WorldWideScience

Sample records for forced circulation circuit

  1. Experimental study of natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LASME/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Simulacao e Metodos Numericos; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (LTE/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2011-07-01

    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  2. Experimental study of natural circulation circuit

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2011-01-01

    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  3. Logic circuits from zero forcing.

    Science.gov (United States)

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  4. Experimental study of two-phase natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2012-07-01

    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  5. Experimental study of two-phase natural circulation circuit

    International Nuclear Information System (INIS)

    Lemos, Wanderley Freitas; Su, Jian; Faccini, Jose Luiz Horacio

    2012-01-01

    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  6. Frequency analysis for the thermal hydraulic characterization of a natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Walmir M.; Macedo, Luiz A.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Mesquita, Roberto N.; Masotti, Paulo H.; Angelo, Gabriel, E-mail: wmtorres@ipen.b, E-mail: lamacedo@ipen.b, E-mail: gdjian@ipen.b, E-mail: delvonei@ipen.b, E-mail: umbehaun@ipen.b, E-mail: tnconti@ipen.b, E-mail: , E-mail: rnavarro@ipen.b, E-mail: pmasotti@ipen.b, E-mail: gabriel.angelo@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the frequency analysis studies of the pressure signals from an experimental natural circulation circuit during a heating process. The main objective is to identify the characteristic frequencies of this process using fast Fourier transform. Video images are used to associate these frequencies to the observed phenomenology in the circuit during the process. Sub-cooled and saturated flow boiling, heaters vibrations, overall circuit vibrations, chugging and geysering were observed. Each phenomenon has its specific frequency associated. Some phenomena and their frequencies must be avoided or attenuated since they can cause damages to the natural circulation circuit and its components. Special operation procedures and devices can be developed to avoid these undesirable frequencies. (author)

  7. Frequency analysis for the thermal hydraulic characterization of a natural circulation circuit

    International Nuclear Information System (INIS)

    Torres, Walmir M.; Macedo, Luiz A.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Mesquita, Roberto N.; Masotti, Paulo H.; Angelo, Gabriel

    2011-01-01

    This paper presents the frequency analysis studies of the pressure signals from an experimental natural circulation circuit during a heating process. The main objective is to identify the characteristic frequencies of this process using fast Fourier transform. Video images are used to associate these frequencies to the observed phenomenology in the circuit during the process. Sub-cooled and saturated flow boiling, heaters vibrations, overall circuit vibrations, chugging and geysering were observed. Each phenomenon has its specific frequency associated. Some phenomena and their frequencies must be avoided or attenuated since they can cause damages to the natural circulation circuit and its components. Special operation procedures and devices can be developed to avoid these undesirable frequencies. (author)

  8. In-service diagnostics of main circulating circuit pipes of WWER nuclear power plants

    International Nuclear Information System (INIS)

    Svoboda, V.; Merta, J.; Merta, V.

    1982-01-01

    The application is discussed of the acoustic emission method for testing the integrity of the components of the main circulating circuit of the WWER 440 nuclear power plant. A description is given of the main circulating circuit and a stress analysis on the basis of strength computations considering operating modes is presented. An analysis is also presented of the possible damage of the pipe material as related to the application of the acoustic emission method for in-service inspection of the pipes. Certain practical problems of application are discussed. (author)

  9. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  10. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  11. The propagation of pressure pulsations in the primary circuit of power plant A1

    International Nuclear Information System (INIS)

    Pecinka, L.

    1976-01-01

    A classification is made of the exciting forces of pressure pulsations in the primary coolant circuit with forced coolant circulation. A mathematical model is constructed of the propagation of pressure pulsations in the system and examples of measurements are given. The measurement methods used and the methods for the generalization of obtained data are assessed. The methods and results of the measurements of hydrodynamic pressure pulsations in a closed primary circuit with forced coolant circulation of the A-1 nuclear power plant are given. (F.M.)

  12. Simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2015-07-01

    Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)

  13. Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

    Science.gov (United States)

    Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.

    2017-10-01

    We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

  14. Capacitance sensor for void fraction measurement in a natural circulation refrigeration circuit

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Simoes-Moreira, Jose R.

    2009-01-01

    Natural circulation is widely used in nuclear reactors for residual heat refrigeration. In this work, a conductance probe is designed and constructed to measure the instantaneous bulk void fraction in a vertical tube section. This probe is installed in a natural circulation refrigeration loop designed to simulate a nuclear reactor primary refrigeration circuit. During the operation of the natural circulation loop several gas-liquid flow patterns are observed, including oscillatory flow. The instantaneous signal generated by the capacitance probe allows the calculation of the two-phase flow void fraction. The void fraction obtained by the probe will be compared with the theoretical void fraction calculated by the computational program RELAP5/MOD3.2.2 gamma. The probe design and electronics, as well as the previous results obtained are presented and discussed. (author)

  15. Electronic zero-point fluctuation forces inside circuit components

    Science.gov (United States)

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  16. Electronic zero-point fluctuation forces inside circuit components.

    Science.gov (United States)

    Shahmoon, Ephraim; Leonhardt, Ulf

    2018-04-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies.

  17. Forces and stresses in cryoturbogenerator rotor in presence of short circuit

    International Nuclear Information System (INIS)

    Kovarskii, M.E.; Rubinraut, A.M.; Tsyrlin, A.L.

    1981-01-01

    A method is presented for determining the electrodynamic forces, mechanical stresses, and strains in the shells of a cryogenic-turbogenerator cryostat in the presence of an abrupt short circuit. The physical pattern of occurrence of forces in a cryostat shell is considered for capacitive, inductive, and active armature-current cases. It is shown that in addition to the radial component, there is a tangential component of the electrodynamic forces, with the interaction of the two components governing the strength in the presence of short circuits. Results are reported for mechanical-strength calculations, based on the proposed method, for a 200 kw cryogenic turbogenerator

  18. Analysis of Electromagnetic Attractive Force : Examination by Magnetic Circuit, Finite Element Method and Experiment

    OpenAIRE

    薮野, 浩司; 大和田, 竜太郎; 青島, 伸治; Hiroshi, YABUNO; Ryotaro, OOWADA; Nobuharu, AOSHIMA; 筑波大学; 筑波大学院; 筑波大学

    1998-01-01

    This paper presents the limitation of the magnetic circuit method. The force between magnetic bodies can be approximated accurately by the magnetic circuit method. Therefore this method has been used widely for the estimation of magnetic force. However this method is limited by the magnetic leakage and can be not used in the case when the gap between the magnetic bodies is wide. It is very important to clarify the limitation of the magnetic circuit method. In this research, the force of an el...

  19. Analysis of water hammer phenomena in RBMK-1500 reactor main circulation circuit

    International Nuclear Information System (INIS)

    Kaliatka, A.; Uspuras, E.; Vaisnoras, M.

    2006-01-01

    Water hammer can occur in any thermal-hydraulic systems. Water hammer can reach pressure levels far exceeding the pressure range of a pipe given by the manufacturer, and it can lead to the failure of the pipeline integrity. In the past three decades, since a large number of water hammer events occurred in the light-water- reactor power plants, a number of comprehensive studies on the phenomena associated with water hammer events have been performed. There are three basic types of severe water hammer occurring at power plants that can result in significant plant damage: rapid valve operation events; void-induced water hammer; condensation-induced water hammer. Correct prediction of water hammer transients, is therefore of paramount importance for the safe operation of the plant. Therefore verifying of computer codes capability to simulate water hammer type transients is very important issue at performing of safety analyses for nuclear power plants. Verification of RELAP5/MOD3.3 code capability to simulate water hammer type transients employing the experimental investigations is presented. Experience gained from benchmarking analyses has been used at development of the detail RELAP5 code RBMK-1500 model for simulation of water hammer effects in reactor main circulation circuit. Analysis of reactor cooling system shows, that water hammers can occur in main circulation circuit of RBMK-1500 reactor in cases of: (1) Guillotine break of the inlet piping upstream of the Group Distribution Header and (2) Guillotine break of the pressure piping upstream the Main Circulation Pump check valve. Analysis of above mentioned accident scenarios is presented in this paper. First scenario of the accident potentially is more dangerous, because the pressure pulses influence not only the reactor cooling circuit, but also the piping of safety related system (Emergency Core Cooling System pipeline) connected to affected Group Distribution Header. The performed analysis using RELAP5 code

  20. Method for heating of the primary circuit of WWER electric power units at cold start-up

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Dimitrov, B.D.; Korkinova, M.I.

    1982-01-01

    The method increases the heating rate and shorten the start-up time of the electric power units. It comprises a primary stopping of the reactor core heating and provides a forced circulation of the heat-carrier through the circulation cycles of the primary circuit. The thermal energy is supplied in one or several steam generators in the secondary circuit of an NPP operating unit. 1 cl., 3 figs

  1. Some didactical suggestions for a deeper embedding of DC circuits into electromagnetism

    International Nuclear Information System (INIS)

    Cavinato, M; Giliberti, M; Barbieri, S R

    2017-01-01

    Undergraduate students often encounter great difficulties in understanding Ohm’s law and electrical circuits. Considering the widespread students’ beliefs and their common mistakes, as they come out from the literature and our teaching experience, we think that a relevant source of these problems comes from the fact that electrical circuits are generally treated separately from the other topics of electromagnetism, with poor reference to the circulation of the electric field. We present here a way to deal with electrical circuits that could help students to overcome their difficulties. In our approach, the electric field is the protagonist and the mathematical tool the students are asked to use is its circulation. In the light of the circulation of the electric field, the experimental Ohm’s law is revisited, the concept of electromotive force is discussed and some suggestions to eliminate common misconceptions about the role of a battery in a circuit are presented. (paper)

  2. Some didactical suggestions for a deeper embedding of DC circuits into electromagnetism

    Science.gov (United States)

    Cavinato, M.; Giliberti, M.; Barbieri, S. R.

    2017-09-01

    Undergraduate students often encounter great difficulties in understanding Ohm’s law and electrical circuits. Considering the widespread students’ beliefs and their common mistakes, as they come out from the literature and our teaching experience, we think that a relevant source of these problems comes from the fact that electrical circuits are generally treated separately from the other topics of electromagnetism, with poor reference to the circulation of the electric field. We present here a way to deal with electrical circuits that could help students to overcome their difficulties. In our approach, the electric field is the protagonist and the mathematical tool the students are asked to use is its circulation. In the light of the circulation of the electric field, the experimental Ohm’s law is revisited, the concept of electromotive force is discussed and some suggestions to eliminate common misconceptions about the role of a battery in a circuit are presented.

  3. Atlantic Meridional Overturning Circulation response to idealized external forcing

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Latif, M. [Leibniz-Institut fuer Meereswissenschaften an der Universitaet Kiel, Kiel (Germany)

    2012-10-15

    The response of the Atlantic Meridional Overturning Circulation (AMOC) to idealized external (solar) forcing is studied in terms of the internal (unforced) AMOC modes with the Kiel Climate Model (KCM), a coupled atmosphere-ocean-sea ice general circulation model. The statistical investigation of KCM's internal AMOC variability obtained from a multi-millennial control run yields three distinct modes: a multi-decadal mode with a period of about 60 years, a quasi-centennial mode with a period of about 100 years and a multi-centennial mode with a period of about 300-400 years. Most variance is explained by the multi-centennial mode, and the least by the quasi-centennial mode. The solar constant varies sinusoidally with two different periods (100 and 60 years) in forced runs with KCM. The AMOC response to the external forcing is rather complex and nonlinear. It involves strong changes in the frequency structure of the variability. While the control run depicts multi-timescale behavior, the AMOC variability in the experiment with 100 year forcing period is channeled into a relatively narrow band centered near the forcing period. It is the quasi-centennial AMOC mode with a period of just under 100 years which is excited, although it is heavily damped in the control run. Thus, the quasi-centennial mode retains its period which does not correspond exactly to the forcing period. Surprisingly, the quasi-centennial mode is also most strongly excited when the forcing period is set to 60 years, the period of the multi-decadal mode which is rather prominent in the control run. It is largely the spatial structure of the forcing rather than its period that determines which of the three internal AMOC modes is excited. The results suggest that we need to understand the full modal structure of the internal AMOC variability in order to understand the circulation's response to external forcing. This could be a challenge for climate models: we cannot necessarily expect that the

  4. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    Science.gov (United States)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  5. Benchmark analysis of three main circulation pump sequential trip event at Ignalina NPP

    International Nuclear Information System (INIS)

    Uspuras, E.; Kaliatka, A.; Urbonas, R.

    2001-01-01

    The Ignalina Nuclear Power Plant is a twin-unit with two RBMK-1500 reactors. The primary circuit consists of two symmetrical loops. Eight Main Circulation Pumps (MCPs) at the Ignalina NPP are employed for the coolant water forced circulation through the reactor core. The MCPs are joined in groups of four pumps for each loop (three for normal operation and one on standby). This paper presents the benchmark analysis of three main circulation pump sequential trip event at RBMK-1500 using RELAP5 code. During this event all three MCPs in one circulation loop at Unit 2 Ignalina NPP were tripped one after another, because of inadvertent activation of the fire protection system. The comparison of calculated and measured parameters led us to establish realistic thermal hydraulic characteristics of different main circulation circuit components and to verify the model of drum separators pressure and water level controllers.(author)

  6. Functional end-arterial circulation of the choroid assessed by using fat embolism and electric circuit simulation.

    Science.gov (United States)

    Lee, Ji Eun; Ahn, Ki Su; Park, Keun Heung; Pak, Kang Yeun; Kim, Hak Jin; Byon, Ik Soo; Park, Sung Who

    2017-05-30

    The discrepancy in the choroidal circulation between anatomy and function has remained unsolved for several decades. Postmortem cast studies revealed extensive anastomotic channels, but angiographic studies indicated end-arterial circulation. We carried out experimental fat embolism in cats and electric circuit simulation. Perfusion defects were observed in two categories. In the scatter perfusion defects suggesting an embolism at the terminal arterioles, fluorescein dye filled the non-perfused lobule slowly from the adjacent perfused lobule. In the segmental perfusion defects suggesting occlusion of the posterior ciliary arteries, the hypofluorescent segment became perfused by spontaneous resolution of the embolism without subsequent smaller infarction. The angiographic findings could be simulated with an electric circuit. Although electric currents flowed to the disconnected lobule, the level was very low compared with that of the connected ones. The choroid appeared to be composed of multiple sectors with no anastomosis to other sectors, but to have its own anastomotic arterioles in each sector. Blood flows through the continuous choriocapillaris bed in an end-arterial nature functionally to follow a pressure gradient due to the drainage through the collector venule.

  7. Steam generator of the forced circulation type

    International Nuclear Information System (INIS)

    Forestier, Jean; Leblanc, Bernard; Monteil, Marcel; Monteil, Pierre

    1977-01-01

    The steam generator described is of the forced circulation single passage type comprising an outer casing including a vertical generally cylindrical side ring, an internal skirt coaxial with the outer casing, the bottom of this skirt having a free edge separated from a bottom end closing the outer casing, a central tube plate extending horizontally near a top end, in opposition to the bottom end, a peripheral tube plate, parallel to the central plate and located in the annular space under this central plate, a bundle of J shaped tubes [fr

  8. Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay

    Science.gov (United States)

    Yoon, Seokjin; Kasai, Akihide

    2017-11-01

    The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.

  9. Sensible and latent heat forced divergent circulations in the West African Monsoon System

    Science.gov (United States)

    Hagos, S.; Zhang, C.

    2008-12-01

    Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.

  10. Thermo hydraulics of a steam boiler forced circulation

    International Nuclear Information System (INIS)

    Tucakovic, Dragan; Zivanovic, Titoslav; Stevanovic, Vladimir

    2006-01-01

    In order to minimize the dryout at the steam boiler furnace in the Thermal Power Plant Kolubara B, designed are inner rifled wall tubes. This type of tubes, with many spiral grooves cut into the bore, prevents film boiling and enables the nucleate boiling be still maintained under the condition of vapour quality being app. 1. To verify the choice of the rifled tubes instead of the cheaper, smooth tubes type being justified, analyzed is the change of the actual and critical vapour quality with the furnace height, under uniform and non-uniform heat flu through evaporator walls. Furthermore, made are hydraulic calculations for various steam boiler loads, in case of both rifled and smooth tubes types, with the purpose to check the rifles influence to pressure drop increase in comparison with the smooth tubes. Also, checked is the selection of the circulation pump. Key words: evaporator, forced circulation, rifled tubes, critical vapour quality, pressure drop

  11. Radiological characterization of the main circulation circuit of the 1st unit at Ignalina NPP

    International Nuclear Information System (INIS)

    Poskas, P.; Zujus, R.; Brazauskaite, A. and others

    2003-01-01

    A preliminary assessment of the main circulation circuit (MCC) equipment contamination at the reactor final shut-down and analysis of the contamination variation with time are presented. In order to perform this assessment, data on MCC element characteristics, the coolant characteristics, the system operational conditions, etc. were collected. The modified computer code LLWAA-DECOM (Belgium) was used to determine contamination of the system elements. As a result, nuclide vectors and surface dose rates of deposits for every MCC element were determined. The modeling results were compared to the measurement results of the dose rates. (author)

  12. Performance Improvement of a Radioactive Forced Circulation Evaporator System

    International Nuclear Information System (INIS)

    Zaki, A.A.; Hala, A.A.; Othman, E.A.

    2016-01-01

    Evaporation is a proven method for treatment of liquid radioactive wastes providing both good decontamination and high concentration. In a radioactive waste treatment plant a forced circulation evaporator is used to reduce the volume of radioactive liquid wastes arising from different applications of nuclear industries. The safe operation, limiting the composition of the liquid radioactive waste at a prescribed value, with high performance efficiency, requires good control for the evaporator operating pressure and the level of liquid waste inside the separator part of the evaporator. The aim of this work was to improve the safety and performance of a forced-circulation evaporator used in a liquid radioactive wastes treatment plant. In this respect, a level controller system for this type of evaporator was designed, where proportional (P), proportional Integral (PI) and deadbeat response controllers for the separator level system were suggested. More over, an ideal 2×2(2 inputs and 2 outputs )de coupler controller for controlling the operating pressure and the product composition was developed. Computer results demonstrated that the deadbeat response has been success fully obtained from the developed separator control system. The maximum over shoot in the unit-step response curve was reduce d to 25 % and the settling time also was reduced to more than the half; about 26 minutes using Ziegler-Nichols tuning technique.The designed de coupling controller has been found effective in achieving a good trade-off between stability and performance

  13. Study of turbulent natural-circulation flow and low-Prandtl-number forced-convection flow

    International Nuclear Information System (INIS)

    Chung, K.S.; Thompson, D.H.

    1980-01-01

    Calculational methods and results are discussed for the coupled energy and momentum equations of turbulent natural circulation flow and low Prandtl number forced convection flow. The objective of this paper is to develop a calculational method for the study of the thermal-hydraulic behavior of coolant flowing in a liquid metal fast breeder reactor channel under natural circulation conditions. The two-equation turbulence model is used to evaluate the turbulent momentum transport property. Because the analogy between momentum transfer and heat transfer does not generally hold for low Prandtl number fluid and natural circulation flow conditions, the turbulent thermal conductivity is calculated independently using equations similar to the two-equation turbulence model. The numerical technique used in the calculation is the finite element method

  14. Effects of wave-induced forcing on a circulation model of the North Sea

    Science.gov (United States)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-04-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.

  15. Verification of RBMK-1500 reactor main circulation circuit model with Cathare V1.3L

    International Nuclear Information System (INIS)

    Jasiulevicius, A.

    2001-01-01

    Among other computer codes, French code CATHARE is also applied for RBMK reactor calculations. In this paper results of such application for Ignalina NPP reactor (RBMK-1500 type) main circulation circuit are presented. Three transients calculations were performed: all main circulation pumps (MCP) trip, trip of one main circulation pump and trip of one main circulation pump without a closure of check valve on the pump line. Calculation results were compared to data from the Ignalina NPP, where all these transients were recorded in the years 1986, 1996 and 1998. The presented studies prove the capability of the CATHARE code to treat thermal-hydraulic transients with a reactor scram in the RBMK, in case of single or multiple pump trips. However, the presented model needs further improvements in order to simulate loss of coolant accidents. For this reason, emergency core cooling system should be included in the model. Additional model improvement is also needed in order to gain more independent pressure behavior in both loops. Also, flow rates through the reactor channels should be modeled by dividing channels into several groups, referring to channel power (in RBMK power produced in a channel, located in different parts of the core is not the same). The point-neutron kinetic model of the CATHARE code is not suitable to predict transients when the reactor is operating at a nominal power level. Such transients would require the use of 3D-neutron kinetics model to describe properly the strong space-time effect on the power distribution in the reactor core

  16. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    Science.gov (United States)

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  17. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  18. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  19. MES lead bismuth forced circulation loop and test results

    International Nuclear Information System (INIS)

    Ono, Mikinori; Mine, Tatsuya; Kitano, Teruaki; Kamata, Kin-ya

    2003-01-01

    Liquid lead-bismuth is a promising material as future reactor coolant or intensive neutron source material for accelerator driven system (ADS). Mitsui Engineering and Shipbuilding Co., Ltd. (MES) completed lead-bismuth coolant (LBC) forced circulation loop in May 2001 and acquired engineering data on economizer, electro magnetic pump, electro magnetic flow meter and so on. For quality control of LBC, oxygen sensor and filtering element are developing using some hydrogen and moisture mixed gases. Structural materials corrosion test for accelerator driver system (ADS) will start soon. And thermal hydraulic test for ADS will start in tree years. (author)

  20. Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands

    Science.gov (United States)

    Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge

    2013-11-01

    The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.

  1. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Lawrence J.; Bower, Amy S.; Kö hl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-01-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented

  2. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  3. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  4. Evaluation on driving force of natural circulation in downcomer for passive residual heat removal system in JAERI passive safety reactor JPSR

    International Nuclear Information System (INIS)

    Kunii, Katsuhiko; Iwamura, Takamichi; Murao, Yoshio

    1997-01-01

    The driving-force of the natural circulation in the residual heat removal (RHR) system for the JPSR (JAERI Passive Safety Reactor) is given as a gravity force of the density difference between hotter coolant in core and upper plenum and cooler coolant in downcomer. The amount of density difference and time to achieve the enough density difference for the RHR system change directly dependent on the thermal fluid flow pattern in downcomer of annulus flow pass. The purposes of the present study are to investigate the possibilities of the followings by evaluating the three-dimensional thermal fluid flow in downcomer by numerical analysis using the STREAM code; 1) promotion of making the flow pattern uniform in downcomer by installing a baffle, 2) achievement of an enough driving-force of the natural circulation, 3) validity of one-point assumption, that is, complete mixing down-flow assumption for the three-dimensional thermal fluid flow in downcomer to evaluate the function of the passive RHR system. The following conclusions were obtained: (1) The effect of baffle on the thermal fluid flow and driving-force is little, (2) The driving-force required for natural circulation cooling can be obtained in wide range of inlet velocity even if the flow is multi-dimensional, (3) Both in initial transient stage and in steady-state, the one-point assumption can be applied to evaluate the driving-force of natural circulation in the passive RHR system. (author)

  5. Heat transfer experiments and correlations for natural and forced circulations of water in rod bundles at low Reynolds numbers

    International Nuclear Information System (INIS)

    Kim, Sung-Ho; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    Experimental heat transfer studies were conducted for fully developed forced and natural flows of water through seven uniformly heated rod bundles, triangularly arrayed with P/D = 1.25, 1.38, and 1.5. In forced circulation experiments, Re ranged from 80 to 50,000 and Pr from 3 to 8.5, while in natural circulation, Re varied from 260 to 2,000, and Ra q from 8 x 10 8 to 2.5 x 10 8 . The forced flow data fell into the two basic flow regimes: turbulent and laminar flow. At the transition between these regimes, Re, which varied from 2,200 for P/D = 1.25 to 5,500 for P/D = 1.5, increased linearly with P/D. The heat transfer data for turbulent flow was within ±15 percent of Weisman's correlation, which was developed for fully developed turbulent flow in rod bundles at Re > 25,000. The laminar flow data showed the dependence of Nu on Re to be weaker than that for turbulent flow, but the exponent of Re increased with P/D: Nu = A Re B Pr 1/3 , where A is equal to 1.061, 0.511, and 0.346 for P/D = 1.25, 1.38 and 1.5, respectively, and B is a linear function of P/D (B = 0.797 P/D - 0.656). Natural circulation data indicated that rod spacing only slightly affected heat transfer, and Nu increased proportionally to Ra 0.25 ; Nu = 0.272 Ra q 0.25 . The application of the results to SNL's ACRR indicated that although the core is cooled by natural convection, either the natural circulation correlation or the forced turbulent flow correlation can be used to accurately predict the single phase heat transfer coefficient in the ACRR. These results were concluded because of the high Rayleigh and Reynolds numbers in the ACRR. The ACRR operates near the boundary between mixed and forced turbulent flow regimes: consequently, achieving the high heat transfer coefficient was possible with natural circulation. (author)

  6. The mechanisms underlying corrosion product formation and deposition in nuclear power plant circuits through the action of galvanic and thermal electromotive forces

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Brusov, K.N.; Razmashkin, N.V.; Versin, V.V.; Rybalchenko, I.L.

    1983-01-01

    From a theoretical standpoint, the processes of formation of corrosion products in nuclear power plant circuits, deposition of corrosion products on the circuit surfaces, formation of an equilibrium concentration of corrosion products in the coolant, and distribution of radionuclides resulting from corrosion in different parts of the circuit are considered. It is shown that the main driving forces for the mass-transfer processes in the circuits are the thermal and galvanic electromotive forces (EMF) of the microcouples. On the basis of the theoretical concepts developed the authors have obtained analytical dependences for calculating the individual stages of the process of corrosion product transfer in the circuits. The mechanisms underlying the processes which occur as a result of thermal and galvanic EMFs are considered, together with the factors influencing these processes. The results of verification of the dependences by computational methods are given and they are compared with operational data from nuclear and conventional thermal power plants and with experimental data. (author)

  7. Operational Augmentation of Forced Circulation Type Solar Dryer System Using CFD Analysis

    OpenAIRE

    Atul Patel; Gaurav Patel

    2014-01-01

    Solar drying is basically heat and mass transfer process in which the liquid water from the surface and the vapour removed by draft. The efficiency of a solar drying system is affected by the properties of drying materials.e.g. size, shape and geometry as well as ambient conditions. In this research article, the authors have done the CFD analysis of a Forced Circulation type Solar Dryer used conventionally for dehydrating vegetables and fruits. Using CFD analysis, the limiting...

  8. Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3

    International Nuclear Information System (INIS)

    Hirano, Masashi; Sudo, Yukio

    1986-01-01

    Transient thermal-hydraulic behaviors of the JRR-3 which is an open-pool type research reactor has been analyzed with the THYDE-P1 code. The focal point is the thermal-hydraulic behaviors related to the core flow reversal during the transition from forced circulation downflow to natural circulation upflow. In the case of a loss-of-coolant accident (LOCA), for example, the core flow reversal is expected to occur just after the water pool isolation from the primary cooling loop with a leak. The core flow reversal should cause a sudden increase in fuel temperature and a steep decrease in the departure-from-nucleate-boiling ratio (DNBR) and the phenomenon is, therefore, very important especially for safety design and evaluation of research reactors. Major purposes of the present work are to clarify physical phenomena during the transient and to identify important parameters affecting the peak fuel temperature and the minimum DNBR. The results calculated with THYDE-P1 assuming the sequences of events of the loss-of-offsite power and LOCA help us to understand the phenomena both qualitatively and quantitatively, with respect to the safety design and evaluation. (author)

  9. Measurement of liquid level in a natural circulation circuit using an ultrasonic technique

    International Nuclear Information System (INIS)

    Barbosa, Amanda Cardozo; Su, Jian

    2017-01-01

    The measurement by an ultrasonic technique of the water level in the expansion tank of the Natural Circulation Circuit (NCC) of the Experimental Thermo-Hydraulic Laboratory of the Institute of Nuclear Engineering is presented. In the single-phase NCC operation the water level in the expansion tank is stable. However, during the two-phase operation, oscillations occur in the water level due to temperature and vacuum fraction variations. Thus, the development of a technique that allows the measurement of these oscillations, will allow an estimation of the variation of the vacuum fraction of the circuit over time. The experimental set - up was performed on a test bench, using an ultrasonic transducer. The ultrasonic technique used is pulse-echo, in which the same transducer is the transmitter and receiver of the signal. The transducer-shoe assembly is part of an ultrasonic system consisting of an ultrasonic signal generating plate, transducers and a computer (PC) with a program in LabView to control the system. The program is able to calculate the transit time that the ultrasonic signals take to cross the tank base wall, the layer (level) of liquid and return to the transducer. Knowing the speed of the ultrasound in the wall and in the liquid it is possible to calculate the thickness of the wall and the height of the liquid. Measurements were made by filling the tank with a known volume of water and under varying temperature conditions, from room temperature to 90 deg C. The liquid heights are determined and the volume of water calculated by measuring the temperature with a digital thermometer. The volumes measured were highly accurate when compared to the known volumes

  10. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    Science.gov (United States)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  11. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  12. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  13. Forced circulation type steam generator simulation code: HT4

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tadokoro, Yoshihiro

    1982-08-01

    The purpose of this code is a understanding of dynamic characteristics of the steam generator, which is a component of High-temperature Heat Transfer Components Test Unit. This unit is a number 4th test section of Helium Engineering Demonstration Loop (HENDEL). Features of this report are as follows, modeling of the steam generator, a basic relationship for the continuity equation, numerical analysis techniques of a non-linear simultaneous equation and computer graphics output techniques. Forced circulation type steam generator with strait tubes and horizontal cut baffles, applied in this code, have be designed at the Over All System Design of the VHTRex. The code is for use with JAERI's digital computer FACOM M200. About 1.5 sec required for each time step reiteration, then about 40 sec cpu time required for a standard problem. (author)

  14. Analysis of a BWR direct cycle forced circulation power plants operation

    International Nuclear Information System (INIS)

    Andrade, G.G. de.

    1973-01-01

    First, it is established a general view over the operational problems of the BWR direct cycle forced circulation power plants, and then it is analysed the possibility of the utilization of the energy purged from the turbine as an additional energy for the electrical generation. To simulate the BWR power plant and to obtain the solution of the mathematical model it was developed a computer code named ATOR which shows the feasibility of the proposed method. In this way it is shown the possibility to get a better maneuvering allowance for the BWR power plant whenever it is permitted a convenient use of the vapor extracted from the turbine for the feedwater pre-heaters of the reactor. (author)

  15. Atmospheric circulation response to anthropogenic forcings: from annular modes to storm tracks

    International Nuclear Information System (INIS)

    Oudar, Thomas

    2016-01-01

    Climate variability in mid and high latitudes is very complex due to numerous physical mechanisms implied. This climate variability can be decomposed into 2 components: the internal variability associated with internal processes and the forced variability linked to the external forcings which can be natural (volcanism, natural aerosols) or anthropogenic (greenhouse gases, anthropogenic aerosols). These external forcings play a crucial role on the climate and its variability. The challenge in the climate research is to understand their effects on the climate and their roles relatively with the internal variability. The objective of this thesis is a better understanding of the respective roles of internal variability and forced variability on the past and future atmospheric circulation in both hemispheres characterized by the annular mode and the synoptic activity associated using atmospheric reanalysis and experiments performed with the coupled climate model CNRM-CM5. First, we focus on the annular mode changes in both hemispheres, named the NAM (Northern Annular Mode) and the SAM (Southern Annular Mode). We show that the observed positive trend of the SAM in the 1960's in austral summer is well reproduced by the climate model. However, contrarily to other studies which suggest that this positive trend can be explained by only stratospheric ozone depletion, it is reproduced in the CNRM-CM5 model when the ozone depletion and greenhouse gases (GHG) increase are both prescribed. Then, we investigate the changes in the Northern Hemisphere atmospheric circulation. These are more complex than in the Southern Hemisphere. Indeed, the increase of GHG in the atmosphere causes a general global warming maximum in the tropical high troposphere and over the pole at the surface which is mainly explained by Arctic sea ice loss. So the understanding of the changes is very complex due to several physical processes and retroactions. Thus, we have conducted a protocol with the coupled

  16. Forcing mechanisms of the Bay of Bengal circulation

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S.

    A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features...

  17. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Science.gov (United States)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  18. Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force.

    Science.gov (United States)

    Senthilkumar, D V; Srinivasan, K; Thamilmaran, K; Lakshmanan, M

    2008-12-01

    We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.

  19. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Sterl, S.H.; Li, H.M.; Zhong, J.Q.

    2016-01-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ(t) and thermal amplitude δ(t) of the large-scale circulation (LSC) are

  20. Feeding and purge systems of coolant primary circuit and coolant secondary circuit control of the I sup(123) target

    International Nuclear Information System (INIS)

    Almeida, G.L. de.

    1986-01-01

    The Radiation Protection Service of IEN (Brazilian-CNEN) detected three faults in sup(123)I target cooling system during operation process for producing sup(123)I: a) non hermetic vessel containing contaminated water from primary coolant circuit; possibility of increasing radioactivity in the vessel due to accumulation of contaminators in cooling water and; situation in region used for personnels to arrange and adjust equipments in nuclear physics area, to carried out maintenance of cyclotron and target coupling in irradiation room. The primary circuit was changed by secondary circuit for target coolant circulating through coil of tank, which receive weater from secondary circuit. This solution solved the three problems simultaneously. (M.C.K.)

