Forced Convection Heat Transfer in Circular Pipes
Tosun, Ismail
2007-01-01
One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…
NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW
Directory of Open Access Journals (Sweden)
W.H.Azmi
2013-06-01
Full Text Available Nanoﬂuids offer a significant advantage over conventional heat transfer ﬂuids and consequently, they have attracted much attention in recent years. The engineered suspension of nano-sized particles in a base liquid alters the properties of these nanofluids. Many researchers have measured and modeled the thermal conductivity and viscosity of nanofluids. The estimation of forced convective heat transfer coefficients is done through experiments with either metal or nonmetal solid particles dispersed in water. Regression equations are developed for the determination of the thermal conductivity and viscosity of nanofluids. The parameters influencing the decrease in convection heat transfer, observed by certain investigators, is explained.
Forced convection heat transfer to air/water vapor mixtures
Richards, D. R.; Florschuetz, L. W.
1986-01-01
Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.
Numerical study of forced convective heat transfer around airships
Dai, Qiumin; Fang, Xiande
2016-02-01
Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.
Forced Convective Heat Transfer in a Porous Plate Channel
Institute of Scientific and Technical Information of China (English)
PeixueJiang; ZhanWang; 等
1997-01-01
Fored convective heat transfer in a plate channel filled with metallic spherical particales was investigated experimentally and numerically.The test section ,58mm×80mm×50mm in size,was heated by a 0.4mm thick plate electrical heater,The coolant water flow rate ranged from 0.015 to 0.833 kg/s.The local wall temperature distribution was measured along with the inlet and outlet fliud temperatures and pressures.The results illustrate the heat transfer augmentation and increased pressure drop caused by the porous medium.The heat transfer coefficient was increased 5-12 times by the porous media although the hydraulic resistance was increased even more.The Nusselt number and the heat transfer coefficient increased with decreasing particle diameter,while the pressure drop decreased as the particle diameter increased.It was found that,for the conditions studied(metallic packed bed),the effect of thermal dispersion did not need to be considered in the physical model,as opposed to a non-metallic packed bed,where thermal dispersion is important.
Forced Convection Heat Transfer in Plate Channels Filled with Packed Beds or Sintered Porous Media
Institute of Scientific and Technical Information of China (English)
姜培学; 李勐; 任泽霈
2002-01-01
In the present work, forced convection heat transfer in plate channels filled with metallic or non-metallic particles (packed beds) or sintered porous media is simulated numerically using a thermal non-equilibrium model. The numerical simulation results are compared with experimental data. The difference between convection heat transfer in packed beds and in sintered porous media and the effects of the boundary condition assumptions are investigated. The results show that the numerical simulation of convection heat transfer of air or water in packed beds using the local thermal non-equilibrium model and the variable porosity model agrees well with the experimental data. The convection heat transfer coefficient in sintered porous media is much higher than that in packed beds. In the numerical simulation of convection heat transfer in sintered porous media, the boundary conditions on the wall should be that the particle temperatures are equal to the fluid temperature.
Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling
DEFF Research Database (Denmark)
Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor
2014-01-01
The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V
Energy Technology Data Exchange (ETDEWEB)
Pelce, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1960-02-15
This report deals with the experimental study of forced heat convection in annular spaces through which flow of air is passing when a uniform heat flux is dissipated across the inner wall. These observations took place chiefly in the region where thermal equilibrium are not yet established. Amongst other things it became apparent that, both in the region where thermal equilibrium conditions are on the way to establishment and where they are already established, the following relationship held good: the longitudinal temperature gradient, either on the wall or in the fluid stream, is proportional to the heat flux dissipated q, and inversely proportional to the average flow rate V: dT/dx = B (q/V). From this result the next step is to express the variations of the local convection coefficient {alpha} (or of the Margoulis number M) in a relationship of the form: 1/M = {psi}(V) + F(x). If this relationship is compared with the classical empirical relationship {alpha} = KV{sup n} (where n is close to 0.8), the relationship: 1/M = {xi}V{sup 1-n} + F(x) is obtained ({xi} is a constant for a given annular space); from this it was possible to coordinate the whole set of experimental results. (author) [French] Il s'agit precisement de l'etude experimentale de la convection forcee de la chaleur dans des espaces annulaires parcourus par de l'air en ecoulement turbulent, lorsqu'on dissipe a travers la paroi interieure un flux de chaleur uniforme. Ces observations ont eu lieu principalement dans la region ou le regime thermique n'est pas encore etabli. Il est apparu, entre autre, qu'il existait, tant dans la region ou le regime thermique est en voie d'etablissement qu'en regime etabli, la relation suivante: le gradient longitudinal des temperatures, que ce soit sur la paroi ou dans l'ecoulement fluide, est proportionnel au flux de la chaleur dissipee q, et inversement proportionnel a la vitesse moyenne V de l'ecoulement: dT/dx = B
Prediction of forced convection heat transfer to Lead-Bismuth-Eutectic
Thiele, Roman
2013-01-01
The goal of this work is to investigate the capabilities of two different commercial codes, OpenFOAM and ANSYS CFX, to predict forced convection heat transfer in low Prandtl number fluids and investigate the sensitivity of these predictions to the type of code and to several input parameters.The goal of the work is accomplished by predicting forced convection heat transfer in two different experimental setups with the codes OpenFOAM and ANSYS CFX using three different turbulence models and va...
Numerical Investigation of Nanofluid Forced Convection in Channels with Discrete Heat Sources
Payam Rahim Mashaei; Seyed Mostafa Hosseinalipour; Mehdi Bahiraei
2012-01-01
Numerical simulation is performed to investigate the laminar force convection of Al2O3/water nanofluid in a flow channel with discrete heat sources. The heat sources are placed on the bottom wall of channel which produce much thermal energy that must be evacuated from the system. The remaining surfaces of channel are kept adiabatic to exchange energy between nanofluid and heat sources. In the present study the effects of Reynolds number ( $\\text{Re}=50, 100, 200, 400$ , and ...
Nanofluid flow and forced convection heat transfer over a stretching surface considering heat source
Mohammadpour, M.; Valipour, P.; Shambooli, M.; Ayani, M.; Mirparizi, M.
2015-07-01
In this paper, magnetic field effects on the forced convection flow of a nanofluid over a stretching surface in the presence of heat generation/absorption are studied. The equations of continuity, momentum and energy are transformed into ordinary differential equations and solved numerically using the fourth-order Runge-Kutta integration scheme featuring the shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titania (TiO2) with water as their base fluid has been considered. The influence of significant parameters, such as magnetic parameter, volume fraction of the nanoparticles, heat generation/absorption parameter, velocity ratio parameter and temperature index parameter on the flow and heat transfer characteristics are discussed. The results show that the values of temperature profiles increase with increasing heat generation/absorption and volume fraction of the nanoparticles but they decrease with increasing velocity ratio parameter and temperature index parameter. Also, it can be found that selecting silver as nanoparticle leads to the highest heat transfer enhancement.
P. MOHAJERI KHAMENEH,; I. MIRZAIE,; N. POURMAHMOUD; M.RAHIMI EOSBOEE; S. MAJIDYFAR; Mansoor, M.
2010-01-01
Three dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in round tube and straight microchannel heat exchangers were investigated numerically. This numerical method was developed to measure heat transfer parameters of round tube and straight microchannel tube geometries. Then, similarities and differences were compared between different geometries. The geometries and operating conditions of those indicated heat exchangers were created using ...
Okken, A; Blijham, C; Franz, W; Bohn, E
1982-07-01
To assess the effect of forced convection of heated air exchange in preterm infants in conventional incubators, we measured insensible water loss and total heat loss in preterm infants in a conventional forced convection incubator (air velocity 15 to 25 cm/second) and in a specially constructed still-air incubator (air velocity 0 to 2 cm/second) at equal operative temperature and humidity. Under the forced conditions, insensible water loss in the preterm infants increased by a mean 52% from 1.04 +/- 0.24 (mean +/- SD) to 1.58 +/- 0.51 ml/kg/hour (P less than 0.001). The ensuing increase in evaporative heat loss was partly reflected in the small but significant increase in total heat loss from 1.65 +/- 0.47 to 1.80 +/- 0.44 kcal/kg/hour (P less than 0.02). In the forced convection incubator, the increased evaporative heat loss in preterm infants was apparently partly compensated by a decreased nonevaporative heat loss. If reduction of insensible water loss is required, preterm infants should not be subjected to forced convection in incubators.
Heat transfer enhancement for single phase forced convection
Fiebig, Martin
Goals for heat exchanger design are outlined and performance evaluation criteria are discussed. The flow geometries in heat exchangers, which can be classified as channel or tube flow, are described. The use of finned plates or tubes for channel flow and internally finned tubes or wire coil and twisted tape inserts for tube flow are considered.
Energy Technology Data Exchange (ETDEWEB)
Nickell, T.W.
1988-01-01
This study numerically analyzes combined radiative and natural or forced convective heat transfer between vertical parallel plates with two-dimensional discrete heat sources. The numerical method was verified by comparing its results with other published experimental data and the agreement was excellent. It is shown that radiative heat transfer is a significant and useful mode of heat transfer in combination with both natural and forced convection in this situation and cannot be neglected. Radiative heat transfer accounted for 50-60% or more of the total heat transfer in some cases, and usually approximately 30-35% on the top of a discrete heat source. This fact can be used to advantage in the thermal design of electronic circuit boards.
International Nuclear Information System (INIS)
Forced convective, nonequilibrium post-CHF heat transfer data (766 points) have been obtained at high pressure and low mass flux ranges not previously tested. The data are unique in that the superheated vapor temperature was measured at multiple elevations allowing the direct calculation of vapor generation rates. The data are useful for verification or development of nonequilibrium heat and mass transfer models. Current film boiling heat transfer correlations do not predict the data well. The Dougall-Rohsenow equilibrium correlation is the only one investigated that reasonably predicts the measured wall heat fluxes. Current vapor generation rate models do not adequately predict the measured vapor generation rates
Convectively Forced Gravity Waves and their Sensitivity to Heating Profile and Atmospheric Structure
Halliday, Oliver; Parker, Douglas; Griffiths, Stephen; Vosper, Simon; Stirling, Alison
2016-04-01
It has been known for some time that convective heating is communicated to its environment by gravity waves. Despite this, the radiation of gravity waves in macro-scale models, which are typically forced at the grid-scale by meso-scale parameterization schemes, is not well understood. We present here theoretical work directed toward improving our fundamental understanding of convectively forced gravity wave effects at the meso-scale, in order to begin to address this problem. Starting with the hydrostatic, non-rotating, 2D, Boussinesq equations in a slab geometry, we find a radiating, analytical solution to prescribed sensible heat forcing for both the vertical velocity and potential temperature response. Both Steady and pulsed heating with adjustable horizontal structure is considered. From these solutions we construct a simple model capable of interrogating the spatial and temporal sensitivity to chosen heating functions of the remote forced response in particular. By varying the assumed buoyancy frequency, the influence of the model stratosphere on the upward radiation of gravity waves, and in turn, on the tropospheric response can be understood. Further, we find that the macro-scale response to convection is highly dependent on the radiation characteristics of gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and upper boundary condition of the domain.
Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
Directory of Open Access Journals (Sweden)
Md Jashim Uddin
Full Text Available A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1/2 where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.
Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.
Burnout in boiling heat transfer. Part III. High-quality forced-convection systems
International Nuclear Information System (INIS)
This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
Study and Application of Forced Convection in Road Bus Heating System
Directory of Open Access Journals (Sweden)
Scheila Sandi Biazus
2015-03-01
Full Text Available This work deals with a replacing the heating system of intercity buses, made by long heat exchangers distributed on the sides of the passenger saloon by small and compact ones that use forced convection to heat dissipation. At the beginning the calculation was made of the heat capacity of a heat exchanger with the parameters defined by the supplier, and then conducted an analysis of change in these parameters in order to improve its efficiency. The method for examining the heat exchanger is based on the correlations available in the convection flow inside and outside to determine the respective convective coefficients, and therefore the overall coefficient of heat transfer. Following, the heat exchanger in its original form, was tested on bench. Thus, from the thermal load of the bus model studied, the amount of exchangers required has been defined to satisfy the thermal comfort of passengers. Field tests of the heating systems with new heat exchangers were performed to obtain actual data of the proposed system. The original factory system showed to be efficient in meeting the needs thermal load and economically viable, such that the critical thermal load can be met with ten heaters installed along the body. Furthermore, this system offers the possibility of varying the parameters to best fit to the project, where the flow variation of the fans or the spacing between the fins of the heat exchanger decreases the amount of heaters required. At the same time, the system showed the need for further study to assess its distribution along the passenger saloon in order to meet a best uniformity temperature distribution.
Critical Heat Flux in forced Convective Boiling with a Wall Jet
Institute of Scientific and Technical Information of China (English)
王迅
2004-01-01
The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρl/ρg=6.6-1 603 and ΔTsub=0-60 K.The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions.
Experimental study on forced convection boiling heat transfer on molten alloy
International Nuclear Information System (INIS)
In order to clarify the characteristics of forced convection boiling heat transfer on molten metal, basic experiments have been carried out with subcooled water flowing on molten Wood's alloy pool surface. In these experiments, water flows horizontally in a rectangular duct. A cavity filled with Wood's alloy is present in a portion of the bottom of the duct. Wood's alloy is heated by a copper conductor at the bottom of the cavity. The experiments have been carried out with various velocities and subcoolings of water, and temperature of Wood's alloy. Boiling curves on the molten alloy surface were obtained and compared with that on a solid heat transfer surface. It is observed that the boiling curve on molten alloy is in a lower superheat region than the boiling curve on a solid surface. This indicates that the heat transfer performance of forced convection boiling on molten alloy is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy
The effects of buoyancy on the critical heat flux in forced convection
Brusstar, Matthew J.; Merte, Herman, Jr.
1993-01-01
The critical heat flux (CHF) in forced convection over a flat surface at relatively low flow velocities has been found, not unexpectedly, to depend upon the orientation of the buoyancy. The CHF for R-113 was measured at various heating surface orientations for test section Reynolds numbers ranging between 3000 and 6500. In this flow range, the buoyancy force acting on the vapor generally dominates over the flow inertia, yet the inertia would still be substantial were gravity to be reduced. In the experiments of this study, the CHF is determined for heating surface orientations ranging from 0 deg to 360 deg, for flow velocities between 4 cm/s and 35 cm/s, and for subcoolings between 2.8 C and 22.2 C. The results presented here demonstrate the strong influence of buoyancy at low flow velocities, which diminishes as the flow velocity and subcooling are increased.
Effect of finite length on forced convection heat transfer from cylinders
Quarmby, A.; Al-Fakhri, A. A. M.
1980-04-01
Forced convection heat transfer from single cylinders of finite length is investigated experimentally with particular reference to the effect of aspect (length/diameter) ratio of the cylinder. It is found that for aspect ratios greater than 4 there is little further effect as aspect ratio increases to infinity. The disagreement between the correlations proposed by Zukauskas (1972) and Morgan (1975) is considered and resolved in favor of the Zukauskas correlation. A correlation is proposed for heat transfer from cylinders of low aspect ratio which in the limit agrees with the correlation for large aspect ratios and with the generally accepted correlation for turbulent heat transfer from isothermal flat plates for small aspect ratios.
Yarin, Alexander; Freystein, Martin; Kolberg, Felix; Sinha-Ray, Sumit; Sahu, Rakesh; Spiegel, Lucas; Gambaryan-Roisman, Tatiana; Stephan, Peter
2015-03-01
To enhance heat transfer in forced convective boiling the microchannel bottom was amended by a nano-texture - periodic rectangular mats of electrospun polymer nanofibers. The fibers were ~ 300-500 nm in diameter and the mat thicknesses were about 6-15 μm. The test fluid was FC-72 and the flow in microchannels contained trains of Taylor bubbles. The role of the nanofibers was to retain the warm microchannel bottom wet, to prevent dry-out and thus to enhance the heat removal rate. In the present experiments the time-average heat flux and heat transfer coefficient at the nanofiber-coated domains were found to be 1.5-2 times higher than those at the uncoated ones. Accordingly, a significant decrease (by 5-8 K) in the superheat was observed at the same Re of 387 and power supply of 36.1 kW/m2. At a higher Re of 432 and lower power supply of 28.1 kW/m2 similar trends in the heat removal rate and surface superheat were found. The significant enhancement of the heat transfer results from the fact that nanofiber mats facilitate wetting of surface under passing Taylor bubbles, thus delaying formation of vapor flow at the channel bottom. The interstices of the nanofiber mat act as the nucleation sites facilitating formation of tiny bubbles, which eventually results in a higher heat removal rate from the surface at a reduced superheat.
Institute of Scientific and Technical Information of China (English)
LU Wenqiang; BAI Fengwu
2004-01-01
In this paper, a new model to analyze laminar forced convective enhanced heat transfer in latent functionally thermal fluid is developed. The main characteristics of the model are: I) a new formula of the specific heat at constant pressure is used; ii) a real heat transfer process is considered; that is, heat transfer processes occur not only between working fluid and microcapsules, but also between the mixture and tube wall; iii) the new method, which combines the newly developed axisymmetrical dual reciprocity boundary element method (DRBEM) with finite difference method (FDM), is used to solve the control equations of this problem. The new model is validated by experimental data.Some new physical results on the variational characteristics of the specific heat at constant pressure with space and time during phase-change process, the time-marching history of the phase-change interfaces and so on are obtained. Several main physical factors that affect enhanced heat transfer in latent functionally thermal fluid are numerically analyzed.Some new understandings for the mechanism of enhanced heat transfer in the functionally fluid are obtained.
Forced convection in a circular duct with periodic boundary conditions and axial heat conduction
Energy Technology Data Exchange (ETDEWEB)
Barletta, A.; Rossi di Schio, E. [Bologna Univ., Bologna (Italy). Dipt. di Ingegneria Energetica, Nucleare e del Controllo Ambientale
2000-07-01
An investigation of the effect of axial heat conduction in the fluid on laminar forced convection is performed in a cylindrical duct with circular cross section. Two different kinds of boundary conditions are analysed: 1, a wall temperature distribution which undergoes a sinusoidal axial variation; 2, a wall heat flux distribution which undergoes a sinusoidal axial variation and such that its mean value is equal to the modulus of the amplitude. Reference is made to the hydrodynamical and thermally developed region, where the temperature distribution is given in case 1 by an axially periodic function and in case 2 by the sum of an axially periodic function and a linear function of the axial coordinate. The temperature distribution within the fluid and the local and mean Nusselt have been evaluated analytically.
Experiments on forced convection form a horizontal heated plate in a packed bed of glass spheres
Energy Technology Data Exchange (ETDEWEB)
Renken, K.J. (Univ. of Wisconsin, Milwaukee (USA)); Poulikakos, D. (Univ. of Illinois, Chicago (USA))
1989-02-01
This paper presents an experimental investigation of boundary-layer forced convective heat transfer from a flat isothermal plate in a packed bed of spheres. Extensive experimental results are reported for the thermal boundary-layer thickness, the temperature field, and the local wall heat flux (represented by the local Nusselt number). Theoretical findings of previous investigations using the Darcy flow model as well as a general model for themomentum equation accouting for flow inertia and macroscopic shear wtih and without variable porosity are used to evaluate the theoretical models. Several trends are revealed regarding the conditions of validity of these flow models. Overall the general flow model including variable porosity appears to perform better, even through the need for serious improvements in modeling becomes apparent.
Vanapalli, S.; Brake, ter H.J.M.
2013-01-01
Nanofluids are considered for improving the heat exchange in forced convective flow. In literature, the benefit of nanofluids compared to the corresponding base fluid is represented by several figures-of-merit in which the heat transfer benefit and the cost of pumping the fluid are considered. These
Evaluating a tobacco-curing oven using a forced-convection heat exchanger USCO — MADR
Directory of Open Access Journals (Sweden)
Néstor Enrique Cerquera Peña
2010-05-01
Full Text Available A traditional oven for curing tobacco leaves was redesigned (based on existing infrastructure; a forced-convection heat exchan- ger system was implemented in it which worked with coffee hulls as fuel. This oven (called a forced-convection tobacco leaf curing oven was evaluated during the harvesting season. It was found that temperature and relative humidity inside the furnace could be controlled with this assembly during the three stages involved in curing tobacco leaves. The equipment used performed excellently when using coffee hulls as fuel, having the following approximate consumption during curing: 8.92 kilograms per hour during the yellowing stage, 17.75 kilograms per hour during the leaf drying and color fixation phase and 19.29 kilograms per hour during the stem drying stage. Comparative analysis of the oven’s operating costs along with the proposed adjustments to be made to it would allow its implementation as a promising alternative in the existing tobacco chain.
Numerical Investigation of Nanofluid Forced Convection in Channels with Discrete Heat Sources
Directory of Open Access Journals (Sweden)
Payam Rahim Mashaei
2012-01-01
Full Text Available Numerical simulation is performed to investigate the laminar force convection of Al2O3/water nanofluid in a flow channel with discrete heat sources. The heat sources are placed on the bottom wall of channel which produce much thermal energy that must be evacuated from the system. The remaining surfaces of channel are kept adiabatic to exchange energy between nanofluid and heat sources. In the present study the effects of Reynolds number (Re=50,100,200,400, and 1000, particle volume fraction (=0 (distilled water, 1 and 4% on the average heat transfer coefficient (h, pressure drop (Δ, and wall temperature ( are evaluated. The use of nanofluid can produce an asymmetric velocity along the height of the channel. The results show a maximum value 38% increase in average heat transfer coefficient and 68% increase in pressure drop for all the considered cases when compared to basefluid (i.e., water. It is also observed that the wall temperature decreases remarkably as Re and ϕ increase. Finally, thermal-hydraulic performance (η is evaluated and it is seen that best performance can be obtained for Re=1000 and =4%.
International Nuclear Information System (INIS)
Forced convective, postcritical-heat-flux heat transfer experiments with water flowing upward in a vertical tube have been conducted at the Idaho National Engineering Laboratory. Thermodynamic nonequilibrium in the form of superheated vapor temperatures was measured at a maximum of three different axial levels. Steady-state experiments were conduced at pressures of 0.2 to 0.7 MPa, mass fluxes of 12 to 24 kg/m2 x s, heat fluxes of 7.7. to 27.5 kW/m2, and test section inlet qualities of 38 to 64%. Quasi-steady-state (slow moving quench front) experiments were conducted at pressures of 0.4 to 7 MPa, mass fluxes of 12 to 70 kg/m2 x s, heat fluxes of 8 to 225 kW/m2, and test section inlet qualities of -7 to 47%. The multiple probe data and the data taken above 0.4 MPa are new data in parameter ranges not previously obtained. Comparison of the data with current vapor generation models and wall heat transfer models yielded unsatisfactory results. This is attributed to the effects of nonequilibrium, quench front quality, and distance from the quench front, which are factors not included in the current models compared
Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop
Energy Technology Data Exchange (ETDEWEB)
Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover
2010-09-01
This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will
Energy Technology Data Exchange (ETDEWEB)
Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot
2015-08-01
Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.
Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator☆
Institute of Scientific and Technical Information of China (English)
Amnart Boonloi; Withada Jedsadaratanachai
2015-01-01
Turbulent forced convective heat transfer and flow configurations in a square channel with wavy-ribs inserted diagonally are examined numerical y. The influences of the 30° and 45° flow attack angles for wavy-ribs, blockage ratio, RB=b/H=0.05–0.25 with single pitch ratio, RP=P/H=1 are investigated for the Reynolds number based on the hydraulic diameter of the square channel, Re=3000–20000. The use of the wavy-ribs, which inserted diagonal in the square channel, is aimed to help to improve the thermal performance in heat exchange systems. The finite volume method and SIMPLE algorithm are applied to the present numerical simulation. The results are presented on the periodic flow and heat transfer profiles, flow configurations, heat transfer characteristics and the performance evaluations. The mathematical results reveal that the use of wavy-ribs leads to a higher heat transfer rate and friction loss over the smooth channel. The heat transfer enhancements are around 1.97–5.14 and 2.04–5.27 times over the smooth channel for 30° and 45° attack angles, respectively. However, the corre-sponding friction loss values for 30° and 45° are around 4.26–86.55 and 5.03–97.98 times higher than the smooth square channel, respectively. The optimum thermal enhancement factor on both cases is found at RB=0.10 and the lowest Reynolds number, Re=3000, to be about 1.47 and 1.52, respectively, for 30° and 45° wavy-ribs.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
On the prediction of single-phase forced convection heat transfer in narrow rectangular channels
International Nuclear Information System (INIS)
In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 103 - 2.4 x 105 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer
International Nuclear Information System (INIS)
Highlights: • Variation of total entropy generation is investigated parametrically. • Pareto solution sets for heat transfer and flow friction components are obtained. • Dominant irreversibility component and impact of key variables are discussed. - Abstract: Based on the second law of thermodynamics, an entropy generation investigation is carried out under given dimensionless parameters, i.e. heat exchanger duty, heat flux, with respect to heat transfer and frictional pressure drop in a rotating helical tube heat exchanger with laminar convective flow. The entropy generation from heat transfer across a finite temperature difference – Ψh decreases with increasing Dean number which represents the impact of centrifugal force induced secondary flow in enhancing heat transfer. Another aspect of increasing Dean number is that intensified momentum transfer in the radial direction also raises the entropy generation from frictional pressure drop – Ψf, the superposed effect of which yields a decreasing–increasing trend of the total entropy generation-Ψ, a local minimum located in between. The rotation of the helical tube in streamwise (co-rotation) or counter streamwise (counter-rotation) direction leads to a decrease in Ψh and a increase in Ψf which complicates the situation that whether or where the minimum of total entropy generation exists is dependent on whether Ψ is dominated by Ψh or Ψf or somewhere in between. No difference is discerned between pairs of cases with constant wall temperature and uniform wall heat flux but the same set of variables and parameters. A multi-objective optimization targeting Ψh and Ψf simultaneously is implemented using the non-dominated sorting genetic algorithm II (NSGA II). Five solution sets are selected and compared with the conventional optimization in regard of Ψ distinguishing the Ψh-dominated region from the Ψf-dominated region, the dimensionless variable η1 is found to be the most suitable representative
Forced Convective Heat Transfer in a Plate Channel Filled with Solid Particles
Institute of Scientific and Technical Information of China (English)
Pei－XueJiang; Ze－PeiRen; 等
1996-01-01
A numerical study of fluid flow and convective heat transfer in a plate channel filled with solid(metallic)perticles is presented in this paper,The study uses the thermal equilibrium model and a newly developed numerical model which does not assume idealized local thermal equilibrium between the solid particles and the fluid.The numerical simulation results are compared with the experimental data in reference[2].The paper investigates the effects of the assumption of local thermal equilibrium versus non-thermal equilibrium,the thermal conductivity of the solid particles and the particle diameter on convective heat transfer.For the conditions studied.the convective heat transfer and the temperature filed assuming local thermal equilibrium are much different from that for the non-thermal equilibrium assumption when the difference between the solid and fluid thermal conductivities is large,The relative values of the thermal conductivities of the solid particles and the fluid also have a profound effect on the temperature distribution in the channel.The pressure drop decreases as the particle diameter increases and the convective heat transfer coefficient may decrease of increase as the particle diameter increasws depending on the values of ε，λs，λf,λd,αu，ρu.
Cherief, Wahid; Avenas, Yvan; Ferrouillat, Sébastien; Kedous-Lebouc, Afef; Jossic, Laurent; Berard, Jean; Petit, Mickael
2015-07-01
Applying a magnetic field on a ferrofluid flow induces a large increase of the convective heat transfer coefficient. In this paper, the thermal-hydraulic behaviors of two commercial ferrofluids are compared. The variations of both the pressure drop and the heat transfer coefficient due to the magnetic field are measured in the following conditions: square duct, laminar flow and uniform wall heat flux. The square section with two insulated walls allows for the characterization of the effect of the magnetic field direction. The experimental results show that the heat transfer is better enhanced when the magnetic field is perpendicular to the heat flux. In the best case, the local heat transfer coefficient increase is about 75%. On the contrary, another experimental setup shows no enhancement of thermal conductivity when the magnetic field is perpendicular to the heat flux. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014) - Elected submissions", edited by Adel Razek
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State
Balouch, Masih N.
Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the
Burnout in boiling heat transfer. Part II: subcooled and low quality forced-convection systems
International Nuclear Information System (INIS)
Recent experimental and analytical developments regrading burnout in subcooled and low quality forced-convection systems are reviewed. Much data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries and power transients
Lee, Man
2012-02-22
A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.
Energy Technology Data Exchange (ETDEWEB)
Behzadmehr, A. [Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Saffar-Avval, M. [Department of Mechanical Engineering, Amirkabir University of Technology, Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)]. E-mail: mavval@aut.ac.ir; Galanis, N. [Department de genie mecanique, Universite de Sherbrooke, Que. (Canada)
2007-04-15
Turbulent forced convection heat transfer in a circular tube with a nanofluid consisting of water and 1 vol.% Cu is studied numerically. Two phase mixture model has been implemented for the first time to study such a flow field. A single phase model formulation, which has been used frequently in the past for heat transfer with nanofluids, is also used for comparison with the mixture model. The comparison of calculated results with experimental values shows that the mixture model is more precise than the single phase model. The axial evolution of the flow field and fully developed velocity profiles at different Reynolds numbers are also presented and discussed.
Burnout in boiling heat transfer. II. Subcooled and low-quality forced-convection systems
International Nuclear Information System (INIS)
Recent experimental and analytical developments regarding burnout in subcooled and low-quality forced-convection systems are reviewed. Many data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries. Other topics discussed include burnout with power transients and techniques to augment burnout. 86 references
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
Energy Technology Data Exchange (ETDEWEB)
Chen, Chong, E-mail: chenchong_2012@163.com; Gao, Pu-zhen, E-mail: gaopuzhen@hrbeu.edu.cn; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing
2015-09-15
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m{sup 2}, a mass flux range of 200–2400 kg/m{sup 2} s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively.
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
International Nuclear Information System (INIS)
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m2, a mass flux range of 200–2400 kg/m2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively
Energy Technology Data Exchange (ETDEWEB)
Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)
2005-07-01
The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)
Symmetry-breaking bifurcations of central forced and heated convection in a spherical fluid shell
Tuckerman, L. S.; Feudel, F.; Bergemann, K.; Egbers, C.; Futterer, B.; Gellert, M.; Hollerbach, R.
2010-11-01
We study convection in a spherical shell under a gravitational force designed to mimic the GeoFlow microgravity experiment, using a combination of time-dependent simulation and path-following methods. With an outer radius which is twice that of the inner radius, the critical modes are spherical harmonics with l=4, leading generically to transcritical bifurcations involving axisymmetric and octahedral branches, in agreement with predictions by Michel, Ihrig & Golubitsky, Chossat, Matthews, and Busse & Riahi. A secondary bifurcation involving the l=5 mode leads to an additional seven-cell branch. All three steady patterns are simultaneously stable for 7 150 18 710, simulations lead to time-dependent states, some periodic and some chaotic. The period varies greatly: some of the orbits belong to different branches and a global bifurcation is suspected of delimiting the lower limit of periodic states.
Directory of Open Access Journals (Sweden)
M.M. Rahman
2012-12-01
Full Text Available This paper presents the numerical study on two-dimensional forced convection heat transfer across three in-line flat tubes confined in a channel under incompressible, steady-state conditions. This system is solved in body-fitted coordinates (BFC using the finite volume method (FVM. The constant heat flux is imposed on the surface of the tubes as the thermal boundary conditions. The range of the longitudinal pitch-to-diameter ratio (SL/Ds of 2.0–4.0 is considered, the Reynolds number varies within the range 25–300, and the Prandtl number is taken as 0.7. The temperature contours, local Nusselt number distributions at the tube surface and mean Nusselt number were analyzed. The strength of the heat transfer between the surface of the tubes and the air flow increases with an increase in Reynolds number and pitch-to-diameter ratio.
Kozlova, Sofya V; Ryzhkov, Ilya I
2014-09-01
In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
Umer, Asim; Naveed, Shahid; Ramzan, Naveed
2016-10-01
Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).
Directory of Open Access Journals (Sweden)
Thamir K. Jassem
2013-05-01
Full Text Available An experimental forced laminar study was presented in this research for an air flowing through a circular channel for different angles ( ,30o,45o,60o, the channel was heated at constant heat flux , the channel also was packed with steel and glass spheres respectively . The tests were done for three values of Peclets number (2111.71,3945.42,4575.47 with changing the heat flux for each case and five times for each number.The results showed that the dimensionless temperature distribution will decrease with increasing the dimensionless channel length for all cases with changing Peclet number, heat flux and inclination angles, and its lowest value will be for glass spheres at highest flux, while at lower flux for , and the decreasing in dimensionless temperature was closed for both types of packed at other inclination angles.The study declared that the local Nusselt number decreases with increasing the dimensionless length of the channel for both packeds and for different applied heat flux, also through this study it was declared that the average Nusselt increases as Peclet number increases for both packed. Its value for the glass spheres is greater than the steel spheres with percentage (98.3% at small Peclet, and percentage (97.2% at large Peclet number for the horizontal tube, and (98.3% at small Peclet number and (97.8% at large Peclet number at .Through this study its was found that average Nusselt number increases along the channel as the heat flux increases, because the bulk temperature will increase as the flow proceeds toward the end of the channel , so the heat transfer coefficient will increase. It was declared from this study that in the case of the steel packed the heat transfer will occur mainly by conduction, while in the case of glass packed the heat transfer will occur mainly by laminar forced convection, where the lowest Nusselt number (Nu=3.8 was found when the pipe is horizontal and lowest heat flux and lowest Peclet number.
Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.
2015-11-01
A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.
Theoretical and Computational Study of Forced-Convection Heat Transfer at Supercritical Pressures
Zhong, Jianguo
In the simulation of turbulent fluid flow and heat transfer at supercritical pressures, substantial difficulties have been encountered in the modeling of turbulence and bounda-ry layer. This is due to significant fluid property variations with respect to the local temperature and pressure, especially in the near-wall region of a heated wall, where large temperature differences occur. The classical turbulence models available in literature were typically developed for constant-property fluids, where an empirical wall function in the high-Re k-epsilon model, and a damping function in the low-Re k-epsilon model were derived based on the constant-property data to solve the boundary layer. As it can be found in the existing literature, large differences have been observed between the experimental and numerical simulation results of the heat transfer coefficient predictions in the en-hanced and deteriorated heat transfer situations for supercritical fluids. In this thesis, a novel near-wall treatment method is proposed to treat large property variations in the thermal and velocity sub-layers. In the near-wall region, the supercritical fluids can be considered thermal-conductive and viscous forces dominated. The thick-ness of the viscous sub-layer (VSL) and the conduction sub-layer (CSL) can be related to the wall shear stress and local Prandtl number information by using computational CFD models, such as that implemented in the NPHASE-CMFD code. The fluids' bulk and wall temperature information has been obtained from the literature review of experi-mental measurements. The wall temperature and heat transfer coefficient calculated from the k-epsilon model with the proposed wall treatment method have been found to be in good agreement with experimental data for both heat transfer enhancement and deterioration cases for two most widely used fluids: CO2 and water. The proposed model has been applied in the reactor-scale thermal-hydraulic analysis of different flow path
International Nuclear Information System (INIS)
Highlights: • Thermal conductivity is assumed a linear function of temperature. • It occurs due to diffusion-like radiation or a high temperature gradient. • Nusselt number and temperature profiles are obtained based on perturbation method. • Variable conductivity reveals enhancement obtained by porous media more clearly. • Nusselt number changes linearly with a linear change in conductivity. - Abstract: Effects of variation of the thermal conductivity on forced convection in a parallel-plates channel heat exchanger occupied by a fluid saturated porous medium are investigated analytically based on the perturbation methods. Walls of the channel are kept at a constant heat flux. Thermal conductivity of the medium is assumed to be a linear function of temperature (due to moderate radiation heat transfer in cellular foams or temperature dependent conductivity of the material). The Brinkman–Forchheimer–extended Darcy model for the flow field is used. Relations representing the temperature profile and Nusselt number as functions of porous medium shape parameter and thermal conductivity variation parameter are derived. Obtained Nusselt number and temperature profile are studied parametrically. No analytical investigation based on a variable conductivity approach for Brinkman–Forchheimer–extended Darcy model has been previously performed. Results show that a linear increase in the thermal conductivity of the medium results in a semi-linear increase in the Nusselt number
Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.
2016-07-01
The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.
