WorldWideScience

Sample records for force fields applied

  1. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  2. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Directory of Open Access Journals (Sweden)

    Bouyer Laurent J

    2009-06-01

    Full Text Available Abstract Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min, during (5 min and after (5 min exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion. To evaluate modifications in feedforward control, strides with no force field ('catch strides' were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%, subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99. Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%, plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive

  3. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  4. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.

    Science.gov (United States)

    Best, Robert B; Hummer, Gerhard

    2009-07-02

    Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However, despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.

  5. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  6. Forces in electromagnetic field and gravitational field

    OpenAIRE

    Weng, Zihua

    2008-01-01

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...

  7. Cervical spine mobilisation forces applied by physiotherapy students.

    Science.gov (United States)

    Snodgrass, Suzanne J; Rivett, Darren A; Robertson, Val J; Stojanovski, Elizabeth

    2010-06-01

    Postero-anterior (PA) mobilisation is commonly used in cervical spine treatment and included in physiotherapy curricula. The manual forces that students apply while learning cervical mobilisation are not known. Quantifying these forces informs the development of strategies for learning to apply cervical mobilisation effectively and safely. This study describes the mechanical properties of cervical PA mobilisation techniques applied by students, and investigates factors associated with force application. Physiotherapy students (n=120) mobilised one of 32 asymptomatic subjects. Students applied Grades I to IV central and unilateral PA mobilisation to C2 and C7 of one asymptomatic subject. Manual forces were measured in three directions using an instrumented treatment table. Spinal stiffness of mobilised subjects was measured at C2 and C7 using a device that applied a standard oscillating force while measuring this force and its concurrent displacement. Analysis of variance was used to determine differences between techniques and grades, intraclass correlation coefficients (ICC) were used to calculate the inter- and intrastudent repeatability of forces, and linear regression was used to determine the associations between applied forces and characteristics of students and mobilised subjects. Mobilisation forces increased from Grades I to IV (highest mean peak force, Grade IV C7 central PA technique: 63.7N). Interstudent reliability was poor [ICC(2,1)=0.23, 95% confidence interval (CI) 0.14 to 0.43], but intrastudent repeatability of forces was somewhat better (0.83, 95% CI 0.81 to 0.86). Higher applied force was associated with greater C7 stiffness, increased frequency of thumb pain, male gender of the student or mobilised subject, and a student being earlier in their learning process. Lower forces were associated with greater C2 stiffness. This study describes the cervical mobilisation forces applied by students, and the characteristics of the student and mobilised

  8. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    Science.gov (United States)

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  9. Force-free magnetic fields - The magneto-frictional method

    Science.gov (United States)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  10. Various aspects of magnetic field influence on forced convection

    Directory of Open Access Journals (Sweden)

    Pleskacz Lukasz

    2016-01-01

    Full Text Available Flows in the channels of various geometry can be found everywhere in industrial or daily life applications. They are used to deliver media to certain locations or they are the place where heat may be exchanged. For Authors both points of view are interesting. The enhancement methods for heat transfer during the forced convection are demanded due to a technological development and tendency to miniaturization. At the same time it is also worth to find mechanisms that would help to avoid negative effects like pressure losses or sedimentation in the channel flows. This paper shows and discuss various aspects of magnetic field influence on forced convection. A mathematical model consisted of the mass, momentum and energy conservation equations. In the momentum conservation equation magnetic force term was included. In order to calculate this magnetic force Biot-Savart’s law was utilized. Numerical analysis was performed with the usage of commonly applied software. However, userdefined functions were implemented. The results revealed that both temperature and velocity fields were influenced by the strong magnetic field.

  11. Study of Dynamic Membrane Behavior in Applied DC Electric Field

    Science.gov (United States)

    Dutta, Prashanta; Morshed, Adnan; Hossan, Mohammad

    2017-11-01

    Electrodeformation of vesicles can be used as a useful tool to understand the characteristics of biological soft matter, where vesicles immersed in a fluid medium are subjected to an applied electric field. The complex response of the vesicle membrane strongly depends on the conductivity of surrounding fluid, vesicle size and shape, and applied electric field We studied the electrodeformation of vesicles immersed in a fluid media under a short DC electric pulse. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary scheme is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle movement. Force analysis on the membrane surface reveals almost linear relation with vesicle size, but highly nonlinear influence of applied field as well as the conductivity ratios inside and outside of the vesicle. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  12. The Martini Coarse-Grained Force Field

    NARCIS (Netherlands)

    Periole, X.; Marrink, S.J.; Monticelli, Luca; Salonen, Emppu

    2013-01-01

    The Martini force field is a coarse-grained force field suited for molecular dynamics simulations of biomolecular systems. The force field has been parameterized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical

  13. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James

    2012-01-01

    measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...... be explained by changes in background TA EMG activity. These effects seemed specific to walking, as similar changes in TA MEP were not seen when seated subjects were tested during static dorsiflexion. These observations suggest that the corticospinal tract contributes to the adaptation of walking...

  14. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld

    1999-01-01

    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  15. Perspective: Ab initio force field methods derived from quantum mechanics

    Science.gov (United States)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  16. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters......, and validate the final force field, Alternatives to force field derivation are discussed briefly....

  17. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  18. Heat transfer enhancement in a convective field by applying ionic wind

    International Nuclear Information System (INIS)

    Tada, Y.; Takimoto, A.; Hayashi, Y.

    1991-01-01

    This paper reports that this study has been conducted to pursue the heat transfer enhancement in a convective field by applying electric field. Firstly, aimed at thinning boundary layer, swirl motions were caused by utilizing the ionic wind in a channel flow with parallel wire-electrode arrangement. Secondly, ionic wind was induced at right angle to the primary flow at regular intervals by using cross wire-electrode arrangement. Thirdly, to utilize the dynamical effect of adding particles under the Coulomb force, electric field was applied to gas-solid suspensions flow field. On the basis of these results, fundamental characteristics of the combined flow structure and the heat transfer in the EHD field were clarified, and the possibility of the practical application will be insighted

  19. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  20. Ehrenfest force in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.

    2000-01-01

    The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit

  1. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.; LOW, J.; MYERS, T. G.

    2013-01-01

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified 'Trouton ratio'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  3. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.

    2013-10-17

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified \\'Trouton ratio\\'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  4. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola

    2003-01-01

    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  5. Positron Annihilation Ratio Spectroscopy Study of Electric Fields Applied to Positronium at Material Interfaces

    Science.gov (United States)

    2011-03-01

    from 142 ns to a few ns [3:3]. Through the application of positron annihilation lifetime spectroscopy (PALS) on a material, the o-Ps lifetime can be...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO...protection in the United States. AFIT/GNE/ENP/11-M19 POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO POSITRONIUM AT

  6. Force-free field model of ball lightning

    International Nuclear Information System (INIS)

    Tsui, K.H.

    2001-01-01

    Due to the nature that the force-free magnetic field, whose current carried by the conducting plasma is everywhere parallel to the magnetic field it generates, is the minimum energy configuration under the constraint of magnetic helicity conservation, ball lightning is considered as a self-organized phenomenon with a plasma fireball immersed in a spherical force-free magnetic field. Since this field does not exert force on the plasma, the plasma pressure, by itself, is in equilibrium with the surrounding environment, and the force-free magnetic field can take on any value without affecting the plasma. Due to this second feature, singular solutions of the magnetic field that are otherwise excluded are allowed, which enable a large amount of energy to be stored to sustain the ball lightning. The singularity is truncated only by the physical limit of current density that a plasma can carry. Scaling the customary soccer-size fireball to larger dimensions could account for day and night sightings of luminous objects in the sky

  7. Adaptation of multi-joint balance coordination to whole body force fields

    NARCIS (Netherlands)

    Engelhart, Denise; Schouten, Alfred Christiaan; Pasma, Jantsje; Aarts, Ronald G.K.M.; Pasma, J.; Meskers, Carel; Maier, Andrea; van der Kooij, Herman

    2014-01-01

    Background and aim: The ankles and the hips play an important role in standing balance. Multi-joint coordination adapts with task, the magnitude and type of disturbance [1]. Arm studies show that postural responses are highly dependent on externally applied force fields [2]. Our aim is to study how

  8. Simplified TiO2 force fields for studies of its interaction with biomolecules

    Science.gov (United States)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  9. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  10. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  11. Protein-Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions.

    Science.gov (United States)

    Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra

    2016-07-28

    The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( https://bitbucket.org/AstexUK/pli ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.

  12. Augmentation of forced-convection heat transfer by applying electric fields to disturb flow near a wall

    International Nuclear Information System (INIS)

    Nariai, H.; Ishiguro, H.; Nagata, S.; Yabe, A.

    1991-01-01

    This paper reports on the augmentation effect of electrohydrodynamically (EHD) induced flow disturbance on forced-convection heat transfer in a channel that was experimentally investigated in order to determine the applicability of the enhanced heat transfer into a low- pressure drop heat exchanger, such as a high-performance oil cooler. The investigation is mainly based on the study carried out on the unique point where the flow is disturbed actively and controllably by applying electric fields between the wall and array of wire electrodes installed near the wall along the main stream. The liquid mixture of refrigerant R113 (96 wt %) and ethanol (4 wt %), called Fronsorubu AE, was selected as a working fluid. Heat transfer was found to be promoted intensely in the turbulent flow as well as in the laminar flow, up to a factor of about twenty-three in the case of laminar flow. It is noteworthy that the rate of increase in heat transfer coefficient is larger compared to that in the pressure drop. From a measurement of velocities by a laser Doppler velocimeter, it was made clear that the electrohydrodynamically induced flow disturbance brings about large heat transfer coefficients

  13. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  14. Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data.

    Science.gov (United States)

    Barone, Vincenzo; Cacelli, Ivo; De Mitri, Nicola; Licari, Daniele; Monti, Susanna; Prampolini, Giacomo

    2013-03-21

    The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case.

  15. Harmonic force field for nitro compounds.

    Science.gov (United States)

    Bellido, Edson P; Seminario, Jorge M

    2012-06-01

    Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).

  16. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  17. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  18. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    International Nuclear Information System (INIS)

    Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland

    2016-01-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  19. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  20. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  1. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    Science.gov (United States)

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  2. Induced forces in the gravitational field

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    In this paper the expression for the magnitude of the so-called induced force, acting on a mass particle, is deduced. The origin of this force is causally connected to the increase of the rest mass of the particle in the gravitational field. (orig.)

  3. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  4. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  6. Experiment and modeling of an atmospheric pressure arc in an applied oscillating magnetic field

    International Nuclear Information System (INIS)

    Karasik, Max; Roquemore, A. L.; Zweben, S. J.

    2000-01-01

    A set of experiments are carried out to measure and understand the response of a free-burning atmospheric pressure carbon arc to applied transverse dc and ac magnetic fields. The arc is found to deflect parabolically for the dc field and assumes a growing sinusoidal structure for the ac field. A simple analytic two-parameter fluid model of the arc dynamics is derived, in which the arc response is governed by the arc jet originating at the cathode, with the applied JxB force balanced by inertia. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed [H. Maecker, Z. Phys. 141, 198 (1955)]. An example industrial application of the model is considered. (c) 2000 American Institute of Physics

  7. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna

    2016-06-23

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  8. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna; Xiong, Yuan; Moeck, Jonas P.; Chung, Suk-Ho; Roberts, William L.; Cha, Min

    2016-01-01

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  9. INFLUENCE OF APPLYING ADDITIONAL FORCING FANS FOR THE AIR DISTRIBUTION IN VENTILATION NETWORK

    Directory of Open Access Journals (Sweden)

    Nikodem SZLĄZAK

    2016-07-01

    Full Text Available Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes neces-sary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing sub-surface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in net-works with a large number of installed fans. In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of over-pressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan. Possibilities of increasing airflow rate in working areas were conducted.

  10. Electric field and dielectrophoretic force on a dielectric particle chain in a parallel-plate electrode system

    International Nuclear Information System (INIS)

    Techaumnat, B; Eua-arporn, B; Takuma, T

    2004-01-01

    This paper presents results of calculations of the electric field and dielectrophoretic force on a dielectric particle chain suspended in a host liquid lying between parallel-plate electrodes. The method of calculation is based on the method of multipole images using the multipole re-expansion technique. We have investigated the effect of the particle permittivity, the tilt angle (between the chain and the applied field) and the chain arrangement on the electric field and force. The results show that the electric field intensification rises in accordance with the increase in the ratio of the particle-to-liquid permittivity, Γ ε . The electric field at the contact point between the particles decreases with increasing tilt angle, while the maximal field at the contact point between the particles and the plate electrodes is almost unchanged. The maximal field can be approximated by a simple formula, which is a quadratic function of Γ ε . The dielectrophoretic force depends significantly on the distance from other particles or an electrode. However, for the tilt angles in this paper, the horizontal force on the upper particle of the chain always has the direction opposite to the shear direction. The maximal horizontal force of a chain varies proportional to (Γ ε - 1) 1.7 if the particles in the chain are still in contact with each other. The approximated force, based on the force on an isolated chain, has been compared with our calculation results. The comparison shows that no approximation model agrees well with our results throughout the range of permittivity ratios

  11. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    Science.gov (United States)

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  12. Force fields for silicas and aluminophosphates based on ab initio calculations

    NARCIS (Netherlands)

    Beest, van B.W.H.; Kramer, G.J.; Santen, van R.A.

    1990-01-01

    Authors address the problem of finding interat. force fields for silicas from ab initio calcns. on small clusters. The force field cannot be detd. from cluster data alone; incorporation of bulk-system information into the force field remains essential. Bearing this in mind, authors derive a force

  13. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  14. Measurement of time series variation of thermal diffusivity of magnetic fluid under magnetic field by forced Rayleigh scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)

    2017-04-15

    It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.

  15. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    Science.gov (United States)

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  16. Streamwise-body-force-model for rapid simulation combining internal and external flow fields

    Directory of Open Access Journals (Sweden)

    Cui Rong

    2016-10-01

    Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.

  17. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  18. Preface: Special Topic: From Quantum Mechanics to Force Fields

    Science.gov (United States)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  19. Large-timestep techniques for particle-in-cell simulation of systems with applied fields that vary rapidly in space

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.

    1996-10-01

    Under conditions which arise commonly in space-charge-dominated beam applications, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the self-fields (which are, on average, comparable in strength to the applied fields) vary smoothly. In such cases it is desirable to employ timesteps which advance the particles over distances greater than the characteristic scales over which the applied fields vary. Several related concepts are potentially applicable: sub-cycling of the particle advance relative to the field solution, a higher-order time-advance algorithm, force-averaging by integration along approximate orbits, and orbit-averaging. We report on our investigations into the utility of such techniques for systems typical of those encountered in accelerator studies for heavy-ion beam-driven inertial fusion

  20. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    Science.gov (United States)

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-05-04

    Particle swarm optimization is a powerful metaheuristic population-based global optimization algorithm. However, when applied to non-separable objective functions its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant particle swarm optimization algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates a superior performance across several nonlinear, multimodal benchmark functions compared to the rotation-invariant Particle Swam Optimization (PSO) algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in ReaxFF-lg reactive force field is carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents a better performance compared to a Genetic Algorithm optimization method in the optimization of a ReaxFF-lg correction model parameters. The computational framework is implemented in a standalone C++ code that allows a straightforward development of ReaxFF reactive force fields.

  1. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  2. Force-field compensation in a manual tracking task.

    Directory of Open Access Journals (Sweden)

    Valentina Squeri

    2010-06-01

    Full Text Available This study addresses force/movement control in a dynamic "hybrid" task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%, which is a function of the implicit accuracy of the tracking task.

  3. Software Process Improvement Using Force Field Analysis ...

    African Journals Online (AJOL)

    An improvement plan is then drawn and implemented. This paper studied the state of Nigerian software development organizations based on selected attributes. Force field analysis is used to partition the factors obtained into driving and restraining forces. An attempt was made to improve the software development process ...

  4. A Non-Linear Force-Free Field Model for the Evolving Magnetic Structure of Solar Filaments

    Science.gov (United States)

    Mackay, Duncan H.; van Ballegooijen, A. A.

    2009-12-01

    In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.

  5. A simulation of a multifilamentary wire carrying a transport current in an AC applied field

    International Nuclear Information System (INIS)

    Rem, P.C.; Hartmann, R.A.; Dijkstra, D.; Van Beckum, F.P.H.; Van de Klundert, L.J.M.

    1986-01-01

    The problem of calculating the current distribution in a multi-filamentary wire subjected to a time-dependent field becomes difficult as soon as the non-linearity due to the saturation of layers of filaments can be neglected no more. Such a problem can be solved approximately if the shape of the boundaries between unsaturated regions can be prescribed on the basis of general considerations such as symmetry arguments. For cases involving both a transport current and an applied field, however, little is known about the boundaries and their time-dependence behaviour. For such cases a brute force numerical calculation may provide an answer. The results presented below were calculated for a combination of DC transport current and AC applied field

  6. Zero mass field quantization and Kibble's long-range force criterion for the Goldstone theorem

    International Nuclear Information System (INIS)

    Wright, S.H.

    1981-01-01

    The central theme of the dissertation is an investigation of the long-range force criterion used by Kibble in his discussion of the Goldstone Theorem. This investigation is broken up into the following sections: I. Introduction. Spontaneous symmetry breaking, the Goldstone Theorem and the conditions under which it holds are discussed. II. Massless Wave Expansions. In order to make explicit calculations of the operator commutators used in applying Kibble's criterion, it is necessary to work out the operator expansions for a massless field. Unusual results are obtained which include operators corresponding to classical macroscopic field modes. III. The Kibble Criterion for Simple Models Exhibiting Spontaneously Broken Symmetries. The results of the previous section are applied to simple models with spontaneously broken symmetries, namely, the real scalar massless field and the Goldstone model without gauge coupling. IV. The Higgs Mechanism in Classical Field Theory. It is shown that the Higgs Mechanism has a simple interpretation in terms of classical field theory, namely, that it arises from a derivative coupling term between the Goldstone fields and the gauge fields. V. The Higgs Mechanism and Kibble's Criterion. This section draws together the material discussed in sections II to IV. Explicit calculations are made to evaluate Kibble's criterion on a Goldstone-Higgs type of model in the Coulomb gauge. It is found, as expected, that the criterion is not met, but not for reasons relating to the range of the mediating force. By referring to the findings of sections III and IV, it is concluded that the common denominator underlying both the Higgs Mechanism and the failure of Kibble's criterion is a structural aspect of the field equations: derivative coupling between fields

  7. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  8. Nanomaterials for in vivo imaging of mechanical forces and electrical fields

    Science.gov (United States)

    Mehlenbacher, Randy D.; Kolbl, Rea; Lay, Alice; Dionne, Jennifer A.

    2018-02-01

    Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.

  9. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  10. Martini Force Field Parameters for Glycolipids

    NARCIS (Netherlands)

    Lopez, Cesar A.; Sovova, Zofie; van Eerden, Floris J.; de Vries, Alex H.; Marrink, Siewert J.

    We present an extension of the Martini coarse-grained force field to glycolipids. The glycolipids considered here are the glycoglycerolipids monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), and phosphatidylinositol (PI) and its

  11. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    International Nuclear Information System (INIS)

    Liu Minxian; Wang Yan

    2012-01-01

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  12. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Liu Minxian, E-mail: liukey_sjtu@263.net [School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Wang Yan [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2012-01-15

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  13. Generalized force in classical field theory. [Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-02-01

    The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.

  14. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    Science.gov (United States)

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  15. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Viet, Man [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France); Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2015-07-14

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  16. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-01-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities

  17. Dynamics of solar magnetic fields. VI. Force-free magnetic fields and motions of magnetic foot-points

    International Nuclear Information System (INIS)

    Low, B.C.; Nakagawa, Y.

    1975-01-01

    A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)

  18. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    International Nuclear Information System (INIS)

    Abdoli, A; Mirzaee, I; Purmahmod, N; Anvari, A

    2008-01-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s -1 at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A b and D c , have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications

  19. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  20. MODELING MAGNETIC FIELD STRUCTURE OF A SOLAR ACTIVE REGION CORONA USING NONLINEAR FORCE-FREE FIELDS IN SPHERICAL GEOMETRY

    International Nuclear Information System (INIS)

    Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.

    2012-01-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.

  1. A new united atom force field for adsorption of alkenes in zeolites

    NARCIS (Netherlands)

    Liu, B.; Smit, B.; Rey, F.; Valencia, S.; Calero, S.

    2008-01-01

    A new united atom force field was developed that accurately describes the adsorption properties of linear alkenes in zeolites. The force field was specifically designed for use in the inhomogeneous system and therefore a truncated and shifted potential was used. With the determined force field, we

  2. Solitons in a random force field

    International Nuclear Information System (INIS)

    Bass, F.G.; Konotop, V.V.; Sinitsyn, Y.A.

    1985-01-01

    We study the dynamics of a soliton of the sine-Gordon equation in a random force field in the adiabatic approximation. We obtain an Einstein-Fokker equation and find the distribution function for the soliton parameters which we use to evaluate its statistical characteristics. We derive an equation for the averaged functions of the soliton parameters. We determine the limits of applicability of the delta-correlated in time random field approximation

  3. New arrangements in force in the field of transport

    CERN Multimedia

    Tom Wegelius

    2006-01-01

    Please take note of the following information concerning new arrangements in force in the field of transport: China: Regulations applying to wooden packaging materials as of 1st January 2006 As scheduled, China introduced standard ISPM No. 15 on 1st January 2006. This was officially confirmed in a letter from the Federal Minister for Consumer Protection, Food and Agriculture. Henceforth, China will apply the same conditions to the importation of wooden packaging materials as various other countries, including the United States, Mexico and Brazil. This means that items shipped to China in wooden packaging will no longer need to be accompanied by a certificate relating to the protection of plant species or other phytosanitary documents (such as heat treatment certificates). However, a guarantee that the wooden packaging complies with standard ISPM No. 15 will be required. Phase II of US regulations concerning wooden packaging material Phase II of regulations concerning the importation of wooden packaging ma...

  4. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  5. Improved Parameters for the Martini Coarse-Grained Protein Force Field

    NARCIS (Netherlands)

    de Jong, Djurre H.; Singh, Gurpreet; Bennett, W. F. Drew; Arnarez, Clement; Wassenaar, Tsjerk A.; Schafer, Lars V.; Periole, Xavier; Tieleman, D. Peter; Marrink, Siewert J.

    The Martini coarse-grained force field has been successfully used for simulating a wide range of (bio)molecular systems. Recent progress in our ability to test the model against fully atomistic force fields, however, has revealed some shortcomings. Most notable, phenylalanine and proline were too

  6. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  7. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL

    International Nuclear Information System (INIS)

    G.S. Choe; C.Z. Cheng

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  8. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  9. Ponderomotive force, magnetic fields and hydrodynamics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bobin, J.-L.; Wee Woo; Degroot, J.-S.