  1. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2008-02-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  2. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience. PMID:18301720

  3. Experimental study of the transition from forced to natural circulation in EBR-II at low power and flow

    International Nuclear Information System (INIS)

    Gillette, J.L.; Singer, R.M.; Tokar, J.V.; Sullivan, J.E.

    1979-01-01

    A series of tests have been conducted in EBR-II which studied the dynamics of the transition from forced to natural circulation flow in a liquid-metal-cooled fast breeder reactor (LMFBR). Each test was initiated by abruptly tripping an electromagnetic pump which supplies 5 to 6% of the normal full operational primary flow rate. The ensuing flow coast-down reached a minimum value after which the flow increased as natural circulation was established. The effects of secondary system flow through the intermediate heat exchanger and reactor decay power level on the minimum in-core flow rates and maximum in-core temperatures were examined

  4. Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit

    Science.gov (United States)

    Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.

    Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.

  5. Keynes's Lost Distinction Between Industrial and Financial Circulation of Money

    DEFF Research Database (Denmark)

    Jespersen, Jesper

    2010-01-01

    Although financial circulation is an important part of banks' balance sheets in the form of savings deposits, this is hardly discussed in monetary circuit theory. In this paper, we argue that monetary circuit theory would be more coherent if it were expanded to incorporate some aspects of Keynes...... in his Treatise on Money....

  6. Development of a steady-state calculation model for the KALIMER PDRC(Passive Decay Heat Removal Circuit)

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Kwon, Young Min; Eoh, Jae Hyuk; Lee, Yong Bum

    2003-06-01

    A sodium circuit has usually featured for a Liquid Metal Reactor(LMR) using sodium as coolant to remove the decay heat ultimately under accidental conditions because of its high reliability. Most of the system codes used for a Light Water Reactor(LWR) analysis is capable of calculating natural circulation within such circuit, but the code currently used for the LMR analysis does not feature stand alone capability to simulate the natural circulation flow inside the circuit due to its application limitation. To this end, the present study has been carried out because the natural circulation analysis for such the circuit is realistically raised for the design with a new concept. The steady state modeling is presented in this paper, development of a transient model is also followed to close the study. The incompressibility assumption of sodium which allow the circuit to be modeled with a single flow, makes the model greatly simplified. Models such as a heat exchanger developed in the study can be effectively applied to other system analysis codes which require such component models

  7. Protection of toroidal field coils using multiple circuits

    International Nuclear Information System (INIS)

    Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.

    1983-01-01

    The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits

  8. RELAP5 simulation for one and two-phase natural circulation phenomenon

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro Ernesto; Torres, Walmir Maximo; Castro, Alfredo Jose Alvim de; Braz Filho, Francisco A.; Borges, Eduardo Madeira; Damy. Osvaldo Luiz Almeida; Torres, Eduardo

    2007-01-01

    The objective of this paper is to study the natural circulation phenomenon in one and two-phase regime. There has been a crescent interest in the scientific community in the study of the natural circulation. New generation of compact nuclear reactors uses the natural circulation for residual heat removal in case of accident or shutdown. For this study, the modeling and the simulation of the experimental circuit is performed with the RELAP5 code. The experimental circuit is mounted in the Chemical Engineering Department of the University of Sao Paulo. It is presented in this work the theoretical/experimental comparison for one and two-phase flow. These results will be stored in a database to validate RELAP5 calculations. This work was also used to training some users of RELAP5 from IEAv. (author)

  9. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant.

    Science.gov (United States)

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-11-05

    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

  10. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2015-11-01

    Full Text Available The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

  11. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  12. Characteristic of onset of nucleate boiling in natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Liu Ruolei

    2006-01-01

    Two kinds of thermodynamics quality at onset of nucleate boiling with sub-cooled boiling were calculated for force circulation by using Bergles and Rohesenow method or Davis and Anderson method, and natural circulation by using Tsinghua University project group's empirical equations suggested in our natural circulation experiment at same condition. The characteristic of onset of nucleate boiling with subcooled boiling in natural circulation were pointed out. The research result indicates that the thermodynamics quality at onset of nucleate boiling with subcooled boiling in natural circulation is more sensitive for heat and inlet temperature and system pressure. Producing of onset of nucleate boiling with subcooled boiling is early at same condition. The research result also indicates more from microcosmic angle of statistical physics that the phenomena are caused by the effects of characteristic of dissipative structure of natural circulation in self organization, fluctuation force and momentum force of dynamics on thermodynamics equilibrium. these can lay good basis for study and application on sub-cooled boiling in natural circulation in future. (authors)

  13. Self-organizing maps applied to two-phase flow on natural circulation loop studies

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Leonardo F.; Cunha, Kelly de P.; Andrade, Delvonei A.; Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Rocha, Marcelo da S.; Masotti, Paulo H.F.; Mesquita, Roberto N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for heat removal on 'loss of pump power' or 'plant shutdown' accidents. The accuracy of heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. Self-Organizing Maps are trained to digital images acquired on natural circulation flow instabilities. This technique will allow the selection of the more important characteristics associated with each flow pattern, enabling a better comprehension of each observed instability. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The Natural Circulation Facility (Circuito de Circulacao Natural - CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to one and two phase flow under natural circulation conditions. (author)

  14. A 40 GHz fully integrated circuit with a vector network analyzer and a coplanar-line-based detection area for circulating tumor cell analysis using 65 nm CMOS technology

    Science.gov (United States)

    Nakanishi, Taiki; Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-03-01

    A 40-GHz fully integrated CMOS-based circuit for circulating tumor cells (CTC) analysis, consisting of an on-chip vector network analyzer (VNA) and a highly sensitive coplanar-line-based detection area is presented in this paper. In this work, we introduce a fully integrated architecture that eliminates unwanted parasitic effects. The proposed analyzer was designed using 65 nm CMOS technology, and SPICE and MWS simulations were used to validate its operation. The simulation confirmed that the proposed circuit can measure S-parameter shifts resulting from the addition of various types of tumor cells to the detection area, the data of which are provided in a previous study: the |S 21| values for HepG2, A549, and HEC-1-A cells are -0.683, -0.580, and -0.623 dB, respectively. Additionally, the measurement demonstrated an S-parameters reduction of -25.7% when a silicone resin was put on the circuit. Hence, the proposed system is expected to contribute to cancer diagnosis.

  15. Twentieth century Walker Circulation change: data analysis and model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingjia [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Chinese Research Academy of Environmental Sciences, River and Coastal Environment Research Center, Beijing (China); Chinese Academy of Sciences, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao (China); Latif, Mojib; Park, Wonsun; Keenlyside, Noel S.; Martin, Thomas [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Semenov, Vladimir A. [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-15

    Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable. (orig.)

  16. A RELAP5 study to identify flow regime in natural circulation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Mesquita, Roberto N.; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Masotti, Paulo H.F.; Belchior Junior, Antonio; Angelo, Gabriel, E-mail: gdjian@ipen.b, E-mail: umbehaun@ipen.b, E-mail: wmtorres@ipen.b, E-mail: tnconti@ipen.b, E-mail: rnavarro@ipen.b, E-mail: lamacedo@ipen.b, E-mail: pmasotti@ipen.b, E-mail: abelchior@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    There has been a crescent interest in the scientific community in the study of natural circulation phenomenon. New generation of compact nuclear reactors uses the natural circulation of the fluid as a system of cooling and of residual heat removal in case of accident or shutdown. The objective of this paper is to compare the flow patterns of experimental data and numerical simulation for the natural circulation phenomenon in two-phase flow regime. An experimental circuit built with glass tubes is used for the experiments. Thus, it allows the thermal hydraulic phenomena visualization. There is an electric heater as the heat source, a heat exchanger as the heat sink and an expansion tank to accommodate fluid density excursions. The circuit instrumentation consists of thermocouples and pressure meters to better keep track of the flow and heat transfer phenomena. Data acquisition is performed through a computer interface developed with LABVIEW. The characteristic of the regime is identified using photography techniques. Numerical modeling and simulation is done with the thermal hydraulic code RELAP5, which is widely used for this purpose. This numerical simulation is capable to reproduce some of the flow regimes which are present in the circuit for the natural circulation phenomenon. Comparison between experimental and numerical simulation is presented in this work. (author)

  17. Analysis of the flow imbalance in the KSTAR PF cryo-circuit

    International Nuclear Information System (INIS)

    Lee, Hyun-Jung; Park, Dong-Seong; Kwag, Sang-Woo; Joo, Jae-Jun; Moon, Kyung-Mo; Kim, Nam-Won; Lee, Young-Joo; Park, Young-Min; Yang, Hyung-Lyeol

    2015-01-01

    Highlights: • Investigate of flow imbalance trend for the KSTAR PF superconducting magnet. • Flow imbalance is compared with individual magnet test and integration magnet test. • Intensifying of flow imbalance is proven from the flow monitoring in the KSTAR PF circuit. • Flow behavior is analyzed during magnet charging in the circulator circuit. • Variation of magnet outlet temperature is analyzed due to flow imbalance. - Abstract: The KSTAR PF cryo-circuit is a quasi-closed circulation system in which more than 370 g/s of supercritical helium (SHe) is circulated using a SHe circulator. The heated helium from superconducting magnet is cooled through sub cooler (4.3 K). The circulator is operated at 4.5 K and 6.5 bar, and the pressure drop of the circuit is kept at 2 bar in order to maintain the supercritical state and circulator stability. The circuit is connected with helium refrigerator system, distribution system, and supercritical magnet system. It has a hundred branches to supply supercritical helium to the poloidal field superconducting magnet. The branch was designed to optimize the operation conditions and they are grouped for one cryogenic valve has the same length within the cardinal principle of the optimization. Five cryogenic valves are installed to control the mass flow rate, and seven orifice mass flow meters, differential pressure gauges and temperature sensors were installed in front of the magnet in the distribution because upper magnet and lower magnet is symmetric theoretically. The cryogenic pipe line was manufactured with elevation about 10 m between upper magnet and lower magnet. The inlet and outlet helium feed-through were installed at the coil inside in case of KSTAR PF1–PF5 upper magnet and lower magnet. The flow imbalance is caused by void fraction and it could be changed due to manufacturing process even if it has the same length of cooling channel. This creates an imbalance among cooling channels and temperatures are

  18. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  19. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2013-01-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  20. A Novel Design Method for Optimizing an Indirect Forced Circulation Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-10-01

    Full Text Available To maximize the energy performance and economic benefits of solar water heating (SWH systems, the installation and operation-related design variables as well as those related to capacity must be optimized. This paper presents a novel design method for simultaneously optimizing the various design variables of an indirect forced-circulation SWH system that is based on the life cycle cost and uses a genetic algorithm. The effectiveness of the proposed method is assessed by evaluating the long-term performance corresponding to four cases, which are optimized using different annual solar fractions and sets of the design variables. When the installation and operation-related design variables were taken into consideration, it resulted in an efficient and economic design and an extra cost reduction of 3.2%–6.1% over when only the capacity-related design variables were considered. In addition, the results of parametric studies show that the slope and mass flow rate of the collector have a significant impact on the energy and economic performances of SWH systems. In contrast, the mass flow rate in the secondary circuit and the differences in the temperatures of the upper and lower dead bands of the differential controller have a smaller impact.

  1. The global atmospheric electric circuit and its effects on cloud microphysics

    International Nuclear Information System (INIS)

    Tinsley, B A

    2008-01-01

    circuit variations. The theory for electrical effects on scavenging of aerosols in clouds is reviewed, with several microphysical processes having consequences for contact ice nucleation; effects on droplet size distributions; precipitation and cloud lifetimes. There are several pathways for resulting macroscopic cloud changes that affect atmospheric circulation; including enhanced ice production and precipitation from clouds in cyclonic storms, with latent heat release affecting cyclone vorticity; and cloud cover changes in layer clouds that affect the atmospheric radiation balance. These macroscopic consequences of global circuit variability affecting aerosols-cloud interactions provide explanations for the many observations of short term and long term changes in clouds and climate that correlate with measured or inferred J z and cosmic ray flux changes due to external or internal forcing, and lead to predictions of additional effects

  2. The global atmospheric electric circuit and its effects on cloud microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Tinsley, B A [Physics Department and Center for Space Sciences, WT15, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, 75080-3021 (United States)], E-mail: Tinsley@UTDallas.edu

    2008-06-15

    inferred global circuit variations. The theory for electrical effects on scavenging of aerosols in clouds is reviewed, with several microphysical processes having consequences for contact ice nucleation; effects on droplet size distributions; precipitation and cloud lifetimes. There are several pathways for resulting macroscopic cloud changes that affect atmospheric circulation; including enhanced ice production and precipitation from clouds in cyclonic storms, with latent heat release affecting cyclone vorticity; and cloud cover changes in layer clouds that affect the atmospheric radiation balance. These macroscopic consequences of global circuit variability affecting aerosols-cloud interactions provide explanations for the many observations of short term and long term changes in clouds and climate that correlate with measured or inferred J{sub z} and cosmic ray flux changes due to external or internal forcing, and lead to predictions of additional effects.

  3. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  4. Response of the meridional overturning circulation to variable buoyancy forcing in a double hemisphere basin

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Marc A. [National Oceanography Centre, University of Southampton, School of Ocean and Earth Science, Southampton (United Kingdom); Collecte Localisation Satellite, Ramonville Saint Agne (France); Hirschi, J.J.M. [National Oceanography Centre, University of Southampton, School of Ocean and Earth Science, Southampton (United Kingdom); Marotzke, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2010-04-15

    We consider how a highly idealized double-hemisphere basin responds to a zonally constant restoring surface temperature profile that oscillates in time, with periods ranging from 0.5 to 32,000 years. In both hemispheres, the forcing is similar but can be either in phase or out of phase. The set-up is such that the Northern Hemisphere always produces the densest waters. The model's meridional overturning circulation (MOC) exhibits a strong response in both hemispheres on decadal to multi-millennial timescales. The amplitude of the oscillations reaches up to 140% of the steady-state maximum MOC and exhibits resonance-like behaviour, with a maximum at centennial to millennial forcing periods. When the forcing is in phase between the Northern and Southern Hemispheres, there is a marked decrease in the amplitude of the MOC response as the forcing period is increased beyond the resonance period. In this case the resonance-like behaviour is identical to the one we found earlier in a single-hemisphere model and occurs for the same reasons. When the forcing is out of phase between the Northern and Southern Hemispheres, the amplitude of the MOC response is substantially greater for long forcing periods (millennial and longer), particularly in the Southern Hemisphere. This increased MOC amplitude occurs because for an out of phase forcing, either the northern or the southern deep water source is always active, leading to generally colder bottom waters and thus greater stratification in the opposite hemisphere. This increased stratification in turn stabilises the water column and thus reduces the strength of the weaker overturning cell. The interaction of the two hemispheres leads to response timescales of the deep ocean at half the forcing period. Our results suggest a possible explanation for the half-precessional time scale observed in the deep Atlantic Ocean palaeo-temperature record. (orig.)

  5. Performance of an on-chip superconducting circulator for quantum microwave systems

    Science.gov (United States)

    Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.

    Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.

  6. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  7. Dynamic simulation of a forced circulation evaporating system

    International Nuclear Information System (INIS)

    Lee, J.S.; Lee, K.J.

    1993-01-01

    A dynamic simulation program has been developed to simulate the forced circulation evaporating system of the Kori PWR Power Plant in Korea which is used to treat liquid waste containing boric acid. Energy and mass balances for the vapor and liquid phases are used to describe the interaction among system components such as the vapor body, heater jacket and condenser. In order to simulate entrainment carryover in the sieve tray column and wire mesh pad, Kister's and Carpenter-Othmer's correlations are adopted, respectively. A new correlation formula is also suggested to simulate the geometric effect of the vapor body. A fuzzy heuristic controller and conventional controllers such as P (proportional), PI (proportional-integral) and PID (proportional-integral-derivative) controls are incorporated to observe their responses to a given disturbance. The simulations show good agreement with the real operation data. It is also identified that the vapor velocity or flow rate in the sieve tray column determines the system decontamination factor (DF), and that the longer the vapor body is, the less entrainment carryover occurs out of the vapor body. In addition, the wire mesh pad is identified as maintaining very high deentrainment efficiency even though the vapor velocity may show large fluctuations. With respect to system control, the fuzzy heuristic controller approaches a new steady state faster than conventional controllers. Also the fuzzy controller maintains higher DF during transients and is stronger against time delay in the control components. (Author)

  8. Circulation and Directional Amplification in the Josephson Parametric Converter

    Science.gov (United States)

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  9. Fluid Circulation Determined in the Isolated Bovine Lens

    Science.gov (United States)

    Candia, Oscar A.; Mathias, Richard; Gerometta, Rosana

    2012-01-01

    Purpose. In 1997, a theoretical model was developed that predicted the existence of an internal, Na+-driven fluid circulation from the poles to the equator of the lens. In the present work, we demonstrate with a novel system that fluid movement can be measured across the polar and equatorial surface areas of isolated cow lenses. We have also determined the effects of ouabain and reduced bath [Na+]. Methods. Lenses were isolated in a chamber with three compartments separated by two thin O-rings. Each compartment, anterior (A), equatorial (E), and posterior (P), was connected to a vertical capillary graduated in 0.25 μL. Capillary levels were read every 15 minutes. The protocols consisted of 2 hours in either open circuit or short circuit. The effects of ouabain and low-Na+ solutions were determined under open circuit. Results. In 21 experiments, the E capillary increased at a mean rate of 0.060 μL/min while the A and P levels decreased at rates of 0.044 and 0.037 μL/min, respectively, closely accounting for the increase in E. The first-hour flows under short circuit were approximately 40% larger than those in open-circuit conditions. The first-hour flows were always larger than those during the second hour. Preincubation of lenses with either ouabain or low-[Na+] solutions resulted in reduced rates of fluid transport. When KCl was used to replace NaCl, a transitory stimulation of fluid transport occurred. Conclusions. These experiments support that a fluid circulation consistent with the 1997 model is physiologically active. PMID:22969071

  10. Characterization of natural circulation looping of emergency cooling systems in naval and advanced reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2000-01-01

    This paper describes the natural circuit looping, resumes the main project characteristics, presents results of the hydraulic characterization, consisting of pressure loss measurements, and presents results from calibration tests of the power and flow measurements and the first experiments in natural circulation. Those experiments comprised transients in natural circulation with application of application of power steps. The results shown a non linear behaviour of the magnetic flow meter and a dependence on the fluid temperature as well. The assembly circuit/instrumentation/data acquisition system is suitable for the research on emergency cooling passive systems

  11. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear Engineering Center], e-mail: rnavarro@ipen.br

    2009-07-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  12. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.

    2009-01-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  13. Seasonal Overturning Circulation in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  14. Fuel Cooling in Absence of Forced Flow at Shutdown Condition with PHTS Partially Drained

    Energy Technology Data Exchange (ETDEWEB)

    Parasca, L.; Pecheanu, D.L., E-mail: laurentiu.parasca@cne.ro, E-mail: doru.pecheanu@cne.ro [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2014-09-15

    During the plant outage for maintenance on primary side (e.g. for the main Heat Transport System pumps maintenance, the Steam Generators inspection), there are situations which require the primary heat transport system (HTS) drainage to a certain level for opening the circuit. The primary fuel heat sink for this configuration is provided by the shutdown cooling system (SDCS). In case of losing the forced cooling (e.g. due to the loss of SDCS, design basis earthquake-DBE), flow conditions in the reactor core may become stagnant. Inside the fuel channels, natural circulation phenomena known as Intermittent Buoyancy Induced Flow (IBIF) will initiate, providing an alternate heat sink mechanism for the fuel. However, this heat sink is effective only for a limited period of time (recall time). The recall time is defined as the elapsed time until the water temperature in the HTS headers exceeds a certain limit. Until then, compensatory measures need to be taken (e.g. by re-establishing the forced flow or initiate Emergency Core Cooling system injection) to preclude fuel failures. The present paper briefly presents the results of an analysis performed to demonstrate that fuel temperature remains within acceptable limits during IBIF transient. One of the objectives of this analysis was to determine the earliest moment since the reactor shut down when maintenance activities on the HTS can be started such that IBIF is effective in case of losing the forced circulation. The resulting peak fuel sheath and pressure tube temperatures due to fuel heat up shall be within the acceptable limits to preclude fuel defect or fuel channel defects.Thermalhydraulic circuit conditions were obtained using a CATHENA model for the primary side of HTS (drained to a certain level), an ECC system model and a system model for SDCS. A single channel model was developed in GOTHIC code for the fuel assessment analysis. (author)

  15. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  16. Electric circuit theory applied electricity and electronics

    CERN Document Server

    Yorke, R

    1981-01-01

    Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical

  17. Natural Circulation Characteristics of an Integral Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Junli Gou; Suizheng Qiu; Guanghui Su; Dounan Jia

    2006-01-01

    Natural circulation potential is of great importance to the inherent safety of a nuclear reactor. This paper presents a theoretical investigation on the natural circulation characteristics of an integrated pressurized water reactor. Through numerically solved the one-dimensional model, the steady-state single phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the once-through steam generator, the natural circulation characteristics are studied. Based on the preliminary calculation analysis, it is found that natural circulation mass flow rate is proportional to the exponential function of the power, and the value of the exponent is related to working conditions of the steam generator secondary side. The higher height difference between the core center and the steam generator center is favorable to the heat removal capacity of the natural circulation. (authors)

  18. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned...

  19. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  20. Electronic circuit for control rod attracting electromagnet

    International Nuclear Information System (INIS)

    Ito, Koji.

    1991-01-01

    The present invention provides a discharging circuit for control rod attracting electromagnet used for a reactor which is highly reliable and has high performance. The resistor of the circuit comprises a non-linear resistor element and a blocking rectification element connected in series. The discharging circuit can be prevented from short-circuit by selecting a resistor having a resistance value about ten times as great as the coil resistance, even in a case where the blocking rectification element and the non-linear resistor element are failed. Accordingly, reduction of attracting force and the increase of scream releasing time can be minimized. (I.S.)

  1. The Dynamics of Hadley Circulation Variability and Change

    Science.gov (United States)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to

  2. Optimization of a primary circuit of the nuclear power plant from the vibration point of view

    International Nuclear Information System (INIS)

    Dupal, J.; Zeman, V.

    2003-01-01

    The primary circuit of the nuclear power plant (NPP) as a dynamical vibrating system can be disturbed by various excitation including earthquake or pressure pulsation generated by main circulation pumps (MCP). Especially, unpleasant pulsation vibration growth can be caused by the small differences of revolutions between main circulation pumps of the individual coolant loops. This growth corresponds to the well known beats. The paper deals with an approach to the improving and optimization of dynamical properties of the whole primary circuit system including the reactor and coolant loops under pressure pulsation. (author)

  3. Variational integrators for electric circuits

    International Nuclear Information System (INIS)

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-01-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator

  4. A system for the discharge of gas bubbles from the coolant flow of a nuclear reactor cooled by forced circulation

    International Nuclear Information System (INIS)

    Markfort, D.; Kaiser, A.; Dohmen, A.

    1975-01-01

    In a reactor cooled by forced circulation the gas bubbles carried along with the coolant flow are separated before entering the reactor core or forced away into the external zones. For this purpose the coolant is radially guided into a plenum below the core and deflected to a tangential direction by means of flow guide elements. The flow runs spirally downwards. On the bubbles, during their dwell time in this channel, the buoyant force and a force towards the axis of symmetry of the tank are exerted. The major part of the coolant is directed into a radial direction by means of a guiding apparatus in the lower section of the channel and guided through a chimney in the plenum to the center of the reactor core. This inner chimney is enclosed by an outer chimney for the core edge zones through which coolant with a small share of bubbles is taken away. (RW) [de

  5. Experimental study of core thermohydraulics in fast reactors during transition from forced to natural circulation. Influence of inter-wrapper flow

    International Nuclear Information System (INIS)

    Kamide, H.; Hayashi, K.; Momoi, K.

    1997-01-01

    The evaluation of core thermohydraulics under natural circulation conditions is important to utilize inherent safety features of Fast Reactors. When heat exchangers of a decay heat removal system are operated in an upper plenum of reactor vessel, cold sodium is provided by the heat exchangers. Core-plenum interactions will occur during a natural circulation condition due to this cold sodium in the upper plenum, e.g., it can penetrate into gap regions between fuel subassemblies (inter-wrapper flow, IWF) and the flow may reverse in low power core channels. These interactions will significantly modify the flow and temperature distributions in the core. Sodium experiments were carried out to study these phenomena. In a test section, seven subassemblies are housed and connected to an upper plenum. The influences of core-plenum interactions on the core thermohydraulics were investigated under steady state conditions and also in transitions from forced to natural circulation. Cooling effects of IWF on the fuel subassemblies were found in spite of natural circulation flow reduction in the primary loop due to temperature decreases in the upper non-heated section in the core. The inter-wrapper flow can effectively cool the core under extreme conditions of low flow rates through the core. (author)

  6. Experimental analysis of the natural circulation phenomenon at the monophase system

    International Nuclear Information System (INIS)

    Santos, Thiago A. dos; Stefanni, Giovanni Laranjo de; Conti, Thadeu das Neves

    2011-01-01

    The present work study the phenomenology of the natural circulation, which is the flow circulation without help of any mechanical device. One of the possible application of this study would be a new way of nuclear reactor cooling, and this practice is fundamental for the maintenance and safe of the reactor. For this study, a therma balance in the circuit was performed, which consist of evaluate the behavior of the circuit, observing if not exist excessive energy loss. The balance was made only for power values considered small (up to 4000 W), were the fluid is at the monophasic state. This methodology is extremely important for the evaluation of the equipment and determining therefore if the energy is conserved in order to work with a more complex system such as the two-phase one

  7. Self-organizing maps applied to two-phase flow on natural circulation loop study

    International Nuclear Information System (INIS)

    Castro, Leonardo Ferreira

    2016-01-01

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for decay heat removal. The Natural Circulation Facility (Circuito de Circulacao Natural CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to single and two-phase flow under natural circulation conditions. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. This work presents experiments realized at CCN to visualize natural circulation cycles in order to classify two-phase flow patterns associated with phase transients and static instabilities of flow. Images are compared and clustered using Kohonen Self-organizing Maps (SOM's) applied on different digital image features. The Full Frame Discret Cosine Transform (FFDCT) coefficients were used as input for the classification task, enabling good results. FFDCT prototypes obtained can be associated to each flow pattern, enabling a better comprehension of each observed instability. A systematic test methodology was used to verify classifier robustness.

  8. Methodology for studies of natural circulation in closed circuits

    International Nuclear Information System (INIS)

    Araujo, Rafael de Oliveira Pessoa de

    2009-01-01

    This work presents the results obtained from the analysis of stability of the phenomenon of the natural circulation for one-dimension single-phase flow in a closed loop, by a computer program with the method of finite element. The Navier-Stokes equations in cartesian geometry were used for the balance of mass, momentum and one equation for energy. The formulation has been implemented in a computer code developed at the Nuclear Engineering Institute(IEN-CNEN-RJ) and is now available either for futures analysis or design of nuclear systems. (author)

  9. Coolant rate distribution in horizontal steam generator under natural circulation

    International Nuclear Information System (INIS)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A.

    1997-01-01

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered

  10. Helium compressor aerodynamic design considerations for MHTGR circulators

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1988-01-01

    Compressor aerodynamic design considerations for both the main and shutdown cooling circulators in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) plant are addressed in this paper. A major selection topic relates to the impeller type (i.e., axial or radial flow), and the aerothermal studies leading to the selection of optimum parameters are discussed. For the conceptual designs of the main and shutdown cooling circulators, compressor blading geometries were established and helium gas flow paths defined. Both circulators are conservative by industrial standards in terms of aerodynamic and structural loading, and the blade tip speeds are particularly modest. Performance characteristics are presented, and the designs embody margin to ensure that pressure-rise growth potential can be accomodated should the circuit resistance possibly increase as the plant design advances. The axial flow impeller for the main circulator is very similar to the Fort St. Vrain (FSV) helium compressor which performs well. A significant technology base exists for the MHTGR plant circulators, and this is highlighted in the paper. (author). 15 refs, 16 figs, 12 tabs

  11. Impact of remote oceanic forcing on Gulf of Alaska sea levels and mesoscale circulation

    Science.gov (United States)

    Melsom, Arne; Metzger, E. Joseph; Hurlburt, Harley E.

    2003-11-01

    We examine the relative importance of regional wind forcing and teleconnections by an oceanic pathway for impact on interannual ocean circulation variability in the Gulf of Alaska. Any additional factors that contribute to this variability, such as freshwater forcing from river runoff, are disregarded. The study is based on results from numerical simulations, sea level data from tide gauge stations, and sea surface height anomalies from satellite altimeter data. At the heart of this investigation is a comparison of ocean simulations that include and exclude interannual oceanic teleconnections of an equatorial origin. Using lagged correlations, the model results imply that 70-90% of the interannual coastal sea level variance in the Gulf of Alaska can be related to interannual sea levels at La Libertad, Equador. These values are higher than the corresponding range from sea level data, which is 25-55%. When oceanic teleconnections from the equatorial Pacific are excluded in the model, the explained variance becomes about 20% or less. During poleward propagation the coastally trapped sea level signal in the model is less attenuated than the observed signal. In the Gulf of Alaska we find well-defined sea level peaks in the aftermath of El Niño events. The interannual intensity of eddies in the Gulf of Alaska also peaks after El Niño events; however, these maxima are less clear after weak and moderate El Niño events. The interannual variations in eddy activity intensity are predominantly governed by the regional atmospheric forcing.

  12. Forced synchronization of large-scale circulation to increase predictability of surface states

    Science.gov (United States)

    Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory

    2016-04-01

    Numerical models are key tools in the projection of the future climate change. The lack of perfect initial condition and perfect knowledge of the laws of physics, as well as inherent chaotic behavior limit predictions. Conceptually, the atmospheric variables can be decomposed into a predictable component (signal) and an unpredictable component (noise). In ensemble prediction the anomaly of ensemble mean is regarded as the signal and the ensemble spread the noise. Naturally the prediction skill will be higher if the signal-to-noise ratio (SNR) is larger in the initial conditions. We run two ensemble experiments in order to explore a way to reduce the SNR of surface winds and temperature. One ensemble experiment is AGCM with prescribing sea surface temperature (SST); the other is AGCM with both prescribing SST and nudging the high-level temperature and winds to ERA-Interim. Each ensemble has 30 members. Larger SNR is expected and found over the tropical ocean in the first experiment because the tropical circulation is associated with the convection and the associated surface wind convergence as these are to a large extent driven by the SST. However, small SNR is found over high latitude ocean and land surface due to the chaotic and non-synchronized atmosphere states. In the second experiment the higher level temperature and winds are forced to be synchronized (nudged to reanalysis) and hence a larger SNR of surface winds and temperature is expected. Furthermore, different nudging coefficients are also tested in order to understand the limitation of both synchronization of large-scale circulation and the surface states. These experiments will be useful for the developing strategies to synchronize the 3-D states of atmospheric models that can be later used to build a super model.

  13. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Larsen, M.F.

    1991-01-01

    A spectral, time-varying thermospheric general circulation model has been used to study the nonlinear interaction at high latitudes between the tides propagating into the thermosphere from below and the circulation induced by magnetospheric forcing and in situ solar heating. The model is discrete in the vertical with 27 layers spaced by half a scale height. In the horizontal, the fields are expanded in a series of spherical harmonics using a triangular truncation at wave number 31, equivalent to a homogeneous global resolution with a minimum wavelength of 1,270 km. A hypothetical uniform grid point model would require a horizontal spacing of 417 km to describe the same minimum wavelength. In the high-latitude F region the tides affect the dusk vortex of the neutral flow very little, but the dawn vortex is either suppressed or amplified dependent upon the universal time and tidal phase. In the E region neutral flow, both the dusk and dawn vortices are shifted in local time by the tides, again as a function of universal time and tidal phase. At dusk a nonlinear amplification of the sunward winds occurs for certain combination of parameters, and at dawn the winds may be completely suppressed. Below 120 km altitude the magnetospheric forcing creates a single cyclonic vortex which is also sensitive to the high-latitude tidal structure

  14. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  15. Automatic design of digital synthetic gene circuits.

    Directory of Open Access Journals (Sweden)

    Mario A Marchisio

    2011-02-01

    Full Text Available De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input-output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.

  16. Quantum RLC circuits: Charge discreteness and resonance

    Energy Technology Data Exchange (ETDEWEB)

    Utreras-Diaz, Constantino A. [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Casilla 567, Valdivia (Chile)], E-mail: cutreras@uach.cl

    2008-10-20

    In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit.

  17. Quantum RLC circuits: Charge discreteness and resonance

    International Nuclear Information System (INIS)

    Utreras-Diaz, Constantino A.

    2008-01-01

    In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit

  18. Simplifying the circuit of Josephson parametric converters

    Science.gov (United States)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  19. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere-ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse...... gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated...

  20. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  1. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A; Leontieva, V; Mitrioukhin, A [St. Petersburg State Technical Univ. (Russian Federation)

    1998-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  2. Thermal hydraulic phenomenology for the heating process in a natural circulation facility

    International Nuclear Information System (INIS)

    Torres, Walmir M.; Macedo, Luiz A.; Mesquita, Roberto N.; Masotti, Paulo Henrique F.; Libardi, Rosani Maria P.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro Ernesto; Conti, Thadeu N.; Silva Filho, Mauro F.S.; Melo, Gabriel R.