Directory of Open Access Journals (Sweden)
Ghofrane Sekrani
2016-11-01
Full Text Available In the present paper, laminar forced convection nanofluid flows in a uniformly heated horizontal tube were revisited by direct numerical simulations. Single and two-phase models were employed with constant and temperature-dependent properties. Comparisons with experimental data showed that the mixture model performs better than the single-phase model in the all cases studied. Temperature-dependent fluid properties also resulted in a better prediction of the thermal field. Particular attention was paid to the grid arrangement. The two-phase model was used then confidently to investigate the influence of the nanoparticle size on the heat and fluid flow with a particular emphasis on the sedimentation process. Four nanoparticle diameters were considered: 10, 42, 100 and 200 nm for both copper-water and alumina/water nanofluids. For the largest diameter d n p = 200 nm, the Cu nanoparticles were more sedimented by around 80%, while the A l 2 O 3 nanoparticles sedimented only by 2 . 5 %. Besides, it was found that increasing the Reynolds number improved the heat transfer rate, while it decreased the friction factor allowing the nanoparticles to stay more dispersed in the base fluid. The effect of nanoparticle type on the heat transfer coefficient was also investigated for six different water-based nanofluids. Results showed that the Cu-water nanofluid achieved the highest heat transfer coefficient, followed by C, A l 2 O 3 , C u O , T i O 2 , and S i O 2 , respectively. All results were presented and discussed for four different values of the concentration in nanoparticles, namely φ = 0 , 0 . 6 % , 1 % and 1 . 6 % . Empirical correlations for the friction coefficient and the average Nusselt number were also provided summarizing all the presented results.
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
Ito, Takehiro; Nishikawa, Kaneyasu; Shigechi, Tooru
1981-01-01
Forced convection film boiling heat transfer from a horizontal cylinder to saturated liquid cross-flowing upward is analyzed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined by means of the integral method of boundary-layer for water, ethanol and hexane under the atmospheric pressure. The velocity profile, separation point of the boundary-layer, thickness of the boundary-layer, distribution of the heat transfer coefficients and avera...
Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces
Energy Technology Data Exchange (ETDEWEB)
Sheikholeslami, Mohsen; Bandpy, Mofid Gorji [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Ellahi, R., E-mail: rellahi@engr.ucr.edu [Department of Mechanical Engineering, University of California Riverside (United States); Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad (Pakistan); Zeeshan, A. [Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad (Pakistan)
2014-11-15
Magnetic field effect on CuO–water nanofluid flow and heat transfer in an enclosure which is heated from below is investigated. Lattice Boltzmann method is applied to solve the governing equations. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo–Kleinstreuer–Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity is considered. Effect of active parameter such as: Hartmann number, heat source length, nanoparticle volume fraction and Rayleigh numbers on the flow and heat transfer characteristics have been examined. The results reveal that the enhancement in heat transfer increases as Hartmann number and heat source length increase but it decreases with increase of Rayleigh number. Also it can be found that effect of Hartmann number and heat source length is more pronounced at high Rayleigh number. - Highlights: • This paper analyses the magnetic effect on CuO–water nanofluid. • Koo–Kleinstreuer–Li correlation and Lattice Boltzmann method are used. • Effects of pertinent parameters are presented through tables and graphs.
Heterogeneous nanofluids: natural convection heat transfer enhancement
Bennacer Rachid; Oueslati Fakhreddine
2011-01-01
Abstract Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account th...
Energy Technology Data Exchange (ETDEWEB)
Hashemabadi, S.H. [Iran Univ. of Science and Technology, Dept. of Chemical Engineering, Tehran (Iran); Etemad, S.Gh. [Isfahan Univ. of Technology, Dept. of Chemical Engineering, Isfahan (Israel); Thibault, J. [Ottawa Univ., Dept. of Chemical Engineering, Ottawa, ON (Canada)
2004-08-01
Heat transfer to viscoelastic fluids is frequently encountered in various industrial processing. In this investigation an analytical solution was obtained to predict the fully developed, steady and laminar heat transfer of viscoelastic fluids between parallel plates. One of the plates was stationary and was subjected to a constant heat flux. The other plate moved with constant velocity and was insulated. The simplified Phan-Thien-Tanner (SPTT) model, believed to be a more realistic model for viscoelastic fluids, was used to represent the rheological behavior of the fluid. The energy equation was solved for a wide range of Brinkman number, dimensionless viscoelastic group, and dimensionless pressure drop. Results highlight the strong effects of these parameters on the heat transfer rate. (Author)
International Nuclear Information System (INIS)
Simple theoretical models have been developed which are suitable for predicting the thermal responses of irradiated research fuel elements of markedly different geometries when they are subjected to loss-of-coolant accident conditions. These models have been used to calculate temperature responses corresponding to various non-forced convective conditions. Comparisons between experimentally observed temperatures and calculated values have shown that a suitable value for surface thermal emissivity is 0.35; modelling of the fuel element beyond the region of the fuel plate needs to be included since these areas account for approximately 25 per cent of the thermal power dissipated; general agreement between calculated and experimental temperatures for both transient and steady-state conditions is good - the maximum discrepancy between calculated and experimental temperatures for a HIFAR Mark IV/V fuel element is ∼ 70 deg C, and for an Oak Ridge Reactor (ORR) box-type fuel element ∼ 30 deg C; and axial power distribution does not significantly affect thermal responses for the conditions investigated. Overall, the comparisons have shown that the models evolved can reproduce experimental data to a level of accuracy that provides confidence in the modelling technique and the postulated heat dissipation mechanisms, and that these models can be used to predict thermal responses of fuel elements in accident conditions that are not easily investigated experimentally
Electrohydrodynamic nanofluid flow and forced convective heat transfer in a channel
Safarnia, H.; Sheikholeslami, M.; Ganji, D. D.
2016-04-01
In this study the effect of an electric field on Fe3O4 -water nanofluid flow and heat transfer in a channel is studied. Two electrode plates are embedded in the bottom of the channel. The finite-volume method is used to simulate this problem. The effective thermal conductivity and viscosity of the nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively. The effects of the Reynolds number and voltage supply on hydrothermal behavior have been examined. The results show that the Nusselt number has direct relationship with the Reynolds number and voltage supply. The effect of the electric field on the rate of heat transfer is more sensible for low Reynolds number.
International Nuclear Information System (INIS)
Mixed convection heat transfer in a ventilated cavity is numerically studied by solving the mixed convection equations with the Boussinesq approximation. Results are presented in terms of streamlines, isotherms and heat transfer for different combinations of the governing parameters namely, the Reynolds number (10 ≤ Re ≤ 5000), the Rayleigh number (104 ≤ Ra ≤ 106) and the relative height of the openings (B = h'/H' = 1/4). The numerical results show the presence of a maximum interaction between the effects of the forced and natural convection and the existence of different flow regimes. The latter are delineated in the Ra-Re plane and the values of Re separating the different regions are determined and correlated versus Ra
Institute of Scientific and Technical Information of China (English)
李成; 李俊明
2011-01-01
Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.
International symposium on transient convective heat transfer: book of abstracts
International Nuclear Information System (INIS)
The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Sameh E., E-mail: sameh_sci_math@yahoo.com [Mathematics Department, Faculty of Sciences, South Valley University, 83523 Qena (Egypt); Mansour, M.A. [Department of Mathematics, Assuit University, Faculty of Science, Assuit (Egypt); Mahdy, A., E-mail: mahdy4@yahoo.com [Mathematics Department, Faculty of Sciences, South Valley University, 83523 Qena (Egypt)
2013-12-15
Highlights: • We model MHD mixed convection in an inclined lid-driven cavity. • Increasing the Hartmann number leads to increase the heat transfer rate. • Increasing the inclination angle leads to the increase of the heat transfer rate. • Nusselt number at the left wall, for forced convection case, increases as the amplitude ratio increases. - Abstract: A numerical study of laminar magnetohydrodynamic mixed convection in an inclined lid-driven square cavity with opposing temperature gradients is presented. The vertical sidewalls are assumed to have non-uniform temperature variation while the top and bottom walls are kept insulated with the top surface moving at a constant speed. The transport equations are given in terms of the stream functions-vorticity formulation and are non-dimensionalized and then solved numerically by an accurate finite-volume method. The computation is carried out for wide ranges of the inclination angle (0 ≤ γ ≤ π/2), the Richardson number (0.01 ≤ Ri ≤ 100), the Hartmann number (0 ≤ Ha ≤ 100), the amplitude ratio (0 ≤ ε ≤ 1) and the phase deviation (0 ≤ ϕ ≤ π). The results indicate that the rate of heat transfer along the heated walls is enhanced on increasing either Hartmann number or inclination angle. Average Nusselt number is also, increased with increasing of the amplitude ratio for all values of the phase deviation. The non-uniform heating on both walls provides higher heat transfer rate than non-uniform heating of one wall.
International Nuclear Information System (INIS)
Highlights: • We model MHD mixed convection in an inclined lid-driven cavity. • Increasing the Hartmann number leads to increase the heat transfer rate. • Increasing the inclination angle leads to the increase of the heat transfer rate. • Nusselt number at the left wall, for forced convection case, increases as the amplitude ratio increases. - Abstract: A numerical study of laminar magnetohydrodynamic mixed convection in an inclined lid-driven square cavity with opposing temperature gradients is presented. The vertical sidewalls are assumed to have non-uniform temperature variation while the top and bottom walls are kept insulated with the top surface moving at a constant speed. The transport equations are given in terms of the stream functions-vorticity formulation and are non-dimensionalized and then solved numerically by an accurate finite-volume method. The computation is carried out for wide ranges of the inclination angle (0 ≤ γ ≤ π/2), the Richardson number (0.01 ≤ Ri ≤ 100), the Hartmann number (0 ≤ Ha ≤ 100), the amplitude ratio (0 ≤ ε ≤ 1) and the phase deviation (0 ≤ ϕ ≤ π). The results indicate that the rate of heat transfer along the heated walls is enhanced on increasing either Hartmann number or inclination angle. Average Nusselt number is also, increased with increasing of the amplitude ratio for all values of the phase deviation. The non-uniform heating on both walls provides higher heat transfer rate than non-uniform heating of one wall
International Nuclear Information System (INIS)
Some correlations of forced convection burn-out data are based on the approximate linearity of the relationship between burn-out heat flux and the channel-averaged quality at the burn-out point. These correlations perform satisfactorily on data obtained from uniformly heated configurations. Therefore the further inference is sometimes made that the burn-out heat flux is uniquely related to the quality, and that the burn-out in non-uniformly heated configurations can be calculated from measurements made with uniform heating. This report presents burn-out data for Freon 12 flowing vertically upwards through both uniformly and non-uniformly heated round tubes. This data shows that the quality at burn-out does depend on the heat flux profile, and that the inference mentioned above is not justified. (author)
Shigechi, Tooru; Ito, Takehiro; Nishikawa, Kaneyasu
1983-01-01
Forced convection film boiling heat transfer from a horizontal cylinder to a subcooled liquid cross-flowing upward is analysed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined for subcooled water, ethanol and hexane under the atmospheric pressure by the method similar to that of the first report for saturated liquid. The velocity profile, the separation point in the vapor film, the thickness of the boundary-layer and the average Nuss...
Shibahara, M.; Fukuda, K.; Liu, Q. S.; Hata, K.
2016-06-01
Steady and transient heat transfer coefficients for water flowing in small tubes with exponentially increasing heat inputs were measured. Platinum tubes with inner diameters of 1.0 and 2.0 mm were used as test tubes, which were mounted vertically in the experimental water loop. In the experiment, the upward flow velocity ranged from 2 to 16 m/s, and the corresponding Reynolds numbers ranged from 4.77 × 103 to 9.16 × 104 at the inlet liquid temperatures ranged from 298 to 343 K. The heat generation rate exponentially increased with the function. The period of the heat generation rate ranged from 24 ms to 17.5 s. Experimental results indicate that steady heat transfer coefficients decreased with the increase in the inner diameter of the small tube. Moreover, the ratio of bulk viscosity to near-wall viscosity of water increased with the rise in surface temperature of the vertical tube. From the experimental data, correlations of steady-state heat transfer for inner diameters of 1.0 and 2.0 mm were obtained. The heat transfer coefficient increased with decreasing the period of the heat generation rate as the flow velocity decreased. Moreover, the Nusselt number under the transient condition was affected by the Fourier number and the Reynolds number.
International Nuclear Information System (INIS)
In the heat transfer studies by forced convection, we have few data about behavior of the fluids in an annular channel heated by a concentric pipe, such date is necessary to know the heat transfer coefficient that establish the interchange of energy and the thermic properties of the fluid with the geometry of the flow. In this work the objective, was to compare some empirical correlations that we needed for determinate the heat transfer coefficient for annular channels, where we obtained similar at the theoretical results of an experiment made by Miller and Benforado. It is important to know such coefficients because we can determinate the heat quantity transmitted to a probe zone, in which we simulate a nuclear fuel element that developed huge heat quantity that must be dispersed in short time. We give theoretical data of the heat forced transfer convection and we analyzed the phenomena in annular channels given some empirical correlations employed by some investigators and we analyzed each one. (Author)
Heterogeneous nanofluids: natural convection heat transfer enhancement
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Heterogeneous nanofluids: natural convection heat transfer enhancement
Directory of Open Access Journals (Sweden)
Bennacer Rachid
2011-01-01
Full Text Available Abstract Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Sterl, Sebastian; Zhong, Jin-Qiang
2016-01-01
In this paper, we present results from an experimental study into turbulent Rayleigh-Benard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity $\\dot{\\theta}$(t) and thermal amplitude $\\delta$(t) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of $\\dot{\\theta}$(t). We also focus on the influence of modulated rotation rates on the frequency of occurrence $\\eta$ of stochastic cessation/reorientation events, and on the interplay between such events and the periodically modulated response of $\\dot{\\theta}$(t). Here we identify a mechanism by which $\\eta$ can be amplfied by the modulated response and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and extend this approach to make predictions for the occurrence ...
平流层飞艇强迫对流特性数值仿真分析%Numerical research on forced convective heat transfer of stratospheric airships
Institute of Scientific and Technical Information of China (English)
武江涛; 麻震宇; 侯中喜; 柳兆伟
2016-01-01
During the floating flight,the complex radiation-convection environment remarkably affects the flight performance and security of the stratospheric airship.The forced convection around the stratospheric airship plays an important role in the thermal behavior of the airship.Based on the hypothesis of pure heat conduction inside the airship,a three dimensional CFD model of stratospheric airships was developed and the thermal characteristics of the forced convective heat transfer of the airship were investigated.The distributions of the temperature of skins of the airship and the average temperature of the inner gas were calculated with the variation of the angle of the sun,the wind velocity and the angle of attack. Simulation results can be referenced for the accurate prediction of the thermal behavior of stratospheric airships.%强迫对流换热特性对平流层飞艇热状态有重要影响。以平流层飞艇流线型封闭囊体为研究对象，基于囊体内部纯导热传热的假设，采用计算流体力学方法建立平流层飞艇外部流场三维数值模型，对飞艇外部强迫对流换热特性进行仿真分析，得到了不同太阳照射角度、风速和攻角条件下的飞艇表面温度分布和内部平均温度变化规律，为平流层飞艇热状态预测和热控设计提供参考依据。
International Nuclear Information System (INIS)
Future fusion reactor devices such as ITER or JT-60SA will produce thermonuclear fusion reaction in plasmas at several millions of degrees. The confinement in the center of the chamber is achieved by very intense magnetic fields generated by superconducting magnets. These coils have to be cooled down to 4.4 K through a forced flow of supercritical helium. The cyclic behavior of the machines leads to pulsed thermal heat loads which will have to be handled by the refrigerator. The HELIOS experiment built in CEA Grenoble is a scaled down model of the helium distribution system of the tokamak JT-60SA composed of a saturated helium bath and a supercritical helium loop. The thesis work explores HELIOS capabilities for experimental and numerical investigations on three heat load smoothing strategies: the use of the saturated helium bath as an open thermal buffer, the rotation speed variation of the cold circulator and the bypassing of the heated section. The developed model describes well the physical evolutions of the helium loop (pressure, temperature, mass flow) submitted to heat loads observed during experiments. Advanced controls have been tested and validated to improve the stability of the refrigerator and to optimize the refrigeration power. (author)
Terminal project heat convection in thin cylinders
International Nuclear Information System (INIS)
Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)
Energy Technology Data Exchange (ETDEWEB)
Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael
2012-01-30
on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083 and 0.370Ã). In the 0
Approximate physical burnout model for forced convection of saturated fluid
International Nuclear Information System (INIS)
Approximate physical burnout model for forced convection of saturated fluid is considered. Relationships for determining critical heat flux are presented. They correspond satisfactorily with experimental data. Experimental data on burnout in two-phase flow for various fluids including water and helium are presented
Primary Issues of Mixed Convection Heat Transfer Phenomena
Energy Technology Data Exchange (ETDEWEB)
Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.
Modeling of laminar forced convection in spherical- pebble packed beds
International Nuclear Information System (INIS)
There are many parameters that have significant effects on forced convection heat transfer in packed beds, including Reynolds and Prandtl numbers of flow, porosity, pebble geometry, local flow conditions, wall and end effects. In addition, there have been many experimental investigations on forced convection heat transfer in packed beds and each have studied the effect of some of these parameters. Yet, there is not a reliable correlation that includes the effect of main parameters: at the same time, the prediction of precise correct limits for very low and high Reynolds numbers is off hand. In this article a general well-known model of convection heat transfer from isothermal bodies, next to some previous reliable experimental data has been used as a basis for a more comprehensive and accurate correlation to calculate the laminar constant temperature pebble-fluid forced convection heat transfer in a homogeneous saturated bed with spherical pebbles. Finally, for corroboration, the present results are compared with previous works and show a very good agreement for laminar flows at any Prandtl number and all porosities
Indian Academy of Sciences (India)
Ankur Kumar; Jyeshtharaj B Joshi; Arun K Nayak; Pallippattu K Vijayan
2015-05-01
In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to provide more heat transfer area to enhance the rate of heat transfer on the air side. The secondary role of the fins is to generate vortices, which help in enhancing the mixing and the heat transfer coefficient. In this study, the annular and plate fins are considered, the annular fins are further divided into four categories: (1) plane annular fins, (2) serrated fins, (3) crimped spiral fins, (4) perforated fins, and similarly for the plate fins, the fin types are: (1) plain plate fins, (2) wavy plate fins, (3) plate fins with DWP, and (4) slit and strip fins. In Section 4, the performance of the various types of fins is presented with respect to the parameters: (1) Reynolds number, (2) fin pitch, (3) fin height, (4) fin thickness, (5) tube diameter, (6) tube pitch, (7) tube type, (8) number of tube rows, and (9) effect of dehumidifying conditions. In Section 5, the conclusions and the recommendations for the future work have been given.
Indian Academy of Sciences (India)
V Vasu; K Rama Krishna; A C S Kumar
2007-09-01
Nanoﬂuids are a new class of heat transfer ﬂuids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base ﬂuid such as water, ethylene glycol, engine oil etc. signiﬁcantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanoﬂuids. This paper presents a systematic literature survey to exploit the characteristics of nanoﬂuids, viz., thermal conductivity, speciﬁc heat and other thermal properties. An empirical correlation for the thermal conductivity of Al2O3 + water and Cu + water nanoﬂuids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make ﬂuids embedded with nanomaterials as excellent candidates for future applications.
International Nuclear Information System (INIS)
Liquid nitrogen was used as working fluid in a tube heated in cosine distribution to study burn-out phenomena in the present experiment. Two types of burn-out were observed. One occurred when flow pattern changed from churn flow or slug flow to annular flow. Another one is DNB phenomena when the flow was unstable. (author)
Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa
2016-09-01
In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.
Energy Technology Data Exchange (ETDEWEB)
Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael
2012-01-30
on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083 and 0.370Ã). In the 0
Comparison of Thermal Comfort by Radiant Heating and Convective Heating
Directory of Open Access Journals (Sweden)
Shigeru Imai
2015-01-01
Full Text Available Currently, convective heating with a heat-pump system, which has high energy efficiency, is popular for room heating. However, it is possible that energy savings using convective heating can be further improved using heat pumps that service both occupied and unoccupied spaces. Moreover, convective heating increases vertical temperature gradients in a room; thus, it is hard to say whether occupants are being provided with sufficient thermal comfort. The purpose of this study is to compare the thermal comfort provided by both radiant and convective heating systems. In this study, a small office room was modeled, and then temperature and airflow distributions in the room were calculated by Computational Fluid Dynamics (CFD simulations using ESP-r (Environmental research simulation software. Furthermore, distributions of Standard Effective Temperatures (SET* were calculated using the air temperature distributions obtained from the CFD simulations, which allows us to compare the thermal comfort provided by convective heating with that provided by radiant heating. The results show that radiant heating can provide satisfactory thermal comfort, even when the room air temperature is low. However, thermal comfort also depends on the temperature of blowing air, and blowing air must reach occupied regions; thus, only radiant heating cannot circulate sufficient air. In contrast, convective heating increases vertical temperature gradients in a room. Therefore, rather than using only radiant or convective heating, it may be more effective to combine them efficiently.
Directory of Open Access Journals (Sweden)
S. P. Anjali Devi
2014-01-01
Full Text Available A study has been carried out on MHD boundary layer forced convection flow along a shrinking surface with variable heat flux in the presence of heat source. The flow is generated due to linear shrinking of the sheet and is influenced by uniform transverse magnetic field. The basic boundary layer momentum and heat transfer equations, which are nonlinear partial differential equations, are converted into nonlinear ordinary differential equations by means of similarity transformation. Numerical solution of the resulting boundary value problem is obtained using Nachtsheim Swigert shooting iteration scheme for the satisfaction of asymptotic boundary conditions along with the Fourth Order Runge Kutta method. The effects of suction parameter, magnetic parameter, Prandtl number, heat source parameter, stretching/shrinking parameter and heat flux parameter on velocity and temperature are shown in several plots. The results are in good agreement with the earlier published works under some limiting cases. Skin friction coefficient and wall temperature are also explored for typical values of the parameter involved in the study.
Energy Technology Data Exchange (ETDEWEB)
Noghrehabadi, Aminreza; Pourrajab, Rashid [Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)
2016-02-15
The effect of nanofluids on heat transfer inside circular tubes under uniform constant heat flux boundary condition was investigated. The working nanofluid was a suspension of γ-Al{sub 2}O{sub 3} nanoparticles of average diameter 20 nm. The heat transfer coefficients were calculated experimentally in the range of 1057 < Re < 2070 with different particle volume concentrations of 0.1%, 0.3% and 0.9%. Increasing the particle volume fraction led to enhancement of the convective heat transfer coefficient. The results show that the average heat transfer coefficient increased 16.8% at 0.9% volume concentration and Reynolds number of 2070 compared with distilled water. In addition, the enhancement of the convective heat transfer was particularly significant in the entrance region and decreased with axial distance. Finally, an empirical correlation for Nusselt number has been proposed for the present range of nanofluids. The mean deviation between the predicted Nusselt number and experimental values for the new correlation is 3.57%.
Winifred Nduku Mutuku-Njane; Oluwole Daniel Makinde
2013-01-01
We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofl...
Thermal interaction between free convection and forced convection along a vertical conducting wall
Shu, Jian-Jun
2015-01-01
A theoretical study is presented in this paper to investigate the conjugate heat transfer across a vertical finite wall separating two forced and free convection flows at different temperatures. The heat conduction in the wall is in the transversal direction and countercurrent boundary layers are formed on the both sides of the wall. The governing equations of this problem and their corresponding boundary conditions are all cast into a dimensionless form by using a non-similarity transformation. These resultant equations with multiple singular points are solved numerically using a very efficient singular perturbation method. The effects of the resistance parameters and Prandtl numbers on heat transfer characteristics are investigated.
Turbulent mixed convection in asymmetrically heated vertical channel
Directory of Open Access Journals (Sweden)
Mokni Ameni
2012-01-01
Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.
Two regimes of forced turbulent convection
Eidelman, A; Kleeorin, N; Rogachevskii, I; Sapir-Katiraie, I
2009-01-01
We study experimentally a forced turbulent convection in the Rayleigh-B\\'{e}nard apparatus with an additional source of turbulence produced by the two oscillating grids located nearby the side walls of the chamber. Two different regimes have been observed in the forced turbulent convection. When the frequency of the grid oscillations f>2 Hz, the large-scale circulation (LSC) is totally destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. For the very low frequency the thermal structure inside the LSC is inhomogeneous and anisotropic. The hot thermal plumes accumulate at one side of LSC, and cold plumes concentrate at the opposite side of LSC. The mean temperature gradient in the horizontal direction inside the LSC is significantly larger than in the vertical direction. For the high frequency (f > 10 Hz), LSC has not been observed and the mean temperature gradient in the central flow region in the vertical direction, \
Gibanov, N. S.; Sheremet, M. A.
2016-04-01
Numerical analysis of laminar natural convection inside a cubical cavity with a local heat source of triangular cross-section has been conducted. The mathematical model formulated in dimensionless variables such as "vector potential functions - vorticity vector" has been solved by the finite difference method of the second order accuracy. The three-dimensional temperature fields, 2D streamlines and isotherms in a wide range of the Rayleigh number from 104 to 106 have been presented illustrating variations of the fluid flow and heat transfer.
Institute of Scientific and Technical Information of China (English)
全贞花; 陈永昌; 马重芳
2008-01-01
An experimental study was conducted to investigate the fouling process of calcium carbonate on the heat transfer surface,during forced convective heat transfer.The dynamic monitoring apparatus of fouling resistance was set up for the present experiments.The fouling behaviors were examined under different factors including fluid velocity,hardness,alkalinity,solution temperature,and wall temperature.Asymptotic fouling curves varying with time were obtained.The fouling rate and asymptotic fouling resistance increased and the induction periods were shortened with the fluid velocity decreasing,hardness and alkalinity increasing,and solution temperature and heat transfer surlace temperature lncreasmg.The components of touling that formed on the heat transfer surface included crystallization fouling and particulate fouling.The thermal performance parameter Of fouling,ρfλf,varied from 380 to 2600 kg·W·(m4·K)-1,increasing with growing velocity and decreasing solution ternperature,hardness or alkalinity.Furthermore,the thermal conductivity of fouling,λf,varied from 1.7 to 2.2 W·(m·K)-1.
Latent Heating Processes within Tropical Deep Convection
van den Heever, S. C.; Mcgee, C. J.
2013-12-01
It has been suggested that latent heating above the freezing level plays an important role in reconciling Riehl and Malkus' Hot Tower Hypothesis (HTH) with observational evidence of diluted tropical deep convective cores. In this study, recent modifications to the HTH have been evaluated through the use of Lagrangian trajectory analysis of deep convective cores simulated using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated microphysical, surface and radiation parameterization schemes. Idealized, high-resolution simulations of a line of tropical convective cells have been conducted. A two-moment microphysical scheme was utilized, and the initial and lateral boundary grid conditions were obtained from a large-domain CRM simulation approaching radiative convective equilibrium. As the tropics are never too far from radiative convective equilibrium, such a framework is useful for investigating the relationships between radiation, thermodynamics and microphysics in tropical convection. Microphysical impacts on latent heating and equivalent potential temperature (θe) have been analyzed along trajectories ascending within convective regions. Changes in θe along backward trajectories are partitioned into contributions from latent heating due to ice processes and a residual term that is shown to be an approximate representation of mixing. It is apparent from the CRM simulations that mixing with dry environmental air decreases θe along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase θe above the freezing level. The along-trajectory contributions to latent heating from cloud nucleation, condensation, evaporation, freezing, deposition, and sublimation have also been quantified. Finally, the source regions of trajectories reaching the upper troposphere have been identified. The analysis indicates that while much of the air ascending within convective
Evidence of convective heat transfer enhancement induced by spinodal decomposition.
Poesio, P; Lezzi, A M; Beretta, G P
2007-06-01
Spinodal decomposition can be driven by either diffusion or self-induced convection; the importance of convection relative to diffusion depends on the Péclet number, defined as the ratio between convective and diffusive mass fluxes. Diffusion is the dominating mechanism of phase segregation when the Péclet number is small - i.e., when viscosity and diffusivity are large - or when the domain characteristic size is small. For low-viscosity mixtures, convection is the dominating process and the segregation is very rapid as it takes a few seconds compared to the hours needed in the case of pure diffusion. In such cases, strong convective motion of the phase segregating domains is generated even in small-size systems and is almost independent of the temperature difference as long as it is below the transition value. We study experimentally the enhancement of heat transfer in a 1-mm -thick cell. A water-acetonitrile-toulene mixture is quenched into a two-phase region so as to induce convection-driven spinodal decomposition. The heat transfer rate is measured and compared to that obtained in the absence of convective motion. A substantial reduction in the cooling time obtains in the case of spinodal decomposition. The heat transfer enhancement induced by this self-induced, disordered but effectively convective effect may be exploited in the cooling or heating of small-scale systems whereby forced convection cannot be achieved because of the small sizes involved. A scaling analysis of the data based on the diffuse interface H model for a symmetric mixture near the equilibrium point yields very encouraging agreement and insights. PMID:17677356
International Nuclear Information System (INIS)
This paper provides information on heat transfer enhancement due to jet mixing inside a cylindrical enclosure. The work addresses conservative heat transfer assumptions regarding mixing and condensation that have typically been incorporated into passive containment design analyses. The current research presents an interesting possibility for increasing decay heat removal of passive containment systems under combined natural and forced convection. Eliminating these conservative assumptions could provide the basis for a change of containment design and reduce the construction cost. It is found that the ratio of forced- and free convection Nusselt numbers can be predicted as a function of the Archimedes number and a correlated factor accounting for jet orientation and enclosure geometry. To use the small-scale tests for large containment design, scale-up methods and criteria are important for matching the key governing parameters and fluid properties. In the present experiment, a cylindrical enclosure was constructed with a vertical wall of 2.29-m diameter and 0.8-m height and a vertically adjustable ceiling. A horizontal copper plate was installed at the bottom to provide an isothermal heating surface. Cold air was injected at several positions with varying pipe diameters and injecting orientations and was removed from the top of the enclosure. The experiment was performed with an extensive set of tests to study the combined natural- and forced convection heat transfer in a cylindrical enclosure mixed by an injected jet. The goals are to evaluate the key parameters governing the heat transfer augmentation by a forced jet and to investigate the effect of geometric factors, including jet diameter, jet injection orientation, and enclosure geometry (aspect ratio). Flow velocity measurement further provides a better understanding of the flow patterns developed inside the enclosure, which will determine the effectiveness of the whole volume mixing process. An additional
Optimal Heating Strategies for a Convection Oven
Stigter, J.D.; Scheerlinck, N.; Nicolai, B.M.; Impe, van J.F.
2001-01-01
In this study classical control theory is applied to a heat conduction model with convective boundary conditions. Optimal heating strategies are obtained through solution of an associated algebraic Riccati equation for a finite horizon linear quadratic regulator (LQR). The large dimensional system m
Directory of Open Access Journals (Sweden)
Winifred Nduku Mutuku-Njane
2013-01-01
Full Text Available We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu, aluminium oxide (Al2O3, and titanium dioxide (TiO2 are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ, magnetic field parameter (Ha, buoyancy effect (Gr, Eckert number (Ec, suction/injection parameter (fw, Biot number (Bi, and slip parameter (β, on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.
Mutuku-Njane, Winifred Nduku; Makinde, Oluwole Daniel
2013-01-01
We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (f w ), Biot number (Bi), and slip parameter ( β ), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate. PMID:24222749
Double tube heat exchanger with novel enhancement: Part II - single phase convective heat transfer
Energy Technology Data Exchange (ETDEWEB)
Tiruselvam, R.; Chin, W.M.; Raghavan, Vijay R. [OYL Sdn. Bhd., Research and Application Department, Kuala Lumpur (Malaysia)
2012-08-15
The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction. (orig.)
Fundamental Research on Convective Heat Transfer in Electronic Cooling Technology
Institute of Scientific and Technical Information of China (English)
C.F.Ma; Y.P.Gan; 等
1992-01-01
During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelestanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microleectronic devices.This paper provides a review and summary of the programs with emphasis on direct liquid cooling.Included in this review are the heat transfer investigations related to the following cooling modes:liquid free,mixed and forced convection.liquid jet impingement,flowing liquid film cooling,pool boiling,spray cooling,foreign gas jet impingement in liquid pool,and forced convection air-cooling.
Directory of Open Access Journals (Sweden)
Kovalenko A. V.
2015-01-01
Full Text Available In the article, we have suggested a general mathematical model of non-stationary and non-isothermal process of a binary electrolyte transfer in dilute solutions in an electro-membrane system (EMS, taking into account the joint action of gravitational convection, forced convection and electro convection in potential dynamic mode. This model is a boundary problem for a system of two-dimensional quasi-linear Navier-Stokes equation and Nernst-Planck-Poisson in partial derivatives equation. We have developed a theory of similarity of the process of heat and mass transfer in electro-membrane systems, specifically, in a desalting channel of electro dialysis apparatus, taking into account joint actions of concentration polarization, space charge, gravity convection, forced convection and electro convection. It is shown that the criterion of electro convection does not directly depend on the initial concentration, and, therefore, electro convection occurs at any initial concentration. At the same time, the criterion of concentration convection linearly dependents on the initial concentration, and, therefore, at high concentrations, concentration convection prevails, while at lower concentrations, the role of gravitational convection begins to fall whereas the role of electro convection increases. The theory of similarity of the process of heat and mass transfer in the desalting channel of electro dialysis apparatus built in this work taking into account the joint action of concentration polarization, space charge, gravity convection, forced convection and electro convection is important for engineering calculations, for scaling the results of experiments in an electro-membrane cell for industrial electro dialysis water desalting apparatus
Institute of Scientific and Technical Information of China (English)
顾黎昊; 凌祥; 彭浩
2012-01-01
Experimental investigation of forced convection-condensation heat transfer and flow characteristics based on finned plate heat exchanger for condensing heat recovery was studied.With the experimental data,the effect of outlet flue gas temperature and velocity on condensation performance was studied,and the performance curves of Reynolds number-Nusselt number and Reynolds number-friction factor have been obtained.Meanwhile,the comparison of experimental results between wind tunnel test(using air as working fluid) and condensation test(using flue gas as working fluid) was also presented.From these results it can be seen that,due to the extensive non-condensable gas(about 92%),enhancement of overall heat transfer performance is not obvious,and the forced convection-condensation heat transfer coefficient is 10%-20% times more than that of the forced convection without condensation.A heat transfer criterion-based relational expression under the operating condition was also obtained.These results provide insight into improved designs of finned plate heat exchangers for condensing heat recovery.%在冷凝实验台上对一种用于冷凝式烟气余热回收的翅片板换热器进行实验，研究了该结构的传热和流动性能，分析了烟气温度、流速等对冷凝的影响，得到了Nu-Re和f-Re曲线，并对该换热结构在干空气风洞实验台上测试的结果进行了比对.结果表明：由于大量不凝性气体的影响（质量分数为92%），冷凝传热对整体传热性能的强化并不明显，伴随有冷凝的烟气表而传热系数约为相同工况下无凝结表而传热系数的1.1~1.2倍.得到了无量纲数冷凝传热准则关联式，可以为冷凝式翅片板换热器的设计提供参考.
Influence of forced convection on unidirectional growth of crystals
International Nuclear Information System (INIS)
Influence of forced convection on the growth rate of KDP crystal grown by unidirectional method has been investigated. The results were compared with the crystal grown under free convection conditions. To the best of our knowledge the effect of forced convection on unidirectional growth has been reported for the first time. An apparatus was designed and developed for growth of crystals by cooling under forced convection conditions. The growth rate achieved under forced convection was double to that under free convection conditions. Transmittance in the visible region for the crystals grown under the two types of convection regimes was ∼90%. Birefringence and Mach-Zehnder interferometry shows good refractive index homogeneity of the grown crystals.
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
Solar Hot Water Heating by Natural Convection.
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
Natural convective heat transfer from square cylinder
Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej
2016-06-01
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable
Heat transport in bubbling turbulent convection
Lakkaraju, Rajaram; Stevens, Richard J. A. M.; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2013-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to several mechanisms many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubbles compounds with that of the liquid to give rise to a much enhanced natural convection. In this paper we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-B\\'enard convection process. W...
