WorldWideScience

Sample records for food spoilage fungi

  1. Sea salts as a potential source of food spoilage fungi.

    Science.gov (United States)

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Food spoilage - interactions between food spoilage bacteria

    DEFF Research Database (Denmark)

    Gram, Lone; Flodgaard, Lars; Rasch, Maria

    2002-01-01

    Food spoilage is a complex process and excessive amounts of foods are lost due to microbial spoilage even with modem day preservation techniques. Despite the heterogeneity in raw materials and processing conditions, the microflora that develops during storage and in spoiling foods can be predicted...... based on knowledge of the origin of the food, the substrate base and a few central preservation parameters such as temperature, atmosphere, a(w) and pH. Based on such knowledge, more detailed sensory, chemical and microbiological analysis can be carried out on the individual products to determine...... the actual specific spoilage organism. Whilst the chemical and physical parameters are the main determining factors for selection of spoilage microorganisms, a level of refinement may be found in some products in which the interactive behavior of microorganisms may contribute to their growth and/or spoilage...

  3. Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi.

    Science.gov (United States)

    Nguefack, J; Leth, V; Amvam Zollo, P H; Mathur, S B

    2004-08-01

    Five essential oils (EO) extracted from Cymbopogon citratus, Monodora myristica, Ocimum gratissimum, Thymus vulgaris and Zingiber officinale were investigated for their inhibitory effect against three food spoilage and mycotoxin producing fungi, Fusarium moniliforme, Aspergillus flavus and Aspergillus fumigatus. Five strains of each fungus were tested. The agar dilution technique was used to determine the inhibitory effect of each EO on the radial growth of the fungus, and a dose response was recorded. The EO from O. gratissimum, T. vulgaris and C. citratus were the most effective and prevented conidial germination and the growth of all three fungi on corn meal agar at 800, 1000 and 1200 ppm, respectively. Moderate activity was observed for the EO from Z. officinale between 800 and 2500 ppm, while the EO from M. myristica was less inhibitory. These effects against food spoilage and mycotoxin producing fungi indicated the possible ability of each essential oil as a food preservative. A comparative test on the preservative ability of the EO from O. gratissimum and potassium sorbate against A. flavus at pH 3.0 and 4.5 showed that the EO remained stable at both pH, whereas the efficacy of potassium sorbate was reduced at higher pH. We concluded that the EO from O. gratissimum is a potential food preservative with a pH dependent superiority against potassium sorbate, and these are novel scientific information.

  4. Moulds in food spoilage

    DEFF Research Database (Denmark)

    Filtenborg, Ole; Frisvad, Jens Christian; Thrane, Ulf

    1996-01-01

    There is an increasing knowledge and understanding of the role played by moulds in food spoilage. Especially the discovery of mycotoxin production in foods has highligh-ted the importance of moulds in food quality. It is, however, only within the last 5-10 years that major progresses have been made...... the associated or critical funga and has been shown to consist of less than 10 species. In this paper the associated funga is described for the following foods: Citrus and pomaceous fruits, potato and yam tubers, onions, rye, wheat, rye bread, cheese and fermented sausages and whenever possible the selective...

  5. Isolation and Identification of Spoilage Fungi Associated With Rice ...

    African Journals Online (AJOL)

    The spoilage fungi isolated were Aspergillus species, Rhizopus, Penicilluim, Fusarium, Eurotium, Mucor, Geotrichum, Alternaria, Cladosporium and Actinomyces species. The predominant spoilage fungi in the grains were Aspergillus species. The populations of some spoilage fungi isolated from the grains were not high ...

  6. Fungal Spoilage in Food Processing.

    Science.gov (United States)

    Snyder, Abigail B; Worobo, Randy W

    2018-06-01

    Food processing, packaging, and formulation strategies are often specifically designed to inhibit or control microbial growth to prevent spoilage. Some of the most restrictive strategies rely solely or on combinations of pH reduction, preservatives, water activity limitation, control of oxygen tension, thermal processing, and hermetic packaging. In concert, these strategies are used to inactivate potential spoilage microorganisms or inhibit their growth. However, for select microbes that can overcome these controls, the lack of competition from additional background microbiota helps facilitate their propagation.

  7. Solving Microbial Spoilage Problems in Processed Foods

    Science.gov (United States)

    Clavero, Rocelle

    This chapter surveys common microbial food spoilage processes. The chapter is organized by food products and includes sections addressing spoilage in meat, poultry, fish; dairy products (milk, butter, cheese); beverage products; bakery products; canned foods; fruit and confectionery products; and emulsions. It addresses the isolation and identification of spoilage organisms and provides several case studies as examples. It introduces various organisms responsible for spoilage including Gram-positive lactic acid bacteria, Gram-negative aerobic bacteria, yeasts, molds, and fungal contaminants. Throughout the chapter, attention is given to when, where, and how spoilage organisms enter the food processing chain. Troubleshooting techniques are suggested. The effect (or lack of effect) of heating, dehydration, pH change, cooling, and sealing on various organisms is explained throughout. The chapter contains four tables that connect specific organisms to various spoilage manifestations in a variety of food products.