    1977-01-01

    Nonlinear effects deeply change the structure of a laser driven plasma flow. For high intensities, the radiation pressure should be taken into account. It acts through a ponderomotive force proportional to the electron density and to the gradient of the mean electric field energy density of the incident wave. Static magnetic fields originate from a term in the ponderomotive force which includes radiation absorption and whose curl is non zero. The basic properties of the structure are determined analytically in the absence of thermal conductivity and magnetic fields: steep density gradient close to the cut-off density, shelf at lower densities. The conditions of a steady state regime are set up. The isothermal case is specially investigated. It is shown that the cavities which are created in a motionless plasma may disappear due to the onset of a flow. Regions in which electromagnetic forces arising from the static field compensate the ponderomotive force are determined. The subsequent effects on the flow itself are studied [fr

  10. Interrelation between striction forces in dielectrics and optically induced forces in transparent media

    International Nuclear Information System (INIS)

    Torchigin, V P; Torchigin, A V

    2012-01-01

    Optically induced forces applied to a transparent optical medium, which is inserted in a closed plane optical resonator, are calculated by means of an analysis of the changes in the eigenfrequency and energy stored in the resonator at various positions of the medium. These forces are compared with striction forces applied to the medium considered as a dielectric placed in an alternate electrical field within the resonator. It is shown that the optically induced forces are equal to the striction forces. The results of using the classical formula for striction forces in electrostatics are considered. (paper)

  11. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7

    Directory of Open Access Journals (Sweden)

    A. V. Sulimov

    2017-01-01

    Full Text Available Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  12. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.

    Science.gov (United States)

    Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  13. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  14. Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas

    Science.gov (United States)

    Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta

    2018-04-01

    Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.

  15. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  16. Machine learning of accurate energy-conserving molecular force fields

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  17. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, A; Mirzaee, I; Purmahmod, N [Faculty of Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Anvari, A [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: ab.abdoli@gmail.com

    2008-09-07

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s{sup -1} at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A{sub b} and D{sub c}, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  18. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    Energy Technology Data Exchange (ETDEWEB)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France); Schnell, Benoît; Petitjean, Laurent; Couty, Marc [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.

  19. Levitation performance of YBCO bulk in different applied magnetic fields

    International Nuclear Information System (INIS)

    Liu, W.; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S.

    2008-01-01

    The maglev performance of bulk high-T c superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B z ), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems

  20. Levitation performance of YBCO bulk in different applied magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-07-01

    The maglev performance of bulk high-T{sub c} superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B{sub z}), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems.

  1. Valence force fields and the lattice dynamics of beryllium oxide

    International Nuclear Information System (INIS)

    Ramani, R.; Mani, K.K.; Singh, R.P.

    1976-01-01

    The lattice dynamics of beryllium oxide have been studied using a rigid-ion model, with short-range forces represented by a valence force field. Various existing calculations on group-IV elements using such a field have been examined as a prelude to transference of force constants from diamond to beryllium oxide. The effects of ionicity on the force constants have been included in the form of scale factors. It is shown that no satisfactory fit to the long-wavelength data on BeO can be found with transferred force constants. However, adequate least-squares fits can be found both with four- and six-parameter valence force fields, the discrepancy with experiment being large only for one optical mode at the Brillouin-zone center. Dispersion curves along Δ and Σ are presented and are in fair agreement with experiment, deviations arising essentially from the quality of the fit to the long-wavelength data. The bond-bending interactions are found to play a significant role and arguments have been presented to show that the inclusion of further angle-angle interactions would yield a very satisfactory picture of the dynamics

  2. Nonequilibrium forces between neutral atoms mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-01-01

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  3. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2002-01-01

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation (gradient) 2 P = (gradient) · (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating (gradient)P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models

  4. Rapid parameterization of small molecules using the Force Field Toolkit.

    Science.gov (United States)

    Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C

    2013-12-15

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.

  5. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  6. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    Science.gov (United States)

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  7. Mapping the force field of a hydrogen-bonded assembly

    Science.gov (United States)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  8. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)

    2015-11-14

    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  9. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-10-01

    To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Nuclear Forces from Effective Field Theory

    International Nuclear Information System (INIS)

    Krebs, H.

    2011-01-01

    Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N 3 LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N 2 LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N 3 LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N 2 LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker V III potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories

  11. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  12. Topological and statistical properties of nonlinear force-free fields

    Science.gov (United States)

    Mangalam, A.; Prasad, A.

    2018-01-01

    We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.

  13. Charm production and the confining force field

    International Nuclear Information System (INIS)

    Andersson, B.; Bengtsson, H.-U.; Gustafson, G.

    1983-03-01

    We show that charm production at SPS energies can be understood simply from O(α 2 sub (s)) QCD processes when combined with fragmentation of the colour fields stretched by the final state partons. The tension of the confining force field responsible for particle production is found to pull the charmed particles away from the reaction centre, giving rise to a harder x sub (F)-spectrum than would be expected from the bare QCD matrix elements. (Authors)

  14. An inverse method for determining the interaction force between the probe and sample using scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Chang, Win-Jin; Fang, Te-Hua

    2006-01-01

    This study proposes a means for calculating the interaction force during the scanning process using a scanning near-field optical microscope (SNOM) probe. The determination of the interaction force in the scanning system is regarded as an inverse vibration problem. The conjugate gradient method is applied to treat the inverse problem using available displacement measurements. The results show that the conjugate gradient method is less sensitive to measurement errors and prior information on the functional form of quality was not required. Furthermore, the initial guesses for the interaction force can be arbitrarily chosen for the iteration process

  15. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    Science.gov (United States)

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  16. Histomorphometric study and three-dimensional reconstruction of the osteocyte lacuno-canalicular network one hour after applying tensile and compressive forces.

    Science.gov (United States)

    Bozal, Carola B; Sánchez, Luciana M; Mandalunis, Patricia M; Ubios, Ángela M

    2013-01-01

    The occurrence of very early morphological changes in the osteocyte lacuno-canalicular network following application of tensile and/or compressive forces remains unknown to date. Thus, the aim of this study was to perform a morphological and morphometric evaluation of the changes in the three-dimensional structure of the lacuno-canalicular network and the osteocyte network of alveolar bone that take place very early after applying tensile and compressive forces in vivo, conducting static histomorphometry on bright-field microscopy and confocal laser scanning microscopy images. Our results showed that both the tensile and compressive forces induced early changes in osteocytes and their lacunae, which manifested as an increase in lacunar volume and changes in lacunar shape and orientation. An increase in canalicular width and a decrease in the width and an increase in the length of cytoplasmic processes were also observed. The morphological changes in the lacuno-canalicular and osteocyte networks that occur in vivo very early after application of tensile and compressive forces would be an indication of an increase in permeability within the system. Thus, both compressive and tensile forces would cause fluid displacement very soon after being applied; the latter would in turn rapidly activate alveolar bone osteocytes, enhancing transmission of the signals to the entire osteocyte network and the effector cells located at the bone surface. Copyright © 2013 S. Karger AG, Basel.

  17. A new force field including charge directionality for TMAO in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Kota; Nagata, Yuki, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de; Hunger, Johannes; Bonn, Mischa [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Sulpizi, Marialore, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de [Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz (Germany)

    2016-08-14

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  18. A new force field including charge directionality for TMAO in aqueous solution

    International Nuclear Information System (INIS)

    Usui, Kota; Nagata, Yuki; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2016-01-01

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O TMAO ) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O TMAO to mimic the O TMAO lone pairs and we migrate the negative charge on the O TMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  19. Dusty plasmas in a constant electric field: Role of the electron drag force

    International Nuclear Information System (INIS)

    Khrapak, S.A.; Morfill, G.E.

    2004-01-01

    We investigate the forces experienced by a microparticle immersed in a weakly ionized plasma with constant electric field. These are electric force and the forces associated with the momentum transfer from electrons and ions drifting in the field (electron and ion drag forces). It is shown that the effect of the electron drag, which is often neglected, can be substantial in a certain parameter range. Numerical calculation of the forces for a reasonable set of plasma parameters is performed to illustrate the importance of this effect

  20. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk

    NARCIS (Netherlands)

    Kingma, I.; Staudenmann, D.; van Dieen, J.H.

    2007-01-01

    High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a

  1. On the Sensitivity of Peptide Nucleic Acid Duplex Formation and Crystal Dissolution to a Variation of Force-Field Parameters.

    Science.gov (United States)

    Bachmann, Stephan J; Lin, Zhixiong; Stafforst, Thorsten; van Gunsteren, Wilfred F; Dolenc, Jožica

    2014-01-14

    The technique of one-step perturbation to explore the relation between particular force-field parameters on the one hand and particular properties of a biomolecular system on the other hand from one or a few molecular dynamics simulations is applied to investigate the dependence of the free enthalpy of dimer formation and of crystal dissolution of a self-complementary fragment (H-CGTACG-NH2) of peptide nucleic acid, PNA, a mimic of DNA. The simulations show that PNA dimer formation in aqueous solution is favored by a decrease in the base charges with respect to values of the GROMOS 45A4 force field, while it is disfavored by a decrease in the backbone charges. In contrast, crystal dissolution of the PNA dimer is favored by a decrease in base charges, while a variation of backbone charges has a minor effect on this free enthalpy change. These opposite effects in a crystalline versus aqueous solution environment can be understood from the different water contents for these systems and have consequences for biomolecular force-field development.

  2. Van der Waals Forces and Photon-Less Effective Field Theory

    International Nuclear Information System (INIS)

    Arriola, E.R.

    2011-01-01

    In the ultra-cold regime Van der Waals forces between neutral atoms can be represented by short range effective interactions. We show that universal low energy scaling features of the underlying vdW long range force stemming from two photon exchange impose restrictions on an Effective Field Theory without explicit photons. The role of naively redundant operators, relevant to the definition of three body forces, is also analyzed. (author)

  3. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  4. TET Offensive II Field Force Vietnam After Action Report 31 January - 18 February 1968

    Science.gov (United States)

    1968-03-01

    and the 5th VC Division. V During this same period of time there were no majur shifts in ARVN forces . However III Corps shifted three...8217-".•: ’ ’SSIFJED U.S. ARMY. VIETNAM. II FIELD FORCE . TET OFFENSIVE II FIELD FORCE VIETNAM AFTER ACTION REPORT, 31 JANUARY-18 FEB- RUARY 1968...H FIELD FORCE VIETNAM AFTER ACTION REPORT 31 January-18 February 1968 RECORD K0- ! FlSjl fi-.-A-,>-•: it tT*\\ : *si h s» -wP Mr-, £< St

  5. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.

    Science.gov (United States)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH 2 ). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD 3 CD in H 2 O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  6. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide

    Science.gov (United States)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  7. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  8. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  9. Systematic Parameterization of Lignin for the CHARMM Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg; Crowley, Michael

    2017-07-06

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization for emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between

  10. Secondary Structure of Rat and Human Amylin across Force Fields.

    Directory of Open Access Journals (Sweden)

    Kyle Quynn Hoffmann

    Full Text Available The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient

  11. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke

    2013-07-01

    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  12. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    International Nuclear Information System (INIS)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    An empirically parameterized intermolecular force field is developed for crystal structure modelling and prediction. The model is optimized for use with an atomic multipole description of electrostatic interactions. We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%

  13. Geostatistical methods applied to field model residuals

    DEFF Research Database (Denmark)

    Maule, Fox; Mosegaard, K.; Olsen, Nils

    consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...

  14. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  15. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  16. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... of the TS geometry on the flexibility of the system has been probed by fixing layers of atoms around the active site and using increasingly larger nonbonded cutoffs. The variability over the 20 structures is found to decrease as the system is made more flexible. Relative energies have been calculated...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  17. Development of a reactive force field for iron-oxyhydroxide systems.

    Science.gov (United States)

    Aryanpour, Masoud; van Duin, Adri C T; Kubicki, James D

    2010-06-03

    We adopt a classical force field methodology, ReaxFF, which is able to reproduce chemical reactions, and train its parameters for the thermodynamics of iron oxides as well as energetics of a few iron redox reactions. Two parametrizations are developed, and their results are compared with quantum calculations or experimental measurements. In addition to training, two test cases are considered: the lattice parameters of a selected set of iron minerals, and the molecular dynamics simulation of a model for alpha-FeOOH (goethite)-water interaction. Reliability and limitations of the developed force fields in predicting structure and energetics are discussed.

  18. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...

  19. Variable Acceleration Force Calibration System (VACS)

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  20. Martini Coarse-Grained Force Field : Extension to DNA

    NARCIS (Netherlands)

    Uusitalo, Jaakko J.; Ingolfsson, Helgi I.; Akhshi, Parisa; Tieleman, D. Peter; Marrink, Siewert J.

    We systematically parameterized a coarsegrained (CG) model for DNA that is compatible with the Martini force field. The model maps each nucleotide into six to seven CG beads and is parameterized following the Martini philosophy. The CG nonbonded interactions are based on partitioning of the

  1. Martini Coarse-Grained Force Field : Extension to Carbohydrates

    NARCIS (Netherlands)

    Lopez, Cesar A.; Rzepiela, Andrzej J.; de Vries, Alex H.; Dijkhuizen, Lubbert; Huenenberger, Philippe H.; Marrink, Siewert J.

    2009-01-01

    We present an extension of the Martini coarse-grained force field to carbohydrates. The parametrization follows the same philosophy as was used previously for lipids and proteins, focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar phases. The

  2. Artificial force fields for multi-agent simulations of maritime traffic and risk estimation

    NARCIS (Netherlands)

    Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B.J.M.

    2012-01-01

    A probabilistic risk model is designed to estimate probabilities of collisions for shipping accidents in busy waterways. We propose a method based on multi-agent simulation that uses an artificial force field to model ship maneuvers. The artificial force field is calibrated by AIS data (Automatic

  3. Building machine learning force fields for nanoclusters

    Science.gov (United States)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  4. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  5. Recent advances toward a general purpose linear-scaling quantum force field.

    Science.gov (United States)

    Giese, Timothy J; Huang, Ming; Chen, Haoyuan; York, Darrin M

    2014-09-16

    Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to

  6. A levitation force and magnetic field distribution measurement system in three dimensions

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  7. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  8. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  9. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    Science.gov (United States)

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  10. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    Science.gov (United States)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  11. Dynamical Mean Field Approximation Applied to Quantum Field Theory

    CERN Document Server

    Akerlund, Oscar; Georges, Antoine; Werner, Philipp

    2013-12-04

    We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...

  12. Effect of Short-Crestedness and Obliquity on Non-Breaking and Breaking Wave Forces Applied to Vertical Caisson Breakwaters

    DEFF Research Database (Denmark)

    Martinelli, Luca; Lamberti, Alberto; Frigaard, Peter

    2007-01-01

    This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under multidirectio......This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under...

  13. Reactive Force Field for Liquid Hydrazoic Acid with Applications to Detonation Chemistry

    Science.gov (United States)

    Furman, David; Dubnikova, Faina; van Duin, Adri; Zeiri, Yehuda; Kosloff, Ronnie

    The development of a reactive force field (ReaxFF formalism) for Hydrazoic acid (HN3), a highly sensitive liquid energetic material, is reported. The force field accurately reproduces results of density functional theory (DFT) calculations. The quality and performance of the force field are examined by detailed comparison with DFT calculations related to uni, bi and trimolecular thermal decomposition routes. Reactive molecular dynamics (RMD) simulations are performed to reveal the initial chemical events governing the detonation chemistry of liquid HN3. The outcome of these simulations compares very well with recent results of tight-binding DFT molecular dynamics and thermodynamic calculations. Based on our RMD simulations, predictions were made for the activation energies and volumes in a broad range of temperatures and initial material compressions. Work Supported by The Center of Excellence for Explosives Detection, Mitigation and Response, Department of Homeland Security.

  14. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    International Nuclear Information System (INIS)

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-01-01

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas

  15. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  16. Mechanism of interaction between cellulase action and applied shear force, an hypothesis

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    An overview is given of what is known in literature concerning the structure of both cellulose and cellulase enzymes and the enzymatic degradation of cellulose. Based on this knowledge, a hypothesis is formulated about the relation between cellulase performance and required applied shear force on

  17. The growth of the concept of forces and fields

    International Nuclear Information System (INIS)

    Mukherji, Visvapriya

    1979-01-01

    The history and development of the concept of forces and fields in nature as was existing since two millenia ago to the ones that are being proposed and modified in the present day schools of field theorists have been traced. The concepts of Aristotle, Galileo, Democritus, Roemer, Newton, etc. which are considered classical in nature are outlined. The modern idea of field theories which owes its origin to the hypothesis propounded by Euler and the later developments by Laplace, Kelvin and Maxwell are described. Finally, Einstein's theory of relativity which projected a very novel interpretation of the gravitational field has also been explained in brief. Some of the hitherto unanswered questions in the field are also posed. (K.B.)

  18. Impact Force Applied on the Spent Nuclear Fuel Disposal Canister that Accidentally Drops and Collides onto the Ground

    International Nuclear Information System (INIS)

    Kwon, Young Joo

    2016-01-01

    In this paper, a mathematical methodology was theoretically studied to obtain the impact force caused by the collision between rigid bodies. This theoretical methodology was applied to compute the impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground. From this study, the impact force required to ensure a structurally safe canister design was theoretically formulated. The main content of the theoretical study concerns the rigid body kinematics and equation of motion during collision between two rigid bodies. On the basis of this study, a general impact theory to compute the impact force caused by the collision between two bodies was developed. This general impact theory was applied to theoretically formulate the approximate mathematical solution of the impact force that affects the spent nuclear fuel disposal canister that accidentally falls to the ground. Simultaneously, a numerical analysis was performed using the computer code to compute the numerical solution of the impact force, and the numerical result was compared with the approximate mathematical solution

  19. In-depth Study on Cylinder Wake Controlled by Lorentz Force

    International Nuclear Information System (INIS)

    Zhang Hui; Fan Bao-Chun; Chen Zhi-Hua

    2011-01-01

    The underlying mechanisms of the electromagnetic control of cylinder wake are investigated and discussed. The effects of Lorentz force are found to be composed of two parts, one is its direct action on the cylinder (the wall Lorentz force) and the other is applied to the fluid (called the field Lorentz force) near the cylinder surface. Our results show that the wall Lorentz force can generate thrust and reduce the drag; the field Lorentz force increases the drag. However, the cylinder drag is dominated by the wall Lorentz force. In addition, the field Lorentz force above the upper surface decreases the lift, while the upper wall Lorentz force increases it. The total lift is dominated by the upper wall Lorentz force. (fundamental areas of phenomenology(including applications))

  20. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  1. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  2. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    Science.gov (United States)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.

    2014-12-01

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  3. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhaochuan; Vlugt, Thijs J. H., E-mail: t.j.h.vlugt@tudelft.nl [Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft,The Netherlands (Netherlands); Koster, Rik S.; Fang, Changming; Huis, Marijn A. van [Debye Institute for Nanomaterials Science and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Wang, Shuaiwei [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2014-12-28

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., “Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth,” Nano Lett. 14, 3661–3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  4. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  5. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Science.gov (United States)

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  6. Effects of Force Field Selection on the Computational Ranking of MOFs for CO2 Separations.

    Science.gov (United States)

    Dokur, Derya; Keskin, Seda

    2018-02-14

    Metal-organic frameworks (MOFs) have been considered as highly promising materials for adsorption-based CO 2 separations. The number of synthesized MOFs has been increasing very rapidly. High-throughput molecular simulations are very useful to screen large numbers of MOFs in order to identify the most promising adsorbents prior to extensive experimental studies. Results of molecular simulations depend on the force field used to define the interactions between gas molecules and MOFs. Choosing the appropriate force field for MOFs is essential to make reliable predictions about the materials' performance. In this work, we performed two sets of molecular simulations using the two widely used generic force fields, Dreiding and UFF, and obtained adsorption data of CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 mixtures in 100 different MOF structures. Using this adsorption data, several adsorbent evaluation metrics including selectivity, working capacity, sorbent selection parameter, and percent regenerability were computed for each MOF. MOFs were then ranked based on these evaluation metrics, and top performing materials were identified. We then examined the sensitivity of the MOF rankings to the force field type. Our results showed that although there are significant quantitative differences between some adsorbent evaluation metrics computed using different force fields, rankings of the top MOF adsorbents for CO 2 separations are generally similar: 8, 8, and 9 out of the top 10 most selective MOFs were found to be identical in the ranking for CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 separations using Dreiding and UFF. We finally suggested a force field factor depending on the energy parameters of atoms present in the MOFs to quantify the robustness of the simulation results to the force field selection. This easily computable factor will be highly useful to determine whether the results are sensitive to the force field type or not prior to performing computationally demanding

  7. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  8. Force fields of charged particles in micro-nanofluidic preconcentration systems

    Science.gov (United States)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  9. Vibrations of a molecule in an external force field.

    Science.gov (United States)

    Okabayashi, Norio; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J

    2018-05-01

    The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.

  10. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  11. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    Science.gov (United States)

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  12. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  13. Force sensor using changes in magnetic flux

    Science.gov (United States)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  14. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied.

    Science.gov (United States)

    Miyoshi, K; Igarashi, K; Saeki, S; Shinoda, H; Mitani, H

    2001-08-01

    The purpose of this study was to investigate whether there are any differences in tooth movement or in the response of periodontal tissue to orthodontic force when the force is applied at different times of the day. One hundred 6-week-old male Wistar rats were divided into one control group without force application and three experimental groups based on the time of day the force was applied to the upper first molars. Animals in the whole-day group received force continuously throughout the experimental period, while animals in the light- and dark-period groups received force only during the light (07:00-19:00) or dark period (19:00-07:00), respectively. Tooth movement was measured using the occlusal view of a precise plaster model with a profile projector. Periodontal tissues were evaluated histologically. The time course of tooth movement varied among the groups. Tooth movement over 21 days in the whole-day and light-period groups was about twice that as in the dark-period group. The formation of new bone on the tension side in the whole-day and light-period groups was more than twice that as in the dark-period group. On the pressure side, more osteoclasts appeared on the alveolar bone in the whole-day and light-period groups than in the dark-period group. The light-period group showed less extensive hyalinization of the periodontal ligament (PDL) than the whole-day group. The area of root resorption on day 21 also varied among the groups. Interference by masticatory forces did not seem to be a principal cause of the decreased tooth movement in the dark-period group. These results indicate that there are considerable variations in tooth movement and in the response of periodontal tissue to orthodontic force when the force is applied at different times of the day in rats. The results suggest that diurnal rhythms in bone metabolism have important implications in orthodontic treatment.

  15. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  16. ATK-ForceField: a new generation molecular dynamics software package

    Science.gov (United States)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt

    2017-12-01

    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  17. On the absorbing force of magnetic fields acting on magnetic particle under magnetic particle examination

    International Nuclear Information System (INIS)

    Maeda, N.