Institute of Scientific and Technical Information of China (English)
Pei－XueJiang; Ze－PeiRen; 等
1995-01-01
Forced and mixed convection heat and mass transfer are studied numerically for water containing metallic corrosion products in a heated or cooled vertical tube with variable thermophysical properties at super-citical pressures.the fouling mechanisms and fouling models are presented.The influence of variable properties at super-critical pressures on forced or mixed convection has been analyzed.The differences between heat and mass transfer under heating and cooling conditions are discussed.It is found that variable properties,especially buoyancy,greatly influence the fluid flow and heat mass fransfer.
Heat flux in a penetrative convection experiment in water
Corre, Yoann; Alboussière, Thierry; Labrosse, Stéphane; Odier, Philippe; Joubaud, Sylvain
2015-11-01
In geophysical systems, stably stratified fluids adjacent to convective regions often experience thermal plume penetration from the latter. This penetrative convection occurs in stellar interiors between radiative and convective regions and possibly in liquid envelopes of planets, such as the Earth's core. We are interested in quantifying this process experimentally as it could play a crucial role in their dynamics. A volume of water initially at ambiant temperature is cooled from below at 0 degrees Celsius. Due to the maximum density of water near 4 degrees, a convective region develops and grows below a purely conductive region. A laser sheet crosses the experimental cell, lightening both neutrally buoyant particles and a thermosensitive fluorescent dye, which allows to monitor the velocity and temperature fields respectively (PIV-LIF technique), giving access to the local convective and conductive heat flux. The apparatus is placed on a rotating table to inspect the effect of the Coriolis force on the interfacial region. We find that increasing the rotation rate deepens the penetration of vortices into the conductive region, thus changing the structure of the interfacial layer and possibly eroding the stable region.
Convective heat transfer of nanofluids with correlations
Institute of Scientific and Technical Information of China (English)
Lazarus Godson Asirvatham; Balakrishnan Raja; Dhasan Mohan Lal; Somchai Wongwises
2011-01-01
To investigate the convective heat transfer of nanofluids,experiments were performed using silver-water nanofluids under laminar,transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section.The volume concentration of the nanoparticles varied from 0.3％ to 0.9％ in steps of 0.3％,and the effects of thermo-physical properties,inlet temperature,volume concentration,and mass flow rate on heat transfer coefficient were investigated.Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient,by as much as 28.7％ and 69.3％ for 0.3％ and 0.9％ of silver content,respectively.Based on the experimental results a correlation was developed to predict the Nusselt number of the silver-water nanofluid,with ±10％ agreement between experiments and prediction.
Penetrative internally heated convection in two and three dimensions
Goluskin, David
2015-01-01
Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ($H$) without convection, grows like $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh-B\\'enard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\\times10^{10}$.
Conjugate Problems in Convective Heat Transfer: Review
Directory of Open Access Journals (Sweden)
Abram Dorfman
2009-01-01
Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.
Development of a mechanistic model for forced convection subcooled boiling
Shaver, Dillon R.
The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the
Free surface deformation and heat transfer by thermocapillary convection
Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard
2016-04-01
Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.
Ergodicity in randomly forced Rayleigh-Bénard convection
Földes, J.; Glatt-Holtz, N. E.; Richards, G.; Whitehead, J. P.
2016-11-01
We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number Pr > 0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin and Doering (1996 Nonlinearity 9 1049-60) can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.
Natural convection heat transfer in Gambrel roofs
Energy Technology Data Exchange (ETDEWEB)
Varol, Yasin; Koca, Ahmet [Department of Mechanical Education, Technical Education Faculty, Firat University, TR-23119 Elazig (Turkey); Oztop, Hakan F. [Department of Mechanical Engineering, Firat University,TR-23119 Elazig (Turkey)
2007-03-15
Buoyancy induced natural convection is investigated with a numerical technique in Gambrel roofs. The geometry adapted to both winter day conditions, the bottom is hot temperature while top is cold, and summer day conditions, bottom is cold and inclined top wall is hot temperature. Governing equations in stream function-vorticity form are solved with finite difference technique and algebraic equations are solved using successive under relaxation (SUR) method. Rayleigh number is taken as parameter which affects the flow and heat transfer. Its value changes between 10{sup 3} and 10{sup 7}. It is found that winterlike boundary conditions are more effective than summerlike boundary conditions on the flow field and heat transfer in the roof. (author)
微矩形槽内的单相强迫对流换热性能实验%Single-Phase Forced Convection Heat Trat Transfer in Micro Rectangular Channels
Institute of Scientific and Technical Information of China (English)
赵增会; 余建祖
2003-01-01
航空电子设备集成度和封装密度的增加给电子元器件的热控制问题带来了严峻的挑战,微槽散热器是解决航空电子元器件散热的一条有效途径.本文设计制作了6种不同结构尺寸微矩形槽道,采用航空电子设备上最常用的乙醇溶液作为冷却工质,进行了微槽道内单相强迫对流换热性能实验,分析了流体流速、过冷度和微槽结构等对传热特性的影响.%Increase in the integration and package density of aviation electronic equipment provides severe challenge to heat control for electronic components, yet the microchannel radiator offers an efficient method for solving the problem of cooling electronic chips and devices. In this paper, 6 micro rectangle channels with different sizes were designed and fabricated; the experiment of single-phase forced convection heat transfer was conducted with solution of CH\\-5OH, the most commonly used coolant for aviation electronic equipment, flowing through those microchannels. The influences of liquid velocity, degree of coolant supercooling, and configuration of microchannels on the heat transfer characteristics were analyzed respectively.
Measurement of the convective heat-transfer coefficient
Conti, Rosaria; Fiordilino, Emilio
2014-01-01
We propose an experiment for investigating how objects cool down toward the thermal equilibrium with its surrounding through convection. We describe the time dependence of the temperature difference of the cooling object and the environment with an exponential decay function. By measuring the thermal constant tau, we determine the convective heat-transfer coefficient, which is a characteristic constant of the convection system.
Observation of dendritic growth under the influence of forced convection
Roshchupkina, O.; Shevchenko, N.; Eckert, S.
2015-06-01
The directional solidification of Ga-25wt%In alloys within a Hele-Shaw cell was visualized by X-ray radioscopy. The investigations are focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected during crystallization. Forced convection was produced by a specific electromagnetic pump. The direction of forced melt flow is almost horizontal at the solidification front. Melt flow induces various effects on grain morphology primarily caused by convective transport of solute, such as a facilitation of the growth of primary trunks or lateral branches, dendrite remelting, fragmentation or freckle formation depending on the dendrite orientation, the flow direction and intensity. Forced flow eliminates solutal plumes and damps local fluctuations of solute. A preferential growth of the secondary arms occurs at the upstream side of the dendrites, whereas high solute concentration at the downstream side inhibits the formation of secondary branches.
Single-phase convective heat transfer in microchannels
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A comprehensive review is conducted on the investigations of the forced single-phase convective heat transfer in non-circular microchannels. The observations and results available in the open literature are inspected and compared for better understanding of the physical nature of the heat transfer performance and providing some lines of future research. There seems to be no unequivocal agreement in the understanding on the relative phenomena and the determination of the heat transfer coefficients in microchannels. The study on the interfacial phenomena and interaction at the interface will be the frontier in this area. Appropriate data reduction and the correlating parameters will be the cornerstone of comparability and evaluation for comprehensive investigations. The selection of correlating parameters will actually be the basis for the better understanding and description of new phenomena.
Mixed convection in a horizontal porous duct with a sudden expansion and local heating from below
International Nuclear Information System (INIS)
Results are reported for an experimental and numerical study of forced and mixed convective heat transfer in a liquid-saturated, horizontal porous duct. The cross section of the duct has a sudden expansion with a heated region on the lower surface downstream and adjacent to the expansion. Calculated and measured Nusselt numbers for 0.1 1.5 and Ra/Pe1.5. Calculated Nusselt numbers are very close to those for the bottom-heated flat duct, and this result has several important implications for convective heat and mass transfer in geophysical systems and porous matrix heat exchangers
Endwall convective heat transfer for bluff bodies
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt;
2012-01-01
The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Numerical Simulations of Heat Explosion With Convection In Porous Media
Allali, Karam; Bikany, Fouad; Taik, Ahmed; Volpert, Vitaly
2013-01-01
In this paper we study the interaction between natural convection and heat explosion in porous media. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary and oscillating convection regimes and oscillating heat explosion are observed. The models with quasi-stationary and unstationary Darcy equation are compared.
Energy Technology Data Exchange (ETDEWEB)
Dhole, S.D.; Chhabra, R.P. [Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208 016 (India); Eswaran, V. [Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208 016 (India)
2006-03-15
The effects of Reynolds and Prandtl numbers on the heat transfer characteristics of an unconfined sphere for different thermal boundary conditions (isothermal and isoflux) on the sphere surface have been investigated numerically by using a finite volume method for the range of conditions as 5=
Internally heated convection beneath a poor conductor
Goluskin, David
2016-01-01
We consider convection in an internally heated layer of fluid that is bounded below by a perfect insulator and above by a poor conductor. The poorly conducting boundary is modelled by a fixed heat flux. Using solely analytical methods, we find linear and energy stability thresholds for the static state, and we construct a lower bound on the mean temperature that applies to all flows. The linear stability analysis yields a Rayleigh number above which the static state is linearly unstable ($R_L$), and the energy analysis yields a Rayleigh number below which it is globally stable ($R_E$). For various boundary conditions on the velocity, exact expressions for $R_L$ and $R_E$ are found using long-wavelength asymptotics. Each $R_E$ is strictly smaller than the corresponding $R_L$ but is within 1%. The lower bound on the mean temperature is proven for no-slip velocity boundary conditions using the background method. The bound guarantees that the mean temperature of the fluid, relative to that of the top boundary, gr...
Entropy generation around a solid sphere in the forced convection regime
International Nuclear Information System (INIS)
The entropy generation around an isothermal solid sphere subjected to an air stream is calculated for forced convection heat transfer case. Local and average entropy generation terms are calculated. The entropy generated due to heat transfer and due to fluid friction are calculated separately and the relative magnitude for each one is evaluated in the total entropy generation expression. The effect of the controlling parameters on the entropy generation, namely Reynolds number and Eckert number is investigated and discussed. (authors)
Control of convection by dfferent buoyancy forces
Dahley, N; Futterer, B; C. Egbers; 3rd Micro and Nano Flows Conference (MNF2011)
2011-01-01
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute. ...
Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow Gap Annular Tube
Institute of Scientific and Technical Information of China (English)
Li Bin; He Anding; Wang Yueshe; Zhou Fangde
2001-01-01
Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of 1, 1.5 and 2.5 mm, and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.
Laminar natural convection heat transfer from an inclined cylinder
International Nuclear Information System (INIS)
Laminar natural convection heat transfer from the outside surface of a uniformly heated cylinder (constant heat flux condition) was investigated experimentally at different angles of inclination of the cylinder. General equations for the effect of inclination were determined for both the local and the average heat transfer. (author)
Analytical study on coordinative optimization of convection in tubes with variable heat flux
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
［1］Guo, Z. Y., Li, D. Y., Wang, B. X., A novel concept for convective heat transfer enhancement, Int. J. Heat Mass Transfer, 1998, 41: 2221-2225.［2］Tao, W. Q., Guo, Z. Y., Wang, B. X., Field synergy principle for enhancing convective heat transfer--extension and numerical verification, Int. J. Heat Mass Transfer, 2002, 45: 3849-3856.［3］Guo, Z. Y., Mechanism and control of convective heat transfer--Coordination of velocity and heat flow fields, Chinese Science Bulletin, 2001, 46(7): 596-599.［4］Sellars, J. R., Tribus, M., Klein, J. S., Heat transfer to laminar flow in a round tubes or flat conduit--The Graetz problem extended, Tras. ASME, 1956, 78: 441-448.［5］Kays, W. M., Crawford, M. E., Convective Heat Transfer, 3rd ed., Chapter 9, New York: McGraw-Hill Inc., 1993.［6］Shah, R. K., London, A. L., Laminar Flow Forced Convection in Ducts, Advances in Heat Transfer, New York: Academic Press, 1978.
Heat flow control in thermo-magnetic convective systems using engineered magnetic fields
Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.
2012-09-01
We present the design of a magnetically controlled convective heat transfer system. The underlying thermo-magnetic instability phenomenon is described, and enhanced convective fluid flow patterns are determined using non-linear programming techniques plus a design sensitivity analysis. Specifically, the magnetic fluid body force is computed by finding the optimal distribution and magnetization direction of a magnetic field source, where the objective is to minimize the maximum temperature of a closed loop heat transfer system. Sizeable fluid recirculation zones are induced by arranging magnetic field generation elements in configurations similar to Halbach arrays. Applications include improved heat flow control for electromechanical systems.
Chamkha, AJ; Takhar, HS; G. Nath
2004-01-01
An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic ...
Energy Technology Data Exchange (ETDEWEB)
Macbeth, R.V. [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1961-11-15
The practical objective of research on 'burn-out' is a reliable method giving the maximum safe rating for any water cooled reactor. Experimental work, which began at numerous centres about 10 years ago, has been concerned principally with endeavouring to understand the phenomenon as it applies to simple geometries such as round and rectangular channels. Many millions of pounds have been spent on this work and several thousand separate experimental results obtained. This considerable effort has achieved little real success in providing an explanation of 'burn-out' however. Many conflicting views have arisen and correlations so far developed have been shown to give calculated 'burn-out' heat fluxes varying by a factor of the order of 5> when applied to a typical reactor situation. While some uncertainty may be due to experimental variations, inadequate analytical effort is considered to be the primary cause of the present confused situation. To overcome this various analytical studies are being initiated by the Reactor Development Division at Winfrith and a detailed plan is being evolved for bringing effort to bear on certain fundamental aspects of boiling which have been neglected and which in some oases will require the development of special experimental techniques. This report describes the result of some work already carried out. It concerns an initial examination made on a large group of 'burn-out' data and describes the development of a correlation which predicts 'burn-out' heat fluxes to within an R.M.S. error of less than 10% over a very wide range of operating conditions including pressure. (author)
Convection heat transfer from discrete heat sources in a liquid cooled rectangular channel
Energy Technology Data Exchange (ETDEWEB)
Bhowmik, H. [Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur 1700 (Bangladesh); Tso, C.P. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia); Tou, K.W.; Tan, F.L. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)
2005-11-01
Steady-state experiments are performed to study general convective heat transfer from an in-line four simulated electronic chips in a vertical rectangular channel using water as the working fluid. The experimental data covers a wide range for laminar flow under natural, mixed and forced convection conditions with Reynolds number based on channel hydraulic diameter ranging from 40 to 2220 and Reynolds number based on heat source length ranging from 50 to 2775, respectively. The heat flux ranges from 0.1W/cm{sup 2} to 0.6W/cm{sup 2}. The inlet water temperature is at 24{sup o}C. The effect of heat fluxes, flow rates and geometrical parameters such as chip number are investigated. The experimental results indicate that the heat transfer coefficient is strongly affected by Reynolds number and fully-developed values of heat transfer coefficient are reached before the first chip. Empirical correlations are developed for relations using Nusselt number, Reynolds number and Grashof number, based on channel hydraulic diameter. (author)
Enhancement of laminar convective heat transfer using microparticle suspensions
Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran
2016-04-01
This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.
Directory of Open Access Journals (Sweden)
Prasenjit Dey
2016-01-01
Full Text Available An unsteady two-dimensional forced convection over a square cylinder with sharp and rounded corner edge is numerically analyzed for the low Reynolds number laminar flow regime. In this study, the analysis is carried out for Reynolds number (Re in the range of 80 to 180 with Prandtl number (Pr variation from 0.01 to 1000 for various corner radius (r=0.50, 0.51, 0.54, 0.59, 0.64 and 0.71. The lateral sides of the computational domain are kept constant to maintain the blockage as 5%. Heat transfer due to unsteady forced convection has been predicted by Artificial Neural network (ANN. The present ANN is trained by the input and output data which has been acquired from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD commercial software FLUENT. The heat transfer characteristics over the sharp and rounded corner square cylinder are evaluated by analyzing the local Nusselt number (Nulocal, average Nusselt number (Nuavg at various Reynolds number, Prandtl numbers and for various corner radii. It is found that the heat transfer rate of a circular cylinder can be enhanced by 12% when Re is varying and 14% when Prandtl number is varying by introducing a new cylinder geometry of corner radius r=0.51. It is found that the unsteady forced convection heat transfer over a cylinder can be predicted appropriately by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of forced convection very quickly compared to a standard CFD method.
Guo, Ning; Finnerman, Oskar; Ström, Henrik
2016-06-01
The effect of turbulent velocity fluctuations on the convective heat transfer to single droplets in a turbulent channel flow are investigated numerically. It is found that for properties relevant to typical liquid spray applications, the convective heat transfer is enhanced with increasing droplet size and bulk Reynolds number. The combined effect of convective heat transfer enhancement and increased driving forces for heat and mass transfer due to droplet dispersion is thereafter investigated for a commercial spray application. The probability distribution functions of droplet properties in the spray are found to be significantly affected by the presence of turbulent velocity fluctuations in the carrier phase.
Analysis of streamwise conduction in forced convection of microchannels using fin approach
Institute of Scientific and Technical Information of China (English)
Suhandran MUNIANDY; Yew Mun HUNG
2011-01-01
The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been studied.By employing the fin approach in the first law of analysis,models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow under local thermal non-equilibrium for the solid and fluid phases.These two models were solved to obtain closed form analytical solutions for the fluid and solid temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the fluid temperature distributions.The effects of the Peclet number,aspect ratio,and thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks were analyzed and discussed.This study reveals the conditions under which the effect of streamwise conduction is significant and should not be neglected in the forced convective heat transfer analysis ofmicrochannel heat sinks.
Heat transfer of laminar mixed convection of liquid
Shang, De-Yi
2016-01-01
This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...
Nadia Potoceanu
2007-01-01
The paper presented the most aspects of convective circulate mode of heat transfer : heat transfer through the boundary layer formed at the surface of the heat generator; heat transfer in the heat carrier and heat transfer through the boundary layer formed at the heated surface
Directory of Open Access Journals (Sweden)
Nadia Potoceanu
2007-10-01
Full Text Available The paper presented the most aspects of convective circulate mode of heat transfer : heat transfer through the boundary layer formed at the surface of the heat generator; heat transfer in the heat carrier and heat transfer through the boundary layer formed at the heated surface
Mechanism and control of convective heat transfer-- Coordination of velocity and heat flow fields
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A second look has been given at the mechanism of convective heat transfer based on the analogy between convection and conduction with heat sources. The strength of convective heat transfer depends not only on the fluid velocity and fluid properties, but also on the coordination of fluid velocity and heat flow fields. Hence, based on the included angle of velocity and temperature gradient vectors, the presence of fluid motion may enhance or reduce heat transfer. With this concept, the known heat transfer phenomena may be understood in a deeper way. More important is that some novel approaches of heat transfer control can be developed.
Institute of Scientific and Technical Information of China (English)
WeizhongLi; WeichengWang; 等
1995-01-01
Physical and mathematical models are developed to describe the forced convection condensation heat transfer of saturated vapor flowing axially outside a horizontal tube.The numerical solution of the models indicates the effects of vapor velocity on the liquid film thickness.The result verifies the enhancement of condensation heat transfer caused by such flow.
Solution of heat removal from nuclear reactors by natural convection
Directory of Open Access Journals (Sweden)
Zitek Pavel
2014-03-01
Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
Nie, Ji; Sobel, Adam H
2016-01-01
Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent and large latent heat release. The causal relationships between these factors are often not obvious, however, and the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here, we examine the large-scale forcings and convective heating feedback in the precipitation events which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic li...
Energy Technology Data Exchange (ETDEWEB)
Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)
2014-04-15
In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)
Convective heat transfer around vertical jet fires: An experimental study
International Nuclear Information System (INIS)
Highlights: ► Experiments were carried out to analyze convection around a vertical jet fire. ► Convection heat transfer is enhanced increasing the flame length. ► Nusselt number grows with higher values of Rayleigh and Reynolds numbers. ► In subsonic flames, Nusselt number increases with Froude number. ► Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.
10,000 - A reason to study granular heat convection
Energy Technology Data Exchange (ETDEWEB)
Einav, I.; Rognon, P.; Gan, Y.; Miller, T.; Griffani, D. [Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia)
2013-06-18
In sheared granular media, particle motion is characterized by vortex-like structures; here this is demonstrated experimentally for disks system undergoing indefinite deformation during simple shear, as often imposed by the rock masses hosting earthquake fault gouges. In traditional fluids it has been known for years that vortices represent a major factor of heat transfer enhancement via convective internal mixing, but in analyses of heat transfer through earthquake faults and base planes of landslides this has been continuously neglected. Can research proceed by neglecting heat convection by internal mixing? Our answer is astonishingly far from being yes.
Reynolds stress and heat flux in spherical shell convection
Käpylä, P J; Guerrero, G; Brandenburg, A; Chatterjee, P
2010-01-01
Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow ...
Thermal Performance of Convective-Radiative Heat Transfer in Porous Fins
Directory of Open Access Journals (Sweden)
Majid SHAHBABAEI
2014-01-01
Full Text Available Forced and natural convection in porous fins with convective coefficient at the tips under radiation and convection effects are investigated in this paper. Aluminum and copper as fin materials are investigated. In forced and natural convection, air and water are applied as working fluids, respectively. In order to solve this nonlinear equation, Homotopy Perturbation Method (HPM and Variational Iteration Method (VIM are used. To verify the accuracy of the methods, a comparison is made to the exact solution (BVP. In this work, the effects of porosity parameter (, Radiation parameter (α and Temperature-Ratio parameter (µ on non-dimensional temperature distribution for both of the flows are shown. The results show that the effects of (α and (µ on temperature distribution in natural convection are based on porosity and in forced convection are uniform, approximately. Also, it is shown that both VIM and HPM are capable of being used to solve this nonlinear heat transfer equation.doi:10.14456/WJST.2014.64
Convective condensation heat transfer in a horizontal condenser tube
Energy Technology Data Exchange (ETDEWEB)
Sarma, P.K. [College of Engineering, GITAM, Visakhapatnam (India); Sastry, C.V.N.; Rao, V.D. [Andhra Univ., College of Engineering, Visakhapatnam (India); Kakac, S.; Liu, H. [Miami Univ., College of Engineering, FL (United States)
2002-03-01
The purpose of this article is to solve analytically the problem of convective condensation of vapors inside a horizontal condenser tube. Homogeneous model approach is employed in the estimation of shear velocity, which is subsequently, made use of in predicting local convective condensation heat transfer coefficients. The resulting analysis of the present study is compared with some of the available equations in the literature. It is observed that the agreement is reasonably satisfactory validating the assumptions and the theory presented. (authors)
Institute of Scientific and Technical Information of China (English)
CUI Zhi-ying; LIU Hua; ZHANG Wei-yuan
2008-01-01
The thermal protective performance ( TPP) is important for heat and flame resistant fabrics. In this study, fabrics which are made of flame resistant cotton, Nomex, polybenzimidazole (PBI), polysulfonamide (PSA), kermel, and blend of kermel with rayon fiber are investigated on high intensity of different radiant and convective heat source. The mechanism of heat transfer in different situations is discussed. It is identified that exposed condition has an important effect on thermal protective performance. TPP rating increases with the increasing percentage of convective heat.
Convective heat transfer around vertical jet fires: an experimental study.
Kozanoglu, Bulent; Zárate, Luis; Gómez-Mares, Mercedes; Casal, Joaquim
2011-12-15
The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice. PMID:21962859
International Nuclear Information System (INIS)
The void fraction in a forced convective flow boiling is very important information for understanding the characteristics of the boiling two-phase flow. Consequently, many experimental investigations have been carried out to obtain the local void fraction so far, but the detail data among the whole of the test-section has not been enough. Especially, the data under subcooled condition are quite limited. In this study, the void fraction distribution in a forced convective boiling was quantitatively measured by using the thermal neutron radiography. These results were compared with several existing void fraction correlations. Although these correlations show a good agreements with experimental results under low heat flux condition, there is no suitable correlation to estimate the void fraction under non-thermal equilibrium condition. (author)
A general theoretical principle for single-phase convection heat transfer enhancement
Institute of Scientific and Technical Information of China (English)
WANG SongPing; CHEN QingLin; ZHANG BingJian; HUA Ben
2009-01-01
The main methods of single-phase convection heat transfer enhancement are analyzed in this paper,and the unity of contradiction between heat transfer enhancement and energy consumption(or exergy destruction)is expounded.The thermodynamic relationship between heat(or exergy)transfer efficiency and energy consumption(or exergy destruction)as well as driving forces is established,and a general theoretical principle for single-phase convection heat transfer enhancement is further obtained.The principle shows that temperature gradient field distribution and velocity field distribution constrain each other,and that the optimum heat transfer efficiency can be obtained when they are synergetic.If the level of the synergy of temperature gradient field distribution with velocity field distribution is determined,the relative uniform temperature gradient is required,and vice versa.The principle also shows the relationship of relative temperature gradient with specific heat and coefficient of heat conductivity.The deduced results can be used as a theoretical guidance for single-phase convection heat transfer enhancement and optimum design of heat exchangers.
A general theoretical principle for single-phase convection heat transfer enhancement
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The main methods of single-phase convection heat transfer enhancement are analyzed in this paper, and the unity of contradiction between heat transfer enhancement and energy consumption(or exergy destruction)is expounded.The thermodynamic relationship between heat(or exergy)transfer efficiency and energy consumption(or exergy destruction)as well as driving forces is established,and a general theoretical principle for single-phase convection heat transfer enhancement is further obtained. The principle shows that temperature gradient field distribution and velocity field distribution constrain each other,and that the optimum heat transfer efficiency can be obtained when they are synergetic.If the level of the synergy of temperature gradient field distribution with velocity field distribution is determined,the relative uniform temperature gradient is required,and vice versa.The principle also shows the relationship of relative temperature gradient with specific heat and coefficient of heat conductivity.The deduced results can be used as a theoretical guidance for single-phase convection heat transfer enhancement and optimum design of heat exchangers.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
Energy Technology Data Exchange (ETDEWEB)
Canaan, R.E.
1995-12-01
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
International Nuclear Information System (INIS)
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array
Heat transfer by natural convection into an horizontal cavity
International Nuclear Information System (INIS)
At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)
External Forced Convection Enhancement using a Corona Discharge
Go, David B.; Maturana, Raul A.; Fisher, Timothy S.; Garimella, Suresh V.
2007-01-01
An ionic wind is formed when air ions generated by a corona discharge are accelerated by an electric field and exchange momentum with neutral air molecules, causing air flow. Because ionic winds can generate flow with no moving parts, they offer an attractive method for enhancing the heat transfer from a surface that would otherwise only be cooled by natural convection and/or radiation. In the presence of an external, flat plate flow, ionic winds distort the boundary layer such that local hea...
Primary instabilities in convective cells due to nonuniform heating
Mancho, A. M.; Herrero, H.; Burguete, J.
1997-09-01
We study a convection problem in a container with a surface open to the air and heated by a long wire placed at the bottom. Coupled buoyancy and thermocapillarity effects are taken into account. A basic convective state appears as soon as a temperature gradient with horizontal component different from zero is applied. It consists of two big rolls that fill the convective cell and are parallel to the heater. A numerical solution allows us to determine this basic state. A linear stability analysis on this solution is carried out. For different values of the applied temperature gradient the basic rolls undergo a stationary bifurcation. The thresholds depend on the fluid properties, on the geometry of the heater, and on the heat exchange on the free surface. This confirms the results obtained in recent experiments.
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
Akpinar, Ebru Kavak; Toraman, Seda
2016-10-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
Investigating Convective Heat Transfer with an Iron and a Hairdryer
Gonzalez, Manuel I.; Lucio, Jesus H.
2008-01-01
A simple experimental set-up to study free and forced convection in undergraduate physics laboratories is presented. The flat plate of a domestic iron has been chosen as the hot surface, and a hairdryer is used to generate an air stream around the plate. Several experiments are proposed and typical numerical results are reported. An analysis and…
Heat transfer mechanisms in bubbly Rayleigh-Benard convection
Oresta, Paolo; Lohse, Detlef; Prosperetti, Andrea
2008-01-01
The heat transfer mechanism in Rayleigh-Benard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with point-like vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both thermally and mechanically. It is shown that the effect of the bubbles is strongly dependent on the ratio of the sensible heat to the latent heat as embodied in the Jacob number Ja. For very small Ja the bubbles stabilize the flow by absorbing heat in the warmer regions and releasing it in the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth destabilizes the flow with respect to single-phase convection and considerably increases the Nusselt number.
Measurement of the Convective Heat-Transfer Coefficient
Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2014-01-01
We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…
Convective boundary layers driven by nonstationary surface heat fluxes
Van Driel, R.; Jonker, H.J.J.
2011-01-01
In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change
Network model of free convection within internally heated porous media
International Nuclear Information System (INIS)
A hypothetical core-disruptive accident (HCDA) in a liquid metal fast breeder reactor (LMFBR) may result in the formation of an internally heated debris bed. Considerable attention has been given to postulated mechanisms by which such beds may be cooled. It is the purpose of the work described to demonstrate a method for computing the heat transfer from such a bed to the overlying sodium pool due to single-phase, free convection
Non intrusive measurement of the convective heat transfer coefficient
Energy Technology Data Exchange (ETDEWEB)
Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM
2010-07-01
The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.
A contribution to incipient boiling in the case of subcooled boiling with forced convection
International Nuclear Information System (INIS)
The literature gives contradictory statements about incipient subcooled boiling. To clear up these contradictions it seems important to study the effect of different thermo- and hydrodynamic parameters, like heating surface load, system pressure, local supercooling, and flowrate. Further influencing quantities investigated here are the concentration dissolved gases and the surface condition of the heat surface. To carry out the experimental investigations a measuring method which has already been used by Mayinger applied. With this method, incipient boiling can be determined as the first measurable heat transfer improvement in comparison with single-phase forced convection. Besides, photographs sould make it possible to give statements on the quantity and size of the bubbles on the heating surface. (orig./GL)
Hayat, Tasawar; Nawaz, Sadaf; Alsaedi, Ahmed; Rafiq, Maimona
2016-01-01
Main objective of present study is to analyze the mixed convective peristaltic transport of water based nanofluids using five different nanoparticles i.e. (Al2O3, CuO, Cu, Ag and TiO2). Two thermal conductivity models namely the Maxwell's and Hamilton-Crosser's are used in this study. Hall and Joule heating effects are also given consideration. Convection boundary conditions are employed. Furthermore, viscous dissipation and heat generation/absorption are used to model the energy equation. Problem is simplified by employing lubrication approach. System of equations are solved numerically. Influence of pertinent parameters on the velocity and temperature are discussed. Also the heat transfer rate at the wall is observed for considered five nanofluids using the two phase models via graphs. PMID:27104596
Directory of Open Access Journals (Sweden)
N. Nesenchuk
2013-01-01
Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following evaluation results of heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.
Conjugate problems in convective heat transfer
Dorfman, Abram S
2009-01-01
The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.
Heat transport in bubbling turbulent convection
Lakkaraju, R.; Stevens, R.J.A.M.; Oresta, P.; Verzicco, R.; Lohse, D.; Prosperetti, A.
2013-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to giv
On the Asymptotic Approach to Thermosolutal Convection in Heated Slow Reactive Boundary Layer Flows
Stanford Shateyi; Precious Sibanda; Motsa, Sandile S.
2008-01-01
The study sought to investigate thermosolutal convection and stability of two dimensional disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate composed of a chemical species using a self-consistent asymptotic method. The chemical species reacts as it diffuses into the nearby fluid causing density stratification and inducing a buoyancy force. The existence of significant temperature gradients near the plate surface results in additional buoyancy and decrea...
Convective heat flux from hydrothermal system: First monitoring results at La Fossa of Vulcano
Diliberto, I. S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Finizola, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Madonia, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Aubert, M.; Université Blaise Pascal et CNRS-LMV
2005-01-01
Fluids circulating inside hydrothermal systems drive thermal and kinetic energy to balance the acting forces. Convective heat flux variations can be affected either by change in regional tectonic factor and by magma migration, both processes accountable for volcanic risk. The thermal release on quiescent volcano is not negligible if compared to that associated to eruptions, according to balances on hydrothermal activity and eruptive activity (Nuccio & Valenza, 1986, Chiodini et al., 2001). Mo...
Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation
Institute of Scientific and Technical Information of China (English)
CHEN Qun; REN JianXun
2008-01-01
In order to further analyze and optimize convective heat transfer process further, the concepts of heat flux weighted average heat temperature and heat flux weighted average heat temperature difference in multi-dimensional heat transfer system were introduced in this paper. The ratio of temperature difference to heat flux is defined as the generalized thermal resistance of convective heat transfer processes,and then the minimum thermal resistance theory for convective heat transfer optimization was developed. By analyzing the relationship between generalized thermal resistance and entansy dissipation in convective heat transfer processes, it can be concluded that the minimum thermal resistance theory equals the entransy dissipation extremum theory. Finally, a two-dimensional convective heat transfer process with constant wall temperature is taken as an example to illustrate the applicability of generalized thermal resistance to convective heat transfer process analysis and optimization.
Forced Convective Air Cooling from Electronic Component Arrays in a Parallel Plate Channel
Institute of Scientific and Technical Information of China (English)
D.Y.Cai; Y.P.Gan; 等
1994-01-01
This paper discusses air forced convection heat transfer from inline protruding elements arranged in eight rows.The streamwise and spanwise spacings between elements were varied using a splitter plate that can be positioned at three different modular configurations.A set of empirical formulas was presented to correlate the experimental data for the design of air cooling systems.Arrays of componets with one odd-size module have been tested also.Experimental results show that blocks near the entrance and behind the odd-size module have improved performance compared with uniform arrangements.Accordingly,temperature sensitive components are suggested to be arranged in these locations.
A theoretical study of the spheroidal droplet evaporation in forced convection
Li, Jie; Zhang, Jian
2014-11-01
In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.
Prasenjit Dey; Ajoy Das
2016-01-01
An unsteady two-dimensional forced convection over a square cylinder with sharp and rounded corner edge is numerically analyzed for the low Reynolds number laminar flow regime. In this study, the analysis is carried out for Reynolds number (Re) in the range of 80 to 180 with Prandtl number (Pr) variation from 0.01 to 1000 for various corner radius (r=0.50, 0.51, 0.54, 0.59, 0.64 and 0.71). The lateral sides of the computational domain are kept constant to maintain the blockage as 5%. Heat tr...
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Entropy generation for thermally developing forced convection in a porous medium bounded by two isothermal parallel plates is investigated analytically on the basis of the Darcy flow model where the viscous dissipation effects had also been taken into account.A parametric study showed that decreasing the group parameter and the Péclet number increases the entropy generation while for the Brinkman number the converse is true.Heatline visualization technique is applied with an emphasis on the Br ＜ 0 case where there is somewhere that heat transfer changes direction at some streamwise location to the wall instead of its original direction,i.e.,from the wall.
Analysis of flow instabilities in forced-convection steam generator
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Because of the practical importance of two-phase instabilities, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics. The purpose of this study is to present a numerical model for the analysis of flow-induced instabilities in forced-convection steam generator. The model is based on the assumption of homogeneous two-phase flow and thermodynamic equilibrium of the phases. The thermal capacity of the heater wall has been included in the analysis. The model is used to analyze the flow instabilities in the steam generator and to study the effects of system pressure, mass flux, inlet temperature and inlet/outlet restriction, gap size, the ratio of do /di, and the ratio of qi/qo on the system behavior.