  8. Stress tolerance in fungi - to kill a spoilage yeast.

    NARCIS (Netherlands)

    Smits, G.J.; Brul, S.

    2005-01-01

    The fungal spoilage of ingredients of food manufacture is an economic problem, often causes product loss and may constitute a health hazard. To effectively combat fungal food spoilage, a mechanistic understanding of tolerance for, and adaptation to, the preservation method used is crucial. Both are

  9. Microbiological Spoilage of Canned Foods

    Science.gov (United States)

    Evancho, George M.; Tortorelli, Suzanne; Scott, Virginia N.

    Nicolas Appert (1749-1841) developed the first commercial process that kept foods from spoiling in response to an offer from the French government for a method of preserving food for use by the army and navy. Appert, a confectioner and chef, began to experiment in his workshop in Massy, near Paris, but since little was known about bacteriology and the causes of spoilage (Louis Pasteur had yet to formulate the germ theory), much of his work involved trial and error. In 1810, after years of experimenting, he was awarded the prize of 12,000 francs for his method of preservation, which involved cooking foods in sealed jars at high temperatures. He described his method of preserving food in a book published in 1811, "L'Art De Conserver, Pendant Plusiers Annes, Toutes les Substances Animales et Végétales," which translated means "The Art of Preserving All Kinds of Animal and Vegetable Substances for Several Years." He later built a bottling factory and began to produce preserved foods for the people of France and is credited with being the "Father of Canning."

  10. Spoilage fungi and their mycotoxins in commercially marketed chestnuts

    DEFF Research Database (Denmark)

    Overy, David Patrick; Seifert, K.A.; Savard, M.E.

    2003-01-01

    A nationwide survey was carried out to assess mould spoilage of Castanea sativa nuts sold in Canadian grocery stores in 1998-99. Morphological and cultural characters, along with secondary metabolite profiles derived from thin-layer chromatography, were used to sort and identify fungi cultured from...

  11. Effects of aqueous extract of Cinnamomum verum on growth of bread spoilage fungi

    OpenAIRE

    Monir Doudi; Mahbubeh Setorki; Zahra Rezayatmand

    2016-01-01

    Food waste has been identified as a considerable problem and bread is the most wasted food. This study aimed to evaluate In-vitro anti-fungal activity of cinnamon extract on bread spoilage fungi and to determine its anti-fungal effect in the bread slices. At first, the MIC and MFC values of the extract were determined against Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Penicillium chrysogenum, Penicillium notatum and Rhizopus oryzae. Then, Aspergillus sp was sele...

  12. Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology

    Science.gov (United States)

    Snyder, Abigail B.; Worobo, Randy W.; Orta-Ramirez, Alicia

    2016-01-01

    Food spoilage has an enormous economic impact, and microbial food spoilage plays a significant role in food waste and loss; subsequently, an equally significant portion of undergraduate food microbiology instruction should be dedicated to spoilage microbiology. Here, we describe a set of undergraduate microbiology laboratory exercises that focus…

  13. Diversity and Control of Spoilage Fungi in Dairy Products: An Update

    Science.gov (United States)

    Valence, Florence; Mounier, Jérôme

    2017-01-01

    Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods. PMID:28788096

  14. Diversity and Control of Spoilage Fungi in Dairy Products: An Update

    Directory of Open Access Journals (Sweden)

    Lucille Garnier

    2017-07-01

    Full Text Available Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially new hurdle technologies to control their occurrence in dairy foods.

  15. Spoilage of vegetable crops by bacteria and fungi and related health hazards.

    Science.gov (United States)

    Tournas, V H

    2005-01-01

    After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. The most common bacterial agents are Erwinia carotovora, Pseudomonas spp., Corynebacterium, Xanthomonas campestris, and lactic acid bacteria with E. carotovora being the most common, attacking virtually every vegetable type. Fungi commonly causing spoilage of fresh vegetables are Botrytis cinerea, various species of the genera Alternaria, Aspergillus, Cladosporium, Colletotrichum, Phomopsis, Fusarium, Penicillium, Phoma, Phytophthora, Pythium and Rhizopus spp., Botrytis cinerea, Ceratocystis fimbriata, Rhizoctonia solani, Sclerotinia sclerotiorum, and some mildews. A few of these organisms show a substrate preference whereas others such as Botrytis cinerea, Colletotrichum, Alternaria, Cladosporium, Phytophthora, and Rhizopus spp., affect a wide variety of vegetables causing devastating losses. Many of these agents enter the plant tissue through mechanical or chilling injuries, or after the skin barrier has been broken down by other organisms. Besides causing huge economic losses, some fungal species could produce toxic metabolites in the affected sites, constituting a potential health hazard for humans. Additionally, vegetables have often served as vehicles for pathogenic bacteria, viruses, and parasites and were implicated in many food borne illness outbreaks. In order to slow down vegetable spoilage and minimize the associated adverse health effects, great caution should be taken to follow strict hygiene, good agricultural practices (GAPs) and good manufacturing practices (GMPs) during cultivation, harvest, storage, transport, and marketing.