    2009-01-01

    This work describes thermal hydraulic phenomenology observed for the heating process in a natural circulation facility. Glass made circuit allows observations of the thermal hydraulic processes over several regions. Natural convection, natural circulation, nucleated sub-cooled, saturated boiling and some flow patterns such as, bubbly, slug and churn flow are observed and described. Facility heated and cooled parts are responsible for the natural circulation when in operation. An expansion tank accommodates the fluid density variations due to the temperature changes and void fraction. Instrumentation consists of thermocouples distributed along the circuit. Two differential pressure transducers are used for pressure and level measurements. Instrumentation signals and images are simultaneously acquired to help with phenomenon description. A CCD digital camera at a 250μs shutter speed is used for the images acquisition. Phenomenology described is based on a test under 1.1 x 10 5 W/m 2 of heat flux which corresponds to an electrical heater power of 7000 W and 0.0236 kg/s (85 l/h) of cooling flow rate. (author)

  3. Structure and variances of equatorial zonal circulation in a multimodel ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Yu, B. [Environment Canada, Climate Data and Analysis Section, Climate Research Division, Toronto, ON (Canada); Zwiers, F.W. [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); Boer, G.J. [Environment Canada, Canadian Centre for Climate Modeling and Analysis, Climate Research Division, Victoria, BC (Canada); Ting, M.F. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-11-15

    The structure and variance of the equatorial zonal circulation, as characterized by the atmospheric mass flux in the equatorial zonal plane, is examined and inter-compared in simulations from 9 CMIP3 coupled climate models with multiple ensemble members and the NCEP-NCAR and ERA-40 reanalyses. The climate model simulations analyzed here include twentieth century (20C3M) and twenty-first century (SRES A1B) simulations. We evaluate the 20C3M modeled zonal circulations by comparing them with those in the reanalyses. We then examine the variability of the circulation, its changes with global warming, and the associated thermodynamic maintenance. The tropical zonal circulation involves three major components situated over the Pacific, Indian, and Atlantic oceans. The three cells are supported by the corresponding diabatic heating extending deeply throughout the troposphere, with heating centers apparent in the mid-troposphere. Seasonal features appear in the zonal circulation, including variations in its intensity and longitudinal migration. Most models, and hence the multi-model mean, represent the annual and seasonal features of the circulation and the associated heating reasonably well. The multi-model mean reproduces the observed climatology better than any individual model, as indicated by the spatial pattern correlation and mean square difference of the mass flux and the diabatic heating compared to the reanalysis based values. Projected changes in the zonal circulation under A1B forcing are dominated by mass flux changes over the Pacific and Indian oceans. An eastward shift of the Pacific Walker circulation is clearly evident with global warming, with anomalous rising motion apparent over the equatorial central Pacific and anomalous sinking motions in the west and east, which favors an overall strengthening of the Walker circulation. The zonal circulation weakens and shifts westwards over the Indian Ocean under external forcing, whereas it strengthens and shifts

  4. Research of Driving Circuit in Coaxial Induction Coilgun

    Directory of Open Access Journals (Sweden)

    Yadong Zhang

    2013-09-01

    Full Text Available Power supply is crucial equipment in coaxial induction coil launcher.Configuration of the driving circuit influences the efficiency of the coil launcher directly.This paper gives a detailed analysis of the properties of the driving circuit construction based on the capacitor source. Three topologies of the driving circuit are compared including oscillation circuit, crowbar circuit and half-wave circuit. It is proved that which circuit has the better efficiency depends on the detailed parameters of the experiment, especially the crowbar resistance. Crowbar resistor regulates not only efficiency of the system, but also temperature rise of the coil. Electromagnetic force (EMF applied on the armature will be another question which influences service condition of the driving circuits. Oscillation circuit and crowbar circuit should apply to the asynchronous induction coil launcher and synchronous induction coil launcher, respectively. Half-wave circuit is seldom used in the experiment. Although efficiency of the half-wave circuit is very high, the speed of the armature is low. A simple independent half-wave circuit is suggested in this paper. Generally speaking, the comprehensive property of crowbar circuit is the most practical in the three typical circuits. Conclusions of the paper could provide guidelines for practice.

  5. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  6. A Coordinate Control Strategy for Circulating Current Suppression in Multiparalleled Three-Phase Inverters

    DEFF Research Database (Denmark)

    Zhang, Xueguang; Wang, Tianyi; Wang, Xiongfei

    2017-01-01

    This paper addresses the zero-sequence circulating current control in the multiparalleled three-phase voltage-source inverters. The model of the zero-sequence circulating current in the N-paralleled (N ≥ 3) inverters is derived. It is shown that the circulating current is not only susceptible...... to the mismatches of circuit parameters, but it is also influenced by the interactions of circulating current controllers used by other paralleled inverters. To eliminate these adverse effects on the circulating current control loop, a coordinate control strategy for the N-paralleled inverter is proposed based...... on the zero-vector feedforward method with the space-vector pulse width modulation. Moreover, a virtual inverter method is introduced to facilitate the implementation of the proposed controller, which decouples the interactions of circulating current controllers in the paralleled inverters. Finally...

  7. Josephson Circuits as Vector Quantum Spins

    Science.gov (United States)

    Samach, Gabriel; Kerman, Andrew J.

    While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  8. Cascade of circulations in fluid turbulence.

    Science.gov (United States)

    Eyink, Gregory L

    2006-12-01

    Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.

  9. Large-power microwave circuit device

    International Nuclear Information System (INIS)

    Suzuki, Kunio

    1987-01-01

    A 250 KW CW circulator and 1 MW CW dammy load are developed as large-power microwave circuit devices for Tristan, and they are shown to have good characteristics. The circulator has a Y-shape and consists of waveguides divided into four parts. Partition plates are provided in the waveguide connected to each port in order to divide the power into four components. A ferrite material which is high in Curie temperature and less likely to suffer from a RF loss is selected to be used in the circulator. Thin disks of this material, which is low in temperature gradient in the direction of thickness, are bonded to the surface of the waveguides with an epoxy adhesive. A magnet is provided at the top and bottom of the main portion of the circulator and the magnetic field is adjusted so that optimum characteristics are achieved. These arrangements result in good electrical and power characteristics. The dammy load of a water loading type is selected because microwave power is easily absorbed in water. A mechanically strong pipe which does not cause a large loss in microwave is mounted in a waveguide and water is passed through it to allow the power to be consumed gradually. A test up to a RF power of 750 KW shows that the temperature rise in the waveguide is 30 deg C. (Nogami, K.)

  10. Experimental study of the natural circulation phenomena

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro E.; Torres, Walmir M.; Castro, Alfredo Jose Alvim de; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da; Damy, Osvaldo Luiz de Almeida; Torres, Eduardo

    2006-01-01

    The objective of this paper is to study the natural circulation in experimental loops and extend the results to nuclear facilities. New generation of compact nuclear power plants use the natural circulation as cooling and residual heat removal systems in case of accidents or shutdown. Lately the interest in this phenomenon, by scientific community, has increased. The experimental loop, described in this paper, was assembled at Escola Politecnica - USP at the Chemical Engineering Department. It is the goal to generate information to help with the understanding of the one and two phase natural circulation phenomena. Some experiments were performed with different levels of heat power and different flow of the cooling water at the secondary circuit. The data generated from these experiments are going to be used to validate some computational thermal hydraulic codes. Experimental results for one and two phase regimes are presented as well as the proposed model to simulate the flow regimes with the RELAP5 code. (author)

  11. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  12. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  13. Sterilization of the artificial blood circulation apparatus with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Pisarevskii, A A; Korukhov, N I.U.; Brazhnikov, E M; Konstantinova, M L; Razumovskii, S D

    1982-01-01

    Presented in this paper is the sterilization method of the assisted circulation unit. The method has been approved by stand testing and then applied for sterilizing the unit Ae, yeK-5 m when experimental implanting artificial heart. According to the method, ozone in concentration of 5 x 10(-3) moles/1 and with flow rate of 0,5 1/min is passed through an internal circuit of the unit during I h and 15 min. Control wash-out samples from lines have demonstrated complete sterility of the internal circuit. The method makes the sterilization process of such units much easier and may be recommended for clinical application.

  14. The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model

    International Nuclear Information System (INIS)

    Lohmann, U.; Roeckner, E.

    1994-01-01

    Six numerical experiments have been performed with a general circulation model (GCM) to study the influence of high-level cirrus clouds and global sea surface temperature (SST) perturbations on climate and climate sensitivity. The GCM used in this investigation is the third-generation ECHAM3 model developed jointly by the Max-Planck-Institute for Meteorology and the University of Hamburg. It is shown that the model is able to reproduce many features of the observed cloud-radiative forcing with considerable skill, such as the annual mean distribution, the response to seasonal forcing and the response to observed SST variations in the equatorial Pacific. In addition to a reference experiment where the cirrus emissivity is computed as a function of the cloud water content, two sensitivity experiments have been performed in which the cirrus emissivity is either set to zero everywhere above 400 hPa ('transparent cirrus') or set to one ('black cirrus'). These three experiments are repeated identically, except for prescribing a globally uniform SST warming of 4 K. (orig.)

  15. Experimental investigation on flow instability of forced circulation in a vertical mini-rectangular channel

    International Nuclear Information System (INIS)

    Yu Zhiting; Tan Sichao; Yuan Hongsheng; Zhuang Nailiang; Chen Hanying

    2015-01-01

    An experimental study was conducted to investigate the flow instability in a vertical mini-rectangular channel with distilled water as the working fluid. The rotational speed of the primary pump is gradually reduced to lower the inlet flow rate until the flow becomes unstable, while maintaining all other thermal parameters unchanged. Three types of instability, characterized by large amplitude oscillation, small amplitude oscillation and flow excursion, were identified from the experimental data. A stability map for the vertical mini-rectangular channel under forced circulation was established based on the Subcooling number and Phase Change number. The oscillation periods were correlated with the fluid transit time and the boiling delay time. A flow pattern map for vertical upward flow in a mini-rectangular channel was applied to confirm the flow patterns during the oscillation. The mechanisms of the three types of instability were obtained by considering several types of flow instabilities and comparing them with the oscillations observed in this work. (author)

  16. INVESTIGATION OF MECHANICAL STRESSES IN THE DRIVE SHAFT OF MV VACUUM CIRCUIT BREAKER

    Directory of Open Access Journals (Sweden)

    E. I. Baida

    2017-03-01

    Full Text Available Introduction. In the last 10-15 years a dominant position in the market of medium voltage circuit breakers, vacuum circuit breakers have taken in which as an actuator mono- or bistable actuators with permanent magnets are used. Such circuit breakers are characterized by simplicity of design, high reliability, require preventive maintenance for many years. Development, research and improvement of vacuum circuit breakers are carried out at the Department for Electrical Apparatus, National Technical University «Kharkiv Polytechnic Institute». While working on the circuit breakers, developers have to deal with two related objectives – electrical and mechanical. This paper considers the solution of one of these problems – calculation of mechanical forces in the drive shaft of the vacuum circuit breaker in static and dynamic modes. This work was preceded by the failure of the results of measurements of the prototype circuit breakers’ contacts. Measurements have shown that these values do not match the expected values (there were less than the value of 0.8 to 1 mm. The assumption about the reasons for this discrepancy needed to be detailed checked. The results of the work done are presented in this paper. Purpose. Investigation of static and dynamic mechanical stresses and strains in the drive shaft of the vacuum circuit breaker mechanism to determine its characteristics and material selection. Methods. The investigation of mechanical processes is performed by the finite element method in the COMSOL software package. Results. We obtain the static and dynamic characteristics of the circuit breaker drive shaft: deformations, reaction forces, stresses. These characteristics made it possible to determine the actual course of the contacts, select shaft material and calculate the forces acting on the bearings. Conclusions. It is shown that the contact velocity and contact pressure are different from the theoretical value due to the deformation of the

  17. Nuclear reactor lid cooling which can work by natural circulation

    International Nuclear Information System (INIS)

    Wagner, J.

    1985-01-01

    The well-known air cooling of the lid of liquid metal cooled nuclear reactors is improved by the start of natural convection flow ensuring removal of heat in a sufficiently short time, if the blower fails. Go and return branches of the individual cooling circuits are arranged at different heights for this purpose. The circulation is supported by opening valves, which provide a direct path into the reactor building for the cooling air. The draught can be increased by setting up special chimneys. The start of circulation is aided by the temporary opening of another valve. (orig.) [de

  18. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  19. Nongeostrophic theory of zonally averaged circulation. I - Formulation

    Science.gov (United States)

    Tung, Ka Kit

    1986-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations (mass conservation, thermodynamics, and zonal momentum) on a sphere. The relationship between the mean meridional circulation and diabatic heating rate is studied. Differences between results of nongeostropic theory and the geostrophic formulation concerning the role of eddy forcing of the diabatic circulation and the nonlinear nearly inviscid limit versus the geostrophic limit are discussed. Consideration is given to the Eliassen-Palm flux divergence, the Eliassen-Palm pseudodivergence, the nonacceleration theorem, and the nonlinear nongeostrophic Taylor relationship.

  20. On-chip microwave circulators using quantum Hall plasmonics

    Science.gov (United States)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  1. Compatibility of the Ampere and Lorentz force laws with the virtual-work concept

    International Nuclear Information System (INIS)

    Graneau, P.

    1983-01-01

    Whenever the reaction forces between parts of an electric circuit have to be calculated, as in the design of railguns, a choice has to be made between three available formulae which have evolved during the past 160 years. The first was Ampere's force law for the mechanical interaction between two current elements. Neumann then derived the virtual-work formula from what may be called the Ampere-Neumann electrodynamics. The last to be introduced was the Lorentz force law. This paper investigates whether both the Amperian and the Lorentzian forces are compatible with the virtual-work concept. The conclusion is that only Ampere's formula agrees in all cases with the virtual-work idea, but in special circumstances the Lorentz law will give the same result. After demonstrating how Ampere's law can be derived from the virtual-work formula, it is shown that for two closed circuits the relativistic component of the Lorentz force vanishes under the double integral around the two circuits. The remaining nonvanishing term is also present in the Ampere electrodynamics. This is not the case when considering the reaction forces between two parts of an isolated circuit. The Lorentz force is then, in general, not compatible with the virtual-work concept unless the circuit possesses a high degree of symmetry

  2. Thermalhydraulic instability analysis of a two phase natural circulation loop

    International Nuclear Information System (INIS)

    Sesini, Paula Aida

    1998-01-01

    This work presents an analysis of a loop operating in natural circulation regime. Experiments were done in a rectangular closed circuit in one and two-phase flows. Numerical analysis were performed initially with the CIRNAT code and afterwards with RELAP5/MOD2. The limitations of CIRNAT were studied and new developments for this code are proposed. (author)

  3. Uncertainty analysis of one Main Circulation Pump trip event at the Ignalina NPP

    International Nuclear Information System (INIS)

    Vileiniskis, V.; Kaliatka, A.; Uspuras, E.

    2004-01-01

    One Main Circulation Pump (MCP) trip event is an anticipated transient with expected frequency of approximately one event per year. There were a few events when one MCP was inadvertently tripped. The throughput of the rest running pumps in the affected Main Circulation Circuit loop increased, however, the total coolant flow through the affected loop decreased. The main question arises whether this coolant flow rate is sufficient for adequate core cooling. This paper presents an investigation of one MCP trip event at the Ignalina NPP. According to international practice, the transient analysis should consist of deterministic analysis by employing best-estimate codes and uncertainty analysis. For that purpose, the plant's RELAP5 model and the GRS (Germany) System for Uncertainty and Sensitivity Analysis package (SUSA) were employed. Uncertainty analysis of flow energy loss in different parts of the Main Circulation Circuit, initial conditions and code-selected models was performed. Such analysis allows to estimate the influence of separate parameters on calculation results and to find the modelling parameters that have the largest impact on the event studied. On the basis of this analysis, recommendations for the further improvement of the model have been developed. (author)

  4. Space Time – Track Circuits with Trellis Code Modulation

    Directory of Open Access Journals (Sweden)

    Marius Enulescu

    2017-07-01

    Full Text Available The track circuits are very important equipments used in the railway transportation system. Today these are used to send vital information, to the running train, in the same time with the integrity checking of the rail. The actual track circuits have a small problem due to the use of the same transmission medium by the signals containing vital information and the return traction current, the running track rails. But this small problem can produce big disturbances in the train circulation, especially in the rush hours. To improve the data transmission to the train on-board equipment, the implementation of new track circuits using new communication technology were studied. This technology is used by the mobile and satellite communications and applies the principle of diversity encoding both time and space through the use of multiple transmission points of the track circuit signal for telegram which is sent to the train. Since this implementation does not satisfy the intended purpose, other modern communication principles such as 8PSK signals modulation and encoding using Trellis Coded Modulation were developed. This new track circuit aims to solve the problems which appeared in the current operation of track circuits and theoretically manages to transmit vital information to the train on board equipment without being affected by disturbances in electric traction transport systems.

  5. Reevaluation of Kori Unit 4 Natural Circulation Test

    Energy Technology Data Exchange (ETDEWEB)

    Yassin, Nassir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The simulation results showed that the natural circulation flow developed by density difference was capable of removing decay heat from the fuel rod. The maximum pellet centerline temperature of the hot channel showed large margin to the pellet melting temperature. The maximum coolant temperature in the hot channel was well below the saturation temperature. If steam generators provide heat sink to the primary coolant system and thus natural circulation is maintained, the integrity of the fuel in the core can be sustained with large margin. Passive cooling of reactor is inevitable in case of failures in forced cooling system such as loss of electric power for cooling pumps. Fukushima accident showed the importance of the passive core cooling. During the commissioning test of PWRs, natural circulation test is performed to demonstrate the passive core cooling by natural convection. The driving force for coolant flow is developed by the density deference along the loop multiplied by the gravitation. Using the data from 'natural circulation test' and 'RCS flow coast down test' of Kori Unit 4, fuel behavior was reevaluated by FRAPTRAN code. RCS natural circulation test of Kori Unit 4 was reevaluated by FRAPTYRAN simulation to study the fuel behavior during the flow coast down transient and at the equilibrium condition in which decay heat transport and RCS flow were stabilized.

  6. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  7. Dynamics and developing of natural circulation cooling from vertical upflow and downflow conditions

    International Nuclear Information System (INIS)

    Yang, B.W.; Ouyang, W.

    2004-01-01

    Several research programs have been conducted to evaluate the capability of natural circulation cooling of reactors following a loss of cooling accident. Both experimental and RELAP5 simulation results were obtained for these studies in a facility with vertical heated tube(s) and a unheated bypass channel. The analytical results showed that, under a certain power level, a natural circulation pattern can be developed from both initial upflow and downflow conditions, and maintained for a significant cooling period. This power level, for the discussion of this paper, is defined as the natural circulation cooling (NCC) power limit. Two import factors, namely the pump coastdown rate and the initial flow direction, are examined in this paper. In the benchmark case, as compared to the experimental results, the RELAP5 simulation program accurately predicted the transient phenomena from forced convection through flow reversal, then, into natural circulation cooling. Generally, the two-phase NCC power limit is higher and also more stable for the cases with initial upflow forced convection than for the cases with initial downflow. The transient phenomena (dynamics) of the natural circulation cooling was examined by varying the pump coast down rate in approaching the flow reversal natural circulation. A significant pump coastdown effect on the NCC power limit was observed for the analytical tests with initial downflow forced convection. For the tests with initial downflow condition, the higher the coastdown rate (or the shorter the coastdown period), the higher the NCC power limit. For the case with initial upflow forced convection, there may be an optimal coastdown rate for a given subcooled condition. However, for the subcooled condition used in this study, the effect of pump coast down rate is not as significant as in the downward forced convection. (author)

  8. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  9. Prospects of increasing the power of a two-circuit geothermal power plant

    International Nuclear Information System (INIS)

    Alkhasov, A.B.

    2001-01-01

    The results of analysis of the thermodynamical cycle of the geothermal NPPs secondary circuit with various versions of the geothermal circulation system are presented. It is shown, that the technological scheme with horizontal well is the optimal one. The conclusion is made that by further assimilation of thermal power with application of the experience, accumulated by petroleum specialist, it is necessary to built up geothermal circulation systems with horizontal wells. This will sharply increase the indices of the geothermal branch, its efficiency and competivity as compared to the traditional power engineering [ru

  10. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    Science.gov (United States)

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  11. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  12. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2002-11-01

    The mechanisms involved in the seasonal exchange between the Red Sea and the Indian Ocean are studied using an Oceanic General Circulation Model (OGCM), namely the Miami Isopycnic Coordinate Ocean Model (MICOM). The model reproduces the basic characteristics of the seasonal circulation observed in the area of the strait of Bab el Mandeb. There is good agreement between model results and available observations on the strength of the exchange and the characteristics of the water masses involved, as well as the seasonal flow pattern. During winter, this flow consists of a typical inverse estuarine circulation, while during summer, the surface flow reverses, there is an intermediate inflow of relatively cold and fresh water, and the hypersaline outflow at the bottom of the strait is significantly reduced. Additional experiments with different atmospheric forcing (seasonal winds, seasonal thermohaline air-sea fluxes, or combinations) were performed in order to assess the role of the atmospheric forcing fields in the exchange flow at Bab el Mandeb. The results of both the wind- and thermohaline-driven experiments exhibit a strong seasonality at the area of the strait, which is in phase with the observations. However, it is the combination of both the seasonal pattern of the wind stress and the seasonal thermohaline forcing that can reproduce the observed seasonal variability at the strait. The importance of the seasonal cycle of the thermohaline forcing on the exchange flow pattern is also emphasized by these results. In the experiment where the thermohaline forcing is represented by its annual mean, the strength of the exchange is reduced almost by half.

  13. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  14. State of the Art Report for a Bearing for VHTR Helium Circulator

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  15. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.

    -diagnostic and prognostic modes. Such a model could identify both the local and remote forcing of the Indian Ocean circulation. The other objectives of the thesis are the following: (i) To study the steady state 3-dimensional circulation of Indian Ocean based on semi...

  16. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  17. Labour circulation and the urban labour process.

    Science.gov (United States)

    Standing, G

    1986-01-01

    The author investigates aspects of labor circulation, which he defines as "temporary movement between geographical areas for work or in search of work....[He attempts to determine] what roles have been played by labour circulation in the development of urban-industrial labour forces in the transition to industrial capitalism." Factors considered include the exploitation and oppression of labor migrants; the industrial-urban labor reserve; urban socioeconomic stratification and discrimination by age, sex, or race; the division of labor; and policy options. excerpt

  18. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkahshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S; Mizuno, T [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    Optimal operation control was discussed on a forced-circulation solar water heater using solar cells not only as the power supply of a heat collecting pump, but also for controlling operation of the heat collecting pump. With this system, when the amount of power generated by solar cells reaches a sufficient level for operating the heat collecting pump, the heat collecting pump starts operation, wherein the heat collecting medium circulates in the system. The discussion was given by using simulation based on experimental expressions such as the relation expression between insolation and heat collecting medium flow rate as derived from the result of the system`s heat collecting performance test. As a result, the following conclusions were obtained: optimal insolation for activating the discussed system is from 50 to 100 W/m {sup 2}, and the heat collected within this range is within -1.5% of the collected heat amount at an optimum value; optimal activating insolation for the case of 1000 to 2000 W/m {sup 2} with low daily cumulative insolation is from 0 to 50 W/m {sup 2}, whereas the optimal activating insolation amount increases as the daily cumulative insolation amount increases; and the optimal activating insolation amount increases as water to be supplied requires higher temperature. 1 ref., 17 figs., 2 tabs.

  19. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  20. Measurement techniques for AGR circulators in a full-density rig

    International Nuclear Information System (INIS)

    Watson, I.; Wilson, R.R.

    1977-01-01

    Safety and reliability are the most important factors of a nuclear power plant. This applies in particular to the circulators used to drive the high-density CO 2 around the reactor core and boiler circuits. Under operating conditions, very high sound-pressure levels are generated which could excite components and cause possible fatigue failures. Failures of this type were experienced on the original axial blowers for the Hinkley 'A' Magnox reactor and, following this, a stringent test plan was specified for the AGR circulators. The present paper describes some of the techniques used to measure strain, sound and vibration on circulators in a full-density rig. This rig reproduces the actual reactor working conditions of 300 0 C and 4.1 MN m -2 with gas velocities up to 120 m s -1 . Under these conditions sound-pressure levels of up to 172 dB are generated. This programme of circulator testing has continued for the past 10 years. During this period many obstacles and difficulties were encountered. Some of these problems, together with the solutions found, are discussed. (author)

  1. Derivation of criteria for primary circuit activity in an HTGR

    International Nuclear Information System (INIS)

    Su, S.D.; Barsell, A.W.

    1980-11-01

    This paper derives specific criteria for the circulating and plateout activity in the primary circuit for a 2170-MW(t) high temperature gas-cooled reactor-gas turbine (HTGR-GT) plant. Results show that for a design basis, (1) the circulating activity should be limited to 14,000 Ci Kr-88 (a principal nuclide) to meet both offsite dose and containment access constraint during normal operation and depressurization accidents, and (2) the plateout inventories for those important nuclides affecting shutdown maintenance should not exceed 10,000 Ci Ag-110m, 45,000 Ci Cs-134 and 130,000 Ci Cs-137. This paper presents bases and methodology for deriving such criteria and compares them with light water reactors. 5 tables

  2. The effect of clomethiazole on plasma concentrations of interleukin-6, -8, -1beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation.

    LENUS (Irish Health Repository)

    Harmon, D

    2012-02-03

    Clomethiazole (CMZ), a neuroprotective drug, has antiinflammatory actions. We investigated the effects of CMZ administration on plasma concentrations of interleukin (IL)-6, IL-8, IL-1beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation. Five healthy volunteers each donated 500 mL of blood, which was subsequently divided into equal portions. Identical extracorporeal circuits were simultaneously primed with donated blood (250 mL) and circulated for 2 h at 37 degrees C. CMZ was added to 1 of the circuits of each pair to achieve a total plasma concentration of 40 micro mol\\/L. Blood samples were withdrawn at (i) donation, (ii) immediately after addition of CMZ, and at (iii) 30, 60, 90, and 120 min after commencing circulation. Plasma concentrations of IL-6, IL-8, and tumor necrosis factor-alpha were less in the CMZ group compared with control after 60 min of circulation (2.2 [0.3] versus 3.2 [0.4], 14.9 [4.8] versus 21.9 [18.4], 63.3 [43.5] versus 132.2 [118.9] pg\\/mL, respectively, P < 0.05). After 120 min of circulation, neutrophils from CMZ-treated circuits showed significantly less CD18 expression compared with control (237.5 [97.4] versus 280.5 [111.5], P = 0.03). The addition of CMZ to experimental extracorporeal circuits decreases the inflammatory response. This effect may be of clinical benefit by decreasing inflammatory-mediated neurological injury during cardiopulmonary bypass. IMPLICATIONS: Enhancement of gamma-aminobutyric acid(A)-mediated effects by clomethiazole (CMZ) and associated neuroprotection has been established in animal models of cerebral ischemia. In an ex vivo study, we demonstrated antiinflammatory activity of CMZ in experimental extracorporeal circulation. This represents a potential neuroprotective mechanism of CMZ in patients undergoing coronary artery bypass surgery.

  3. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Zhai, Ping; Kö hl, Armin; Gopalakrishnan, Ganesh

    2014-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  4. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  5. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    Science.gov (United States)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  6. Internal Short-Circuiting Phenomena In An Open-Cycle MHD Generator

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y.; Ishibashi, E. [Hitachi Research Laboratory, Hitachi-shi, Ibaraki-ken (Japan); Kasahara, T.; Kazawa, Y. [Hitachi Works, Hitachi Ltd., Hitachi-shi, Ibaraki-ken (Japan)

    1968-11-15

    The influence of internal electrical leakage due to circulating currents flowing through velocity boundary layers and due to metallic elements in insulating walls (peg walls) is experimentally investigated. For this purpose a combustion-driven MHD generator is utilized. The active part of the generator test section is 60 cm in length with a constant cross-section of 3 x 12 cm{sup 2}. At typical operating conditions about 70 g/s of diesel light oil is burned with oxygen-enriched air, resulting in a thermal input of 3 MW, a fluid velocity of 500 to 700 m/s and a gas temperature of 2700 to 2900 Degree-Sign K at the channel inlet. KOH is used as the seed material. The magnetic field can be raised up to 1.95 Teslas. In the range of lower magnetic fields (B < 0.8T) it is shown that an observed open-circuit voltage agrees well with the theoretical value OBh which is defined in a one-dimensional MHD model. In other words, the circulating currents scarcely affect the open-circuit voltage. The theoretical basis for this fact is obtained by the use of a simple model. Experimental results obtained in several runs using three sets of insulating walls show that thermal boundary layers at water-cooled metals are more conductive than expected and that the open- circuit voltage decreases because of leakage currents flowing through metal pegs, when the internal resistance of the generator is relatively large. Also, it is shown that an alumina coating is effective in reducing the leakage currents. (author)

  7. Fabrication of an electromagnetic pump with gas circulation

    International Nuclear Information System (INIS)

    Ravoire, J.

    1959-01-01

    This note reports the design and production of a pump aimed at circulating a gas in a closed circuit, and possessing some specific properties (tightness, gas in contact only with glass, operation pressure range, rates, resistance to overpressure). After a description of pump operation principle, the author describes the glassware part of the pump, its electromagnetic and electronic parts. He reports tests performed to assess pump characteristics. Obtained data are graphically presented, as well as a drawing of the pump

  8. Replacement of the Pumps for Fuel Channel Cooling Circuit of the Maria Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krzysztoszek, G.; Mieleszczenko, W.; Moldysz, A. [National Centre for Nuclear Research, Otwock–Świerk (Poland)

    2014-08-15

    The high flux Maria research reactor is operated by the National Centre for Nuclear Research in Świerk. It is a pool type reactor with pressurized fuel channels located in the beryllium matrix. According to the Global Threat Reduction Initiative programme our goal is to convert the Maria reactor from HEU to LEU fuel. Hydraulic losses in the new LEU fuel produced by CERCA are about 30% higher than the existing HEU fuel of type MR-6. For the MR-6 fuel were installed four two speed pumps. These pumps performed the function of the main circulations pumps during reactor operation with residual pumping power provided by emergency pumps. In the new system four main pumps will be used for circulating coolant while the reactor is operation with three auxiliary pumps for decay heat removal after reactor shutdown, meaning that the conversion of Maria research reactor will be possible after increasing flow in the primary cooling circuit of the fuel channels. The technical design of replacement of the pumps in the primary fuel channel cooling circuit was finished in April 2011 and accepted by the Safety Committee. After delivery of the new pumps we are planning to upgrade the primary fuel channel cooling circuit during October–November 2012. (author)

  9. A model study of present-day Hall-effect circulators

    International Nuclear Information System (INIS)

    Placke, B.; Bosco, S.; DiVincenzo, D.P.

    2017-01-01

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ_H = tan"-"1 σ_x_y/σ_x_x always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ_H = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  10. Contrôle des Circuits Auxiliaires des PFW (arrêt machines 2002/2003)

    CERN Document Server

    Ottaviani, J

    2003-01-01

    Les PFW sont des nappes polaires installées sur les pôles des aimants du PS. Elles sont au nombre de 4 par unité d aimant et constituées d un circuit principal (dans lequel circule le courant désiré selon le cycle magnétique utilisé) et de circuits auxiliaires. Les circuits auxiliaires sont des enroulements de correction (boucles de tour et pick-up brasés sur les enroulements). Pendant la variation du champ magnétique de l aimant PS, on utilise des tensions induites dans ces circuits auxiliaires pour corriger les erreurs de champ dues aux courants de Foucault dans la chambre à vide. Chaque année, pendant l arrêt machine, on vérifie si les caractéristiques des circuits auxiliaires correspondent aux normes (mesures des résistances des boucles de tours, résistances entre pick-up et isolation des circuits) afin de faire un suivi. Les 404 PFW sont ainsi vérifiées. Dans cette note, on ne relèvera que les PFW ayant des défauts (valeurs hors tolérances, boucles ouvertes ou en court-circuit, déf...

  11. Advanced Breakdown Modeling for Solid-State Circuit Design

    NARCIS (Netherlands)

    Milovanovi?, V.

    2010-01-01

    Modeling of the effects occurring outside the usual region of application of semiconductor devices is becoming more important with increasing demands set upon electronic systems for simultaneous speed and output power. Analog integrated circuit designers are forced to enter regimes of transistor

  12. Reduced scaling of thermal-hydraulic circuits for studies of PWR reactors natural circulation

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1993-01-01

    The Ishii et al. hydrodynamic similarity criteria for natural circulation were used for scaling reduced models of prototype passive residual heat removal system of a 600 M We PWR. The physical scales of the thermohydraulic parameters obtained presented a reasonable agreement when compared with simplified analytic models of the systems. (author)

  13. Analysis of the hydrodynamic stability of natural circulation

    International Nuclear Information System (INIS)

    Olive, J.; Baby, J.P.

    1980-01-01

    A mathematical model (EOLE) for the analysis of the stability of boilers with natural circulation is discussed. The method employed consists in linearizing one-dimensional flow equations and in integrating them while employing the Laplace transformation. The properties of a two-phase fluid are schematized by a homogeneous model with slip. The computation results in the circulation loop transfer functions and its natural modes of oscillation (frequency and damping). A discussion follows which compares results obtained with this method to those of other existing models in the case of a straight pipe with forced circulation. Agreement proved to be satisfactory. The results are then given of a parametric study involving the stability of a PWR natural circulation steam generator. These results show that the model can satisfy, at least qualitatively, trends observed empirically or obtained with other more complex theoretical models. (author)

  14. Sensitivity experiments with an adaptation model of circulation of western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.; Rao, A.D.; Dube, S.K.

    circulation at 10 m depth is controlled by both wind stress and sea surface topography. Circulation at 50 m depth is mainly controlled by thermohaline forcing and sea surface topography. The current speed in the western tropical Indian Ocean is of the order...