Experimental-theoretical analysis of laminar internal forced convection with nanofluids
Energy Technology Data Exchange (ETDEWEB)
Cerqueira, Ivana G.; Cotta, Renato M. [Lab. of Transmission and Technology of Heat-LTTC. Mechanical Eng. Dept. - POLI and COPPE/UFRJ, Rio de Janeiro, RJ (Brazil)], E-mail: cotta@mecanica.coppe.ufrj.br; Mota, Carlos Alberto A. [Conselho Nacional de Pesquisas - CNPq, Brasilia, DF (Brazil)], e-mail: carlosal@cnpq.br; Nunes, Jeziel S. [INPI, Rio de Janeiro, RJ (Brazil)], e-mail: jeziel@inpi.gov.br
2010-07-01
This work reports fundamental experimental-theoretical research related to heat transfer enhancement in laminar channel flow with nanofluids, which are essentially modifications of the base fluid with the dispersion of metal oxide nanoparticles. The theoretical work was performed by making use of mixed symbolic-numerical computation (Mathematica 7.0 platform) and a hybrid numerical-analytical methodology (Generalized Integral Transform Technique - GITT) in accurately handling the governing partial differential equations for the heat and fluid flow problem formulation with temperature dependency in all the thermophysical properties. Experimental work was also undertaken based on a thermohydraulic circuit built for this purpose, and sample results are presented to verify the proposed model. The aim is to illustrate detailed modeling and robust simulation attempting to reach an explanation of the controversial heat transfer enhancement observed in laminar forced convection with nanofluids. (author)
Laminar forced convection and flow characteristics for the multiple plate porous insulation
Energy Technology Data Exchange (ETDEWEB)
Lim, T.K. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: easonlim2003@yahoo.com; Cotton, M.A. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD (United Kingdom); Axcell, B.P. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD (United Kingdom)
2007-04-15
A numerical study of steady state flow and heat transfer has been conducted for the multiple plate porous insulation used in the reactor pressure vessels of 'Magnox' nuclear power stations. The insulation pack studied, consisting of seven dimpled stainless steel sheets and six plane stainless steel sheets, was of the type installed in the Sizewell A plant. In the reactor application the fluid within the insulation pack is carbon dioxide at 20 bar but in the numerical investigation the insulation performance was examined in air at lower pressures. A three-dimensional computation model with a periodicity condition was used in the numerical investigation. Result was obtained for laminar forced convection with constant wall temperatures. Numerical results are presented to show the flow and thermal fields in a single flow passage. In forced convection it is shown that mid-dimple 'peaking' of the Nusselt number distribution may be related directly to the convective influence of distorted velocity profiles.
International Nuclear Information System (INIS)
Natural convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat surfaces (termed 'slats') near the heated surface, these surfaces being, in general, inclined to the heated surface. There is, in general, a uniform heat generation in the slats. The slats are pivoted about their centre-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air being considered. The heat generation in the slats in this situation is the result of solar radiation passing through the window and falling on and being absorbed by the slats of the blind. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. The solution has the following parameters: (1) the Rayleigh number (2) the Prandtl number (3) the dimensionless heat generation rate in the slats per unit frontal area (4) the dimensionless distance of the slat center point (the pivot point) from the surface (5) the dimensionless slat size (6) the dimensionless slat spacing (7) the angle of inclination of the slats. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated vertical surface has been examined. (author)
Convection flows driven by laser heating of a liquid layer.
Rivière, David; Selva, Bertrand; Chraibi, Hamza; Delabre, Ulysse; Delville, Jean-Pierre
2016-02-01
When a fluid is heated by the absorption of a continuous laser wave, the fluid density decreases in the heated area. This induces a pressure gradient that generates internal motion of the fluid. Due to mass conservation, convection eddies emerge in the sample. To investigate these laser-driven bulk flows at the microscopic scale, we built a setup to perform temperature measurements with a fluorescent-sensitive dye on the one hand, and measured the flow pattern at different beam powers, using a particle image velocimetry technique on the other hand. Temperature measurements were also used in numerical simulations in order to compare predictions to the experimental velocity profiles. The combination of our numerical and experimental approaches allows a detailed description of the convection flows induced by the absorption of light, which reveals a transition between a thin and a thick liquid layer regime. This supports the basis of optothermal approaches for microfluidic applications. PMID:26986418
Natural convection heat transfer of water in a horizontal circular gap
Institute of Scientific and Technical Information of China (English)
SU Guanghui; Kenichiro Sugiyama; WU Yingwei
2007-01-01
An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.
Free and forced convective-diffusion solutions by finite element methods
Energy Technology Data Exchange (ETDEWEB)
Gartling, D.K.; Nickell, R.E.
1976-01-01
Several free and forced convective-diffusion examples are solved and compared to either laboratory experiment or closed-form analysis. The problems solved illustrate the application of finite element methods to both strongly-coupled and weakly-coupled velocity and temperature fields governed by the steady-state momentum and energy equations. Special attention is given to internal forced convection with temperature-dependent viscosity and free convection within an enclosure.
Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux
Energy Technology Data Exchange (ETDEWEB)
Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: anuar_mi@ukm.my
2009-05-15
The steady mixed convection boundary layer flow along a vertical cylinder with prescribed surface heat flux is investigated in this study. The free stream velocity and the surface heat flux are assumed to vary linearly with the distance from the leading edge. Both the case of the buoyancy forces assisting and opposing the development of the boundary layer are considered. Similarity equations are derived, their solutions being dependent on the mixed convection parameter, the curvature parameter, as well as of the Prandtl number. Dual solutions are found to exist for both buoyancy assisting and opposing flows. It is also found that the boundary layer separation is delayed for a cylinder compared to a flat plate.
Directory of Open Access Journals (Sweden)
T. Hayat
2015-01-01
Full Text Available The present study addresses the mixed convection flow of non-Newtonian nanofluid over a stretching surface in presence of thermal radiation, heat source/sink and first order chemical reaction. Casson fluid model is adopted in the present study. Magnetic field contribution is incorporated in the momentum equation whereas the aspects of nanoparticles are considered in the energy and concentration equations. Convective boundary conditions for both heat and mass transfer are utilized. Similarity transformations are employed to reduce the partial differential equations into ordinary differential equations. Series solutions of the resulting problem are obtained. Impacts of all the physical parameters on the velocity, temperature and concentration fields are analyzed graphically. Numerical values of different involved parameters for local skin friction coefficient, local Nusselt and Sherwood numbers are obtained and discussed.
Heat transport measurements in turbulent rotating Rayleigh-Benard convection
Energy Technology Data Exchange (ETDEWEB)
Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory
2008-01-01
We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.
International Nuclear Information System (INIS)
Heat transfer coefficients and pressure drop of gaseous ammonia in forced convection are experimentally determined. The fluid flows (mass flow rate 0.6 to 2.4 g/s) in a long tungsten tube (di = 2.8 mm, de = 5.1 mm, L = 700 mm) electrically heated. The temperature of the wall reaches 3000 deg. K and the fluid 2500 deg. K; maximum heat flux 530 w/cm2. Ammonia is completely dissociated and the power necessary for dissociation reaches 30 per cent of the total power exchanged. Inlet pressure varies between 6 and 16 bars and the maximum pressure drop in the tube reaches 15 bars. Two regimes of dissociation have been shown: catalytic and homogeneous and the variation of dissociation along the length of the tube is studied. The measured heat transfer coefficients may be about 10 times these calculated by the means of classical formulae. A correlation of experimental results using enthalpy as a driving force for heat transmission is presented. Pressure drops may be calculated by the means of a classical friction factor. (authors)
Convective Heat Transfer Analysis in Fluid Flow with Turbulence Promoters with Heat Pipes
Directory of Open Access Journals (Sweden)
Theodor Mateescu
2007-01-01
Full Text Available The present paper proposes the analysis and the simulation of the convection heat transfer into the fluid flow with turbulence promoters utilizing heat pipes. The study is based on the necesity of the unconventional energy forms capitalization, increasing of the energy efficiency and leads to the energy consumtion decrease in concordance with the sustainable development concept.
A preliminary study on the mixed convection heat transfer in a horizontal pipe
Energy Technology Data Exchange (ETDEWEB)
Chae, Myeong Seon; Chung, Bum Jin [Jeju Nat' l Univ., Jeju (Korea, Republic of)
2012-10-15
Mixed convection phenomena have applications in heat exchangers designed for viscous liquids, pipelines used for transporting oil, and heat exchangers for gas flows and have been investigated for numerical study. The experimental studies on the topic are rare due to the limited practical uses. The definitions on the buoyancy coefficient that represent the relative influence of the forced and the natural convection are different by scholars. When the fluid passes through a horizontal heated pipe, the secondary flow patterns of the flows moving upward along inner wall and downward through the centerline of the pipe, appear. Two symmetric counter rotating, spiraling axial flows around the vertical centerline and the heat transfer of the bottom is higher due to the unstable stratification. This study is preliminary experiments for laminar and turbulent mixed convection for horizontal pipe geometries. The diameter of the pipe was 0.026m and lengths were ranging from 0.03m to 0.50m varying the Reynolds number. Experiments were carried out using a copper sulfate electroplating system was adopted for mass transfer based on the analogy concept.
Energy Technology Data Exchange (ETDEWEB)
Bates, J.M.; Khan, E.U.
1980-10-01
An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program (a modified version of the COBRA-IV code).
Why convective heat transport in the solar nebula was inefficient
Cassen, P.
1993-01-01
The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.
Non-Darcian forced convection analysis in an annulus partially filled with a porous material
Energy Technology Data Exchange (ETDEWEB)
Chikh, S.; Boumedien, A.; Bouhadef, K. [USTHB, Bab Ezzouar (Algeria). Inst. de Genie Mecanique; Lauriat, G. [CNAM, Paris (France). Lab. de Thermique
1995-12-01
Numerical solutions are presented for fully developed forced convection in concentric annuli partially filled with a porous medium. The porous medium is attached at the inner cylinder, which is maintained at uniform heat flux or at uniform wall temperature while the outer cylinder is adiabatic. The Brinkman-Forchheimer-extended Darcy model was used to model the flow inside the porous medium. The dependence of the fluid flow and heat transfer on several parameters of the problem is thoroughly documented. The inertia coefficient at which the inertial effects reduce the flow rate by 5% is determined as a function of the Darcy number for various thicknesses of the porous substrate. It is also shown that a critical thickness at which the value of the Nusselt number reaches a minimum does not exist if the effective thermal conductivity of the fluid-saturated porous medium is much higher than the fluid conductivity.
Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet
Khan, Masood; Khan, Waqar Azeem
2015-10-01
This article reports the two-dimensional forced convective flow of a generalized Burgers fluid over a linearly stretched sheet under the impacts of nano-sized material particles. Utilizing appropriate similarity transformations the coupled nonlinear partial differential equations are converted into a set of coupled nonlinear ordinary differential equations. The analytic results are carried out through the homotopy analysis method (HAM) to investigate the impact of various pertinent parameters for the velocity, temperature and concentration fields. The obtained results are presented in tabular form as well as graphically and discussed in detail. The presented results show that the rate of heat transfer at the wall and rate of nanoparticle volume fraction diminish with each increment of the thermophoresis parameter. While incremented values of the Brownian motion parameter lead to a quite opposite effect on the rates of heat transfer and nanoparticle volume fraction at the wall.
Natural convection heat transfer below downward facing horizontal surfaces
International Nuclear Information System (INIS)
The laminar steady-state natural convection below an infinite strip and below a circular plate, heated at their bottom sides, has been calculated analytically for a uniform surface temperature as well as for a uniform surface heat flux. This convection is driven by the non-uniform temperature distribution near the edges of the plate. This particular feature makes the problem a basically elliptic one, a fact that was not taken into account in earlier studies. In contrast to the flow near inclined heated plates the horizontal situation cannot be described by a boundary layer theory alone. Similarity solutions have been obtained employing the method of matched asymptotic expansions. A potential flow or a Stokes' flow with an unknown upstream velocity is taken as the outer expansion and a boundary layer flow as the inner expansion. Both expansions are matched by an energy balance in the region near the stagnation point at the plate center. In this way the unknown upstream velocity is fixed. This iterative procedure is first restricted to the limiting cases of low and high Prandtl numbers. Then an interpolation of these asymptotes yields heat transfer correlations for arbitrary Prandtl numbers. In comparison to earlier approximations these results are independent of any empirical boundary layer profiles and are based on experimental data to a very limited extend. (orig.)
Natural convection of ferrofluids in partially heated square enclosures
Energy Technology Data Exchange (ETDEWEB)
Selimefendigil, Fatih, E-mail: fatih.selimefendigil@cbu.edu.tr [Department of Mechanical Engineering, Celal Bayar University, 45140 Manisa (Turkey); Öztop, Hakan F., E-mail: hfoztop1@gmail.com [Department of Mechanical Engineering, Technology Faculty, Fırat University, 23119 Elazığ (Turkey); Al-Salem, Khaled, E-mail: kalsalem@ksu.edu.sa [Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh (Saudi Arabia)
2014-12-15
In this study, natural convection of ferrofluid in a partially heated square cavity is numerically investigated. The heater is located to the left vertical wall and the right vertical wall is kept at constant temperature lower than that of the heater. Other walls of the square enclosure are assumed to be adiabatic. Finite element method is utilized to solve the governing equations. The influence of the Rayleigh number (10{sup 4}≤Ra≤5×10{sup 5}), heater location (0.25H≤y{sub h}≤0.75H), strength of the magnetic dipole (0≤γ≤2), horizontal and vertical location of the magnetic dipole (−2H≤a≤−0.5H, 0.2H≤b≤0.8H) on the fluid flow and heat transfer characteristics are investigated. It is observed that different velocity components within the square cavity are sensitive to the magnetic dipole source strength and its position. The length and size of the recirculation zones adjacent to the heater can be controlled with magnetic dipole strength. Averaged heat transfer increases with decreasing values of horizontal position of the magnetic dipole source. Averaged heat transfer value increases from middle towards both ends of the vertical wall when the vertical location of the dipole source is varied. When the heater location is changed, a symmetrical behavior in the averaged heat transfer plot is observed and the minimum value of the averaged heat transfer is attained when the heater is located at the mid of vertical wall. - Highlights: • Free convection of ferrofluids in a partially heated cavity is numerically studied. • Velocities are sensitive to the magnetic dipole source strength and its position. • Averaged Nu increases with decreasing x-location values of the magnetic dipole. • Averaged Nu increases from middle towards ends when y-location of dipole changes.
DEFF Research Database (Denmark)
Taherian, Hessam; Yazdanshenas, Eshagh
2006-01-01
Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat......-plate collectors used as the test section. Two correlations were proposed for the Nusselt number as a function of the Reynolds number and the Prandtl number based on hydraulic diameter for various heat fluxes. The temperature distribution along the finned tube for the fluid and the wall were also illustrated....
Institute of Scientific and Technical Information of China (English)
LU; YuanWei; LI; XiaoLi; LI; Qiang; WU; YuTing; MA; ChongFang
2013-01-01
In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Experiment was carried out on the nat-ural convection heat transfer of air and water around the fine wire using the method of Joule heating. The results showed that the natural convection heat transfer of air and water around the fine wire agreed well with Fand’s correlation. Based on the aforementioned experiment, the natural convection heat transfer of molten salt LiNO3was studied by experiment and the same results were got. Therefore, the natural convection heat transfer of molten salt can be calculated by Fand’s correlation, which takes into consideration the effect of viscosity dissipation.
Convective heat transfer for viscoelastic fluid in a curved pipe
Energy Technology Data Exchange (ETDEWEB)
Norouzi, M.; Kayhani, M.H. [Shahrood University of Technology, Mechanical Engineering Department, Shahrood (Iran); Nobari, M.R.H. [Amirkabir University of Technology, Mechanical Engineering Department, Tehran (Iran); Joneidi, A.A. [Eindhoven University of Technology, Mechanical-Polymer Technology Group, Eindhoven (Netherlands)
2010-10-15
In this paper, fully developed convective heat transfer of viscoelastic flow in a curved pipe under the constant heat flux at the wall is investigated analytically using a perturbation method. Here, the curvature ratio is used as the perturbation parameter and the Oldroyd-B model is applied as the constitutive equation. In the previous studies, the Dirichlet boundary condition for the temperature at the wall has been used to simplify the solution, but here exactly the non-homogenous Neumann boundary condition is considered to solve the problem. Based on this solution, the non-axisymmetric temperature distribution of Dean flow is obtained analytically and the effect of flow parameters on the flow field is investigated in detail. The current analytical results indicate that increasing the Weissenberg number, viscosity ratio, curvature ratio, and Prandtl number lead to the increase of the heat transfer in the Oldroyd-B fluid flow. (orig.)
Characterization of fluid flow patterns and heat transfer in horizontal channel mixed convection
Energy Technology Data Exchange (ETDEWEB)
Benderradji, A. [University of Batna, Department of Mechanical Engineering, Batna (Algeria); Haddad, A.; Taher, R.; Medale, M.; Abid, C.; Papini, F. [Technopole de Chateau-Gombert, IUSTI-CNRS UMR 6595, Polytech' Marseille, Marseille (France)
2008-10-15
Two mechanisms of roll initiation are highlighted in a horizontal channel flow, uniformly heated from below, at constant heat flux ({gamma}=10, Pr=7, 50{<=}Re{<=}100, 0{<=}Ra{<=}10{sup 6}). The first mechanism is the classical one, it occurs for low Rayleigh numbers and is initiated by the lateral wall effect. The second occurs for higher Rayleigh numbers and combines the previous effect with a supercritical vertical temperature gradient in the lower boundary layer, which simultaneously triggers pairs of rolls in the whole zone in between the two lateral rolls. We have found that in the present configuration, the transition between the two roll initiation mechanisms occurs for Ra/Re{sup 2} {approx}18. Consequently, the heat transfer is significantly enhanced compared to the pure forced convection case owing to the flow pattern responsible of the continuous flooding the heated wall with cold fluid. (orig.)
Liquid oil painting: Free and forced convection in an enclosure with mechanical and thermal forcing
Sheard, Gregory J; King, Martin P
2012-01-01
A fluid dynamics video is linked to this article, which have been submitted to the Gallery of Fluid Motion as part of the 65th American Physical Society meeting of the Division of Fluid Dynamics, held in San Diego, California, USA, over 17-20 November 2012. The video serves to visualize flows generated in a rectangular enclosure that are subjected to both mechanical and thermal forcing through a common horizontal boundary. This system exhibits features consistent with either horizontal convection or lid-driven cavity flows depending on the ratio between thermal and mechanical stirring, and three different cases are visualized in the linked videos.
Solution of mixed convection heat transfer from isothermal in-line fins
Khalilollahi, Amir
1993-11-01
Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.
Energy Technology Data Exchange (ETDEWEB)
Favre, E.
1997-09-26
coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.
Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…
Similarity solution to a heat equation with convection in an infinite medium
Institute of Scientific and Technical Information of China (English)
Liancun Zheng; Xinxin Zhang; Jicheng He
2003-01-01
A second order heat equation with convection in an infinite medium is studied. Suitable similarity transformations are used to reduce the parabolic heat equation to a class of singular nonlinear boundary value problems. Numerical solutions are presented for different representations of heat conduction, heat convection, heat flux, and power law parameters by utilizing the shooting technique. The results reveal the heat transfer characteristic and the effect of parameters on the solutions.
Convective Heat Transfer of Magnetic Nanofluids in a Microtube
Directory of Open Access Journals (Sweden)
Kuo Jung Lo
2015-05-01
Full Text Available This paper conducts an analysis of convective heat transfer of magnetic nanofluids in an isothermally heated microtube. The main purpose is to investigate the influences of particle volume fraction and external magnetic field strength on the fluid velocity, temperature, pressure, pressure drop, flow drag, and heat transfer rate. Firstly, a flow and heat transfer model is built. A water-based magnetite (Fe3O4 nanofluid is then pre-pared, and a thermal flow test system is further de-signed, so as to verify the theoretical model with experimental data. Finally, the thermal flow fields and the corresponding characteristics are numerically analyzed by using the marching implicit (MI procedure. The results reveal that when the particle volume fraction is increased, the average flow drag also increases while the average heat transfer rate goes down. Furthermore, as the external magnetic field strength is increased, the average flow drag rises and the average heat transfer rate also rises in the general case.
Natural convection of ferrofluids in partially heated square enclosures
Selimefendigil, Fatih; Öztop, Hakan F.; Al-Salem, Khaled
2014-12-01
In this study, natural convection of ferrofluid in a partially heated square cavity is numerically investigated. The heater is located to the left vertical wall and the right vertical wall is kept at constant temperature lower than that of the heater. Other walls of the square enclosure are assumed to be adiabatic. Finite element method is utilized to solve the governing equations. The influence of the Rayleigh number (104≤Ra≤5×105), heater location (0.25H≤yh≤0.75H), strength of the magnetic dipole (0≤γ≤2), horizontal and vertical location of the magnetic dipole (-2H≤a≤-0.5H, 0.2H≤b≤0.8H) on the fluid flow and heat transfer characteristics are investigated. It is observed that different velocity components within the square cavity are sensitive to the magnetic dipole source strength and its position. The length and size of the recirculation zones adjacent to the heater can be controlled with magnetic dipole strength. Averaged heat transfer increases with decreasing values of horizontal position of the magnetic dipole source. Averaged heat transfer value increases from middle towards both ends of the vertical wall when the vertical location of the dipole source is varied. When the heater location is changed, a symmetrical behavior in the averaged heat transfer plot is observed and the minimum value of the averaged heat transfer is attained when the heater is located at the mid of vertical wall.
Experimental study of an upward sub-cooled forced convection in a rectangular channel
Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.
2016-07-01
The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.
DORE, VALENTINA
2010-01-01
The motion of buoyancy driven plumes is, on all scales, the most common heat and momentum transfer mechanism in geophysical flows, well known as Free Convection. Similarly, density stratification due to heating inequalities is also an ordinary scenario in nature. Free Convection phenomenon coupled with a density stratified fluid setting leads to the so-called Penetrative Free Convection (PFC). When a fluid, in static equilibrium, is stably stratified a thermal forcing can produce an unstable ...
Origin of Knudsen forces on heated microbeams
Zhu, Taishan
2010-09-09
The presented work probes the fundamentals of Knudsen forces. Using the direct simulation Monte Carlo (DSMC) method, the flows induced by temperature inhomogeneity within a representative configuration and the Knudsen force acting on a heated microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced flows and Knudsen forces are studied. It has been found that thermal edge flow is the main driven source for the formation of the Knudsen force on microbeams and domain configuration plays an important role in the process.
Directory of Open Access Journals (Sweden)
M.A. Taghikhani
2015-01-01
Full Text Available The magnetic field effect on laminar natural convection flow is investigated in a filled enclosure with internal heat generation using two-dimensional numerical simulation. The enclosure is heated by a uniform volumetric heat density and walls have constant temperature. A fixed magnetic field is applied to the enclosure. The dimensionless governing equations are solved numerically for the stream function, vorticity and temperature using finite difference method for various Rayleigh (Ra and Hartmann (Ha numbers in MATLAB software. The stream function equation is solved using fast Poisson's equation solver on a rectangular grid (POICALC function in MATLAB, voricity and temperature equations are solved using red-black Gauss-Seidel and bi-conjugate gradient stabilized (BiCGSTAB methods respectively. The results show that the strength of the magnetic field has significant effects on the flow and temperature fields. For the square cavity, the maximum temperature reduces with increasing Ra number. It is also observed that at low Ra number, location of the maximum temperature is at the centre of the cavity and it shifts upwards with increase in Ra number. Circulation inside the enclosure and therefore the convection becomes stronger as the Ra number increases while the magnetic field suppresses the convective flow and the heat transfer rate. The ratio of the Lorentz force to the buoyancy force (Ha2/Ra is as an index to compare the contribution of natural convection and magnetic field strength on heat transfer.
Droplet combustion experiments in varying forced convection using microgravity environment
Energy Technology Data Exchange (ETDEWEB)
Mitsuya, Masaki [Tokyo Gas Corporation, 1-5-20 Kaigan, Minato-ku, Tokyo 105-0022 (Japan); Hanai, Hironao [Chiba University of Science, 3 Shiomi-cho, Choshi, Chiba 288-0025 (Japan); Sakurai, Satoru [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kobayashi, Hideaki [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)]. E-mail: kobayashi@ifs.tohoku.ac.jp
2005-12-15
A new microscopic model of the interaction between droplet flames and fine vortex tubes which compose a coherent structure of turbulence was developed. Three non-dimensional numbers were introduced to extend the length scale and time scale so as to be suitable for microgravity experiments using droplets of combustion of about 1 mm in diameter. An experimental apparatus for combustion of a single droplet and that of an array of two droplets in varying airflow was developed, and experiments were performed in microgravity and normal gravity at pressures up to 2.0 MPa for n-nonane and ethanol as fuels. Variations of the instantaneous burning rate constant, K {sub i}, in response to the varying flow velocity was successfully observed. At high pressure, the effects of droplet Reynolds number Re on K {sub i} was clearly seen, while the effects of natural convection, which increases K {sub i} with Re, was seen in normal gravity even in the forced airflows. As for the experiments on combustion of an array of two droplets, K {sub i} reduction of the downstream droplet became weak when the flow direction was varied. However, the K {sub i} reduction of the downstream droplet for flow direction variations was clearly seen for n-nonane droplets but almost not for ethanol droplets. The interaction mechanism between upstream and downstream droplets is considered to result from the elimination of oxidizer supply to the downstream droplet, indicating strong interaction effects of n-nonane droplets for a stoichiometric oxygen-fuel ratio of n-nonane (i.e., 14.0) greater than that of ethanol (i.e., 3.0)
Modeling natural convection heat transfer from perforated plates
Institute of Scientific and Technical Information of China (English)
Zan WU; Wei LI; Zhi-jian SUN; Rong-hua HONG
2012-01-01
Staggered pattern perforations are introduced to isolated isothermal plates,vertical parallel isothermal plates,and vertical rectangular isothermal fins under natural convection conditions.The performance of perforations was evaluated theoretically based on existing correlations by considering effects of ratios of open area,inclined angles,and other geometric parameters.It was found that staggered pattern perforations can increase the total heat transfer rate for isolated isothermal plates and vertical parallel plates,with low ratios of plate height to wall-to-wall spacing (H/s),by a factor of 1.07 to 1.21,while only by a factor of 1.03 to 1.07 for vertical rectangular isothermal fins,and the magnitude of enhancement is proportional to the ratio of open area.However,staggered pattern perforations are detrimental to heat transfer enhancement of vertical parallel plates with large H/s ratios.
Marangoni mixed convection flow with Joule heating and nonlinear radiation
Directory of Open Access Journals (Sweden)
Tasawar Hayat
2015-07-01
Full Text Available Marangoni mixed convective flow of Casson fluid in a thermally stratified medium is addressed. Flow analysis has been carried out in presence of inclined magnetic field. Heat transfer analysis is discussed in the presence of viscous dissipation, Joule heating and nonlinear thermal radiation. The governing nonlinear partial differential equations are first converted into ordinary differential systems and then developed the convergent series solutions. Flow pattern with the influence of pertinent parameters namely the magnetic parameter, Casson fluid parameter, temperature ratio parameter, stratification parameter, Prandtl number, Eckert number and radiation parameter is investigated. Expression of local Nusselt number is computed and analyzed. It is found that the Nusselt number decreases by increasing magnetic parameter, temperature ratio parameter, angle of inclination and stratification parameter. Moreover the effect of buoyancy parameter on the velocity distribution is opposite in both the opposing and assisting flow phenomena. Thermal field and associated layer thickness are enhanced for larger radiation parameter.
Marangoni mixed convection flow with Joule heating and nonlinear radiation
Energy Technology Data Exchange (ETDEWEB)
Hayat, Tasawar [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shaheen, Uzma; Shafiq, Anum [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, Ahmed [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Asghar, Saleem [Comsats Institute of Information Technology, Islamabad 44000 (Pakistan)
2015-07-15
Marangoni mixed convective flow of Casson fluid in a thermally stratified medium is addressed. Flow analysis has been carried out in presence of inclined magnetic field. Heat transfer analysis is discussed in the presence of viscous dissipation, Joule heating and nonlinear thermal radiation. The governing nonlinear partial differential equations are first converted into ordinary differential systems and then developed the convergent series solutions. Flow pattern with the influence of pertinent parameters namely the magnetic parameter, Casson fluid parameter, temperature ratio parameter, stratification parameter, Prandtl number, Eckert number and radiation parameter is investigated. Expression of local Nusselt number is computed and analyzed. It is found that the Nusselt number decreases by increasing magnetic parameter, temperature ratio parameter, angle of inclination and stratification parameter. Moreover the effect of buoyancy parameter on the velocity distribution is opposite in both the opposing and assisting flow phenomena. Thermal field and associated layer thickness are enhanced for larger radiation parameter.
Convective heat and mass transfer in rotating disk systems
Energy Technology Data Exchange (ETDEWEB)
Shevchuk, Igor V. [MBtech Powertrain GmbH, Fellbach-Schmiden (Germany)
2009-07-01
The book describes results of investigations of a series of convective heat-and-mass transfer problems in rotating-disk systems, namely, over free rotating disks, under conditions of transient heat transfer, solid-body rotation of fluid, orthogonal flow impingement onto a disk, swirl radial flow between parallel co-rotating disks, in cone-disk systems and for Prandtl and Schmidt numbers larger than one. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD. The book is aimed at the professional audience of academic researchers, industrial R and D engineers, university lecturers and graduate/postgraduate students working in the area of rotating-disk systems. (orig.)
Turbulence convective heat transfer for cooling the photovoltaic cells
Arianmehr, Iman
Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.
Liquid-mixed convection in a closed enclosure with highly-intensive heat fluxes
Energy Technology Data Exchange (ETDEWEB)
Rivas-Cardona, A.; Hernandez-Guerrero, A. [Universidad de Guanajuato, Facultad de Ingenieria Mecanica, Electrica y Electronica, Salamanca, Guanajuato (Mexico); Romero-Mendez, R. [Universidad Autonoma de San Luis Potosi, Facultad de Ingenieria, San Luis Potosi (Mexico); Lesso-Arroyo, R. [Instituto Tecnologico de Celaya, Dept. de Ingenieria Mecanica, Celaya Gto. (Mexico)
2004-09-01
Laminar-mixed convection of a dielectric fluid contained in a two-dimensional enclosure is investigated in the present paper. Within the enclosure discrete heat sources of a constant heat flux are flush-mounted on a vertical wall. Forced flow conditions are imposed by placing a propeller at different locations within the enclosure. The analysis is performed for a wide range of heat fluxes, from the order of 10,000 to 100,000 W/m{sup 2}, way in the trend of current computer chips, such as the Pentium IV, and the future ones. Emphasis is placed on the influence of the governing parameters, such as buoyancy parameters, the aspect ratio of the enclosure, and location of the propeller. The flow and temperature fields are obtained as part of the solution. (Author)
A theoretical study of the spheroidal droplet evaporation in forced convection
Energy Technology Data Exchange (ETDEWEB)
Li, Jie, E-mail: leejay1986@163.com; Zhang, Jian
2014-11-07
In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet.
Energy Technology Data Exchange (ETDEWEB)
Bucci, M., E-mail: matteo.bucci@cea.fr [Univ. of Pisa, DIMNP, Pisa (Italy); CEA Saclay, CEA/DEN/DANS/DM2S/SFME/LETR (France); Ambrosini, W.; Forgione, N. [Univ. of Pisa, DIMNP, Pisa (Italy); Lioce, D [Univ. of Pisa, DIMNP, Pisa (Italy); Westinghouse Electric Belguim, Nivelles (Belgium)
2011-07-01
This paper discusses the results obtained from recent experimental investigations devoted to the study of steam condensation in the presence of air and a light noncondensable gas. The experiments are intended to provide data for the validation of engineering models and CFD codes. The original experimental data herein discussed focus on forced convection turbulent boundary layer conditions and involve atmospheric pressure, different conditions for mixture velocity (from 1.5 to 3.5 m/s), mixture composition (form 0 to 75 per cent of the light species in the overall amount of noncondensable gases) and two nominal electrical power supply of the steam generator. The experimental data are qualified against correlations based on the heat and mass transfer analogy and to the predictions obtained by an in house condensation model implemented in a commercial CFD code. (author)
Institute of Scientific and Technical Information of China (English)
C. Henselowsky; H.C. Kuhlmann; H.J. Rath
2001-01-01
The heat transfer from an electrically heated cylinder (wire) of finite length to the surrounding fluid can be divided into heat radiation, conduction and convection. A technical application of these cylinders with typical di mensions of 1-2 mm length and a few micrometers diameter is the Hot-Wire-Anemometry. This systematic study should clarify the influence of free convection to three dimensional heat transfer of cylinders. For this aim it is planned to investigate Reynolds numbers below Re = 1 (creeping flow). For this reason measurements should be done under lg in the earth laboratory and also under microgravity (μg) conditions. Comparisons of these meas urements under otherwise same conditions allows to distinguish between the pure convection heat transfer and the contributions due to conduction and other effects.For measurements underμg the Drop Tower Bremen can be used as research facility. Due to the fast response of convection to changes in the gravity conditions the Drop Tower is an ideal and cost efficient experimental tool.The experimental setup is build to operate at velocity range of 0-1 m/s which includes the whole range of con vection from pure free convection at 0 m/s over mixed convection up to pure forced convection at velocities abo ve about 0.15 m/s. This velocity region corresponds to a range of the Reynolds number of Re = 0 - 0.18 for a cylinder of 5 μ m diameter at Tf= 140℃ in air at an ambient temperature of about 21℃.
Shang, De-Yi
2012-01-01
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...
Convective Heating of the LIFE Engine Target During Injection
Energy Technology Data Exchange (ETDEWEB)
Holdener, D S; Tillack, M S; Wang, X R
2011-10-24
Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.
The eddy heat-flux in rotating turbulent convection
Rüdiger, G; Kitchatinov, L L; Küker, M
2004-01-01
The three components of the heat-flux vector $F =\\rho C_p are numerically computed for a stratified rotating turbulent convection using the NIRVANA code in a flat box. The latitudinal component $F_\\theta$ proves to be negative (positive) in the northern (southern) hemisphere so that the heat always flows towards the poles. As a surprise, the radial heat-flux $F_r$ peaks at the equator rather than at the poles (Taylor numbers O(10^6)). The same behavior is observed for the radial turbulence intensity $$ which for \\emph{free} turbulence is also believed to peak at the poles (see Eq. (19) below). As we can show, however, the consequences of this unexpected result (also obtained by Kaepylae, Korpi and Tuominen 2004) for the theory of differential rotation are small as mainly the $F_\\theta$ is responsible to solve the `Taylor number puzzle'. In all our simulations the azimuthal component $F_\\phi$ proves to be negative so that the rotating turbulence produces an westwards directed azimuthal heat-flux which should ...
Hsien-Hung Ting; Shuhn-Shyurng Hou
2015-01-01
This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that h...
Zeinali Heris, Saeed; Noie, Seyyed Hossein; Talaii, Elham; Sargolzaei, Javad
2011-02-28
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
Directory of Open Access Journals (Sweden)
Zeinali Heris Saeed
2011-01-01
Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
Grooms, Ian
2014-01-01
The non-hydrostatic, quasigeostrophic approximation for rapidly rotating Rayleigh-B\\'enard convection admits a class of exact `single mode' solutions. These solutions correspond to steady laminar convection with a separable structure consisting of a horizontal planform characterized by a single wavenumber multiplied by a vertical amplitude profile, with the latter given as the solution of a nonlinear boundary value problem. The heat transport associated with these solutions is studied in the regime of strong thermal forcing (large reduced Rayleigh number $\\widetilde{Ra}$). It is shown that the Nusselt number $Nu$, a nondimensional measure of the efficiency of heat transport by convection, for this class of solutions is bounded below by $Nu\\gtrsim \\widetilde{Ra}^{3/2}$, independent of the Prandtl number, in the limit of large reduced Rayleigh number. Matching upper bounds include only logarithmic corrections, showing the accuracy of the estimate. Numerical solutions of the nonlinear boundary value problem for ...
Experimental study of natural convective heat transfer in a vertical hexagonal sub channel
Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur
2012-06-01
The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.
DEFF Research Database (Denmark)
Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund
2013-01-01
air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...... ventilation, the convective heat transfer was well predicted by existing correlations. Nevertheless the change of floor emissivity influenced the CHTC at the surface of interest....
