solar irradiance and other atmospheric parameters. The approach uses machine-learning techniques to classify "weather situations" by a set of atmospheric parameters. The "weather situation" classification is location-dependent and each "weather situation" has characteristic forecast errors from a set of individual input numerical weather prediction (NWP) models. The input models are thus corrected or combined differently for different "weather situations" to minimize the overall forecast error. While the original implementation of the model-blending is applicable to only point-like locations having historical data of both measurements and forecasts, here we extend the approach to provide two-dimensional (2D) gridded forecasts. An experimental 2D forecasting system has been set up to provide gridded forecasts of solar irradiance (global horizontal irradiance), temperature, wind speed, and humidity for the contiguous United States (CONUS). Validation results show around 30% enhancement of 0 to 48 hour ahead solar irradiance forecast accuracy compared to the best input NWP model. The forecasting system may be leveraged by other site- or region-specific solar energy forecast products. To enable the 2D forecasting system, historical solar irradiance measurements from around 1,600 selected sites of the remote automated weather stations (RAWS) network have been employed. The CONUS was divided into smaller sub-regions, each containing a group of 10 to 20 RAWS sites. A group of sites, as classified by statistical analysis, have similar "weather patterns", i.e. the NWPs have similar "weather situation" dependent forecast errors for all sites in a group. The model-blending trained by the historical data from a group of sites is then applied for all locations in the corresponding sub-region. We discuss some key techniques developed for

  9. USING GEM - GLOBAL ECONOMIC MODEL IN ACHIEVING A GLOBAL ECONOMIC FORECAST

    Directory of Open Access Journals (Sweden)

    Camelia Madalina Orac

    2013-12-01

    Full Text Available The global economic development model has proved to be insufficiently reliable under the new economic crisis. As a result, the entire theoretical construction about the global economy needs rethinking and reorientation. In this context, it is quite clear that only through effective use of specific techniques and tools of economic-mathematical modeling, statistics, regional analysis and economic forecasting it is possible to obtain an overview of the future economy.

  10. Technological developments in real-time operational hydrologic forecasting in the United States

    Science.gov (United States)

    Hudlow, Michael D.

    1988-09-01

    The hydrologic forecasting service of the United States spans applications and scales ranging from those associated with the issuance of flood and flash warnings to those pertaining to seasonal water supply forecasts. New technological developments (underway in or planned by the National Weather Service (NWS) in support of the Hydrologic Program) are carried out as combined efforts by NWS headquarters and field personnel in cooperation with other organizations. These developments fall into two categories: hardware and software systems technology, and hydrometeorological analysis and prediction technology. Research, development, and operational implementation in progress in both of these areas are discussed. Cornerstones of an overall NWS modernization effort include implementation of state-of-the-art data acquisition systems (including the Next Generation Weather Radar) and communications and computer processing systems. The NWS Hydrologic Service will capitalize on these systems and will incorporate results from specific hydrologic projects including collection and processing of multivariate data sets, conceptual hydrologic modeling systems, integrated hydrologic modeling systems with meteorological interfaces and automatic updating of model states, and extended streamflow prediction techniques. The salient aspects of ongoing work in these areas are highlighted in this paper, providing some perspective on the future U.S. hydrologic forecasting service and its transitional period into the 1990s.

  11. Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling

    Science.gov (United States)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè

    2017-04-01

    Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.

  12. Propagation of Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead Forecasting

    DEFF Research Database (Denmark)

    Quinonero, Joaquin; Girard, Agathe; Larsen, Jan

    2003-01-01

    The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaus......The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models...... such as the Gaussian process and the relevance vector machine. We derive novel analytic expressions for the predictive mean and variance for Gaussian kernel shapes under the assumption of a Gaussian input distribution in the static case, and of a recursive Gaussian predictive density in iterative forecasting...