  15. What Drives the Variability of the Atlantic Water Circulation in the Arctic Ocean?

    Science.gov (United States)

    Lique, C.; Johnson, H. L.

    2016-02-01

    The Atlantic Water (AW) layer in the Arctic Basin is isolated from the atmosphere by the overlaying surface layer; yet observations of the AW pan-Arctic boundary current have revealed that the velocities in this layer exhibit significant variations on all timescales. Here, analysis of a global ocean/sea ice model hindcast, complemented by experiments performed with an idealized process model, are used to investigate what controls the variability of AW circulation, with a focus on the role of wind forcing. The AW circulation carries the imprint of wind variations, both remotely over the Nordic and Barents seas where they force variability on the AW inflow to the Arctic Basin, and locally over the Arctic Basin through the forcing of the wind-driven Beaufort gyre, which modulates and transfers the wind variability to the AW layer. Our results further suggest that understanding variability in the large amount of heat contained within the AW layer requires a better understanding of the circulation within both AW and surface layers.

  16. Duffing–van der Pol oscillator type dynamics in Murali–Lakshmanan–Chua (MLC) circuit

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chandrasekar, V.K.; Venkatesan, A.; Raja Mohamed, I.

    2016-01-01

    Highlights: • Proposed an electronic circuit with diode based nonlinear element equivalent to a well known Murali–Lakshmanan–Chua (MLC) circuit. • For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractor. • The performance of the circuit is investigated by means of explicit laboratory experiments, numerical simulations and analytical studies. - Abstract: We have constructed a simple second-order dissipative nonautonomous circuit exhibiting ordered and chaotic behaviour. This circuit is the well known Murali–Lakshmanan–Chua(MLC) circuit but with diode based nonlinear element. For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractors. It is interesting to note that depending upon the circuit parameters the circuit shows both period doubling route to chaos and quasiperiodic route to chaos. In our study we have constructed two-parameter bifurcation diagrams in the forcing amplitude–frequency plane, one parameter bifurcation diagrams, Lyapunov exponents, 0–1 test and phase portrait. The performance of the circuit is investigated by means of laboratory experiments, numerical integration of appropriate mathematical model and explicit analytic studies.

  17. LH2 three-phase pump control circuit description

    International Nuclear Information System (INIS)

    Pierce, W.

    1977-05-01

    A brief description and circuit drawings are given for a pump control system. The pump is used to circulate liquid hydrogen through the cell and heat exchanger of an LH 2 target. The pump is powered by three-phase 60 cycle power, and the control unit is powered from a positive and negative 24 V dc supply available in the NIM Bin. The control unit is packaged in a double-width NIM module. Drawings are given for the pump speed indicator, function generator, and power supply

  18. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  19. Opportunities in CARICOM Migration : Brain Circulation, Diasporic ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Opportunities in CARICOM Migration : Brain Circulation, Diasporic Tourism, and Investment. Between 1965 and 2000, about 12% of the Caribbean labour force moved to Canada and other developed countries, making the Caribbean the largest per capita source of emigrants in the world. Remittances from these emigrants ...

  20. Joule-Thief Circuit Performance for Electricity Energy Saving of Emergency Lamps

    Science.gov (United States)

    Nuryanto Budisusila, Eka; Arifin, Bustanul

    2017-04-01

    The alternative energy such as battery as power source is required as energy source failures. The other need is outdoor lighting. The electrical power source is expected to be a power saving, optimum and has long life operating. The Joule-Thief circuit is one of solution method for energy saving by using raised electromagnetic force on cored coil when there is back-current. This circuit has a transistor operated as a switch to cut voltage and current flowing along the coils. The present of current causing magnetic induction and generates energy. Experimental prototype was designed by using battery 1.5V to activate Light Emitting Diode or LED as load. The LED was connected in parallel or serial circuit configuration. The result show that the joule-thief circuit able to supply LED circuits up to 40 LEDs.

  1. Contrôle des circuits auxiliaires des P.F.W. (arret machine 2004/2006)

    CERN Document Server

    Ottaviani, J

    2005-01-01

    Les PFW sont des nappes polaires installées sur les pôles des aimants du PS. Elles sont au nombre de 4 par unité d’aimant et constituées d’un circuit principal (dans lequel circule le courant désiré selon le cycle magnétique utilisé) et de circuits auxiliaires. Les circuits auxiliaires sont des enroulements de correction (boucles de tour et “pick-up” brasés sur les enroulements principaux). Pendant la variation du champ magnétique de l’aimant PS, on utilise des tensions induites dans ces circuits auxiliaires pour corriger les erreurs de champ dues aux pertes par courants de Foucault dans la chambre à vide. Chaque année, pendant l’arrêt machine, on vérifie si les caractéristiques des circuits auxiliaires correspondent aux normes (mesures des résistances des boucles de tours, résistances entre “pick-up” et isolation des circuits) afin de faire un suivi. Les 404 PFW sont ainsi vérifiées. Dans cette note, on ne relèvera que les PFW ayant des défauts (valeurs hors tolérances, ...

  2. Artificial immune system algorithm in VLSI circuit configuration

    Science.gov (United States)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    In artificial intelligence, the artificial immune system is a robust bio-inspired heuristic method, extensively used in solving many constraint optimization problems, anomaly detection, and pattern recognition. This paper discusses the implementation and performance of artificial immune system (AIS) algorithm integrated with Hopfield neural networks for VLSI circuit configuration based on 3-Satisfiability problems. Specifically, we emphasized on the clonal selection technique in our binary artificial immune system algorithm. We restrict our logic construction to 3-Satisfiability (3-SAT) clauses in order to outfit with the transistor configuration in VLSI circuit. The core impetus of this research is to find an ideal hybrid model to assist in the VLSI circuit configuration. In this paper, we compared the artificial immune system (AIS) algorithm (HNN-3SATAIS) with the brute force algorithm incorporated with Hopfield neural network (HNN-3SATBF). Microsoft Visual C++ 2013 was used as a platform for training, simulating and validating the performances of the proposed network. The results depict that the HNN-3SATAIS outperformed HNN-3SATBF in terms of circuit accuracy and CPU time. Thus, HNN-3SATAIS can be used to detect an early error in the VLSI circuit design.

  3. Development of thermohydraulic software for PWR reactors with natural circulation

    International Nuclear Information System (INIS)

    Chasseur, Alfredo F.; Rauschert, A.; Delmastro, Dario F.

    2009-01-01

    The basics concepts about the development of software for steady state analysis of a reactor with natural circulations, in the primary circuit, are exposed. The reactor type is pressurized light water. The equations, correlations and flux diagrams of the source code of the software developed are shown. The source code of the software was written in FORTRAN 77 making use of modular technique, this save development effort and release of news versions is simplified. (author)

  4. Solution of multiple circuits of steam cycle HTR system

    International Nuclear Information System (INIS)

    Li, Fu; Wang, Dengying; Hao, Chen; Zheng, Yanhua

    2014-01-01

    In order to analyze the dynamic operation performance and safety characteristics of the steam cycle high temperature gas cooled reactor (HTR) systems, it is necessary to find the solution of the whole HTR systems with all coupled circuits, including the primary circuit, the secondary circuit, and the residual heat removal system (RHRS). Considering that those circuits have their own individual fluidity and characteristics, some existing code packages for independent circuits themselves have been developed, for example THEMRIX and TINTE code for the primary circuit of the pebble bed reactor, BLAST for once through steam generator. To solve the coupled steam cycle HTR systems, a feasible way is to develop coupling method to integrate these independent code packages. This paper presents several coupling methods, e.g. the equivalent component method between the primary circuit and steam generator which reflect the close coupling relationship, the overlapping domain decomposition method between the primary circuit and the passive RHRS which reflects the loose coupling relationship. Through this way, the whole steam cycle HTR system with multiple circuits can be easily and efficiently solved by integration of several existing code packages. Based on this methodology, a code package TINTE–BLAST–RHRS was developed. Using this code package, some operation performance of HTR–PM was analyzed, such as the start-up process of the plant, and the depressurized loss of forced cooling accident when different number of residual heat removal trains is operated

  5. Hydrology of surface waters and thermohaline circulation during the last glacial period

    International Nuclear Information System (INIS)

    Vidal, L.

    1996-01-01

    Sedimentological studies on oceanic cores from the north Atlantic have revealed, over the last glacial period, abrupt climatic changes with a periodicity of several thousand years which contrasts strongly with the glacial-interglacial periodicity (several tens of thousand years). These periods of abrupt climate changes correspond to massive icebergs discharges into the north Atlantic. The aim of this work was to study the evolution of the thermohaline circulation in relation to these episodic iceberg discharges which punctuated the last 60 ka. To reconstruct the oceanic circulation in the past, we have analysed oxygen and carbon stable isotopes on benthic foraminifera from north Atlantic deep-sea cores. First of all, the higher temporal resolution of sedimentary records has enabled us to establish a precise chrono-stratigraphy for the different cores. Then, we have shown the close linkage between surface water hydrology and deep circulation, giving evidence of the sensibility of thermohaline circulation to melt water input in the north Atlantic ocean. Indeed, changes in deep circulation are synchronous from those identified in surface waters and are recorded on a period which lasted ∼ 1500 years. Deep circulation reconstructions, before and during a typical iceberg discharge reveal several modes of circulation linked to different convection sites at the high latitudes of the Atlantic basin. Moreover, the study of the last glacial period gives the opportunity to differentiate circulation changes due to the external forcing (variations of the orbital parameters) and those linked to a more local forcing (icebergs discharges). 105 refs., 50 figs., 14 tabs., 4 appends

  6. Sensing And Force-Reflecting Exoskeleton

    Science.gov (United States)

    Eberman, Brian; Fontana, Richard; Marcus, Beth

    1993-01-01

    Sensing and force-reflecting exoskeleton (SAFiRE) provides control signals to robot hand and force feedback from robot hand to human operator. Operator makes robot hand touch objects gently and manipulates them finely without exerting excessive forces. Device attaches to operator's hand; comfortable and lightweight. Includes finger exoskeleton, cable mechanical transmission, two dc servomotors, partial thumb exoskeleton, harness, amplifier box, two computer circuit boards, and software. Transduces motion of index finger and thumb. Video monitor of associated computer displays image corresponding to motion.

  7. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  8. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Goto, Tadashi; Inoue, Kotaro; Yamakawa, Masanori; Ikeda, Takashi.

    1988-01-01

    Purpose: To promote more positive forcive circulation of primary circuit fluids thereby increase the heat removing amount. Constitution: The primary side of an electromagnetic flow coupler type heat exchanger is opened to the primary fluid of a reactor, while the secondary side is connected with the secondary circuit comprising an air cooler and an electromagnetic pump. Since the secondary circuit stands-by during normal operation, the electromagnetic flow coupler does not operate and does not generate force for flowing primary circuit fluid. If flow due to the external force to the primary circuit fluid should occur in the electromagnetic flow coupler type heat exchanger, an electromagnetic force tending to flow the secondary circuit fluid is exerted oppositely. However the coupler undergoes reaction inertia of the fluid or flowing resistance, to exert in the direction of suppressing the flow, thereby prevent the heat loss. (Yoshihara, H.)

  9. Variable cooling circuit for thermoelectric generator and engine and method of control

    Science.gov (United States)

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  10. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  11. Multiple states in the late Eocene ocean circulation

    Science.gov (United States)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  12. A model study of present-day Hall-effect circulators

    Energy Technology Data Exchange (ETDEWEB)

    Placke, B. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Bosco, S. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); DiVincenzo, D.P. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); Peter Gruenberg Institute, Theoretical Nanoelectronics, Forschungszentrum Juelich, Juelich (Germany)

    2017-12-15

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ{sub H} = tan{sup -1} σ{sub xy}/σ{sub xx} always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ{sub H} = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  13. Timing-Constrained FPGA Placement: A Force-Directed Formulation and Its Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Srilata Raman

    1996-01-01

    Full Text Available In this paper we present a simple but efficient timing-driven placement algorithm for FPGAs. The algorithm computes forces acting on a logic block in the FPGA to determine its relative location with respect to other blocks. The forces depend on the criticality of nets shared between the two blocks. Unlike other net-based approaches, timing constraints are incorporated directly into the force equations to guide the placement. Slot assignment is then used to move the blocks into valid slot locations on the FPGA chip. The assignment algorithm also makes use of the delay information of nets so that the final placement is able to meet the timing criteria specified for the circuit. The novelty of the approach lies in the formulation of the force equations and the manner in which weights of the nets are dynamically altered to influence the placement. Experiments conducted on industrial test circuits and MCNC circuits give very promising results and indicate that the algorithm succeeds in significantly reducing the maximum delay in the circuit. In addition, routability is not adversely affected and running time is low.

  14. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  15. Does the electromotive force (always represent work?

    Directory of Open Access Journals (Sweden)

    C. J. Papachristou

    2015-03-01

    Full Text Available In the literature of Electromagnetism, the electromotive force of a "circuit" is often defined as work done on a unit charge during a complete tour of the latter around the circuit. We explain why this statement cannot be generally regarded as true, although it is indeed true in certain simple cases. Several examples are used to illustrate these points.

  16. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun II; Chang, Soon Heung

    2004-01-01

    This study has been carried out to investigate the hydrodynamic stabilities and Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations has been observed and the average mass flux under flow oscillation have been measured. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. And the CHF data from low flow experiments, namely the natural and forced circulation, have been compared with each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions for the CHF experiments were a low flow of less than 70 kg/m 2 s of water in a vertical round tube with diameter of 0.008 m at near atmospheric pressure. (author)

  17. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    Science.gov (United States)

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín

    2013-01-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  18. Modes of interannual variability in northern hemisphere winter atmospheric circulation in CMIP5 models: evaluation, projection and role of external forcing

    Science.gov (United States)

    Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu

    2018-04-01

    Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.

  19. The subpolar North Atlantic - Response to North Atlantic oscillation like forcing and Influence on the Atlantic meridional overturning circulation

    Science.gov (United States)

    Lohmann, Katja; Drange, Helge; Jungclaus, Johann

    2010-05-01

    The extent and strength of the North Atlantic subpolar gyre (SPG) changed rapidly in the mid-1990s, going from large and strong in 1995 to substantially weakened in the following years. The abrupt change in the intensity of the SPG is commonly linked to the reversal of the North Atlantic Oscillation (NAO) index, changing from strong positive to negative values, in the winter 1995/96. In this study we investigate the impact of the initial SPG state on its subsequent behavior by means of an ocean general circulation model driven by NCEP-NCAR reanalysis fields. Our sensitivity integrations suggest that the weakening of the SPG cannot be explained by the change in the atmospheric forcing alone. Rather, for the time period around 1995, the SPG was about to weaken, irrespective of the actual atmospheric forcing, due to the ocean state governed by the persistently strong positive NAO during the preceding seven years (1989 to 1995). Our analysis indicates that it was this preconditioning of the ocean, in combination with the sudden drop in the NAO in 1995/96, that lead to the strong and rapid weakening of the SPG in the second half of the 1990s. In the second part, the sensitivity of the low-frequency variability of the Atlantic meridional overturning circulation to changes in the subpolar North Atlantic is investigated using a 2000 year long control integration as well as sensitivity experiments with the MPI-M Earth System Model. Two 1000 year long sensitivity experiments will be performed, in which the low-frequency variability in the overflow transports from the Nordic Seas and in the subpolar deep water formation rates is suppressed respectively. This is achieved by nudging temperature and salinity in the GIN Sea or in the subpolar North Atlantic (up to about 1500m depth) towards a monthly climatology obtained from the last 1000 years of the control integration.

  20. Two-phase natural circulation experiments in a pressurized water loop with CANDU geometry

    International Nuclear Information System (INIS)

    Ardron, K.H.; Krishnan, V.S.; McGee, G.R.; Anderson, J.W.D.; Hawley, E.H.

    1984-07-01

    To provide information on two-phase natural circulation in a CANDU-type coolant circuit a series of tests has been performed in the RD-12 loop at the Whiteshell Nuclear Research Establishment. RD-12 is a 10-MPa pressurized-water loop containing two active boilers, two pumps, and two, or four, heated horizontal channels arranged in a symmetrical figure-of-eight configuration characteristic of the CANDU reactor primary heat-transport system. In the tests, single-phase natural circulation was established in the loop and void was introduced by controlled draining, with the surge tank (pressurizer) valved out of the system. The paper reviews the experimental results obtained and describes the evolution of natural circulation flow in particular cases as voidage is progressively increased. The stability behaviour is discussed briefly with reference to a simple stability model

  1. Contrôle des Circuits Auxiliaires des P.F.W. (arrêt machine 2003/2004)

    CERN Document Server

    Ottaviani, J

    2004-01-01

    Les PFW sont des nappes polaires installées sur les pôles des aimants du PS. Elles sont au nombre de 4 par unité d'aimant et constituées d'un circuit principal (dans lequel circule le courant désiré selon le cycle magnétique utilisé) et des circuits auxiliaires. Les circuits auxiliaires sont des enroulements de correction (boucles de tour et "pick-up" brasés sur les enroulements principaux). Pendant la variation du champ magnétique del'aimant PS, on utilise des tensions induites dans ces circuits auxiliaires pour corriger les erreurs de champ dues aux pertes par courants de Foucault dans la chambre à vide. Chaque année, pendant l'arrêt machine, on vérifie si les caractéristiques des circuits auxiliaires correspondent aux normes (mesures de résistances des boucles de tours, résistances entre "pick-up" et isolation des circuits) afin de faire un suivi. Les 404 PFW sont ainsi vérifiées. Dans cette note, on ne relèvera que les PFW ayant des défauts (valeurs hors tolérances, boucles ouvertes ...

  2. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  3. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  4. Reliability analysis of 2400 MWth gas-cooled fast reactor natural circulation decay heat removal system

    International Nuclear Information System (INIS)

    Marques, M.; Bassi, C.; Bentivoglio, F.

    2012-01-01

    In support to a PSA (Probability Safety Assessment) performed at the design level on the 2400 MWth Gas-cooled Fast Reactor, the functional reliability of the decay heat removal system (DHR) working in natural circulation has been estimated in two transient situations corresponding to an 'aggravated' Loss of Flow Accident (LOFA) and a Loss of Coolant Accident (LOCA). The reliability analysis was based on the RMPS methodology. Reliability and global sensitivity analyses use uncertainty propagation by Monte Carlo techniques. The DHR system consists of 1) 3 dedicated DHR loops: the choice of 3 loops (3*100% redundancy) is made in assuming that one could be lost due to the accident initiating event (break for example) and that another one must be supposed unavailable (single failure criterion); 2) a metallic guard containment enclosing the primary system (referred as close containment), not pressurized in normal operation, having a free volume such as the fast primary helium expansion gives an equilibrium pressure of 1.0 MPa, in the first part of the transient (few hours). Each dedicated DHR loop designed to work in forced circulation with blowers or in natural circulation, is composed of 1) a primary loop (cross-duct connected to the core vessel), with a driving height of 10 meters between core and DHX mid-plan; 2) a secondary circuit filled with pressurized water at 1.0 MPa (driving height of 5 meters for natural circulation DHR); 3) a ternary pool, initially at 50 C. degrees, whose volume is determined to handle one day heat extraction (after this time delay, additional measures are foreseen to fill up the pool). The results obtained on the reliability of the DHR system and on the most important input parameters are very different from one scenario to the other showing the necessity for the PSA to perform specific reliability analysis of the passive system for each considered scenario. The analysis shows that the DHR system working in natural circulation is

  5. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  6. Distensibility and pressure-flow relationship of the pulmonary circulation. II. Multibranched model.

    Science.gov (United States)

    Bshouty, Z; Younes, M

    1990-04-01

    The contribution of distensibility and recruitment to the distinctive behavior of the pulmonary circulation is not known. To examine this question we developed a multibranched model in which an arterial vascular bed bifurcates sequentially up to 8 parallel channels that converge and reunite at the venous side to end in the left atrium. Eight resistors representing the capillary bed separate the arterial and venous beds. The elastic behavior of capillaries and extra-alveolar vessels was modeled after Fung and Sobin (Circ. Res. 30: 451-490, 1972) and Smith and Mitzner (J. Appl. Physiol. 48: 450-467, 1980), respectively. Forces acting on each component are modified and calculated individually, thus enabling the user to explore the effects of parallel and longitudinal heterogeneities in applied forces (e.g., gravity, vasomotor tone). Model predictions indicate that the contribution of distensibility to nonlinearities in the pressure-flow (P-F) and atrial-pulmonary arterial pressure (Pla-Ppa) relationships is substantial, whereas gravity-related recruitment contributes very little to these relationships. In addition, Pla-Ppa relationships, obtained at a constant flow, have no discriminating ability in identifying the presence or absence of a waterfall along the circulation. The P-F relationship is routinely shifted in a parallel fashion, within the physiological flow range, whenever extra forces (e.g., lung volume, tone) are applied uniformly at one or more branching levels, regardless of whether a waterfall is created. For a given applied force, the magnitude of parallel shift varies with proportion of the circulation subjected to the added force and with Pla.

  7. Double layers and circuits in astrophysics

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-05-01

    As the rate of energy release in a double layer with voltage DeltaV is P corresponding to IDeltaV, a double layer must be treated part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by menas of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroroal particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made. It is found that students using these textbooks remain essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for half a centry (e.g., double layers, Langmuir, 1929: pinch effect, Bennet, 1934). The conclusion is that astrophysics is too important to be left in the hands of the astrophysicist. Earth bound and space telescope data must be treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course with modern plasma theory. At least by volume the universe consists to more than 99 percent of plasma, and electromagnetic forces are 10/sup39/ time stronger than gravitation

  8. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  9. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  10. Computational simulation of flow and heat transfer in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Pinheiro, Larissa Cunha

    2017-01-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  11. Electronic circuits, systems and standards the best of EDN

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Electronic Circuits, Systems and Standards: The Best of EDN is a collection of 66 EDN articles. The topics covered in this collection are diverse but all are relevant to controlled circulation electronics. The coverage of the text includes topics about software and algorithms, such as simple random number algorithm; simple log algorithm; and efficient algorithm for repeated FFTs. The book also tackles measurement related topics, including test for identifying a Gaussian noise source; enhancing product reliability; and amplitude-locked loop speeds filter test. The text will be useful to student

  12. Experimental determination of heat transfer critical conditions in water forced convection at low pressure in a circular channel

    International Nuclear Information System (INIS)

    Fernandes, M.P.

    1973-02-01

    An experimental determination was made of heat transfer critical conditions in a circular channel, uniformly heated, and internally cooled by water in ascending forced convection, under a pressure slightly above atmospheric pressure. Measurements were made of water flow, pressure, electric power temperature and heating, and a systematic analysis was made of the system's parameters. The values obtained for the heat critical flux are circa 50% lower than those predicted by Becker and Biasi and this is accounted to flowing instabilities of thermo-hydrodynamic nature. It is suggested that the flowing channels of circuits aiming at the study of the boiling crisis phenomenon be expanded in its upper extremity, and that the coolant circulation be kept through a pump with a pressure X flow characteristic as vertical as possible

  13. Gland system, especially for nuclear power plant circulation pumps

    International Nuclear Information System (INIS)

    Skalicky, A.; Vesely, M.

    1975-01-01

    The invention claims a gland system suitable especially for the circulation pumps of nuclear power plants. The system prevents the release of the radioactive high-pressure cooling liquid in the atmosphere. The gland system consists of at least two mechanical glands arranged in series and of the closed circuit of the cooling high-pressure medium. The respective mechanical glands are linked with by-pass branches and discharge piping. The by-pass branches accommodating control manometers and flowmeters are linked with the storage reservoir with drain pipes provided with stop fittings. (Oy)

  14. Parametric studies to establish natural circulation in advanced heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, S K; Dhawan, M L [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Design of Advanced Heavy Water Reactor (AHWR) is in progress. It consists of vertical pressure tubes with boiling light water coolant flowing through the tubes and heavy water moderator in the calandria. In PHWRs, core heat removal is through forced circulation of the coolant by PHT pumps. In AHWR, no PHT pumps are used and core heat is carried away by natural circulation of the coolant due to density difference between steam/water mixture inside the core and the water region outside the core. This passive means of core heat removal results in a number of benefits viz. (a) extra length of piping, valves, instruments, power supply and control systems for functioning of instruments are eliminated, (b) plant layout is simplified, (c) maintenance of valves and instruments is reduced. Natural circulation in AHWR is achieved by keeping the steam drum at a sufficient height above the core to get the required driving force. The loop height depends on many factors i.e. channel power, V{sub c}/V{sub f} ratio (ratio of coolant volume to fuel volume) and core height. The effect of these parameters on the loop height to establish natural circulation have been studied and presented. (author). 1 ref., 1 fig., 1 tab.

  15. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    International Nuclear Information System (INIS)

    Gou Junli; Qiu Suizheng; Su Guanghui; Jia Dounan

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. (authors)

  16. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  17. Electromechanical stress in transformers caused by three-phase short-circuits; Estresse eletromecanico em transformadores causado por curtos-circuitos trifasicos

    Energy Technology Data Exchange (ETDEWEB)

    Rosentino, A.J.J. Pereira; Delaiba, A.C.; Saraiva, E.; Oliveira, J.C. de; Lynce, M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Fac. de Engenharia Eletrica], Emails: arnaldoufu@gmail.com, delaiba@ufu.br, elise.saraiva@yahoo.com.br, jcoliveira@ufu.br, lynce@ufu.br; Bronzeado, H. de S. [Companhia Hidro Eletrica do Sao Francisco (CHESF), Recife, PE (Brazil)], Emails: herivelto.bronzeado@gmail.com, hebron@chesf.gov.br

    2009-07-01

    One of the reasons for internal failures of transformers is the weakness of the isolation of its conductors/coils due to vibrations caused by electromechanics forces produced by the high short-circuit currents. In this context, this paper presents a methodology to estimate the electromechanical stress in transformers caused by three-phase short circuits. Details of the characteristics of radial and axial forces that can occur in concentric windings of transformers, focusing mainly on the axial are presented. It is presented the preliminary description of techniques for diagnosis and monitoring of transformers in the face of mechanical stress caused by short circuit. This study considers the transformers core involved.

  18. Determination of short circuit stresses in an air core reactor using ...

    African Journals Online (AJOL)

    DR OKE

    developed has crossed the boundary condition limit of 70 MPa whereas the ... The method can be used to identify the inter layer forces ... Power transformer design using magnetic circuit theory and finite element analysis – A Comparison.

  19. Project Circuits in a Basic Electric Circuits Course

    Science.gov (United States)

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  20. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin

    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project.

    Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  1. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  2. Symmetry Reductions of a 1.5-Layer Ocean Circulation Model

    International Nuclear Information System (INIS)

    Huang Fei; Lou Senyue

    2007-01-01

    The (2+1)-dimensional nonlinear 1.5-layer ocean circulation model without external wind stress forcing is analyzed by using the classical Lie group approach. Some Lie point symmetries and their corresponding two-dimensional reduction equations are obtained.

  3. Self-organizing maps applied to two-phase flow on natural circulation loop study; Aplicacao de mapas auto-organizaveis na classificacao de padroes de escoamento bifasico

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Leonardo Ferreira

    2016-11-01

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for decay heat removal. The Natural Circulation Facility (Circuito de Circulacao Natural CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to single and two-phase flow under natural circulation conditions. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. This work presents experiments realized at CCN to visualize natural circulation cycles in order to classify two-phase flow patterns associated with phase transients and static instabilities of flow. Images are compared and clustered using Kohonen Self-organizing Maps (SOM's) applied on different digital image features. The Full Frame Discret Cosine Transform (FFDCT) coefficients were used as input for the classification task, enabling good results. FFDCT prototypes obtained can be associated to each flow pattern, enabling a better comprehension of each observed instability. A systematic test methodology was used to verify classifier robustness.

  4. Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit

    International Nuclear Information System (INIS)

    Arulgnanam, A.; Thamilmaran, K.; Daniel, M.

    2009-01-01

    A two dimensional nonautonomous dissipative forced series LCR circuit with a simple nonlinear element exhibiting an immense variety of dynamical features is proposed for the first time. Unlike the usual cases of nonlinear element, the nonlinear element used here possesses three segment piecewise linear character with one positive and one negative slope. This nonlinearity is verified to be sufficient to produce chaos with high complexity in many established nonautonomous nonlinear circuits, such as MLC, MLCV, driven Chua, etc., thus indicating an universal behavior similar to the familiar Chua's diode. The dynamics of the proposed circuit is studied experimentally, confirmed numerically, simulated through PSPICE and proved mathematically. An important feature of the circuit is its ability to show dual chaotic behavior.

  5. Experience in vibro-acoustic control of primary coolant circuit aggregates

    International Nuclear Information System (INIS)

    Sedov, V.K.; Adamenkov, K.A.

    1977-01-01

    Fundamental principles and possibilities of vibro-acoustic control of the primary coolant circuit in nuclear power plants for detecting failures (slack parts, penetration of foreign bodies, crack formation, etc.) are presented. As a result of pressure and flow rate fluctuations such failures give rise to characteristic changes in apmplitude and frequency of vibration and technological noise from the different aggregates with respect to a 'calibration' spectrum taken in the intact state. Nature and location of the failures may be determined by statistical analysis of the signals recorded from pressure and acceleration gauges. Certain parts of the primary circuit are controlled, especially the main circulation pumps. Additionally, neutron noise has been measured in order to control the core insertions. The method is illustrated by means of measurements performed in the units 1 to 4 of the Novovoronezh nuclear power plant during start-up operation and continuous operation. (author)

  6. Experience in vibro-acoustic control of primary coolant circuit aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, V K; Adamenkov, K A [Nuclear power plant Novo-Voronesh (USSR)

    1977-10-01

    Fundamental principles and possibilities of vibro-acoustic control of the primary coolant circuit in nuclear power plants for detecting failures (slack parts, penetration of foreign bodies, crack formation, etc.) are presented. As a result of pressure and flow rate fluctuations such failures give rise to characteristic changes in apmplitude and frequency of vibration and technological noise from the different aggregates with respect to a 'calibration' spectrum taken in the intact state. Nature and location of the failures may be determined by statistical analysis of the signals recorded from pressure and acceleration gauges. Certain parts of the primary circuit are controlled, especially the main circulation pumps. Additionally, neutron noise has been measured in order to control the core insertions. The method is illustrated by means of measurements performed in the units 1 to 4 of the Novovoronezh nuclear power plant during start-up operation and continuous operation.

  7. Steady state flow analysis of two-phase natural circulation in multiple parallel channel loop

    International Nuclear Information System (INIS)

    Bhusare, V.H.; Bagul, R.K.; Joshi, J.B.; Nayak, A.K.; Kannan, Umasankari; Pilkhwal, D.S.; Vijayan, P.K.

    2016-01-01

    Highlights: • Liquid circulation velocity increases with increasing superficial gas velocity. • Total two-phase pressure drop decreases with increasing superficial gas velocity. • Channels with larger driving force have maximum circulation velocities. • Good agreement between experimental and model predictions. - Abstract: In this work, steady state flow analysis has been carried out experimentally in order to estimate the liquid circulation velocities and two-phase pressure drop in air–water multichannel circulating loop. Experiments were performed in 15 channel circulating loop. Single phase and two-phase pressure drops in the channels have been measured experimentally and have been compared with theoretical model of Joshi et al. (1990). Experimental measurements show good agreement with model.

  8. Southern Hemisphere extratropical circulation: Recent trends and natural variability

    Science.gov (United States)

    Thomas, Jordan L.; Waugh, Darryn W.; Gnanadesikan, Anand

    2015-07-01

    Changes in the Southern Annular Mode (SAM), Southern Hemisphere (SH) westerly jet location, and magnitude are linked with changes in ocean circulation along with ocean heat and carbon uptake. Recent trends have been observed in these fields but not much is known about the natural variability. Here we aim to quantify the natural variability of the SH extratropical circulation by using Coupled Model Intercomparison Project Phase 5 (CMIP5) preindustrial control model runs and compare with the observed trends in SAM, jet magnitude, and jet location. We show that trends in SAM are due partly to external forcing but are not outside the natural variability as described by these models. Trends in jet location and magnitude, however, lie outside the unforced natural variability but can be explained by a combination of natural variability and the ensemble mean forced trend. These results indicate that trends in these three diagnostics cannot be used interchangeably.

  9. Energy efficient circuit design using nanoelectromechanical relays

    Science.gov (United States)

    Venkatasubramanian, Ramakrishnan

    Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area. In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 - 10nm has been developed taking into account all the electrical, mechanical and dispersion effects. This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures. A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS

  10. Performance of the Main Dipole Magnet Circuits of the LHC during Commissioning

    CERN Document Server

    Verweij, A; Ballarino, A; Bellesia, B; Bordry, Frederick; Cantone, A; Casas Lino, M; Castaneda Serra, A; Castillo Trello, C; Catalan-Lasheras, N; Charifoulline, Z; Coelingh, G; Dahlerup-Petersen, K; D'Angelo, G; Denz, R; Fehér, S; Flora, R; Gruwé, M; Kain, V; Khomenko, B; Kirby, G; MacPherson, A; Marqueta Barbero, A; Mess, K H; Modena, M; Mompo, R; Montabonnet, V; le Naour, S; Nisbet, D; Parma, V; Pojer, M; Ponce, L; Raimondo, A; Redaelli, S; Reymond, H; Richter, D; de Rijk, G; Rijllart, A; Romera Ramirez, I; Saban, R; Sanfilippo, S; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thurel, Y; Thiessen, H; Venturini-Delsolaro, W; Vergara Fernandez, A; Wolf, R; Zerlauth, M

    2008-01-01

    During hardware commissioning of the Large Hadron Collider (LHC), 8 main dipole circuits are tested at 1.9 K and up to their nominal current. Each dipole circuit contains 154 magnets of 15 m length, and has a total stored energy of up to 1.3 GJ. All magnets are wound from Nb-Ti superconducting Rutherford cables, and contain heaters to quickly force the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of the first three of these circuits is presented, focussing on quench detection, heater performance, operation of the cold bypass diodes, and magnet-to-magnet quench propagation. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets.