International Nuclear Information System (INIS)
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra)n, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays
Energy Technology Data Exchange (ETDEWEB)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diabatically Forced Frontogenesis Near Surface As Trigger For The Release of Strong Convection
Kurz, Manfred
One prerequisite for the formation of mesoscale convective systems is the existance of moist potentially unstable air masses in the lower troposphere. For the release of the instability, however, often an ascending motion is necessary in order to destroy stable layers on top of the moist air which would prevent convection, and to bring the air to saturation. In this respect the macroscale ascent ahead of an approaching upper trough may function as trigger for the release of convection. Another favourable process is the ascending motion of the warm air within circulations across a frontal zone which undergoes a frontogenesis either in the horizontal wind field or by diabatic effects. During summer time real fronts between different air masses are often ill defined over the continent, and circulatory motions in their neighbourhood remain rather weak. There is, however, a mechanism which may lead to the formation of a very strong temperature contrast near surface within short time. That happens at the edge of larger cloud and precipitation areas during day time due to the different diabatic heat fluxes across the cloud edge: Whereas the temperature below the cloud masses remains more or less constant or is even reduced by evaporation of falling rain, it rapidly increases due to heating from the ground in the area with no or only few clouds. As consequence of this diabatically forced frontogenesis a solenoidally direct circulation across the newly established frontal zone is released with ascent of the heated air, descent of the cooler air and an ageostrophic motion from the cold towards the warm air near surface. At the same time the pressure rises - at least relatively - in the cold air and falls in the warm air so that a pressure gradient is built up between both air masses. If the warm air is potentially unstable, the ascent within the circulation may lead to the release of the instability and the formation of convective clouds ahead of the cloud edge and parallel
Characterizations and Convective Heat Transfer Performance of Nanofluids
Yang, Yijun
heat transfer enhancement to the pumping power increase (termed as merit parameter) as a function of Reynolds numbers indicates that the increase in pumping power is much greater than the corresponding heat transfer enhancement. This study additionally showed that concentrations of ND50-Syltherm800, TiO2-water and Al2O3-water nanofluids did not enhance convection heat transfer. Hence, the effect of nanoparticles on the heat transfer properties of a nanofluid appears dependent on the particular type of nanoparticle employed.
Effect of heat flux on differential rotation in turbulent convection
Kleeorin, N
2006-01-01
We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations and the turbulent heat flux. We used a spectral $\\tau$ approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of $\\sim 10 (L_\\rho / l_0)^2$, where $l_{0}$ is the maximum scale of turbulent motions and $L_\\rho$ is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.
Optimal Heat Transport in Rayleigh-B\\'enard Convection
Sondak, David; Waleffe, Fabian
2015-01-01
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-B\\'enard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Ra\\sim 10^9$. Power law scalings of $Nu\\sim Ra^{\\gamma}$ are observed with $\\gamma\\approx 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr \\lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a...
Energy Technology Data Exchange (ETDEWEB)
Chato, J.C.; Crowley, J.M.
1981-05-01
A multi-faceted research program has been performed to investigate in detail several aspects of free and forced convective cooling of underground electric cable systems. There were two main areas of investigation. The first one reported in this volume dealt with the fluid dynamic and thermal aspects of various components of the cable system. In particular, friction factors for laminar flow in the cable pipes with various configurations were determined using a finite element technique; the temperature distributions and heat transfer in splices were examined using a combined analytical numerical technique; the pressure drop and heat transfer characteristics of cable pipes in the transitional and turbulent flow regime were determined experimentally in a model study; and full-scale model experimental work was carried out to determine the fluid dynamic and thermal characteristics of entrance and exit chambers for the cooling oil. The second major area of activity, reported in volume 2, involved a feasibility study of an electrohydrodynamic pump concept utilizing a traveling electric field generated by a pumping cable. Experimental studies in two different configurations as well as theoretical calculations showed that an electrohydrodynamic pump for the moving of dielectric oil in a cable system is feasible.
Direct numerical simulation of liquid sodium droplet combustion in forced convection air flow
International Nuclear Information System (INIS)
In case of sodium leakage in liquid metal fast breeder reactor, the liquid sodium comes out in droplet form from a pipe accompanied with ignition and combustion Combustion heat and reaction products might affect integrity of steel liners in piping rooms. A direct numerical simulation code, COMET, is developed to simulate the combustion of a liquid sodium droplet. The extended MAC method coupled with a higher-order upwind scheme is used to calculate reacting compressible flow. Multicomponent counter diffusion of chemical species, mass and energy transfer by sodium evaporation, and heat transfer by radiation and thermal conductivity are calculated coupling with the flow. Chemical reaction of sodium, oxygen and water vapor is calculated by using the equation-solving methods of equilibrium constants. Thermodynamic properties of the mixed gas are evaluated based on the molecular transport theories. By using COMET, the single droplet combustion of liquid sodium in forced convection air flow is numerically simulated. Spatial distributions such as combustion heat, temperature, pressure, and chemical species behaviors such as formation, decomposition and transport are analyzed and discussed. The change of the droplet diameter agrees closely with the d-square law that has been experimentally observed and theoretically derived. (author)
Numerical Simulations of Heat ExplosionWith Convection In Porous Media
Allali, Karam; Bikany, Fouad; Taik, Ahmed; Volpert, Vitaly
2013-01-01
In this paper we study the interaction between natural convection and heat explosion in porous media. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary and oscillating convection regimes and oscillating heat explosion are observed. The models with quasi-stationary and unstationary Darcy equation are compared.
International Nuclear Information System (INIS)
We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm3 convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals
Energy Technology Data Exchange (ETDEWEB)
Surducan, E.; Surducan, V.; Neamtu, C., E-mail: camelia.neamtu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat St., 400293, Cluj‑Napoca (Romania); Limare, A.; Di Giuseppe, E. [Institut de Physique du Globe de Paris (IPGP), Univ. Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75005, Paris (France)
2014-12-15
We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.
Describing the Heat Transport of Turbulent Rayleigh--B\\'enard Convection by POD methods
Lülff, Johannes
2015-01-01
Rayleigh--B\\'enard convection, which is the buoyancy-induced motion of a fluid enclosed between two horizontal plates, is an idealised setup to study thermal convection. We analyse the modes that transport the most heat between the plates by computing the proper orthogonal decomposition (POD) of numerical data. Instead of the usual POD ansatz of finding modes that describe the energy best, we propose a method that is optimal in describing the heat transport. Thereby, we can determine the modes with the major influence on the heat transport and the coherent structures in the convection cell. We also show that in lower-dimensional projections of numerical convection data, the newly developed modes perform consistently better than the standard modes. We then use this method to analyse the main modes of three-dimensional convection in a cylindrical vessel as well as two-dimensional convection with varying Rayleigh number and varying aspect ratio.
Flow reversal and heat transfer of fully developed mixed convection in vertical channels
Cheng, Chin-Hsiang; Kou, Hong-Sen; Huang, Wen-Hsiung
1990-07-01
The present analysis is concerned with flow reversal phenomena and heat transfer characteristics of the fully developed laminar combined free and forced convection in the heated vertical channels. Three fundamental combinations of thermal boundary conditions on the respective wall surface (namely isoflux-isoflux, isoflux-isothermal, and isothermal-isothermal) are considered separately so as to investigate extensively their distinct influence on the flow pattern. Results of the velocity distribution and temperature distribution as well as the Nusselt number in terms of bulk mean temperature are carried out. Based on the analytical solutions obtained, flow reversal adjacent to the relatively colder wall is found to exist within the channel as Re/Gr is below a threshold value related to the thermal boundary conditions. Parameter zones for the occurrence of reversed flow are presented. Comparisons and verification are made using the existing numerical solutions at locations far downstream of developing flow.
Forced convection flow boiling and two-phase flow phenomena in a microchannel
Na, Yun Whan
2008-07-01
The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid
Energy Technology Data Exchange (ETDEWEB)
Hayat, T. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Iqbal, Z., E-mail: zahidiqbal_qau@yahoo.com [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Mustafa, M. [Research Centre for Modeling and Simulation, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)
2012-11-15
Highlights: Black-Right-Pointing-Pointer Boundary layer flow of an upper-convected Maxwell (UCM) fluid over a moving surface. Black-Right-Pointing-Pointer Convective boundary conditions have been used. Black-Right-Pointing-Pointer Series solutions are obtained by homotopy analysis method (HAM). Black-Right-Pointing-Pointer Graphical results for various interesting parametric values. - Abstract: This study discusses the flow and heat transfer in an upper-convected Maxwell (UCM) fluid over a moving surface in the presence of a free stream velocity. The convective boundary conditions have been handled. Similarly transformations are invoked to convert the partial differential equations governing the steady flow of a Maxwell fluid into an ordinary differential system. This system is solved by a homotopic approach. The effects of influential parameters such as Deborah number ({beta}), Prandtl number (Pr), Eckert number (Ec), suction parameter (S) and ratio ({lambda}) have been thoroughly examined.
Fritts, David C.
2004-01-01
The specific objectives of this research effort included the following: 1) Quantification of gravity wave propagation throughout the lower and middle atmosphere in order to define the roles of topographic and convective sources and filtering by mean and low-frequency winds in defining the wave field and wave fluxes at greater altitudes; 2) The influences of wave instability processes in constraining wave amplitudes and fluxes and generating turbulence and transport; 3) Gravity wave forcing of the mean circulation and thermal structure in the presence of variable motion fields and wave-wave interactions, since the mean forcing may be a small residual when wave interactions, anisotropy, and momentum and heat fluxes are large; 4) The statistical forcing and variability imposed on the thermosphere at greater altitudes by the strong wave forcing and interactions occurring in the MLTI.
Directory of Open Access Journals (Sweden)
Minea Alina Adriana
2015-01-01
Full Text Available The aim of this paper is to present a theoretical analysis of a few convection problems. The investigations were started from the geometry of a classic muffle manufactured furnace. During this analytical study, different methodologies have been carefully chosen in order to compare and evaluate the effects of applying different analytical methods of the convection heat transfer processes. In conclusion, even if there are available a lot of analytical methods, natural convection in enclosed enclosures can be studied correctly only with numerical analysis. Also, in this article is presented a case study on natural convection application in a closed heated enclosure.
Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type
International Nuclear Information System (INIS)
In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined
Adjoint optimization of natural convection problems: differentially heated cavity
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2016-06-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here
Energy Technology Data Exchange (ETDEWEB)
Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering
1993-09-01
Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.
Heat convection in a micro impinging jet system
Mai, John Dzung Hoang
2000-10-01
coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.
Energetic dynamics of a rotating horizontal convection model with wind forcing
Zemskova, Varvara; White, Brian; Scotti, Alberto
2015-11-01
We present a new test case for rotating horizontal convection, where the flow is driven by differential buoyancy forcing along a horizontal surface. This simple model is used to understand and quantify the influence of surface heating and cooling and wind stress on the Meridional Overturning Circulation. The domain is a rectangular basin with surface cooling at both ends (the poles) and surface warming in the middle (equatorial) region. To model the effect of the Antarctic Circumpolar Current, reentrant channel is placed near the Southern pole. Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the channel. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The relative contributions of surface buoyancy and wind forcing and the energetic balance are analyzed at a Rayleigh number of 108 and a relatively high aspect ratio of [5, 10, 1] in zonal, meridional and vertical directions, respectively. The overall dynamics, including large-scale overturning, baroclinic eddying, and turbulent mixing are investigated using the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.
Directory of Open Access Journals (Sweden)
M.A. Ahmed
2015-09-01
Full Text Available In this paper, turbulent forced convection of nanofluids flow in triangular-corrugated channels is numerically investigated over Reynolds number ranges of 1000–5000. Four different types of nanofluids which are Al2O3, CuO, SiO2 and ZnO–water with nanoparticles diameters in the range of 30–70 nm and the range of nanoparticles volume fraction from 0% to 4% have been considered. The governing equations of mass, momentum and energy are solved using finite volume method (FVM. The low Reynolds number k–ε model of Launder and Sharma is adopted as well. It is found that the average Nusselt number, pressure drop, heat transfer enhancement, thermal–hydraulic performance increase with increasing in the volume fraction of nanoparticles and with decreasing in the diameter of nanoparticles. Furthermore, the SiO2–water nanofluid provides the highest thermal–hydraulic performance among other types of nanofluids followed by Al2O3, ZnO and CuO–water nanofluids. Moreover, the pure water has the lowest heat transfer enhancement as well as thermal–hydraulic performance.
Analysis of the application of an open-cycle absorption heat pump in industrial convection drying
Energy Technology Data Exchange (ETDEWEB)
Lazzarin, R.M.; Gasparella, A.; Longo, G.A. [Dipt. di Tecnica e Gestione dei Sistemi Industriali, Univ. degli Studi di Padova, Vicenza (Italy)
1999-07-01
Heat recovery in convection driers has been investigated comparing different solutions (regenerative heat exchanger, vapour compression heat pump, sorption dehumidification heat pump) in a specific application of food industry. Systems based on chemical dehumidification show the best performance allowing a primary energy saving higher than 40% with respect to traditional plants. (orig.)
Desmon, Leland G; Sams, Eldon W
1950-01-01
A heat-transfer investigation was conducted with air in an electrically heated platinum tube with long-approach entrance, inside diameter of 0.525 inch, and effective heat-transfer length of 24 inches over ranges of Reynolds number up to 320,000, average inside-tube-wall temperature up to 3053 degrees R, and inlet-air temperature up to 1165 degrees R. Correlation of data by the conventional Nusselt relation resulted in separation of data with tube-wall temperature. Good correlation was obtained, however, by use of a modified Reynolds number.
Makinde, O. D.; Chinyoka, T.
2010-12-01
This present study consists of a numerical investigation of transient heat transfer in channel flow of an electrically conducting variable viscosity Boussinesq fluid in the presence of a magnetic field and thermal radiation. The temperature dependent nature of viscosity is assumed to follow an exponentially model and the system exchanges heat with the ambient following Newton's law of cooling. The governing nonlinear equations of momentum and energy transport are solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that combined effect of thermal radiation, magnetic field, viscosity variation and convective cooling have significant impact in controlling the rate of heat transfer in the boundary layer region.
Directory of Open Access Journals (Sweden)
Ziyaddin RECEBLİ
2008-01-01
Full Text Available In some studies, the effect of magnetic field on heat convection has been investigated given that physical properties are constant regardless of temperature. The effect of magnetic field on heat convection and fluids whose physical properties change by temperature has been investigated in this study as physical properties of fluids change by the effect of temperature. Momentum, continuity and energy equations including electromagnetic force affecting the fluid were used in the solution. Temperatures at axial and radial directions and Nusselt numbers were calculated depending on magnetic field intensity and other physical properties of fluid by solving the equation system written in cylindrical coordinates system by means of one of the numerical methods which is finite difference method. According to results, velocity and temperature of the cooled fluid decreased following an increase in the intensity of magnetic field placed vertically to flow direction. As determined in the previous one, this study also indicated that the increase in Reynolds number increases Nusselt number, and increasing the effect of magnetic field decreases Nusselt number. The theoretical results of the present study are in conformity with the results of our previous one.
International Nuclear Information System (INIS)
This paper is concerned with an unsteady, laminar, free convective flow over a heated sphere with the effect of internal heat generation/absorption. The dimensionless governing equations have been solved employing the finite difference method as well as a perturbation method for short time and an asymptotic method for long time. We examine the effects of the physical parameters, such as, the Prandtl number, Pr, and the heat generation/absorption parameter, γ, on the friction factor and heat transfer rate as well as the velocity and temperature profiles. It is observed that when the Prandtl number, Pr, is increased, the friction factor decreases while the heat transfer rate increases. In the presence of internal heat generation, the friction factor increases while the heat transfer rate reduces. The reverse pattern is found with the heat absorption parameter. The momentum and thermal boundary layers become thicker with an increase of the heat generation parameter. A comparison among the numerical solutions, the perturbation solutions for short time and the asymptotic solutions for long time has been presented which provides a good agreement among the solutions. (authors)
Study on forced air convection cooling for electronic assemblies
Institute of Scientific and Technical Information of China (English)
2008-01-01
The slotted fin concept was employed to improve the air cooling performance of plate-fin in heat sinks.Numerical simulations of laminar heat transfer and flow pressure drop were conducted for the integral plate fin,discrete plate fin and discrete slotted fin heat sinks.It is found that the performance of the discrete plate fin is better than that of the integral continuum plate fin and the performance of slotted fin is better than that of the discrete plate fin at the same pumping power of the fan.A new type of heat sink characterized by discrete and slotted fin surfaces with thinner fins and smaller spaces between fins is then proposed.Preliminary computation shows that this type of heat sink may be useful for the next generation of higher thermal load CPUs.The limit of cooling capacity for air-cooling techniques was also addressed.
Energy Technology Data Exchange (ETDEWEB)
Zeinali Heris, S. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of); Nasr Esfahany, M. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of)]. E-mail: mnasr@cc.iut.ac.ir; Etemad, S.Gh. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of)
2007-04-15
Nanofluids are suspensions of metallic or nonmetallic nanopowders in base liquid and can be employed to increase heat transfer rate in various applications. In this work laminar flow forced convection heat transfer of Al{sub 2}O{sub 3}/water nanofluid inside a circular tube with constant wall temperature was investigated experimentally. The Nusselt numbers of nanofluids were obtained for different nanoparticle concentrations as well as various Peclet and Reynolds numbers. Experimental results emphasize the enhancement of heat transfer due to the nanoparticles presence in the fluid. Heat transfer coefficient increases by increasing the concentration of nanoparticles in nanofluid. The increase in heat transfer coefficient due to presence of nanoparticles is much higher than the prediction of single phase heat transfer correlation used with nanofluid properties.
Cebeci, Tuncer
1989-01-01
This book is designed to accompany Physical and Computational Aspects of Convective Heat Transfer by T Cebeci and P Bradshaw and contains solutions to the exercises and computer programs for the numerical methods contained in that book Physical and Computational Aspects of Convective Heat Transfer begins with a thorough discussion of the physical aspects of convective heat transfer and presents in some detail the partial differential equations governing the transport of thermal energy in various types of flows The book is intended for senior undergraduate and graduate students of aeronautical, chemical, civil and mechanical engineering It can also serve as a reference for the practitioner
International Nuclear Information System (INIS)
A new version of the ENERGY series code, ENERGY-IV, was written for predicting coolant temperature distributions in wire-wrapped rod assemblies used in the Liquid Metal Fast Breeder Reactor. The ENERGY-IV Code is applicable to both steady-state forced and mixed convection operation for a single isolated assembly. (The SUPERENERGY Code, [Basehore (1980)] is applicable to core wide forced convection analysis.) ENERGY-IV is an empirical code designed to be fast running. Hence the core designer can use it as an inexpensive thermal hydraulic design or diagnosis tool
Convective Heat Transfer at the Martian Boundary Layer, Measurement and Model
Tomás Soria-Salinas, Álvaro; Zorzano-Mier, María Paz; Martín-Torres, Javier
2016-04-01
We present a measuring concept to measure the convective heat transfer coefficient h near a spacecraft operating on the surface of Mars. This coefficient can be used to derive the speed of the wind and direction, and to detect its modulations. This measuring concept will be used in the instrument HABIT (HabitAbility: Brines, Irradiance and Temperature) for the Surface Platform of ExoMars 2018 (ESA-Roscosmos). The method is based on the use of 3 Resistance Temperature Thermodetectors (RTD) that measure the temperature at 3 locations along the axial direction of a rod of length L: at the base of the rod, Tb, an intermediate point x = L/n, TLn, and the tip,Ta. This sensing fin is called the Air Temperature Sensor (ATS). HABIT shall incorporate three ATS, oriented in perpendicular directions and thus exposed to wind in a different way. Solving these equations for each ATS, provides three fluid temperatures Tf as well as three m parameters that are used to derive three heat transfer coefficients h. This magnitude is dependent on the local forced convection and therefore is sensitive to the direction, speed and modulations of the wind. The m-parameter has already proven to be useful to investigate the convective activity at the planetary boundary layer on Mars and to determine the height of the planetary boundary layer. This method shall be presented here by: 1) Introducing the mathematical concepts for the retrieval of the m-parameter; 2) performing ANSYS simulations of the fluid dynamics and the thermal environment around the ATS-rods under wind conditions in Mars; and 3) comparing the method by using data measurements from the Rover Environmental Monitoring Station (REMS) at the Curiosity rover of NASA's Mars Science Laboratory project currently operating on Mars. The results shall be compared with the wind sensor measurements of three years of REMS operation on Mars.
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2015-01-01
Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the
Forced convection along a wall. Liquid metals application
International Nuclear Information System (INIS)
From the experimental results in pipes, heated with constant wall heat flux, the dynamical and thermal structure of the wall region of a turbulent flow is studied. We can show that, for high values of Reynolds and Peclet numbers, logarithmic profiles of velocity and temperature exist. A continuous description of the wall is obtained with the use of simple modelisation. The study of the thermal wall region structure is then made in the case of a liquid metal flow
Analysis of steady state combined forced and free convection data in rod bundles
International Nuclear Information System (INIS)
Fuel and blanket assemblies in an LMFBR are subjected to a wide range of power and power gradients during their life in the reactor. To accommodate these changes the assemblies operate in a wide range of flow regimes extending from forced convection, turbulent flow, to mixed convection, laminar flow. At low flow conditions the transverse temperature gradient in an assembly is considerably flattened because of energy redistribution by not only wire-wrap mixing and thermal conduction but also by flow redistribution because of buoyancy-induced crossflow. This has significance in LMFBR design. For the mixed convection regime of bundle operation, the transverse velocity profiles within a bundle change axially because of buoyancy-induced crossflow. It was therefore decided to use the ENERGY II and ENERGY III computer programs for the analysis of the rod bundle mixed convection data
Negative Knudsen force on heated microbeams
Zhu, Taishan
2011-11-18
Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was, however, neither observed in experiment [A. Passian et al., Phys. Rev. Lett. 90, 124503 (2003)], nor captured in the latest numerical study [J. Nabeth et al., Phys. Rev. E 83, 066306 (2011)]. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. The discovered phenomenon could find its applications in novel mechanisms for pressure sensing and actuation.
Minder, J. R.; Smith, R. B.; Nugent, A. D.; Kirshbaum, D. J.
2011-12-01
Shallow convection is a pervasive feature of orographic precipitation, but its detailed role remains poorly understood. The mountainous Caribbean island of Dominica is a natural laboratory for isolating the role of shallow convection in orographic rainfall. It lies in a region of persistent easterly trade wind flow, and receives much of its rainfall from shallow convection that is forced mechanically by ascent of easterly flow over the Dominican terrain. The Dominica Experiment (DOMEX) has focused on convective orographic precipitation over the island from 2007-2011. The first phase of the project developed a climatology of rainfall and theories to explain the observed enhancement over the terrain. The second phase of the project (Apr-May 2011) has provided a detailed view of 20 individual rainfall events with data from: surface gauges, time-lapse photography, operational radar scans, a mountaintop weather station, and both in situ and remote observations from the University of Wyoming King Air research aircraft. Focusing on ascent--forced convection during DOMEX has revealed a number of the key processes that control the rainfall. Upwind of the island, clouds and water vapor anomalies exist that appear to play a crucial role in seeding the convection over the terrain and determining its vigor. Over the windward slopes the air is readily lifted with little flow deflection. Strong convective cells rapidly develop to produce large rainfall rates. Over the lee slopes of the terrain there is an abrupt transition to a deep and turbulent plunging flow that quickly eliminates convective clouds, but allows for the spillover of rainfall. The air that passes over the island is transformed such that low-levels are dried, warmed and decelerated, and the downwind wake becomes less hospitable to trade wind cumuli.
Convective heat transfer and flow characteristics of Cu-water nanofluid
Institute of Scientific and Technical Information of China (English)
李强; 宣益民
2002-01-01
An experimental system is built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube. Both the convective heat transfer coefficient and friction factor of Cu-water nanofluid for the laminar and turbulent flow are measured. The effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on the heat transfer and flow characteristics are discussed in detail. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid and show that the friction factor of the sample nanofluid with the low volume fraction of nanoparticles is almost not changed. Compared with the base fluid, for example, the convective heat transfer coefficient is increased about 60% for the nanofluid with 2.0 vol% Cu nanoparticles at the same Reynolds number. Considering the factors affecting the convective heat transfer coefficient of the nano- fluid, a new convective heat transfer correlation for nanofluid under single-phase flows in tubes is established. Comparison between the experimental data and the calculated results indicate that the correlation describes correctly the energy transport of the nanofluid.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Directory of Open Access Journals (Sweden)
Aaiza Gul
Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
The computer code CONDIF-01 (release 2) for transient convective-conductive heat transfer
International Nuclear Information System (INIS)
CONDIF-01 is a finite element computer code developed at J.R.C. Ispra to solve natural and forced convection problems, for use in Post Accident Heat Removal studies following a hypothetical fast-reactor core meltdown. The new version of the code is capable of analysing problems in which there exists initially a liquid (solid) region which may change phase to solid (liquid), as time proceeds. A variant of the enthalpy method is employed to model the phase change process. The presence of structures enclosing the liquid (solid) region is accounted for, but such structures are assumed to remain in the solid phase. Plane and axisymmetric situations may be analysed. The essential characteristics of the code are outlined here. This report gives instructions for preparing input data to CONDIF-01, release 2, and describes two test problems in order to illustrate both the input and the output of the code
On the Asymptotic Approach to Thermosolutal Convection in Heated Slow Reactive Boundary Layer Flows
Directory of Open Access Journals (Sweden)
Stanford Shateyi
2008-01-01
Full Text Available The study sought to investigate thermosolutal convection and stability of two dimensional disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate composed of a chemical species using a self-consistent asymptotic method. The chemical species reacts as it diffuses into the nearby fluid causing density stratification and inducing a buoyancy force. The existence of significant temperature gradients near the plate surface results in additional buoyancy and decrease in viscosity. We derive the linear neutral results by analyzing asymptotically the multideck structure of the perturbed flow in the limit of large Reynolds numbers. The study shows that for small Damkohler numbers, increasing buoyancy has a destabilizing effect on the upper branch Tollmien-Schlichting (TS instability waves. Similarly, increasing the Damkohler numbers (which corresponds to increasing the reaction rate has a destabilizing effect on the TS wave modes. However, for small Damkohler numbers, negative buoyancy stabilizes the boundary layer flow.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Hemispheric Asymmetry of Ionospheric Convection and Joule Heating and Its Impact on the Thermospher
Lu, G.
2014-12-01
The Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure has proved to be a very useful tool to estimate the large-scale simultaneous distributions of ionospheric conductance, electric potential, and other related quantities by combining simultaneous measurements from satellites, radars, and ground magnetometers. In this paper we apply the AMIE procedure to compare the high-latitude ionospheric convection and Joule heating patterns between the northern and southern hemispheres and to investigate how the hemispheric asymmetry varies with different solar wind and IMF conditions. We also investigate the impact of the asymmetric high-latitude magnetospheric forcing on themospheric dynamics based on the coupled AMIE-TIMEGCM simulations as well as through intercomparison with observations.
Directory of Open Access Journals (Sweden)
Sourtiji Ehsan
2012-01-01
Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parameters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Rayleigh numbers. The influence of the magnetic field has been also studied and deduced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.
A Numerical Solution of Natural Convection Heat Transfer in an Enclosure with a Corrugated Surface
International Nuclear Information System (INIS)
One of the most important application of corrugated surfaces in nuclear reactors is the cooling towers in the secondary loop for heat dissipation of the primary cycle. In this paper a numerical solution of natural convection heat transfer in an enclosure with a corrugated surface is presented with air as a working fluid. The enclosure is formed of three flat surfaces and a corrugated surface. The corrugated and top surfaces are respectively heated and cooled isothermally. The side flat surfaces are maintained adiabatically. The effects of geometrical parameters, such as the aspect ratio, inclination I angle and shape of corrugation on heat transfer rate are presented. The solution scheme is based on two dimensional model which is governed by continuity, momentum, and energy equation and simplified through the Boussinesque approximation for buoyancy forces. The solution scheme employs an algebraic transformation of the enclosure geometry that maps the physical domain into a rectangular domain to avoid the task of numerically generating boundary fitted coordinates. Stream function-vorticity formulation is used, a finite element technique is then developed and employed to solve the mathematical model. The numerical results obtained from the present model are compared with the available published experimental and numerical results and a good agreement is observed. Based on the numerical results, the average Nusselt number is correlated with Rayleigh number, amplitude Aspect ratio and number of corrugatio .
Joule-Thomson effect and internal convection heat transfer in turbulent He II flow
Walstrom, P. L.
1988-01-01
The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.
Rotating turbulent Rayleigh–Bénard convection subject to harmonically forced flow reversals
Geurts, Bernard J.; Kunnen, Rudie P.J.
2014-01-01
The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong
Optimization of natural convection heat transfer of Newtonian nanofluids in a cylindrical enclosure
Institute of Scientific and Technical Information of China (English)
Hamid Moradi; Bahamin Bazooyar; Ahmad Moheb; Seyed Gholamreza Etemad
2015-01-01
This study characterizes and optimizes natural convection heat transfer of two Newtonian Al2O3 and TiO2/water nanofluids in a cylindrical enclosure. Nusselt number (Nu) of nanofluids in relation to Rayleigh number (Ra) for different concentrations of nanofluids is investigated at different configurations and orientations of the enclosure. Results show that adding nanoparticles to water has a negligible or even adverse influence upon natural convec-tion heat transfer of water:only a slight increase in natural convection heat transfer of Al2O3/water is observed, while natural convection heat transfer for TiO2/water nanofluid is inferior to that for the base fluid. Results also reveal that at low Ra, the likelihood of enhancement in natural convection heat transfer is more than at high Ra:at low Ra, inclination angle, aspect ratio of the enclosure and nanoparticle concentration influence natural convec-tion heat transfer more pronouncedly than that in high Ra.
The effect of Coriolis force on nonlinear convection in a porous medium
Directory of Open Access Journals (Sweden)
D. H. Riahi
1994-01-01
Full Text Available Nonlinear convection in a porous medium and rotating about vertical axis is studied in this paper. An upper bound to the heat flux is calculated by the method initiated first by Howard [6] for the case of infinite Prandtl number.
Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro
The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.
Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code
International Nuclear Information System (INIS)
be provided with expected results for the single-phase and forced convective phenomena. For the future study, different materials for the heating part are considered, such as other metals or silicon carbide (SiC) tube, which is a candidate material of fuel claddings for current and next-generation reactors
Directory of Open Access Journals (Sweden)
Prasad Kerehalli
2015-01-01
Full Text Available An analysis is carried out to study the effects of temperature-dependent transport properties on the fully developed free and forced MHD convection flow in a vertical channel. In this model, viscous and Ohmic dissipation terms are also included. The governing nonlinear equations (in non-dimensional form are solved numerically by a second order finite difference scheme. A parametric study is performed in order to illustrate the interactive influences of the model parameters; namely, the magnetic parameter, the variable viscosity parameter, the mixed convection parameter, the variable thermal conductivity parameter, the Brinkmann number and the Eckert number. The velocity field, the temperature field, the skin friction and the Nusselt number are evaluated for several sets of values of these parameters. For some special cases, the obtained numerical results are compared with the available results in the literature: Good agreement is found. Of all the parameters, the variable thermo-physical transport property has the strongest effect on the drag, heat transfer characteristics, the stream-wise velocity, and the temperature field.
A reassessment of the heat transport by variable viscosity convection with plates and lids
International Nuclear Information System (INIS)
The heat transport by a viscous fluid with temperature dependent viscosity has been studied numerically. As opposed to previous models, the top surface of the fluid clearly defines a tectonic plate with horizontally uniform velocity and subduction. Past studies failed to incorporate plates, the heat transport is as efficient as Rayleigh-Benard convection with constant viscosity; there is a strong buffering between internal temperature and heat loss. Past studies of parameterized convection which incorporated parameters indicative of strong buffering between internal temperature and total heat output still provide the most physically plausible representation of the Earth's thermal evolution
Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation
Energy Technology Data Exchange (ETDEWEB)
Ali S. Siahpush; John Crepeau; Piyush Sabharwall
2013-07-01
Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.
Hayat, T.; Farooq, S.; Ahmad, B.; Alsaedi, A.
2016-04-01
This article addresses the characteristics of convective heat transfer and radially imposed magnetic field on peristaltic flow of an incompressible Carreau fluid in a curved channel. Joule heating is also present. Mathematical analysis has been carried out under long wavelength and low Reynolds number considerations. Solutions of the resulting non-linear system for small values of Weissenberg number are constructed. The salient features of flow quantities are pointed out with particular focus to pumping, velocity, temperature and trapping. It is observed pressure gradient enhances for larger values of power law index parameter. The velocity and temperature are decreasing functions of radial magnetic field parameter. Further the impact of Weissenberg and Biot numbers on the temperature are opposite.
Convective heat transfer from a heated elliptic cylinder at uniform wall temperature
Energy Technology Data Exchange (ETDEWEB)
Kaprawi, S.; Santoso, Dyos [Mechanical Department of Sriwijaya University, Jl. Raya Palembang-Prabumulih Km. 32 Inderalaya 50062 Ogan Ilir (Indonesia)
2013-07-01
This study is carried out to analyse the convective heat transfer from a circular and an elliptic cylinders to air. Both circular and elliptic cylinders have the same cross section. The aspect ratio of cylinders range 0-1 are studied. The implicit scheme of the finite difference is applied to obtain the discretized equations of hydrodynamic and thermal problem. The Choleski method is used to solve the discretized hydrodynamic equation and the iteration method is applied to solve the discretized thermal equation. The circular cylinder has the aspect ratio equal to unity while the elliptical cylinder has the aspect ratio less than unity by reducing the minor axis and increasing the major axis to obtain the same cross section as circular cylinder. The results of the calculations show that the skin friction change significantly, but in contrast with the elliptical cylinders have greater convection heat transfer than that of circular cylinder. Some results of calculations are compared to the analytical solutions given by the previous authors.
Simulations of Future Heat stress in the Northeast in a Convection Resolving Model
Huber, M.; Buzan, J. R.; Komurcu, M.; Krishnan, S.; McCabe, E.
2015-12-01
Heat stress is a chiefly a byproduct of temperature and humidity extremes and can be phrased in terms of wetbulb or dewpoint temperature. Consequently, it is a buoyancy related atmospheric variable which could alternatively be expressed as something like subcloud layer entropy or convective available potential energy (CAPE). Expressed in this latter way, predicting heat stress extreme events is equivalent to understanding the distribution of events in which convection is inhibited. Our goal in this study is to use a convection resolving model (the Weather Research and Forecasting Model at 3km grid spacing) to predict heat stress in future climate scenarios. The primary benefit relative to simply using a global climate model output is the removal of the ad hoc treatment of convective inhibition imposed by parameterization of convection in course resolution simulations. We focus on heat stress metrics relevant for humans and livestock within the Northeast of the U.S. and demonstrate the difference in projected heat stress engendered by explicitly resolving convection.
Energy Technology Data Exchange (ETDEWEB)
Baumgart, S.; Engle, W.D.; Fox, W.W.; Polin, R.A.
1981-12-01
Ten premature infants nursed on servocontrolled radiant warmer beds were studied in three environments designed to alter one or more factors affecting heat transfer (convection, evaporation, and radiation). In the control environment, infants were nursed supine on an open warmer bed. The second environment (walled chamber) was designed to reduce convection and evaporation by placing plastic walls circumferentially around the bed. In the third environment convection and evaporation were minimized by covering infants with a plastic blanket. Air turbulence, insensible water loss, and radiant warmer power were measured in each environment. There was a significant reduction in mean air velocity in the walled chamber and under the plastic blanket when compared to the control environment. A parallel decrease in insensible water loss occurred. In contrast, radiant power demand was the same for control and walled environments, but decreased significantly when infants were covered by the plastic blanket. This study suggests that convection is an important factor influencing evaporation in neonates nursed under radiant warmers. The thin plastic blanket was the most effective shield, significantly reducing radiant power demand.
Institute of Scientific and Technical Information of China (English)
M BILAL ASHRAF; T HAYAT; A ALSAEDI; S A SHEHZAD
2015-01-01
Mixed convection flow of magnetohydrodynamic (MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
Convection in layered porous media: A comparison of boundary heating methods
International Nuclear Information System (INIS)
Convection in a horizontal, doubly layered porous medium has been investigated numerically. A two-dimensional, time dependent model has been developed to compute heat transfer in a saturated porous medium that is locally heated from either above or below. The primary objective is to ascertain how these modes of heating can be differentiated via an examination of the heat transfer results. Both natural and mixed convection are considered. For mixed convection in which a uniform horizontal flow is assumed to enter the domain, the qualitative relation between the Rayleigh and Peclet numbers is obtained over a large range for each. The effect of the length of the heating zone on the flow structure is also examined. The permeability ratio and the ratio of the thermal conductivity of the two layers is also allowed to vary, thus giving the computing Nusselt numbers a broad range of applicability in geophysical and engineered systems
Natural convection heat transfer in vertical triangular subchannel in Zirconia-water nanofluid
Tandian, N. P.; Alkharboushi, A. A. K.; Kamajaya, K.