  13. Spatio-temporal modelling for short term wind power forecasts. Why, when and how.

    Science.gov (United States)

    Lenzi, Amanda; Steinsland, Ingelin; Pinson, Pierre

    2017-04-01

    This study is based on a case study of 349 wind farms in Western Denmark with available energy production every 15 minutes for 6 years. Our aim is to do short term forecasting up to 5 hours ahead based on previous observations. We want sharp and calibrated probabilistic forecasts for both individual wind farms and for aggregated energy production, for example the energy production in the whole region. To obtain this we propose two Bayesian spatio-temporal models, and obtain full probabilistic forecasts of wind power. The models are based on the stochastic partial differential equation (SPDE) approach to spatial-temporal modelling which enables fast inference using integrated nested Laplace approximations (INLA) as well as dimension reduction. We provide detailed analysis on the forecast performances on the individual and aggregated level based on appropriate metrics tailored for probability forecasts for both the spatial temporal models as well as for temporal models for individual wind farms. The case study as well as simulation studies demonstrate that forecasts that are individually reliable do not need to produce an aggregated forecasts that are reliable. Indeed, the case study shows that even when all individual forecasts are calibrated can the aggregated forecasts be so uncalibrated that less that 20% of the observations fall within the 95% forecast interval. T he results and methodology are both relevant for wind power forecasts in other regions as well as for spatial-temporal modeling and decisions in general.

  14. A COMPARATIVE STUDY OF FORECASTING MODELS FOR TREND AND SEASONAL TIME SERIES DOES COMPLEX MODEL ALWAYS YIELD BETTER FORECAST THAN SIMPLE MODELS

    Directory of Open Access Journals (Sweden)

    Suhartono Suhartono

    2005-01-01

    Full Text Available Many business and economic time series are non-stationary time series that contain trend and seasonal variations. Seasonality is a periodic and recurrent pattern caused by factors such as weather, holidays, or repeating promotions. A stochastic trend is often accompanied with the seasonal variations and can have a significant impact on various forecasting methods. In this paper, we will investigate and compare some forecasting methods for modeling time series with both trend and seasonal patterns. These methods are Winter's, Decomposition, Time Series Regression, ARIMA and Neural Networks models. In this empirical research, we study on the effectiveness of the forecasting performance, particularly to answer whether a complex method always give a better forecast than a simpler method. We use a real data, that is airline passenger data. The result shows that the more complex model does not always yield a better result than a simpler one. Additionally, we also find the possibility to do further research especially the use of hybrid model by combining some forecasting method to get better forecast, for example combination between decomposition (as data preprocessing and neural network model.

  15. Soil Moisture Drought Monitoring and Forecasting Using Satellite and Climate Model Data over Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuejun; Tang, Qiuhong; Liu, Xingcai; Leng, Guoyong; Li, Zhe

    2017-01-01

    Real-time monitoring and predicting drought development with several months in advance is of critical importance for drought risk adaptation and mitigation. In this paper, we present a drought monitoring and seasonal forecasting framework based on the Variable Infiltration Capacity (VIC) hydrologic model over Southwest China (SW). The satellite precipitation data are used to force VIC model for near real-time estimate of land surface hydrologic conditions. As initialized with satellite-aided monitoring, the climate model-based forecast (CFSv2_VIC) and ensemble streamflow prediction (ESP)-based forecast (ESP_VIC) are both performed and evaluated through their ability in reproducing the evolution of the 2009/2010 severe drought over SW. The results show that the satellite-aided monitoring is able to provide reasonable estimate of forecast initial conditions (ICs) in a real-time manner. Both of CFSv2_VIC and ESP_VIC exhibit comparable performance against the observation-based estimates for the first month, whereas the predictive skill largely drops beyond 1-month. Compared to ESP_VIC, CFSv2_VIC shows better performance as indicated by the smaller ensemble range. This study highlights the value of this operational framework in generating near real-time ICs and giving a reliable prediction with 1-month ahead, which has great implications for drought risk assessment, preparation and relief.

  16. Research on Short-Term Wind Power Prediction Based on Combined Forecasting Models

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2016-01-01

    Full Text Available Short-Term wind power forecasting is crucial for power grid since the generated energy of wind farm fluctuates frequently. In this paper, a physical forecasting model based on NWP and a statistical forecasting model with optimized initial value in the method of BP neural network are presented. In order to make full use of the advantages of the models presented and overcome the limitation of the disadvantage, the equal weight model and the minimum variance model are established for wind power prediction. Simulation results show that the combination forecasting model is more precise than single forecasting model and the minimum variance combination model can dynamically adjust weight of each single method, restraining the forecasting error further.