    1988-01-01

    During the magnetic particle examination, magnetic particles near defects are deposited by an absorbing force of magnetic fields acting on the magnetic particles. Therefore, a quantitative determination of this absorbing force is a theoretical and experimental basis for solving various problems associated with magnetic particle examinations. The absorbing force is formulated based on a magnetic dipole model, and a measuring method of the absorbing force using magnetic fields formed around linear current is proposed. Measurements according to this method produced appropriate results, verifying the validation of the concept and the measuring method

  18. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  19. Vector field statistical analysis of kinematic and force trajectories.

    Science.gov (United States)

    Pataky, Todd C; Robinson, Mark A; Vanrenterghem, Jos

    2013-09-27

    When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of 'non-directed' hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called 'statistical parametric mapping' (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems. © 2013 Published by Elsevier Ltd. All rights reserved.

  20. Decomposition principles applied to the dynamic production and work-force scheduling problem

    NARCIS (Netherlands)

    Aardal, K.I.; Ari, A.

    1987-01-01

    One of the most important problems in the production and inventory planning field, is the scheduling of production and work force in a dynamic environment. Although this problem can be formulated as a linear program, it is often quite difficult to solve directly, due to its large scale. Instead, it

  1. Transitioning from Faculty-Led Lecture to Student-Centered Field Learning Facilitated by Near-Peer Mentors: Preliminary Findings from the GeoFORCE/ STEMFORCE Program.

    Science.gov (United States)

    Berry, M.; Wright, V. D.; Ellins, K. K.; Browder, M. G. J.; Castillo, R.; Kotowski, A. J.; Libarkin, J. C.; Lu, J.; Maredia, N.; Butler, N.

    2017-12-01

    GeoFORCE Texas, a geology-based outreach program in the Jackson School of Geosciences, offers weeklong summer geology field based courses to secondary students from minority-serving high schools in Texas and the Bahamas. Students transitioning from eighth to ninth grade are recruited into the program and ideally remain in GeoFORCE for four years. The program aims to empower underrepresented students by exposing them to experiences intended to inspire them to pursue geoscience or other STEM careers. Since the program's inception in 2005, GeoFORCE Texas has relied on a mix of classroom lectures delivered by a geoscience faculty member and time in the field. Early research findings from a National Science Foundation-sponsored GeoPaths-IMPACT project are influencing the evolution of field instruction away from the faculty-led lecture model to student-centered learning that may improve students' grasp of key geological concepts. The eleventh and twelfth grade programs are shifting towards this strategy. Each trip is facilitated by a seven-person team comprised of a geoscience graduate student, master teachers, four undergraduate geology students, and preservice teachers. Members of the instructional team reflected the racial, ethnic, and cultural diversity that the geoscience strives to achieve; all are excellent role models for GeoFORCE students. The outcome of the most recent Central Texas twelfth grade trip, which used a student-centered, project-based approach, was especially noteworthy. Each group was given a topic to apply to what they saw in the field, such as fluvial systems, cultural significance, or geohazards, etc., and present in any manner in front of peers and a panel of geoscience experts. Students used the latest presentation technology available to them (e.g. Prezi, iMovies) and sketches and site notes from field stops. The final presentations were clear, informative, and entertaining. It can be concluded that the students were more engaged with the

  2. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  3. New approaches and solutions of the nonlinear force-free field

    International Nuclear Information System (INIS)

    Xie Baisong; Yin Xintao; Luo Xia

    2006-01-01

    New approaches to nonlinear force-free field equations are presented and new exact solutions are found analytically. Examples are given and some implications of the results to astrophysical solar plasmas as well as tokamak plasmas are discussed

  4. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    International Nuclear Information System (INIS)

    Soares, T. A.; Daura, X.; Oostenbrink, C.; Smith, L. J.; Gunsteren, W. F. van

    2004-01-01

    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, 3 J NHα and 3 J αβ coupling constants, and 1 5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone 3 J HNα -coupling constants and 1 H- 1 5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain 3 J αβ -coupling constants and 1 H- 1 5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result

  5. Droplet rotation model apply in steam uniform flow and gravitational field

    International Nuclear Information System (INIS)

    Zhang Jinyi; Bo Hanliang; Sun Yuliang; Wang Dazhong

    2012-01-01

    The mechanism droplet movement behavior and the qualitative description of droplet trajectory in the steam uniform flow field in the gravitational field were researched with droplet rotation model. According to the mechanism of gravitational field and uniform flow fields, the effects on droplets movement were analyzed and the importance of lift forces was also discussed. Finally, a general trajectory and mechanism of the droplets movement was derived which lays the groundwork for the qualitative analysis of the single-drop model and could be general enough to be used in many applications. (authors)

  6. Quantifying the Attractive Force Exerted on the Pinned Calcium Spiral Waves by Using the Adventive Field

    International Nuclear Information System (INIS)

    Qiu Kang; Tang Jun; Luo Jin-Ming; Ma Jun

    2013-01-01

    The cytosolic calcium system is inhomogenous because of the discrete and random distribution of ion channels on the ER membrane. It is well known that the spiral tip can be pinned by the heterogenous area, and the field can detach the spiral from the heterogeneity. We use the adventive field to counteract the attractive force exerting on the calcium spiral wave by the heterogeneity, then the strength of the adventive field is used to quantify the attractive force indirectly. Two factors determining the attractive force are studied. It is found that: (1) the attractive force sharply increases with size of the heterogeneity for small-size heterogeneity, whereas the force increases to a saturated value for large-size heterogeneity; (2) for large-size heterogeneity, the force almost remains constant unless the level of the heterogeneity vanishes, the force decreases to zero linearly and sharply, and for small-size heterogeneity, the force decreases successively with the level of the heterogeneity. Furthermore, it is found that the forces exist only when the spiral tip is very close to the heterogenous area. Our study may shed some light on the control or suppression of the calcium spiral wave

  7. Coupled energy-drift and force-balance equations for high-field hot-carrier transport

    International Nuclear Information System (INIS)

    Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.

    2005-01-01

    Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation, which depends on the distribution of electrons interacting with phonons. The work done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field direction. The importance of this anisotropic distribution is demonstrated through a comparison with the isotropic energy-balance equation, from which we find that defining a state-independent electron temperature becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation and the Boltzmann scattering equation for hot phonons

  8. Macroscopic QED in linearly responding media and a Lorentz-Force approach to dispersion forces

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, Christian

    2008-07-08

    In this thesis, a very general quantization scheme for the macroscopic electromagnetic field in arbitrary linearly responding media is presented. It offers a unified approach to QED in such media. Applying the quantization scheme, a theory of the dispersion forces on the basis of the Lorentz force is developed. By regarding the dispersion force as the (ground-state or thermal-state) expectation value of the Lorentz force that acts on appropriately defined charge and current densities, Casimir, Casimir-Polder, and van der Waals forces are united in a very natural way that makes transparent their common physical basis. Application of the theory to planar structures yields generalizations of well-known Lifschitz and Casimir-type formulas. (orig.)

  9. Macroscopic QED in linearly responding media and a Lorentz-Force approach to dispersion forces

    International Nuclear Information System (INIS)

    Raabe, Christian

    2008-01-01

    In this thesis, a very general quantization scheme for the macroscopic electromagnetic field in arbitrary linearly responding media is presented. It offers a unified approach to QED in such media. Applying the quantization scheme, a theory of the dispersion forces on the basis of the Lorentz force is developed. By regarding the dispersion force as the (ground-state or thermal-state) expectation value of the Lorentz force that acts on appropriately defined charge and current densities, Casimir, Casimir-Polder, and van der Waals forces are united in a very natural way that makes transparent their common physical basis. Application of the theory to planar structures yields generalizations of well-known Lifschitz and Casimir-type formulas. (orig.)

  10. A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate

    Science.gov (United States)

    Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian

    2017-12-01

    We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

  11. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds

    Science.gov (United States)

    Pietropolli Charmet, Andrea; Cornaton, Yann

    2018-05-01

    This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.

  12. Effects of lorentz force on flow fields of free burning arc and wall stabilized non-transferred arc

    International Nuclear Information System (INIS)

    Peng Yi; Huang Heji; Pan Wenxia

    2013-01-01

    The flow fields of two typical DC plasma arcs, namely the transferred free burning arc and the non-transferred arc were simulated by solving hydrodynamic equations and electromagnetic equations. The effects of the Lorentz force on the characteristics of the flow fields of these two typical DC plasma arcs were estimated. Results show that in the case of the free burning arc, the Lorentz force due to the current self-induced magnetic field has significant impact on the flow fields, as the self-induced magnetic compression is the main arc constraint mechanism. However, in the case of the non-transferred arc generated in a torch with long and narrow inter-electrode inserts and an abruptly expanded anode, the Lorentz force has limited impact on the flow fields of the plasma especially at the downstream of the inter-electrode inserts, compared with the strong wall constraints and relatively high aerodynamic force. This is because the ratio of the electromagnetic force to the aerodynamic force is only about 0.01 in this region. When the main consideration is outlet parameters of the wall stabilized non-transferred DC arc plasma generator, in order to improve the efficiency of the numerical simulation program, the Lorentz force could be neglected in the non-transferred arc in some cases. (authors)

  13. Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application

    International Nuclear Information System (INIS)

    Vega, Ian; Detweiler, Steven

    2008-01-01

    We propose an approach for the calculation of self-forces, energy fluxes and waveforms arising from moving point charges in curved spacetimes. As opposed to mode-sum schemes that regularize the self-force derived from the singular retarded field, this approach regularizes the retarded field itself. The singular part of the retarded field is first analytically identified and removed, yielding a finite, differentiable remainder from which the self-force is easily calculated. This regular remainder solves a wave equation which enjoys the benefit of having a nonsingular source. Solving this wave equation for the remainder completely avoids the calculation of the singular retarded field along with the attendant difficulties associated with numerically modeling a delta-function source. From this differentiable remainder one may compute the self-force, the energy flux, and also a waveform which reflects the effects of the self-force. As a test of principle, we implement this method using a 4th-order (1+1) code, and calculate the self-force for the simple case of a scalar charge moving in a circular orbit around a Schwarzschild black hole. We achieve agreement with frequency-domain results to ∼0.1% or better.

  14. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  15. Memory function formalism applied to electronic transport in disordered systems

    International Nuclear Information System (INIS)

    Cunha Lima, I.C. da

    1984-01-01

    Memory function formalism is briefly reviewed and applied to electronic transport using the projection operator technique. The resistivity of a disordered 2-D electron gas under strong magnetic field is obtained in terms of force-force correlation function. (Author) [pt

  16. Microscopic derivation of the force on a dielectric fluid in an electromagnetic field

    International Nuclear Information System (INIS)

    Lai, H.M.; Suen, W.M.; Young, K.

    1982-01-01

    The force acting on a Clausius-Mossotti fluid in an electromagnetic field is evaluated microscopically. Owing to the modification of the two-particle density by the electric field, an additional mechanical force Δf/sup( M/) is found. When this is added to the electrical force f/sup( E/), the total force in the static case becomes identical to that deduced macroscopically by Helmholtz. The analysis is extended to various time-dependent cases, and it is pointed out that Δf/sup( M/) essentially assumes its static value on time scales longer than T/sub c/, the relaxation time of the two-particle density, but is otherwise negligibly small. Thus Peierls's theory of the momentum of light is valid only for pulses much shorter than T/sub c/; the necessary correction due to Δf/sup( M/) in other cases is given and discussed

  17. Scalar meson field and many-body forces. Chapter 23

    International Nuclear Information System (INIS)

    Nyman, E.M.

    1979-01-01

    In applications of field theory to the theory of the nuclear forces, one has frequently assumed that there is a scalar meson. It will then be responsible for most of the medium-range attraction between the nucleons. According to current ideas, however, it is possible to account for the medium-range attraction without an elementary sigma meson. This approach requires a careful treatment of the exchange of interacting pairs of π mesons, such as to include those ππ interactions which are responsible for the formation and decay of the sigma meson. Recently, the scalar field in the nuclear many-body problem has begun to receive more attention. There are two reasons for this change of philosophy. One reason is the discovery of neutron stars. In neutron stars, the nucleon number density can be much higher than in nuclei. One therefore wants to derive the equation of state from a relativistic many-body theory. This forces one to deal explicitly with a set of mesons, such that in the non-relativistic limit one recovers the one-boson-exchange potential. (Auth.)

  18. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?

    NARCIS (Netherlands)

    Villa, Alessandra; Fan, Hao; Wassenaar, Tsjerk; Mark, Alan E.

    2007-01-01

    The sensitivity of molecular dynamics simulations to variations in the force field has been examined in relation to a set of 36 structures corresponding to 31 proteins simulated by using different versions of the GROMOS force field. The three parameter sets used (43a1, 53a5, and 53a6) differ

  19. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ

    Science.gov (United States)

    Fernando L. Dri; Xiawa Wu; Robert J. Moon; Ashlie Martini; Pablo D. Zavattieri

    2015-01-01

    Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models...

  20. Force-field dependence of the conformational properties of ,-dimethoxypolyethylene glycol

    NARCIS (Netherlands)

    Winger, Moritz; de Vries, Alex H.; van Gunsteren, Wilfred F.

    2009-01-01

    A molecular dynamics (MD) study of ,-dimethoxypolyethylene glycol has been carried out under various conditions with respect to solvent composition, ionic strength, chain length, force field and temperature. A previous MD study on a 15-mer of polyethyleneglycol (PEG) suggested a helical equilibrium

  1. Center for Food Safety and Applied Nutrition

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Food Safety and Applied Nutrition, known as CFSAN, is one of six product-oriented centers, in addition to a nationwide field force, that carry out the...

  2. Efficient nonparametric n -body force fields from machine learning

    Science.gov (United States)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  3. Force field inside the void in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-01-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force

  4. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  5. Intermolecular Force Field Parameters Optimization for Computer Simulations of CH4 in ZIF-8

    Directory of Open Access Journals (Sweden)

    Phannika Kanthima

    2016-01-01

    Full Text Available The differential evolution (DE algorithm is applied for obtaining the optimized intermolecular interaction parameters between CH4 and 2-methylimidazolate ([C4N2H5]− using quantum binding energies of CH4-[C4N2H5]− complexes. The initial parameters and their upper/lower bounds are obtained from the general AMBER force field. The DE optimized and the AMBER parameters are then used in the molecular dynamics (MD simulations of CH4 molecules in the frameworks of ZIF-8. The results show that the DE parameters are better for representing the quantum interaction energies than the AMBER parameters. The dynamical and structural behaviors obtained from MD simulations with both sets of parameters are also of notable differences.

  6. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force

    International Nuclear Information System (INIS)

    Antunes, A; Glover, P M; Li, Y; Mian, O S; Day, B L

    2012-01-01

    Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635–40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier–Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier–Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced

  7. Leveraging intellectual capital through Lewin's Force Field Analysis: The case of software development companies

    Directory of Open Access Journals (Sweden)

    Alexandru Capatina

    2017-09-01

    Full Text Available This article presents an original conceptual framework for the strategic management of intellectual capital assets in software development companies. The framework is based on Lewin's Force Field Analysis. The framework makes it possible to assess software company managers’ opinions regarding the way driving and restraining forces affect the pillars of intellectual capital. The capacity to adapt to change is vital for companies in knowledge-intensive industries. Accordingly, this study examined a sample of 74 Romanian software development companies. The aim was to help companies benefit from managing the driving and restraining forces acting upon the pillars of intellectual capital (human, structural, and relational. The effects of the driving forces, quantified by PathMaker software's Force Field Tool, were observed to be greater than the restraining forces for each pillar of intellectual capital. This paper contributes by showing the explanatory power of this framework. The framework thus offers a tool that helps managers drive change in their organizations through effective intellectual capital management. Furthermore, this article describes how to encourage the implementation of changes that create value for software development companies.

  8. Notes on entropy force in general spherically symmetric spacetimes

    International Nuclear Information System (INIS)

    Cai Ronggen; Cao Liming; Ohta, Nobuyoshi

    2010-01-01

    In a recent paper [arXiv:1001.0785], Verlinde has shown that the Newton gravity appears as an entropy force. In this paper we show how gravity appears as entropy force in Einstein's equation of gravitational field in a general spherically symmetric spacetime. We mainly focus on the trapping horizon of the spacetime. We find that when matter fields are absent, the change of entropy associated with the trapping horizon indeed can be identified with an entropy force. When matter fields are present, we see that heat flux of matter fields also leads to the change of entropy. Applying arguments made by Verlinde and Smolin, respectively, to the trapping horizon, we find that the entropy force is given by the surface gravity of the horizon. The cases in the untrapped region of the spacetime are also discussed.

  9. Experimental investigation of the effect of an electric field on heat transfers at boiling point for a high-resistivity water in forced convection

    International Nuclear Information System (INIS)

    Morin, Henri; Verdier, Jacques

    1964-10-01

    The enhancement of heat exchanges with boiling water in forced convection in an annular duct is studied when applying an electric field between the two walls of the duct. At the local boiling and at saturation temperature, for a water resistivity comprised between 0.5 and 1 M Ω cm, with fields on the cylindrical interior surface of the canal comprised between 4 and 8 kV/cm, significant enhancements of the exchanged heat fluxes are noticed, 2.5 to 10 time superior to exchanges without electric field. When heating, heat fluxes may be increased from two to three times [fr

  10. The Quantum Space Phase Transitions for Particles and Force Fields

    Directory of Open Access Journals (Sweden)

    Chung D.-Y.

    2006-07-01

    Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.

  11. Gravitomagnetic field of the universe and Coriolis force on the rotating Earth

    International Nuclear Information System (INIS)

    Veto, B

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe-deduced from a simple model-exerts a gravitomagnetic Lorentz force on moving bodies, a force parallel to and with comparable strength to the Coriolis force observed on the rotating Earth. It seems after simple considerations that the Coriolis force happens to be the gravitomagnetic Lorentz force exerted by the mass of a black hole universe. The description of the phenomenon is simpler using the gravitomagnetic approach than the standard formulation of general relativity, so the method relying on gravitomagnetism is advisable in lectures intended for master's degree level physics students and advanced undergraduates.

  12. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  13. The MARTINI force field : Coarse grained model for biomolecular simulations

    NARCIS (Netherlands)

    Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge; Tieleman, D. Peter; de Vries, Alex H.

    2007-01-01

    We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To

  14. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Evolution of the magnetic structure of TbRu{sub 2}Al{sub 10} in applied field

    Energy Technology Data Exchange (ETDEWEB)

    White, R., E-mail: Reyner.White@student.adfa.edu.au [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT, 2600 (Australia); Hutchison, W.D. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT, 2600 (Australia); Mizushima, T. [Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555 (Japan); Studer, A.J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232 (Australia)

    2016-09-15

    TbRu{sub 2}Al{sub 10} is found to undergo two magnetic phase transitions as a function of temperature and three as a function of applied field at low temperature. The Tb{sup 3+} magnetic moments order antiferromagnetically along the c-axis at 15.0(3) K, with an incommensurate sinusoidally modulated structure with a propagation vector of k = (0, 0.759(1), 0). At 6.5(3) K the structure switches to square wave order. Analysis of single crystal TbRu{sub 2}Al{sub 10} has revealed that this square wave structure is altered to a ‘pulse wave’ on application of a 1.30 T magnetic field along the c-axis, with two in fifty of the magnetic moments across the structure changing direction to be aligned parallel with the direction of the field. At 1.85 T a further three moments flip, leading to a duty cycle of 60% and resulting in a total change of one in ten moments from the starting square wave structure. - Highlights: • The magnetic and physical properties of the intermetallic TbRu{sub 2}Al{sub 10} were examined. • TbRu{sub 2}Al{sub 10} was found to order antiferromagnetically at 15.0(3) K. • Neutron powder diffraction revealed sinusoidal magnetic ordering below 15 K. • Single crystal neutron diffraction revealed square wave magnetic order at 2 K. • An applied magnetic field along the c-axis forces the moments into pulse wave order.

  16. Three dimensional numerical study of different parameters effect on the external magnetic field applied to center the arc of the horizontal mercury discharge lamp

    Directory of Open Access Journals (Sweden)

    Mohamed Bechir Ben Hamida

    2015-10-01

    Full Text Available The aim of this paper is to evaluate the magnitude of the external magnetic field to be applied to a horizontal mercury discharge lamp such that the Lorentz forces counterbalance buoyancy forces and the hot region of the arc remains centered inside the lamp with the variation of six parameters of the lamp such as the external temperature of the lamp, envelope thickness, convective loss, Interelectrodeslength, pressure and current supply pointing to the influence of the parameters to the compensating magnetic field value. To achieve this objective, a commercial numerical software “Comsol Multiphysics” is used to implement the model that solves the equations of mass, energy and momentum for laminar compressible flow combined with the Laplace equation for the plasma in a three dimensional.

  17. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    Energy Technology Data Exchange (ETDEWEB)

    Soares, T. A. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Daura, X. [Universitat Autonoma de Barcelona, InstitucioCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i Biomedicina (Spain); Oostenbrink, C. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Smith, L. J. [University of Oxford, Oxford Centre for Molecular Sciences, Central Chemistry Laboratory (United Kingdom); Gunsteren, W. F. van [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland)], E-mail: wfvgn@igc.phys.chem.ethz.ch

    2004-12-15

    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, {sup 3}J{sub NH{alpha}} and {sup 3}J{sub {alpha}}{sub {beta}} coupling constants, and {sup 1}5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone {sup 3}J{sub HN{alpha}}-coupling constants and {sup 1}H- {sup 1}5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain {sup 3}J{sub {alpha}}{sub {beta}}-coupling constants and {sup 1}H- {sup 1}5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the

  18. A molecular mechanics (MM3(96)) force field for metal-amide complexes

    International Nuclear Information System (INIS)

    Hay, B.P.; Clement, O.; Sandrone, G.; Dixon, D.A.