  11. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    Science.gov (United States)

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  12. Investigations on the thermal-hydraulics of a natural circulation cooled BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kok, H.V.; Hagen, T.H.J.J. van der; Mudde, R.F. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    A scaled natural circulation loop facility has been built after the Dodewaard Boiling Water Reactor, which is the only operating natural circulation cooled BWR in the world. The loop comprises one fuel assembly, a riser with a downcomer and a condenser with a cooling system. Freon-12 is used as a scaling liquid. This paper reports on the first measurements done with this facility. Quantities like the circulation flow, carry-under and the void-fraction have been measured as a function of power, pressure, liquid level, riser length, condensate temperature and friction factors. The behavior of the circulation flow can be understood by considering the driving force. Special attention has been paid to the carry-under, which has been shown to have a very important impact on the dynamics of a natural circulation cooled BWR.

  13. Analysis of reverse flow in inverted U-tubes of steam generator under natural circulation condition

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Liu Jinggong; Qin Shiwei

    2008-01-01

    In this paper, we report on the analysis of reverse flow in inverted U-tubes of a steam generator under natural circulation condition. The mechanism of reverse flow in inverted U-tubes of the steam generator with natural circulation is graphically analyzed by using the full-range characteristic curve of parallel U-tubes. The mathematical model and numerical calculation method for analyzing the reverse flow in inverted U-tubes of the steam generator with natural circulation have been developed. The reverse flow in an inverted U-tube steam generator of a simulated pressurized water reactor with natural circulation in analyzed. Through the calculation, the mass flow rates of normal and reverse flows in individual U-tubes are obtained. The predicted sharp drop of the fluid temperature in the inlet plenum of the steam generator due to reverse flow agrees very well with the experimental data. This indicates that the developed mathematical model and solution method can be used to correctly predict the reverse flow in the inverted U-tubes of the steam generator with natural circulation. The obtained results also show that in the analysis of natural circulation flow in the primary circuit, the reverse flow in the inverted U-tubes of the steam generator must be taken into account. (author)

  14. A recent perspective of the Circulation in the Gulf of Mexico

    Science.gov (United States)

    Candela, J.; Ochoa-de-La-Torre, J. L.; Sheinbaum, J.; Perez-Brunius, P.; Pallas-Sanz, E.; Kolodziejczyk, N.

    2013-05-01

    The flow through the Gulf of Mexico is an integral part of the North Atlantic Ocean Subtropical Gyre Circulation, known to be forced by the wind over the North Atlantic and by an equivalent contribution from the inter-hemispheric Meridional Overturning Cell. To the North Atlantic Circulation, the Gulf represents an important energy and vorticity sink through the particular behavior of the Loop Current within. Comprehending the structure and dynamics of the Loop Current System (which includes the Yucatan Current (YC), Loop Current (LC), the shedding of anticyclonic Loop Current Eddies (LCE) and peripheral cyclonic gyres) is fundamental for understanding the circulation in the entire Gulf. Within the Gulf, the eastern Loop Current and the western Campeche Bay (CB) regions are characterized by persistent eddy structures, with less structured eddy fields in between. Of these later ones, the northwestern Gulf is a geostrophic turbulence area, constantly perturbed by LCE, which represents, at the same time, an important dissipation and circulation forcing region for the Western Gulf. Important processes recently investigated that will be discussed: 1) The generation and maintenance of the Geostrophic Turbulence field in the north western Gulf. 2) The circulation in deep water induced by the surface geostrophic turbulence field. 3) The generation of intensive jets at depth by interaction of +/- gyres. 4) The generation of coastal trap waves by the interaction of LCEs with the western shelf. 5) The generation of deep topographic Roosby waves by topographic interactions of the LCEs with topography. 5) The characteristics of the Bay of Campeche Circulation, The Campeche Gyre and its interaction with LCEs. 6) The Gulf's response to the passage of hurricanes. 7) The trapping of inertial waves by the LCEs and the related enhanced mixing.

  15. Analysis of a natural draught tower in the circulation seawater system of nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Tijerina S, F.; Vargas A, A.

    2009-10-01

    The analysis of a natural draught tower in open circuit for the cooling system of seawater circulation on the nuclear power plant of Laguna Verde, it is based on conditions of 2027 MWt and 2317 MWt, where the flows of circulation water system hardly vary and whose purpose will be, to cool the seawater circulation. The circulation water system is used as heat drain in main condenser of turbo generator to condense the nuclear vapor. The annual average temperature in the seawater at present is of 26 C to the entrance to circulation water system and it is vary in accordance with the time of year. The mean temperature of leaving of circulation water system to the sea is of 41 C. Having a cooling tower to reduce the entrance temperature to the circulation water system, it improves the efficiency of thermal transfer in condenser, it improves the vacuum in condenser giving more operative margin to avoid condenser losses by air entrances and nuclear power plant shutdowns, as well as for to improve the efficiency of operative balance of nuclear power plant, also it prevents the impact in thermal transfer efficiency in condenser by the climatic change. (Author)

  16. Recent changes in the summer monsoon circulation and their impact on dynamics and thermodynamics of the Arabian Sea

    Science.gov (United States)

    Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-05-01

    The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.

  17. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    Science.gov (United States)

    Wanders, N.; Van Lanen, H. A. J.

    2015-03-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three general circulation models for the SRES A2 emission scenario (GCM forced models), and the WATCH Forcing Data set (reference model). The threshold level method was applied to investigate drought occurrence, duration and severity. Results for the control period (1971-2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate models' results after post-processing produce realistic outcomes for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D) climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry (B) climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the drought analysis for the control period showed that projections of hydrological drought characteristics are most uncertain. On a global scale the increase in hydrological drought duration and severity in multiple regions will lead to a higher impact of drought events, which should motivate water resource managers to timely anticipate the increased risk of more severe drought in groundwater and streamflow

  18. West Florida shelf circulation and temperature budget for the 1999 spring transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2002-01-01

    Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.

  19. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  20. The role of natural circulation in the FFTF [Fast Flux Test Facility] passive safety tests

    International Nuclear Information System (INIS)

    Stover, R.L.; Padilla, A.; Burke, T.M.; Knecht, W.L.

    1987-03-01

    A series of tests were completed at the Fast Flux Test Facility to demonstrate the passive safety characteristics of liquid metal reactors with natural circulation flow. The first test consisted of transition from forced to natural circulation flow at an initial decay power of 0.3%. The second test represented an unprotected loss-of-flow transient to natural circulation from 50% power with the control rods prevented from scramming into the core. The third test was a steady-state, natural circulation condition with core fission powers up ato about 2.3%. Core sodium data and results of single and multi-channel computer models confirmed the reliability and effectiveness of natural circulation flow for liquid metal reactor safety

  1. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  2. Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi

    1997-01-01

    Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)

  3. Electronic circuit encyclopedia 2

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho

    1992-10-15

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  4. Electronic circuit encyclopedia 2

    International Nuclear Information System (INIS)

    Park, Sun Ho

    1992-10-01

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  5. Dynamic Model of MR Dampers Based on a Hysteretic Magnetic Circuit

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2018-01-01

    Full Text Available As a key to understand dynamic performances of MR dampers, a comprehensive dynamic magnetic circuit model is proposed in this work on the basis of Ampere’s and Gauss’s laws. It takes into account not only the magnetic saturation, which many existing studies have focused on, but also the magnetic hysteresis and eddy currents in a MR damper. The hysteresis of steel parts of MR dampers is described by Jiles-Atherton (J-A models, and the eddy current is included based on the field separation. Compared with the FEM results, the proposed model is validated in low- and high-frequency studies for the predictions of the magnetic saturation, the hysteresis, and the effect of eddy currents. A simple multiphysics model is developed to demonstrate how to combine the proposed magnetic circuit model with the commonly used Bingham fluid model. The damping force in the high-frequency case obviously lags behind the coil current, which exhibits a hysteresis loop in the current-force plane. The lag of damping force even exists in a low-frequency varying magnetic field and becomes more severe in the presence of eddy currents.

  6. Versatile resonance-tracking circuit for acoustic levitation experiments.

    Science.gov (United States)

    Baxter, K; Apfel, R E; Marston, P L

    1978-02-01

    Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.

  7. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  8. Stability analysis on natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au)

  9. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  10. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  11. Collective of mechatronics circuit

    International Nuclear Information System (INIS)

    1987-02-01

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  12. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  13. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  14. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  15. Management of the Post-Shuttle Extravehicular Mobility Unit (EMU) Water Circuits

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Hill, Terry; Wells, Kevin

    2011-01-01

    The EMU incorporates two separate water circuits for the rejection of metabolic heat from the astronaut and the cooling of electrical components. The first (the Transport Water Loop) circulates in a semi-closed-loop manner and absorbs heat into a Liquid Coolant and Ventilation Garment (LCVG) warn by the astronaut. The second (the Feed Water Loop) provides water to a cooling device (Sublimator) with a porous plate, and that water subsequently sublimates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. Efforts are underway to streamline the use of a water processing kit (ALCLR) that is being used to periodically clean and disinfect the Transport Loop Water. Those efforts include a fine tuning of the duty cycle based on a review of prior performance data as well as an assessment of a fixed installation of this kit into the EMU backpack or within on-orbit EMU interface hardware. Furthermore, testing is being conducted to ensure compatibility between the International Space Station (ISS) Water Processor Assembly (WPA) effluent and the EMU Sublimator as a prelude to using the WPA effluent as influent to the EMU Feed Water loop. This work is undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  16. Mechanisms governing the physico-chemical processes of transfer in NPP circuits

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Rybalchenko, I.L.

    1983-01-01

    The paper deals with the theoretical physico-chemical processes of corrosion products and their radionuclide transport in NPS circuits by thermoelectromotive and electromotive forces of microgalvanic couples. The laboratory and rig test results as well as the NPP operating experience data confirm the developed theoretical concept validity

  17. Experimental studies in a single-phase parallel channel natural circulation system. Preliminary results

    International Nuclear Information System (INIS)

    Bodkha, Kapil; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2016-01-01

    Natural circulation systems find extensive applications in industrial engineering systems. One of the applications is in nuclear reactor where the decay heat is removed by natural circulation of the fluid under off-normal conditions. The upcoming reactor designs make use of natural circulation in order to remove the heat from core under normal operating conditions also. These reactors employ multiple vertical fuel channels with provision of on-power refueling/defueling. Natural circulation systems are relatively simple, safe and reliable when compared to forced circulation systems. However, natural circulation systems are prone to encounter flow instabilities which are highly undesirable for various reasons. Presence of parallel channels under natural circulation makes the system more complicated. To examine the behavior of parallel channel system, studies were carried out for single-phase natural circulation flow in a multiple vertical channel system. The objective of the present work is to study the flow behavior of the parallel heated channel system under natural circulation for different operating conditions. Steady state and transient studies have been carried out in a parallel channel natural circulation system with three heated channels. The paper brings out the details of the system considered, different cases analyzed and preliminary results of studies carried out on a single-phase parallel channel system.

  18. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  19. Numerical simulation of losses along a natural circulation helium loop

    Energy Technology Data Exchange (ETDEWEB)

    Knížat, Branislav, E-mail: branislav.knizat@stuba.sk; Urban, František, E-mail: frantisek.urban@stuba.sk; Mlkvik, Marek, E-mail: marek.mlkvik@stuba.sk; Ridzoň, František, E-mail: frantisek.ridzon@stuba.sk; Olšiak, Róbert, E-mail: robert.olsiak@stuba.sk [Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Nám. slobody 17, 812 31 Bratislava, Slovak Republik (Slovakia)

    2016-06-30

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  20. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    Science.gov (United States)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  1. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  2. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun Il

    1993-02-01

    This study has been carried out to investigate the hydrodynamic stabilities of natural circulation and to analyze Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations and the average mass flux have been observed. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. The results show that the flow instability has strongly dependent on geometric conditions and operating parameters, the inlet temperature and the heat flux of test section. It was found that unstable region for the heat flux and the inlet temperature exists between the single-phase stable region of low heat and low inlet temperature and the two-phase stable region of very high heat flux and high inlet temperature. The CHF data from the natural and forced circulation experiments have been compared each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions were low flow less than 70 kg/m 2 s of water in vertical round tube with diameter of 0.008m at near atmospheric pressure. In this study, no difference in CHF values is observed between natural and fored circulation. Since low flow usually has the oscillation characteristic of relatively low amplitude and high frequency, the effect of the flow instabilities on the CHF seems to be negligible

  3. Theoretical analysis of effect of ocean condition on natural circulation flow

    International Nuclear Information System (INIS)

    Gong Houjun; Yang Xingtuan; Jiang Shengyao; Liu Zhiyong

    2010-01-01

    According to the simulation loop of Integrated natural circulation reactor,the mathematical model of natural circulation in non-inertial reference system is established, and the influence mechanism of ocean condition upon natural circulation is analyzed. Software is programmed to investigate the behaviors in the cases of rolling without heating power, static state with different power and rolling with heating power, and calculation results show that: the inertia force added by rolling causes the periodical fluctuating of the flow rate of channels, but it is not the direct reason of core flow fluctuation. The heave changes the driving head, and causes the same flow rate fluctuation of all channels. Inclining makes the core flow rate decrease, but the change of flow rate of different channels is different.(authors)

  4. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    Science.gov (United States)

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  5. Water cooling in nuclear reactors by using panels of integrated circuits

    International Nuclear Information System (INIS)

    Dominique, P.; Letissier, R.

    1977-01-01

    In view of the drawbacks of wet cooling towers, EDF is searching for another approach to the problem. A self-cleaning device is now envisaged, that consists in some exchanger plates, 30 to 40m height (max. 60m) capable of being hiden in the lanscape behind high trees. The plates would be rather smooth and the air circulated by natural convection. The prototype is composed of 960 aluminium panels of integrated circuits mounted on three modules made of tubular elements working as supporting and collecting means together [fr

  6. Arctic Ocean surface geostrophic circulation 2003–2014

    Directory of Open Access Journals (Sweden)

    T. W. K. Armitage

    2017-07-01

    Full Text Available Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully

  7. Design of an improved RCD buffer circuit for full bridge circuit

    Science.gov (United States)

    Yang, Wenyan; Wei, Xueye; Du, Yongbo; Hu, Liang; Zhang, Liwei; Zhang, Ou

    2017-05-01

    In the full bridge inverter circuit, when the switch tube suddenly opened or closed, the inductor current changes rapidly. Due to the existence of parasitic inductance of the main circuit. Therefore, the surge voltage between drain and source of the switch tube can be generated, which will have an impact on the switch and the output voltage. In order to ab sorb the surge voltage. An improve RCD buffer circuit is proposed in the paper. The peak energy will be absorbed through the buffer capacitor of the circuit. The part energy feedback to the power supply, another part release through the resistor in the form of heat, and the circuit can absorb the voltage spikes. This paper analyzes the process of the improved RCD snubber circuit, According to the specific parameters of the main circuit, a reasonable formula for calculating the resistance capacitance is given. A simulation model will be modulated in Multisim, which compared the waveform of tube voltage and the output waveform of the circuit without snubber circuit with the improved RCD snubber circuit. By comparing and analyzing, it is proved that the improved buffer circuit can absorb surge voltage. Finally, experiments are demonstrated to validate that the correctness of the RC formula and the improved RCD snubber circuit.

  8. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  9. Experimental study on convective heat transfer of water flow in a heated tube under natural circulation

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Zhong Yong; Liu Tao

    2006-01-01

    This paper reports on an experimental study on transitional heat transfer of water flow in a heated vertical tube under natural circulation conditions. In the experiments the local and average heat transfer coefficients were obtained. The experimental data were compared with the predictions by a forced flow correlation available in the literature. The comparisons show that the Nusselt number value in the fully developed region is about 30% lower than the predictions by the forced flow correlation due to flow laminarization in the layer induced by co-current bulk natural circulation and free convection. By using the Rayleigh number Ra to represent the influence of free convection on heat transfer, the empirical correlations for the calculation of local and average heat transfer behavior in the tube at natural circulation have been developed. The empirical correlations are in good agreement with the experimental data. Based on the experimental results, the effect of the thermal entry-length behavior on heat transfer design in the tube under natural circulation was evaluated

  10. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  11. Failure analysis of collector circuits associated with wind farms

    Directory of Open Access Journals (Sweden)

    Clifton Ashley P.

    2017-01-01

    Full Text Available Wind farm collector circuits generally comprise several wind turbine generators (WTG’s. WTG’s are connected in parallel to a substation. This connection acts as the point-of-connection to the national electricity grid. The electrical load in these circuits is close to component (power cables and accessories ratings. The objective of this paper is to identify cable joint failure paths; and, develop an understanding of specific contributing factors. All findings presented were established from literature review involving data analysis and discussion with industry experts working across the wind industry. Application of forces, inadequate workmanship, incorrect thermal resistance or other contributing factors, all contribute to high conductor operating temperatures. High conductor operating temperatures highlight issues including insufficient environmental heat transfer due to the use of inadequate cable trenching materials. This in turn results in the imbalanced application of force, experienced at the cable joint, as a direct result of frequent thermal expansion and contraction. For most cable joint failures, the root cause is insulation breakdown due to sustained deterioration of the cross-linked polyethylene insulation. This is a direct result from excessive operating temperatures.

  12. Modelling of circulation and dispersion of radioactive pollutants in the Japan sea

    International Nuclear Information System (INIS)

    Cetina, M.; Rajar, R.; Povinec, P.

    2000-01-01

    A large amount of radioactive waste was deposited in the Japan Sea, at a depth of about 3 000 m by the former Soviet Union. Research was carried out to determine to what extent the surface waters could be contaminated by possible leakage from the dumped containers. A three-dimensional, non-linear, baro-clinic model was used to determine the circulation and pollutant dispersion. The computations were carried out in the diagnostic mode, taking into account data on winter and summer temperature and salinity distribution. Thermohaline forcing due to strong temperatures and salinity gradients is the main forcing factor influencing the bottom circulation. Wind forcing and the inflow/outflow surface currents were also taken into account. The simulated velocity fields show relatively good agreement with observed surface currents and with some measurements of bottom currents. The simulated hydrodynamic field is in visibly closer agreement with the observed surface circulation when topographic stress is taken into account. After the release of radionuclides at the sea bottom, the first very small contamination would reach the surface layers after 3 years. The maximum concentrations of about 10 -3 Bq m -3 would be attained after 30 years. But everywhere the predicted radionuclide concentrations would be about two orders of magnitude smaller than the background values, caused by global fallout from nuclear weapons tests. Therefore, it will be impossible to determine the effect of leakage of wastes from the dumping sites over the present background levels. (authors)

  13. West Florida shelf circulation and temperature budget for the 1998 fall transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2003-05-01

    Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.

  14. AIMANTS PS CIRCUITS AUXILIAIRES DES PFW : UTILISATION DES PICK-UPS ET BOUCLES DE TOURS SELON LES TYPES DE CORRECTION

    CERN Document Server

    Ottaviani, J

    2005-01-01

    Les PFW sont des nappes polaires installées sur les pôles des aimants du PS. Elles sont au nombre de 4 par unité d’aimant et constituées d’un circuit principal (dans lequel circule le courant désiré selon le cycle magnétique utilisé) et de circuits auxiliaires. Les circuits auxiliaires sont des enroulements de correction (“pick-ups” brasés sur les enroulements principaux et boucles de tours). Pendant la variation du champ magnétique de l’aimant PS, on utilise des tensions induites dans ces circuits auxiliaires pour corriger les erreurs de champ dues aux pertes par courants de Foucault dans la chambre à vide. Les corrections à amener pour uniformiser le champ magnétique tout au long de la machine PS sont fonction des différents types de chambres à vide. A ce jour, nous utilisons 18 types de correction différents.

  15. Factors governing particulate corrosion product adhesion to surfaces in water reactor coolant circuits

    International Nuclear Information System (INIS)

    1979-03-01

    Gravity, van der Waals, magnetic, electrical double layer and hydrodynamic forces are considered as potential contributors to the adhesion of particulate corrosion products to surfaces in water reactor coolant circuits. These forces are renewed and evaluated, and the following are amongst the conclusions drawn; adequate theories are available to estimate the forces governing corrosion product particle adhesion to surfaces in single phase flow in water reactor coolant circuits. Some uncertainty is introduced by the geometry of real particle-surface systems. The major uncertainties are due to inadequate data on the Hamaker constant and the zeta potential for the relevant materials, water chemistry and radiation chemistry at 300 0 C; van der Waals force is dominant over the effect of gravity for particles smaller than about 100 m; quite modest zeta potentials, approximately 50mV, are capable of inhibiting particle deposition throughout the size range relevant to water reactors; for surfaces exposed to typical water reactor flow conditions, particles smaller than approximately 1 m will be stable against resuspension in the absence of electrical double layer repulsion; and the magnitude of the electrical double layer repulsion for a given potential depends on whether the interaction is assumed to occur at constant potential or constant change. (author)

  16. Composite dynamical behaviors in a simple series–parallel LC circuit

    International Nuclear Information System (INIS)

    Manimehan, I.; Philominathan, P.

    2012-01-01

    Highlights: ► We have presented a simple circuit exhibiting rich dynamical behaviors. ► The detailed study of the circuit is given by two parameter bifurcation diagram. ► The numerical, analytical and experimental results are good in agreement. ► The Chosen system seems to have potential application in future. - Abstract: In this paper, we report a variety of dynamical behaviors exhibited in a compact series–parallel LC circuit system comprising of two active elements, one linear negative conductance and one ordinary junction diode with piecewise linear v − i characteristics. For convenience, we consider the amplitude (E f ) and frequency (f) of the driving force as control parameters amongst various other parameters. We observe the phenomenon of antimonotonicity, torus breakdown to chaos, bubbles to chaos, period doubling to chaos and emergence of multiple attractors which follow a progressive sequence, etc. As an overview to understand many more variety of bifurcations and attractors, the construction of two parameter phase diagram is also shown pictorially. The chaotic dynamics of this circuit is realized by laboratory experiment, numerical and analytical investigations and found that the results are in good agreement with each other.

  17. Benefits of Compression Garments Worn During Handball-Specific Circuit on Short-Term Fatigue in Professional Players.

    Science.gov (United States)

    Ravier, Gilles; Bouzigon, Romain; Beliard, Samuel; Tordi, Nicolas; Grappe, Frederic

    2018-04-04

    Ravier, G, Bouzigon, R, Beliard, S, Tordi, N, and Grappe, F. Benefits of compression garments worn during handball-specific circuit on short-term fatigue in professional players. J Strength Cond Res XX(X): 000-000, 2016-The purpose of this study was to investigate the benefits of full-leg length compression garments (CGs) worn during a handball-specific circuit exercises on athletic performance and acute fatigue-induced changes in strength and muscle soreness in professional handball players. Eighteen men (mean ± SD: age 23.22 ± 4.97 years; body mass: 82.06 ± 9.69 kg; height: 184.61 ± 4.78 cm) completed 2 identical sessions either wearing regular gym short or CGs in a randomized crossover design. Exercise circuits of explosive activities included 3 periods of 12 minutes of sprints, jumps, and agility drills every 25 seconds. Before, immediately after and 24 hours postexercise, maximal voluntary knee extension (maximal voluntary contraction, MVC), rate of force development (RFD), and muscle soreness were assessed. During the handball-specific circuit sprint and jump performances were unchanged in both conditions. Immediately after performing the circuit exercises MVC, RFD, and PPT decreased significantly compared with preexercise with CGs and noncompression clothes. Decrement was similar in both conditions for RFD (effect size, ES = 0.40) and PPT for the soleus (ES = 0.86). However, wearing CGs attenuated decrement in MVC (p handball-specific circuit provides benefits on the impairment of the maximal muscle force characteristics and is likely to be worthwhile for handball players involved in activities such as tackles.

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Batheja, P.; Huber, R.; Rau, P.

    1985-01-01

    Particularly for nuclear reactors of small output, the reactor pressure vessel contains at least two heat exchangers, which have coolant flowing through them in a circuit through the reactor core. The circuit of at least one heat exchanger is controlled by a slide valve, so that even for low drive forces, particularly in natural circulation, the required even loading of the heat exchanger is possible. (orig./HP) [de

  19. FFTF operating experience with sodium natural circulation: slides included

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures.

  20. FFTF operating experience with sodium natural circulation: slides included

    International Nuclear Information System (INIS)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures

  1. Studies related to emergency decay heat removal in EBR-II

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1979-01-01

    Experimental and analytical studies related to emergency decay heat removal by natural circulation in the EBR-II heat transport circuits are described. Three general categories of natural circulation plant transients are discussed and the resultant reactor flow and temperature response to these events are presented. these categories include the following: (1) loss of forced flow from decay power and low initial flow rates; (2) reactor scram with a delayed loss of forced flow; and (3) loss of forced flow with a plant protective system activated scram. In all cases, the transition from forced to natural convective flow was smooth and the peak in-core temperature rises were small to moderate. Comparisons between experimental measurements in EBR-II and analytical predictions of the NATDEMO code are included

  2. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  3. Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system

    Science.gov (United States)

    Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.

    2011-01-01

    The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.

  4. Heparin-coated cardiopulmonary bypass circuits selectively deplete the pattern recognition molecule ficolin-2 of the lectin complement pathway in vivo

    DEFF Research Database (Denmark)

    Hein, Estrid; Munthe-Fog, L; Thiara, A S

    2015-01-01

    of infections. Thus, we investigated the biocompatibility of the recognition molecules of the lectin pathway in two different types of cardiopulmonary bypass circuits. Bloods were drawn at five time-points before, during and postoperatively from 30 patients undergoing elective cardiac surgery. Patients were...... randomized into two groups using different coatings of cardiopulmonary bypass circuits, Phisio® (phosphorylcholine polymer coating) and Bioline® (albumin-heparin coating). Concentrations of MBL, ficolin-1, -2 and -3 and soluble C3a and terminal complement complex (TCC) in plasma samples were measured......-2 was depleted from plasma during cardiac surgery when using heparin-coated bypass circuits and did not reach baseline level 24 h postoperation. These findings may have implications for the postoperative susceptibility to infections in patients undergoing extracorporeal circulation procedures....

  5. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    Science.gov (United States)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  6. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow

    Science.gov (United States)

    Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.

    2017-04-01

    Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.

  7. Models development for natural circulation and its transition process in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Lei; Cai Qi; Cai Zhangsheng; Xie Haiyan

    2008-01-01

    On the basis of nuclear power plant (NPP) best-estimate transient analysis code RELAP5/MOD3, the point reactor kinetics model in RELAP5/MOD3 was replaced by the two-group, 3-D space and time dependent neutron kinetic model, in order to exactly analyze the responses of key parameters in natural circulation and its transition process considering the reactivity feedback. The coupled model for three-dimensional physics and thermohydraulics was established and corresponding computing code was developed. Using developed code, natural circulation of NPP and its transiton process were calculated and analyzed. Compared with the experiment data, the calculated results show that its high precise avoids the shortage that the point reactor equation can not reflect the reactivity exactly. This code can be a computing and analysis tool for forced circulation and natural circulation and their transitions. (authors)

  8. Study of the hydrodynamic stability of natural-circulation steam generators

    International Nuclear Information System (INIS)

    Olive, J.

    1981-01-01

    This report presents a mathematical model of a study of the stability of natural-circulation steam generators. The method used consists in linearizing the equations for the single-dimensional flow and integrating them by using Laplace's transformation. The properties of the two-phase fluids are described by a homegeneous model with slip. The results of the calculation are the transfer functions of the circulation loop and its own oscillation modes (period and damping). Comparison of the results obtained by this method with those from other existing methods in the case of a straight tube with forced flow have proved satisfactory. Lastly, the results of a parametric study on the stability of a natural-circulation steam generator for a PWR unit are presented. The results show that the model is capable of reproducing at least qualitatively the trends observed experimentally or obtained by other more complex theoretical models [fr

  9. Meteorologic, oceanographic, and geomorphic controls on circulation and residence time in a coral reef-lined embayment: Faga'alu Bay, American Samoa

    Science.gov (United States)

    Storlazzi, C. D.; Cheriton, O. M.; Messina, A. M.; Biggs, T. W.

    2018-06-01

    Water circulation over coral reefs can determine the degree to which reef organisms are exposed to the overlying waters, so understanding circulation is necessary to interpret spatial patterns in coral health. Because coral reefs often have high geomorphic complexity, circulation patterns and the duration of exposure, or "local residence time" of a water parcel, can vary substantially over small distances. Different meteorologic and oceanographic forcings can further alter residence time patterns over reefs. Here, spatially dense Lagrangian surface current drifters and Eulerian current meters were used to characterize circulation patterns and resulting residence times over different regions of the reefs in Faga'alu Bay, American Samoa, during three distinct forcing periods: calm, strong winds, and large waves. Residence times varied among different geomorphic zones of the reef and were reflected in the spatially varying health of the corals across the embayment. The relatively healthy, seaward fringing reef consistently had the shortest residence times, as it was continually flushed by wave breaking at the reef crest, whereas the degraded, sheltered, leeward fringing reef consistently had the longest residence times, suggesting this area is more exposed to land-based sources of pollution. Strong wind forcing resulted in the longest residence times by pinning the water in the bay, whereas large wave forcing flushed the bay and resulted in the shortest residence times. The effect of these different forcings on residence times was fairly consistent across all reef geomorphic zones, with the shift from wind to wave forcing shortening mean residence times by approximately 50%. Although ecologically significant to the coral organisms in the nearshore reef zones, these shortened residence times were still 2-3 times longer than those associated with the seaward fringing reef across all forcing conditions, demonstrating how the geomorphology of a reef environment sets a

  10. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  11. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  12. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  13. Updating Procedures Can Reorganize the Neural Circuit Supporting a Fear Memory.

    Science.gov (United States)

    Kwapis, Janine L; Jarome, Timothy J; Ferrara, Nicole C; Helmstetter, Fred J

    2017-07-01

    Established memories undergo a period of vulnerability following retrieval, a process termed 'reconsolidation.' Recent work has shown that the hypothetical process of reconsolidation is only triggered when new information is presented during retrieval, suggesting that this process may allow existing memories to be modified. Reconsolidation has received increasing attention as a possible therapeutic target for treating disorders that stem from traumatic memories, yet little is known about how this process changes the original memory. In particular, it is unknown whether reconsolidation can reorganize the neural circuit supporting an existing memory after that memory is modified with new information. Here, we show that trace fear memory undergoes a protein synthesis-dependent reconsolidation process following exposure to a single updating trial of delay conditioning. Further, this reconsolidation-dependent updating process appears to reorganize the neural circuit supporting the trace-trained memory, so that it better reflects the circuit supporting delay fear. Specifically, after a trace-to-delay update session, the amygdala is now required for extinction of the updated memory but the retrosplenial cortex is no longer required for retrieval. These results suggest that updating procedures could be used to force a complex, poorly defined memory circuit to rely on a better-defined neural circuit that may be more amenable to behavioral or pharmacological manipulation. This is the first evidence that exposure to new information can fundamentally reorganize the neural circuit supporting an existing memory.

  14. A steady state tokamak operation by use of magnetic monopoles

    International Nuclear Information System (INIS)

    Narihara, K.

    1991-12-01

    A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)

  15. The voltage—current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    International Nuclear Information System (INIS)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example, upon which the voltage—current relationships (VCRs) between two parallel memristive circuits — a parallel memristor and capacitor circuit (the parallel MC circuit), and a parallel memristor and inductor circuit (the parallel ML circuit) — are investigated. The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters, and the frequency and amplitude of the sinusoidal voltage stimulus. An equivalent circuit model of the memristor is built, upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed, and the results verify the theoretical analysis results

  16. Development of force sensing circuit to determine the optimal force required for effective dynamic tripod grip/writing

    Science.gov (United States)

    Suraj S., S.; Kulkarni, Palash; Bokadia, Pratik; Ramanathan, Prabhu; Nageswaran, Sharmila

    2018-04-01

    Handwriting is a combination of fine motor perceptions and cognitive skills to produce words on paper. For writing, the most commonly used and recommended grip is the dynamic tripod grip. A child's handwriting starts developing during the times of pre-schooling and improves over time. While writing, children apply excessive force on the writing instrument. This force is exerted by their fingers and as per the law of reaction, the writing instruments tend to exert an equal and opposite force, that could damage the delicate soft tissue structures in their fingers and initiate cramps and pains. This condition is also prevalent in adults who tend to write for long hours under pressure. An example would be adolescence student during the exams. Clinically this condition is termed as `Writer's Cramp', which is usually characterized by muscle fatigue and pain in the fingers. By understanding and fixing the threshold of the force that should be exerted by the fingers while gripping the instrument, the pain can be controlled or avoided. This research aims in designing an electronic module which can help in understanding the threshold of pressure which is optimum enough to establish a better contact between the fingers and the instrument and should be capable of controlling or avoiding the pain. The design of FSR based electronic system is explained with its circuitry and results of initial testing is presented in this paper.