  17. Propagation of global model uncertainties in aerosol forecasting: A field practitioner's opinion

    Science.gov (United States)

    Reid, J. S.; Benedetti, A.; Bozzo, A.; Brooks, I. M.; Brooks, M.; Colarco, P. R.; daSilva, A.; Flatau, M. K.; Kuehn, R.; Hansen, J.; Holz, R.; Kaku, K.; Lynch, P.; Remy, S.; Rubin, J. I.; Sekiyama, T. T.; Tanaka, T. Y.; Zhang, J.

    2015-12-01

    While aerosol forecasting has its own host of aerosol source, sink and microphysical challenges to overcome, ultimately any numerical weather prediction based aerosol model can be no better than its underlying meteorology. However, the scorecard elements that drive NWP model development have varying relationships to the key uncertainties and biases that are of greatest concern to aerosol forecasting. Here we provide opinions from member developers of the International Cooperative for Aerosol Prediction (ICAP) on NWP deficiencies related to multi-specie aerosol forecasting, as well as relevance of current NWP scorecard elements to aerosol forecasting. Comparisons to field mission data to simulations are used to demonstrate these opinions and show how shortcomings in individual processes in the global models cascade into aerosol prediction. While a number of sensitivities will be outlined, as one would expect, the most important processes relate to aerosol sources, sinks and, in the context of data assimilation, aerosol hygroscopicity. Thus, the pressing needs in the global models relate to boundary layer and convective processes in the context of large scale waves. Examples will be derived from tropical to polar field measurements, from simpler to more complex including a) network data on dust emissions and transport from Saharan Africa, b) boundary layer development, instability, and deep convection in the United States during Studies of Emissions and Atmospheric, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS); and c) 7 Southeast Asian Studies (7SEAS) data on aerosol influences by maritime convection up-scaled through tropical waves. While the focus of this talk is how improved meteorological model processes are important to aerosol modeling, we conclude with recent findings of the Arctic Summer Cloud Ocean Study (ASCOS) which demonstrate how aerosol processes may be important to global model simulations of polar cloud, surface energy and subsequently

  18. The research on spatial load forecasting model and method of electricity energy alternative based on cloud theory in distribution network

    Science.gov (United States)

    Zhou, Honglian; Li, Juan; Hu, Zhiyun; Li, Qingbo; Liu, Zifa; Wang, Wei

    2017-11-01

    The research on electrical energy alternative mainly focus on alternative energy potential, expanding strategy and benefit analysis due to lack of historical data. This paper presents the total spatial load forecasting model in distribution network based on the proposed electrical energy alternative development coefficient which is generated by electricity energy objective issued by governments. To deal with fuzzy and uncertain in load forecasting for electric boiler and heater, the cloud theory and the regularity in the process of electrical energy alternative popularization are used. The component of electrical alternative spatial load forecasting is presented in sequence. The proposed method is verified in a typical case.

  19. A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2016-08-01

    Full Text Available The day-ahead electricity market is closely related to other commodity markets such as the fuel and emission markets and is increasingly playing a significant role in human life. Thus, in the electricity markets, accurate electricity price forecasting plays significant role for power producers and consumers. Although many studies developing and proposing highly accurate forecasting models exist in the literature, there have been few investigations on improving the forecasting effectiveness of electricity price from the perspective of reducing the volatility of data with satisfactory accuracy. Based on reducing the volatility of the electricity price and the forecasting nature of the radial basis function network (RBFN, this paper successfully develops a two-stage model to forecast the day-ahead electricity price, of which the first stage is particle swarm optimization (PSO-core mapping (CM with self-organizing-map and fuzzy set (PCMwSF, and the second stage is selection rule (SR. The PCMwSF stage applies CM, fuzzy set and optimized weights to obtain the future price, and the SR stage is inspired by the forecasting nature of RBFN and effectively selects the best forecast during the test period. The proposed model, i.e., CM-PCMwSF-SR, not only overcomes the difficulty of reducing the high volatility of the electricity price but also leads to a superior forecasting effectiveness than benchmarks.