  16. Effects of aqueous extract of Cinnamomum verum on growth of bread spoilage fungi

    Directory of Open Access Journals (Sweden)

    Monir Doudi

    2016-01-01

    Full Text Available Food waste has been identified as a considerable problem and bread is the most wasted food. This study aimed to evaluate In-vitro anti-fungal activity of cinnamon extract on bread spoilage fungi and to determine its anti-fungal effect in the bread slices. At first, the MIC and MFC values of the extract were determined against Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Penicillium chrysogenum, Penicillium notatum and Rhizopus oryzae. Then, Aspergillus sp was selected to assess antifungal activities of different doses of cinnamon extract in bread slices. Cinnamon extract at a dose of 64 mg/ml completely inhibited all standard and bread isolated fungi. This concentration of extract also inhibited Aspergillus growth on bread slices and delayed colony formation but adversely affected the sensory characteristics of bread. Cinnamon extract at 32 mg/ml not only delayed fungal growth, but also improved bread shelf life and delayed its staling. Moreover, 32mg/ml of extract did not adversely affect bread aroma, flavor and texture. However, sodium acetate inhibited the growth of Aspergillus sp but is not recommended for fungal control because it is considered as chemical. Therefore 32 mg/ml of extract is recommended for increasing the shelf-life of flat bread.

  17. Isolation and Identification of Fungi Associated with the Spoilage of ...

    African Journals Online (AJOL)

    This study was carried out in Sokoto Metropolis to isolate and identify fungi associated with the deterioration of sweet orange fruits. A total of one hundred samples of fresh sweet Oranges (Citrus sinensis L) were used. First, a total of seventy samples were obtained from the three selected marketing centres in Sokoto ...

  18. Predicting and preventing mold spoilage of food products.

    Science.gov (United States)

    Dagnas, Stéphane; Membré, Jeanne-Marie

    2013-03-01

    This article is a review of how to quantify mold spoilage and consequently shelf life of a food product. Mold spoilage results from having a product contaminated with fungal spores that germinate and form a visible mycelium before the end of the shelf life. The spoilage can be then expressed as the combination of the probability of having a product contaminated and the probability of mold growth (germination and proliferation) up to a visible mycelium before the end of the shelf life. For products packed before being distributed to the retailers, the probability of having a product contaminated is a function of factors strictly linked to the factory design, process, and environment. The in-factory fungal contamination of a product might be controlled by good manufacturing hygiene practices and reduced by particular processing practices such as an adequate air-renewal system. To determine the probability of mold growth, both germination and mycelium proliferation can be mathematically described by primary models. When mold contamination on the product is scarce, the spores are spread on the product and more than a few spores are unlikely to be found at the same spot. In such a case, models applicable for a single spore should be used. Secondary models can be used to describe the effect of intrinsic and extrinsic factors on either the germination or proliferation of molds. Several polynomial models and gamma-type models quantifying the effect of water activity and temperature on mold growth are available. To a lesser extent, the effect of pH, ethanol, heat treatment, addition of preservatives, and modified atmospheres on mold growth also have been quantified. However, mold species variability has not yet been properly addressed, and only a few secondary models have been validated for food products. Once the probability of having mold spoilage is calculated for various shelf lives and product formulations, the model can be implemented as part of a risk management

  19. Prevention of fungal spoilage in food products using natural compounds: A review.

    Science.gov (United States)

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, Jose Manuel

    2017-04-10

    The kingdom Fungi is the most important group of microorganism contaminating food commodities, and chemical additives are commonly used in the food industry to prevent fungal spoilage. However, the increasing consumer concern about synthetic additives has led to their substitution by natural compounds in foods. The current review provides an overview of using natural agents isolated from different sources (plants, animals, and microorganisms) as promising antifungal compounds, including information about their mechanism of action and their use in foods to preserve and prolong shelf life. Compounds derived from plants, chitosan, lactoferrin, and biocontrol agents (lactic acid bacteria, antagonistic yeast, and their metabolites) are able to control the decay caused by fungi in a wide variety of foods. Several strategies are employed to reduce the drawbacks of some antifungal agents, like their incorporation into oil-in-water emulsions and nanoemulsions, edible films and active packaging, and their combination with other natural preservatives. These strategies facilitate the addition of volatile agents into food products and, improve their antifungal effectiveness. Moreover, biological agents have been investigated as one of the most promising options in the control of postharvest decay. Numerous mechanisms of action have been elucidated and different approaches have been studied to enhance their antifungal effectiveness.