  17. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  18. Red Sea circulation during marine isotope stage 5e

    Science.gov (United States)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  19. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  20. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...

  1. Simulation of barotropic wind-driven circulation in tbe Bay of Bengal and Andaman Sea during premonsoon and postmonsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Bahulayan, N.

    Two-dimensional vertically integrated model has been used to simulate depth-mean wind-driven circulation during premonsoon and postmonsoon seasons in the upper layers of the Bay of Bengal and Andaman Sea. The model is integrated for 365 d, forcEd...

  2. Nearshore circulation on a sea breeze dominated beach during intense wind events

    Science.gov (United States)

    Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio

    2017-12-01

    A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play

  3. Seasonal variability of salinity and circulation in a silled estuarine fjord: A numerical model study

    Science.gov (United States)

    Kawase, Mitsuhiro; Bang, Bohyun

    2013-12-01

    A three-dimensional hydrodynamic model is used to study seasonal variability of circulation and hydrography in Hood Canal, Washington, United States, an estuarine fjord that develops seasonally hypoxic conditions. The model is validated with data from year 2006, and is shown to be capable of quantitatively realistic simulation of hydrographic variability. Sensitivity experiments show the largest cause of seasonal variability to be that of salinity at the mouth of the fjord, which drives an annual deep water renewal in late summer-early autumn. Variability of fresh water input from the watershed also causes significant but secondary changes, especially in winter. Local wind stress has little effect over the seasonal timescale. Further experiments, in which one forcing parameter is abruptly altered while others are kept constant, show that outside salinity change induces an immediate response in the exchange circulation that, however, decays as a transient as the system equilibrates. In contrast, a change in the river input initiates gradual adjustment towards a new equilibrium value for the exchange transport. It is hypothesized that the spectral character of the system response to river variability will be redder than to salinity variability. This is demonstrated with a stochastically forced, semi-analytical model of fjord exchange circulation. While the exchange circulation in Hood Canal appears less sensitive to the river variability than to the outside hydrography at seasonal timescales, at decadal and longer timescales both could become significant factors in affecting the exchange circulation.

  4. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...

  5. Performance evaluation approach for the supercritical helium cold circulators of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.; Kapoor, H. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382428 (India); Chalifour, M.; Chang, H.-S.; Serio, L. [ITER Organization, Route de Vinon sur Verdon - 13115 St Paul Lez Durance (France)

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe cold circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.

  6. Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops

    Directory of Open Access Journals (Sweden)

    P. K. Vijayan

    2008-01-01

    Full Text Available In natural circulation loops, the driving force is usually low as it depends on the riser height which is generally of the order of a few meters. The heat transport capability of natural circulation loops (NCLs is directly proportional to the flow rate it can generate. With low driving force, the straightforward way to enhance the flow is to reduce the frictional losses. A simple way to do this is to increase the loop diameter which can be easily adopted in pressure tube designs such as the AHWR and the natural circulation boilers employed in fossil-fuelled power plants. Further, the loop diameter also plays an important role on the stability behavior. An extensive experimental and theoretical investigation of the effect of loop diameter on the steady state and stability behavior of single- and two-phase natural circulation loops have been carried out and the results of this study are presented in this paper.

  7. Simulation of the phenomenon of single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Castrillo, Lazara Silveira

    1998-02-01

    Natural convection phenomenon is often used to remove the residual heat from the surfaces of bodies where the heat is generated e.g. during accidents or transients of nuclear power plants. Experimental study of natural circulation can be done in small scale experimental circuits and the results can be extrapolated for larger operational facilities. The numerical analysis of transients can be carried out by using large computational codes that simulate the thermohydraulic behavior in such facilities. The computational code RELAP5/MOD2, (Reactor Excursion and Leak Analysis Program) was developed by U.S. Nuclear Regulatory Commissions's. Division of Reactor Safety Research with the objective of analysis of transients and postulated accidents in the light water reactor (LWR) systems, including small and large ruptures with loss of coolant accidents (LOCA's). The results obtained by the simulation of single-phase and two-phase natural circulation, using the RELAP5/MOD2, are presented in this work. The study was carried out using the experimental circuit built at the 'Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo'. In the circuit, two experiments were carried out with different conditions of power and mass flow, obtaining a single-phase regime with a level of power of 4706 W and flow of 5.10 -5 m 3 /s (3 l/min) and a two-phase regime with a level of power of 6536 W and secondary flow 2,33.10 -5 m 3 /s (1,4 l/min). The study allowed tio evaluate the capacity of the code for representing such phenomena as well as comparing the transients obtained theoretically with the experimental results. The comparative analysis shows that the code represents fairly well the single-phase transient, but the results for two-phase transients, starting from the nodalization and calibration used for the case single-phase transient, did not reproduce faithfully some experimental results. (author)

  8. Study on natural circulation flow under reactor cavity flooding condition in advanced PWRs

    International Nuclear Information System (INIS)

    Tao Jun; Yang Jiang; Cao Jianhua; Lu Xianghui; Guo Dingqing

    2015-01-01

    Cavity flooding is an important severe accident management measure for the in-vessel retention of a degraded core by external reactor vessel cooling in advanced PWRs. A code simulation study on the natural circulation flow in the gap between the reactor vessel wall and insulation material under cavity flooding condition is performed by using a detailed mechanistic thermal-hydraulic code package RELAP 5. By simulating of an experiment carried out for studying the natural circulation flow for APR1400 shows that the code is applicable for analyzing the circulation flow under this condition. The analysis results show that heat removal capacity of the natural circulation flow in AP1000 is sufficient to prevent thermal failure of the reactor vessel under bounding heat load. Several conclusions can be drawn from the sensitivity analysis. Larger coolant inlet area induced larger natural circulation flow rate. The outlet should be large enough and should not be submerged by the cavity water to vent the steam-water mixture. In the implementation of cavity flooding, the flooding water level should be high enough to provide sufficient natural circulation driven force. (authors)

  9. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  10. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  11. Experimental investigation of an active magnetic regenerative heat circulator applied to self-heat recuperation technology

    International Nuclear Information System (INIS)

    Kotani, Yui; Kansha, Yasuki; Ishizuka, Masanori; Tsutsumi, Atsushi

    2014-01-01

    An experimental investigation into an active magnetic regenerative (AMR) heat circulator based on self-heat recuperation technology, was conducted to evaluate its energy saving potential in heat circulation. In an AMR heat circulator, magnetocaloric effect is applied to recuperate the heat exergy of the process fluid. The recuperated heat can be reused to heat the feed process fluid and realize self-heat recuperation. In this paper, AMR heat circulator has newly been constructed to determine the amount of heat circulated when applied to self-heat recuperation and the energy consumption of the heat circulator. Gadolinium and water was used as the magnetocaloric working material and the process fluid, respectively. The heat circulated amount was determined by measuring the temperature of the process fluid and gadolinium. The net work input for heat circulation was obtained from the magnetizing and demagnetizing forces and the distance travelled by the magnetocaloric bed. The results were compared with the minimum work input needed for heat circulation derived from exergy loss during heat exchange. It was seen that the experimentally obtained value was close to the minimum work input needed for heat circulation. - Highlights: • AMR heat circulator has newly been constructed for experimental evaluation. • Heat circulation in the vicinity of Curie temperature was observed. • Energy consumption of an AMR heat circulator has been measured. • Energy saving for processes near Curie temperature of working material was seen

  12. Evaluation of fatigue crack growth in the primary circuit pipeline of a WWER 440/213c type nuclear power plant

    International Nuclear Information System (INIS)

    Samohyl, P.

    1993-07-01

    The fatigue damage of the primary circuit of WWER-440/213c reactors was evaluated proceeding from actual and design operating data of units 3 and 4 of the Bohunice V-2 nuclear power plant. A complex computation model was set up, encompassing the main circulation pipeline, pressurizer pipeline, emergency core aftercooling system pipeline, steam pipeline, and feedwater pipeline. The standardized STATIC code was applied to the stress analysis, and the FATLBB code was used to determine the crack increment for all operating states and primary circuit sections. The probability of fatigue failure of the pipelines was found to be low. (J.B.). 55 tabs., 3 figs., 9 refs

  13. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  14. The Adriatic response to the bora forcing. A numerical study

    International Nuclear Information System (INIS)

    Rachev, N.

    2001-01-01

    This paper deals with the bora wind effect on the Adriatic Sea circulation as simulated by a 3-D numerical code (the DieCAST model). The main result of this forcing is the formation of intense upwelling along the eastern coast in agreement with previous theoretical studies and observations. Different numerical experiments are discussed for various boundary and initial conditions to evaluate their influence on both circulation and upwelling patterns

  15. A finite element simulation of tidal circulation in the Gulf of Kutch, India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Luick, J.L.

    difference model for the same region. The results were found to be consistent, with the fe model providing improved resolution in key areas. Residual circulation evaluated by forcing the fe model with Md2 tide and winds (those typical of the southwest monsoon...

  16. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  17. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    1991-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  18. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  19. Control of forced vibrations of mechanical structures by an electromagnetic controller with a permanent magnet

    DEFF Research Database (Denmark)

    Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    A theoretical analysis of an electromagnetic vibration controller is presented. The analyzed device consists of a pot-type iron core with a coil and a permanent magnet as a source of constant magnetic flux. The magnetic circuit is closed by a yoke, excited by an external harmonic mechanical force....... The so generated magnetic flux variation induces alternating voltage in the electric circuit, which is dissipated in a shunt resistor. The induced current driven through the coil generates magnetic force, which damps the excitation force and changes the damped natural frequency of the oscillatory system....... Due to the hysteretic effects in the magnetic material the internal losses influence the overall system’s performance. A mathematical model of the force balance in the oscillatory system is derived in a simplified, linearised form. The electric as well as mechanical system is modelled using lumped...

  20. Analysis of an accident with the main circulation tube rupture at the WWER-1000

    International Nuclear Information System (INIS)

    Boyadzhiev, A.I.; Stefanova, S.J.

    1984-01-01

    In connection with the forthcoming construction of a npp with the wwer-1000 reactor the loss of coolant accident associated with the main circulation tube rupture at the inlet near the reactor is analyzed. The relap4/mod6 program is used for the analysis. The data obtained show that the coolant outflow stage continues for about 25s. On the average the pressure in the circuits varies from 16 to 10 mpa per 0.1s and then it continues to decrease slowly. The pressure in the steam generator at the secondary circuits end increases approximately up to 6.9 MPa as a result of steam generator blocking and remaining coolant heating and then somewhat decreases owing to the primary circuit cooling. By the end of the fuel and can temperatures are equalized and the heat transfer coefficient is stabilized at the level of 100 w/1 (m 2 xK). It is concluded that during a loss of coolant accident at the wwer-1000 reactor in procesess of coolant blowdown in the medium power fuel elemets neither the fuel, melting temperature (3000 k), nor the critical temperature (1000 k) of plastic deformation zirconiu can initiation are attained

  1. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  2. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  3. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  4. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  5. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of

  6. Design and fabrication of a micro fluidic circuit for the separation of micron sized particles

    CSIR Research Space (South Africa)

    Khumalo, F

    2009-07-01

    Full Text Available The development of a micro fluidic circuit for the separation of micro particles is being investigated. There are a wide range of available separation techniques such as acoustic, laminar flow, split flow, optical trapping and centrifugal forces...

  7. The dynamics of İzmir Bay under the effects of wind and thermohaline forces

    Science.gov (United States)

    Sayın, Erdem; Eronat, Canan

    2018-04-01

    The dominant circulation pattern of İzmir Bay on the Aegean Sea coast of Turkey is studied taking into consideration the influence of wind and thermohaline forces. İzmir Bay is discussed by subdividing the bay into outer, middle and inner areas. Wind is the most important driving force in the İzmir coastal area. There are also thermohaline forces due to the existence of water types of different physical properties in the bay. In contrast to the two-layer stratification during summer, a homogeneous water column exists in winter. The free surface version of the Princeton model (Killworth's 3-D general circulation model) is applied, with the input data obtained through the measurements made by the research vessel K. Piri Reis. As a result of the simulations with artificial wind, the strong consistent wind generates circulation patterns independent of the seasonal stratification in the bay. Wind-driven circulation causes cyclonic or anticyclonic movements in the middle bay where the distinct İzmir Bay Water (IBW) forms. Cyclonic movement takes place under the influence of southerly and westerly winds. On the other hand, northerly and easterly winds cause an anticyclonic movement in the middle bay. The outer and inner bay also have the wind-driven recirculation patterns expected.

  8. Magnus force, Aharonov-Bohm effect, and berry phase in superfluids

    International Nuclear Information System (INIS)

    Sonin, E.

    2001-01-01

    The present paper is an attempt to bring together two points of view in order to find a source of disagreement. I restrict myself with the problem of the Galilean invariant quantum Bose-liquid described by the Gross-Pitaevskii theory. At large scales the theory yields equations of the hydrodynamics of an ideal inviscous liquid. In presence of an ensemble of sound waves (phonons) with the Planck distribution, which is characterized by a locally defined normal velocity, one obtains the two-fluid hydrodynamics. The momentum balance in the area around a moving vortex demonstrates the existence of the Iordanskii force. I also discuss the Berry phase. The Berry phase and the Magnus forces are proportional to the total current circulation at large distances. But the total current circulation contains a normal-fluid contribution, which is proportional to the Iordanski force. Taking this contribution into account, the Berry-phase analysis agrees with the momentum-balance approach. (orig.)

  9. Diurnal Variability of the inner-shelf circulation in the lee of a cape under upwelling conditions

    Science.gov (United States)

    Lamas, Luisa; Peliz, Álvaro; Marchesiello, Patrick

    2013-04-01

    The circulation over the inner-shelf is a key component of shelf dynamics and an important mechanism for cross-shore exchange on most shelves. Yet our understanding of the cross-shore circulation and how it depends on different forcing conditions, bathymetry and stratification remains poor due in part to sparse observations and the difficulty of resolving spatial and temporal scales within the inner-shelf. Most studies of cross-shore transport on the inner-shelf consider only a 2D circulation, due to coastal upwelling or downwelling and assume along-shore uniformity. However, divergence in the along-shore and cross-shore flows may occur with the presence of complex coastline topography or subtle bathymetric features, and can drive substantial horizontal cross-shore exchange, with same order of magnitude as coastal upwelling and downwelling. A recent study using observational data collected near cape Sines, Portugal, showed that not only wind, waves and tides are important forcing mechanisms of the inner-shelf circulation, but also that the along-shore pressure gradient plays a major role on driving cross-shore exchange. A modeling study was conducted in order to study the complexity of the inner-shelf dynamics, in the presence of a cape. A simplified configuration was used in order to isolate the effects of individual processes: wind, heat fluxes, tides and waves. The preliminary results of the effects of these processes on the inner-shelf circulation will be presented.

  10. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  11. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in

  12. Towards a modeling synthesis of two or three-dimensional circuits through substrate coupling and interconnections

    CERN Document Server

    Gontrand, Christian

    2014-01-01

    The number of transistors in integrated circuits doubles every two years, as stipulated by Moore's law, and this has been the driving force for the huge development of the microelectronics industry in the past 50 years - currently advanced to the nanometric scale.This e-book is dedicated to electronic noises and parasites, accounting for issues involving substrate coupling and interconnections, in the perspective of the 3D integration: a second track for enhancing integration, also compatible with Moore's law. This reference explains the modeling of 3D circuits without delving into the latest

  13. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  14. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  15. Orbital forcing and role of the latitudinal insolation/temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Basil A.S. [University of Newcastle, School of Geography, Politics and Sociology, Newcastle upon Tyne (United Kingdom); ARVE Group, ISTE, EPFL, Lausanne (Switzerland); Brewer, Simon [CEREGE, Europole de l' Arbois, Aix-en-Provence (France)

    2009-02-15

    Orbital forcing of the climate system is clearly shown in the Earths record of glacial-interglacial cycles, but the mechanism underlying this forcing is poorly understood. Traditional Milankovitch theory suggests that these cycles are driven by changes in high latitude summer insolation, yet this forcing is dominated by precession, and cannot account for the importance of obliquity in the Ice Age record. Here, we investigate an alternative forcing based on the latitudinal insolation gradient (LIG), which is dominated by both obliquity (in summer) and precession (in winter). The insolation gradient acts on the climate system through differential solar heating, which creates the Earths latitudinal temperature gradient (LTG) that drives the atmospheric and ocean circulation. A new pollen-based reconstruction of the LTG during the Holocene is used to demonstrate that the LTG may be much more sensitive to changes in the LIG than previously thought. From this, it is shown how LIG forcing of the LTG may help explain the propagation of orbital signatures throughout the climate system, including the Monsoon, Arctic Oscillation and ocean circulation. These relationships are validated over the last (Eemian) Interglacial, which occurred under a different orbital configuration to the Holocene. We conclude that LIG forcing of the LTG explains many criticisms of classic Milankovitch theory, while being poorly represented in climate models. (orig.)

  16. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; ratings and settings... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  17. Enhanced Global Monsoon in Present Warm Period Due to Natural and Anthropogenic Forcings

    Directory of Open Access Journals (Sweden)

    Jing Chai

    2018-04-01

    Full Text Available In this study, we investigate global monsoon precipitation (GMP changes between the Present Warm Period (PWP, 1900–2000 and the Little Ice Age (LIA, 1250–1850 by performing millennium sensitivity simulations using the Community Earth System Model version 1.0 (CESM1. Three millennium simulations are carried out under time-varying solar, volcanic and greenhouse gas (GHG forcing, respectively, from 501 to 2000 AD. Compared to the global-mean surface temperature of the cold LIA, the global warming in the PWP caused by high GHG concentration is about 0.42 °C, by strong solar radiation is 0.14 °C, and by decreased volcanic activity is 0.07 °C. The GMP increases in these three types of global warming are comparable, being 0.12, 0.058, and 0.055 mm day−1, respectively. For one degree of global warming, the GMP increase induced by strong GHG forcing is 2.2% °C−1, by strong solar radiation is 2.8% °C−1, and by decreased volcanic forcing is 5.5% °C−1, which means that volcanic forcing is most effective in terms of changing the GMP among these three external forcing factors. Under volcanic inactivity-related global warming, both monsoon moisture and circulation are enhanced, and the enhanced circulation mainly occurs in the Northern Hemisphere (NH. The circulation, however, is weakened in the other two cases, and the GMP intensification is mainly caused by increased moisture. Due to large NH volcanic aerosol concentration in the LIA, the inter-hemispheric thermal contrast of PWP global warming tends to enhance NH monsoon circulation. Compared to the GHG forcing, solar radiation tends to warm low-latitude regions and cause a greater monsoon moisture increase, resulting in a stronger GMP increase. The finding in this study is important for predicting the GMP in future anthropogenic global warming when a change in natural solar or volcanic activity occurs.

  18. Numerical method for studying the circulation patterns of a fluid in a cavity

    International Nuclear Information System (INIS)

    Stephani, L.M.; Butler, T.D.

    1975-10-01

    The method incorporates three circulation-inducing mechanisms: (1) buoyancy induced by nonuniform initial distribution of heat throughout the fluid, (2) buoyancy induced by removal of heat from the fluid, and (3) forced convection induced by withdrawal of heated fluid and return of cooled fluid. A two-dimensional computer program, CIRCO, based on the Marker-and-Cell (MAC) technique, is used to study the circulation patterns. The report discusses the code and illustrates its capabilities by means of examples from studies conducted for the Pacer project, which investigates the concept of producing electrical power from energy released by thermonuclear explosions in a salt dome. Efficient engineering for withdrawing energy from the cavity requires an understanding of the circulation patterns of the heated fluid. CIRCO provides this information in the form of computer-generated plots

  19. 3D printed flexible capacitive force sensor with a simple micro-controller based readout

    NARCIS (Netherlands)

    Schouten, Martijn G.; Sanders, Remco; Krijnen, Gijs

    2017-01-01

    This paper describes the development of a proof of principle of a flexible force sensor and the corresponding readout circuit. The flexible force sensor consists of a parallel plate capacitor that is 3D printed using regular and conductive thermoplastic poly-urethane (TPU). The capacitance change

  20. X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling

    Directory of Open Access Journals (Sweden)

    A. Montuori

    2013-02-01

    Full Text Available In this paper, X-band COSMO-SkyMed© synthetic aperture radar (SAR wind field retrieval is investigated, and the obtained data are used to force a coastal ocean circulation model. The SAR data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR Huge Region COSMO-SkyMed© SAR data, gathered in the southern Tyrrhenian Sea during the summer and winter seasons of 2010. The SAR-based wind vector field estimation is accomplished by resolving both the SAR-based wind speed and wind direction retrieval problems independently. The sea surface wind speed is retrieved by means of a SAR wind speed algorithm based on the azimuth cut-off procedure, while the sea surface wind direction is provided by means of a SAR wind direction algorithm based on the discrete wavelet transform multi-resolution analysis. The obtained wind fields are compared with ground truth data provided by both ASCAT scatterometer and ECMWF model wind fields. SAR-derived wind vector fields and ECMWF model wind data are used to construct a blended wind product regularly sampled in both space and time, which is then used to force a coastal circulation model of a southern Tyrrhenian coastal area to simulate wind-driven circulation processes. The modeling results show that X-band COSMO-SkyMed© SAR data can be valuable in providing effective wind fields for coastal circulation modeling.

  1. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  2. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  3. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    Science.gov (United States)

    Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris

    2000-01-01

    Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency

  4. Low latency asynchronous interface circuits

    Science.gov (United States)

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  5. Determination оf Optimum Constructive Parameters for Circulating-Reagent Regeneration Sector Apparatus

    Directory of Open Access Journals (Sweden)

    A. M. Sheiko

    2008-01-01

    Full Text Available On the basis of equation analysis for velocity distribution in near filter mudded zone optimal constructional parameters of sector apparatus for circulating-reagent well filter regeneration have been evaluated via angle ratio of forcing and section sectors and number of sectors. The method for determination of sector apparatus length of а selected pump that provides dissolution of mud formation in filter and near filter zone is proposed in the paper. The obtained data would promote upgrading of circulating-reagent water well regeneration technology and it permits to carry out high quality and even rehabilitation of pore space penetration along the full well filter length.

  6. Passive safety systems and natural circulation in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2009-11-01

    Nuclear power produces 15% of the world's electricity. Many countries are planning to either introduce nuclear energy or expand their nuclear generating capacity. Design organizations are incorporating both proven means and new approaches for reducing the capital costs of their advanced designs. In the future most new nuclear plants will be of evolutionary design, often pursuing economies of scale. In the longer term, innovative designs could help to promote a new era of nuclear power. Since the mid-1980s it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially improve economics of new nuclear power plant designs. The IAEA Conference on The Safety of Nuclear Power: Strategy for the Future, which was convened in 1991, noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Some new designs also utilize natural circulation as a means to remove core power during normal operation. The use of passive systems can eliminate the costs associated with the installation, maintenance, and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are conducted in several IAEA Member States with advanced reactor development programmes. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, the IAEA

  7. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  8. Modeling the transport of nitrogen in an NPP-2006 reactor circuit

    Science.gov (United States)

    Stepanov, O. E.; Galkin, I. Yu.; Sledkov, R. M.; Melekh, S. S.; Strebnev, N. A.

    2016-07-01

    Efficient radiation protection of the public and personnel requires detecting an accident-initiating event quickly. Specifically, if a heat-exchange tube in a steam generator is ruptured, the 16N radioactive nitrogen isotope, which contributes to a sharp increase in the steam activity before the turbine, may serve as the signaling component. This isotope is produced in the core coolant and is transported along the circulation circuit. The aim of the present study was to model the transport of 16N in the primary and the secondary circuits of a VVER-1000 reactor facility (RF) under nominal operation conditions. KORSAR/GP and RELAP5/Mod.3.2 codes were used to perform the calculations. Computational models incorporating the major components of the primary and the secondary circuits of an NPP-2006 RF were constructed. These computational models were subjected to cross-verification, and the calculation results were compared to the experimental data on the distribution of the void fraction over the steam generator height. The models were proven to be valid. It was found that the time of nitrogen transport from the core to the heat-exchange tube leak was no longer than 1 s under RF operation at a power level of 100% N nom with all primary circuit pumps activated. The time of nitrogen transport from the leak to the γ-radiation detection unit under the same operating conditions was no longer than 9 s, and the nitrogen concentration in steam was no less than 1.4% (by mass) of its concentration at the reactor outlet. These values were obtained using conservative approaches to estimating the leak flow and the transport time, but the radioactive decay of nitrogen was not taken into account. Further research concerned with the calculation of thermohydraulic processes should be focused on modeling the transport of nitrogen under RF operation with some primary circuit pumps deactivated.

  9. Entrainment effects in periodic forcing of the flow over a backward-facing step

    Science.gov (United States)

    Berk, T.; Medjnoun, T.; Ganapathisubramani, B.

    2017-07-01

    The effect of the Strouhal number on periodic forcing of the flow over a backward-facing step (height, H ) is investigated experimentally. Forcing is applied by a synthetic jet at the edge of the step at Strouhal numbers ranging from 0.21 forcing, and locally vertical momentum flux is shown to be qualitatively similar to circulation for all cases considered. Total circulation (and therewith entrainment of momentum and the effect on the reattachment length) is shown to decrease with Strouhal number, whereas this is not predicted by models based on specific low and high frequencies. An empirical model for the (decay of) circulation is derived by tracking vortices in phase-locked data. This model is used to decipher relevant scaling parameters that explain the variations in circulation, entrainment of momentum, and reattachment length. Three regimes of Strouhal number are identified. A low-Strouhal-number regime is observed for which vortices are formed at a late stage relative to the recirculation region, causing a decrease in effectiveness. For high Strouhal numbers, vortices are being reingested into the actuator or are packed so close together that they cancel each other, both decreasing the effectiveness of forcing. In the intermediate regime a vortex train is formed of which the decay of circulation increases for increasing Strouhal number. The scaling of this

  10. Characteristics of thermal hydraulic stability in a HYPER system with enhanced natural circulation potential

    International Nuclear Information System (INIS)

    Tak, Nam Il; Park, Won S.; Han, Seok Jung

    1999-06-01

    Pb-Bi eutectic chosen as a coolant of HYPER is an excellent heat transfer medium but requires relatively large pumping power. Thus the mixed cooling concept to increase economy and safety is being considered for HYPER. In this cooling concept, a large fraction of total thermal power is carried by natural circulation. However, the mixed cooling concept has been considered for conceptual designs only an it has never been applied to real reactors. The purpose of the present study is to provide simple tools to analyze mixed flow and to examine fundamental stability characteristics of mixed flow. Conventional one-dimensional approaches using mass, momentum, and energy conservation are used to describe a forced circulating flow affected by a large buoyancy force. The results of simple analysis using preliminary design parameters of HYPER show that cooling by mixed flow is possible only when the total pressure loss of system is sufficiently low. The stability behavior of mixed flow in a simple rectangular loop has been studied using numerical solutions of the governing equations. As in the case of natural circulation, three types of flow regions, such as stable, neutrally stable, and unstable regions, were found. The stability map of mixed flow has been obtained using the results of calculations. Forced flow due to the pump is found to increase the stability of the loop, since the stable portion of the stability map is increased. However, the unstable region of the mixed flow does not completely disappear, even though the pump exists. (author). 37 refs., 4 tabs., 23 figs

  11. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  12. Development of new chemical and electrochemical decontamination methods for selected equipment of WWER-440 and WWER-1000 reactor primary circuit

    International Nuclear Information System (INIS)

    Solcanyi, M.; Majersky, D.

    1998-01-01

    Special devices for in-situ application of decontamination technologies assigned for Steam Generator, Pressurizer and Main Circulating Casing of WWER-1000 type were designed, manufactured and tested in real conditions of their use in above Primary Circuit components. New decontamination technologies like low-concentration process NP-NHN for the decontamination of the Steam Generator, combined chemico-mechanical treatment for the Pressurizer and semi-dry electrolysis for the Main Circulating Pump Casing were developed and approved for their safe plant application from point of view of decontamination efficiency, corrosion influence and processing of secondary wastes. Main technological parameters were defined to achieve high decontamination efficiency and corrosion-safe application of all decontamination technologies. (author)

  13. The influence of topography on Titan’s atmospheric circulation and hydrologic cycle

    Science.gov (United States)

    Lora, Juan M.; Faulk, Sean; Mitchell, Jonathan

    2017-10-01

    Titan’s atmospheric circulation is a dominant driver of the global methane hydrologic cycle—producing weather and a seasonal climate cycle—while interactions between the surface and the troposphere strongly constrain regional climates, and contribute to the differentiation between Titan’s low latitude deserts and high latitude lake districts. Yet the influence of surface topography on the atmospheric circulation has only been studied in a few instances, and no published work has investigated the coupling between topographical forcing and Titan’s hydrologic cycle. In this work, we examine the impacts of global topography in the Titan Atmospheric Model (TAM), which includes a robust representation of the methane cycle. We focus in particular on the influence of large-scale topographical features on the atmospheric flow, atmospheric moisture transport, and cloud formation. High latitude transient weather systems have previously been identified as important contributors to global atmospheric methane transport, and here we examine whether topographically-forced stationary or quasi-permanent systems are also important, as they are in Earth’s hydrologic cycle.

  14. Analysis and Suppression of Zero Sequence Circulating Current in Open Winding PMSM Drives With Common DC Bus

    OpenAIRE

    Zhan, H.; Zhu, Z.Q.; Odavic, M.

    2017-01-01

    In this paper, the zero sequence circulating current in open winding permanent magnet synchronous machine (OW-PMSM) drives with common dc bus is systematically analyzed for the first time. It is revealed that the zero sequence circulating current is affected by zero sequence back-electromotive force, cross coupling voltages in zero sequence from the machine side, pulse-width modulation induced zero sequence voltage, and inverter nonlinearity from the inverter side. Particularly, the influence...

  15. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  16. Flow characteristic of Hijiori HDR reservoir from circulation test in 1991; Koon tantai Hijiori jikkenjo ni okeru senbu choryuso shiken (1991 nendo) kekka to ryudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, T; Hyodo, M; Shinohara, N; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports one example of flow analyses on a circulation test carried out in fiscal 1991 at the Hijiori hot dry rock experimental field (Yamagata Prefecture). A fluid circulation model was proposed to simulate an HDR circulation system for a shallow reservoir (at a depth of about 1800 m) demonstrated in the circulation test by using an electric circuit network (which expresses continuity impedance in resistance and fluid storage in capacitance). Storage capacity of the reservoir was estimated by deriving time constant of the system from data of time-based change in reservoir pressure associated with transition phenomena during the circulation test. The storage capacity was estimated separately by dividing change of storage in the reservoir by change in the reservoir pressure. To derive the storage in the reservoir, a method to calculate non-recovered flows in the circulation test was utilized. The results of evaluating the reservoir capacity in the shallow reservoir using the above two independent methods were found substantially consistent. 3 refs., 6 figs., 1 tab.

  17. Electric circuits and signals

    CERN Document Server

    Sabah, Nassir H

    2007-01-01

    Circuit Variables and Elements Overview Learning Objectives Electric Current Voltage Electric Power and Energy Assigned Positive Directions Active and Passive Circuit Elements Voltage and Current Sources The Resistor The Capacitor The Inductor Concluding Remarks Summary of Main Concepts and Results Learning Outcomes Supplementary Topics on CD Problems and Exercises Basic Circuit Connections and Laws Overview Learning Objectives Circuit Terminology Kirchhoff's Laws Voltage Division and Series Connection of Resistors Current Division and Parallel Connection of Resistors D-Y Transformation Source Equivalence and Transformation Reduced-Voltage Supply Summary of Main Concepts and Results Learning Outcomes Supplementary Topics and Examples on CD Problems and Exercises Basic Analysis of Resistive Circuits Overview Learning Objectives Number of Independent Circuit Equations Node-Voltage Analysis Special Considerations in Node-Voltage Analysis Mesh-Current Analysis Special Conside...

  18. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  19. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  20. Influence of Atlantic SST anomalies on the atmospheric circulation in the Atlantic-European sector

    Directory of Open Access Journals (Sweden)

    E. Kestenare

    2003-06-01

    Full Text Available Recent studies of observational data suggest that Sea Surface Temperature (SST anomalies in the Atlantic Ocean have a significant influence on the atmospheric circulation in the Atlantic-European sector in early winter and in spring. After reviewing this work and showing that the spring signal is part of a global air-sea interaction, we analyze for comparison an ensemble of simulations with the ECHAM4 atmospheric general circulation model in T42 resolution forced by the observed distribution of SST and sea ice, and a simulation with the ECHAM4/OPA8 coupled model in T30 resolution. In the two cases, a significant influence of the Atlantic on the atmosphere is detected in the Atlantic-European sector. In the forced mode, ECHAM4 responds to SST anomalies from early spring to late summer, and also in early winter. The forcing involves SST anomalies not only in the tropical Atlantic, but also in the whole tropical band, suggesting a strong ENSO influence. The modeled signal resembles that seen in the observations in spring, but not in early winter. In the coupled mode, the Atlantic SST only has a significant influence on the atmosphere in summer. Although the SST anomaly is confined to the Atlantic, the summer signal shows some similarity with that seen in the forced simulations. However, there is no counterpart in the observations.