    1998-01-01

    A molecular mechanics (MM3(96)) force field is reported for modeling metal complexes of amides in which the amide is coordinated through oxygen. This model uses a points-on-a-sphere approach which involves the parameterization of the Msingle bondO stretch, the Msingle bondO double-bond C bend, and the Msingle bondO double-bond Csingle bondX (X = C, H, N) torsion interactions. Relationships between force field parameters and metal ion properties (charge, ionic radius, and electronegativity) are presented that allow the application of this model to a wide range of metal ions. The model satisfactorily reproduces the structures of over fifty amide complexes with the alkaline earths, transition metals, lanthanides, and actinides

  19. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  20. Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-11-01

    Full Text Available Abstract Background Conformational sampling for small molecules plays an essential role in drug discovery research pipeline. Based on multi-objective evolution algorithm (MOEA, we have developed a conformational generation method called Cyndi in the previous study. In this work, in addition to Tripos force field in the previous version, Cyndi was updated by incorporation of MMFF94 force field to assess the conformational energy more rationally. With two force fields against a larger dataset of 742 bioactive conformations of small ligands extracted from PDB, a comparative analysis was performed between pure force field based method (FFBM and multiple empirical criteria based method (MECBM hybrided with different force fields. Results Our analysis reveals that incorporating multiple empirical rules can significantly improve the accuracy of conformational generation. MECBM, which takes both empirical and force field criteria as the objective functions, can reproduce about 54% (within 1Å RMSD of the bioactive conformations in the 742-molecule testset, much higher than that of pure force field method (FFBM, about 37%. On the other hand, MECBM achieved a more complete and efficient sampling of the conformational space because the average size of unique conformations ensemble per molecule is about 6 times larger than that of FFBM, while the time scale for conformational generation is nearly the same as FFBM. Furthermore, as a complementary comparison study between the methods with and without empirical biases, we also tested the performance of the three conformational generation methods in MacroModel in combination with different force fields. Compared with the methods in MacroModel, MECBM is more competitive in retrieving the bioactive conformations in light of accuracy but has much lower computational cost. Conclusions By incorporating different energy terms with several empirical criteria, the MECBM method can produce more reasonable conformational

  1. Dissolved organic carbon--contaminant interaction descriptors found by 3D force field calculations.

    Science.gov (United States)

    Govers, H A J; Krop, H B; Parsons, J R; Tambach, T; Kubicki, J D

    2002-03-01

    Enthalpies of transfer at 300 K of various partitioning processes were calculated in order to study the suitability of 3D force fields for the calculation of partitioning constants. A 3D fulvic acid (FA) model of dissolved organic carbon (DOC) was built in a MM+ force field using AMI atomic charges and geometrical optimization (GO). 3,5-Dichlorobiphenyl (PCB14), 4,4'-dichlorobiphenyl (PCB15), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (PPDDT) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine) were inserted into different sites and their interaction energies with FA were calculated. Energies of hydration were calculated and subtracted from FA-contaminant interactions of selected sites. The resulting values for the enthalpies of transfer from water to DOC were 2.8, -1.4, -6.4 and 0.0 kcal/mol for PCB 14, PCB15, PPDDT and Atrazine, respectively. The value of PPDDT compared favorably with the experimental value of -5.0 kcal/mol. Prior to this, the method was studied by the calculation of the enthalpies of vaporization and aqueous solution using various force fields. In the MM + force field GO predicted enthalpies of vaporization deviated by +0.7 (PCB14), +3.6 (PCB15) and -0.7 (PPDDT)kcal/mol from experimental data, whereas enthalpies of aqueous solution deviated by -3.6 (PCB14), +5.8 (PCB15) and +3.7 (PPDDT) kcal/mol. Only for PCB14 the wrong sign of this enthalpy value was predicted. Potential advantages and limitations of the approach were discussed.

  2. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Schmitz, Alexander; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  3. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro

    2017-01-20

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  4. A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

    International Nuclear Information System (INIS)

    Jiang Chaowei; Feng Xueshang; Xiang Changqing

    2012-01-01

    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

  5. A Kirkwood-Buff derived force field for alkaline earth halide salts

    Science.gov (United States)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  6. High-field transport of electrons and radiative effects using coupled force-balance and Fokker-Planck equations beyond the relaxation-time approximation

    International Nuclear Information System (INIS)

    Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.

    2004-01-01

    The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization

  7. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  8. A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field

    OpenAIRE

    吉田, 欣二郎; 松田, 茂雄; 松本, 洋和

    2000-01-01

    High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...

  9. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    Science.gov (United States)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  10. A study on fixing force generation mechanism of ER gel

    International Nuclear Information System (INIS)

    Tanaka, H; Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  11. A study on fixing force generation mechanism of ER gel

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Kakinuma, Y; Aoyama, T [School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Anzai, H [Fujikura kasei Co., Ltd., 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: h-tanaka@ina.sd.keio.ac.jp

    2009-02-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  12. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements.

    Science.gov (United States)

    Lay, Wesley K; Miller, Mark S; Elcock, Adrian H

    2016-04-12

    GLYCAM06 and CHARMM36 are successful force fields for modeling carbohydrates. To correct recently identified deficiencies with both force fields, we adjusted intersolute nonbonded parameters to reproduce the experimental osmotic coefficient of glucose at 1 M. The modified parameters improve behavior of glucose and sucrose up to 4 M and improve modeling of a dextran 55-mer. While the modified parameters may not be applicable to all carbohydrates, they highlight the use of osmotic simulations to optimize force fields.

  13. Probing the Importance of Charge Flux in Force Field Modeling.

    Science.gov (United States)

    Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank

    2017-08-08

    We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.

  14. How well do force fields capture the strength of salt bridges in proteins?

    Directory of Open Access Journals (Sweden)

    Mustapha Carab Ahmed

    2018-06-01

    Full Text Available Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1 to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.

  15. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  16. ANLIZE: a molecular mechanics force field visualization tool and its application to 18-crown-6.

    Science.gov (United States)

    Stolworthy, L D; Shirts, R B

    1997-03-01

    We describe a software tool that allows one to visualize and analyze the importance of each individual steric interaction in a molecular mechanics force field. ANLIZE is presently implemented for the Dreiding force field for use with the Cerius2 software package, but could be implemented in any molecular mechanics package with a graphical user interface. ANLIZE calculates individual interactions in the force field, sorts them by size, and displays them in several ways from a menu of choices. This allows the user to scan through selected interactions to visualize which interactions are the primary determinants of preferred conformations. The features of ANLIZE are illustrated using 18-crown-6 as an example, and the factors governing conformational preference in 18-crown-6 are demonstrated. Users of molecular mechanics packages are encouraged to demand this functionality from commercial software producers.

  17. Removal of alum from Iron-Age wooden objects by an applied electric field

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Ottosen, Lisbeth M.; Jensen, Poul

    2010-01-01

    In this paper removal of potassium, sulfate and aluminum ions from waterlogged alum treated wood with the use of an applied electric field is described. An electric DC field was applied across the wood for 4-20 days. At the end of the experiments sulfate had moved as expected towards the anode...... was not obtained in the experiments reported here, but the high conductivity and the transport of the measured ions due to the electric field indicates that an applied electric field as a method for removal of alum and other unwanted ions from treated wooden objects warrants further investigation....

  18. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    Science.gov (United States)

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  19. Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    DEFF Research Database (Denmark)

    Voroshylova, I. V.; Chaban, V. V.

    2014-01-01

    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)......Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis......(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cationanion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove...... and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia LopesPadua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids....

  20. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  1. Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field

    International Nuclear Information System (INIS)

    Karabulut, ibrahim; Safak, Haluk

    2005-01-01

    The optical rectification (OR) in a semiparabolic quantum well with an applied electric field has been theoretically investigated. The electronic states in a semiparabolic quantum well with an applied electric field are calculated exactly, within the envelope function and the displaced harmonic oscillator approach. Numerical results are presented for the typical Al x Ga 1- x As/GaAs quantum well. These results show that the applied electric field and the confining potential frequency of the semiparabolic quantum well have a great influence on the OR coefficient. Moreover, the OR coefficient also depends sensitively on the relaxation rate of the semiparabolic quantum well system

  2. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo; Kneubil, Fabiana; Robilotta, Manoel

    2017-01-01

    The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature...... of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge...

  3. The Röntgen interaction and forces on dipoles in time-modulated optical fields

    Science.gov (United States)

    Sonnleitner, Matthias; Barnett, Stephen M.

    2017-12-01

    The Röntgen term is an often neglected contribution to the interaction between an atom and an electromagnetic field in the electric dipole approximation. In this work we discuss how this interaction term leads to a difference between the kinetic and canonical momentum of an atom which, in turn, leads to surprising radiation forces acting on the atom. We use a number of examples to explore the main features of this interaction, namely forces acting against the expected dipole force or accelerations perpendicular to the beam propagation axis.

  4. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa{sub 2}Cu{sub 3}O{sub 7-y} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y.; Go, S. J.; Joo, H. T. [Korea Science Academy of Korea Advanced Institute of Science and Technology, Pusan (Korea, Republic of); Lee, Y. J.; Park, S. D.; Jun, B. H.; KIm, C. J. [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    The effects of the crystallographic orientation and sample thickness on the magnetic levitation forces (F) and trapped magnetic field (B) of single grain YBCO bulk superconductors were examined. Single grain YBCO samples with a (001), (110) or (100) surface were used as the test samples. The samples used for the force-distance (F-d) measurement were cooled at 77 K without a magnetic field (zero field cooling, ZFC), whereas the samples used for the B measurement were cooled under the external magnetic field of a Nd-B-Fe permanent magnet (field cooling, FC). It was found that F and B of the (001) surface were higher than those of the (110) or (100) surface, which is attributed to the higher critical current density (J{sub c}) of the (001) surface. For the (001) samples with t=5–18 mm, the maximum magnetic levitation forces (F{sub max}s) of the ZFC samples were larger than 40 N. About 80% of the applied magnetic field was trapped in the FC samples. However, the F and B decreased rapidly as t decreased below 5 mm. There exists a critical sample thickness (t=5 mm for the experimental condition of this study) for maintaining the large levitation/trapping properties, which is dependent on the material properties and magnitude of the external magnetic fields.

  6. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  7. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  8. Analysis of PM Magnetization Field Effects on the Unbalanced Magnetic Forces due to Rotor Eccentricity in BLDC Motors

    Directory of Open Access Journals (Sweden)

    S. Mahdiuon-Rad

    2013-08-01

    Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.

  9. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, A A; Rubinov, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Gaida, L S; Guzatov, D V; Svistun, A Ch [Yanka Kupala State University of Grodno, Grodno (Belarus)

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  10. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels.

    Science.gov (United States)

    Cox, C D; Bavi, N; Martinac, B

    2017-01-01

    Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K + (K 2P ) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Imaging stability in force-feedback high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Byung I.; Boehm, Ryan D.

    2013-01-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate

  12. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  13. Is the Control of Applied Digital Forces During Natural Five-digit Grasping Affected by Carpal Tunnel Syndrome?

    Science.gov (United States)

    Chen, Po-Tsun; Jou, I-Ming; Lin, Chien-Ju; Chieh, Hsiao-Feng; Kuo, Li-Chieh; Su, Fong-Chin

    2015-07-01

    The impaired sensory function of the hand induced by carpal tunnel syndrome (CTS) is known to disturb dexterous manipulations. However, force control during daily grasping configuration among the five digits has not been a prominent focus of study. Because grasping is so important to normal function and use of a hand, it is important to understand how sensory changes in CTS affect the digit force of natural grasp. We therefore examined the altered patterns of digit forces applied during natural five-digit grasping in patients with CTS and compared them with those seen in control subjects without CTS. We hypothesized that the patients with CTS will grasp by applying larger forces with lowered pair correlations and more force variability of the involved digits than the control subjects. Specifically, we asked: (1) Is there a difference between patients with CTS and control subjects in applied force by digits during lift-hold-lower task? (2) Is there a difference in force correlation coefficient of the digit pairs? (3) Are there force variability differences during the holding phase? We evaluated 15 female patients with CTS and 15 control subjects matched for age, gender, and hand dominance. The applied radial forces (Fr) of the five digits were recorded by respective force transducers on a cylinder simulator during the lift-hold-lower task with natural grasping. The movement phases of the task were determined by a video-based motion capture system. The applied forces of the thumb in patients with CTS (7 ± 0.8 N; 95% CI, 7.2-7.4 N) versus control subjects (5 ± 0.8 N; 95% CI, 5.1-5.3 N) and the index finger in patients with CTS (3 ± 0.3 N; 95% CI, 3.2-3.3 N) versus control subjects (2 ± 0.3 N; 95% CI, 2.2-2.3 N) observed throughout most of the task were larger in the CTS group (p ranges 0.035-0.050 for thumb and 0.016-0.050 for index finger). In addition, the applied force of the middle finger in patients with CTS (1 ± 0.1 N; 95% CI, 1.3-1.4

  14. Lienard-Wiechert field as covariant dynamics of electric lines of force

    International Nuclear Information System (INIS)

    Arutyunyan, S.G.

    1989-01-01

    The Lienard-Wiechert field of an arbitrarily moving charge is presented as a system of Lorentz-covariant moving electric lines of force. It is shown that the 4-vector describing these lines is written as a sum of the 4-vector of the charge and the isotropic 4-vector directed to the observation point. The motion of this 4-vector is described by the equation coinciding with the equation of motion for magnetic moment in external fields provided that the intrinsic magnetic moment is zero. By the system of lines that corresponds to the complete equation of magnetic moment in external fields the electromagnetic field is restored. It turned out that the spatial magnetic current proportional to the isotropic 4-vector directed to the observation point corresponds to this field. 8 refs

  15. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Moazami, Hamid Reza [School of Physics and Accelerators, NSTRI, P. O. Box, 11365-8486, Tehran (Iran, Islamic Republic of); Hosseiny Davarani, Saied Saeed, E-mail: ss-hosseiny@sbu.ac.ir [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Mohammadi, Jamil; Nojavan, Saeed [Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of); Abrari, Masoud [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran (Iran, Islamic Republic of)

    2015-09-03

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m{sup −1} and 111 kV m{sup −1} in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  16. The effect of electric field geometry on the performance of electromembrane extraction systems: Footprints of a third driving force along with migration and diffusion

    International Nuclear Information System (INIS)

    Moazami, Hamid Reza; Hosseiny Davarani, Saied Saeed; Mohammadi, Jamil; Nojavan, Saeed; Abrari, Masoud

    2015-01-01

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m −1 and 111 kV m −1 in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. - Highlights: • Electric field vectors have been calculated in EME systems. • A new driving force has been proposed in EME systems. • EME can be theoretically applied to nonionic polarizable analytes.

  17. A Sinusoidal Applied Electric Potential can Induce a Long-Range, Steady Electrophoretic Force

    Science.gov (United States)

    Amrei, Seyyed Hashemi; Ristenpart, William D.; Miller, Greg R.

    2017-11-01

    We use the standard electrokinetic model to numerically investigate the electric field in aqueous solutions between parallel electrodes under AC polarization. In contrast to prior work, we invoke no simplifying assumptions regarding the applied voltage, frequency, or mismatch in ionic mobilities. We find that the nonlinear electromigration terms significantly contribute to the overall shape of the electric potential vs. time, which at sufficiently high applied potentials develops multi-modal peaks. More surprisingly, we find that electrolytes with non-equal mobilities yield an electric field with non-zero time average at large distances from the electrodes. Our calculations indicate this long-range electric field suffices to levitate colloidal particles many microns away from the electrode against the gravitational field, in accord with experimental observations of such behavior (Woehl et al., PRX, 2015). Moreover, the results indicate that particles will aggregate laterally near electrodes in some electrolytes but separate in others, helping explain a longstanding but not well understood phenomenon.

  18. Low-energy oxygen bombardment of silicon by MD simulations making use of a reactive force field

    International Nuclear Information System (INIS)

    Philipp, P.; Briquet, L.; Wirtz, T.; Kieffer, J.

    2011-01-01

    In the field of Secondary Ion Mass Spectrometry (SIMS), ion-matter interactions have been largely investigated by numerical simulations. For MD simulations related to inorganic samples, mostly classical force fields assuming stable bonding structure have been used. In materials science, level-three force fields capable of simulating the breaking and formation of chemical bonds have recently been conceived. One such force field has been developed by John Kieffer . This potential includes directional covalent bonds, Coulomb and dipolar interaction terms, dispersion terms, etc. Important features of this force field for simulating systems that undergo significant structural reorganization are (i) the ability to account for the redistribution of electron density upon ionization, formation, or breaking of bonds, through a charge transfer term, and (ii) the fact that the angular constraints dynamically adjust when a change in the coordination number of an atom occurs. In this paper, the modification of the force field to allow for an exact description of the sputtering process, the influence of this modification on previous results obtained for phase transitions in glasses as well as properties of particles sputtered at 250-1000 eV from a mono-crystalline silicon sample will be presented. The simulation results agree qualitatively with predictions from experiments or models. Most atoms are sputtered from the first monolayer: for an impact energy of 250 eV up to 86% of the atoms are sputtered from the first monolayer and for 750 eV, this percentage drops to 61%, with 89% of the atoms being sputtered from the first two monolayers. For sputtering yields, 250 and 500 eV results agree with experimental data, but for 750 eV sub-channelling in the pristine sample becomes more important than in experiments where samples turn amorphous under ion bombardment.

  19. Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein

    Directory of Open Access Journals (Sweden)

    Raiker Witter

    2015-01-01

    Full Text Available Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT. Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges of ab initio calculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation of R=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angle χ1 and small variations of χ2 of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism.

  20. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Application of Enlisted Force Retention Levels and Career Field Stability

    Science.gov (United States)

    2017-03-23

    APPLICATION OF ENLISTED FORCE RETENTION LEVELS AND CAREER FIELD STABILITY THESIS Presented to the Faculty Department of Operational Sciences ...Fulfillment of the Requirements for the Degree of Master of Science in Operations Research Jamie T. Zimmermann, MS, BS Captain, USAF March 2017...Appendix B. The function proc lifetest is a nonparametric estimate of the survivor function using either the Kaplan-Meier method or the actuarial

  2. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Directory of Open Access Journals (Sweden)

    Ivo Stachiv

    2015-11-01

    Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  3. Nanoscale electrowetting effects observed by using friction force microscopy.

    Science.gov (United States)

    Revilla, Reynier; Guan, Li; Zhu, Xiao-Yang; Yang, Yan-Lian; Wang, Chen

    2011-06-21

    We report the study of electrowetting (EW) effects under strong electric field on poly(methyl methacrylate) (PMMA) surface by using friction force microscopy (FFM). The friction force dependence on the electric field at nanometer scale can be closely related to electrowetting process based on the fact that at this scale frictional behavior is highly affected by capillary phenomena. By measuring the frictional signal between a conductive atomic force microscopy (AFM) tip and the PMMA surface, the ideal EW region (Young-Lippmann equation) and the EW saturation were identified. The change in the interfacial contact between the tip and the PMMA surface with the electric field strength is closely associated with the transition from the ideal EW region to the EW saturation. In addition, a reduction of the friction coefficient was observed when increasing the applied electric field in the ideal EW region. © 2011 American Chemical Society

  4. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-01-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core–shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field. (paper)

  5. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Venkata Ananth [CaSTL Center, Department of Chemistry, University of California, Irvine, California 92697 (United States); Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu [Department of Electrical Engineering and Computer Science, 142 Engineering Tower, University of California, Irvine, California 92697 (United States); Nowak, Derek [Molecular Vista, Inc., 6840 Via Del Oro, San Jose, California 95119 (United States)

    2016-06-06

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  6. Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme

    OpenAIRE

    Buck, Matthias; Bouguet-Bonnet, Sabine; Pastor, Richard W.; MacKerell, Alexander D.

    2005-01-01

    The recently developed CMAP correction to the CHARMM22 force field (C22) is evaluated from 25 ns molecular dynamics simulations on hen lysozyme. Substantial deviations from experimental backbone root mean-square fluctuations and N-H NMR order parameters obtained in the C22 trajectories (especially in the loops) are eliminated by the CMAP correction. Thus, the C22/CMAP force field yields improved dynamical and structural properties of proteins in molecular dynamics simulations.

  7. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  8. Application of the nuclear field theory to monopole interactions which include all the vertices of a general force

    International Nuclear Information System (INIS)

    Bes, D.R.; Dussel, G.G.; Liotta, R.J.; Sofia, H.M.; Broglia, R.A.

    1976-01-01

    The field treatment is applied to the monopole pairing and monopole particle-hole interactions in a two-level model. All the vertices of realistic interactions appear, and the problems treated here have most of the complexities of real nuclei. Yet, the model remains sufficiently simple, so that a close comparison with the results of a (conventional) treatment in which only the fermion degrees of freedom are considered is possible. The applicability to actual physical situations appears to be feasible, both for schematic or realistic forces. The advantage of including the exchange components of the interaction in the construction of the phonon is discussed. (Auth.)

  9. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    Bengtsson, H.-U.

    1983-04-01

    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  10. Instabilities of the force-free current configurations

    Science.gov (United States)

    Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; Erb, A.; Walker, E.; Flükiger, R.; Benoit, W.

    1996-03-01

    Using the magneto-optic technique, it is shown that inductively induced force-free current configurations in high purity YBa2Cu3O7-δ single crystals become unstable above a certain well-defined amplitude and frequency of the variation of the applied perpendicular field.

  11. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    Science.gov (United States)

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  12. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  13. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    International Nuclear Information System (INIS)

    Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-01-01

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H p (y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H p (y), its slope coefficient K S and maximum gradient K max changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H p (y) and its slope coefficient K S increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H p (y) and K S reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H p (y) instead of changing the signal curve′s profile; and the magnitude of H p (y), K S , K max and the change rate of K S increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H p (y) signals. • Magnitude of H p (y), K S and K max increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  14. Investigations on the Effects of Vortex-Induced Vibration with Different Distributions of Lorentz Forces

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-01-01

    Full Text Available The control of vortex-induced vibration (VIV in shear flow with different distributions of Lorentz force is numerically investigated based on the stream function–vorticity equations in the exponential-polar coordinates exerted on moving cylinder for Re = 150. The cylinder motion equation coupled with the fluid, including the mathematical expressions of the lift force coefficient C l , is derived. The initial and boundary conditions as well as the hydrodynamic forces on the surface of cylinder are also formulated. The Lorentz force applied to suppress the VIV has no relationship with the flow field, and involves two categories, i.e., the field Lorentz force and the wall Lorentz force. With the application of symmetrical Lorentz forces, the symmetric field Lorentz force can amplify the drag, suppress the flow separation, decrease the lift fluctuation, and then suppress the VIV while the wall Lorentz force decreases the drag only. With the application of asymmetrical Lorentz forces, besides the above-mentioned effects, the field Lorentz force can increase additional lift induced by shear flow, whereas the wall Lorentz force can counteract the additional lift, which is dominated on the total effect.

  15. Force field refinement from NMR scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  16. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime

    2016-01-01

    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  17. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Circular Conditional Autoregressive Modeling of Vector Fields.

    Science.gov (United States)

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2012-02-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.

  19. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  20. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  1. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    journal of. Feb. & Mar. 2001 physics pp. 239–243. A verification of quantum field theory ... minum coated a sphere and flat plate using an atomic force microscope. ... where R is the radius of curvature of the spherical surface. The finite .... sured by AFM) of 60% Au/40% Pd, to form a nonreactive and conductive top layer. For.

  2. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  3. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    Science.gov (United States)

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  4. Applying field mapping refractive beam shapers to improve holographic techniques

    Science.gov (United States)

    Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim

    2012-03-01

    Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  5. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haihong, E-mail: huanghaihong@hfut.edu.cn; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-10-15

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H{sub p}(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H{sub p}(y), its slope coefficient K{sub S} and maximum gradient K{sub max} changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H{sub p}(y) and its slope coefficient K{sub S} increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H{sub p}(y) and K{sub S} reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H{sub p}(y) instead of changing the signal curve′s profile; and the magnitude of H{sub p}(y), K{sub S}, K{sub max} and the change rate of K{sub S} increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H{sub p}(y) signals. • Magnitude of H{sub p}(y), K{sub S} and K{sub max} increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  6. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    Science.gov (United States)

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  7. An investigation of shoulder forces in active shoulder tackles in rugby union football.