  20. Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting

    DEFF Research Database (Denmark)

    Zhao, Yongning; Ye, Lin; Pinson, Pierre

    2018-01-01

    The ever-increasing number of wind farms has brought both challenges and opportunities in the development of wind power forecasting techniques to take advantage of interdependenciesbetweentensorhundredsofspatiallydistributedwind farms, e.g., over a region. In this paper, a Sparsity......-Controlled Vector Autoregressive (SC-VAR) model is introduced to obtain sparse model structures in a spatio-temporal wind power forecasting framework by reformulating the original VAR model into a constrained Mixed Integer Non-Linear Programming (MINLP) problem. It allows controlling the sparsity of the coefficient...... and forecasting, the original SC-VAR is modified and a Correlation-Constrained SC-VAR (CCSC-VAR) is proposed based on spatial correlation information about wind farms. Our approach is evaluated based on a case study of very-short-term forecasting for 25 wind farms in Denmark. Comparison is performed with a set...

  1. Space Weather Forecasts Driven by the ADAPT Model

    Science.gov (United States)

    Henney, C. J.; Arge, C. N.; Shurkin, K.; Schooley, A. K.; Hock, R. A.; White, S.

    2015-12-01

    In this presentation, we highlight recent progress to forecast key space weather parameters with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model. Driven by a magnetic flux transport model, ADAPT evolves global solar magnetic maps forward 1 to 7 days in the future to provide realistic estimates of the solar near-side field distribution used to forecast the solar wind, F10.7 (i.e., the solar 10.7 cm radio flux), extreme ultraviolet (EUV) and far ultraviolet (FUV) irradiance. Input to the ADAPT model includes solar near-side estimates of the inferred photospheric magnetic field from space-based (i.e., HMI) and ground-based (e.g., GONG & VSM) instruments. We summarize the recent findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). In addition, recent progress to utilize the ADAPT global maps as input to the Wang-Sheeley-Arge (WSA) coronal and solar wind model is presented. We also discuss the challenges of observing less than half of the solar surface at any given time and the need for future magnetograph instruments near L1 and L5.

  2. Building a House Prices Forecasting Model in Hong Kong

    Directory of Open Access Journals (Sweden)

    Xin Janet

    2012-11-01

    Full Text Available This paper builds a house prices forecasting model for private residential houses in HongKong, based on general macroeconomic indicators, housing related data and demographicfactors for the period of 1980 to 2001. A reduce form economic model has been derivedfrom a multiple regression analysis where three sets and eight models were derived foranalysis and comparison. It is found that household income, land supply, population andmovements in the Hang Seng Index play an important role in explaining house pricemovements in Hong Kong. In addition, political events, as identified, cannot be ignored.However, the results of the models are unstable. It is suggested that the OLS may nota best method for house prices model in Hong Kong situation. Alternative methods aresuggested.

  3. Forecast model applied to quality control with autocorrelational data

    Directory of Open Access Journals (Sweden)

    Adriano Mendonça Souza

    2013-11-01

    Full Text Available This research approaches the prediction models applied to industrial processes, in order to check the stability of the process by means of control charts, applied to residues from linear modeling. The data used for analysis refers to the moisture content, permeability and compression resistance to the green (RCV, belonging to the casting process of green sand molding in A Company, which operates in the casting and machining, for which dynamic multivariate regression model was set. As the observations were auto-correlated, it was necessary to seek a mathematical model that produces independent and identically distribuibed residues. The models found make possible to understand the variables behavior, assisting in the achievement of the forecasts and in the monitoring of the referred process. Thus, it can be stated that the moisture content is very unstable comparing to the others variables.

  4. Recursive wind speed forecasting based on Hammerstein Auto-Regressive model

    International Nuclear Information System (INIS)