  20. Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Nielsen, Per Væggemose

    2003-01-01

    Aims: To study how antifungal activity of natural essential oils depends on the assay method used.Methods and Results: Oils of bay, cinnamon leaf, clove, lemongrass, mustard, orange, sage, thyme and two rosemary oils were tested by two methods: (1) a rye bread-based agar medium was supplemented...... with 100 and 250 mu l l(-1) essential oil and (2) real rye bread was exposed to 136 and 272 mu l l(-1) volatile oil in air. Rye bread spoilage fungi were used for testing. Method 1 proved thyme oil to be the overall best growth inhibitor, followed by clove and cinnamon. On the contrary, orange, sage...... and rosemary oils had very limited effects. Mustard and lemongrass were the most effective oils by the volatile method, and orange, sage and one rosemary showed some effects. Oil compositions were analysed by gas chromatography-mass spectrography.Conclusions: Antifungal effects of the essential oils depended...

  1. Introduction to the Microbiological Spoilage of Foods and Beverages

    Science.gov (United States)

    Sperber, William H.

    Though direct evidence of ancient food-handling practices is difficult to obtain and examine, it seems safe to assume that over the span of several million years, prehistoric humans struggled to maintain an adequate food supply. Their daily food needed to be hunted or harvested and consumed before it spoiled and became unfit to eat. Freshly killed animals, for example, could not have been kept for very long periods of time. Moreover, many early humans were nomadic, continually searching for food. We can imagine that, with an unreliable food supply, their lives must have often been literally "feast or famine." Yet, our ancestors gradually learned by accident, or by trial and error, simple techniques that could extend the storage time of their food (Block, 1991). Their brain capacity was similar to that of modern humans; therefore, some of them were likely early scientists and technologists. They would have learned that primitive cereal grains, nuts and berries, etc. could be stored in covered vessels to keep them dry and safer from mold spoilage. Animal products could be kept in cool places or dried and smoked over a fire, as the controlled use of fire by humans is thought to have begun about 400,000 years ago. Quite likely, naturally desiccated or fermented foods were also noticed and produced routinely to provide a more stable supply of edible food. Along with the development of agricultural practices for crop and animal production, the "simple" food-handling practices developed during the relatively countless millennia of prehistory paved the way for human civilizations.

  2. Fungi and mycotoxins: Food contaminants

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2013-01-01

    Full Text Available The growth of fungi on food causes physical and chemical changes which, further affect negatively the sensory and nutritive quality of food. Species from genera: Aspergillus, Penicillium, Fusarium, Alternariа, Cladosporium, Mucor, Rhizopus, Eurotium and Emericella are usually found. Some of them are potentially dangerous for humans and animals, due to possible synthesis and excretion of toxic secondary metabolites - mycotoxins into the food. Their toxic syndroms in animals and humans are known as mycotoxicoses. The pathologic changes can be observed in parenhimatic organs, and in bones and central nervous system also. Specific conditions are necessary for mycotoxin producing fungi to synthetize sufficient quantities of these compounds for demonstration of biologic effects. The main biochemical paths in the formation of mycotoxins include the polyketide (aflatoxins, sterigmatocystin, zearalenone, citrinine, patulin, terpenic (trichothecenes, aminoacid (glicotoxins, ergotamines, sporidesmin, malformin C, and carbonic acids path (rubratoxins. Aflatoxins are the most toxigenic metabolites of fungi, produced mostly by Aspergillus flavus and A. parasiticus species. Aflatoxins appear more frequently in food in the tropic and subtropic regions, while the food in Europe is more exposed to also very toxic ochratoxin A producing fungi (A. ochraceus and some Penicillium species. The agricultural products can be contaminated by fungi both before and after the harvest. The primary mycotoxicoses in humans are the result of direct intake of vegetable products contaminated by mycotoxins, while the secondary mycotoxicoses are caused by products of animal origin. The risk of the presence of fungi and mycotoxin in food is increasing, having in mind that some of them are highly thermoresistent, and the temperatures of usual food sterilization is not sufficient for their termination. The paper presents the review of most important mycotoxins, their biologic effects

  3. Control of Microbiological Spoilage of Food by Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J. [Central Food Research Institute, Budapest (Hungary)

    1978-04-15

    Papers published from 1973 to 1977 in the field of radiation control of microbiological spoilage are reviewed, grouping the subjects according to the type of process and food treated. Various laboratories from 33 countries have recently published data on the subject, radurization of dates, prepackaged vegetables, wet grains, bread, various meats and meat products being reported. The most widespread research activities could be observed in the field of radurization of fish and marine products (shellfish, shrimps). Radiation decontamination of dry food ingredients (enzyme preparates, protein preparates, starch, spices) and cork stoppers was studied in various laboratories. Radappertization research of several animal-protein foods has made remarkable progress and the minimal dose requirements are well established. Combination of radiation treatment with other antimicrobial agents (salt, preservatives, heat, etc.) has been investigated by many laboratories. Foods involved in these investigations were bread, several tropical and subtropical fruits, apple juice, groundnuts, fish fillets and shrimps, but a considerable part of the data relate to model systems. A better understanding of the synergistic effect will require additional knowledge and the continuation of long-range research and development in the field of combined treatments is recommended. (author)

  4. Control of microbiological spoilage of food by irradiation

    International Nuclear Information System (INIS)

    Farkas, J.