    Science.gov (United States)

    Usman, Juliana; McIntosh, Andrew S; Fréchède, Bertrand

    2011-11-01

    In rugby union football the tackle is the most frequently executed skill and one most associated with injury, including shoulder injury to the tackler. Despite the importance of the tackle, little is known about the magnitude of shoulder forces in the tackle and influencing factors. The objectives of the study were to measure the shoulder force in the tackle, as well as the effects of shoulder padding, skill level, side of body, player size, and experimental setting on shoulder force. Experiments were conducted in laboratory and field settings using a repeated measures design. Thirty-five participants were recruited to the laboratory and 98 to the field setting. All were male aged over 18 years with rugby experience. The maximum force applied to the shoulder in an active shoulder tackle was measured with a custom built forceplate incorporated into a 45 kg tackle bag. The overall average maximum shoulder force was 1660 N in the laboratory and 1997 N in the field. This difference was significant. The shoulder force for tackling without shoulder pads was 1684 N compared to 1635 N with shoulder pads. There was no difference between the shoulder forces on the dominant and non-dominant sides. Shoulder force reduced with tackle repetition. No relationship was observed between player skill level and size. A substantial force can be applied to the shoulder and to an opponent in the tackle. This force is within the shoulder's injury tolerance range and is unaffected by shoulder pads. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Force Balance and Substorm Effects in the Magnetotail

    Science.gov (United States)

    Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.

    1997-01-01

    A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.

  9. Steady state models for filamentary plasma structures associated with force free magnetic fields

    International Nuclear Information System (INIS)

    Marklund, G.

    1978-05-01

    This paper presents a model for filamentary plasma structures associated with force-free magnetic fields. A homogenous electric field parallel to the symmetry axis of the magnetic field is assumed. Under the influence of these fields, the plasma will drift radially inwards resulting in an accumulation of plasma in the central region. We assume recombination losses to keep the central plasma density at a finite value, and the recombined plasma i.e. the neutrals to diffuse radially outwards. Plasma density and some neutral gas density distributions for a steady state situation are calculated for various cases

  10. Use of force feedback to enhance graphical user interfaces

    Science.gov (United States)

    Rosenberg, Louis B.; Brave, Scott

    1996-04-01

    This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.

  11. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    Science.gov (United States)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  12. The Behaviors of Ferro-Magnetic Nano-Particles In and Around Blood Vessels under Applied Magnetic Fields

    Science.gov (United States)

    Nacev, A.; Beni, C.; Bruno, O.; Shapiro, B.

    2010-01-01

    In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-layer formation) and that the type of behavior observed is uniquely determined by three non-dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under which circumstances (Figures 5, 6, 7, and 8). We compare our results to previously published in-vitro and in-vivo magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions and prior experimental observations, but we are also able to qualitatively and quantitatively explain behavior that was previously not understood. PMID:21278859

  13. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important

  14. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important.

  15. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  16. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields.

    Science.gov (United States)

    Mercadante, Davide; Milles, Sigrid; Fuertes, Gustavo; Svergun, Dmitri I; Lemke, Edward A; Gräter, Frauke

    2015-06-25

    Understanding the function of intrinsically disordered proteins is intimately related to our capacity to correctly sample their conformational dynamics. So far, a gap between experimentally and computationally derived ensembles exists, as simulations show overcompacted conformers. Increasing evidence suggests that the solvent plays a crucial role in shaping the ensembles of intrinsically disordered proteins and has led to several attempts to modify water parameters and thereby favor protein-water over protein-protein interactions. This study tackles the problem from a different perspective, which is the use of the Kirkwood-Buff theory of solutions to reproduce the correct conformational ensemble of intrinsically disordered proteins (IDPs). A protein force field recently developed on such a basis was found to be highly effective in reproducing ensembles for a fragment from the FG-rich nucleoporin 153, with dimensions matching experimental values obtained from small-angle X-ray scattering and single molecule FRET experiments. Kirkwood-Buff theory presents a complementary and fundamentally different approach to the recently developed four-site TIP4P-D water model, both of which can rescue the overcollapse observed in IDPs with canonical protein force fields. As such, our study provides a new route for tackling the deficiencies of current protein force fields in describing protein solvation.

  17. A data-driven decomposition approach to model aerodynamic forces on flapping airfoils

    Science.gov (United States)

    Raiola, Marco; Discetti, Stefano; Ianiro, Andrea

    2017-11-01

    In this work, we exploit a data-driven decomposition of experimental data from a flapping airfoil experiment with the aim of isolating the main contributions to the aerodynamic force and obtaining a phenomenological model. Experiments are carried out on a NACA 0012 airfoil in forward flight with both heaving and pitching motion. Velocity measurements of the near field are carried out with Planar PIV while force measurements are performed with a load cell. The phase-averaged velocity fields are transformed into the wing-fixed reference frame, allowing for a description of the field in a domain with fixed boundaries. The decomposition of the flow field is performed by means of the POD applied on the velocity fluctuations and then extended to the phase-averaged force data by means of the Extended POD approach. This choice is justified by the simple consideration that aerodynamic forces determine the largest contributions to the energetic balance in the flow field. Only the first 6 modes have a relevant contribution to the force. A clear relationship can be drawn between the force and the flow field modes. Moreover, the force modes are closely related (yet slightly different) to the contributions of the classic potential models in literature, allowing for their correction. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P.

  18. Calculation of magnetic field and electromagnetic forces in MHD superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.; Moisio, M.F.

    1992-01-01

    The realization of a superconducting prototype magnet for MHD energy conversion is under development in Italy. Electromechanical industries and University research groups are involved in the project. The paper deals with analytical methods developed at the Department of Electrical Engineering of Padova University for calculating magnetic field and electromagnetic forces in MHD superconducting magnets and utilized in the preliminary design of the prototype

  19. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.

    Science.gov (United States)

    Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr

    2010-07-28

    Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.

  20. Field emission from finite barrier quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)

    2014-10-01

    We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.

  1. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    Science.gov (United States)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  2. The Comparison of Forces Applied to the Knee Extensor Mechanism during Stance Phase of Gait in Flat Footed Females Three Different in-Shoe Orthotics

    Directory of Open Access Journals (Sweden)

    Mohsen Razeghi

    2012-01-01

    Full Text Available Objective: It has been postulated that subtalar position and movement would influence the function of the foot and the lower limb’s biomechanical alignment as a whole. The aim of this study was to compare the changes of force applied to the knee extensor mechanism of the female subjects while applying three different in-shoe orthotic appliances. Materials & Methods: Feiss Line test was used to assign a group of 10 healthy female subjects aged at 19-25 years as flat foot group. Retro reflective calibration and tracking markers were placed on the subjects over anatomically relevant locations. Kinematic and kinetic data were collected by employing a three dimensional motion capture system (Qualisys®Ltd, Sweden and a force platform (Kistler®, Switzerland respectively, while subjects walked at their preferred speed with 3 different in-shoe orthotics: simple insole, insole with medial arch support, insole with medial arch support and medial heel wedge, and insole with medial arch support and lateral forefoot wedge. Results: A statistically significant lower amount of the force applied to the extensor mechanism was found while applying medial arch support combined with lateral wedge (P=0.005. Conclusion: It could be concluded that changes of the different foot insoles would alter the force applied to the knee extensor mechanism. Results of this study emphasize the immediate effect of applying a medial arch support combined lateral wedge on reduction of the force applied to the extensor mechanism through which decrease a tendency towards musculoskeletal injuries.

  3. Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields

    Directory of Open Access Journals (Sweden)

    Olivier White

    2018-02-01

    Full Text Available Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5, and 1 g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity. Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. This result was underlined by good correlations between grip and load forces in the first trial. Participants predictively applied larger grip forces when they expected increasing gravity steps. They also decreased grip force when they expected decreasing gravity steps, but not as much as they could, indicating imperfect anticipation in that condition. The participants' performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions.

  4. Control over multiscale mixing in broadband-forced turbulence

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2008-01-01

    The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved

  5. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    International Nuclear Information System (INIS)

    Qian Yi; Xu Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined. (general)

  6. Tuning the Mass of Chameleon Fields in Casimir Force Experiments

    CERN Document Server

    Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-01-01

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.

  7. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    Science.gov (United States)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  8. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The inertial effect of acceleration fields on a self-decoupled wheel force transducer

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available AbstractWheel force transducer (WFT is a tool which can measure the three-axis forces and three-axis torques applied to the wheel in vehicle testing applications. However, the transducer is generally mounted on the wheel of a moving vehicle, when abruptly accelerating or braking, the mass/inertia of the transducer itself has extra effects on the sensor response so that inertia/mass loads will be detected and coupled into the signal outputs. This is the inertia coupling effect that decreases the sensor accuracy and should be avoided. In this paper, the inertia coupling problem induced by six dimensional accelerations is investigated for a universal WFT. Inertia load distribution of the WFT is solved based on the principle of equivalent mass and rotary inertia firstly, thus then its impact can be identified with the theoretical derivation. FEM simulation and experimental verification are performed as well. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear respectively. The relative errors are acceptable within less than 5% and the maximum impact of inertia loads on the signal output is about 1.5% in the measuring range.

  10. Ferrofluid meniscus in a horizontal or vertical magnetic field

    International Nuclear Information System (INIS)

    Rosensweig, R.E.; Elborai, S.; Lee, S.-H.; Zahn, M.

    2005-01-01

    An optical system using reflections of a narrow laser beam to measure the height and shape of a ferrofluid meniscus in response to uniform applied magnetic fields finds that meniscus height on a vertical flat wall decreases in horizontal applied field and increases in vertical applied field. An approximate energy minimization analysis predicts meniscus height in directional agreement with measurements. This study is a first step in calculating the tangential surface force acting in flows where magnetization magnitude and direction lag a changing magnetic field direction, and the meniscus shape is magnetically perturbed

  11. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Watts, Charles R; Gregory, Andrew; Frisbie, Cole; Lovas, Sándor

    2018-03-01

    The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1-40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER-ff99sb-ILDN, AMBER-ff99sb*-ILDN, AMBER-ff99sb-NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER-ff99sb-ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α-helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER-ff99sb-NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER-ff99sb-NMR force field, the others tended to under estimate the expected amount of β-sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER-ff99sb-NMR, reproduce a theoretically expected β-sheet-turn-β-sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C-terminal hydrophobic cores from residues 17-21 and 30-36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different. © 2017 Wiley Periodicals, Inc.

  12. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    Science.gov (United States)

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  13. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Suyu; Wang Jiasu

    2009-01-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  14. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai, E-mail: zhlcai2000@163.co [College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307 (China); Wang Suyu; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2009-07-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  15. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Neumann, Marcus A.; van de Streek, Jacco

    2017-01-01

    of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base...

  16. Effect of Excess Gravitational Force on Cultured Myotubes in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available An effect of an excess gravitational force on cultured myoblasts has been studied in an experimental system with centrifugal force in vitro. Mouse myoblasts (C2C12 were seeded on a culture dish of 35 mm diameter, and cultured in the Dulbecco's Modified Eagle's Medium until the sub-confluent condition. To apply the excess gravitational force on the cultured cells, the dish was set in a conventional centrifugal machine. Constant gravitational force was applied to the cultured cells for three hours. Variations were made on the gravitational force (6 G, 10 G, 100 G, 500 G, and 800 G with control of the rotational speed of the rotator in the centrifugal machine. Morphology of the cells was observed with a phasecontrast microscope for eight days. The experimental results show that the myotube thickens day by day after the exposure to the excess gravitational force field. The results also show that the higher excess gravitational force thickens myotubes. The microscopic study shows that myotubes thicken with fusion each other.

  17. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs...... comprising 1-ethyl-3-methylimidazolium cation and amino acid anions. The anions were obtained via deprotonation of carboxyl group. Specific cation-anion non-covalent interactions were taken into account by computing electrostatic potential for ion pairs. The van der Waals interactions were adopted from...

  18. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    Science.gov (United States)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  19. Analysis of the Competitive Environment of Tourist Destinations Aiming at Attracting FDI by Applying Porter's Five Forces Model

    OpenAIRE

    Dobrivojević, Gordana

    2013-01-01

    Aims: The aim of this article is to come to the conclusion whether Porter’s five forces model can be adjusted for the purpose of assessing competitive environment of the tourist destination, in order to attract Tourism Foreign Direct Investments (TFDI), and use it as such as an alternative method for comprehension and enhancement of competitive advantage. Study design: Research paper. Methodology: The research relies on the well-known Porter’s five forces, which the author adjusted and applie...

  20. Superposition of Stress Fields in Diametrically Compressed Cylinders

    Directory of Open Access Journals (Sweden)

    João Augusto de Lima Rocha

    Full Text Available Abstract The theoretical analysis for the Brazilian test is a classical plane stress problem of elasticity theory, where a vertical force is applied to a horizontal plane, the boundary of a semi-infinite medium. Hypothesizing a normal radial stress field, the results of that model are correct. Nevertheless, the superposition of three stress fields, with two being based on prior results and the third based on a hydrostatic stress field, is incorrect. Indeed, this work shows that the Cauchy vectors (tractions are non-vanishing in the parallel planes in which the two opposing vertical forces are applied. The aim of this work is to detail the process used in the construction of the theoretical model for the three stress fields used, with the objective being to demonstrate the inconsistency often stated in the literature.

  1. Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop

    Directory of Open Access Journals (Sweden)

    Myung-Hwan Yoon

    2017-05-01

    Full Text Available Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.

  2. Calculation of electromagnetic fields and forces in coil systems of arbitrary geometry

    International Nuclear Information System (INIS)

    Sackett, S.J.

    1975-01-01

    A computer program, EFFI, is described which calculates the electric and magnetic fields due to an arbitrary spatial distribution of current-carrying circular loops, circular arcs, and straight lines. The electric field is assumed to arise solely from the time variation of the magnetic field, and the magnetic field due to the changing electric field is assumed to be negligible. In addition, the conductor bundle elements (loops, arcs, lines) are assumed to be absent. Electric and magnetic flux lines and magnetic forces and inductances are also calculated by the program. The algorithm used in the code, which is based on a combination of direct and numerical integration using the Biot-Savart law, is discussed. The methods used to maintain accuracy in calculating fields within the conductor bundle, in particular, are detailed. Several examples are then presented to illustrate the input and output features as well as the accuracy obtained and the running time required

  3. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth

    Science.gov (United States)

    Veto, B.

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  4. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  5. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  6. Casimir forces and geometry

    International Nuclear Information System (INIS)

    Buescher, R.

    2005-01-01

    Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the

  7. Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.

    Science.gov (United States)

    Takagi, Hideki; Shimada, Shohei; Miwa, Takahiro; Kudo, Shigetada; Sanders, Ross; Matsuuchi, Kazuo

    2014-12-01

    The goal of this research is to clarify the mechanism by which unsteady forces are generated during sculling by a skilled swimmer and thereby to contribute to improving propulsive techniques. We used particle image velocimetry (PIV) to acquire data on the kinematics of the hand during sculling, such as fluid forces and flow field. By investigating the correlations between these data, we expected to find a new propulsion mechanism. The experiment was performed in a flow-controlled water channel. The participant executed sculling motions to remain at a fixed position despite constant water flow. PIV was used to visualize the flow-field cross-section in the plane of hand motion. Moreover, the fluid forces acting on the hand were estimated from pressure distribution measurements performed on the hand and simultaneous three-dimensional motion analysis. By executing the sculling motion, a skilled swimmer produces large unsteady fluid forces when the leading-edge vortex occurs on the dorsal side of the hand and wake capture occurs on the palm side. By using a new approach, we observed interesting unsteady fluid phenomena similar to those of flying insects. The study indicates that it is essential for swimmers to fully exploit vortices. A better understanding of these phenomena might lead to an improvement in sculling techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The behavior of the critical current density below and above the first matching field in superconductors with periodic square arrays of pinning sites

    International Nuclear Information System (INIS)

    Obaidat, I.M.; Al Khawaja, U.; Benkraouda, M.; Salmeen, N.

    2006-01-01

    We have studied the effect of the applied magnetic field on critical depinning force at zero and finite temperatures and for several values of pinning strength. This was achieved by conducting extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. We have found that the critical depinning force decreases as the applied magnetic field is increased. We have also observed two distinct behaviors of dependence of the critical depinning force on the applied magnetic field below and above the first matching filed

  9. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline

    Science.gov (United States)

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.

    2016-12-01

    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the

  10. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  11. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  12. Applied field test procedures on petroleum release sites

    International Nuclear Information System (INIS)

    Gilbert, G.; Nichols, L.

    1995-01-01

    The effective remediation of petroleum contaminated soils and ground water is a significant issue for Williams Pipe Line Co. (Williams): costing $6.8 million in 1994. It is in the best interest, then, for Williams to adopt approaches and apply technologies that will be both cost-effective and comply with regulations. Williams has found the use of soil vapor extraction (SVE) and air sparging (AS) field test procedures at the onset of a petroleum release investigation/remediation accomplish these goals. This paper focuses on the application of AS/SVE as the preferred technology to a specific type of remediation: refined petroleum products. In situ field tests are used prior to designing a full-scale remedial system to first validate or disprove initial assumptions on applicability of the technology. During the field test, remedial system design parameters are also collected to tailor the design and operation of a full-scale system to site specific conditions: minimizing cost and optimizing effectiveness. In situ field tests should be designed and operated to simulate as close as possible the operation of a full-scale remedial system. The procedures of an in situ field test will be presented. The results of numerous field tests and the associated costs will also be evaluated and compared to full-scale remedial systems and total project costs to demonstrate overall effectiveness. There are many advantages of As/SVE technologies over conventional fluid extraction or SVE systems alone. However, the primary advantage is the ability to simultaneously reduce volatile and biodegradable compound concentrations in the phreatic, capillary fringe, and unsaturated zones

  13. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Science.gov (United States)

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  14. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    Science.gov (United States)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  15. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  16. Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2013-09-28

    We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.

  17. High frequency write head measurement with the phase detection magnetic force microscope

    International Nuclear Information System (INIS)

    Abe, M.; Tanaka, Y.

    2001-01-01

    We demonstrated the measurement of the high frequency (HF) magnetic field of a write head with the phase detection magnetic force microscope. An amplitude-modulated current was applied to the head coil to detect the force gradient induced by the HF magnetic field. Spatial resolution of this method was higher than that of the deflection detection method previously proposed. By the phase detection method, dynamic HF magnetic fields at the poles of the write heads were clearly imaged. HF magnetic field leakage was observed along the P2 pole shape on the air-bearing surface. The frequency dependence of the write head dynamics up to 350 MHz was also investigated. [copyright] 2001 American Institute of Physics

  18. Moessbauer study of the fast magnetization reversal forced in permalloy and invar by an external rf magnetic field

    International Nuclear Information System (INIS)

    Kopcewicz, M.

    1978-01-01

    The effect of fast magnetization reversal leading to fast relaxation of the hyperfine field (collapse effect) forced by an external rf magnetic field is studied using the Moessbauer technique for permalloy and invar. The rf collapse and sideband effects are investigated as a function of external rf field, frequency, and intensity. The collapse of the hfs spectrum through unresolved hfs spectrum, triangular shape to a single line, as well as the formation of sidebands is observed. The rf collapse effect is attributed to the rf forced uniform rotation of internal magnetization which causes fast magnetization reversal leading to fast relaxation of the hyperfine field as a result of which the average field at the Moessbauer nuclei is reduced to zero. The difference of the magnetization reversal process in permalloy and invar are discussed. It is shown that the origin of collapse and sideband effects is totaly different: the collapse effect being of purely magnetic origin while the formation of sidebands is due to the rf induced mechanical vibrations of iron atoms within the sample. It is possible to damp sidebands without affecting the collapse effect. The results obtained show that the application of the rf field to ferromagnetic materials gives a unique possibility to force, simulate, and control the relaxation effects in ferromagnetic materials. (author)

  19. Learning to push and learning to move: The adaptive control of contact forces

    Directory of Open Access Journals (Sweden)

    Maura eCasadio

    2015-11-01

    Full Text Available To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in compatible pairs connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e. when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and

  20. Projection and nested force-gradient methods for quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Dmitry

    2017-07-26

    For the Hybrid Monte Carlo algorithm (HMC), often used to study the fundamental quantum field theory of quarks and gluons, quantum chromodynamics (QCD), on the lattice, one is interested in efficient numerical time integration schemes which preserve geometric properties of the flow and are optimal in terms of computational costs per trajectory for a given acceptance rate. High order numerical methods allow the use of larger step sizes, but demand a larger computational effort per step; low order schemes do not require such large computational costs per step, but need more steps per trajectory. So there is a need to balance these opposing effects. In this work we introduce novel geometric numerical time integrators, namely, projection and nested force-gradient methods in order to improve the efficiency of the HMC algorithm in application to the problems of quantum field theories.

  1. Analysis of applied forces and electromyography of back and shoulders muscles when performing a simulated hand scaling task.

    Science.gov (United States)

    Porter, William; Gallagher, Sean; Torma-Krajewski, Janet

    2010-05-01

    Hand scaling is a physically demanding task responsible for numerous overexertion injuries in underground mining. Scaling requires the miner to use a long pry bar to remove loose rock, reducing the likelihood of rock fall injuries. The experiments described in this article simulated "rib" scaling (scaling a mine wall) from an elevated bucket to examine force generation and electromyographic responses using two types of scaling bars (steel and fiberglass-reinforced aluminum) at five target heights ranging from floor level to 176 cm. Ten male and six female subjects were tested in separate experiments. Peak and average force applied at the scaling bar tip and normalized electromyography (EMG) of the left and right pairs of the deltoid and erectores spinae muscles were obtained. Work height significantly affected peak prying force during scaling activities with highest force capacity at the lower levels. Bar type did not affect force generation. However, use of the lighter fiberglass bar required significantly more muscle activity to achieve the same force. Results of these studies suggest that miners scale points on the rock face that are below their knees, and reposition the bucket as often as necessary to do so. Published by Elsevier Ltd.

  2. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  3. Air Force Officer Accession Planning: Addressing Key Gaps in Meeting Career Field Academic Degree Requirements for Nonrated Officers

    Science.gov (United States)

    2016-06-09

    C O R P O R A T I O N Research Report Air Force Officer Accession Planning Addressing Key Gaps in Meeting Career Field Academic Degree Requirements...potential performance, and how to include these quality measures in the classification process. The research sponsor asked us to focus on academic ...Andrew P., and James K. Lowe, “Decision Support for the Career Field Selection Process at the US Air Force Academy,” European Journal of Operational

  4. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    Science.gov (United States)

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  5. Knowledge-Based Trajectory Error Pattern Method Applied to an Active Force Control Scheme

    Directory of Open Access Journals (Sweden)

    Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin

    2012-08-01

    Full Text Available The active force control (AFC method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words:  Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.