    Ait Maatallah, Othman; Achuthan, Ajit; Janoyan, Kerop; Marzocca, Pier

    2015-01-01

    Highlights: • Developed a new recursive WSF model for 1–24 h horizon based on Hammerstein model. • Nonlinear HAR model successfully captured chaotic dynamics of wind speed time series. • Recursive WSF intrinsic error accumulation corrected by applying rotation. • Model verified for real wind speed data from two sites with different characteristics. • HAR model outperformed both ARIMA and ANN models in terms of accuracy of prediction. - Abstract: A new Wind Speed Forecasting (WSF) model, suitable for a short term 1–24 h forecast horizon, is developed by adapting Hammerstein model to an Autoregressive approach. The model is applied to real data collected for a period of three years (2004–2006) from two different sites. The performance of HAR model is evaluated by comparing its prediction with the classical Autoregressive Integrated Moving Average (ARIMA) model and a multi-layer perceptron Artificial Neural Network (ANN). Results show that the HAR model outperforms both the ARIMA model and ANN model in terms of root mean square error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). When compared to the conventional models, the new HAR model can better capture various wind speed characteristics, including asymmetric (non-gaussian) wind speed distribution, non-stationary time series profile, and the chaotic dynamics. The new model is beneficial for various applications in the renewable energy area, particularly for power scheduling

  5. A hybrid wind power forecasting model based on data mining and wavelets analysis

    International Nuclear Information System (INIS)

    Azimi, R.; Ghofrani, M.; Ghayekhloo, M.

    2016-01-01

    Highlights: • An improved version of K-means algorithm is proposed for clustering wind data. • A persistence based method is applied to select the best cluster for NN training. • A combination of DWT and HANTS methods is used to provide a deep learning for NN. • A hybrid of T.S.B K-means, DWT and HANTS and NN is developed for wind forecasting. - Abstract: Accurate forecasting of wind power plays a key role in energy balancing and wind power integration into the grid. This paper proposes a novel time-series based K-means clustering method, named T.S.B K-means, and a cluster selection algorithm to better extract features of wind time-series data. A hybrid of T.S.B K-means, discrete wavelet transform (DWT) and harmonic analysis time series (HANTS) methods, and a multilayer perceptron neural network (MLPNN) is developed for wind power forecasting. The proposed T.S.B K-means classifies data into separate groups and leads to more appropriate learning for neural networks by identifying anomalies and irregular patterns. This improves the accuracy of the forecast results. A cluster selection method is developed to determine the cluster that provides the best training for the MLPNN. This significantly accelerates the forecast process as the most appropriate portion of the data rather than the whole data is used for the NN training. The wind power data is decomposed by the Daubechies D4 wavelet transform, filtered by the HANTS, and pre-processed to provide the most appropriate inputs for the MLPNN. Time-series analysis is used to pre-process the historical wind-power generation data and structure it into input-output series. Wind power datasets with diverse characteristics, from different wind farms located in the United States, are used to evaluate the accuracy of the hybrid forecasting method through various performance measures and different experiments. A comparative analysis with well-established forecasting models shows the superior performance of the proposed

  6. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  7. Wetting and drying of soil in response to precipitation: Data analysis, modeling, and forecasting

    Science.gov (United States)

    Basak, Aniruddha; Kulkarni, Chinmay; Schmidt, Kevin M.; Mengshoel, Ole

    2016-01-01

    This paper investigates methods to analyze and forecast soil moisture time series. We extend an existing Antecedent Water Index (AWI) model, which expresses soil moisture as a function of time and rainfall. Unfortunately, the existing AWI model does not forecast effectively for time periods beyond a few hours. To overcome this limitation, we develop a novel AWI-based model. Our model accumulates rainfall over a time interval and can fit a diverse range of wetting and drying curves. In addition, parameters in our model reflect hydrologic redistribution processes of gravity and suction.We validate our models using experimental soil moisture and rainfall time series data collected from steep gradient post-wildfire sites in Southern California, where rapid landscape change was observed in response to small to moderate rain storms. We found that our novel model fits the data for three distinct soil textures, occurring at different depths below the ground surface (5, 15, and 30 cm). Our model also successfully forecasts soil moisture trends, such as drying and wetting rate.

  8. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.; Hood, Raleigh R.; Leight, A.; Long, Wen; Wood, R.

    2014-11-01

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.