    1978-01-01

    Papers published from 1973 to 1977 in the field of radiation control of microbiological spoilage are reviewed, grouping the subjects according to the type of process and food treated. Various laboratories from 33 countries have recently published data on the subject, radurization of dates, prepackaged vegetables, wet grains, bread, various meats and meat products being reported. The most widespread research activities could be observed in the field of radurization of fish and marine products (shellfish, shrimps). Radiation decontamination of dry food ingredients (enzyme preparates, protein preparates, starch, spices) and cork stoppers was studied in various laboratories. Radappertization research of several animal-protein foods has made remarkable progress and the minimal dose requirements are well established. Combination of radiation treatment with other antimicrobial agents (salt, preservatives, heat, etc.) has been investigated by many laboratories. Foods involved in these investigations were bread, several tropical and subtropical fruits, apple juice, groundnuts, fish fillets and shrimps, but a considerable part of the data relate to model systems. A better understanding of the synergistic effect will require additional knowledge and the continuation of long-range research and development in the field of combined treatments is recommended. (author)

  5. Modelling the effect of ethanol on growth rate of food spoilage moulds

    NARCIS (Netherlands)

    Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The effect of ethanol (E) on the radial growth rate (¿) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium

  6. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... defined interaction medium (CDIM) was developed allowing growth of protective Lb. paracasei and P. freudenreichii subsp. shermaniii as well as the spoilage fungi, Penicillium spp., Rhodotorula mucilaginosa and Debaryomyces hansenii isolated from fermented dairy products. Lb. paracasei and P....... freudenreichii subsp. shermanii grew in CDIM and showed antifungal properties similar to those observed in milk-based systems. Most of the antifungal effect of the protective bacterial ferment was lost after removal of cells. This was explained by a marked decrease in diacetyl concentration, which...

  7. Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two-surface sound nut fungi spoilage susceptibility.

    Science.gov (United States)

    Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S

    2014-11-01

    This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®

  8. Molecular comparisons for identification of food spoilage yeasts and prediction of species that may develop in different food products

    Science.gov (United States)

    Spoilage of foods and beverages by yeasts is often characterized by objectionable odors, appearance, taste, texture or build-up of gas in packaging containers, resulting in loss of the product. Seldom is human health compromised by products spoiled by yeasts even though some spoilage is caused by sp...

  9. Fungi as a Source of Food.

    Science.gov (United States)

    Dupont, Joëlle; Dequin, Sylvie; Giraud, Tatiana; Le Tacon, François; Marsit, Souhir; Ropars, Jeanne; Richard, Franck; Selosse, Marc-André

    2017-06-01

    In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.

  10. Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores

    NARCIS (Netherlands)

    Boer, de P.; Caspers, M.; Sanders, J.W.; Kemperman, R.; Wijman, J.; Lommerse, G.; Roeselers, G.; Montijn, R.; Abee, T.; Kort, R.

    2015-01-01

    Background
    Spoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon

  11. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    Science.gov (United States)

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  12. Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage.

    Science.gov (United States)

    Moreira, Diana; Gullón, Beatriz; Gullón, Patricia; Gomes, Ana; Tavaria, Freni

    2016-07-13

    Bioactive food packaging is an innovative approach for the prevention of the growth of food-spoilage microorganisms. Four active extracts from agroindustrial subproducts (Eucalyptus wood, almond shells, corn cobs and grape pomace) with demonstrated antioxidant activity have been investigated for bestowing antimicrobial activity to bioactive packaging. To carry out this evaluation, the antioxidant extracts were tested against five food pathogenic bacteria, namely, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Salmonella spp. The results obtained showed that all the tested extracts inhibited the growth of all five pathogenic bacteria. From the analysis of the minimal bactericidal concentrations (MBCs), the Eucalyptus wood extract was the most active, being necessary only 2% (v/v) to inhibit Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus, whereas almond shells extract were less active requiring 4% (w/v) to inhibit the growth of Escherichia coli and Pseudomonas aeruginosa and the extract from corn cobs was bactericidal against Escherichia coli and Staphylococcus aureus at a concentration of 4% (w/v). After checking their antimicrobial activity, the antioxidant extracts have been incorporated into sodium alginate films and the maintenance of their antimicrobial properties was confirmed. This work showed that the antioxidant extracts from agroindustrial byproducts exhibited antimicrobial activity and were suitable for incorporation into edible films that could be used in bioactive packaging systems.