  6. A single magnetic nanocomposite cilia force sensor

    KAUST Repository

    Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Kosel, Jü rgen

    2016-01-01

    The advancements in fields like robotics and medicine continuously require improvements of sensor devices and more engagement of cooperative sensing technologies. For example, instruments such as tweezers with sensitive force sensory heads could provide the ability to sense a variety of physical quantities in real time, such as the amount and direction of the force applied or the texture of the gripped object. Force sensors with such abilities could be great solutions toward the development of smart surgical tools. In this work, a unique force sensor that can be integrated at the tips of robotic arms or surgical tools is reported. The force sensor consists of a single bioinspired, permanent magnetic and highly elastic nanocomposite cilia integrated on a magnetic field sensing element. The nanocomposite is prepared from permanent magnetic nanowires incorporated into the highly elastic polydimethylsiloxane. We demonstrate the potential of this concept by performing several experiments to show the performance of the force sensor. The developed sensor element has a 200 μm in diameter single cilium with 1:5 aspect ratio and shows a detection range up to 1 mN with a sensitivity of 1.6 Ω/mN and a resolution of 31 μN. The simple fabrication process of the sensor allows easy optimization of the sensor performance to meet the needs of different applications.

  7. A single magnetic nanocomposite cilia force sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-04-20

    The advancements in fields like robotics and medicine continuously require improvements of sensor devices and more engagement of cooperative sensing technologies. For example, instruments such as tweezers with sensitive force sensory heads could provide the ability to sense a variety of physical quantities in real time, such as the amount and direction of the force applied or the texture of the gripped object. Force sensors with such abilities could be great solutions toward the development of smart surgical tools. In this work, a unique force sensor that can be integrated at the tips of robotic arms or surgical tools is reported. The force sensor consists of a single bioinspired, permanent magnetic and highly elastic nanocomposite cilia integrated on a magnetic field sensing element. The nanocomposite is prepared from permanent magnetic nanowires incorporated into the highly elastic polydimethylsiloxane. We demonstrate the potential of this concept by performing several experiments to show the performance of the force sensor. The developed sensor element has a 200 μm in diameter single cilium with 1:5 aspect ratio and shows a detection range up to 1 mN with a sensitivity of 1.6 Ω/mN and a resolution of 31 μN. The simple fabrication process of the sensor allows easy optimization of the sensor performance to meet the needs of different applications.

  8. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Anna, E-mail: annamar@amu.edu.pl; Nowak, Izabela

    2015-11-15

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  9. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  10. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  11. Magnetic Phase Transitions of CeSb. II: Effects of Applied Magnetic Fields

    DEFF Research Database (Denmark)

    Meier, G.; Fischer, P.; Hälg, W.

    1978-01-01

    For pt.I see ibid., vol.11, p.345 (1978). The metamagnetic phase transition and the associated phase diagram of the anomalous antiferromagnet CeSb were determined in a neutron diffraction study of the magnetic ordering of CeSb single crystals in applied magnetic fields parallel to the (001...... magnetic fields. The observed magnetic structures do not correspond to the stable configurations expected from the molecular field theory of the face-centred cubic lattice. The change from a first-order transition at the Neel temperature in zero field to second-order transition at high fields points...

  12. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2015-05-01

    Full Text Available Bearingless permanent magnet synchronous motors (BPMSMs, with all advantages of permanent magnet motors (PMSMs and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis method, the operation principle is analyzed theoretically, and the necessary conditions to produce a stable radial suspension force are confirmed. In addition, mathematical models of the torque and radial suspension force are established which is verified by the finite element analysis (FEA software ANSYS. Finally, an experimental prototype of a 2-4 poles surface-mounted BPMSM is tested with the customized control strategy. The simulation and experimental results have shown that the motor has good rotation and suspension performance, and validated the accuracy of the proposed analysis method and the feasibility of the control strategy.

  13. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  14. Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-01-01

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V(φ) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology

  15. Photovoltaic dependence of photorefractive grating on the externally applied dc electric field

    Science.gov (United States)

    Maurya, M. K.; Yadav, R. A.

    2013-04-01

    Photovoltaic dependence of photorefractive grating (i.e., space-charge field and phase-shift of the index grating) on the externally applied dc electric field in photovoltaic-photorefractive materials has been investigated. The influence of photovoltaic field (EPhN), diffusion field and carrier concentration ratio r (donor/acceptor impurity concentration ratio) on the space-charge field (SCF) and phase-shift of the index grating in the presence and absence of the externally applied dc electric field have also been studied in details. Our results show that, for a given value of EPhN and r, the magnitude of the SCF and phase-shift of the index grating can be enhanced significantly by employing the lower dc electric field (EONphotovoltaic-photorefractive crystal and higher value of diffusion field (EDN>40). Such an enhancement in the magnitude of the SCF and phase-shift of the index grating are responsible for the strongest beam coupling in photovoltaic-photorefractive materials. This sufficiently strong beam coupling increases the two-beam coupling gain that may be exceed the absorption and reflection losses of the photovoltaic-photorefractive sample, and optical amplification can occur. The higher value of optical amplification in photovoltaic-photorefractive sample is required for the every applications of photorefractive effect so that technology based on the photorefractive effect such as holographic storage devices, optical information processing, acousto-optic tunable filters, gyro-sensors, optical modulators, optical switches, photorefractive-photovoltaic solitons, biomedical applications, and frequency converters could be improved.

  16. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Jiasu; Wang Suyu; He Qingyong

    2007-01-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor

  17. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor.

  18. Correlations of filtration flux enhanced by electric fields in crossflow microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K.; Nagase, Y. [Kurashiki University of Science and the Arts, Okayama (Japan). Department of Chemical Technology; Ohnishi, Y.; Nishihan, A.; Akagi, Y. [Okayama University of Science, Okayama (Japan). Department of Applied Chemistry

    1997-12-01

    The steady state filtration flux in electrically-enhanced crossflow microfiltration is estimated using a correlation equation proposed for several kinds of suspensions. Baker`s yeast and Rhodotorula glutinis were used as model samples of microbial cells, and PMMA particles were used as samples of non-living solids. Application of the electric field in crossflow microfiltration is a useful method for improving the filtration flux of these samples. High flux levels for the cells were achieved when an electric field above 3000 V/m was applied. The effect of the electric field in increasing the filtration flux of the steady state was analyzed theoretically using a force balance model where the viscous drag force, F{sub J}, the electrophoretic force, F{sub E}, and the re-entraining force, F{sub B}, were considered to act on a particle on the membrane surface under a steady state of filtration, respectively. From force balance analysis, it is found that on application of an electric field, the electro-osmotic effect can be neglected in the present study, so that the filtration flux of the steady state, J{sub ES}, can be presented by, J{sub ES}=U{sub EP}E+J{sub OS} where U{sub EP} is the electrophoretic mobility of particles and E is the electric field applied. J{sub OS} is the filtration flux in the absence of an electric field, which is correlated with the operating parameters for suspensions tested. 22 refs., 7 figs., 1 tab.

  19. Dynamic analysis of a hollow cylinder subject to a dual traveling force imposed on its inner surface

    Science.gov (United States)

    Lee, Sooyoung; Seok, Jongwon

    2015-03-01

    The dynamic behavior of a hollow cylinder under a dual traveling force applied to the inner surface is investigated in this study. The cylinder is constrained at both the top and bottom surfaces not to move in the length direction but free in other directions. And a dual force travels at a constant velocity along the length direction on the inner surface of the hollow cylinder. The resulting governing field equations and the associated boundary conditions are ruled by the general Hooke's law. Due to the nature of the field equations, proper adjoint system of equations and biorthogonality conditions were derived in a precise and detailed manner. To solve these field equations in this study, the method of separation of variable is used and the method of Fro¨benius is employed for the differential equations in the radial direction. Using the field equations, the eigenanalyses on both the original and its adjoint system were performed with great care, which results in the eigenfunction sets of both systems. The biorthogonality conditions were applied to the field equations to obtain the discretized equation for each mode. Using the solutions of the discretized equations that account for the boundary forcing terms, the critical speed for a dual traveling force for each mode could be computed.

  20. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.

    Science.gov (United States)

    Wu, Xiaojing; Clavaguera, Carine; Lagardère, Louis; Piquemal, Jean-Philip; de la Lande, Aurélien

    2018-04-16

    We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

  1. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  2. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  3. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  4. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  5. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  6. Survey on result promotion of the atomic force technique

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Masato; Okuno, Yumiko [Nikkei Research Inst. of Industry and Markets, Tokyo (Japan)

    1998-02-01

    By change of environment around research and development of atomic force, investigation has been recently executed not only on a theme directing a specific aim, but also on technical development considering some applications to the other field reflected by social needs. Therefore, an effective procedure and program capable of reflecting and promoting results of the atomic fore development to other industrial field were necessary. In this study, methods of evaluation and industrialization on study results of the atomic force were investigated. As a result, in order to promote the study results to other field, it was found to be important that some free reasons and concept engineering to mediate between developing and applying sides were to be present. In addition, it was suggested by some searches that a new atomic industry has a probability to be created by using potential energies such as heat, radiation, pulse, and so on. In this paper, evaluation on industrialization of the atomic force technical resources, and establishment of the industrialization program were described. (G.K.)

  7. Simulation of a force on force exercise

    International Nuclear Information System (INIS)

    Terhune, R.; Van Slyke, D.; Sheppard, T.; Brandrup, M.

    1988-01-01

    The Security Exercise Evaluation System (SEES) is under development for use in planning Force on Force exercises and as an aid in post-exercise evaluation. This study is part of the development cycle where the simulation results are compared to field data to provide guidance for further development of the model. SEES is an event-driven stochastic computer program simulating individual movement and combat within an urban terrain environment. The simulator models the physics of movement, line of sight, and weapon effects. It relies on the controllers to provide all knowledge of security tactics, which are entered by the controllers during the simulation using interactive color graphic workstations. They are able to develop, modify and implement plans promptly as the simulator maintains real time. This paper reports on how SEES will be used to develop an intrusion plan, test the security response tactics and develop observer logistics. A Force on Force field exercise will then be executed to follow the plan with observations recorded. An analysis is made by first comparing the plan and events of the simulation with the field exercise, modifying the simulation plan to match the actual field exercise, and then running the simulation to develop a distribution of possible outcomes

  8. Levitation force relaxation under reloading in a HTS Maglev system

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao

    2009-01-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle

  9. Levitation force relaxation under reloading in a HTS Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  10. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Energy Technology Data Exchange (ETDEWEB)

    MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-28

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  11. Force modulation for improved conductive-mode atomic force microscopy

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, Abu; Despont, Michel; Pozidis, Haris

    We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation

  12. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  13. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    Directory of Open Access Journals (Sweden)

    Jesús Sanz Maudes

    2012-08-01

    Full Text Available Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID technology (NFC. The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient’s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system’s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.

  14. Corrected direct force balance method for atomic force microscopy lateral force calibration

    International Nuclear Information System (INIS)

    Asay, David B.; Hsiao, Erik; Kim, Seong H.

    2009-01-01

    This paper reports corrections and improvements of the previously reported direct force balance method (DFBM) developed for lateral calibration of atomic force microscopy. The DFBM method employs the lateral force signal obtained during a force-distance measurement on a sloped surface and relates this signal to the applied load and the slope of the surface to determine the lateral calibration factor. In the original publication [Rev. Sci. Instrum. 77, 043903 (2006)], the tip-substrate contact was assumed to be pinned at the point of contact, i.e., no slip along the slope. In control experiments, the tip was found to slide along the slope during force-distance curve measurement. This paper presents the correct force balance for lateral force calibration.

  15. Prediction of applied forces in handrim wheelchair propulsion.

    Science.gov (United States)

    Lin, Chien-Ju; Lin, Po-Chou; Guo, Lan-Yuen; Su, Fong-Chin

    2011-02-03

    Researchers of wheelchair propulsion have usually suggested that a wheelchair can be properly designed using anthropometrics to reduce high mechanical load and thus reduce pain and damage to joints. A model based on physiological features and biomechanical principles can be used to determine anthropometric relationships for wheelchair fitting. To improve the understanding of man-machine interaction and the mechanism through which propulsion performance been enhanced, this study develops and validates an energy model for wheelchair propulsion. Kinematic data obtained from ten able-bodied and ten wheelchair-dependent users during level propulsion at an average velocity of 1m/s were used as the input of a planar model with the criteria of increasing efficiency and reducing joint load. Results demonstrate that for both experienced and inexperienced users, predicted handrim contact forces agree with experimental data through an extensive range of the push. Significant deviations that were mostly observed in the early stage of the push phase might result from the lack of consideration of muscle dynamics and wrist joint biomechanics. The proposed model effectively verified the handrim contact force patterns during dynamic propulsion. Users do not aim to generate mechanically most effective forces to avoid high loadings on the joints. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Quantum correlated cluster mean-field theory applied to the transverse Ising model.

    Science.gov (United States)

    Zimmer, F M; Schmidt, M; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  17. The nuclear force problem: Is the never-ending story coming to an end?

    International Nuclear Information System (INIS)

    Machleidt, R.

    2006-01-01

    The attempts to find the right (underlying) theory for the nuclear force have a long and stimulating history. Already in 1953, Hans Bethe stated that “more man-hours have been given to this problem than to any other scientific question in the history of mankind”. In search for the nature of the nuclear force, the idea of sub-nuclear particles was created which, eventually, generated the field of particle physics. I will review this productive history of hope, error, and desperation. Finally, I will discuss recent ideas which apply the concept of an effective field theory to low-energy QCD. There are indications that this concept may provide the right framework to properly understand nuclear forces.

  18. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    Kim, S H; Hashi, S; Ishiyama, K

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  19. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Science.gov (United States)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  20. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  1. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  2. Evidence for a devil's staircase in holmium produced by an applied magnetic field

    International Nuclear Information System (INIS)

    Cowley, R.A.; Jehan, D.A.; McMorrow, D.F.; McIntyre, G.J.

    1991-01-01

    The magnetic structure of holmium has been studied using neutron diffraction when a magnetic field is applied along the c axis. The field has the effect of suppressing the onset of the commensurate cone phase found at low temperatures in zero field, and instead produces a series of spin-slip structures. In contrast to the zero-field diffraction experiments, where a continuous variation of the magnetic wave vector q was observed, we find that below ∼15 K the wave vector q is always commensurate and forms a devil's staircase with increasing field

  3. Forces in general relativity

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced by an observer in general coordinates. The general force is then applied to the local co-moving coordinate system of a uniformly accelerating observer, leading to an expression of the inertial force experienced by the observer. Next, applying the general force in Schwarzschild coordinates is shown to lead to familiar expressions of the gravitational force. As a more complex demonstration, the general force is applied to an observer in Boyer-Lindquist coordinates near a rotating, Kerr black hole. It is then shown that when the angular momentum of the black hole goes to zero, the force on the observer reduces to the force on an observer held stationary in Schwarzschild coordinates. As a final consideration, the force on an observer moving in rotating coordinates is derived. Expressing the force in terms of Christoffel symbols in rotating coordinates leads to familiar expressions of the centrifugal and Coriolis forces on the observer. It is envisioned that the techniques presented herein will be most useful to graduate level students, as well as those undergraduate students having experience with general relativity and tensor analysis.

  4. Theory and numerical calculation of the acoustic field exerted by eddy-current forces

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, K.

    1976-01-01

    The equations for calculating the acoustic field produced within a nonmagnetic metal by interaction of eddy currents with a static magnetic field were obtained on the assumptions (1) an ultrasonic wave is generated by the electromagentic force through classical and macroscopic phenomena; (2) the electric, magnetic, and elastic properties of the metal are linear, isotropic, and homogeneous throughout the metal, which occupies semi-infinite space; (3) the whole system is axially symmetric; and (4) eddy currents and elastic waves show a steady-state sinusoidal variation. The acoustic field produced by a specific electromagnetic ultrasonic transducer with axial symmetry was calculated numerically, and the results showed a well-defined ultrasonic wave beam, which was narrower than had been expected from the size of the transducer. (auth)

  5. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  6. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  7. Atomic force and scanning near-field optical microscopy study of carbocyanine dye J-aggregates

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, V.V.; Petrova, M.G.; Kovaleva, Natalia; Demikhov, E.I.

    2014-01-01

    Roč. 10, č. 5 (2014), s. 700-704 ISSN 1573-4137 Institutional support: RVO:68378271 Keywords : carbocyanine dye * elementary fibri * high-resolution atomic force microscopy * J-aggregate * probe microscopy * scanning near-field optical microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.096, year: 2014

  8. Analysis of force characteristics of a superconducting ball in a given magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua, E-mail: liujianhua@mail.iee.ac.c [Institute of Electrical Engineering, Chinese Academy of Sciences, No. 6 Beiertiao, Zhongguancun, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wang Qiuliang; Yan Luguang [Institute of Electrical Engineering, Chinese Academy of Sciences, No. 6 Beiertiao, Zhongguancun, Beijing 100190 (China)

    2009-07-01

    The electromagnetic force characteristics along Z direction of a superconducting ball levitated by spherical coils with shaping blocks are calculated based on a semi-analytical method. The calculating results from the semi-analytical method are compared with the finite element analysis (FEA) method through a calculation example. The method can be applied to further analysis of dynamic characteristics and parameter optimization in the suspension system.

  9. Construction of an accurate quartic force field by using generalised least-squares fitting and experimental design

    International Nuclear Information System (INIS)

    Carbonniere, Philippe; Begue, Didier; Dargelos, Alain; Pouchan, Claude

    2004-01-01

    In this work we present an attractive least-squares fitting procedure which allows for the calculation of a quartic force field by jointly using energy, gradient, and Hessian data, obtained from electronic wave function calculations on a suitably chosen grid of points. We use the experimental design to select the grid points: a 'simplex-sum' of Box and Behnken grid was chosen for its efficiency and accuracy. We illustrate the numerical implementations of the method by using the energy and gradient data for H 2 O and H 2 CO. The B3LYP/cc-pVTZ quartic force field performed from 11 and 44 simplex-sum configurations shows excellent agreement in comparison to the classical 44 and 168 energy calculations

  10. Force-free fields in the vicinity of a Reissner-Nordstroem black hole

    International Nuclear Information System (INIS)

    Evangelidis, E.

    1978-01-01

    The behaviour of a force-free field has been studied in a Reissner-Nordstroem metric. An expansion in tensor harmonics of even-odd parity reduced the radial equations in a differential equation of the Sturm-Liouville system which was solved asymptotically in a conveniently defined space coordinate. Further, it has been possible to regularize the singular behaviour of the Reissner-Nordstroem metric at the event horizon and the modified metric to be given explicitly. (Auth.)

  11. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    Science.gov (United States)

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  12. A contact-force regulated photoplethysmography (PPG) platform

    Science.gov (United States)

    Sim, Jai Kyoung; Ahn, Bongyoung; Doh, Il

    2018-04-01

    A photoplethysmography (PPG) platform integrated with a miniaturized force-regulator is proposed in this study. Because a thermo-pneumatic type regulator maintains a consistent contact-force between the PPG probe and the measuring site, a consistent and stable PPG signal can be obtained. We designed and fabricated a watch-type PPG platform with an overall size of 35 mm × 19 mm. In the PPG measurement on the radial artery wrist while posture of the wrist is changed to extension, neutral, or flexion, regulation of the contact-force provides consistent PPG measurements for which the variations in the PPG amplitude (PPGA) was 7.2 %. The proposed PPG platform can be applied to biosignal measurements in various fields such as PPG-based ANS monitoring to estimate nociception, sleep apnea syndrome, and psychological stress.

  13. A contact-force regulated photoplethysmography (PPG platform

    Directory of Open Access Journals (Sweden)

    Jai Kyoung Sim

    2018-04-01

    Full Text Available A photoplethysmography (PPG platform integrated with a miniaturized force-regulator is proposed in this study. Because a thermo-pneumatic type regulator maintains a consistent contact-force between the PPG probe and the measuring site, a consistent and stable PPG signal can be obtained. We designed and fabricated a watch-type PPG platform with an overall size of 35 mm × 19 mm. In the PPG measurement on the radial artery wrist while posture of the wrist is changed to extension, neutral, or flexion, regulation of the contact-force provides consistent PPG measurements for which the variations in the PPG amplitude (PPGA was 7.2 %. The proposed PPG platform can be applied to biosignal measurements in various fields such as PPG-based ANS monitoring to estimate nociception, sleep apnea syndrome, and psychological stress.

  14. Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yubai Li

    2017-07-01

    Full Text Available In this paper, we study the effects of the Lorentz force and the induced anisotropic thermal conductivity due to a magnetic field on the flow and the heat transfer of a ferro-nanofluid. The ferro-nanofluid is modeled as a single-phase fluid, where the viscosity depends on the concentration of nanoparticles; the thermal conductivity shows anisotropy due to the presence of the nanoparticles and the external magnetic field. The anisotropic thermal conductivity tensor, which depends on the angle of the applied magnetic field, is suggested considering the principle of material frame indifference according to Continuum Mechanics. We study two benchmark problems: the heat conduction between two concentric cylinders as well as the unsteady flow and heat transfer in a rectangular channel with three heated inner cylinders. The governing equations are made dimensionless, and the flow and the heat transfer characteristics of the ferro-nanofluid with different angles of the magnetic field, Hartmann number, Reynolds number and nanoparticles concentration are investigated systematically. The results indicate that the temperature field is strongly influenced by the anisotropic behavior of the nanofluids. In addition, the magnetic field may enhance or deteriorate the heat transfer performance (i.e., the time-spatially averaged Nusselt number in the rectangular channel depending on the situations.

  15. An electric field in a gravitational field

    International Nuclear Information System (INIS)

    Harpaz, Amos

    2005-01-01

    The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation

  16. On the use of quartic force fields in variational calculations

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.

    2013-06-01

    Quartic force fields (QFFs) have been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this letter we discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine (-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system to 5 cm-1 or better compared to experiment. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods.

  17. Recent Progress in Molecular Simulation of Aqueous Electrolytes: Force Fields, Chemical Potentials and Solubility.

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Moučka, F.; Smith, W.R.