  9. COP21 climate negotiators' responses to climate model forecasts

    Science.gov (United States)

    Bosetti, Valentina; Weber, Elke; Berger, Loïc; Budescu, David V.; Liu, Ning; Tavoni, Massimo

    2017-02-01

    Policymakers involved in climate change negotiations are key users of climate science. It is therefore vital to understand how to communicate scientific information most effectively to this group. We tested how a unique sample of policymakers and negotiators at the Paris COP21 conference update their beliefs on year 2100 global mean temperature increases in response to a statistical summary of climate models' forecasts. We randomized the way information was provided across participants using three different formats similar to those used in Intergovernmental Panel on Climate Change reports. In spite of having received all available relevant scientific information, policymakers adopted such information very conservatively, assigning it less weight than their own prior beliefs. However, providing individual model estimates in addition to the statistical range was more effective in mitigating such inertia. The experiment was repeated with a population of European MBA students who, despite starting from similar priors, reported conditional probabilities closer to the provided models' forecasts than policymakers. There was also no effect of presentation format in the MBA sample. These results highlight the importance of testing visualization tools directly on the population of interest.

  10. Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility

    Science.gov (United States)

    Tuba, Zoltán; Bottyán, Zsolt

    2018-04-01

    Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.

  11. Research and Application of Hybrid Forecasting Model Based on an Optimal Feature Selection System—A Case Study on Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yunxuan Dong

    2017-04-01

    Full Text Available The process of modernizing smart grid prominently increases the complexity and uncertainty in scheduling and operation of power systems, and, in order to develop a more reliable, flexible, efficient and resilient grid, electrical load forecasting is not only an important key but is still a difficult and challenging task as well. In this paper, a short-term electrical load forecasting model, with a unit for feature learning named Pyramid System and recurrent neural networks, has been developed and it can effectively promote the stability and security of the power grid. Nine types of methods for feature learning are compared in this work to select the best one for learning target, and two criteria have been employed to evaluate the accuracy of the prediction intervals. Furthermore, an electrical load forecasting method based on recurrent neural networks has been formed to achieve the relational diagram of historical data, and, to be specific, the proposed techniques are applied to electrical load forecasting using the data collected from New South Wales, Australia. The simulation results show that the proposed hybrid models can not only satisfactorily approximate the actual value but they are also able to be effective tools in the planning of smart grids.

  12. Dynamic Hybrid Model for Short-Term Electricity Price Forecasting

    OpenAIRE

    Marin Cerjan; Marin Matijaš; Marko Delimar

    2014-01-01

    Accurate forecasting tools are essential in the operation of electric power systems, especially in deregulated electricity markets. Electricity price forecasting is necessary for all market participants to optimize their portfolios. In this paper we propose a hybrid method approach for short-term hourly electricity price forecasting. The paper combines statistical techniques for pre-processing of data and a multi-layer (MLP) neural network for forecasting electricity price and price spike det...

  13. Case studies of extended model-based flood forecasting: prediction of dike strength and flood impacts

    Science.gov (United States)

    Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet

    2017-04-01

    Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global

  14. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    Science.gov (United States)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2017-11-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  15. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    Science.gov (United States)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  16. Modeling Philippine Stock Exchange Composite Index Using Weighted Geometric Brownian Motion Forecasts

    Directory of Open Access Journals (Sweden)

    Gayo Willy

    2016-01-01

    Full Text Available Philippine Stock Exchange Composite Index (PSEi is the main stock index of the Philippine Stock Exchange (PSE. PSEi is computed using a weighted mean of the top 30 publicly traded companies in the Philippines, called component stocks. It provides a single value by which the performance of the Philippine stock market is measured. Unfortunately, these weights, which may vary for every trading day, are not disclosed by the PSE. In this paper, we propose a model of forecasting the PSEi by estimating the weights based on historical data and forecasting each component stock using Monte Carlo simulation based on a Geometric Brownian Motion (GBM assumption. The model performance is evaluated and its forecast compared is with the results using a direct GBM forecast of PSEi over different forecast periods. Results showed that the forecasts using WGBM will yield smaller error compared to direct GBM forecast of PSEi.