  13. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat.

    Science.gov (United States)

    Gallocchio, Federica; Cibin, Veronica; Biancotto, Giancarlo; Roccato, Anna; Muzzolon, Orietta; Carmen, Losasso; Simone, Belluco; Manodori, Laura; Fabrizi, Alberto; Patuzzi, Ilaria; Ricci, Antonia

    2016-06-01

    Migration of nanomaterials from food containers into food is a matter of concern because of the potential risk for exposed consumers. The aims of this study were to evaluate silver migration from a commercially available food packaging containing silver nanoparticles into a real food matrix (chicken meat) under plausible domestic storage conditions and to test the contribution of such packaging to limit food spoilage bacteria proliferation. Chemical analysis revealed the absence of silver in chicken meatballs under the experimental conditions in compliance with current European Union legislation, which establishes a maximum level of 0.010 mg kg(-1) for the migration of non-authorised substances through a functional barrier (Commission Regulation (EU) No. 10/2011). On the other hand, microbiological tests (total microbial count, Pseudomonas spp. and Enterobacteriaceae) showed no relevant difference in the tested bacteria levels between meatballs stored in silver-nanoparticle plastic bags or control bags. This study shows the importance of testing food packaging not only to verify potential silver migration as an indicator of potential nanoparticle migration, but also to evaluate the benefits in terms of food preservation so as to avoid unjustified usage of silver nanoparticles and possible negative impacts on the environment.

  14. Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection

    OpenAIRE

    Casalinuovo, Ida A.; Di Pierro, Donato; Coletta, Massimiliano; Di Francesco, Paolo

    2006-01-01

    Over the last twenty years, newly developed chemical sensor systems (so-called “electronic noses”) have odour analyses made possible. This paper describes the applications of these systems for microbial detection in different fields such as medicine and the food industry, where fast detection methods are essential for appropriate management of health care. Several groups have employed different electronic noses for classification and quantification of bacteria and fungi to obtain accurate med...

  15. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage.

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Desmonts, Marie Hélène; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-05-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.

  16. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Hélène Desmonts, Marie; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-01-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota. PMID:25333463

  17. Investigations on the Antifungal Effect of Nerol against Aspergillus flavus Causing Food Spoilage

    Directory of Open Access Journals (Sweden)

    Jun Tian

    2013-01-01

    Full Text Available The antifungal efficacy of nerol (NEL has been proved against Aspergillus flavus by using in vitro and in vivo tests. The mycelial growth of A. flavus was completely inhibited at concentrations of 0.8 μL/mL and 0.1 μL/mL NEL in the air at contact and vapor conditions, respectively. The NEL also had an evident inhibitory effect on spore germination in A. flavus along with NEL concentration as well as time-dependent kinetic inhibition. The NEL presented noticeable inhibition on dry mycelium weight and synthesis of aflatoxin B1 (AFB1 by A. flavus, totally restraining AFB1 production at 0.6 μL/mL. In real food system, the efficacy of the NEL on resistance to decay development in cherry tomatoes was investigated in vivo by exposing inoculated and control fruit groups to NEL vapor at different concentration. NEL vapors at 0.1 μL/mL air concentration significantly reduced artificially contaminated A. flavus and a broad spectrum of fungal microbiota. Results obtained from presented study showed that the NEL had a great antifungal activity and could be considered as a benefit and safe tool to control food spoilage.

  18. Effect of High Intensity Ultrasound Treatment on the Growth of Food Spoilage Bacteria

    Directory of Open Access Journals (Sweden)

    Ksenija Markov

    2013-01-01

    Full Text Available The aim of this study is to determine the effect of high intensity ultrasound (amplitude, temperature and treatment time on the inactivation of food spoilage bacteria Escherichia coli 3014, Staphylococcus aureus 3048, Salmonella sp. 3064, Listeria monocytogenes ATCC 23074 and Bacillus cereus 30. The model suspensions of bacteria were treated with 12.7-mm ultrasonic probe operated at 600 W nominal power (ultrasonic treatment implemented at 20 kHz and at amplitudes of 60, 90 and 120 µm. Also, treatment time of 3, 6 and 9 min and temperature of 20, 40 and 60 °C were used. The results were statistically processed with STATGRAPHICS Centurion computer program and response surface methodology. All three parameters studied seem to substantially affect the inactivation of bacteria in pure culture. The results also indicate increased inactivation of microorganisms under longer period of treatments, particularly in combination with higher temperature and/or amplitude. After ultrasonic treatment at 60 °C, 9 min and 120 μm, the viability of cells was not confirmed for Escherichia coli 3014, Staphylococcus aureus 3048, Salmonella sp. 3064 and Listeria monocytogenes ATCC 23074. Under the mentioned conditions the highest inactivation (3.48 log CFU/mL of Bacillus cereus 30 was obtained.