2015-09-01
Natural convection heat transfer in vertical triangular sub-channel has important role in cooling mechanism of the APWR and the PHWR nuclear reactors. Unfortunately, natural convection correlation equations for such geometry are scarcely available. Recent studies showed that ZrO2-water nanofluid has a good prospect to be used in the nuclear reactor technology due to its low neutron absorption cross section. Although several papers have reported transport properties of ZrO2-water nanofluids, practically there is no correlation equation for predicting natural convection heat transfer in a vertical triangular sub-channel in ZrO2-water nanofluid. Therefore, a study for finding such heat transfer correlation equation has been done by utilizing Computational Fluid Dynamics software and reported in this paper. In the study, natural convection heat transfer in a vertical triangular sub-channel has been simulated at several values of heat transfer flux within 9.1 to 30.9 kW/m2 range and ZrO2 concentrations of 0 (pure water), 0.27, and 3 volume-% of ZrO2. The study shows that the ZrO2 concentration has no significant influence to the natural convection heat transfer at those concentration levels. The obtained theoretical heat transfer correlation equations were verified through experiment, and they showed very similar results. The correlation equations are reported in this paper.
The role of a convective surface in models of the radiative heat transfer in nanofluids
Energy Technology Data Exchange (ETDEWEB)
Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.
2014-08-15
Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of
GEOFLOW: simulation of convection in a spherical shell under central force field
Directory of Open Access Journals (Sweden)
P. Beltrame
2006-01-01
Full Text Available Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth's force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework's, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field.
Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin [Kyung Hee Univ., Yongin (Korea, Republic of)
2013-10-15
The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept.
Energy Technology Data Exchange (ETDEWEB)
Stalio, E., E-mail: enrico.stalio@unimore.it [Dipartimento di Ingegneria Meccanica e Civile, Universita degli Studi di Modena e Reggio Emilia, Via Vignolese 905/B, 41125 Modena (Italy); Angeli, D., E-mail: diego.angeli@unimore.it [Dipartimento di Ingegneria Meccanica e Civile, Universita degli Studi di Modena e Reggio Emilia, Via Vignolese 905/B, 41125 Modena (Italy); Barozzi, G.S., E-mail: giovanni.barozzi@unimore.it [Dipartimento di Ingegneria Meccanica e Civile, Universita degli Studi di Modena e Reggio Emilia, Via Vignolese 905/B, 41125 Modena (Italy)
2011-10-15
Highlights: > We investigate laminar convective heat transfer in channels with periodic cavities. > Heat transfer rates are lower than for the flat channel. > This is ascribed to the steady circulating motion within the cavities. > Diffusion in a low Prandtl number fluid can locally overcome the heat transfer decrease due to advection only for isothermal boundary conditions. - Abstract: Convective heat transfer in laminar conditions is studied numerically for a Prandtl number Pr = 0.025, representative of liquid lead-bismuth eutectic (LBE). The geometry investigated is a channel with a periodic series of shallow cavities. Finite-volume simulations are carried out on structured orthogonal curvilinear grids, for ten values of the Reynolds number based on the hydraulic diameter between Re{sub m} = 24.9 and Re{sub m} = 2260. Flow separation and reattachment are observed also at very low Reynolds numbers and wall friction is found to be remarkably unequal at the two walls. In almost all cases investigated, heat transfer rates are smaller than the corresponding flat channel values. Low-Prandtl number heat transfer rates, investigated by comparison with Pr = 0.71 results, are large only for uniform wall temperature and very low Re. Influence of flow separation on local heat transfer rates is discussed, together with the effect of different thermal boundary conditions. Dependency of heat transfer performance on the cavity geometry is also considered.
Kamajaya, K.; Umar, E.; Sudjatmi
2015-09-01
Study on convection heat transfer using water-Al2O3 nanofluid as the working fluid in the vertical sub-channel has been conducted. The results of the study have been compared with the water-ZrO2 nanofluid and pure-water as the working fluid. The equipment used in this experiment is a vertical triangular sub-channel, equipped by primary cooling system, heat exchanger and a secondary cooling system. As a heating source used three vertical cylinders that have a uniform heat flux with a pitch to diameter ratio (P/D) 01:16. Cooling is used is water-Al2O3 colloid at 0.05 wt. %. Heat transfer from heating to cooling would occur in natural or forced convection. However, in this study will be discussed only natural convection heat transfer. The results showed that the natural convection heat transfer of water-Al2O3 nanofluid in a triangular sub-channels depending on the position. The results of the correlation as follows,
Natural versus forced convection in laminar starting plumes
Rogers, Michael C
2009-01-01
A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements crossed over the transition between buoyancy-driven plumes and momentum-driven jets. We found that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re, the Reynolds number of the injected fluid in the outlet pipe. We also found that as the threshold between buoyancy-driven and momentum-driven flow was crossed, two distinct types of plume head mophologies existed: confined heads, produced in the Ri > 1 regime, and dispersed heads, which are found in the Ri < 1 regime. Head di...
Alam, Muntasir; Kamruzzaman, Ahsan, Faraz; Hasan, Mohammad Nasim
2016-07-01
A numerical study of mixed convection heat transfer phenomena in a square cavity containing a heat conducting rotating cylinder has been investigated. A discrete isoflux heater is placed at the bottom wall of the enclosure while the top wall is kept adiabatic. Left and right sidewalls of the enclosure are assumed to be maintained at constant low temperature. A two-dimensional solution for steady laminar mixed convection flow is obtained by using the finite element scheme based on the Galerkin method of weighted residuals for different rotating speeds of the cylinder varying over the range of 0-1000 keeping the Rayleigh number fixed at 5×104 and the Prandtl number at 0.7. The effects of rotating speeds of the cylinder, its radius and conductivity ratio of the rotating cylinder and working fluid on the streamlines, isotherms, local Nusselt number, average Nusselt number and other heat transfer and fluid flow phenomena are investigated. The results indicate that the flow field, temperature distribution and heat transfer rate are dependent on rotating speeds and cylinder size. However, it has been observed that the effect of conductivity ratio is not so prominent.
Experimental study on convection heat transfer and air drag in sinter layer
Institute of Scientific and Technical Information of China (English)
潘利生; 魏小林; 彭岩; 时小宝; 刘怀亮
2015-01-01
Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles (sample I) gives higher convection heat transfer coefficient than that with small particles (sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400−1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2−3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II.
Scalings of field correlations and heat transport in turbulent convection.
Verma, Mahendra K; Mishra, Pankaj K; Pandey, Ambrish; Paul, Supriyo
2012-01-01
Using direct numerical simulations of Rayleigh-Bénard convection under free-slip boundary condition, we show that the normalized correlation function between the vertical velocity field and the temperature field, as well as the normalized viscous dissipation rate, scales as Ra-0.22 for moderately large Rayleigh number Ra. This scaling accounts for the Nusselt number Nu exponent of approximately 0.3, as observed in experiments. Numerical simulations also reveal that the aforementioned normalized correlation functions are constants for the convection simulation under periodic boundary conditions.
Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity
Kiladis, G. N.; Biello, J. A.; Straub, K. H.
2012-12-01
It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG
Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro
2016-07-01
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.
Convective Heat Transfer Augmentation by Flexible fins in Laminar Channel Pulsating flow
Joshi, Rakshitha U; Bhardwaj, Rajneesh
2015-01-01
Fluid-structure interaction (FSI) of thin flexible fins coupled with convective heat transfer has applications in energy harvesting and in understanding functioning of several biological systems. We numerically investigate FSI of the thin flexible fins involving large-scale flow-induced deformation as a potential heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. We consider twin flexible fins in a heated channel with laminar pulsating cross flow. The vortex ring past the fin sweep higher sources of vorticity generated on the channel walls out into the downstream - promoting the mixing of the fluid. The moving fin assists in convective mixing, augmenting convection in bulk and at the walls; and thereby reducing thermal boundary layer thickness and improving heat transfer at the channel walls. The thermal augmentation is...
Flow and Convective Heat Transfer of Cylinder Misaligned from Aerodynamic Axis of Cyclone Flow
Directory of Open Access Journals (Sweden)
I. L. Leukhin
2008-01-01
Full Text Available The paper provides and analyzes results of experimental investigations on physical specific features of hydrodynamics and convective heat transfer of a cyclone flow with a group of round cylinders located symmetrically relative to its aerodynamic axis, calculative equations for average and local heat transfer factors at characteristic sections of cylinder surface.
Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids.
Kondaraju, Sasidhar; Lee, Joon Sang
2011-03-21
Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have developed a numerical model which can estimate the enhancement in both the thermal conductivity and convective heat transfer in nanofluids. It also aids in understanding the mechanism of heat transfer enhancement. The study reveals that the nanoparticle dispersion in fluid medium and nanoparticle heat transport phenomenon are equally important in enhancement of thermal conductivity. However, the enhancement in convective heat transfer was caused mainly due to the nanoparticle heat transport mechanism. Ability of this model to be able to understand the mechanism of convective heat transfer enhancement distinguishes the model from rest of the available numerical models.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Numerical investigation using SIMPLE algorithm with QUICK scheme for natural convection and heat transfer in the enclosure bounded by a solid wall and with heat transfer and radiation coupled in natural convection has been conducted.The various parameters are:Rayleigh number(from 103 to 105),dimensionless conductivity of bounding wall(from 0 to 100),dimensionless wall thickness(from 0 to 0.6) and radiation emissivity of all surfaces(from 0 to 1).The results suggest that flow and heat transfer are influenced by radiation.Radiation is a dominant action on flow and heat transfer.With increase of the thermal conductivity of wall,flow and heat transfer turn stronger.The temperature distribution changes obviously.When the thermal conductivity of wall is over a certain critical number,the increasing trend of flow and heat transfer may disappear.With increase of enclosure wall thickness,flow and heat transfer turn slighter.When the enclosure wall thickness is over a certain critical number,the flow and heat transfer will turn slow.
Kimball, J. T.; Hermanson, J. C.; Allen, J. S.
2012-05-01
The stability, convective structure, and heat transfer characteristics of upward-facing, evaporating, thin liquid films were studied experimentally. Dichloromethane, chloroform, methanol, and acetone films with initial thicknesses of 2-5 mm were subjected to constant levels of superheating until film rupture occurred (typically at a thickness of around 50 μm). The films resided on a temperature controlled, polished copper plate incorporated into a closed pressure chamber free of non-condensable gasses. The dynamic film thickness was measured at multiple points using a non-intrusive ultrasound ranging system. Instability wavelength and convective structure information was obtained using double-pass schlieren imaging. The sequence of the convective structures as the film thins due to evaporation is observed to be as follows: (1) large, highly variable cells, (2) concentric rings and spirals, and (3) apparent end of convection. The transition from large, variable cells to concentric rings and spirals occurs at a Rayleigh number of 4800 ± 960. The apparent end of convection occurs at a Rayleigh number of 1580 ± 180. At the cessation of convection, the Nusselt number is nearly unity, indicating that there is little heat transfer in the film due to convection. In films where the Rayleigh number is above this transitional value, the Nusselt number increases with increasing Rayleigh number. The current results suggest that the equilibrium condition at the evaporating surface suppresses surface temperature variation, effectively eliminating thermocapillary-driven instability.
Subgrid-scale heat flux modeling for large eddy simulation of turbulent mixed convection
Morar, Dejan
2014-01-01
In the present work, new subgrid-scale (SGS) heat flux model for large eddy simulation (LES) of turbulent mixed convection is developed. The new model explicitly includes the buoyancy production term. It is based on the algebraic equations and dynamic procedure is applied to calculate model coefficients. An experiment on turbulent mixed convection to water in a vertical duct is used for validation of the model.
Interaction of radiation and free convection on a heated vertical plate - Experiment and analysis
Webb, B. W.
1990-01-01
An experimental and analytical study has been conducted in order to explore the interaction between laminar free convective and radiative transport from an isolated vertical plate with isoflux heating. The analysis focuses on buoyancy-driven free convection from this vertical plate which is coupled to radiation through the thermal boundary condition. Model predictions are compared with both experimental results and the analysis conducted by Cess (1964), in order to illustrate those areas where the perturbation technique deviated from the present solution.
Magnetic flux tubes and transport of heat in the convection zone of the sun
International Nuclear Information System (INIS)
This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations
Stromberger, Jorg Hermann
Numerous experimental and theoretical investigations on two-phase flow instability and burnout in heated microchannels have been reported in the literature. However none of these investigations deals with the possible effects of wall vibrations on such flow boiling processes within microchannels. Fluid-structure interaction in ultra high power density systems cooled by high velocity single phase forced convection in microchannels may result in vibration amplitudes that are a significant fraction of the diameter of the channel. Such vibrations may significantly impact vapor bubble dynamics at the wall and, hence, the limiting heat fluxes corresponding to the onset of flow instability and/or burnout. The primary purpose of this research was to experimentally quantify the effect of forced wall vibration on the onset of flow instability (OFI) and the critical heat flux (CHF) in uniformly-heated annular microchannels. The secondary interest of this investigation was to compare the experimental data collected in the single-phase regime to commonly used single-phase forced convection correlations. Experimental data acquired in the flow boiling regime were to be utilized to confirm the validity of common flow boiling correlations for microchannel flow. The influence of forced wall vibration on subcooled single-phase forced convection and flow boiling was examined. The Georgia Tech Microchannel Test Facility (GTMTF) was modified to allow such experiments to be conducted at controlled values of transverse wall vibration amplitudes and accelerations for a range of frequencies. The channel demand curves were obtained for various inner and outer surface heat fluxes. Experiments were conducted for broad ranges of transverse wall vibration amplitudes over a range of frequencies. The experiments conducted in this investigation provide designers of high power density systems cooled by forced convection in microchannels with the appropriate data and correlations to confidently
Energy Technology Data Exchange (ETDEWEB)
Nanjundappa, C.E., E-mail: cenanju@hotmail.com [Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore-560 056 (India); Shivakumara, I.S., E-mail: shivakumarais@gmail.com [Department of Mathematics, Bangalore University, Bangalore-560 001 (India); Prakash, H.N., E-mail: prakashahn83@gmail.com [Government Pre-University College, B H Road, Tumkur-572 102 (India)
2014-12-15
We investigate the influence of Coriolis force on the onset of thermomagnetic convection in ferrofluid saturating a porous layer in the presence of a uniform vertical magnetic field using both linear and weakly non-linear analyses. The modified Brinkman–Forchheimer-extended Darcy equation with Coriolis term has been used to describe the fluid flow. The linear theory based on normal mode method is considered to find the criteria for the onset of stationary thermomagnetic Convection and weakly non-linear analysis based on minimal representation of truncated Fourier series analysis containing only two terms has been used to find the Nusselt number Nu as functions of time. The range of thermal Rayleigh number R beyond which the bifurcation becomes subcritical increases with increasing Λ, Da{sup −1} and Ta. The global quantity of the heat transfer rate decreases by increasing the Taylor number Ta. The results obtained, during the above analyses, have been presented graphically and the effects of various parameters on heat and mass transfer have been discussed. Finally, we have drawn the steady streamlines for various parameters.
azzedine ABDEDOU; Khedidja Bouhadef
2015-01-01
Two criteria are used and compared to investigate the local thermal equilibrium assumption in a forced convection through a porous channel. The first criterion is based on the maximum local temperature difference between the solid and fluid phases, while the second is based on the average of the local differences between the temperature of the solid phase and the fluid phase. For this purpose, the momentum and energy equations based on the Darcy-Brinkman-Forchheimer and the local thermal non ...
Aregawi, Wondwosen; Defraeye, Thijs; Saneinejad, Saba; Vontobel, Peter; Lehmann, Eberhard; Carmeliet, Jan; Verboven, Pieter; Derome, Dominique; Nicolai, Bart
2014-01-01
A multiphysics model for biological materials, coupling nonlinear viscoelastic deformation to water transport, was used to study forced convective drying of apple tissue samples (cv. Maigold). The accuracy of the model was verified with quantitative neutron radiography experiments, by comparing the total water loss, the transient water distribution profiles and the mechanical deformation. Both model simulations and experiments showed that the largest moisture gradients occurred at the air-tis...
Esmaeilpour, M.; Ganji, D. D.
2007-12-01
In this Letter, the problem of forced convection over a horizontal flat plate is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.
Convective heat transfer in a micropolar fluid over an unsteady stretching surface
Prasad, K. V.; Vaidya, H.; Vajravelu, K.
2016-05-01
An unsteady boundary layer free convective flow and heat transfer of a viscous incompressible, microploar fluid over a vertical stretching sheet is investigated. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in the micropolar fluid. The transformed highly non-linear boundary layer equations are solved numerically by an implicit finite difference scheme for the transient, state from the initial to the final steady-state. To validate the numerical method, comparisons are made with the available results in the literature for some special cases and the results are found to be in good agreement. The obtained numerical results are analyzed graphically for the velocity, the microrotation, and the temperature distribution; whereas the skin friction, the couple stress coefficient and the Nusselt number are tabulated for different values of the pertinent parameters. Results exhibit a drag reduction and an increase in the surface heat transfer rate in the micropolar fluid flow compared to the Newtonian fluid flow.
Bounds on Heat Transport in Rapidly Rotating Rayleigh-B\\'{e}nard Convection
Grooms, Ian
2014-01-01
The heat transport in rotating Rayleigh-B\\'enard convection is considered in the limit of rapid rotation (small Ekman number $E$) and strong thermal forcing (large Rayleigh number $Ra$). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is $Ra \\lesssim E^{-8/5}$. A rigorous bound on heat transport of $Nu \\le 20.56Ra^3E^4$ is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. $Nu \\lesssim Ra^3$ is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer.
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ. The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q=6.4. An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied. PMID:27575218
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ . The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q , three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q =6.4 . An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.
Indian Academy of Sciences (India)
Ke Wu; Le Wang; Yi-Bo Yu; Zhi-Yi Huang; Pei Liang
2013-12-01
Heat dissipation enhancement of LED luminaries is of great significance to the large-scale application of LED. Luminaries-level structure improvement by the method of boring through-hole is adopted to intensify heat dissipation. Furthermore, the natural convection heat transfer process of LED luminaries is simulated by computational fluid dynamics (CFD) model before and after the structural modification. As shown by computational results, boring through-hole is beneficial to develop bottomto-top natural convection, eliminate local circumfluence, and finally form better flow pattern. Analysis based on field synergy principle shows that boring through-hole across LED luminaries improves the synergy between flow field and temperature field, and effectively decreases the thermal resistance of luminaries-level heat dissipation structure. Under the same computational conditions, by luminaries-level structure improvement the highest temperature of heat sink is decreased by about 8° C and the average heat transfer coefficient is increased by 45.8%.
Numerical studies of convective heat transfer in an inclined semi-annular enclosure
Wang, L.-W.; Chai, A.-T.; Yung, C.-N.; Rashidnia, N.
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.
Numerical studies of convective heat transfer in an inclined semiannular enclosure
Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.
NUMERICAL STUDY ON MIXED CONVECTIVE FLOW IN A SOLAR COLLECTOR
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In a solar energy heat collector forced convection and free convection will occur concurrently. In this paper, the mixed convective flow was investigated. The dimensionless equation was derived and the results was verified by experiments. The numerical solution shows that error is less than 5% if the effect of free convection is ignored.
Campbell, A N
2015-07-14
When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with
Directory of Open Access Journals (Sweden)
Shestakov Igor A.
2015-01-01
Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.
El-Amin, Mohamed
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.
Luo, Y; Chevalier, Luc; Utheza, Françoise; Nicolas, Xavier
2014-01-01
International audience Initial heating conditions and temperature effects (heat transfer with air and mould, self-heating, conduction) have important influence during the ISBM process of PET preforms. The numerical simulation of infrared (IR) heating taking into account the air convection around a PET preform is very time-consuming even for 2D modelling. This work proposes a simplified approach of the coupled heat transfers (conduction, convection and radiation) in the ISBM process based o...
Properties of forced convection experimental with silicon carbide based nano-fluids
Soanker, Abhinay
-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.
The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys
Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.
2015-05-01
The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.
Lagrangian temperature, velocity and local heat flux measurement in Rayleigh-Benard convection
Gasteuil, Yoann; Gibert, Mathieu; Chilla, Francesca; Castaing, Bernard; Pinton, Jean-François
2007-01-01
We have developed a small, neutrally buoyant, wireless temperature sensor. Using a camera for optical tracking, we obtain simultaneous measurements of position and temperature of the sensor as it is carried along by the flow in Rayleigh-B\\'enard convection, at $Ra \\sim 10^{10}$. We report on statistics of temperature, velocity, and heat transport in turbulent thermal convection. The motion of the sensor particle exhibits dynamics close to that of Lagrangian tracers in hydrodynamic turbulence. We also quantify heat transport in plumes, revealing self-similarity and extreme variations from plume to plume.
DEFF Research Database (Denmark)
Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole;
2016-01-01
This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady......-state heat transfer under convection is simulated using SIMULIA-Abaqus. A corresponding topology optimization feature is provided by SIMULIA-Tosca. By following a standard workflow of design optimization, the proposed solution is able to accommodate practical design scenarios and results in efficient...
Directory of Open Access Journals (Sweden)
Qiming Men
2014-01-01
Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.
Forced convection to laminar flow of liquid egg yolk in circular and annular ducts
Directory of Open Access Journals (Sweden)
M. Bernardi
2009-06-01
Full Text Available The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
Upadhyay, Ashwani; Chandramohan, V. P.
2016-06-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Institute of Scientific and Technical Information of China (English)
YANG Xiao; LIU Xue-mei
2006-01-01
Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel,with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.
Directory of Open Access Journals (Sweden)
Hsien-Hung Ting
2015-01-01
Full Text Available This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3 nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.
Evaluation of T-111 forced-convection loop tested with lithium at 13700C
International Nuclear Information System (INIS)
A T-111 alloy (Ta--8 percent W--2 percent Hf) forced-convection loop containing molten lithium was operated 3000 h at a maximum temperature of 13700C. Flow velocities up to 6.3 m/s were used. The results obtained in this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 μ m/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 μ m with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 13700C, attributable to depletion of hafnium and nitrogen and to attendant grain growth. (U.S.)
Solar drying of whole mint plant under natural and forced convection
Directory of Open Access Journals (Sweden)
Y.I. Sallam
2015-03-01
Full Text Available Two identical prototype solar dryers (direct and indirect having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s−1. The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day. The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10−11 and 1.33 × 10−11 m2 s−1.
Solar drying of whole mint plant under natural and forced convection.
Sallam, Y I; Aly, M H; Nassar, A F; Mohamed, E A
2015-03-01
Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s(-1). The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10(-11) and 1.33 × 10(-11) m(2) s(-1). PMID:25750751
Jakkareddy, Pradeep S.; Balaji, C.
2016-05-01
This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.
Institute of Scientific and Technical Information of China (English)
ZHANG; Yinping; (张寅平); HU; Xianxu; (胡先旭); HAO; Qing; (郝磬); WANG; Xin; (王馨)
2003-01-01
This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.
Determining convective heat transfer coefficient using phoenics software package
Energy Technology Data Exchange (ETDEWEB)
Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)
1997-12-31
The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.
Missoum, Abdelkrim; Elmir, Mohamed; Bouanini, Mohamed; Belkacem, Abdellah; Draoui, Belkacem
2016-03-01
This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number) partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number) and amplitude of temperature on heat transfer rate (Nusselt number) on convective structures that appear.
DEFF Research Database (Denmark)
Hosseini, R.; Kolaei, Alireza Rezania; Alipour, M.;
2012-01-01
In this work, the natural convection heat transfer from a long vertical electrically heated cylinder to an adjacent air gap is experimentally studied. The aspect and diameter ratios of the cylinder are 55.56 and 6.33, respectively. The experimental measurements were obtained for a concentric...... condition and six eccentricities from 0.1 to 0.92 at five different heat fluxes. The surface temperature of the heated rod is measured at different heights, and the Nusselt number is calculated at the temperature measurement locations. A correlation is suggested to determine the Nusselt number based...
Patil Mallikarjun B; Chandrali Baishya
2016-01-01
Analytical solutions for fully developed mixed convection flow of a micro polar fluid with heat generation or heat absorption in a parallel plate vertical channel with symmetric and asymmetric wall temperature distribution has been presented. The two boundaries of the channel are kept either at equal or at different temperatures as isothermal-isothermal, isoflux-isothermal and isothermal-isoflux cases. Reverse flow conditions are observed with increase in micro vortex viscosity. M...
Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.
Etheridge, Michael L; Choi, Jeunghwan; Ramadhyani, Satish; Bischof, John C
2013-02-01
While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to -150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the "iceball" with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated
Micro-channel convective boiling heat transfer with flow instabilities
International Nuclear Information System (INIS)
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
Experimental study for convective heat transfer of staged tube bundles
International Nuclear Information System (INIS)
The lack of potable water is one of the most serious problems the world is facing at present. SMART which is a 330 MWt advanced integral PWR, was developed by the KAERI for electricity generation and seawater desalination. SMART adopted a passive system to enhance its safety. The passive system can passively remove a decay heat from a reactor core to an emergency cooldown tank through the heat exchanger. Tube bundles of the heat exchanger, which is submerged in an emergency cooldown tank, transfer heat to an emergency cooldown tank by natural circulation. Heat transfer tests for the upward straight tube bundle were performed to confirm the capability of the SMART design under natural circulation conditions. The heat transfer at the tube bundle was affected by the fluid temperature in the emergency cooldown tank and the radial location of tube bundle. However, it had nearly the same value at the inlet region regardless of the tube location. The average heat transfer at the tube bundle was slightly higher than that at the single tube. (author)
Convective Heat Transfer over a Wall Mounted Cube Using Large Eddy Simulation
Directory of Open Access Journals (Sweden)
Habibollah Heidarzadeh
2012-06-01
Full Text Available Fluid flow and convective heat transfer over wall mounted cube have been studied numerically using Large Eddy Simulation. Surface of wall mounted cube and plane floor has a constant heat flux. Two subgrid scale models were used in this study; Wall-Adapting Eddy viscosity (WALE and Dynamic Smagorinsky (DS. The numerical results were compared with the experimental data of Nakamura et al [2] that showed DS model has better results toward WALE model. Results contain the plots of time averaged normalized streamwise velocity and Reynolds stress in different positions, Temperature contours, local Nusselt number over the surfaces of cube and some characteristics of flow field and heat transfer. The local convective heat transfer from the surfaces of the cube and plate are directly related to the complexity of flow field.
Dynamos driven by weak thermal convection and heterogeneous outer boundary heat flux
Sahoo, Swarandeep; Sreenivasan, Binod; Amit, Hagay
2016-01-01
We use numerical dynamo models with heterogeneous core-mantle boundary (CMB) heat flux to show that lower mantle lateral thermal variability may help support a dynamo under weak thermal convection. In our reference models with homogeneous CMB heat flux, convection is either marginally supercritical or absent, always below the threshold for dynamo onset. We find that lateral CMB heat flux variations organize the flow in the core into patterns that favour the growth of an early magnetic field. Heat flux patterns symmetric about the equator produce non-reversing magnetic fields, whereas anti-symmetric patterns produce polarity reversals. Our results may explain the existence of the geodynamo prior to inner core nucleation under a tight energy budget. Furthermore, in order to sustain a strong geomagnetic field, the lower mantle thermal distribution was likely dominantly symmetric about the equator.
Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units
Directory of Open Access Journals (Sweden)
Romero-Méndez Ricardo
2014-01-01
Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.
Mendez, Sergio; AungYong, Lisa
2014-01-01
To help students make the connection between the concepts of heat conduction and convection to real-world phenomenon, we developed a combined experimental and computational module that can be incorporated into lecture or lab courses. The experimental system we present requires materials and apparatus that are readily accessible, and the procedure…
The Reynolds analogy for the mixed convection over a vertical surface with prescribed heat flux
Magyari, E.; Pop, I.
2009-03-01
The steady mixed convection boundary layer flow over a vertical surface with prescribed heat flux is revisited in this Note. The subset of solutions which can be obtained with the aid of the Reynolds analogy is discussed in a close relationship with the dual solutions reported by Merkin and Mahmood [1] for impermeable, and more recently by Ishak et al. [2], for permeable surfaces.
An analytical comparison of convective heat transfer correlations in supercritical hydrogen
Dziedzic, William M.; Jones, Stuart C.; Gould, Dana C.; Petley, Dennis H.
1991-01-01
Four correlations that cover the ranges of liquid to gas for turbulent flow convection of hydrogen are compared with CFD analysis over a range of expected design conditions for active cooling of hypersonic aircraft. Analysis of hydrogen cooling in a typical cooling panel shows how predicted design performance varies with the correlation utilized. The CFD heat transfer coefficient results for a heat spike differed significantly from all four correlations. An acceptable heat transfer coefficient can be calculated at the heat spike location by overlooking the coefficient at the spike and averaging the coefficient before and after the spike.
Energy Technology Data Exchange (ETDEWEB)
Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N. [Institute of Nuclear Safety Russian Academy Science, Moscow (Russian Federation)
1995-09-01
Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.
Institute of Scientific and Technical Information of China (English)
安刚; 李俊明; 王补宣
2001-01-01
Theoretical investigations have been performed on the convective heat transfer for incompressible laminar flow of gases through microtube and parallel-plates micropassages with constant wall temperature. Considering the change in thermal conductivity and viscosity of gas in wall adjacent region from the kinetic theory, mathematical models are built for both of the micropassages. The dimensionless temperature distribution and the corresponding heat transfer characteristics are simulated numerically, and the results discussed briefly.
Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids
Kondaraju Sasidhar; Lee Joon Sang
2011-01-01
Abstract Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have develo...
CFD numerical simulation of air natural convection over a heated cylindrical surface
Flori, M.; Vîlceanu, L.
2015-06-01
In this study a CFD numerical simulation is used to describe the fluid flow and heat transfer in air surrounding a heated horizontal cylinder. The model is created in 2D space dimension involving a finite element solver of Navier-Stokes equations. As natural convection phenomenon is induced by a variable fluid density field with temperature rising, the Boussinesq approximation was coupled to the model.
Thermal performance of a porus radial fin with natural convection and radiative heat losses
Directory of Open Access Journals (Sweden)
Darvishi M.T.
2015-01-01
Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
Institute of Scientific and Technical Information of China (English)
LIU Wei; LIU ZhiChun; GUO ZengYuan
2009-01-01
Based on the principle of field synergy for heat transfer enhancement, the concept of physical quantity synergy in the laminar flow field is proposed in the present study according to the physical mechanism of convective heat transfer between fluid and tube wall. The synergy regulation among physical quantities of fluid particle is revealed by establishing formulas reflecting the relation between synergy angles and heat transfer enhancement. The physical nature of enhancing heat transfer and reducing flow resistance, which is directly associated with synergy angles α,βγ,φ, θ and ψ, is also explained. Be-sides, the principle of synergy among physical quantities is numerically verified by the calculation of heat transfer and flow in a thin cylinder-interpolated tube, which may guide the optimum design for better heat transfer unit and high-efficiency heat exchanger.
Directory of Open Access Journals (Sweden)
Saad Najeeb Shehab
2016-09-01
Full Text Available In this work an experimental simulation is made to predict the performance of steady-state natural heat convection along heated finned vertical base plate to ambient air with different inclination angles and configurations of fin array. Two types of fin arrays namely vertical fins array and V-fins array on heated vertical base plate are used with different heights and spaces. The influence of inclination angle of the plate , configuration of fins array and fin geometrical parameters such as fin height and fin spacing on the temperature distribution, base convection heat transfer coefficient and average Nusselt number have been plotted and discussed. The experimental data are correlated to a formula between average Nusselt number versus Rayleigh number for vertical plate and vertical fins array. The results indicate that the configuration of V-fins array gave best natural-convection heat transfer performance as base heat transfer coefficient about 20% greater compared with vertical fins array. Experimental simulation data and correlations of the present work are compared with a previous works shows good agreement
Microwave-based laboratory experiments for internally-heated mantle convection
Energy Technology Data Exchange (ETDEWEB)
Limare, A.; Di Giuseppe, E.; Vilella, K.; Farnetani, C. G.; Kaminski, E.; Jaupart, C. [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, CNRS, 1 rue Jussieu, F-75005 Paris (France); Surducan, E.; Surducan, V.; Neamtu, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)
2013-11-13
The thermal evolution of terrestrial planets is mainly controlled by the amount of radioactive heat sources in their mantle, and by the geometry and efficiency of solid state thermo-chemical convection within. So far, these systems have been studied using numerical methods only and cross validation by laboratory analogous experiments has not been conducted yet. To fill this gap we perform the first laboratory experiments of mantle convection driven by microwave-generated internal heating. We use a 30×30×5 cm{sup 3} experimental tank filled with 0.5 % Natrosol in water mixture (viscosity 0.6 Pa.s at 20°C). The fluid is heated from within by a microwave device that delivers a uniform volumetric heating from 10 to 70 kW/m{sup 3}; the upper boundary of the fluid is kept at constant temperature, whereas the lower boundary is adiabatic. The velocity field is determined with particle image velocimetry and the temperature field is measured using thermochromic liquid crystals which enable us to charaterize the geometry of the convective regime as well as its bulk thermal evolution. Numerical simulations, conducted using Stag-3D in 3D cartesian geometry, reproduce the experimental setup (i.e., boundary conditions, box aspect ratio, temperature dependence of physical parameters, internal heating rate). The successful comparison between the experimental and numerical results validates our approach of modelling internal heating using microwaves.
Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets
International Nuclear Information System (INIS)
Highlights: • Sandwich Greenhouse is designed for better quality and efficiency of rubber sheet drying. • Thermal models are developed to predict the convection heat transfer coefficient. • The models are validated and show good agreement with the actual experimental data. • The proposed greenhouse can maintain 40–60 °C, suitable for rubber sheet drying. • This greenhouse can bring down the moisture content to 2.8% in fewer than 2 days. - Abstract: In this paper, a novel “Sandwich Greenhouse” for rubber sheet drying is proposed. Using solar energy as the only heat source instead of traditional smoke house that requires firewood, it eliminates shortcomings such as skilled labor monitoring requirement, possible fire hazard, and darken-color rubber sheets due to soot particle contamination. Our greenhouse is specially designed to retain solar energy within, while minimizing the heat loss to the outside environment. The mathematical models are developed to predict the convection mass transfer coefficient and to study the thermal behavior during the drying of rubber sheets under our proposed greenhouse design. Validated with experimental observations, the models show good agreement with the actual experimental data. The experiment demonstrates an effectiveness of our proposed Sandwich Greenhouse, as the temperature of the rubber sheet is 15 °C and 5 °C higher than the ambient temperature during the daytime and nighttime, respectively. As a result, the moisture content of the rubber sheets can decrease from 36.4% to 2.8% in fewer than 2 days
Directory of Open Access Journals (Sweden)
Oronzio Manca
2015-01-01
Full Text Available In this paper, results obtained by the numerical investigation on laminar mixed convection in triangular ducts, filled with nanofluids, are presented in order to evaluate the fluid dynamic and thermal features of the considered geometry by considering Al2O3/water based nanofluids. The system is heated by a constant and uniform heat flux also along the perimeter of the triangular duct section in H2 mode as thermal boundary condition and the single-phase model has been assigned for a Reynolds number value equal to 100. Results are given for different nanoparticle volume concentrations and Richardson number values ranging from 0% to 5% and from 0 to 5, respectively. Results, presented for the fully developed regime flow, show the enhancement of average convective heat transfer coefficients values for increasing values of Richardson number and particle fractions. However, wall shear stress and required pumping power profiles increase as expected. The PEC analysis showed that the use of nanofluids in mixed convection seems slightly convenient. It should be underlined that, at the moment, experimental data are not available to compare the numerical proposed model for mixed convection in horizontal triangular ducts with nanofluids.
Experimental study of drying kinetics by forced convection of aromatic plants
Energy Technology Data Exchange (ETDEWEB)
Belghit, A.; Boutaleb, B.C. [Laboratoire de Mecanique des Fluides et Energetique, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M. [Laboratoire d' Energie Solaire, Marrakech (Morocco). Ecole Normale Superieure
2000-08-01
This paper has the objectives to determine the isotherms of sorption and the drying kinetics of verbena, which is the most consumed aromatic plant in Morocco. The experiments undertaken consist of examining the effects of drying air velocity, temperature of drying air and air moisture content on the drying kinetics of verbena in a laboratory drying tunnel working by forced convection. The results verified, with good reproducibility, that temperature is the main factor in controlling the rate of drying. The expression of the drying rate is determined empirically from the characteristic curve of drying. (author)
Solar drying of whole mint plant under natural and forced convection
Y.I. Sallam; ALY, M. H.; A.F. Nassar; Mohamed, E. A.