  1. Macromodels of digital integrated circuits for program packages of circuit engineering design

    Science.gov (United States)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  2. Sub-Circuit Selection and Replacement Algorithms Modeled as Term Rewriting Systems

    Science.gov (United States)

    2008-12-16

    of Defense, or the United States Government . AFIT/GCO/ENG/09-02 Sub-circuit Selection and Replacement Algorithms Modeled as Term Rewriting Systems... unicorns and random programs”. Communications and Computer Networks, 24–30. 2005. 87 Vita Eric D. Simonaire graduated from Granite Baptist Church School in...Service to attend the Air Force Institute of Technol- ogy in 2007. Upon graduation, he will serve the federal government in an Information Assurance

  3. Natural circulation of integrated-type marine reactor at inclined attitude

    International Nuclear Information System (INIS)

    Iyori, Isao; Aya, Izuo; Murata, Hiroyuki; Kobayashi, Michiyuki; Nariai, Hideki

    1987-01-01

    A steady-state single-phase natural circulation test was performed to clarify the effect of inclination by using a model of an integrated-type marine reactor. It was found that several types of flow pattern occur in the natural circulation loop corresponding to the range of inclination angle. Stable flow rates are sustained up to near 90 0 because of the occurrence of a driving force arising from those sections of the facility which were horizontal before the inclination. It was found that the temperature distribution in the steam generator at inclined attitude depends essentially only on the elevation z. The applicability of a one-dimensional analytical model was examined. It was clarified that employment of detailed U-turn flow paths, their correlation, and temperature-distribution function of core is essential for improvement. (orig.)

  4. Atmospheric Circulation Response to Episodic Arctic Warming in an Idealized Model

    Science.gov (United States)

    Hell, M. C.; Schneider, T.; Li, C.

    2017-12-01

    Recent Arctic sea ice loss has drawn attention as a potential driver of fall/winter circulation changes. Past work has shown that sea ice loss can be related to a stratospheric polar vortex breakdown, with the result of long-delayed surface weather phenomena in late winter/early spring. In this study, we separate the atmospheric dynamic components and mean timescales to episodic polar surface heat fluxes using large ensembles of an idealized GCM in absence of continents and seasons. The atmospheric ensemble-mean response is linear related to the surface forcing strength and insensitive to the forcing symmetry. Analyses in the Transformed Eulerian Mean show that the responses can be separated into 1) an in-phase thermal adjustment, and 2) a lagged, eddy-driven component invoking long-standing anomalies in the lower stratosphere. The mid-latitude adjustment to the episodically reduced baroclinity leads to stratosphere-directed eddy-heat fluxes, establishing a stratospheric temperature anomaly responsible for vortex break down. In addition, we discuss the dependence on the background state via correlation in ensemble member space. Thus, we range the role of arctic perturbations in the transient large-scale circulation.

  5. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  6. Circuit arrangement of an electronic component for the design of fail-safe protective circuits

    International Nuclear Information System (INIS)

    Centmaier, W.; Bernhard, U.; Friederich, B.; Heisecke, I.

    1974-01-01

    The critical parameters of reactors are controlled by safety circuits. These circuits are controlled designed as logic modules operating by the 'n-out-of-m' selection principle. In most cases, a combination of a '1-out-of-3' circuit with a '2-out-of-3' circuit and separate indication is sufficient for a dynamic fail-safe circuit. The basic logic elements are AND and OR gate circuits, respectively, which are triggered by pulse trains and in which the failure of a pulse train is indicated as an error at the output. The module allows the design of safety circuits offering various degrees of safety. If the indication of an error is made on the modules, faulty components can be exchanged by the maintenance crew right away. (DG) [de

  7. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  8. Contrôle des circuits auxiliaires des P.F.W. (arret machine 2004/2006, après rénovation de 25 aimants)

    CERN Document Server

    Ottaviani, J

    2006-01-01

    Les PFW sont des nappes polaires installées sur les pôles des aimants du PS. Elles sont au nombre de 4 par unité d'aimant et constituées d'un circuit principal (dans lequel circule le courant désiré selon le cycle magnétique utilisé) et de circuits auxiliaires. Les circuits auxiliaires sont des enroulements de correction (boucles de tour et ?pick-up? brasés sur les enroulements principaux). Pendant la variation du champ magnétique de l'aimant PS, on utilise des tensions induites dans ces circuits auxiliaires pour corriger les erreurs de champ dues aux pertes par courants de Foucault dans la chambre à vide. Chaque année, pendant l'arrêt machine, on vérifie si les caractéristiques des circuits auxiliaires correspondent aux normes (mesures des résistances des boucles de tours, résistances entre ?pick-up? et isolation des circuits) afin de faire un suivi. Des mesures ont été faites au début du grand arrêt en décembre 2004 afin de définir quels aimants seraient à rénover (l'état des PFW e...

  9. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    Science.gov (United States)

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport.

  10. Comparison of modified driver circuit and capacitor-transfer circuit in longitudinally excited N2 laser.

    Science.gov (United States)

    Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa

    2013-04-01

    We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.

  11. Indian summer monsoon forcing on the deglacial polar cold reversals

    Indian Academy of Sciences (India)

    Virupaxa K Banakar

    2017-09-01

    Sep 1, 2017 ... because CO2, the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, ... The role of CO2 in causing these deglacial cold ..... Temperature changes in the polar regions with reference to their ...

  12. Remarkable separability of the circulation response to Arctic sea ice loss and greenhouse gas forcing

    Science.gov (United States)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-12-01

    Arctic sea ice loss has an important effect on local climate through increases in ocean to atmosphere heat flux and associated feedbacks, and may influence midlatitude climate by changing large-scale circulation that can enhance or counter changes that are due to greenhouse gases. The extent to which climate change in a warming world can be understood as greenhouse gas-induced changes that are modulated by Arctic sea ice loss depends on how additive the responses to the separate influences are. Here we use a novel sea ice nudging methodology in the Canadian Earth System Model, which has a fully coupled ocean, to isolate the effects of Arctic sea ice loss and doubled atmospheric carbon dioxide (CO2) to determine their additivity and sensitivity to mean state. We find that the separate effects of Arctic sea ice loss and doubled CO2 are remarkably additive and relatively insensitive to mean climate state. This separability is evident in several thermodynamic and dynamic fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. In this model, Arctic sea ice loss enhances the CO2-induced surface air temperature changes nearly everywhere and zonal wind changes over the Pacific sector, whereas sea ice loss counters CO2-induced sea level pressure changes nearly everywhere over land and zonal wind changes over the Atlantic sector. This separability of the response to Arctic sea ice loss from the response to CO2 doubling gives credence to the body of work in which Arctic sea ice loss is isolated from the forcing that modified it, and might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  13. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    Science.gov (United States)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In

  14. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  15. A No-Arc DC Circuit Breaker Based on Zero-Current Interruption

    Science.gov (United States)

    Xiang, Xuewei; Chai, Jianyun; Sun, Xudong

    2017-05-01

    A dc system has no natural current zero-crossing point, so a dc arc is more difficult to extinguish than an ac arc. In order to effectively solve the problem of the dc arc, this paper proposes a dc circuit breaker (DCCB) capable of implementing a no-arc interruption. The proposed DCCB includes a main branch consisting of a mechanical switch, a diode and a current-limiting inductor, a semi-period resonance circuit consisting of a diode, an inductor and a capacitor, and a buffer branch consisting of a capacitor, a thyristor and a resistor. The mechanical switch is opened in a zero-current state, and the overvoltage caused by the counter electromotive force of the inductor does not exist. Meanwhile, the capacitor has a buffering effect on the voltage. The rising of the voltage of the mechanical switch is slower than the rising of the insulating strength of a contact gap of the mechanical switch, resulting in the contact gap not able to be broken down. Thus, the arc cannot be generated. The simulation results show that the proposed DCCB does not generate the arc in the interruption process, the rise rate of the short circuit current can be effectively limited, and the short circuit fault point can be rapidly isolated from the dc power supply.

  16. Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere

    Directory of Open Access Journals (Sweden)

    D. R. Palamara

    2004-03-01

    Full Text Available We consider various aspects of the link between solar-modulated geomagnetic activity and the Northern Annular Mode (NAM. Our results indicate that the geomagnetic forcing of atmospheric circulation in the Northern Hemisphere is temporally and seasonally restricted, modulated by the Quasi-Biennial Oscillation (QBO, and reliant on stratosphere-troposphere coupling. When the data are restricted to January values after 1965, for years in which the January QBO is eastwards, the correlation coefficient between the geomagnetic AA index and the NAM is 0.85. These results can account for many of the enigmatic features of Northern Hemisphere circulation.

    Key words. Meterology and atmospheric dynamics (general circulation, climatology

  17. Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere

    Directory of Open Access Journals (Sweden)

    D. R. Palamara

    2004-03-01

    Full Text Available We consider various aspects of the link between solar-modulated geomagnetic activity and the Northern Annular Mode (NAM. Our results indicate that the geomagnetic forcing of atmospheric circulation in the Northern Hemisphere is temporally and seasonally restricted, modulated by the Quasi-Biennial Oscillation (QBO, and reliant on stratosphere-troposphere coupling. When the data are restricted to January values after 1965, for years in which the January QBO is eastwards, the correlation coefficient between the geomagnetic AA index and the NAM is 0.85. These results can account for many of the enigmatic features of Northern Hemisphere circulation. Key words. Meterology and atmospheric dynamics (general circulation, climatology

  18. Thermohaline circulation in the Gulf of California

    Science.gov (United States)

    Bray, N. A.

    1988-05-01

    The Gulf of California, a narrow, semienclosed sea, is the only evaporative basin of the Pacific Ocean. As a result of evaporative forcing, salinities in the gulf are 1 to 2 ‰ higher than in the adjacent Pacific at the same latitude. This paper examines the thermohaline structure of the gulf and the means by which thermohaline exchange between the Pacific and the gulf occurs, over time scales of months to years. In addition to evaporative forcing, air-sea heat fluxes and momentum fluxes are important to thermohaline circulation in the gulf. From observations presented here, it appears that the gulf gains heat from the atmosphere on an annual average, unlike the Mediterranean and Red seas, which have comparable evaporative forcing. As a result, outflow from the gulf tends to be less dense than inflow from the Pacific. Winds over the gulf change direction with season, blowing northward in summer and southward in winter. This same seasonal pattern appears in near-surface transports averaged across the gulf. The thermohaline circulation, then, consists of outflow mostly between about 50 m and 250 m, inflow mostly between 250 m and 500 m, and a surface layer in which the direction of transport changes with seasonal changes in the large-scale winds. Using hydrographic observations from a section across the central gulf, total transport in or out of the northern gulf is estimated to be 0.9 Sv, heat gain from the atmosphere is estimated to be 20 to 50 W m-2, and evaporation is estimated to be 0.95 m yr-1. These estimates are annual averages, based on cruises from several years. Seasonal variations in thermohaline structure in the gulf are also examined and found to dominate the variance in temperature and density in the top 500 m of the water column. Salinity has little seasonal variability but does exhibit more horizontal variablility than temperature or density. Major year-to-year variations in thermohaline structure may be attributable to El Niño-Southern Oscillation

  19. Investigations of radial electric field and global circulation layer in limiter tokamaks

    International Nuclear Information System (INIS)

    Zagorski, R.; Gerhauser, H.; Lehnen, M.; Loarer, T.

    2002-01-01

    An updated version of the 2D multifluid code TECXY is used to study the radial electric field structure and the appearance of a global circulation layer (GCL) inside the separatrix of the limiter tokamaks TEXTOR-94 and Tore-Supra-CIEL. The dependence of the driving forces on device geometry, limiter position, magnetic field orientation, impurity content and other parameters is investigated. The centrifugal force in the vicinity of the limiter head always determines the direction of the poloidal velocity in the GCL. There is good agreement with experimentally measured profiles of the poloidal velocity at the TEXTOR low field side. (orig.)

  20. Aging evaluation of electrical circuits using the ECCAD [Electrical Circuit Characterization and Diagnostic] system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport Atomic Power Station Decommissioning Project. The objective of this work was to evaluate the effectiveness of the Electrical Circuit Characterization and Diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  1. Preliminary study of the decay heat removal strategy for the gas demonstrator allegro

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gusztáv, E-mail: gusztav.mayer@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, P.O. Box 49, H-1525 Budapest (Hungary); Bentivoglio, Fabrice, E-mail: fabrice.bentivoglio@cea.fr [CEA/DEN/DM2S/STMF/LMES, F-38054, Grenoble (France)

    2015-05-15

    Highlights: • Improved decay heat removal strategy was adapted for the 75 MW ALLEGRO MOX core. • New nitrogen injection strategy was proposed for the DEC LOCA transients. • Preliminary CATHARE study shows that most of the investigated transients fulfill criteria. • Further improvements and optimizations are needed for nitrogen injection. - Abstract: The helium cooled Gas Fast Reactor (GFR) is one of the six reactor concepts selected in the frame of the Generation IV International Forum. Since no gas cooled fast reactor has ever been built, a medium power demonstrator reactor – named ALLEGRO – is necessary on the road towards the 2400 MWth GFR power reactor. The French Commissariat à l’Energie Atomique (CEA) completed a wide range of studies during the early stage of development of ALLEGRO, and later the ALLEGRO reactor concept was developed in several European Union projects in parallel with the GFR2400. The 75 MW thermal power ALLEGRO is currently developed in the frame of the European ALLIANCE project. As a result of the collaboration between CEA and the Hungarian Academy of Sciences Centre for Energy Research (MTA EK) new improvements were done in the safety approach of ALLEGRO. A complete Decay Heat Removal (DHR) strategy was devised, relying on the primary circuits as a first way to remove decay heat using pony-motors to drive the primary blowers, and on the secondary and tertiary circuits being able to work in forced or natural circulation. Three identical dedicated loops circulating in forced convection are used as a second way to remove decay heat, and these loops can circulate in natural convection for pressurized transients, providing a third way to remove decay heat in case of accidents when the primary circuit is still under pressure. The possibility to use nitrogen to enhance both forced and natural circulation is discussed. This DHR strategy is supported by a wide range of accident transient simulations performed using the CATHARE2 code

  2. Natural circulation analysis for the advanced neutron source reactor refueling process 11

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.F.; Dasardhi, S.; Elkassabgi, Y. [Texas A& M Univ., Kingsville, TX (United States); Yoder, G.L. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    During the refueling process of the Advanced Neutron Source Reactor (ANSR), the spent fuel elements must be moved from the primary coolant loop (containing D{sub 2}O), through a heavy water pool, and finally into a light water spent fuel storage area. The present refueling scheme utilizes remote refueling equipment to move the spent fuel elements through a D{sub 2}O filled stack and tunnel into a temporary storage canal. A transfer lock is used to move the spent fuel elements from the D{sub 2}O-filled interim storage canal to a light water pool. Each spent fuel element must be cooled during this process, using either natural circulation or forced convection. This paper presents a summary of the numerical techniques used to analyze natural circulation cooling of the ANSR fuel elements as well as selected results of the calculations. Details of the analysis indicate that coolant velocities below 10 cm/s exist in the coolant channels under single phase natural circulation conditions. Also, boiling does not occur within the channels if power levels are below a few hundred kW when the core transitions to natural circulation conditions.

  3. Growing in Motion: The Circulation of Used Things on Second-hand Markets

    Directory of Open Access Journals (Sweden)

    Staffan Appelgren

    2015-03-01

    Full Text Available From having been associated with poverty and low status, the commerce with second-hand goods in retro shops, flea markets, vintage boutiques and trade via Internet is expanding in Sweden as in many countries in the Global North. This article argues that a significant aspect of the recent interest in second-hand and reuse concerns the meaning fulness of circulation in social life. Using classic anthropological theory on how the circulation of material culture generates sociality, it focuses on how second-hand things are transformed by their circulation. Rather than merely having cultural biographies, second-hand things are reconfigured through their shifts between different social contexts in a process that here is understood as a form of growing. Similar to that of an organism, this growth is continuous, irreversible and dependent on forces both internal and external to it. What emerges is a category of things that combine elements of both commodities and gifts, as these have been theorized within anthropology. While first cycle commodities are purified of their sociality, the hybrid second-hand thing derives its ontological status as well as social and commercial value precisely from retaining "gift qualities", produced by its circulation.

  4. Multi-Layer E-Textile Circuits

    Science.gov (United States)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  5. Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons

    Science.gov (United States)

    Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.

    2016-02-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  6. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  7. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  8. Development of core hot spot evaluation method for decay heat removal by natural circulation under transient conditions in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki; Doda, Norihiro; Kamide, Hideki; Watanabe, Osamu; Ohkubo, Yoshiyuki

    2010-01-01

    Toward the commercialization of fast reactors, a design study of Japan Sodium-cooled Fast Reactor (JSFR) is being performed. In this design study, the adoption of decay heat removal system operated by fully natural circulation is being examined from viewpoints of economic competitiveness and passive safety. This paper describes a new evaluation method of core hot spot under transient conditions from forced to natural circulation operations that is necessary for confirming feasibility of the fully natural circulation decay heat removal system. The new method consists of three analysis steps in order to include effects of thermal hydraulic phenomena particular to the natural circulation decay heat removal, e.g., flow redistribution in fuel assemblies caused by buoyancy force, and therefore it enables more rational hot spot evaluation rather than conventional ones. This method was applied to a hot spot evaluation of loss-of-external-power event and the result was compared with those by conventional 1D and detailed 3D simulations. It was confirmed that the proposed method can estimate the hot spot with reasonable degree of conservativeness. (author)

  9. 3. Workshop for IAEA ICSP on Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents. Presentations

    International Nuclear Information System (INIS)

    2012-04-01

    Most advanced nuclear power plant designs adopted several kinds of passive systems. Natural circulation is used as a key driving force for many passive systems and even for core heat removal during normal operation such as NuScale, CAREM, ESBWR and Indian AHWR designs. Simulation of natural circulation phenomena is very challenging since the driving force of it is weak compared to forced circulation and involves a coupling between primary system and containment for integral type reactor. The IAEA ICSP (International Collaborative Standard Problem) on 'Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents' was proposed within the CRP on 'Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems that utilize Natural Circulation'. Oregon State University (OSU) of USA offered to host this ICSP. This ICSP plans to conduct the following experiments and blind/open simulations with system codes: 1. Quasi-steady state operation with different core power levels: Conduct quasi-steady state operation with step-wise increase of core power level in order to observe single phase natural circulation flow according to power level. The experimental facility and operating conditions for an integral PWR will be used. 2. Thermo-hydraulic Coupling between Primary system and Containment: Conduct a loss of feedwater transient with subsequent ADS blowdown and long term cooling to determine the progression of a loss of feedwater transient by natural circulation through primary and containment systems. These tests would examine the blowdown phase as well as the long term cooling using sump natural circulation by coupling the primary to containment systems. This data could be used for the evaluation of system codes to determine if they model specific phenomena in an accurate manner. OSU completed planned two ICSP tests in July 2011 and real initial and boundary conditions measured from the

  10. Simulation of VDE under intervention of vertical stability control and vertical electromagnetic force on the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Miyamoto, S.; Sugihara, M.; Shinya, K.; Nakamura, Y.; Toshimitsu, S.; Lukash, V.E.; Khayrutdinov, R.R.; Sugie, T.; Kusama, Y.; Yoshino, R.

    2012-01-01

    Highlights: ► Taking account of intervention of VS control, VDE simulations were carried out. ► Malfunctioning of VS circuit (positive feedback) enhances the vertical force. ► The worst case was explored for vertical force on the ITER vacuum vessel. ► We confirmed the force is still within the design margin even if the worst case. - Abstract: Vertical displacement events (VDEs) and disruptions usually take place under intervention of vertical stability (VS) control and the vertical electromagnetic force induced on vacuum vessels is potentially influenced. This paper presents assessment of the force that arises from the VS control in ITER VDEs using a numerical simulation code DINA. The focus is on a possible malfunctioning of the ex-vessel VS control circuit: radial magnetic field is unintentionally applied to the direction of enhancing the vertical displacement further. Since this type of failure usually causes the largest forces (or halo currents) observed in the present experiments, this situation must be properly accommodated in the design of the ITER vacuum vessel. DINA analysis shows that although the ex-vessel VS control modifies radial field, it does not affect plasma motion and current quench behavior including halo current generation because the vacuum vessel shields the field created by the ex-vessel coils. Nevertheless, the VS control modifies the force on the vessel by directly acting on the eddy current carried by the conducting structures of the vessel. Although the worst case was explored in a range of plasma inductance and pattern of VS control in combination with the in-vessel VS control circuit, the result confirmed that the force is still within the design margin.

  11. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  12. PWR type reactor equipped with a primary circuit loop water level gauge

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro.

    1990-01-01

    The time of lowering a water level to less than the position of high temperature side pipeway nozzle has been rather delayed because of the swelling of mixed water level due to heat generation of the reactor core. Further, there has been a certain restriction for the installation, maintenance and adjustment of a water level gauge since it is at a position under high radiation exposure. Then, a differential pressure type water level gauge with temperature compensation is disposed at a portion below a water level gauge of a pressurizer and between the steam generator exit plenum and the lower end of the loop seal. Further, a similar water level system is disposed to all of the loops of the primary circulation circuits. In a case that the amount of water contained in a reactor container should decreased upon occurrence of loss of coolant accidents caused by small rupture and stoppage of primary circuit pumps, lowering of the water level preceding to the lowering of the water level in the reactor core is detected to ensure the amount of water. Since they are disposed to all of the loops and ensure the excess margin, reliability for the detection of the amount of contained water can be improved by averaging time for the data of the water level and averaging the entire systems, even when there are vibrations in the fluid or pressure in the primary circuit. (N.H.)

  13. Eddy current analysis by the finite element circuit method

    International Nuclear Information System (INIS)

    Kameari, A.; Suzuki, Y.

    1977-01-01

    The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated

  14. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  15. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  16. Towards electromechanical computation: An alternative approach to realize complex logic circuits

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.

    2016-01-01

    Electromechanical computing based on micro/nano resonators has recently attracted significant attention. However, full implementation of this technology has been hindered by the difficulty in realizing complex logic circuits. We report here an alternative approach to realize complex logic circuits based on multiple MEMS resonators. As case studies, we report the construction of a single-bit binary comparator, a single-bit 4-to-2 encoder, and parallel XOR/XNOR and AND/NOT logic gates. Toward this, several microresonators are electrically connected and their resonance frequencies are tuned through an electrothermal modulation scheme. The microresonators operating in the linear regime do not require large excitation forces, and work at room temperature and at modest air pressure. This study demonstrates that by reconfiguring the same basic building block, tunable resonator, several essential complex logic functions can be achieved.

  17. Towards electromechanical computation: An alternative approach to realize complex logic circuits

    KAUST Repository

    Hafiz, M. A. A.

    2016-08-18

    Electromechanical computing based on micro/nano resonators has recently attracted significant attention. However, full implementation of this technology has been hindered by the difficulty in realizing complex logic circuits. We report here an alternative approach to realize complex logic circuits based on multiple MEMS resonators. As case studies, we report the construction of a single-bit binary comparator, a single-bit 4-to-2 encoder, and parallel XOR/XNOR and AND/NOT logic gates. Toward this, several microresonators are electrically connected and their resonance frequencies are tuned through an electrothermal modulation scheme. The microresonators operating in the linear regime do not require large excitation forces, and work at room temperature and at modest air pressure. This study demonstrates that by reconfiguring the same basic building block, tunable resonator, several essential complex logic functions can be achieved.

  18. Instability of single-phase natural circulation

    International Nuclear Information System (INIS)

    Xie Heng; Zhang Jinling; Jia Dounan

    1997-01-01

    The author has investigated the instability of single-phase flows in natural circulation loops. The momentum equation and energy equation are made dimensionless according to some definitions, and some important dimensionless parameters are gotten. The authors decomposed the mean mass flowrate and temperature into a steady solution and a small disturbance equations. Through solving the disturbance equations, the authors get the neutral stability curves. The authors have studied the effect of the two parameters which represent the ratio of buoyancy force to the friction loss in the loop on the stability of loops. The authors also have studied the effect of the difference of height between the center of heat source and the heat sink on the stability

  19. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  20. The test of VLSI circuits

    Science.gov (United States)

    Baviere, Ph.

    Tests which have proven effective for evaluating VLSI circuits for space applications are described. It is recommended that circuits be examined after each manfacturing step to gain fast feedback on inadequacies in the production system. Data from failure modes which occur during operational lifetimes of circuits also permit redefinition of the manufacturing and quality control process to eliminate the defects identified. Other tests include determination of the operational envelope of the circuits, examination of the circuit response to controlled inputs, and the performance and functional speeds of ROM and RAM memories. Finally, it is desirable that all new circuits be designed with testing in mind.

  1. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    Science.gov (United States)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  2. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    NARCIS (Netherlands)

    Wingelaar, Thijs T.; van Ooij, Pieter-Jan A. M.; van Hulst, Rob A.

    2017-01-01

    In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads

  3. Analytical 3-D force calculation of a transverse flux machine

    NARCIS (Netherlands)

    Kremers, M.F.J.; Paulides, J.J.H.; Janssen, J.L.G.; Lomonova, E.A.

    2014-01-01

    Transverse Flux Machine (TFM) designs are, in general, based on 3-D Finite Element Methods (FEM). Previous attempts to perform analytical designs have been limited to Magnetic Equivalent Circuits (MEC). In this paper, for the first time, propulsion force calculation of TFMs is performed using an

  4. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  5. Study on the phenomena of natural circulation in LMFBR

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Koga, Tomonari

    1993-01-01

    Decay heat removal with natural circulation is to be introduced to the LMFBR operation under loss of the electric power supply. The natural circulation is highly reliable, but the phenomenon is essentially unstable and subtle, which makes fine prediction difficult. The difficulties of experimental prediction are explained by facts that the phenomena are ruled by the delicate balance between the buoyancy force and the low pressure loss and are influenced by the various parameters such as local geometry, heat capacity and so on. Therefore the similarity rule for the natural circulation has not been fully understood. This study has been conducted to establish the simulation method for the natural circulation phenomena and the detailed phenomena have been reviewed. For the natural circulation in an LMFBR plant, there are no readily available reference velocity and temperature. These values are related only with the heating and cooling rate, the characteristic length and physical properties of the testing fluid. Basic equations were transformed by these values, and dimensionless equations were derived and then two dimensionless numbers, the Gr' number and the Bo' number, were identified. In order to examine the similarity rule for natural circulation we performed experiments using the different scale water models, a 1/20th and a 1/6th model. The temperatures and velocities at typical points were measured in the transient condition with various heating rate as a parameter. Measured temperatures and velocities were transformed to dimensionless forms for comparison and the effects of the Bo' number and the Gr' number were examined. As a result, it was clarified that the effect of the Gr' number is negligibly small but the effect of Bo' number still remained in our experimental range. The Bo' number of an actual plant is within the range of this experiment. Accordingly similitude of the Bo' number becomes important in an experiment to simulate an actual plant. (author)

  6. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  7. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  8. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  9. How robust is the atmospheric circulation response to Arctic sea-ice loss in isolation?

    Science.gov (United States)

    Kushner, P. J.; Hay, S. E.; Blackport, R.; McCusker, K. E.; Oudar, T.

    2017-12-01

    It is now apparent that active dynamical coupling between the ocean and atmosphere determines a good deal of how Arctic sea-ice loss changes the large-scale atmospheric circulation. In coupled ocean-atmosphere models, Arctic sea-ice loss indirectly induces a 'mini' global warming and circulation changes that extend into the tropics and the Southern Hemisphere. Ocean-atmosphere coupling also amplifies by about 50% Arctic free-tropospheric warming arising from sea-ice loss (Deser et al. 2015, 2016). The mechanisms at work and how to separate the response to sea-ice loss from the rest of the global warming process remain poorly understood. Different studies have used distinctive numerical approaches and coupled ocean-atmosphere models to address this problem. We put these studies on comparable footing using pattern scaling (Blackport and Kushner 2017) to separately estimate the part of the circulation response that scales with sea-ice loss in the absence of low-latitude warming from the part that scales with low-latitude warming in the absence of sea-ice loss. We consider well-sampled simulations from three different coupled ocean-atmosphere models (CESM1, CanESM2, CNRM-CM5), in which greenhouse warming and sea-ice loss are driven in different ways (sea ice albedo reduction/transient RCP8.5 forcing for CESM1, nudged sea ice/CO2 doubling for CanESM2, heat-flux forcing/constant RCP8.5-derived forcing for CNRM-CM5). Across these different simulations, surprisingly robust influences of Arctic sea-ice loss on atmospheric circulation can be diagnosed using pattern scaling. For boreal winter, the isolated sea-ice loss effect acts to increase warming in the North American Sub-Arctic, decrease warming of the Eurasian continent, enhance precipitation over the west coast of North America, and strengthen the Aleutian Low and the Siberian High. We will also discuss how Arctic free tropospheric warming might be enhanced via midlatitude ocean surface warming induced by sea-ice loss

  10. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  11. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  12. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.

    Science.gov (United States)

    Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Payvand, M; Madhavan, A; Ghofrani, A; Theogarajan, L; Cheng, K-T; Strukov, D B

    2017-02-14

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  13. Forces on a magnet moving past figure-eight coils

    International Nuclear Information System (INIS)

    Mulcahy, T.H.; He, Jianliang; Rote, D.M.; Rossing, T.D.

    1993-01-01

    For the first time, the lift, drag, and guidance forces acting on a permanent magnet are measured as the magnet passes over different arrays of figure-eight (null-flux) coils. The experimental results are in good agreement with the predictions of dynamic circuit theory, which is used to explain more optimal coil arrays

  14. CMOS analog circuit design

    CERN Document Server

    Allen, Phillip E

    1987-01-01

    This text presents the principles and techniques for designing analog circuits to be implemented in a CMOS technology. The level is appropriate for seniors and graduate students familiar with basic electronics, including biasing, modeling, circuit analysis, and some familiarity with frequency response. Students learn the methodology of analog integrated circuit design through a hierarchically-oriented approach to the subject that provides thorough background and practical guidance for designing CMOS analog circuits, including modeling, simulation, and testing. The authors' vast industrial experience and knowledge is reflected in the circuits, techniques, and principles presented. They even identify the many common pitfalls that lie in the path of the beginning designer--expert advice from veteran designers. The text mixes the academic and practical viewpoints in a treatment that is neither superficial nor overly detailed, providing the perfect balance.

  15. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  16. Integrated circuit and method of arbitration in a network on an integrated circuit.

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to an integrated circuit and to a method of arbitration in a network on an integrated circuit. According to the invention, a method of arbitration in a network on an integrated circuit is provided, the network comprising a router unit, the router unit comprising a first input

  17. Electronic Circuit Analysis Language (ECAL)

    Science.gov (United States)

    Chenghang, C.

    1983-03-01

    The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.

  18. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation—and Doppler signature—of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the ∼2 km s –1 blueshift inferred on HD 209458b may require drag time constants as short as 10 4 -10 6 s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  19. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  20. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  1. Peak reading detector circuit

    International Nuclear Information System (INIS)

    Courtin, E.; Grund, K.; Traub, S.; Zeeb, H.

    1975-01-01

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB) [de

  2. Magnonic logic circuits

    International Nuclear Information System (INIS)

    Khitun, Alexander; Bao Mingqiang; Wang, Kang L

    2010-01-01

    We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.

  3. A large ozone-circulation feedback and its implications for global warming assessments

    Science.gov (United States)

    Abraham, N. Luke; Maycock, Amanda C.; Braesicke, Peter; Gregory, Jonathan M.; Joshi, Manoj M.; Osprey, Annette; Pyle, John A.

    2014-01-01

    State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever1. Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations1,2. Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks3-5. PMID:25729440

  4. Transient Atmospheric Circulation Changes in a Grand ensemble of Idealized CO2 Increase Experiments

    Science.gov (United States)

    Karpechko, A.; Manzini, E.; Kornblueh, L.

    2017-12-01

    The yearly evolution with increasing forcing of the large-scale atmospheric circulation is examined in a 68-member ensemble of 1pctCO2 scenario experiments performed with the MPI-ESM model. Each member of the experiment ensemble is integrated for 155 years, from initial conditions taken from a 2000-yr long pre-industrial control climate experiment. The 1pctCO2 scenario experiments are conducted following the protocol of including as external forcing only a CO2 concentration increase at 1%/year, till quadrupling of CO2 concentrations. MPI-ESM is the Max-Planck-Institute Earth System Model (including coupling between the atmosphere, ocean and seaice). By averaging over the 68 members (ensemble mean), atmospheric variability is greatly reduced. Thus, it is possible to investigate the sensitivity to the climate state of the atmospheric response to CO2 doubling. Indicators of global change show the expected monotonic evolution with increasing CO2 and a weak dependence of the thermodynamical response to CO2 doubling on the climate state. The surface climate response of the atmospheric circulation, diagnosed for instance by the pressure at sea level, and the eddy-driven jet response show instead a marked dependence to the climate state, for the Northern winter season. We find that as the CO2 concentration increases above doubling, Northern winter trends in some indicators of atmospheric circulation changes decrease or even reverse, posing the question on what are the causes of this nonlinear behavior. The investigation of the role of stationary waves, the meridional overturning circulation, the decrease in Arctic sea ice and the stratospheric vortex points to the latter as a plausible cause of such nonlinear response.

  5. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  6. Optically controllable molecular logic circuits

    International Nuclear Information System (INIS)

    Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-01-01

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals

  7. SU-E-E-08: Applications of the Quantization of Coupled Circuits in Radiation Physics (design of Klystron, Bremsstrahlung, Synchrotron)

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, W

    2015-06-15

    Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4). The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to

  8. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    Science.gov (United States)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  9. Optimal planning of series resistor to control time constant of test circuit for high-voltage AC circuit-breakers

    OpenAIRE

    Yoon-Ho Kim; Jung-Hyeon Ryu; Jin-Hwan Kim; Kern-Joong Kim

    2016-01-01

    The equivalent test circuit that can deliver both short-circuit current and recovery voltage is used to verify the performance of high-voltage circuit breakers. Most of the parameters in this circuit can be obtained by using a simple calculation or a simulation program. The ratings of the circuit breaker include rated short-circuit breaking current, rated short-circuit making current, rated operating sequence of the circuit breaker and rated short-time current. Among these ratings, the short-...