  17. Data and Dynamics Driven Approaches for Modelling and Forecasting the Red Sea Chlorophyll

    KAUST Repository

    Dreano, Denis

    2017-05-31

    Phytoplankton is at the basis of the marine food chain and therefore play a fundamental role in the ocean ecosystem. However, the large-scale phytoplankton dynamics of the Red Sea are not well understood yet, mainly due to the lack of historical in situ measurements. As a result, our knowledge in this area relies mostly on remotely-sensed observations and large-scale numerical marine ecosystem models. Models are very useful to identify the mechanisms driving the variations in chlorophyll concentration and have practical applications for fisheries operation and harmful algae blooms monitoring. Modelling approaches can be divided between physics- driven (dynamical) approaches, and data-driven (statistical) approaches. Dynamical models are based on a set of differential equations representing the transfer of energy and matter between different subsets of the biota, whereas statistical models identify relationships between variables based on statistical relations within the available data. The goal of this thesis is to develop, implement and test novel dynamical and statistical modelling approaches for studying and forecasting the variability of chlorophyll concentration in the Red Sea. These new models are evaluated in term of their ability to efficiently forecast and explain the regional chlorophyll variability. We also propose innovative synergistic strategies to combine data- and physics-driven approaches to further enhance chlorophyll forecasting capabilities and efficiency.

  18. Development of Forest Drought Index and Forest Water Use Prediction in Gyeonggi Province, Korea Using High-Resolution Weather Research and Forecast Data and Localized JULES Land Surface Model

    Science.gov (United States)

    Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.

    2017-12-01

    Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.

  19. Model-free aftershock forecasts constructed from similar sequences in the past

    Science.gov (United States)

    van der Elst, N.; Page, M. T.

    2017-12-01

    The basic premise behind aftershock forecasting is that sequences in the future will be similar to those in the past. Forecast models typically use empirically tuned parametric distributions to approximate past sequences, and project those distributions into the future to make a forecast. While parametric models do a good job of describing average outcomes, they are not explicitly designed to capture the full range of variability between sequences, and can suffer from over-tuning of the parameters. In particular, parametric forecasts may produce a high rate of "surprises" - sequences that land outside the forecast range. Here we present a non-parametric forecast method that cuts out the parametric "middleman" between training data and forecast. The method is based on finding past sequences that are similar to the target sequence, and evaluating their outcomes. We quantify similarity as the Poisson probability that the observed event count in a past sequence reflects the same underlying intensity as the observed event count in the target sequence. Event counts are defined in terms of differential magnitude relative to the mainshock. The forecast is then constructed from the distribution of past sequences outcomes, weighted by their similarity. We compare the similarity forecast with the Reasenberg and Jones (RJ95) method, for a set of 2807 global aftershock sequences of M≥6 mainshocks. We implement a sequence-specific RJ95 forecast using a global average prior and Bayesian updating, but do not propagate epistemic uncertainty. The RJ95 forecast is somewhat more precise than the similarity forecast: 90% of observed sequences fall within a factor of two of the median RJ95 forecast value, whereas the fraction is 85% for the similarity forecast. However, the surprise rate is much higher for the RJ95 forecast; 10% of observed sequences fall in the upper 2.5% of the (Poissonian) forecast range. The surprise rate is less than 3% for the similarity forecast. The similarity

  20. Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe

    Directory of Open Access Journals (Sweden)

    D. Meißner

    2017-12-01

    Full Text Available Traditionally, navigation-related forecasts in central Europe cover short- to medium-range lead times linked to the travel times of vessels to pass the main waterway bottlenecks leaving the loading ports. Without doubt, this aspect is still essential for navigational users, but in light of the growing political intention to use the free capacity of the inland waterway transport in Europe, additional lead time supporting strategic decisions is more and more in demand. However, no such predictions offering extended lead times of several weeks up to several months currently exist for considerable parts of the European waterway network. This paper describes the set-up of a monthly to seasonal forecasting system for the German stretches of the international waterways of the Rhine, Danube and Elbe rivers. Two competitive forecast approaches have been implemented: the dynamical set-up forces a hydrological model with post-processed outputs from ECMWF general circulation model System 4, whereas the statistical approach is based on the empirical relationship (teleconnection of global oceanic, climate and regional hydro-meteorological data with river flows. The performance of both forecast methods is evaluated in relation to the climatological forecast (ensemble of historical streamflow and the well-known ensemble streamflow prediction approach (ESP, ensemble based on historical meteorology using common performance indicators (correlation coefficient; mean absolute error, skill score; mean squared error, skill score; and continuous ranked probability, skill score and an impact-based evaluation quantifying the potential economic gain. The following four key findings result from this study: (1 as former studies for other regions of central Europe indicate, the accuracy and/or skill of the meteorological forcing used has a larger effect than the quality of initial hydrological conditions for relevant stations along the German waterways. (2 Despite the