2015-01-01
Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s−1. The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar dryi...
A perturbation solution for forced convection in a porous-saturated duct
Hooman, K.
2008-01-01
Fully developed forced convection through a porous medium bounded by two isoflux parallel plates is investigated analytically on the basis of a Brinkman-Forchheimer model. The matched asymptotic expansion method is applied for small values of the Darcy number. For the case of large Darcy number the solution for the Brinkman-Forchheimer momentum equation is found in terms of an asymptotic expansion. With the velocity distribution determined, the energy equation is solved using the same asymptotic technique. The results for limiting cases are found to be in good agreement with those available in the literature and the numerical results obtained here.
International Nuclear Information System (INIS)
Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m2. These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m2 with a margin of a factor of 2 for burnout
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
An experimental investigation is described for the characteristics of convective boiling flow instabilities in horizontally helically coiled tubes using a steam-water two-phase closed circulation test loop at pressure from 0.5 MPa to 3.5MPa.Three kinds of oscillation are reported.density waves;pressure drop excorsions;thermal fluctuations.We describe their dependence on main system parameters such as system pressure,mass flowrate,inlet subcooling,compressible volume and heat flux.Utilising the experimental data together with conservation constraints,a dimensionless correlation is proposed for the occurrence of density waves.
Guo, L. J.; Feng, Z. P.; Chen, X. J.; Thomas, N. H.
1996-07-01
An experimental investigation is described for the characteristics of convective boiling flow instabilities in horizontally helically coiled tubes using a steam-water two-phase closed circulation test loop at pressure from 0.5 MPa to 3.5 MPa. Three kinds of oscillation are reported: density waves; pressure drop excursions; thermal fluctuations. We describe their dependence on main system parameters such as system pressure, mass flowrate, inlet subcooling, compressible volume and heat flux. Utilising the experimental data together with conservation constraints, a dimensionless correlation is proposed for the occurrence of density waves.
Bibliography on augmentation of convective heat and mass transfer
Energy Technology Data Exchange (ETDEWEB)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report.
Bibliography on augmentation of convective heat and mass transfer
International Nuclear Information System (INIS)
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report
Numerical computations of natural convection heat transfer in irregular geometries
Glakpe, E. K.
1987-01-01
This report explains the determination of buoyancy driven flow characteristics and heat transfer in enclosures of complex geometrical shapes. Applications of buoyancy driven flows can be found in solar collector devices, energy conservation technologies, cooling of micro-electronic chips, and nuclear reactor spent fuel shipping configurations. The problem is further complicated when three dimensional effects, non-Boussinesq effects, turbulence, and heat transfer by radiation are accounted for in the overall balance of energy transfer. This study developed a capability to model and predict the heat transfer and flow characteristics in shipping cask configurations involving light water and fast reactor fuel assemblies. We explored the complex flow phenomena involved in these configurations to develop numerical prediction capabilities to obtain data for the design and/or thermal analysis of such shipping casks.
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2015-08-15
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.
Pantokratoras, Asterios
2014-01-01
In the above paper the authors treat the boundary layer flow along a stationary, vertical, permeable, flat plate within a vertical free stream. Fluid is sucked or injected through the vertical plate. The fluid species concentration at the plate is constant and different from that of the ambient fluid. It is also assumed that the plate is heated by convection from another fluid with constant temperature with a constant heat transfer coefficient. The temperature and species concentration difference between the plate and the ambient fluid creates buoyancy forces and the flow is characterized as mixed convection. The partial differential equations of the boundary layer flow (Eqs. 1-4 in their paper) are transformed and subsequently are solved numerically using an implicit finite difference scheme in combination with a quasi-linearization technique. The quasi-linearization technique is a Newton-Raphson method. The results are presented in 12 figures.
Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions
Wang, XiaoCong; Liu, YiMin; Bao, Qing
2016-01-01
Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and
Convective heat transfer correlations for molten core debris pools growing in concrete
International Nuclear Information System (INIS)
The heat and mass transfer processes taking place in volumetrically-heated pools are of interest because of their relevance in post accident heat removal analyses for fast reactors. Earlier studies on volumetrically-heated pools have focused on natural convection phenomena. These, however, do not apply for molten core debris pools growing in concrete since large amounts of gas will be released by the concrete. These gases will vigorously mix the pool. Knowledge of the heat transfer rates at the pool boundaries is necessary in order to assess the passive core retention capability of the concrete support structure below the reactor vessel. Hence, the main objectives of this investigation have been to experimentally simulate the gas evolution process at the pool boundaries and determine the effect of gas release on the heat transfer rates along the boundaries. Nusselt-type correlations have been obtained for the downward, sideward, and upward heat transfer rates
Convection in a nematic liquid crystal with homeotropic alignment and heated from below
Energy Technology Data Exchange (ETDEWEB)
Ahlers, G. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
Experimental results for convection in a thin horizontal layer of a homeotropically aligned nematic liquid crystal heated from below and in a vertical magnetic field are presented. A subcritical Hopf bifurcation leads to the convecting state. There is quantitative agreement between the measured and the predicted bifurcation line as a function of magnetic field. The nonlinear state near the bifurcation is one of spatio-temporal chaos which seems to be the result of a zig-zag instability of the straight-roll state.
Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi
Directory of Open Access Journals (Sweden)
Ahmed F. Alfahaid, R.Y. Sakr
2012-10-01
Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures. The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.
Directory of Open Access Journals (Sweden)
Patil Mallikarjun B
2016-01-01
Full Text Available Analytical solutions for fully developed mixed convection flow of a micro polar fluid with heat generation or heat absorption in a parallel plate vertical channel with symmetric and asymmetric wall temperature distribution has been presented. The two boundaries of the channel are kept either at equal or at different temperatures as isothermal-isothermal, isoflux-isothermal and isothermal-isoflux cases. Reverse flow conditions are observed with increase in micro vortex viscosity. Micro polar fluids display reduction in heat transfer rate.
Heat transfers in a double-skin roof ventilated by natural convection in summer time
Biwole, Pascal; Pompeo, C
2013-01-01
The double-skin roofs investigated in this paper are formed by adding a metallic screen on an existing sheet metal roof. The system enhances passive cooling of dwellings and can help diminishing power costs for air conditioning in summer or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers are investigated. Depending on its surface properties, the screen reflects a large amount of oncoming solar radiation. Natural convection in the channel underneath drives off the residual heat. The bi-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters for the system's efficiency. They are, by order of importance, the sheet metal surface emissivity, the screen internal and external surface emissivity, the insulation thickness and the inclination angle for a channel width over 6 cm. The influence of those parameters on Rayleigh and Nusselt numbers is also investigated. Temperature and air velocity profiles on seve...
Study on the natural convection heat transfer characteristics in the air duct
Energy Technology Data Exchange (ETDEWEB)
Kim, Y. K.; Lee, Y. B.; Choi, S. K.; Hwang, J. S.; Nam, H. Y. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of porous media with different geometry and to obtain the experimental data for the heat transfer processes by natural convection occurring in the air duct. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method. The test at air duct was performed to the high heat removal at 3.4kW/m{sup 2} by the natural convection from the outer wall to the air. And also the temperature distributions in the sir duct agree well with the 1/7th power-law turbulent temperature distribution. The obtained heat transfer data have been compared with the Shin`s and Sieger`s correlations. 10 refs., 6 figs. (Author)
Asymptotic solution for heat convection-radiation equation
Energy Technology Data Exchange (ETDEWEB)
Mabood, Fazle; Ismail, Ahmad Izani Md [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Khan, Waqar A. [Department of Engineering Sciences, National University of Sciences and Technology, PN Engineering College, Karachi, 75350 (Pakistan)
2014-07-10
In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.
Convective heat transfer to Sisko fluid over a rotating disk
Munir, Asif
2016-01-01
This article deals with study of the steady flow and heat transfer characteristics of Sisko fluid over a rotating infinite disk. The flow and heat transfer aspects are thoroughly investigated encompassing highly shear thinning/thickening Sisko fluids. The modeled boundary layer equations are reduced to a system of nonlinear ordinary differential equations using the appropriate transformation. The resulting equations are then solved numerically by shooting method in the domain . The numerical data for the velocity and temperature fields are graphically sketched and effects of the relevant parameters are discussed in detail. In addition, the velocity gradients at the disk surface and the local Nusselt number for different values of the pertaining parameters are given in tabulated form. Further, the flow and temperature fields of power-law and Newtonian fluids are also compared with those Sisko fluid. Moreover, a comparison with previously published work, as a special case of the problem, has been provided and t...
Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium
Directory of Open Access Journals (Sweden)
Jianhong Kang
2015-01-01
Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.
Convective heat transfer fouling of aqueous solutions on modified surfaces
Janabi, Abdullah K. O. Al-
2011-01-01
The present research study was part of the European project "MEDESOL" entitled "Seawater desalination by innovative solar-powered membrane-distillation system". The project aimed at developing a stand-alone desalination unit to produce fresh water with a maximum of 50 m3/day. Several components such as suitable membrane and efficient solar collectors had to be developed as well as a plate heat exchanger for a maximum life expectancy with least deposition occurrence on its surfaces. The contri...
Energy Technology Data Exchange (ETDEWEB)
Delmas, A.A.; Wilkes, K.E.
1992-04-01
A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.
Convective heat transfer and experimental icing aerodynamics of wind turbine blades
Wang, Xin
The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil
International Nuclear Information System (INIS)
This book contains the short papers from the International Symposium on Convective heat and Mass Transfer in sustainable Energy ( Conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
International Nuclear Information System (INIS)
This book contains the short papers from the International Symposium on convective heat and Mass Transfer in sustainable Energy ( conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
Partial heating and partial salting on double-diffusive convection in an open cavity
Arbin, N.; Hashim, I.
2014-09-01
Double-diffusive natural convection in an open top square cavity and partially heated from the side is studied numerically. Constant temperatures and concentration are imposed along the right and left walls while the heat balance at the surface is assumed to obey Newton's law of cooling. The finite difference method is used to solve the dimensionless governing equations. The numerical results are reported for the effects of Marangoni number and different heater locations on the contours of streamlines, temperature and concentration. The heat and mass transfer rate in the cavity are measured in terms of the average Nusselt and Sherwood numbers.
Tsay, Y. L.
This study presents a numerical solution of the unsteady conjugated mixed-convection heat transfer in a vertical plate channel with one wall suddenly subjected to either isoflux or isothermal discrete heat sources. The effects of the dimensionless heat source length H1, the dimensionless spacing between heat sources H2, the dimensionless channel length L, the dimensionless heated-plate thickness Bl, the wall-to-fluid conductivity ratio K and the ratio of Grashof number to Reynolds number Gr/Re on the interface heat flux, Nusselt number and bulk fluid temperature are discussed in detail. Results show that the discrete heating can cause the heat transfer direction conversely from the fluid to the heated plate during the transient period, which is more significant for the cases with larger L and H2. For the system with isoflux discrete heat sources, the time required to reach the steady-state is shorter for larger H2. While the trend is reverse for system with isothermal discrete heat sources. Additionally, a higher ratio of the input energy is axially conducted through the plate wall from heated sections to unheated regions for a larger H2 and Bl or smaller L.
Energy Technology Data Exchange (ETDEWEB)
Tsay, Y.L. [Dept. of Aeronautical Engineering National Huwei Institute of Technology Huwei, Yuenlin (Taiwan)
1999-10-01
This study presents a numerical solution of the unsteady conjugated mixed-convection heat transfer in a vertical plate channel with one wall suddenly subjected to either isoflux or isothermal discrete heat sources. The effects of the dimensionless heat source length H{sub 1}, the dimensionless spacing between heat sources H{sub 2}, the dimensionless channel length L, the dimensionless heated-plate thickness B{sub l}, the wall-to-fluid conductivity ratio K and the ratio of Grashof number to Reynolds number Gr/Re on the interface heat flux, Nusselt number and bulk fluid temperature are discussed in detail. Results show that the discrete heating can cause the heat transfer direction conversely from the fluid to the heated plate during the transient period, which is more significant for the cases with larger L and H{sub 2}. For the system with isoflux discrete heat sources, the time required to reach the steady-state is shorter for larger H{sub 2}. While the trend is reverse for system with isothermal discrete heat sources. Additionally, a higher ratio of the input energy is axially conducted through the plate wall from heated sections to unheated regions for a larger H{sub 2} and B{sub l} or smaller L. (orig.)
Moshizi, S. A.; Pop, I.
2016-07-01
In the current study, the conjugated effect of Joule heating and magnetohydrodynamics (MHD) on the forced convective heat transfer of fully developed laminar nanofluid flows inside annular pipes, under the influence of MHD field, has been investigated. The temperature and nanoparticle distributions at both the inner and outer walls are assumed to vary in the direction of the fluid. Furthermore, owing to the nanoparticle migrations in the fluid, a slip condition becomes far more important than the no-slip condition of the fluid-solid interface, which appropriately represents the non-equilibrium region near the interface. The governing equations—obtained by employing the Buongiorno's model for nanofluid in cylindrical coordinates—are converted into two-point ordinary boundary value differential equations and solved numerically. The effects of various controlling parameters on the flow characteristics, the average Nusselt number and the average Sherwood number have been assessed in detail. Additionally, the effect of the inner to outer diameter ratio on the heat and mass transfer rate has been studied. The results obtained indicate that, in the presence of a magnetic field when the fluid is electrically conductive, heat transfer will be reduced significantly due to the influences of Joule heating, while the average mass transfer rate experiences an opposite trend. Moreover, the increase in the slip velocity on both the walls causes the average heat transfer to rise and the average mass transfer to decrease.
Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport
Wilson, A.; Ruppel, C.
2007-01-01
Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.
Directory of Open Access Journals (Sweden)
Peng Wang
2013-01-01
Full Text Available When the conservative governing equation of incompressible fluid flow and heat transfer is discretized by the finite volume method, there are various schemes to deal with the convective term. In this paper, studies on the convective term discretized by two different schemes, named strong and weak conservation schemes, respectively, are presented in detail. With weak conservation scheme, the convective flux at interface is obtained by respective interpolation and subsequent product of primitive variables. With strong conservation scheme, the convective flux is treated as single physical variable for interpolation. The numerical results of two convection heat transfer cases indicate that under the same computation conditions, discretizing the convective term by strong conservation scheme would not only obtain a more accurate solution, but also guarantee the stability of computation and the clear physical meaning of the solution. Especially in the computation regions with sharp gradients, the advantages of strong conservation scheme become more apparent.
Energy Technology Data Exchange (ETDEWEB)
Gangawane, Krunal Madhukar; Bharti, Ram Prakash; Kumar, Surendra [Indian Institute of Technology Roorkee, Uttarakhand (India)
2015-08-15
Natural convection characteristics of a partially heated open ended square cavity have been investigated numerically by using an in-house computational flow solver based on the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 (two-dimensional and nine-velocity link) lattice model. The partial part of left wall of the cavity is heated isothermally at either of the three different (bottom, middle and top) locations for the fixed heating length as half of characteristic length (H/2) while the right wall is open to the ambient conditions. The other parts of the cavity are thermally isolated. In particular, the influences of partial heating locations and Rayleigh number (103≤ Ra≤106) in the laminar zone on the local and global natural convection characteristics (such as streamline, vorticity and isotherm contours; centerline variations of velocity and temperature; and local and average Nusselt numbers) have been presented and discussed for the fixed value of the Prandtl number (Pr=0.71). The streamline patterns show qualitatively similar nature for all the three heating cases and Rayleigh numbers, except the change in the recirculation zone which is found to be largest for middle heating case. Isotherm patterns are shifted towards a partially heated wall on increasing Rayleigh number and/or shifting of heating location from bottom to top. Both the local and average Nusselt numbers, as anticipated, shown proportional increase with Rayleigh number. The cavity with middle heating location shown higher heat transfer rate than that for the top and bottom heating cases. Finally, the functional dependence of the average Nusselt number on flow governing parameters is also presented as a closure relationship for the best possible utilization in engineering practices and design.
Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities
Directory of Open Access Journals (Sweden)
M. Prakash
2013-01-01
Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.
Nee, Alexander
2016-02-01
Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert's law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav) increasing occurs up to τ = 200 (dimensionless time). Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces "gas - wall".
Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu
2016-09-01
The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
A numerical study of natural convection beat transfer in an inclined cylindrical annulus has been conducted.The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant temperature.the two end walls are assumed to be insulated.A numerical code has been developed to calculate the steady state three-dimensional natural convection in an inclined cylindrical annulus,and the research emphasis is placed on the influences of inclination angle α and modified Rayleigh number Ra on the natural convection heat transfer in the annulus.Computations were carried out in the ranges of 0°≤α≤90*,2.5×105≤Ra*≤7and Pr=0.7 with fixed aspect ratio of H=28.97 and radius ratio of K=3.33,The numerical results are compared with the experimental correlations from the literature and the inclination angle effect on heat transfer is found to be insignificant.Detailed results of heat transfer rate,temperature,and velocity fields are presented for the case of α=45° and discussion is also made concerning the comparison between the numerical and experimental results for the specific case of α=90°。
Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel
Huang, Zhu
2013-11-01
This paper presents a numerical study on the two-dimensional laminar mixed convective flow and heat transfer around two identical isothermal square cylinders arranged in tandem and confined in a channel. The spacing between the cylinders is fixed with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re) is studied in the range 80 ≤ Re ≤ 150, the Richardson number (Ri) demonstrating the influence of thermal buoyancy ranges from 0 to 1. Numerical results reveal that, with the thermal buoyancy effect, the mixed convective flow sheds vortex behind the cylinders and keeps periodic oscillating. The variations of characteristic quantities related to flow and heat transfer processes, such as the overall drag and lift coefficients and the Nusselt numbers, are presented and discussed. Furthermore, the influence of thermal buoyancy on the fluid flow and heat transfer are discussed and analysed. © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
This paper reports the results of a numerical investigation of transient turbulent natural convection heat transfer from a volumetric energy generating source placed inside a cylindrical enclosure filled with low Prandtl number fluid (liquid sodium, Pr = 0.005). Two-dimensional conservation equations of mass, momentum and energy, coupled with the Boussinesq approximation, are solved using a finite volume based discretisation method employing the SIMPLE algorithm for the pressure velocity coupling. Turbulence is modeled using the k-ε model with physical boundary conditions. The study presents the transient features of confined turbulent natural convection, due to time varying generation of heat in the volumetric source. The intensity of heat source exponentially decays with time and the source is placed over circular plates with a central opening. Results obtained from the numerical model compare favorably with those reported in the literature for steady state natural convection. Numerical simulations are carried out to display the sequential evolution of flow and thermal fields and the maximum temperature reached in the source. The advantages of distributing the heat source on multi trays have been quantified
Avallone, F.; Greco, C. S.; Schrijer, F. F. J.; Cardone, G.
2015-04-01
The measurement of the convective wall heat flux in hypersonic flows may be particularly challenging in the presence of high-temperature gradients and when using high-thermal-conductivity materials. In this case, the solution of multidimensional problems is necessary, but it considerably increases the computational cost. In this paper, a low-computational-cost inverse data reduction technique is presented. It uses a recursive least-squares approach in combination with the trust-region-reflective algorithm as optimization procedure. The computational cost is reduced by performing the discrete Fourier transform on the discrete convective heat flux function and by identifying the most relevant coefficients as objects of the optimization algorithm. In the paper, the technique is validated by means of both synthetic data, built in order to reproduce physical conditions, and experimental data, carried out in the Hypersonic Test Facility Delft at Mach 7.5 on two wind tunnel models having different thermal properties.
Khan, Mohammed; Khan, Arham Amin; Hasan, Mohammad Nasim
2016-07-01
This article reports a numerical investigation of mixed convection heat transfer phenomena around an active rotating heated cylinder placed inside a trapezoidal enclosure. The cavity is configured such that top and bottom walls remain thermally insulated while the remaining two sidewalls experience a constant cold temperature. The heated cylinder is located at the centre of the trapezoidal enclosure and undergoes counter clockwise rotation. The numerical solution of various governing equations (i.e. continuity, momentum and energy equations) for the present problem is obtained by using Galerkin finite element method. The present study focused on the influence of the variation of inertia effect of the rotating cylinder as manifested by the parameter, Reynolds number (Re) for various Grashof number (Gr) ranging from 103 to 105 while keeping the Richardson number constant as 1, which essentially represents the case of pure mixed convection. An envision of flow field and thermal field has been made by studying the streamlines, isotherms respectively while for the study of heat transfer characteristics, local and average Nusselt number over the heated cylinder has been considered. The result indicates that both the side wall inclination angle as well as the inertia effect of the rotating cylinder has greater impact on heat transfer characteristics compared to the case of motionless heated cylinder placed in a square cavity.
Parvin, Salma; Siddiqua, Ayesha
2016-07-01
Mixed convective flow and heat transfer characteristics of nanofluid inside a double lid driven cavity with a square heat generating block is analyzed numerically based on heat line approach. The water- alumina nanofluid is chosen as the operational fluid through the enclosure. The governing partial differential equations with proper boundary conditions are solved by Finite Element Method using Galerkin's weighted residual scheme. Calculations are performed for different solid volume fraction (χ) of nanoparticles 0 ≤ χ ≤ 0.15. Results are shown in terms of stream lines, isothermal lines, heat lines, average Nusselt number, average velocity and average temperature. An enhancement in heat transfer rate is observed with the increase of nanoparticles volume fraction.
Energy Technology Data Exchange (ETDEWEB)
Chato, J.C.; Crowley, J.M.
1981-05-01
A multi-faceted research program has been performed to investigate in detail several aspects of free and forced convective cooling of underground electric cable systems. There were two main areas of investigation. The first one, reported in Volume 1, dealt with the fluid dynamic and thermal aspects of various components of the cable system. In particular, friction factors for laminar flow in the cable pipes with various configurations were determined using a finite element technique; the temperature distributions and heat transfer in splices were examined using a combined analytical numerical technique; the pressure drop and heat transfer characteristics of cable pipes in the transitional and turbulent flow regime were determined experimentally in a model study; and full-scale model experimental work was carried out to determine the fluid dynamic and thermal characteristics of entrance and exit chambers for the cooling oil. The second major area of activity, reported in this volume, involved a feasibility study of an electrohydrodynamic pump concept utilizing a traveling electric field generated by a pumping cable. Experimental studies in two different configurations as well as theoretical calculations showed that an electrohydrodynamic pump for the moving of dielectric oil in a cable system is feasible.
Institute of Scientific and Technical Information of China (English)
ZhangHeng－Yun; GeXin－Shi
1997-01-01
Heat transfer in the evacuated collector tube is a three-dimensional laminar natural convection problem driven by buoyancy.Because of its complexity,no effective theoretical model is available despite of limited experimental work which is confined to one aspect.The present work aims to depict the convective heat transfer inside a two-ended inclined tube with East-West symmetric heat input using numerical methods,Based on reasonable assumptions,governing equations of the inside fluid are established.The corresponding discretizated equations are solved by emplogying numerical metholds.The calculated results are displayed for velocity and temperature profiles on different cross-sectional plasnes.which present the flow pattern characterized by upflow and downflow along the axial direction and adherent flow along the peripheral direction,and the heat transfer rpocess from the wall to the center,Furthermore,the transient Nusselt number and average temperature level are shown and discussed.Finally,the parametric effects of the tube radius and the heat input on the flow and heat transfer are also given.
Directory of Open Access Journals (Sweden)
Hsien-Hung Ting
2016-07-01
Full Text Available This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2% and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8% are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data.
Numerical study of perforated plate convective heat transfer
Directory of Open Access Journals (Sweden)
Tomić Mladen A.
2014-01-01
Full Text Available Numerical simulations were performed to determine the heat transfer coefficient of a perforated plate with square arranged cylindrical perforations. Three parameters were varied in the study: plate porosity, pitch Reynolds number and working fluid, while perforation diameter and plate thickness were constant. The Reynolds number was varied in the range from 50 to 7000, and porosity in the range from 0.1 to 0.3. As working fluids, helium, air or carbon-dioxide were set, respectively. The Nusselt number was correlated in the function of the Reynolds number, the Prandtl number, and the pitch-to-diameter ratio. The comparison with other correlations is given at the end of the paper. The difference was found to be acceptable.
Convective heat transfer characteristics of laminar pulsating pipe air flow
Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.
Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750
Convective heat transfer characteristics of laminar pulsating pipe air flow
Energy Technology Data Exchange (ETDEWEB)
Habib, M.A. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Attya, A.M.; Eid, A.I.; Aly, A.Z. [Department of Mechanical Engineering, Cairo Univ. (Egypt)
2002-02-01
Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4 Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4 Hz) was obtained. In the frequency range of 17-25 Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5 Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17 Hz and a reduction up to 20% for pulsation frequency range of 25-29.5 Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750
DEFF Research Database (Denmark)
Bhattacharyya, S.; Singh, Ashok
2010-01-01
monotonically with the increase of the effective Reynolds number. The validity of the correlations, which have been established by several authors, between the effective Reynolds number and Strouhal/ Nusselt number for forced convection, is examined in the mixed convection regime. The curves between...
Kwon, Younghwan; Lee, Kwangho; Park, Minchan; Koo, Kyoungmin; Lee, Jaekeun; Doh, Youngjin; Lee, Soowon; Kim, Doohyun; Jung, Yoongho
2013-12-01
An experimental investigation on the characteristics of the convective heat transfer in the fully developing region of a circular straight tube with a constant heat flux was carried out with Al2O3 nanofluids. Stable nanofluids, which were water-based suspensions of Al2O3 nanoparticles, were prepared by two-step method. The effects of the thermal conductivity, viscosity, and heat capacity of the nanofluids on convective heat transfer were investigated. The result showed that the coefficient enhancement of the convective heat transfer in the Al2O3 nanofluids was increased with increasing fluid temperature compared to that of water at a volume fraction of 3.0% in the turbulent flow region. Thermal conductivity was increased from 8% to 20%, and the increment of convective heat transfer coefficient was enhanced from 14% to 30% with fluid temperature from 22 degrees C to 75 degrees C, respectively. We observed that the increment of convective heat transfer coefficient in nanofluids was much higher than that of the thermal conductivity at a given temperature condition. The enhancement of Brownian motion due to the decreasing kinematic viscosity led to a higher convective heat transfer coefficient at a higher temperature condition.
Energy Technology Data Exchange (ETDEWEB)
Fox, E.; Visser, A.; Bridges, N.
2011-07-18
This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.
Assessment of Haar Wavelet-Quasilinearization Technique in Heat Convection-Radiation Equations
Directory of Open Access Journals (Sweden)
Umer Saeed
2014-01-01
Full Text Available We showed that solutions by the Haar wavelet-quasilinearization technique for the two problems, namely, (i temperature distribution equation in lumped system of combined convection-radiation in a slab made of materials with variable thermal conductivity and (ii cooling of a lumped system by combined convection and radiation are strongly reliable and also more accurate than the other numerical methods and are in good agreement with exact solution. According to the Haar wavelet-quasilinearization technique, we convert the nonlinear heat transfer equation to linear discretized equation with the help of quasilinearization technique and apply the Haar wavelet method at each iteration of quasilinearization technique to get the solution. The main aim of present work is to show the reliability of the Haar wavelet-quasilinearization technique for heat transfer equations.
Energy Technology Data Exchange (ETDEWEB)
Akbari, M. [Mechanical Engineering Department, Zahedan (Iran, Islamic Republic of); Behzadmehr, A. [Mechanical Engineering Department, Zahedan (Iran, Islamic Republic of)], E-mail: behzadmehr@hamoon.usb.ac.ir; Shahraki, F. [Nanotechnology Institute, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)
2008-04-15
Fully developed laminar mixed convection of a nanofluid consists of water and Al{sub 2}O{sub 3} in horizontal and inclined tubes has been studied numerically. Three-dimensional elliptic governing equations have been solved to investigate the flow behaviors over a wide range of the Grashof and Reynolds numbers. Comparisons with previously published experimental and numerical works on mixed convection in a horizontal and inclined tube are performed and good agreements between the results are observed. Effects of nanoparticles concentration and tube inclinations on the hydrodynamics and thermal parameters are presented and discussed. It is shown that the nanoparticles concentration does not have significant effects on the hydrodynamics parameters. Heat transfer coefficient increases by 15% at 4 Vol.% Al{sub 2}O{sub 3}. Skin friction coefficient continually increases with the tube inclination, but the heat transfer coefficient reaches a maximum at the inclination angle of 45 deg.
Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection
DEFF Research Database (Denmark)
Alexandersen, Joe; Sigmund, Ole; Aage, Niels
2016-01-01
This work presents the application of density-based topology optimisation to the design of three-dimensional heat sinks cooled by natural convection. The governing equations are the steady-state incompressible Navier-Stokes equations coupled to the thermal convection-diffusion equation through...... and several optimised designs are presented for Grashof numbers between 103 and 106. Interestingly, it is observed that the number of branches in the optimised design increases with increasing Grashof numbers, which is opposite to two-dimensional topology optimised designs. Furthermore, the obtained...... topologies verify prior conclusions regarding fin length/thickness ratios and Biot numbers, but also indicate that carefully tailored and complex geometries may improve cooling behaviour considerably compared to simple heat fin geometries. (C) 2016 Elsevier Ltd. All rights reserved....
Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet
Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009
2013-01-01
Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...
Relative Contributions of Heating and Momentum Forcing to High-Latitude Lower Thermospheric Winds
Kwak, Y. S.; Richmond, A. D.
2015-12-01
At high latitudes the thermospheric dynamics are governed by various heat and momentum sources. Recently several modeling studies have been attempted to understand the physical process that control the high-latitude lower thermospheric dynamics. Kwak and Richmond [2007] and Kwak et al. [2007] studied the momentum forcing balance that are mainly responsible for maintaining the high-latitude lower thermospheric wind system by using the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR TIE-GCM). Kwak and Richmond [2014] analyzed the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime. In this study, we extend previous works by Kwak and Richmond [2007, 2014] and Kwak et al. [2007], which helped to better understand the physical processes maintaining thermospheric dynamics at high latitudes, and here perform a "term analysis of the potential vorticity equation" for the high-latitude neutral wind field in the lower thermosphere, on the basis of numerical simulations using the NCAR TIE-GCM. These analyses can provide insight into the relative strength of the heating and the momentum forcing responsible for driving rotational winds at the high-latitude lower thermosphere. The heating is the net heat including the heat transfer by downward molecular and eddy heat conduction, the absorption of solar ultraviolet (UV) and extreme ultraviolet (EUV) radiation, auroral heating by particles, Joule dissipation of ionospheric currents, release of chemical energy by the atomic oxygen recombination, and radiative CO2, NO and O infrared emissions. The momentum forcing is associated with the viscous force and the frictional drag force from convecting ions.
MHD natural convection flow along a vertical wavy surface with heat generation and pressure work
Alim, M. A.; Kabir, K. H.; Andallah, L. S.
2016-07-01
In this paper, the influence of pressure work on MHD natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface with heat generation has been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, the streamlines and the isotherms are shown graphically and skin friction coefficient and rate of heat transfer have been shown in tabular form for different values of the selective set of parameters consisting of pressure work parameter Ge, the magnetic parameter M, Prandtl number Pr, heat generation parameter Q and the amplitude of the wavy surface.
Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects
Directory of Open Access Journals (Sweden)
Bhadauria B. S.
2014-01-01
Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.
A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Jawad; Shahzad, Azeem [Department of Basic Sciences, University of Engineering and Technology, Taxila 47050 (Pakistan); Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Ali, Ramzan, E-mail: alian.qau@gmail.com [Department of Applied Mathematics, TU-Dortmund (Germany); University of Central Asia, 720001 Bishkek (Kyrgyzstan)
2015-11-15
This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.
A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet
Directory of Open Access Journals (Sweden)
Jawad Ahmed
2015-11-01
Full Text Available This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST and prescribed heat flux (PHF. Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.
Numerical study of thermal convection in horizontal enclosure with heat generating conducting body
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Ryong; Ha, Man Yeong [Busan National Univ., Busan (Korea, Republic of)
2004-07-01
The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from 103 to 106. Multi-domain technique is used to handle square shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.
A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet
Ahmed, Jawad; Shahzad, Azeem; Khan, Masood; Ali, Ramzan
2015-11-01
This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.
Study on radiation heat transfer and natural convection outside passive containment cooling system
International Nuclear Information System (INIS)
A 1 : 10 2D model of radiation heat transfer and natural convection outside the 2D steel containment was established in this paper. The advanced computational fluid dynamic analysis software Fluent was applied to complete the calculation. The velocity nephogram and the velocity vector diagram on the head of steel containment were obtained, and the results show that there is an air stagnant zone on the head of steel containment. The influence of channel width, airflow speed and emissivity of wall surface on heat transfer was studied as well. The appropriate channel width and airflow speed can enhance the heat transfer and the efficiency of heat exchange. The increase of the emissivity of wall surface can obviously improve the radiation heat transfer on the head of steel containment. (authors)
Institute of Scientific and Technical Information of China (English)
Pei－xueJiang; Ze－peiRen; 等
1992-01-01
Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with dimeter about 10-3-10-1um,Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even esult in accidents.A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the flrst or mixed kind of boundary conditions for high-pressure water(P=17MPa) containing metal corrosion products with consideration of varialbe thermophysical properties.
Two phase convective heat transfer augmentation in swirl flow with non-boiling
Energy Technology Data Exchange (ETDEWEB)
Cha, K.O. [Myong Ji University, Kyonggi-do (Korea, Republic of); Kim, J.G. [Myongji University Graduate School, Kyonggi-do (Korea, Republic of)
1995-10-01
Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased. (author). 13 refs., 15 figs.
A p-version finite element method for steady incompressible fluid flow and convective heat transfer
Winterscheidt, Daniel L.
1993-01-01
A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.
Numerical study of natural convection heat transfer from an isothermal thin plate.
Jaramillo Ibarra, Julian Ernesto; Oliva Llena, Asensio; Pérez Segarra, Carlos David; Soria Guerrero, Manel
2009-01-01
In this work detailed numerical simulations of natural convection heat transfer around an isothermal thin plate with different inclinations are carried out. The numerical approach is based on the finite volume technique for the study of air movement around the plate and its surroundings using symmetry-preserving formulation. To solve turbulence, Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) are selected. After verification of the numerical solutions and comparison of ...
A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator
Hua-Shu Dou; Gang Jiang; Lite Zhang
2015-01-01
This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper) and fluid (air) areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that...
Directory of Open Access Journals (Sweden)
You-Sheng Xu
2015-01-01
Full Text Available A lattice Boltzmann model of the uniform velocity, driven convective thermal conductivity in a porous cavity is studied. The Darcy, Richardson, and Reynolds numbers are shown to have a significant influence on the heat transfer behavior and the horizontal velocity of the flow field, while the porosity has little influence on either. The model is validated by the average Nusselt number at different Reynolds numbers, and the numerical results are in good agreement with available published data.
Effect of cooling rate and forced convection on as-cast structure of 2205 duplex stainless steel
Cheng Zhang; Hong-gang Zhong; Cong-sen Wu
2015-01-01
To forecast the as-cast structure and ferrite-austenite phase ratio of 2205 duplex stainless steel (DSS), the effects of cooling rate and forced convection were observed in a high-vacuum resistance furnace in which the forced convection was created by the rotation of the crucible. The as-cast structure of all 2205 DSS samples is full equiaxed grains, and the microstructure consists of a great amount of desirable intra-granular austenite inside the continuous ferrite grain matrix, besides Widm...
Single layer solar drying behaviour of Citrus aurantium leaves under forced convection
Energy Technology Data Exchange (ETDEWEB)
Ait Mohamed, L.; Lahsasni, S. [Ecole Normale Superieure, Marrakech (Morocco). Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales; Unite de Chimie Agroalimentaire, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales; Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax (Tunisia); Mahrouz, M. [Unite de Chimie Agroalimentaire, Marrakech (Morocco). Faculte des Sciences Semlalia
2005-06-01
Convective solar drying experiments in thin layers of Citrus aurantium leaves grown in Marrakech, morocco, were conducted. An indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for the experiments. The air temperature was varied from 50 to 60{sup o}C; the relative humidity from 41% to 53%; and the drying air flow rate from 0.0277 to 0.0833 m{sup 3}/s. Thirteen statistical models, which are semi-theoretical and/or empirical, were tested for fitting the experimental data. A nonlinear regression analysis using a statistical computer program was used to evaluate the constants of the models. The Midilli-Kucuk drying model was found to be the most suitable for describing the solar drying curves of Citrus aurantium leaves with a correlation coefficient (r) of 0.99998, chi-square ({chi}{sup 2}) of 4.664 x 10{sup -6} and MBE of 4.8381 x 10{sup -4}. (author)
Integral transform solution of natural convection in a square cavity with volumetric heat generation
Directory of Open Access Journals (Sweden)
C. An
2013-12-01
Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.