  19. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  20. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    Science.gov (United States)

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  1. Radiation sensitivity of food decay fungi

    International Nuclear Information System (INIS)

    Chang, H.G.; Lee, B.H.

    1980-01-01

    Five species of food decay fungi, Aspergillus flavus, Asp. uiger, Penicillium sp., Botrytis cinerea and Rhizopus stolonifer, were examined for their radiosensitivity in several suspension media. Asp. flavus, Asp. niger and Penicillium sp. have almost the same sensitivity toward gamma rays, with D value in the range of 30 to 35 K rad, whereas Botrytis cinerea has a D value of approximately 55 K rad and Rhizopus stolonifer, the most resistant fungus studied, has a D value of approximately 100 K rad. Dry spores of Asp. flavus showed a considerable increase in their radioresistance when compared with spores irradiated in water. Asp. flavus and Penicillium sp. spores irradiated in citrate buffer at pH 3-7 showed almost no change in their radiosensitivity with pH, but Botrytis cinerea spores showed a distinct decrease in their radioresistance at pH 6 and 7. Penicillium sp. spores irradiated in sucrose solutions showed no significant change in their radioresistance. Botrytis cinerea spores displayed a higher radioresistance when they were irradiated in sucrose solution than in water. (author)

  2. Phytochemical profiles and antimicrobial activity of aromatic Malaysian herb extracts against food-borne pathogenic and food spoilage microorganisms.

    Science.gov (United States)

    Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah

    2014-04-01

    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products. © 2014 Institute of Food Technologists®

  3. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming.

    Science.gov (United States)

    Paterson, Robert Russell M; Lima, Nelson

    2017-02-17

    Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF) will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a) thermotolerant and (b) present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  4. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming

    Directory of Open Access Journals (Sweden)

    Robert Russell M. Paterson

    2017-02-01

    Full Text Available Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a thermotolerant and (b present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  5. Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic food-related microorganisms.

    Science.gov (United States)

    Erkmen, Osman; Ozcan, Mehmet Musa

    2008-09-01

    The antimicrobial activities of propolis extract, pollen extract, and essential oil of laurel (Laurus nobilis L.) at concentrations from 0.02% to 2.5% (vol/vol) were investigated on bacteria (Bacillus cereus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Yersinia enterocolitica, Enterococcus faecalis, and Listeria monocytogenes), yeasts (Saccharomyces cerevisiae and Candida rugosa), and molds (Aspergillus niger and Rhizopus oryzae). Pollen has no antimicrobial effects on the bacteria and fungi tested in the concentrations used. Propolis showed a bactericidal effect at 0.02% on B. cereus and B. subtilis, at 1.0% on S. aureus and E. faecalis, and at 0.2% on L. monocytogenes. The minimum inhibitory concentration of propolis for fungi was 2.5%. Propolis and laurel were ineffective against E. coli and S. typhimurium at the concentrations tested. The results showed that the antimicrobial activity were concentration dependent. Propolis and essential oil of laurel may be used as biopreservative agents in food processing and preservation.

  6. Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods.

    Science.gov (United States)

    Milly, P J; Toledo, R T; Harrison, M A; Armstead, D

    2007-11-01

    Hydrodynamic cavitation is the formation of gas bubbles in a fluid due to pressure fluctuations induced by mechanical means. Various high-acid (pH hydrodynamic cavitation reactor to determine if commercial sterility can be achieved at reduced processing temperatures. Sporicidal properties of the process were also tested on a low-acid (pH > [corrected] 4.6) fluid food. Fluid foods were pumped under pressure into a hydrodynamic cavitation reactor and subjected to 2 rotor speeds and flow rates to achieve 2 designated exit temperatures. Thermal inactivation kinetics were used to determine heat-induced lethality for all organisms. Calcium-fortified apple juice processed at 3000 and 3600 rpm rotor speeds on the reactor went through a transient temperature change from 20 to 65.6 or 76.7 degrees C and the total process lethality exceeded 5-log reduction of Lactobacillus plantarum and Lactobacillus sakei cells, and Zygosaccharomyces bailii cells and ascospores. Tomato juice inoculated with Bacillus coagulans spores and processed at 3000 and 3600 rpm rotor speeds endured a transient temperature from 37.8 to 93.3 or 104.4 degrees C with viable CFU reductions of 0.88 and 3.10 log cycles, respectively. Skim milk inoculated with Clostridium sporogenes putrefactive anaerobe 3679 spores and processed at 3000 or 3600 rpm rotor speeds endured a transient temperature from 48.9 to 104.4 or 115.6 degrees C with CFU reductions of 0.69 and 2.84 log cycles, respectively. Utilizing hydrodynamic cavitation to obtain minimally processed pasteurized low-acid and commercially sterilized high-acid fluid foods is possible with appropriate process considerations for different products.