    2016-01-01

    Roč. 114, č. 11 (2016), s. 1665-1690 ISSN 0026-8976 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : force fields * chemical potentials * aqueous electrolytes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016

  18. Applied magnetic field angle dependence of the static and dynamic magnetic properties in FeCo films during the deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Derang; Zhu, Zengtai; Feng, Hongmei; Pan, Lining; Cheng, Xiaohong; Wang, Zhenkun [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-10-15

    FeCo films were prepared by a simple and convenient electrodeposition method. An external magnetic field was applied to the film to induce magnetic anisotropy during deposition. Comparing with the previous work, the angle between the direction of applied magnetic field and film plane is changed from in-plane to out-plane. The influence of the applied magnetic field on magnetic properties was investigated. As a result, it can be found that the in-plane anisotropy is driven by the in-plane component of the magnetic field applied during growth. In addition, the result can also be confirmed by the dynamic magnetic anisotropy of the film obtained by vector network analyzer ferromagnetic resonance technique. - Highlights: • FeCo films were prepared by electrodeposition method. • An external magnetic field was applied to induce anisotropy during deposition. • The direction of applied magnetic field is changed from in-plane to out-plane. • The magnetic properties of films were investigated by vector network analyzer. • The in-plane anisotropy is driven by the in-plane component of the field.

  19. Recent Progress in the Theory of Nuclear Forces

    International Nuclear Information System (INIS)

    Machleidt, R.; MacPherson, Q.; Winzer, R.; Marji, E.; Zeoli, Ch.; Entem, D. R.

    2013-01-01

    During the past two decades, it has been demonstrated that chiral effective field theory represents a powerful tool to deal with nuclear forces in a systematic and model-independent way. Two-, three-, and four-nucleon forces have been derived up to next-to-next-to-next-to-leading order (N 3 LO) and (partially) applied in nuclear few- and many-body systems—with, in general, a good deal of success. This may suggest that we are finally done with the nuclear force problem; but that would be too optimistic. There are still some pretty basic open issues that have been swept under rug and, finally, need our full attention, like the proper renormalization of the two-nucleon potential. Moreover, the order-by-order convergence of the many-body force contributions is at best obscure at this time. (author)

  20. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    Science.gov (United States)

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.

  1. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    Science.gov (United States)

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  2. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  3. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    International Nuclear Information System (INIS)

    Morante, S.; Rossi, G.C.

    2017-01-01

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  4. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morante, S., E-mail: morante@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: rossig@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)

    2017-02-15

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  5. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-11-01

    Full Text Available Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  6. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  7. The ALFAM2 database on ammonia emission from field-applied manure

    NARCIS (Netherlands)

    Hafner, Sasha D.; Pacholski, Andreas; Bittman, Shabtai; Burchill, William; Bussink, Wim; Chantigny, Martin; Carozzi, Marco; Génermont, Sophie; Häni, Christoph; Hansen, Martin N.; Huijsmans, Jan; Hunt, Derek; Kupper, Thomas; Lanigan, Gary; Loubet, Benjamin; Misselbrook, Tom; Meisinger, John J.; Neftel, Albrecht; Nyord, Tavs; Pedersen, Simon V.; Sintermann, Jörg; Thompson, Rodney B.; Vermeulen, Bert; Voylokov, Polina; Williams, John R.; Sommer, Sven G.

    2018-01-01

    Ammonia (NH3) emission from animal manure contributes to air pollution and ecosystem degradation, and the loss of reactive nitrogen (N) from agricultural systems. Estimates of NH3 emission are necessary for national inventories and nutrient management, and NH3 emission from field-applied manure has

  8. The Optical Bichromatic Force in Molecular Systems

    Science.gov (United States)

    Aldridge, Leland; Galica, Scott; Eyler, E. E.

    2015-05-01

    The optical bichromatic force has been demonstrated to be useful for slowing atomic beams much more rapidly than radiative forces. Through numerical simulations, we examine several aspects of applying the bichromatic force to molecular beams. One is the unavoidable existence of out-of-system radiative decay, requiring one or more repumping beams. We find that the average deceleration varies strongly with the repumping intensity, but when using optimal parameters, the force approaches the limiting value allowed by population statistics. Another consideration is the effect of fine and hyperfine structure. We examine a simplified multlevel model based on the B X transition in calcium monofluoride. To circumvent optical pumping into coherent dark states, we include two possible schemes: (1) a skewed dc magnetic field, and (2) rapid optical polarization switching. Our results indicate that the bichromatic force remains a viable option for creating large forces in molecular beams, with a reduction in the peak force by approximately an order of magnitude compared to a two-level atom, but little effect on the velocity range over which the force is effective. We also describe our progress towards experimental tests of the bichromatic force on a molecular beam of CaF. Supported by the National Science Foundation.

  9. An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model

    Energy Technology Data Exchange (ETDEWEB)

    Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)

    2014-11-15

    We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.

  10. Unsteady flow of two-phase fluid in circular pipes under applied external magnetic and electrical fields

    International Nuclear Information System (INIS)

    Gedik, Engin; Recebli, Ziyaddin; Kurt, Hueseyin; Kecebas, Ali

    2012-01-01

    The unsteady viscous incompressible and electrically conducting of two-phase fluid flow in circular pipes with external magnetic and electrical field is considered in this present study. Effects of both uniform transverse external magnetic and electrical fields applied perpendicular to the fluid and each other on the two-phase (solid/liquid) unsteady flow is investigated numerically. While iron powders are being used as the first phase of two-phase fluid, pure water was used as the second phase. The system of the derived governing equations, which are based on the Navier-Stokes equations including Maxwell equations, are solved numerically by using Pdex4 function on the Matlab for both phases. The originality of this study is that, in addition to magnetic field, the effect of electrical field on two-phase unsteady fluids is being examined. The magnetic field which is applied on flow decreases the velocity of both phases, whereas the electrical field applied along with magnetic field acted to increase and decrease the velocity values depending on the direction of electrical field. Electrical field alone did not display any impact on two-phase flow. On the other hand, analytical and numerical results are compared and favorable agreements have been obtained. (authors)

  11. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms.

    Science.gov (United States)

    Reuter, Eva-Maria; Cunnington, Ross; Mattingley, Jason B; Riek, Stephan; Carroll, Timothy J

    2016-11-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153-167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. Copyright © 2016 the American Physiological Society.

  12. ON ESTIMATING FORCE-FREENESS BASED ON OBSERVED MAGNETOGRAMS

    International Nuclear Information System (INIS)

    Zhang, X. M.; Zhang, M.; Su, J. T.

    2017-01-01

    It is a common practice in the solar physics community to test whether or not measured photospheric or chromospheric vector magnetograms are force-free, using the Maxwell stress as a measure. Some previous studies have suggested that magnetic fields of active regions in the solar chromosphere are close to being force-free whereas there is no consistency among previous studies on whether magnetic fields of active regions in the solar photosphere are force-free or not. Here we use three kinds of representative magnetic fields (analytical force-free solutions, modeled solar-like force-free fields, and observed non-force-free fields) to discuss how measurement issues such as limited field of view (FOV), instrument sensitivity, and measurement error could affect the estimation of force-freeness based on observed magnetograms. Unlike previous studies that focus on discussing the effect of limited FOV or instrument sensitivity, our calculation shows that just measurement error alone can significantly influence the results of estimates of force-freeness, due to the fact that measurement errors in horizontal magnetic fields are usually ten times larger than those in vertical fields. This property of measurement errors, interacting with the particular form of a formula for estimating force-freeness, would result in wrong judgments of the force-freeness: a truly force-free field may be mistakenly estimated as being non-force-free and a truly non-force-free field may be estimated as being force-free. Our analysis calls for caution when interpreting estimates of force-freeness based on measured magnetograms, and also suggests that the true photospheric magnetic field may be further away from being force-free than it currently appears to be.

  13. Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

    Science.gov (United States)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2018-03-01

    The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

  14. Magnetic force induced tristability for dielectric elastomer actuators

    Science.gov (United States)

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  15. Influence of grain size and upper critical magnetic field on global pinning force of bronze-processed Nb/sub 3/Sn compound

    International Nuclear Information System (INIS)

    Ochiai, S.; Osamura, K.

    1986-01-01

    In order to know the dependency of global pinning force of Nb/sub 3/Sn compound on grain size and upper critical magnetic field, the global pinning force was measured at 3-15 T using bronze-processed multifilamentary composites. The grain size and upper critical magnetic field were varied by two types of annealing treatment: one is the isothermal annealing at 873, 973 and 1073 K up to 1730 ks and another is the two-stage annealing (low temperature annealing to form fine grains at 873 K for 1730 ks + high temperature annealing to raise upper critical magnetic field at 1073 K up to 18 ks). In the case of isothermal annealing treatment, both of grain size and upper critical magnetic field increased with increasing annealing temperature and time except for the annealing treatments at high temperature for prolonged times. In the case of two-stage annealing, both of them increased with second stage annealing time. The increase in grain size led to decrease in the pinning force but the increase in upper critical magnetic field to increase in it. From the analysis of the present data based on the Suenaga's speculation concerning with the density of pinning site and the Kramer's equation, it was suggested that the pinning force is, to a first approximation, proportional to the product of inverse grain size and (1-h)/sup 2/h/sup 1/2/ where h is the reduced magnetic field

  16. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  17. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: zqshi@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  18. Structural and morphological changes in P3HT thin film transistors applying an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Deepak Kumar; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany); Flesch, Heinz; Resel, Roland [University of Siegen (Germany); Graz University of Technology (Austria)

    2010-07-01

    We report on electric field dependent crystalline structure and morphological changes of drop casting and spin coated poly(3-hexylthiophene) (P3HT) thin films. In order to probe the morphological changes induced by an applied electric field the samples were covered with thin source/drain electrodes separated by a small channel of 2 mm width. A series of x-ray reflectivity, X-ray grazing incidence out-of-plane and in-plane scans have been performed as function of the applied electric voltage. The (100) peak shows a decrease in intensity with increase of the applied electric field. This might be caused by Joule heating and the creation of current induced defects in the P3HT film. On other hand the (020) peak intensity shows much stronger changes with applied field. Considering the *-* stacking direction the measured effect can be directly related to a change in the electric transport. The observed changes in structure are reversible and the current-voltage cycle can be repeated several times. For X-ray reflectivity major changes have been found close to critical angle of total external reflection indicating the film becomes less dense and increases in surface roughness with increase of the voltage. This change in surface behaviour could be confirmed by in-situ AFM measurements.

  19. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  20. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  1. Calculation of the force acting on a drop in a nonuniform flow of a current-supporting fluid

    International Nuclear Information System (INIS)

    Korovin, V.M.

    1993-01-01

    In the context of wide use of intense electric currents in various technological process, it is of practical interest to investigate the characteristics of the force action of electromagnetic fields on a variety of inclusions - solid particles, drops, gas bubbles - suspended in current-supporting fluids. In the available studies one treats the simplest case, in which the vortical component of the electromagnetic forces, generated by the interaction of the current with the internal magnetic field, is nonvanishing only in small vicinities near these inclusions, and therefore these electromagnetic forces do not generate global motion of the homogeneous current-supporting fluid. In practice, in most cases the vortical component of electromagnetic forces plays a substantial role in the whole operating region of the technological device, and the motion of the current-supporting fluid is created specifically by electromagnetic forces. In the case of a varying electromagnetic field the forces acting on particles are located in the conducting fluid, moving under the field action, were calculated by Korovim (Korovim, V. M., open-quotes The calculation of forces acting on suspended particles during the flow of a conducting fluid in a varying electromagnetic field,close quotes Magn. Gidrodin, No. 1 95-102 (1991)). In the present study the authors generalize the method suggested by Korovin for calculating forces applied to both drops and particles and gas bubbles suspended in the gradient flow of a fluid moving under the action of a constant electromagnetic field. 6 refs

  2. Fringe Field Effects on Bending Magnets, Derived for TRANSPORT/TURTLE

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Riley [Arizona State Univ., Tempe, AZ (United States); Blitz, Sam [Arizona State Univ., Tempe, AZ (United States)

    2013-08-05

    A realistic magnetic dipole has complex effects on a charged particle near the entrance and exit of the magnet, even with a constant and uniform magnetic field deep within the interior of the magnet. To satisfy Maxwell's equations, the field lines near either end of a realistic magnet are significantly more complicated, yielding non-trivial forces. The effects of this fringe field are calculated to first order, applying both the paraxial and thin lens approximations. We find that, in addition to zeroth order effects, the position of a particle directly impacts the forces in the horizontal and vertical directions.

  3. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    Science.gov (United States)

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  4. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    Science.gov (United States)

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  5. Atomic force microscopy for university students: applications in biomaterials

    International Nuclear Information System (INIS)

    Kontomaris, S V; Stylianou, A

    2017-01-01

    Atomic force microscopy (AFM) is a powerful tool used in the investigation of the structural and mechanical properties of a wide range of materials including biomaterials. It provides the ability to acquire high resolution images of biomaterials at the nanoscale. It also provides information about the response of specific areas under controlled applied force, which leads to the mechanical characterization of the sample at the nanoscale. The wide range of information provided by AFM has established it as a powerful research tool. In this paper, we present a general overview of the basic operation and functions of AFM applications in biomaterials. The basic operation of AFM is explained in detail with a focus on the real interactions that take place at the nanoscale level during imaging. AFM’s ability to provide the mechanical characterization (force curves) of specific areas at the nanoscale is also explained. The basic models of applied mechanics that are used for processing the data obtained by the force curves are presented. The aim of this paper is to provide university students and young scientists in the fields of biophysics and nanotechnology with a better understanding of AFM. (review)

  6. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    Science.gov (United States)

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  7. Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes

    DEFF Research Database (Denmark)

    Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus

    2015-01-01

    The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential......, which is especially important to describe key, challenging interactions, such as lone pairs, π-interactions, and hydrogen bonds. These chemical environments are probed by focusing on the hydration properties of two molecules: N-methylacetamide and phenyl bromide. Both, equilibrium and dynamical...

  8. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer’s peptides

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thanh Thuy; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr; Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-05-28

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  9. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Pérez-Benítez, J.A., E-mail: japerezb@ipn.mx [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Caleyo, F. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico); Mehboob, N.; Grössinger, R. [Institute of Solid State Physics, Vienna University of Technology, Vienna A-1040 (Austria); Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2016-03-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  10. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benítez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Mehboob, N.; Grössinger, R.; Hallen, J.M.

    2016-01-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  11. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.

    2004-01-01

    of the (gg, gt and tg) rotamers of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol. respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error...

  12. Effects of electric field and Coriolis force on electrohydrodynamic stability of poorly conducting couple stress parallel fluid flow in a channel

    International Nuclear Information System (INIS)

    Shankar, B.M.; Rudraiah, N.

    2013-01-01

    The effective functioning of microfluidic devices in chemical, electrical and mechanical engineering involving fluidics particularly those having vibrations and petroleum products containing organic, inorganic and other microfluidics require understanding and control of stability of poorly conducting parallel fluid flows. The electrical conductivity, σ, of a poorly conducting fluidics, increases with the temperature and the concentration of freely suspended particles like RBC, WBC and so on in the blood, the hylauronic acid (HA) and nutrients of synovial fluid in synovial joints will spin producing microrotation, forming micropolar fluid of Eringen. The presence of Deuterium - Tritium (DT) in inertial fusion target (IFT) may also be modeled using micropolar fluid theory of Eringen. A particular case of micropolar fluid theory when microrotation balances with the natural vorticity of a poorly conducting fluidics in the presence of an electric field is called ‘electrohydrodynamic couple stress fluid’ (EHDCF). These EHDCFs exhibit a variation of electrical conductivity, ∇ σ, increasing with temperature and concentration of freely suspended particles, releases the charges from the nuclei forming distribution of charge density, ρ e . These charges induce an electric field, 1 E i . If need be, we can apply an electric field, 1 E a , by embedding electrodes of different potentials at the boundaries. The total electric field, 1 E = 1 E i + 1 E a , produces a current density, 1 J = ρ σ 1 E, according to Ohm’s law and also produces an electric force, 1 F σ = σ 1 E. This current 1 J acts as sensing and the force, 1 F σ acts as actuation. These two properties make the poorly conducting couple stress fluid to act as a smart material. The objective of this paper is to show that EHDCV in presence of coriolis force plays a significant role in controlling the stability of parallel flows which is essential for an effective functioning of machineries that occur in

  13. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  14. Development of CHARMM-Compatible Force-Field Parameters for Cobalamin and Related Cofactors from Quantum Mechanical Calculations.

    Science.gov (United States)

    Pavlova, Anna; Parks, Jerry M; Gumbart, James C

    2018-02-13

    Corrinoid cofactors such as cobalamin are used by many enzymes and are essential for most living organisms. Therefore, there is broad interest in investigating cobalamin-protein interactions with molecular dynamics simulations. Previously developed parameters for cobalamins are based mainly on crystal structure data. Here, we report CHARMM-compatible force field parameters for several corrinoids developed from quantum mechanical calculations. We provide parameters for corrinoids in three oxidation states, Co 3+ , Co 2+ , and Co 1+ , and with various axial ligands. Lennard-Jones parameters for the cobalt center in the Co(II) and Co(I) states were optimized using a helium atom probe, and partial atomic charges were obtained with a combination of natural population analysis (NPA) and restrained electrostatic potential (RESP) fitting approaches. The Force Field Toolkit was used to optimize all bonded terms. The resulting parameters, determined solely from calculations of cobalamin alone or in water, were then validated by assessing their agreement with density functional theory geometries and by analyzing molecular dynamics simulation trajectories of several corrinoid proteins for which X-ray crystal structures are available. In each case, we obtained excellent agreement with the reference data. In comparison to previous CHARMM-compatible parameters for cobalamin, we observe a better agreement for the fold angle and lower RMSD in the cobalamin binding site. The approach described here is readily adaptable for developing CHARMM-compatible force-field parameters for other corrinoids or large biomolecules.

  15. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field

    National Research Council Canada - National Science Library

    Bunte, Steven

    2000-01-01

    To investigate the mechanical and other condensed phase properties of energetic materials using atomistic simulation techniques, the COMPASS force field has been expanded to include high-energy nitro functional groups...

  16. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    Science.gov (United States)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  17. Electric force on plasma ions and the momentum of the ion-neutrals flow

    Science.gov (United States)

    Makrinich, G.; Fruchtman, A.; Zoler, D.; Boxman, R. L.

    2018-05-01

    The electric force on ions in plasma and the momentum flux carried by the mixed ion-neutral flow were measured and found to be equal. The experiment was performed in a direct-current gas discharge of cylindrical geometry with applied radial electric field and axial magnetic field. The unmagnetized plasma ions, neutralized by magnetized electrons, were accelerated radially outward transferring part of the gained momentum to neutrals. Measurements were taken for various argon gas flow rates between 13 and 100 Standard Cubic Centimeter per Minute, for a discharge current of 1.9 A and a magnetic field intensity of 136 G. The plasma density, electron temperature, and plasma potential were measured at various locations along the flow. These measurements were used to determine the local electric force on the ions. The total electric force on the plasma ions was then determined by integrating radially the local electric force. In parallel, the momentum flux of the mixed ion-neutral flow was determined by measuring the force exerted by the flow on a balance force meter (BFM). The maximal plasma density was between 6 × 1010 cm-3 and 5 × 1011 cm-3, the maximal electron temperature was between 8 eV and 25 eV, and the deduced maximal electric field was between 2200 V/m and 5800 V/m. The force exerted by the mixed ion-neutral flow on the BFM agreed with the total electric force on the plasma ions. This agreement showed that it is the electric force on the plasma ions that is the source of the momentum acquired by the mixed ion-neutral flow.

  18. Force sharing and other collaborative strategies in a dyadic force perception task.

    Science.gov (United States)

    Tatti, Fabio; Baud-Bovy, Gabriel

    2018-01-01

    When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often.

  19. Hydrogenic donor impurity in parallel-triangular quantum wires: Hydrostatic pressure and applied electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Giraldo, E.; Miranda, G.L.; Ospina, W.; Duque, C.A.

    2009-01-01

    The combined effects of the hydrostatic pressure and in-growth direction applied electric field on the binding energy of hydrogenic shallow-donor impurity states in parallel-coupled-GaAs-Ga 1-x Al x As-quantum-well wires are calculated using a variational procedure within the effective-mass and parabolic-band approximations. Results are obtained for several dimensions of the structure, shallow-donor impurity positions, hydrostatic pressure, and applied electric field. Our results suggest that external inputs such us hydrostatic pressure and in-growth direction electric field are two useful tools in order to modify the binding energy of a donor impurity in parallel-coupled-quantum-well wires.

  20. Importance of the ion-pair interactions in the OPEP coarse-grained force field: parametrization and validation.

    Science.gov (United States)

    Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe

    2013-10-08

    We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.

  1. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    Science.gov (United States)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  2. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA

  3. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    International Nuclear Information System (INIS)

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-01-01

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields

  4. Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass.

    Science.gov (United States)

    Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A

    2012-12-01

    Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.

  5. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    Science.gov (United States)

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Force law in material media, hidden momentum and quantum phases

    International Nuclear Information System (INIS)

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2016-01-01

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.

  7. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2013-01-01

    We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of μ 2 = 2.°7 ± 1.°3 between the model field lines and observed loops, and an accuracy of ≈1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.

  8. Toward Structure Prediction for Short Peptides Using the Improved SAAP Force Field Parameters

    Directory of Open Access Journals (Sweden)

    Kenichi Dedachi

    2013-01-01

    Full Text Available Based on the observation that Ramachandran-type potential energy surfaces of single amino acid units in water are in good agreement with statistical structures of the corresponding amino acid residues in proteins, we recently developed a new all-atom force field called SAAP, in which the total energy function for a polypeptide is expressed basically as a sum of single amino acid potentials and electrostatic and Lennard-Jones potentials between the amino acid units. In this study, the SAAP force field (SAAPFF parameters were improved, and classical canonical Monte Carlo (MC simulation was carried out for short peptide models, that is, Met-enkephalin and chignolin, at 300 K in an implicit water model. Diverse structures were reasonably obtained for Met-enkephalin, while three folded structures, one of which corresponds to a native-like structure with three native hydrogen bonds, were obtained for chignolin. The results suggested that the SAAP-MC method is useful for conformational sampling for the short peptides. A protocol of SAAP-MC simulation followed by structural clustering and examination of the obtained structures by ab initio calculation or simply by the number of the hydrogen bonds (or the hardness was demonstrated to be an effective strategy toward structure prediction for short peptide molecules.

  9. Motion of small bodies in classical field theory

    International Nuclear Information System (INIS)

    Gralla, Samuel E.

    2010-01-01

    I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.

  10. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  11. Force-free state in a superconducting single crystal and angle-dependent vortex helical instability

    Science.gov (United States)

    del Valle, J.; Gomez, A.; Gonzalez, E. M.; Manas-Valero, S.; Coronado, E.; Vicent, J. L.