Convection Heat Transfer Modeling of Ag Nanofluid Using Different Viscosity Theories
Directory of Open Access Journals (Sweden)
Ali Bakhsh Kasaeian
2012-04-01
Full Text Available ABSTRACT: In this paper, the effects of adding nanoparticles (including Ag to a fluid media for improving free convection heat transfer were analysed. The free convective heat transfer was assumed to be in laminar flow regime, and the corresponding calculations and solutions were all done by the integral method. Water, as a Newtonian fluid, was considered as the base and all relevant thermo physical properties of the nanofluids were considered to be unvarying. The calculations performed and the graphs generated showed that, in general, the addition of nanoparticles to the fluid media resulted in an increment or improvement of its heat transfer coefficient. With increase in the concentration of the nanoparticles, the heat transfer rate of the fluid also increased. The increment in heat transfer is also dependent on the nanoparticles’ thermal conductivity and the viscosity theory which was utilized in the calculations. In this study, four different theories were used to calculate the viscosities of the nanofluids. The effects of viscosity on the nanofluids’ thermal conductivity were apparent from the calculations which were performed for nanoparticle concentrations of 4% or less. ABSTRAK: Kajian ini menganalisis kesan penambahan nanopartikel Ag ke dalam media bendalir bagi tujuan pembaikkan pemindahan haba perolakan bebas. Perolakan bebas diandaikan berada di zon aliran laminar, di mana penyelesaian dan pengiraan telah dilakukan mengunakan kaedah kamilan. Air yang merupakan cecair Newtonian, dianggap sebagai asas dan sifat terma fizikal nanocecair dianggapkan tidak berubah. Mengikut pengiraan yang dilakukan dan graf yang diplotkan, umumnya penambahan nanopartikel kepada media bendalir menyebabkan peningkatan dan pengembangan pekali pemindahan haba. Kadar pemindahan haba meningkat dengan nanopartikel. Peningkatan pemindahan haba juga bergantung kepada pengalir haba nanopartikel dan teori kelikatan yang digunakan. Di dalam kajian ini, empat
Directory of Open Access Journals (Sweden)
Bianco Vincenzo
2011-01-01
Full Text Available Abstract In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm. An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement. A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined.
Bianco, Vincenzo; Nardini, Sergio; Manca, Oronzio
2011-03-24
In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm.An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement.A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined.
Starting experience on the use of Pb-17Li in forced convection loop
International Nuclear Information System (INIS)
The loop MALICE started for the first time with lithium in May 1985 and had been operated during 7500 hours with pure lithium quite satisfactorily. Corrosion tests as well as magnetohydrodynamics experiments have been performed. Now the loop is filled with Pb-17Li and operated for the first time with Pb-17Li on December 11th 1987. The conversion of MALICE to the use of Pb-17Li was necessitated by the choice of the European Fusion Technology Programme in favour of this eutectic alloy, as liquid metal breeder for the Next European Torus. Pure lithium had been rejected because of its higher chemical reactivity. In this paper the fabrication technique for Pb-17Li and the first experience with Pb-17Li in the forced convection loop MALICE will be described. (author). 5 refs.; 6 figs
Combined effect of free and forced convection on MHD flow in a rotating porous channel
Directory of Open Access Journals (Sweden)
D. R. V. Prasada Rao
1982-01-01
Full Text Available This paper gives a steady linear theory of the combined effect of the free and forced convection in rotating hydromagnetic viscous fluid flows in a porous channel under the action of a uniform magnetic field. The flow is governed by the Grashof number G, the Hartmann number H, the Ekman number E, and the suction Reynolds number S. The solutions for the velocity field, temperature distribution, magnetic field, mass rate of flow and the shear stresses on the channel boundaries are obtained using a perturbation method with the small parameter S. The nature of the associated boundary layers is investigated for various values of the governing flow parameters. The velocity, the temperature, and the shear stresses are discussed numerically by drawing profiles with reference to the variations in the flow parameters.
Institute of Scientific and Technical Information of China (English)
YANG Xiao; LIU Xuemei
2007-01-01
Based on the Darcy fluid model, by considering the effects of viscous dissipation due to the interaction between solid skeleton and pore fluid flow and thermal conduction in the direction of the fluid flow, the thermally developing forced convection of the local thermal equili- brium and the corresponding thermal stresses in a semi- infmite saturated porous plate channel are investigated in this paper. The expressions of temperature, local Nusselt number and corresponding thermal stresses are obtained by means of the Fourier series, and the distributions of the same are also shown. Furthermore, influences of the Péclet number (Pe) and Brinkman number (Br) on temperature, Nusselt number (Nu) and thermal stress are revealed numerically.
Natural convection in an adiabatic vertical channel due to a dissipated heat element
International Nuclear Information System (INIS)
An experimental study was perfomed on natural convection heat transfer to air in a vertical channel due to an isothermal heated element attached in one of the walls of the channel. The heated element dissipates heat due to the Joule effect. To determine the heat transfer coefficient, it is necessary to evaluate the heat transferred to air by natural convenction alone. Hence, the heat lost by the element due to conduction and radiation is evaluated in order to correct the measured heat transfer. The natural-convenction heat transfer coefficient is a function of the following parameters: the temperature difference between the element and the ambient air, the position of the element in the channel, and the channel spacing. An optimal value of the channel spacing, when the heat transfer coefficient attains its maximum value, was observed for each of the temperature difference investigated. These maximum values may be up to 25% higher than the value for the case of infinite spacing. Comparisons are made with results available in the literature for similar configurations, and the values found in this work are higher. (author)
Enhancing filling of interconnect deep trenches using forced convection magneto-electroplating
Said, R. A.
2006-01-01
Filling deep trenches and cavities is currently accomplished by copper electro-less plating technology utilizing super-conformal deposition methods. Unlike typical electrolyses processes, where an electric potential is applied between the anodes to activate the plating reaction, electro-less plating relies on chemical agents to activate deposition. To achieve super-conformal deposition, special electrolytic paths must be used. This poses a challenge to the fabrication of narrower trenches, and thus requires the development of other deposition schemes. This work proposes an alternative solution to the filling of deep trenches that avoids the difficulties outlined above, using a forced convection magneto-electroplating method. The technique operates as in typical electrolysis processes, however, with forcing the flow of the plating electrolyte, by hydro-dynamic means, in the presence of an externally applied magnetic field. This arrangement introduces a Lorentz type of force that enhances the transport of deposit species toward desired locations, such as deep regions in interconnect trenches. The proposed method is demonstrated by filling interconnect trenches with aspect ratio as high as 3:1. Quality of samples filled using the proposed magneto-electroplating method is compared with the quality of samples filled by typical electroplating method.
The Effects of Microwave Energy and Convection Heating on Wheat Starch Granule Transformations
Goebel, N. K.; Grider, J.; Davis, E.A.; Gordon, J
1984-01-01
Wheat starch-water dispersions at 1:1, 1:2, 1:4, and 5 95 (w/w) starch:water ratios, representing systems with varying levels of water availability , were heated under static conditions to 75°C by microwave energy at two power settings and by convection heating. Starch granule swe lling was evaluated by light and scanning electron microscopy. Six stages in swelling were identified on the basis of s welling of small and large granules and development of an extragranular matrix. The range of sw...
Institute of Scientific and Technical Information of China (English)
LI Guang-zheng; HUANG Jian-chun
2005-01-01
Numerical simulations are performed for laminar natural convection heat transfer from a centered conducting body enclosed in a square cavity. A high accuracy unsteady numerical method is used, combining the unique condition of the pressure, the convergent solutions and the stream-function value of the inside heat-conducting body are given simultaneously. Two examples are simulated with this numerical method and compared with the experimental results. The results of the numerical solutions are consistent with the experimental results. It shows that the numerical method is valid and feasible.
Characteristics of convective heat transport in a packed pebble-bed reactor
International Nuclear Information System (INIS)
Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to
Directory of Open Access Journals (Sweden)
Amin Kashani
2013-04-01
Full Text Available Laminar forced convection of a nanofluid consisting of water and Al2O3 in a horizontal annulus has been studied numerically. Two-phase mixture model has been used to investigate thermal behaviors of the nanofluid over constant temperature thermal boundary condition and with different volume concentration of nanoparticles. Comparisons with previously published experimental and analytical works on flow behavior in horizontal annulus show good agreements between the results as volume fraction is zero. In general convective heat transfer coefficient increases with nanoparticle concentration. ABSTRAK: Kertaskerja ini mengkaji secara numerik olakan paksa bendalir lamina yang menganduangi air dan Al2O3 didalam anulus mendatar. Model campuran dua fasa digunakan bagi mengkaji tingkah laku haba bendalir nano pada keadaan suhu malar dengan kepekatan nanopartikel berbeza. Perbandingan dengan karya eksperimen dan analitikal yang telah diterbitkan menunjukkan bahawa kelakuan aliran didalm anulus mendatar adalah baik apabila pecahan isipadu adalah sifar. Pada amnya, pekali pemindahan haba olakan meningkat dengan kepekatan nanopartikel. KEYWORDS: nanofluid; volume concentration; heat transfer enhancement; laminar flow convection; annulus
Sahoo, Niranjan; Kumar, Rakesh
2016-09-01
The determination of convective surface heating is a very crucial parameter in high speed flow environment. Most of the ground based facilities in this domain have short duration experimental time scale (~milliseconds) of measurements. In these facilities, the calorimetric heat transfer sensors such as thin film gauges (TFGs) and coaxial surface junction thermocouple (CSJT) are quite effective temperature detectors. They have thickness in the range of few microns and have capability of responding in microsecond time scale. The temperature coefficient of resistance (TCR) and the sensitivity are calibration parameter indicators that show the linear change in the resistance of the gauge as a function of temperature. In the present investigation, three of types of heat transfer gauges are fabricated in the laboratory namely, TFG made out of platinum, TFG made out of platinum mixed with CNT and chromel-alumel surface junction coaxial thermocouple (K-type). The calibration parameters of the gauges are determined though oil-bath experiments. The average value TCR and sensitivity of platinum TFG is found to be 0.0024 K-1 and 465 μV/K, while similar values of CSJT are obtained as, 0.064 K-1 and 40.5 μV/K, respectively. The TFG made out of platinum mixed with CNT (5 % by mass) shows the enhancement of TCR as well as sensitivity and the corresponding values are 0.0034 K-1 and 735 μV/K, respectively. The relative performances of heat transfer gauges are compared in a simple laboratory scale experiment in which the gauges are exposed to a sudden step heat load in convection mode for the time duration of 200 ms. The surface heat fluxes are predicted from the temperature history through one dimensional heat conduction modeling. While comparing the experimental results, it is seen that prediction of surface heat flux from all the heat transfer gauges are within the range of ±4 %.
Experimental and numerical investigation on natural convection heat transfer in nanofluids
Energy Technology Data Exchange (ETDEWEB)
Nayak, A.K.; Kulkarni, P.P.; Chinchole, A.S. [Bhabha Atomic Research Centre, Mumbai (India). Reactor Engineering Div.; Mulye, S.M. [Walchand College of Engineering, Sangli (India)
2016-03-15
An experimental study has been undertaken concerning natural convection heat transfer of nanofluids over a cylindrical heater with a constant wall heat flux condition. The cylindrical heater having 7.1 mm O. D. and 0.5 mm thickness with 100 mm heated length was used as heater surface. The heat flux was varied from 0 to 50 000 W/m{sup 2} and the corresponding Rayleigh number range is varied from 3 x 10{sup 4} to 1.65 x 10{sup 5}. Different Nanofluids were used i. e. Aluminium oxide, Titanium dioxide, Silicon dioxide and Copper oxide with concentration varying from 0.0005 % to 0.05 % by weight. Results show that there was a reduction in natural convection heat transfer coefficient of nanofluids as compared to water. Experimental results were compared with existing models for similar geometry. However, the available correlation was found to be unable to predict experimental data as it does not take into account the effect of particle concentration. A new empirical model was developed based on the experimental data including the effect of nanoparticles concentration which predicts the experimental data satisfactorily.
Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia
Birkelund, Yngve; Jacobsen, Svein; Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R.
2009-07-01
This paper investigates both numerically and experimentally the spatio-temporal effects of water flow in a custom-made water bolus used for superficial hyperthermia generated by a 915-MHz, 4 × 3 microwave applicator array. Similar hyperthermia models referenced in the literature use a constant water temperature and uniform heat flux to describe conduction and convection energy exchange within the heating apparatus available to cool the tissue surface. The results presented in this paper show that the spatially varying flow pattern and rate are vital factors for the overall heat control applicability of the 5 mm thick bolus under study. Regions with low flow rates and low heat convection clearly put restrictions on the maximum microwave energy possible within the limits of skin temperature rise under the bolus. Our analysis is illustrated by experimental flow front studies using a contrast liquid set-up monitored by high definition video and complemented by numerical analysis of liquid flow and heat exchange within the rectangular water bolus loaded by malignant tissue. Important factors for the improvement of future bolus designs are also discussed in terms of diameter and configuration of the water input and output tubing network.
Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia
Energy Technology Data Exchange (ETDEWEB)
Birkelund, Yngve; Jacobsen, Svein [Electrical Engineering Group, Department of Physics and Technology, Faculty of Science, University of Tromsoe, N-9037 Tromsoe (Norway); Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R [Radiation Oncology Department, Duke University Medical Center, Durham, NC 27710 (United States)], E-mail: Yngve.Birkelund@uit.no
2009-07-07
This paper investigates both numerically and experimentally the spatio-temporal effects of water flow in a custom-made water bolus used for superficial hyperthermia generated by a 915-MHz, 4 x 3 microwave applicator array. Similar hyperthermia models referenced in the literature use a constant water temperature and uniform heat flux to describe conduction and convection energy exchange within the heating apparatus available to cool the tissue surface. The results presented in this paper show that the spatially varying flow pattern and rate are vital factors for the overall heat control applicability of the 5 mm thick bolus under study. Regions with low flow rates and low heat convection clearly put restrictions on the maximum microwave energy possible within the limits of skin temperature rise under the bolus. Our analysis is illustrated by experimental flow front studies using a contrast liquid set-up monitored by high definition video and complemented by numerical analysis of liquid flow and heat exchange within the rectangular water bolus loaded by malignant tissue. Important factors for the improvement of future bolus designs are also discussed in terms of diameter and configuration of the water input and output tubing network.
Aided Mixed Convection past a Heated Square Cylinder at Low Blockage Ratio
Directory of Open Access Journals (Sweden)
S Moulai
2016-01-01
Full Text Available This paper investigates numerically the flow and heat transfer in air (Pr=0.71 by mixed convection past a heated square cylinder under aiding buoyancy effect in a confined channel. The numerical simulations are performed in the range of parameters 20≤Re≤45 and 1.61x103≤Gr≤6.33x103 for a fixed blockage ratio D/L of 0.1. The combination in the present study of these two Re and Gr parameters is reduced so that the Richarson number varies from 0,8 to 8, in order to neglect neither free convection (Ri10. The steady two-dimensional governing equations are solved by the finite volume formulation using the open source OpenFoam® code. The representative flow structure, isotherm patterns and local Nusselt number evolution are presented and discussed. The effect of both the Reynolds number and the buoyancy parameter on the fluid flow and the heat transfer are also analyzed. It is found that the wake region size strongly depends on both Reynolds and Grashof numbers and this region is shown to increase in size increasing the Reynolds number and/or decreasing the Grashof number. Moreover, increasing the Reynolds number leads to a heat transfer enhancement more pronounced on the front face of the obstacle, whereas increasing the Grashof number leads to a heat transfer enhancement more pronounced on the side faces.
A Lagrangian formalism for thermal analysis of laminar convective heat transfer
International Nuclear Information System (INIS)
Heat transfer in essence is the transport of thermal energy along certain paths in a similar way as fluid motion is the transport of fluid parcels along fluid paths. This similarity admits Lagrangian heat-transfer analyses by the geometry of such 'thermal paths' analogous to well-known Lagrangian mixing analyses. Essential to Lagrangian heat-transfer formalisms is the reference state for the convective flux. Existing approaches admit only uniform references. However, for convective heat transfer, a case of great practical relevance, the conductive state that sets in for vanishing fluid motion is the more natural reference. This typically is an inhomogeneous state and thus beyond the existing formalism. The present study closes this gap by its generalisation to non-uniform references and thus substantially strengthens Lagrangian methods for thermal analyses. This ansatz is demonstrated by way of a 2D case study and offers new fundamental insight into thermal transport that is complementary to the Eulerian picture based on temperature and heat-transfer coefficients.
HEAT TRANSFER BY NATURAL CONVECTION IN TWO VERTICAL AND ONE HORIZONTAL PLATE – AN OVERVIEW
Directory of Open Access Journals (Sweden)
MAHENDRA P NIMKAR
2011-02-01
Full Text Available Natural Convection flow in a vertical channel with internal objects is encountered in several technological applications of particular interest of heat dissipation from electronic circuits, refrigerators, heat exchangers, nuclear reactors fuel elements, dry cooling towers, and home ventilation etc.This study deals with the study of natural convection in horizontal plate with vertical channels. The parameters varied during the experimentation are heat input, aspect ratio (the ratio of gap of horizontal plate with respect to vertical plate and gap of horizontal plate from bottom to top, and horizontal plate with and without Vslot. The present study aims to determine the heat transfer characteristics, temperature distribution along the plate to develop a correlation in the form of Nu = c (Ra n for different values of aspect ratio, for the selection of optimum dimension for design purpose. Further, the influences of aspect ratio on theperformance characteristics of heat transfer will be studied and also, the experimental results will be validated with CFD simulation (FLUENT SOFTWARE.
Convective heat transfer from rotating disks subjected to streams of air
aus der Wiesche, Stefan
2016-01-01
This Brief describes systematically results of research studies on a series of convective heat transfer phenomena from rotating disks in air crossflow. Phenomena described in this volume were investigated experimentally using an electrically heated disk placed in the test section of a wind tunnel. The authors describe findings in which transitions between different heat transfer regimes can occur in dependency on the involved Reynolds numbers and the angle of incidence, and that these transitions could be related to phenomenological Landau and Landau-de Gennes models. The concise volume closes a substantial gap in the scientific literature with respect to flow and heat transfer in rotating disk systems and provides a comprehensive presentation of new and recent results not previously published in book form.
MHD mixed convection flow through a diverging channel with heated circular obstacle
Alam, Md. S.; Shaha, J.; Khan, M. A. H.; Nasrin, R.
2016-07-01
A numerical study of steady MHD mixed convection heat transfer and fluid flow through a diverging channel with heated circular obstacle is carried out in this paper. The circular obstacle placed at the centre of the channel is hot with temperature Th. The top and bottom walls are non-adiabatic. The basic nonlinear governing partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations. These equations have been solved numerically for different values of the governing parameters, namely Reynolds number (Re), Hartmann number (Ha), Richardson number (Ri) and Prandtl number (Pr) using finite element method. The streamlines, isotherms, average Nusselt number and average temperature of the fluid for various relevant dimensionless parameters are displayed graphically. The study revealed that the flow and thermal fields in the diverging channel depend significantly on the heated body. In addition, it is observed that the magnetic field acts to increase the rate of heat transfer within the channel.
Energy Technology Data Exchange (ETDEWEB)
Davidson, J.H.
1998-06-01
The goals of this project are: (1) to develop guidelines for the design and use of thermosyphon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger. The tasks for the project are as follows: (1) Develop a model of the thermal performance of thermosyphon heat exchangers in solar water heating applications. A test protocol will be developed which minimizes the number of tests required to adequately account for mixed convection effects. The TRNSYS component model will be fully integrated in a system component model and will use data acquired with the specified test protocol. (2) Conduct a fundamental study to establish friction and heat transfer correlations for conditions and geometries typical of thermosyphon heat exchangers in solar systems. Data will be obtained as a function of a buoyancy parameter based on Grashof and Reynolds numbers. The experimental domain will encompass the ranges expected in solar water heating systems.
Directory of Open Access Journals (Sweden)
Lenhard Richard
2012-04-01
Full Text Available In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057, whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3.
Radiation and convective heat transfer, and burnout in oxy-coal combustion
Energy Technology Data Exchange (ETDEWEB)
J.P. Smart; P. O' Nions; G.S. Riley [RWE npower, Swindon (United Kingdom)
2010-09-15
Measurements of radiative and convective heat transfer, and carbon-in-ash have been taken on the RWEn 0.5 MWth combustion test facility (CTF) firing two different coals under oxy-fuel firing conditions. The two coals fired were a Russian Coal and a South African Coal. Recycle ratios were varied within the range of 65-75% dependent on coal. Furnace exit O{sub 2} values were maintained at 3% and 6% for the majority of tests. Air firing tests were also performed to generate baseline data. The work gives a comprehensive insight into the effect of oxy-fuel combustion on both radiative and convective heat transfer, and carbon-in-ash compared to air under dry simulated recycle conditions. Results have shown peak radiative heat flux values are inversely related to the recycle ratio for the two coals studied. Conversely, the convective heat flux values increase with increasing recycle ratio. It was also observed that the axial position of the peak in radiative heat flux moves downstream away from the burner as recycle ratio is increased. A 'working range' of recycle ratios exists where both the radiative and convective heat fluxes are comparable with air. Carbon-in-ash (CIA) was measured for selected conditions. For air firing of Russian Coal, the CIA for follows and expected trend with CIA decreasing with increasing furnace exit O{sub 2}. The CIA data for the two recycle ratios of 72% and 68% for the same coal show that the CIA values are lower than for air firing for corresponding furnace exit O{sub 2} levels and vary little with the value of furnace exit O{sub 2}. CIA measurements were taken for the South African Coal for a range of recycle ratios at 3% and 6% furnace exit O{sub 2} levels. Results indicate that the CIA values are lower for higher furnace exit O{sub 2}. 32 refs., 11 figs., 1 tab.
An interferometric study of free convection in a window with a heated between-panes blind
Energy Technology Data Exchange (ETDEWEB)
Almeida, F.; Naylor, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering
2008-08-15
Slat-type blinds located between the panes of a window, or even within the double facade of a building are becoming increasingly common. There is significant interest in this type of shading for the control of building solar gains, in order to lower both heating and cooling loads. Since little data on the thermal performance of these shading systems is available, an experimental study was conducted to examine free convection in a window with an enclosed aluminum Venetian blind. The blind slats were heated electrically to simulate absorbed solar radiation. The study involved the use of centre-glass convective heat transfer measurements and temperature field visualization using a laser Mach-Zehnder interferometer. Measurements were made for two plate (glazing) spacings, two blind slat angles, two blind heat fluxes, and two plate temperature differences. The paper described the experimental apparatus and procedure and also provided a comparison with the reduced slat model (RSL). The RSL model treats the between-the-pane Venetian blind geometry as two adjacent empty cavities with the middle wall retaining the blind temperature. The infinite fringe interferograms demonstrated that the temperature field in the centre-glass region of the enclosure is highly periodic and that the blinds themselves are highly conductive and most of the temperature change occurs in the wall-to-blind tip region. 6 refs., 2 tabs., 2 figs.
Ambrosini, Dario; Tanda, Giovanni
2006-01-01
In this work, natural convection heat transfer in vertical channels is experimentally investigated by applying different optical techniques, namely holographic interferometry and schlieren. Both these techniques are based on the temperature dependence of the air refractive index but they detect different optical quantities and their use involves different instrumentation and optical components. Optical methods, non-intrusive in nature, are particularly suitable for the visualization of flow and thermal fields as witnessed by their increasing use in a range of scientific and engineering disciplines; for this reason, the introduction of these experimental tools into a laboratory course can be of high value. Physics and engineering students can get familiarized with optical techniques, grasp the basics of thermal phenomena, usually elusive, which can be more easily understood if they are made visible, and begin to master digital image analysis, a key skill in laboratory activities. A didactic description of holographic interferometry and schlieren is provided and experimental results obtained for vertical, smooth and rib-roughened channels with asymmetrical heating are presented. A comparison between distributions of the local heat transfer coefficient (or its dimensionless counterpart, the Nusselt number) revealed good agreement between the results separately obtained by the two techniques, thus proving their suitability for investigating free convection heat transfer in channels.
Terzis, Alexandros
2016-09-01
The correspondence between local fluid flow structures and convective heat transfer is a fundamental aspect that is not yet fully understood for multiple jet impingement. Therefore, flow field and heat transfer experiments are separately performed investigating mutual-jet interactions exposed in a self-gained crossflow. The measurements are taken in two narrow impingement channels with different cross-sectional areas and a single exit design. Hence, a gradually increased crossflow momentum is developed from the spent air of the upstream jets. Particle image velocimetry (PIV) and liquid crystal thermography (LCT) are used in order to investigate the aerothermal characteristics of the channel with high spatial resolution. The PIV measurements are taken at planes normal to the target wall and along the centreline of the jets, providing quantitative flow visualisation of jet and crossflow interactions. Spatially resolved heat transfer coefficient distributions on the target plate are evaluated with transient techniques and a multi-layer of thermochromic liquid crystals. The results are analysed aiming to provide a better understanding about the impact of near-wall flow structures on the convective heat transfer augmentation for these complex flow phenomena.
Institute of Scientific and Technical Information of China (English)
李明春; 赵中亮; 静宇; 刘家涛; 吴玉胜
2013-01-01
To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the lo-cal thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8%at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.
Directory of Open Access Journals (Sweden)
Moh'd A. Al-Nimr
2004-06-01
Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (ÃŽÂ¸Ã¢ÂˆÂž on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and ÃŽÂ¸Ã¢ÂˆÂž=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.
Institute of Scientific and Technical Information of China (English)
JI Yan; LIU Qiu-Sheng; LIU Rong
2008-01-01
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient.rather than the previously studied model without evaporation.The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition.The computing programme developed for simulating this model integrates the two-dimensional,time-dependent Navier-Stokes equationsand energy equation bya second-order accurate projection method.We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer.Thtee different regimes of the coupling mechanisms are found and explained from our numerical results.
Studies of heat-source driven natural convection: A numerical investigation
Emara, A. A.; Kulacki, F. A.
1977-01-01
Thermal convection driven by uniform volumetric energy sources was studied in a horizontal fluid layer bounded from above by a rigid, isothermal surface and from below by a rigid, zero heat-flux surface. The side walls of the fluid domain were assumed to be rigid and perfectly insulating. The computations were formally restricted to two-dimensional laminar convection but were carried out for a range of Rayleigh numbers which spans the regimes of laminar and turbulent flow. The results of the computations consists of streamline and isotherm patterns, horizontally averaged temperature distributions, and horizontally averaged Nusselt numbers at the upper surface. Flow and temperature fields do not exhibit a steady state, but horizontally averaged Nusselt numbers reach limiting, quasi-steady values for all Rayleigh numbers considered. Correlations of the Nusselt number in terms of the Rayleigh and Prandtl numbers were determined.
Screening Single Phase Laminar Convective Heat Transfer of Nanofluids in a Micro-tube
International Nuclear Information System (INIS)
Nano scale solid particles dispersed in base fluids are a new class of engineered colloidal solutions called nanofluids. Several studies reported enhancement of heat transfer by using nanofluids. This article reports convective single-phase heat transfer coefficients in an open 30 cm long, 0.50 mm internal diameter stainless steel test section. The setup is used for screening single phase laminar convective heat transfer with water and three different nanofluids: water based Al2O3, ZrO2, and TiO2 (all with 9 wt% of particles). A syringe pump with adjustable pumping speed is used to inject fluids into the test section. Thirteen T-type thermocouples are attached on the outer surface of the test section to record the local wall temperatures. Furthermore, two T-type thermocouples are used to measure inlet and outlet fluid temperatures. A DC power supply is used to heat up the test section and a differential pressure transducer is used to measure the pressure drop across the tube. Furthermore, the effective thermal conductivities of these nanofluids are measured using the Transient Plane Source (TPS) method at a temperature range of 20 – 50°C. The experimental average values of heat transfer coefficients for nanofluids are compared with water. Enhancement in heat transfer of nanofluids is observed only when compared at constant Reynolds number (Due to higher viscosity for nanofluids, higher velocity or mass flow rate is required for nanofluids to reach the same Reynolds number). The other methods of comparison: equal mass flow rate, volume flow rate, pressure drop and pumping power did not show any augmentation of the heat transfer coefficient for the tested nanofluids compared to water.
Mixed convection around a heated vertical cylinder embedded in porous medium
Institute of Scientific and Technical Information of China (English)
LI Ling; Shigeo KIMURA
2005-01-01
Numerical simulation has been performed to investigate the combined effects of wake flow pattern and buoyancy on the characteristics of the flow and heat transfer for the mixed convective flow around a vertical cylinder embedded in porous medium. Threedimensional Darcy's equations are solved. The discretization procedure for the governing equations is based on the finite-volume method.Peclect number and Rayleigh number are two major independent parameters representing the effects of the flow and heat transfer, respectively. The flow pattern, temperature distribution, and Nusselt number distribution are investigated in wide ranges of these independent parameters. Correlation results for the onset of the secondary flow and enhancement of the heat transfer are presented and discussed.
Numerical investigation of conjugate natural convection heat transfer in vertical eccentric annuli
International Nuclear Information System (INIS)
Conjugate laminar natural convection heat transfer in vertical eccentric annuli is numerically investigated using finite-difference technique. Numerical results are presented for a fluid of Prandtl number 0.7 in an annulus of radius ratio 0.5 and dimensionless eccentricity 0.5. The variation of induced flow rate F and total heat absorbed in the annulus due to the conjugate effect is presented for the case of one wall being isothermally heated while the other wall is kept adiabatic. The conjugate effects are controlled by solid-fluid thermal conductivity ratio and cylinder walls thickness. Solid-fluid conductivity ratio is varied over a range that covers practical cases with commonly encountered inner and outer walls thickness. Optimum values of thermal conductivity ratio and walls thickness that induce maximum flow rate at given eccentricity and radius ratio have been obtained. (authors)
Hydromagnetic Stagnation-Point Flow towards a Radially Stretching Convectively Heated Disk
Directory of Open Access Journals (Sweden)
S. Shateyi
2013-01-01
Full Text Available The steady stagnation-point flow and heat transfer of an electrically conducted incompressible viscous fluid are extended to the case where the disk surface is convectively heated and radially stretching. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The governing momentum and energy balance equations give rise to nonlinear boundary value problem. Using a spectral relaxation method with a Chebyshev spectral collocation method, the numerical solutions are obtained over the entire range of the physical parameters. Emphasis has been laid to study the effects of viscous dissipation and Joule heating on the thermal boundary layer. Pertinent results on the effects of various thermophysical parameters on the velocity and temperature fields as well as local skin friction and local Nusselt number are discussed in detail and shown graphically and/or in tabular form.
Numerical investigation of conjugate natural convection heat transfer in vertical eccentric annuli
Energy Technology Data Exchange (ETDEWEB)
El Shaarawi, M.A.I.; Mokheimer, E.M.A. [King Fahd Univ. of Petroleum and Minerals (KFUPM), Mechanical Engineering Dept., Dhahran (Saudi Arabia); Jamal, A. [King Fahd Univ. of Petroleum and Minerals (KFUPM), Mechanical Engineering Dept., Aerospace EngineeringDept., Dhahran (Saudi Arabia)
2005-07-01
Conjugate laminar natural convection heat transfer in vertical eccentric annuli is numerically investigated using finite-difference technique. Numerical results are presented for a fluid of Prandtl number 0.7 in an annulus of radius ratio 0.5 and dimensionless eccentricity 0.5. The variation of induced flow rate F and total heat absorbed in the annulus due to the conjugate effect is presented for the case of one wall being isothermally heated while the other wall is kept adiabatic. The conjugate effects are controlled by solid-fluid thermal conductivity ratio and cylinder walls thickness. Solid-fluid conductivity ratio is varied over a range that covers practical cases with commonly encountered inner and outer walls thickness. Optimum values of thermal conductivity ratio and walls thickness that induce maximum flow rate at given eccentricity and radius ratio have been obtained. (authors)
Directory of Open Access Journals (Sweden)
O. D. Makinde
2014-01-01
Full Text Available This paper investigates the unsteady hydromagnetic-free convection of an incompressible electrical conducting Boussinesq’s radiating fluid past a moving vertical plate in an optically thin environment with the Navier slip, viscous dissipation, and Ohmic and Newtonian heating. The nonlinear partial differential equations governing the transient problem are obtained and tackled numerically using a semidiscretization finite difference method coupled with Runge-Kutta Fehlberg integration technique. Numerical data for the local skin friction coefficient and the Nusselt number have been tabulated for various values of parametric conditions. Graphical results for the fluid velocity, temperature, skin friction, and the Nusselt number are presented and discussed. The results indicate that the skin friction coefficient decreases while the heat transfer rate at the plate surface increases as the slip parameter and Newtonian heating increase.
Effects of Joule Heating and Viscous Dissipation on MHD Marangoni Convection Boundary Layer Flow
Directory of Open Access Journals (Sweden)
Rohana Abdul Hamid
2011-09-01
Full Text Available An analysis is performed to study the effects of the Joule heating and viscous dissipation on the magnetohydrodynamics (MHD Marangoni convection boundary layer flow. The governing partial differential equations are reduced to a system of ordinary differential equations via the similarity transformations. Numerical results of the similarity equations are obtained using the Runge-Kutta-Fehlberg method. Effects of the magnetic field parameter, and the combined effects of the Joule heating and the viscous dissipation are investigated and the numerical results are tabulated in tables and figures. It is found that the magnetic field reduces the fluid velocity but increases the fluid temperature. On the other hand, the combined effects of the Joule heating and viscous dissipation have significantly influenced the surface temperature gradient.
Progress towards understanding and predicting convection heat transfer in the turbine gas path
Simoneau, Robert J.; Simon, Frederick F.
1992-01-01
A new era is drawing in the ability to predict convection heat transfer in the turbine gas path. We feel that the technical community now has the capability to mount a major assault on this problem, which has eluded significant progress for a long time. We hope to make a case for this bold statement by reviewing the state of the art in three major heat transfer, configuration-specific experiments, whose data have provided the big picture and guided both the fundamental modeling research and the code development. Following that, we review progress and directions in the development of computer codes to predict turbine gas path heat transfer. Finally, we cite examples and make observations on the more recent efforts to do all this work in a simultaneous, interactive, and more synergistic manner. We conclude with an assessment of progress, suggestions for how to use the current state of the art, and recommendations for the future.
Evaluation of heat transfer in acupuncture needles: convection and conduction approaches.
Tzou, Chieh-Han John; Yang, Tzyy-Yih; Chung, Ya-Chien
2015-04-01
Originating in ancient China, acupuncture using needles has been developed for thousands of years and has received attention for its reported medical remedies, such as pain relief and chronic disease treatment. Heat transfer through the needles, which might have effects on the biomechanism of acupuncture, providing a stimulus and regulating homeostasis, has never been studied. This article analyzes the significance of heat transfer through needles via convection and conduction, approached by means of computational analysis. The needle is a cylindrical body, and an axis symmetrical steady-state heat-transfer model that viscosity and static pressure was not applied. This article evaluates heat transfer via acupuncture needles by using five metal materials: silver, copper, brass, iron, and stainless steel. A silver needle of the type extensively applied in acupuncture can dissipate more than seven times as much heat as a stainless steel needle of the same type. Heat transfer through such a needle is significant, compared to natural body-energy consumption over a range of ambient temperatures. The mechanism by which heat flows in or out of the body through the needles may be crucial in the remedial efficacy of acupuncture.
On the development of a grid-enhanced single-phase convective heat transfer correlation
International Nuclear Information System (INIS)
A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)
Energy Technology Data Exchange (ETDEWEB)
Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)
International Nuclear Information System (INIS)
In this paper, mathematical models are presented to study the thermal behavior of crops (cabbage and peas) for open sun drying (natural convection) and inside the greenhouse under both natural and forced convection. The predictions of crop temperature, greenhouse room air temperature and rate of moisture evaporation (crop mass during drying) have been computed in Matlab software on the basis of solar intensity and ambient temperature. The models have been experimentally validated. The predicted crop temperature and crop mass during drying showed fair agreement with experimental values within the root mean square of percent error of 2.98 and 16.55, respectively