  10. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees,...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. Two types of pressure fluctuations can be considered. - 'Local ' fluctuations: They are associated to the unsteadiness downstream from the singularity. These fluctuations may be characterized by frequency spectra, correlation length and phase lags. These parameters are used to calculate forces on the walls of the circuit. - 'Acoustic' fluctuations: The singularity acts as an acoustical source; its frequency spectrum and the acoustical transfer function of the circuit are needed to evaluate the acoustical level at any point. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T.: - On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic idea initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. - On the other hand, characteristics of several singularities have been measured: (i) Intercorrelation spectra of local pressure fluctuations. (ii) Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit). (Auth.)

  11. Interface Circuit For Printer Port

    Science.gov (United States)

    Tucker, Jerry H.; Yadlowsky, Ann B.

    1991-01-01

    Electronic circuit, called printer-port interface circuit (PPI) developed to overcome certain disadvantages of previous methods for connecting IBM PC or PC-compatible computer to other equipment. Has both reading and writing modes of operation. Very simple, requiring only six integrated circuits. Provides for moderately fast rates of transfer of data and uses existing unmodified circuit card in IBM PC. When used with appropriate software, circuit converts printer port on IBM PC, XT, AT, or compatible personal computer to general purpose, 8-bit-data, 16-bit address bus that connects to multitude of devices.

  12. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  13. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit has a light emitting diode which supplies light to a photo-transistor, the light being interrupted from time to time. When the photo-transistor is illuminated, current builds up and when this current reaches a predetermined value, a trigger circuit changes state. The peak output of the photo-transistor is measured and the trigger circuit is arranged to change state when the output of the device is a set proportion of the peak output, so as to allow for aging of the components. The circuit is designed to control the ignition system in an automobile engine.

  14. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  15. Control circuit for transformer relay

    International Nuclear Information System (INIS)

    Wyatt, G.A.

    1984-01-01

    A control circuit for a transformer relay which will automatically momentarily control the transformer relay to a selected state upon energization of the control circuit. The control circuit has an energy storage element and a current director coupled in series and adapted to be coupled with the secondary winding of the transformer relay. A device for discharge is coupled across the energy storage element. The energy storage element and current director will momentarily allow a unidirectional flow of current in the secondary winding of the transformer relay upon application of energy to the control circuit. When energy is not applied to the control circuit the device for discharge will allow the energy storage element to discharge and be available for another operation of the control circuit

  16. Storage ponds for fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Heat exchangers are inserted in storage ponds for fuel elements of nuclear reactors, so that the heat to be removed is given up to an external coolant, without any radio-activity being emitted. The heat exchanger is a hollow body, which is connected to an air cooler, which works with a cooling circuit with natural circulation. A cooling pipe is enclosed in the hollow body, which forms a cooling circuit with forced flow with an open pond. One therefore obtains two successive separating walls for the external coolant. (orig.) [de

  17. Burst protected nuclear reactor plant with PWR

    International Nuclear Information System (INIS)

    Harand, E.; Michel, E.

    1978-01-01

    In the PWR, several integrated components from the steam raising unit and the main coolant pump are grouped around the reactor pressure vessel in a multiloop circuit and in a vertical arrangement. For safety reasons all primary circuit components and pipelines are situated in burst protection covers. To reduce the area of the plant straight tube steam raising units with forced circulation are used as steam raising units. The boiler pumps are connected to the vertical tubes and to the pressure vessel via double pipelines made as twin chamber pipes. (DG) [de

  18. Effect of irradiation on corrosion of low-activation austenite Cr-Mn steel in technological liquid mediums of nuclear power plant

    International Nuclear Information System (INIS)

    Demina, E.V.; Prusakova, M.D.; Vinogradova, N.A.; Orlova, G.D.; Nechaev, A.F.; Doil'nitsyn, V.A.

    2008-01-01

    Effect of γ-radiation on corrosion rate in cold-worked and annealed low-activation austenite 12Cr-20Mn steel has been studied. Corrosion tests were carried out in water solutions which simulate the coolant medium in the primary coolant circuit of WWER power reactor and in the circuit of multiple forced circulation of RBMK-1000 reactor as well as an aquatic environment in cooling pond for spent fuel. The worst radiation effect was observed in the cooling pond environment where the value of corrosion rate is increased by tens or hundreds times

  19. Model Comparison Exercise Circuit Training Game and Circuit Ladder Drills to Improve Agility and Speed

    Directory of Open Access Journals (Sweden)

    Susilaturochman Hendrawan Koestanto

    2017-11-01

    Full Text Available The purpose of this study was to compare: (1 the effect of circuit training game and circuit ladder drill for the agility; (2 the effect of circuit training game and circuit ladder drill on speed; (3 the difference effect of circuit training game and circuit ladder drill for the speed (4 the difference effect of circuit training game and circuit ladder drill on agility. The type of this research was quantitative with quasi-experimental methods. The design of this research was Factorial Design, with analysing data using ANOVA. The process of data collection was done by using 30 meters sprint speed test and shuttle run test during the pretest and posttest. Furthermore, the data was analyzed by using SPSS 22.0 series. Result: The circuit training game exercise program and circuit ladder drill were significant to increase agility and speed (sig 0.000 < α = 0.005 Group I, II, III had significant differences (sig 0.000 < α = 0.005. The mean of increase in speed of group I = 0.20 seconds, group II = 0.31 seconds, and group III = 0.11 seconds. The average increase agility to group I = 0.34 seconds group II = 0.60 seconds, group III = 0.13 seconds. Based on the analysis above, it could be concluded that there was an increase in the speed and agility of each group after being given a training.

  20. Variant of multimodal vibration damping of electroviscoelastic structures by appropriate choice of external electric circuit parameters

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Oshmarin

    2016-09-01

    Full Text Available In technical applications it takes place the problem of vibration damping in certain regions of the structure, at the location of optical sensors for instance, at any external dynamic excitations with no mass increase and no changes in spectral portrait. In order to solve these problems it is widespread the use of special damping devices: piezoelectric elements connected to external electric circuits and attached to the structure. It became possible due to piezoelectric effect, which provides transformation of part of energy of vibrations into electric one, which is dissipated in external electric circuit. So that by using appropriate electric circuits one may dissipate internal energy and therefore reduce structural vibrations in definite frequency range. As a rule, external circuit of single branch, which shunts single piezoelectric element, allows vibration damping on one certain frequency. Due to the fact, that practical applications usually include requirements of damping of several modes by one and the same technical devices, the problem of multimodal vibration damping in smart-structures is rather acute. The objective of this paper is the study of possibility of vibration damping on several modes by using single external series RL-circuit, connected to electrodes of single piezoelectric element on the basis of solution of problems on natural and forced steady-state vibrations of electroelastic systems with external electric circuits.

  1. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian

    2012-01-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  2. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy

    Science.gov (United States)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  3. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  4. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements. Devices providing either short circuit protection or protection against overload shall conform to the...

  5. Wind-induced circulation in a large tropical lagoon: Chetumal Bay

    Science.gov (United States)

    Palacios, E.; Carrillo, L.

    2013-05-01

    Chetumal Bay is a large tropical lagoon located at the Mesoamerican Reef System. Windinduced circulation in this basin was investigated by using direct measurements of current, sea level, and 2d barotropic numerical model. Acoustic Doppler Profiler (ADP) transects covering the north of Chetumal Bay during two campaigns September 2006 and March 2007 were used. The 2d barotropic numerical model was ROMs based and wind forced. Wind information was obtained from a meteorological station located at ECOSUR Chetumal. Sea level data was collected from a pressure sensor deployed in the lagoon. A seasonal pattern of circulation was observed. From observations, during September 2006, a northward flow was shown in most part of the bay and a southward flow in the eastern coast was observed with velocities ranged from 6 cm s-1 to 36 cm s-1. In March 2007, the current pattern was more complex; divergences and converges were identified. The dominant circulation was northward in eastern portion, and southward in the central and western zone. The average current speed was 6 cm s-1 with maximum values of 26 -34 cm s-1. During September 2006 predominant wind was easternsoutheastern and during March 2007, northerly wind events were recorded. Sea level amplitude responded quickly to changes in the magnitude and direction of the wind. Results of sea level and circulation from the 2d barotropic numerical model agreed with observations at first approximation.

  6. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  7. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  8. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  9. Hydrodynamic Instability and Dynamic Burnout in Natural Circulation Two-Phase Flow. An Experimental and Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Jahnberg, S; Haga, I; Hansson, P T; Mathisen, R P

    1964-09-15

    A theoretical model for predicting the threshold of instability for two phase flow in a natural circulation loop is presented. The model calculates the flow transient caused by a step disturbance of the heat input, and is based upon the conservation laws of mass, momentum and energy in one dimensional form. Empirical correlations are used in the model for estimating the void fractions and the two-phase flow pressure drops. The equations are solved numerically in a finite difference approximation coded for a digital computer. An experimental study of the hydrodynamic instability and dynamic burnout in two-phase flow has been performed in a natural circulation loop in the pressure range from 10 to 70 atg. The test sections were round ducts of 20, 30 and 36 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested, the stability of the flow increases with increasing pressure and increasing throttling before the test section, but decreases with increasing Inlet subcooling and increasing throttling after the test section. Comparing the natural circulation burnout steam qualities with corresponding forced circulation data shoved that the former data were low by a factor up to 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data. The present experimental results as well as data available from other sources have been compared with the stability thresholds obtained with the theoretical model. The comparisons included circular, annular and rod cluster geometries, and the agreement between the experimental and theoretical stability limits was good. Finally the application of the experimental and theoretical results on the assessment of boiling heavy water reactor design is discussed.

  10. Hydrodynamic Instability and Dynamic Burnout in Natural Circulation Two-Phase Flow. An Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Jahnberg, S.; Haga, I.; Hansson, P.T.; Mathisen, R.P.

    1964-09-01

    A theoretical model for predicting the threshold of instability for two phase flow in a natural circulation loop is presented. The model calculates the flow transient caused by a step disturbance of the heat input, and is based upon the conservation laws of mass, momentum and energy in one dimensional form. Empirical correlations are used in the model for estimating the void fractions and the two-phase flow pressure drops. The equations are solved numerically in a finite difference approximation coded for a digital computer. An experimental study of the hydrodynamic instability and dynamic burnout in two-phase flow has been performed in a natural circulation loop in the pressure range from 10 to 70 atg. The test sections were round ducts of 20, 30 and 36 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested, the stability of the flow increases with increasing pressure and increasing throttling before the test section, but decreases with increasing Inlet subcooling and increasing throttling after the test section. Comparing the natural circulation burnout steam qualities with corresponding forced circulation data shoved that the former data were low by a factor up to 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data. The present experimental results as well as data available from other sources have been compared with the stability thresholds obtained with the theoretical model. The comparisons included circular, annular and rod cluster geometries, and the agreement between the experimental and theoretical stability limits was good. Finally the application of the experimental and theoretical results on the assessment of boiling heavy water reactor design is discussed

  11. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY... short circuit protection; minimum requirements. A device to provide either short circuit protection or...

  12. Selected collection of circuit drawings

    International Nuclear Information System (INIS)

    1977-01-01

    The many electronics circuits have been constracted in the Electronics Shop for use in nuclear experiments or other purposes of this Institute. The types of these circuits amount to about 500 items in total since 1968. This report describes the electronics circuit diagrams selected from this collection. The circuit details are not presented in this report, because these are already been published in the other technical reports. (auth.)

  13. Climate hypersensitivity to solar forcing?

    Directory of Open Access Journals (Sweden)

    W. Soon

    2000-05-01

    Full Text Available We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot and solar UV (SUV. The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous · Solar physics · astrophysics · and astronomy (ultraviolet emissions

  14. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  15. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching pro...

  16. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  17. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    Science.gov (United States)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  18. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.

    Science.gov (United States)

    Zhang, Fuhai; Fu, Yili; Zhang, Qinchao; Wang, Shuguo

    2015-01-01

    Aiming at the hand rehabilitation of stroke patients, a wearable hand exoskeleton with circuitous joint is proposed. The circuitous joint adopts the symmetric pinion and rack mechanism (SPRM) with the parallel mechanism. The exoskeleton finger is a serial mechanism composed of three closed-chain SPRM joints in series. The kinematic equations of the open chain of the finger and the closed chains of the SPRM joints were built to analyze the kinematics of the hand rehabilitation exoskeleton. The experimental setup of the hand rehabilitation exoskeleton was built and the continuous passive motion (CPM) rehabilitation experiment and the test of human-robot interaction force measurement were conducted. Experiment results show that the mechanical design of the hand rehabilitation robot is reasonable and that the kinematic analysis is correct, thus the exoskeleton can be used for the hand rehabilitation of stroke patients.

  19. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  20. New strategy for eliminating zero-sequence circulating current between parallel operating three-level NPC voltage source inverters

    DEFF Research Database (Denmark)

    Li, Kai; Dong, Zhenhua; Wang, Xiaodong

    2018-01-01

    A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC......, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can...

  1. The light water integral reactor with natural circulation of the coolant at supercritical pressure B-500 SKDI

    International Nuclear Information System (INIS)

    Silin, V.A.; Voznesensky, V.A.; Afrov, A.M.

    1993-01-01

    Pressure increase in the primary circuit over the critical value gives a possibility to construct the B-500SKDI (500 MWe) lightwater integral reactor with natural circulation of the coolant in the vessel with a diameter less than 5 m. The given reactor has a high safety level, simple operability, its specific capital cost and fuel expenditure being lower as compared to a conventional PWR. The development of the reactor is carried out taking into consideration verified technical decisions of current NPPs on the basis of Russian LWR technology. (orig.)

  2. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  3. MOS voltage automatic tuning circuit

    OpenAIRE

    李, 田茂; 中田, 辰則; 松本, 寛樹

    2004-01-01

    Abstract ###Automatic tuning circuit adjusts frequency performance to compensate for the process variation. Phase locked ###loop (PLL) is a suitable oscillator for the integrated circuit. It is a feedback system that compares the input ###phase with the output phase. It can make the output frequency equal to the input frequency. In this paper, PLL ###fomed of MOSFET's is presented.The presented circuit consists of XOR circuit, Low-pass filter and Relaxation ###Oscillator. On PSPICE simulation...

  4. Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium

    Directory of Open Access Journals (Sweden)

    D. Hofer

    2011-02-01

    Full Text Available The variability of the Atlantic meridional overturing circulation (AMOC strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium.

  5. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  6. Globalisation of Cultural Circuits. The Case of International Awards for Fiction

    Directory of Open Access Journals (Sweden)

    Bacanu Horea

    2015-12-01

    Full Text Available In the international circuit of fictional texts from the last fifty years (perhaps even one hundred years, in some cases, several independent international organizations, academic and editorial platforms of critique and debate have been established. They have been organizing international contests, fine authorities of critical appreciation, evaluation and awarding of most prolific authors and most successful fictional texts: novels, short stories, stories or utopian and dystopian fictions. The allotment on cultural corridors, the geographical identification of both author and title dynamics which have been nominated at the most prestigious international awards for fiction demonstrates an increased emergence of several zones where wide international circulation texts were seldom, fifty years ago. In this paper, we suggest a reinterpretation and a comprehension of the political context from the contemporary fiction, by regrouping in one category, the three classical genres (historic novel, social novel, political novel and also the universal fiction which implies characters and relations of power. Thus, we create a category which is known as „political fiction”. The increased individualization of this literary macro-genre called „political fiction” is also a creative answer to the high speed of circulation and at the general international amplitude with which contemporary socio-political novels are distributed.

  7. Sensitivity of the overturning circulation of the Baltic Sea to climate change, a numerical experiment

    Science.gov (United States)

    Hordoir, Robinson; Höglund, Anders; Pemberton, Per; Schimanke, Semjon

    2018-02-01

    An ocean model covering the Baltic Sea area is forced by several climate scenarios for a period extending from 1961 to 2100. The Baltic Sea overturning circulation is then analyzed. The analysis shows that this circulation decreases between the end of the 20th century and the end of the 21st century, and that the decrease is amplified in the case of the strongest greenhouse gas emission scenarios, which corresponds with the highest warming cases. The reasons behind this decrease in overturning circulation are investigated. A strong increase of thermal stratification is noticed at the level of the Baltic Sea mixed layer. Based on buoyancy flux considerations, we demonstrate that the decrease in overturning circulation coincides with the increase of thermal stratification. Evidence shows that the underlying process is linked to a smaller erosion of the halocline due to a higher shielding, itself linked with a stronger and longer seasonal thermocline. This theory works if surface wind mixing is not taken into account directly in the computation of buoyancy fluxes.

  8. Fixation and mounting of porcine aortic valves for use in mock circuits.

    Science.gov (United States)

    Schlöglhofer, Thomas; Aigner, Philipp; Stoiber, Martin; Schima, Heinrich

    2013-10-01

    Investigations of the circulatory system in vitro use mock circuits that require valves to mimic the cardiac situation. Whereas mechanical valves increase water hammer effects due to inherent stiffness and do not allow the use of pressure lines or catheters, bioprosthetic valves are expensive and of limited durability in test fluids. Therefore, we developed a cheap, fast, alternative method to mount valves obtained from the slaughterhouse in mock circuits. Porcine aortic roots were obtained from the abattoir and used either in native condition or after fixation. Fixation was performed at a constant retrograde pressure to ensure closed valve position. Fixation time was 4 h in a 0.5%-glutaraldehyde phosphate buffer. The fixed valves were molded into a modular mock circulation connector using a fast curing silicone. Valve functionality was evaluated in a pulsatile setting (cardiac output = 4.7 l/min, heart rate = 80 beats/min) and compared before and after fixation. Leaflet motion was recorded with a high-speed camera and valve insufficiency was quantified by leakage flow under steady pressure application (80 mmHg). Under physiological conditions the aortic valves showed almost equal leaflet motion in native and fixed conditions. However, the leaflets of the native valves showed lower stiffness and more fluttering during systole than the fixed specimens. Under retrograde pressure, fresh and fixed valves showed small leakage flows of <30 ml/min. The new mounting and fixation procedure is a fast method to fabricate low cost biologic valves for the use in mock circuits.

  9. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  10. Design and damping force characterization of a new magnetorheological damper activated by permanent magnet flux dispersion

    Science.gov (United States)

    Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok

    2018-01-01

    This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.

  11. Thermal hydraulic tradeoffs in the design of IRIS primary circuit

    International Nuclear Information System (INIS)

    Oriani, L.; Lombardi, C.; Ricotti, M.E.; Paramonov, D.; Carelli, M.; Conway, L.

    2001-01-01

    IRIS (International Reactor Innovative and Secure) is currently being developed by an international consortium, led by Westinghouse and including universities. In order to achieve high level of safety, reduce complexity and capital cost, and enhance proliferation resistance, an integral primary circuit configuration has been selected. The integral configuration (the core, steam generators, coolant pumps, pressurizer and control rods are all contained within the reactor vessel) has no loop piping and thereby eliminates the possibility of large loss of coolant accidents. If the reactor vessel and components are designed for a very high level of natural circulation, which is promoted by an integral design, the consequence of loss of flow accidents can be significantly reduced or even completely eliminated. Core and integral primary circuit design optimization has been performed using the OSCAR computer code, a specialized tool for the analyses of the IRIS primary system developed at POLIMI. Results of trade-off studies of various in-vessel configurations explored to achieve tight packaging and high serviceability and/or replacement of components such as steam generators and pumps are reported. Effects of changes in secondary side parameters and steam generator design on system efficiency were explored together with the optimization of the vessel and steam generator dimensions and costs. The aim of the trade-off analyses was to limit the design space, and select a reference configuration for the IRIS reactor. (author)

  12. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  13. A model-based exploration of the role of pattern generating circuits during locomotor adaptation.

    Science.gov (United States)

    Marjaninejad, Ali; Finley, James M

    2016-08-01

    In this study, we used a model-based approach to explore the potential contributions of central pattern generating circuits (CPGs) during adaptation to external perturbations during locomotion. We constructed a neuromechanical modeled of locomotion using a reduced-phase CPG controller and an inverted pendulum mechanical model. Two different forms of locomotor adaptation were examined in this study: split-belt treadmill adaptation and adaptation to a unilateral, elastic force field. For each simulation, we first examined the effects of phase resetting and varying the model's initial conditions on the resulting adaptation. After evaluating the effect of phase resetting on the adaptation of step length symmetry, we examined the extent to which the results from these simple models could explain previous experimental observations. We found that adaptation of step length symmetry during split-belt treadmill walking could be reproduced using our model, but this model failed to replicate patterns of adaptation observed in response to force field perturbations. Given that spinal animal models can adapt to both of these types of perturbations, our findings suggest that there may be distinct features of pattern generating circuits that mediate each form of adaptation.

  14. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    Science.gov (United States)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  15. Theoretical research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yan Binghuo [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yanbh1986@163.com; Yu Lei [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yulei301@163.com

    2009-06-15

    Based on the two-phase drift flux model and the multi-pressure nodes matrix solving method, natural circulation thermal hydraulic analysis models for the Nuclear Machinery (NM) under ocean conditions are developed. The neutron physical activities and the responses of the reactivity control systems are described by the two-group, 3-dimensional space and time dependent neutron kinetics model. Reactivity feedback is calculated by coupling the neutron physics and thermal hydraulic codes, and is tested by comparison with experiments. Using the models developed, the natural circulation operating characteristics of NM in rolling and pitching motions and the transitions between forced circulation (FC) to natural circulation (NC) are analyzed. The results show that the influence of the rolling motion increases as the rolling amplitude is increased, and as the rolling period becomes shorter. The results also show that for this NM, with the same rolling period and rolling angle, the influence of pitching motion on natural circulation is greater than that of rolling motion. Furthermore, the oscillation period for pitching motion is the same as the pitching period, while the oscillation period for rolling is one half of the rolling period. In the ocean environment, excessive flow oscillation of the natural circulation may cause the control rods to respond so frequently that the NM would not be able to realize the transition from the FC to NC steadily. However, the influence of ocean environment on the transition from NC to FC is limited.

  16. A Modernized UDM-600 Dynamometer-Based Setup for the Cutting Force Measurement

    Directory of Open Access Journals (Sweden)

    Ya. I. Shuliak

    2016-01-01

    Full Text Available The article considers development of a modernized UDM-600 dynamometer-based setup for measuring the cutting force components. Modernization of existing equipment to improve the method of recording the cutting force components in the automated mode is of relevance. The measuring setup allows recording the cutting force components in turning and milling, as well as the axial force and the torque in the drilling and milling operations.The article presents a block diagram and a schematic diagram of the setup to measure the cutting force components, and describes a basic principle of measuring units within the modernized setup. The developed setup uses a half-bridge strain gauge measuring circuit to record the cutting forces. To enhance the measuring circuit output voltage is used a 16-channel amplifier of LA-UN16 model with a discretely adjustable gain. To record and process electrical signals is used a data acquisition device of NI USB-6009 model, which enables transmitting the received data to a PC via USB-interface. The data acquisition device has a built-in stabilized DC power supply that is used to power the strain gauge bridges. A developed schematic diagram of the measuring setup allows us to realize this measuring device and implement its modernization.Final processing of recorded data is provided through the software developed in visual programming environment LabVIEW 9.0. The program allows us to show the real-time measuring values of the cutting force components graphically and to record the taken data to a text file.The measuring setup modernization enabled increasing measurement accuracy and reducing time for processing and analysis of experimental data obtained when measuring the cutting force components. The MT2 Department of BMSTU uses it in education and research activities and in experimental efforts and laboratory classes.

  17. Arithmetic circuits for DSP applications

    CERN Document Server

    Stouraitis, Thanos

    2017-01-01

    Arithmetic Circuits for DSP Applications is a complete resource on arithmetic circuits for digital signal processing (DSP). It covers the key concepts, designs and developments of different types of arithmetic circuits, which can be used for improving the efficiency of implementation of a multitude of DSP applications. Each chapter includes various applications of the respective class of arithmetic circuits along with information on the future scope of research. Written for students, engineers, and researchers in electrical and computer engineering, this comprehensive text offers a clear understanding of different types of arithmetic circuits used for digital signal processing applications. The text includes contributions from noted researchers on a wide range of topics, including a review o circuits used in implementing basic operations like additions and multiplications; distributed arithmetic as a technique for the multiplier-less implementation of inner products for DSP applications; discussions on look ...

  18. Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer

    Science.gov (United States)

    Lee, Jae Nyung

    2008-10-01

    Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum

  19. Source-circuit design overview

    Science.gov (United States)

    Ross, R. G., Jr.

    1983-01-01

    The source circuit is the fundamental electrical building block of a large central-station array; it consists of a series-parallel network of solar cells that develops full system voltage. The array field is generally made up of a large number of parallel source circuits. Source-circuit electrical configuration is driven by a number of design considerations, which must be considered simultaneously. Array fault tolerance and hot spot heating endurance are examined in detail.

  20. Recent run-time experience and investigation of impurities in turbines circuit of Helium plant of SST-1

    International Nuclear Information System (INIS)

    Panchal, P.; Panchal, R.; Patel, R.

    2013-01-01

    One of the key sub-systems of Steady State superconducting Tokamak (SST-1) is cryogenic 1.3 kW at 4.5 K Helium refrigerator/liquefier system. The helium plant consists of 3 nos. of screw compressors, oil removal system, purifier and cold-box with 3 turbo expanders (turbines) and helium cold circulator. During the recent SST-1 plasma campaigns, we observed high pressure drop of the order of 3 bar between the wheel outlet of turbine A and the wheel inlet of turbine - B. This was significant higher values of pressures drop across turbines, which reduced the speed of turbine A and B and in turn reduced the overall plant capacity. The helium circuits in the plant have 10-micron filter at the mouth of turbine - B. Initially, major suspects of such high blockage are assumed to be air-impurity, dust particles or collapse of filter. Several breaks in plant operation have been taken to warm up the turbines circuits up to 90 K to remove condensation of air-impurities at filter. Still this exercise did not solve blockage of filter in turbine circuits. A detailed investigation exercise with air/water regeneration and rinsing of cold box as well as purification of helium gas in buffer tanks are carried out to remove air impurities from cold-box. A trial run of cold box was executed in liquefier mode with turbines up to cryogenic temperatures and solved blockage in turbine circuits. The paper describes run-time experience of helium plant with helium impurity in turbine circuits, methods to remove impurity, demonstration of turbine performance and lessons learnt during this operation. (author)

  1. The Southern Ocean's role in ocean circulation and climate transients

    Science.gov (United States)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.

    2017-12-01

    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  2. Integral nuclear power reactor with natural coolant circulation. Investigation of passive RHR system

    International Nuclear Information System (INIS)

    Samoilov, O.B.; Kuul, V.S.; Malamud, V.A.; Tarasov, G.I.

    1996-01-01

    The development of a small power (up to 240 MWe) integral PWR for nuclear co-generation power plants has been carried out. The distinctive features of this advanced reactor are: primary circuit arrangement in a single pressure vessel; natural coolant circulation; passive safety systems with self-activated control devices; use of a second (guard) vessel housing the reactor; favourable conditions for the most severe accident management. A passive steam condensing channel has been developed which is activated by the direct action of the primary circuit pressure without an automatic controlling action or manual intervention for emergency cooling of an integral reactor with an in-built pressurizer. In an emergency situation as pressure rises in the reactor a self-activated device blows out non-condensable gases from the condenser tube bundle and returns them in the steam-condensing mode of the operation with the returing primary coolant condensate into the reactor. The thermo-physical test facility is constructed and the experimental development of the steam-condensing channels is performed aiming at the verification of mathematical models for these channels operation in integral reactors both at loss-of-heat removal and LOCA accidents. (orig.)

  3. Distortion Cancellation via Polyphase Multipath Circuits

    NARCIS (Netherlands)

    Mensink, E.; Klumperink, Eric A.M.; Nauta, Bram

    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits with the help of polyphase multipath circuits. Polyphase multipath circuits are circuits with two or more paths that exploit phase differences between the paths to cancel unwanted signals. It turns out

  4. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...

  5. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  6. Conceptual model for millennial climate variability: a possible combined solar-thermohaline circulation origin for the {proportional_to}1,500-year cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Mihai [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); University of Bucharest, Department of Atmospheric Physics, Faculty of Physics, P.O. Box 11440, Magurele, Bucharest (Romania); Lohmann, Gerrit [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2009-02-15

    Dansgaard-Oeschger and Heinrich events are the most pronounced climatic changes over the last 120,000 years. Although many of their properties were derived from climate reconstructions, the associated physical mechanisms are not yet fully understood. These events are paced by a {proportional_to}1,500-year periodicity whose origin remains unclear. In a conceptual model approach, we show that this millennial variability can originate from rectification of an external (solar) forcing, and suggest that the thermohaline circulation, through a threshold response, could be the rectifier. We argue that internal threshold response of the thermohaline circulation (THC) to solar forcing is more likely to produce the observed DO cycles than amplification of weak direct {proportional_to}1,500-year forcing of unknown origin, by THC. One consequence of our concept is that the millennial variability is viewed as a derived mode without physical processes on its characteristic time scale. Rather, the mode results from the linear representation in the Fourier space of nonlinearly transformed fundamental modes. (orig.)

  7. Analysis of Bernstein's factorization circuit

    NARCIS (Netherlands)

    Lenstra, A.K.; Shamir, A.; Tomlinson, J.; Tromer, E.; Zheng, Y.

    2002-01-01

    In [1], Bernstein proposed a circuit-based implementation of the matrix step of the number field sieve factorization algorithm. These circuits offer an asymptotic cost reduction under the measure "construction cost x run time". We evaluate the cost of these circuits, in agreement with [1], but argue

  8. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  9. Maintaining Qubit Coherence in the face of Increased Superconducting Circuit Complexity

    Science.gov (United States)

    Hover, David; Weber, Steve; Rosenberg, Danna; Samach, Gabriel; Sears, Adam; Birenbaum, Jeffrey; Woods, Wayne; Yoder, Jonilyn; Racz, Livia; Kerman, Jamie; Oliver, William D.

    Maintaining qubit coherence in the face of increased superconducting circuit complexity is a challenge when designing an extensible quantum computing architecture. We consider this challenge in the context of inductively coupled, long-lived, capacitively-shunted flux qubits. Specifically, we discuss our efforts to mitigate the effects of radiation loss, parasitic chip-modes, cross-coupling, and Purcell decay. Our approach employs numerical modeling of the ideal Hamiltonian and electromagnetic analysis of the circuit, both of which are independently shown to be consistent with experimental results. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  10. Using Passive Two-Port Networks to Study the Forced Vibrations of Piezoceramic Transducers

    Science.gov (United States)

    Karlash, V. L.

    2017-09-01

    A generalization and subsequent development of experimental techniques, including methods of studying the phase-frequency relations between the measured components of admittance and instantaneous power are considered. The conditions of electric loading where electric currents, voltages, or instantaneous powers of constant amplitude in the piezoresonators are specified are numerically modeled. It is particularly established that the advanced Mason circuit with additional switch allows acquiring much more data on the forced vibrations of piezoceramic transducers than the classical circuit. The measured (at an arbitrary frequency) voltage drop across the piezoelement, its pull-up resistor, and at the input of the measuring circuit allow determining, with high accuracy, the current, conductivity, impedance, instantaneous power, and phase shifts when the amplitudes of electric current and voltage are given.

  11. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Science.gov (United States)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  12. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    International Nuclear Information System (INIS)

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  13. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Hughes, R.C.

    1977-01-01

    Electronic circuits that operate properly after exposure to ionizing radiation are necessary for nuclear weapon systems, satellites, and apparatus designed for use in radiation environments. The program to develop and theoretically model radiation-tolerant integrated circuit components has resulted in devices that show an improvement in hardness up to a factor of ten thousand over earlier devices. An inverter circuit produced functions properly after an exposure of 10 6 Gy (Si) which, as far as is known, is the record for an integrated circuit

  14. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.

    1984-01-01

    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  15. Development of a transient calculation model for a closed sodium natural circulation loop

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Heo, Sun; Lee, Yong Bum

    2003-09-01

    A natural circulation loop has usually adopted for a Liquid Metal Reactor (LMR) because of its high reliability. Up-rating of the current KALIMER capacity requires an additional PDRC to the existing PVCS to remove its decay heat under an accident. As the system analysis code currently used for LMR in Korea does not feature a stand alone capability to simulate a closed natural circulation loop, it is not eligible to be applied to PDRC. To supplement its limitation, a steady state calculation model had been developed during the first phase, and development of the transient model has successively carried out to close the present study. The developed model will then be coupled with the system analysis code, SSC-K to assess a long term cooling for the new conceptual design. The incompressibility assumption of sodium which allows the circuit to be modeled with a single loop flow, makes the model greatly simplified comparing with LWR. Some thermal-hydraulic models developed during this study can be effectively applied to other system analysis codes which require such component models, and the present development will also contribute to establishment of a code system for the LMR analysis

  16. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    Science.gov (United States)

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  17. Integrated circuits, and design and manufacture thereof

    Science.gov (United States)

    Auracher, Stefan; Pribbernow, Claus; Hils, Andreas

    2006-04-18

    A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.

  18. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  19. Multi-qubit circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Viehmann, Oliver

    2013-01-01

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  20. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a