    2017-06-01

    Superconducting 2 H -NbS e2 single crystals show intrinsic low pinning values. Therefore, they are ideal materials with which to explore fundamental properties of vortices. (V , I ) characteristics are the experimental data we have used to investigate the dissipation mechanisms in a rectangular-shaped 2 H -NbS e2 single crystal. Particularly, we have studied dissipation behavior with magnetic fields applied in the plane of the crystal and parallel to the injected currents, i.e., in the force-free state where the vortex helical instability governs the vortex dynamics. In this regime, the data follow the elliptic critical state model and the voltage dissipation shows an exponential dependence, V ∝eα (I -IC ∥ ) , IC ∥ being the critical current in the force-free configuration and α a linear temperature-dependent parameter. Moreover, this exponential dependence can be observed for in-plane applied magnetic fields up to 40° off the current direction, which implies that the vortex helical instability plays a role in dissipation even out of the force-free configuration.

  12. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.

    Science.gov (United States)

    Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M

    2017-11-01

    In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  14. Determination of Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  15. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  16. Three-dimensional computation of magnetic fields and Lorentz forces of an LHC dipole magnet

    International Nuclear Information System (INIS)

    Daum, C.; Avest, D. ter

    1989-07-01

    Magnetic fields and Lorentz forces of an LHC dipole magnet are calculated using the method of image currents to represent the effect of the iron shield. The calculation is performed for coils of finite length using a parametrization for coil heads of constant perimeter. A comparison with calculations based on POISSON and TOSCA is made. (author). 5 refs.; 31 figs.; 6 tabs

  17. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  18. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.

    Science.gov (United States)

    Müller, Erich A; Jackson, George

    2014-01-01

    A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

  19. Internal electric fields due to piezoelectric and spontaneous polarizations in CdZnO/MgZnO quantum well with various applied electric field effects

    International Nuclear Information System (INIS)

    Jeon, H.C.; Lee, S.J.; Kang, T.W.; Park, S.H.

    2012-01-01

    The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.

  20. Internal electric fields due to piezoelectric and spontaneous polarizations in CdZnO/MgZnO quantum well with various applied electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H.C. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, S.J., E-mail: leesj@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Kang, T.W. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Park, S.H. [Department of Electronics Engineering, Catholic University of Daegu, Kyeongbuk 712-702 (Korea, Republic of)

    2012-05-15

    The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.

  1. Researching Refugee and Forced Migration Studies: An Introduction to the Field and the Reference Literature.

    Science.gov (United States)

    Mason, Elisa

    1999-01-01

    Describes the evolution of refugee and forced migration studies, identifies factors that render it a challenging field to research, and highlights a variety of Internet-based and other electronic resources that can be used to locate monographs, periodicals, grey literature, and current information. Provides a bibliography of reference materials in…

  2. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case

    DEFF Research Database (Denmark)

    Rossi, G.; Monticelli, L.; Puisto, S. R.

    2011-01-01

    We hereby introduce a new hybrid thermodynamic-structural approach to the coarse-graining of polymers. The new model is developed within the framework of the MARTINI force-field (Marrink et al., J. Phys. Chem. B, 2007, 111, 7812), which uses mainly thermodynamic properties as targets...... of microseconds. Finally, we tested our model in dilute conditions. The collapse of the polymer chains in a bad solvent and the swelling in a good solvent could be reproduced....

  3. Lateral Casimir-Polder forces by breaking time-reversal symmetry

    Science.gov (United States)

    Oude Weernink, Ricardo R. Q. P. T.; Barcellona, Pablo; Buhmann, Stefan Yoshi

    2018-03-01

    We examine the lateral Casimir-Polder force acting on a circular rotating emitter near a dielectric plane surface. As the circular motion breaks time-reversal symmetry, the spontaneous emission in a direction parallel to the surface is in general anisotropic. We show that a lateral force arises which can be interpreted as a recoil force because of this asymmetric emission. The force is an oscillating function of the distance between the emitter and the surface, and the lossy character of the dielectric strongly influences the results in the near-field regime. The force exhibits also a population-induced dynamics, decaying exponentially with respect to time on time scales of the inverse of the spontaneous decay rate. We propose that this effect could be detected measuring the velocity acquired by the emitter, following different cycles of excitation and spontaneous decay. Our results are expressed in terms of the Green's tensor and can therefore easily be applied to more complex geometries.

  4. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.

    Science.gov (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2014-10-16

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of

  5. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force

    Science.gov (United States)

    Zhang, Chunli; Wang, Xiaoyuan; Chen, Weiqiu; Yang, Jiashi

    2017-02-01

    This paper presents a theoretical analysis on the axial extension of an n-type ZnO piezoelectric semiconductor nanofiber under an axial force. The phenomenological theory of piezoelectric semiconductors consisting of Newton’s second law of motion, the charge equation of electrostatics and the conservation of charge was used. The equations were linearized for small axial force and hence small electron concentration perturbation, and were reduced to one-dimensional equations for thin fibers. Simple and analytical expressions for the electromechanical fields and electron concentration in the fiber were obtained. The fields are either totally or partially described by hyperbolic functions relatively large near the ends of the fiber and change rapidly there. The behavior of the fields is sensitive to the initial electron concentration and the applied axial force. For higher initial electron concentrations the fields are larger near the ends and change more rapidly there.

  6. Graphene field-effect devices

    Science.gov (United States)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  7. Blade design loads on the flow exciting force in centrifugal pump

    International Nuclear Information System (INIS)

    Xu, Y; Yang, A L; Langand, D P; Dai, R

    2012-01-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%∼2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  8. Force sharing and other collaborative strategies in a dyadic force perception task

    Science.gov (United States)

    Tatti, Fabio

    2018-01-01

    When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433

  9. Magnetic particle movement program to calculate particle paths in flow and magnetic fields

    International Nuclear Information System (INIS)

    Inaba, Toru; Sakazume, Taku; Yamashita, Yoshihiro; Matsuoka, Shinya

    2014-01-01

    We developed an analysis program for predicting the movement of magnetic particles in flow and magnetic fields. This magnetic particle movement simulation was applied to a capturing process in a flow cell and a magnetic separation process in a small vessel of an in-vitro diagnostic system. The distributions of captured magnetic particles on a wall were calculated and compared with experimentally obtained distributions. The calculations involved evaluating not only the drag, pressure gradient, gravity, and magnetic force in a flow field but also the friction force between the particle and the wall, and the calculated particle distributions were in good agreement with the experimental distributions. Friction force was simply modeled as static and kinetic friction forces. The coefficients of friction were determined by comparing the calculated and measured results. This simulation method for solving multiphysics problems is very effective at predicting the movements of magnetic particles and is an excellent tool for studying the design and application of devices. - Highlights: ●We developed magnetic particles movement program in flow and magnetic fields. ●Friction force on wall is simply modeled as static and kinetic friction force. ●This program was applied for capturing and separation of an in-vitro diagnostic system. ●Predicted particle distributions on wall were agreed with experimental ones. ●This method is very effective at predicting movements of magnetic particles

  10. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  11. A Multiposture Locomotor Training Device with Force-Field Control

    Directory of Open Access Journals (Sweden)

    Jianfeng Sui

    2014-11-01

    Full Text Available This paper introduces a multiposture locomotor training device (MPLTD with a closed-loop control scheme based on joint angle feedback, which is able to overcome various difficulties resulting from mechanical vibration and the weight of trainer to achieve higher accuracy trajectory. By introducing the force-field control scheme used in the closed-loop control, the device can obtain the active-constrained mode including the passive one. The MPLTD is mainly composed of three systems: posture adjusting and weight support system, lower limb exoskeleton system, and control system, of which the lower limb exoskeleton system mainly includes the indifferent equilibrium mechanism with two degrees of freedom (DOF and the driving torque is calculated by the Lagrangian function. In addition, a series of experiments, the weight support and the trajectory accuracy experiment, demonstrate a good performance of mechanical structure and the closed-loop control.

  12. Image charge forces inside conducting boundaries

    International Nuclear Information System (INIS)

    Tinkle, Mark D.; Barlow, S. E.

    2001-01-01

    The common description of the electrostatic force, F(x)=-q∇φ(x), provides an incomplete description of the force on the charge q at a point x when the charge itself induces additional fields, e.g., image charges, polarizations, etc. The equation may be corrected through the introduction of a ''pseudopotential'' formalism. Exploration of some of the elementary properties of the pseudopotential demonstrates its essential simplicity. This simplicity allows it to be incorporated directly into dynamics calculations. We explicitly evaluate the pseudopotential in a number of simple but important cases including the sphere, parallel plates, the rectangular prism, and the cylindrical box. The pseudopotential formalism may be expanded to include extended charge distributions; in this latter form we are able to directly apply the results to experimental measurements

  13. Different forces

    CERN Multimedia

    1982-01-01

    The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.

  14. B-spline tight frame based force matching method

    Science.gov (United States)

    Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei

    2018-06-01

    In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.

  15. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    Science.gov (United States)

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  16. Identifying a cooperative control mechanism between an applied field and the environment of open quantum systems

    Science.gov (United States)

    Gao, Fang; Rey-de-Castro, Roberto; Wang, Yaoxiong; Rabitz, Herschel; Shuang, Feng

    2016-05-01

    Many systems under control with an applied field also interact with the surrounding environment. Understanding the control mechanisms has remained a challenge, especially the role played by the interaction between the field and the environment. In order to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights into the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.

  17. Study of deformation of droplet in external force field by using liquid-gas model of lattice-gas

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Watanabe, Tadashi

    2000-10-01

    The deformation of the droplet by the external force which is assumed to be gravity is studied by using the liquid-gas model of lattice-gas. Two types of liquid-gas models, one is the minimal model and the other is the maximal model, which are distinguished from each other by the added long-range interactions are used for the simulation of the droplet deformation. The difference of the droplet deformation between the maximal model and the minimal model was observed. While the droplet of the minimal model elongates in the direction of the external force, the droplet of the maximal model elongates in the perpendicular direction to the external force. Therefore the droplet deformation in the external force field of the maximal model is more similar to the droplet deformation which is observed in experiments than that of the minimal model. (author)

  18. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  19. Combining an Elastic Network With a Coarse-Grained Molecular Force Field : Structure, Dynamics, and Intermolecular Recognition

    NARCIS (Netherlands)

    Periole, Xavier; Cavalli, Marco; Marrink, Siewert-Jan; Ceruso, Marco A.

    Structure-based and physics-based coarse-grained molecular force fields have become attractive approaches to gain mechanistic insight into the function of large biomolecular assemblies. Here, we study how both approaches can be combined into a single representation, that we term ELNEDIN. In this

  20. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  1. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    Science.gov (United States)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  2. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. (Argonne National Lab., IL (United States)); Rossing, T.D. (Northern Illinois Univ., De Kalb, IL (United States))

    1992-01-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  3. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. [Argonne National Lab., IL (United States); Rossing, T.D. [Northern Illinois Univ., De Kalb, IL (United States)

    1992-04-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  4. On a role of the Bsub(z) component of interplanetary magnetic field in a force balance in the day time magnetopause

    International Nuclear Information System (INIS)

    Kuznetsova, T.V.

    1980-01-01

    The role of interplanetary magnetic field (IMF) in the force balance in the day time magnetopause is discussed. The effect of the circular DR-current on the balance of pressures in the magnetopause is taken into account in the calculations. It is shown that IMF plays a significant role in the balance of forces in the day time magnetopause. The ratio of magnetic pressure to the thermal pressure of solar wind in subsolar point is k=0.5. The field observed in magnetosphere near the neutral line is lower by the value of transition region field. All the conclusions are obtained for Bsub(z) [ru

  5. An atomistic fingerprint algorithm for learning ab initio molecular force fields

    Science.gov (United States)

    Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em

    2018-01-01

    Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.

  6. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    Science.gov (United States)

    Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.

    2018-03-01

    Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

  7. The effect of magnet size on the levitation force and attractive force of single-domain YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Yang, W M; Chao, X X; Bian, X B; Liu, P; Feng, Y; Zhang, P X; Zhou, L

    2003-01-01

    The levitation forces between a single-domain YBCO bulk and several magnets of different sizes have been measured at 77 K to investigate the effect of the magnet size on the levitation force. It is found that the levitation force reaches a largest (peak) value when the size of the magnet approaches that of the superconductor when the other conditions are fixed. The absolute maximum attractive force (in the field-cooled state) increases with the increasing of the magnet size, and is saturated when the magnet size approaches that of the superconductor. The maximum attractive force in the field-cooled (FC) state is much higher than that of the maximum attractive force in the zero field-cooled (ZFC) state. The results indicate that the effects of magnetic field distribution on the levitation force have to be considered during the designing and manufacturing of superconducting devices

  8. Magnet polepiece design for uniform magnetic force on superparamagnetic beads

    OpenAIRE

    Fallesen, Todd; Hill, David B.; Steen, Matthew; Macosko, Jed C.; Bonin, Keith; Holzwarth, George

    2010-01-01

    Here we report construction of a simple electromagnet with novel polepieces which apply a spatially uniform force to superparamagnetic beads in an optical microscope. The wedge-shaped gap was designed to keep ∂Bx∕∂y constant and B large enough to saturate the bead. We achieved fields of 300–600 mT and constant gradients of 67 T∕m over a sample space of 0.5×4 mm2 in the focal plane of the microscope and 0.05 mm along the microscope optic axis. Within this space the maximum force on a 2.8 μm di...

  9. Numerical study of droplet evaporation in coupled high-temperature and electrostatic fields

    Directory of Open Access Journals (Sweden)

    Ziwen Zuo

    2015-03-01

    Full Text Available The evaporation of a sessile water droplet under the coupled electrostatic and high-temperature fields is studied numerically. The leaky dielectric model and boiling point evaporation model are used for calculating the electric force and heat mass transfer. The free surface is captured using the volume of fluid method accounting for the variable surface tension and the transition of physical properties across the interface. The flow behaviors and temperature evolutions in different applied fields are predicted. It shows that in the coupled fields, the external electrostatic field restrains the flow inside the droplet and keeps a steady circulation. The flow velocity is reduced due to the interaction between electric body force and the force caused by temperature gradient. The heat transfer from air into the droplet is reduced by the lower flow velocity. The evaporation rate of the droplet in the high-temperature field is decreased.

  10. Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zunjing; Deserno, Markus, E-mail: zwang@cmu.ed, E-mail: deserno@andrew.cmu.ed [Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2010-09-15

    We study the lipid and phase transferability of our recently developed systematically coarse-grained solvent-free membrane model. The force field was explicitly parameterized to describe a fluid 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer at 310 K with correct structure and area per lipid, while gaining at least three orders of magnitude in computational efficiency (see Wang and Deserno 2010 J. Phys. Chem. B 114 11207-20). Here, we show that exchanging CG tails, without any subsequent re-parameterization, creates reliable models of 1,2-dioleoylphosphatidylcholine (DOPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipids in terms of structure and area per lipid. Furthermore, all CG lipids undergo a liquid-gel transition upon cooling, with characteristics like those observed in experiments and all-atom simulations during phase transformation. These studies suggest a promising transferability of our force field parameters to different lipid species and thermodynamic state points, properties that are a prerequisite for even more complex systems, such as mixtures.

  11. Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field

    International Nuclear Information System (INIS)

    Wang Zunjing; Deserno, Markus

    2010-01-01

    We study the lipid and phase transferability of our recently developed systematically coarse-grained solvent-free membrane model. The force field was explicitly parameterized to describe a fluid 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer at 310 K with correct structure and area per lipid, while gaining at least three orders of magnitude in computational efficiency (see Wang and Deserno 2010 J. Phys. Chem. B 114 11207-20). Here, we show that exchanging CG tails, without any subsequent re-parameterization, creates reliable models of 1,2-dioleoylphosphatidylcholine (DOPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipids in terms of structure and area per lipid. Furthermore, all CG lipids undergo a liquid-gel transition upon cooling, with characteristics like those observed in experiments and all-atom simulations during phase transformation. These studies suggest a promising transferability of our force field parameters to different lipid species and thermodynamic state points, properties that are a prerequisite for even more complex systems, such as mixtures.

  12. Lateral migration of a microdroplet under optical forces in a uniform flow

    International Nuclear Information System (INIS)

    Cho, Hyunjun; Chang, Cheong Bong; Jung, Jin Ho; Sung, Hyung Jin

    2014-01-01

    The behavior of a microdroplet in a uniform flow and subjected to a vertical optical force applied by a loosely focused Gaussian laser beam was studied numerically. The lattice Boltzmann method was applied to obtain the two-phase flow field, and the dynamic ray tracing method was adopted to calculate the optical force. The optical forces acting on the spherical droplets agreed well with the analytical values. The numerically predicted droplet migration distances agreed well with the experimentally obtained values. Simulations of the various flow and optical parameters showed that the droplet migration distance nondimensionalized by the droplet radius is proportional to the S number (z d /r p = 0.377S), which is the ratio of the optical force to the viscous drag. The effect of the surface tension was also examined. These results indicated that the surface tension influenced the droplet migration distance to a lesser degree than the flow and optical parameters. The results of the present work hold for the refractive indices of the mean fluid and the droplet being 1.33 and 1.59, respectively

  13. Numerical and experimental study of the effect of the induced electric potential in Lorentz force velocimetry

    Science.gov (United States)

    Hernández, Daniel; Boeck, Thomas; Karcher, Christian; Wondrak, Thomas

    2018-01-01

    Lorentz force velocimetry (LFV) is a contactless velocity measurement technique for electrically conducting fluids. When a liquid metal or a molten glass flows through an externally applied magnetic field, eddy currents and a flow-braking force are generated inside the liquid. This force is proportional to the velocity or flow rate of the fluid and, due to Newton’s third law, a force of the same magnitude but in opposite direction acts on the source of the applied magnetic field which in our case are permanent magnets. According to Ohm’s law for moving conductors at low magnetic Reynolds numbers, an electric potential is induced which ensures charge conservation. In this paper, we analyze the contribution of the induced electric potential to the total Lorentz force by considering two different scenarios: conducting walls of finite thickness and aspect ratio variation of the cross-section of the flow. In both the cases, the force component generated by the electric potential is always in the opposite direction to the total Lorentz force. This force component is sensitive to the electric boundary conditions of the flow of which insulating and perfectly conducting walls are the two limiting cases. In the latter case, the overall electric resistance of the system is minimized, resulting in a considerable increase in the measured Lorentz force. Additionally, this force originating from the electric potential also decays when the aspect ratio of the cross-section of the flow is changed. Hence, the sensitivity of the measurement technique is enhanced by either increasing wall conductivity or optimizing the aspect ratio of the cross-section of the flow.

  14. The effect of ac magnetic fields on the lifting power of levitating superconductors

    International Nuclear Information System (INIS)

    Smolyak, B M; Ermakov, G V; Chubraeva, L I

    2007-01-01

    This study deals with the decrease in the levitation force under the action of an ac field up to the frequency at which oscillations of the superconducting suspension are limited by inertia. The lifting force was measured as a function of the ac field amplitude and the exposure time. It was shown that the force quickly decreased at the moment the ac field was applied and then continued diminishing, but at a lower rate. A qualitative model was proposed, taking into account two effects of the ac field on the magnetization of the levitating superconductor: a complete destruction of the critical state in some section of the superconductor (to a depth λ ac ) and the initiation of a faster magnetic relaxation in the region where the induction gradient is preserved

  15. Kelvin probe force microscopy from single charge detection to device characterization

    CERN Document Server

    Glatzel, Thilo

    2018-01-01

    This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.

  16. StringForce

    DEFF Research Database (Denmark)

    Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva

    2017-01-01

    In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....

  17. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    Science.gov (United States)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  18. Electrostatic force microscopy with a self-sensing piezoresistive cantilever

    International Nuclear Information System (INIS)

    Pi, U. H.; Kye, J. I.; Shin, S.; Khim, Z. G.; Hong, J. W.; Yoon, S.

    2003-01-01

    We present a new method for electrostatic force microscopy (EFM) using a piezoresistive cantilever instead of the conventional cantilever with an optical detector. In EFM with a piezoresistive cantilever, the electrostatic force between the tip and the sample is monitored by sensing the change in the resistance of the piezoresistive cantilever at a frequency of several tens of kHz. A large stray capacitance effect can be rejected by using an appropriate phase tuning of the phase-sensitive detection. We observed the ferroelectric domain images of a triglycine sulfate single crystal. We could also write fine patterns on a lead-zirconate-titanate (PZT) thin film through domain reversal by applying various dc voltages between the tip and the sample. We suggest that the EFM technique using a self-sensing and self-actuating piezoresistive cantilever can be applied to a high-density data storage field

  19. Volume pinning force and upper critical field of irradiated Nb3Sn

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1981-01-01

    Irradiation by neutrons and ions in A15 superconductors (Nb 3 Sn, V 3 Ga) exerts a stronger influence on the pinning behavior than in nonordered alloys (NbTi). In this work it is shown for deuteron irradiated Nb 3 /Sn wires prepared by the bronze process that the dose curve of the volume pinning force P/sub V/ can be conveniently described by a sum of two terms, due to the grain boundary pinning and to the radiation pinning, respectively. After deduction of the contribution by the radiation-induced pinning centers, good agreement is obtained between the measured P/sub V/ values and those calculated using the upper critical field B/sub c/2 and the transition temperature T/sub c/ on the basis of the irradiation fluence. The use of a theoretical relationship between B/sub c/2 and T/sub c/ is supported by measured values. Application to multifilamentary superconductors with high current carrying capabilities simplifies the calculation of P/sub V/, since the radiation induced volume pinning force can be neglected

  20. Comparison of the force applied on oral structures during intubation attempts by novice physicians between the Macintosh direct laryngoscope, Airway Scope and C-MAC PM: a high-fidelity simulator-based study.

    Science.gov (United States)

    Nakanishi, Taizo; Shiga, Takashi; Homma, Yosuke; Koyama, Yasuaki; Goto, Tadahiro

    2016-05-23

    We examined whether the use of Airway Scope (AWS) and C-MAC PM (C-MAC) decreased the force applied on oral structures during intubation attempts as compared with the force applied with the use of Macintosh direct laryngoscope (DL). Prospective cross-over study. A total of 35 novice physicians participated. We used 6 simulation scenarios based on the difficulty of intubation and intubation devices. Our primary outcome measures were the maximum force applied on the maxillary incisors and tongue during intubation attempts, measured by a high-fidelity simulator. The maximum force applied on maxillary incisors was higher with the use of the C-MAC than with the DL and AWS in the normal airway scenario (DL, 26 Newton (N); AWS, 18 N; C-MAC, 52 N; p<0.01) and the difficult airway scenario (DL, 42 N; AWS, 24 N; C-MAC, 68 N; p<0.01). In contrast, the maximum force applied on the tongue was higher with the use of the DL than with the AWS and C-MAC in both airway scenarios (DL, 16 N; AWS, 1 N; C-MAC, 7 N; p<0.01 in the normal airway scenario; DL, 12 N; AWS, 4 N; C-MAC, 7 N; p<0.01 in the difficult airway scenario). The use of C-MAC, compared with the DL and AWS, was associated with the higher maximum force applied on maxillary incisors during intubation attempts. In contrast, the use of video laryngoscopes was associated with the lower force applied on the tongue in both airway scenarios, compared with the DL. Our study was a simulation-based study, and further research on living patients would be warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/