  7. The use of ionizing radiation to reduce food spoilage by microorganisms

    International Nuclear Information System (INIS)

    Mosquera, Monica; Gomezjurado, Silvia; Munoz, Ricardo

    1990-01-01

    The contamination of Aspergillus flavus is studied in yellow maize, Zea mays, Peanuts, Arachis hipoguea, L.; Casabe, Yuca. Manhot esculenta, D.C. The contents of aflotoxines B 1 , B 2 , G 1 and G 2 is analized in food stuffs of popular consumption. The samples with higher contamination of A. flavus were irradiated with 1-3 KGy, and combined processes with gamma irradiation were assayed with previous and separate treatments with ammonia and hipochlorite. Thus, it was possible to lower the contamination of this fungus from 10 3 u.f.c/g to 10. Separate edible mushrooms of species Boletus edulis, were radurized with gamma irradiation dose of 2 KGy. It was possible to reduce the contamination of 10 7 microorganism/gram, to the value 10 3 - 10 2 microorganism/gram. The microbial contamination of 18 species and aromatic herbs is also studied. The contaminating fungi of these food products as well as of the edible mushrooms, were identified as Penicillum, Geortrichum, Mucor, Galdosporium and yeasts of Canida sp. The optimal irradiation doses of same species and tea herbs, are determined. At the same time de d10 irradiation doses for pure stubs of main microorganisms are determined. To reduce the microbial contamination of many foodstuffs to maximun permisible values it is proposed thesi technology eitherwith only irradiation, or with combined treatments with irradiation

  8. Microbiological Spoilage of Cereal Products

    Science.gov (United States)

    Cook, Frederick K.; Johnson, Billie L.

    A wide range of cereal products, including bakery items, refrigerated dough, fresh pasta products, dried cereal products, snack foods, and bakery mixes, are manufactured for food consumption. These products are subject to physical, chemical, and microbiological spoilage that affects the taste, aroma, leavening, appearance, and overall quality of the end consumer product. Microorganisms are ubiquitous in nature and have the potential for causing food spoilage and foodborne disease. However, compared to other categories of food products, bakery products rarely cause food poisoning. The heat that is applied during baking or frying usually eliminates pathogenic and spoilage microorganisms, and low moisture contributes to product stability. Nevertheless, microbiological spoilage of these products occurs, resulting in substantial economic losses.

  9. Interactions between nitric oxide and ethylene in monomeric G-protein activation in relation to food spoilage

    DEFF Research Database (Denmark)

    Hall, M A; moshkov, moshkov; Novikova, G

    2014-01-01

    Climate change is likely to increase crop stress with negative impacts on yield and quality. Therefore, there is a need to develop our understanding of the key events which govern plant tolerance to stress. Intense research has identified key signalling cascades regulating stress tolerance...... and it is notable that many are dependent on the production of volatile signals or signals which have volatile derivatives. Ethylene (ET) has long been recognized as an important regulator of development, stress responses, senescence and food spoilage. Our work has focused on the gaseous signal nitric oxide (NO......) and how it interacts with established stress signalling pathways and in particular, those regulated by ET. Using laser photoacoustic detection (LPAD) we have established that NO production overlaps with that of ethylene during plant responses to disease. To examine the interaction of NO and ET signalling...

  10. Identification of food spoilage in the smart home based on neural and fuzzy processing of odour sensor responses.

    Science.gov (United States)

    Green, Geoffrey C; Chan, Adrian D C; Goubran, Rafik A

    2009-01-01

    Adopting the use of real-time odour monitoring in the smart home has the potential to alert the occupant of unsafe or unsanitary conditions. In this paper, we measured (with a commercial metal-oxide sensor-based electronic nose) the odours of five household foods that had been left out at room temperature for a week to spoil. A multilayer perceptron (MLP) neural network was trained to recognize the age of the samples (a quantity related to the degree of spoilage). For four of these foods, median correlation coefficients (between target values and MLP outputs) of R > 0.97 were observed. Fuzzy C-means clustering (FCM) was applied to the evolving odour patterns of spoiling milk, which had been sampled more frequently (4h intervals for 7 days). The FCM results showed that both the freshest and oldest milk samples had a high degree of membership in "fresh" and "spoiled" clusters, respectively. In the future, as advancements in electronic nose development remove the present barriers to acceptance, signal processing methods like those explored in this paper can be incorporated into odour monitoring systems used in the smart home.

  11. Cost-intensive irradiation could cut SA's R500 m/year food spoilage

    International Nuclear Information System (INIS)

    Groves, D.

    1979-01-01

    The Republic of South Africa is today the world's sixth biggest food exporter, a position it needs to maintain, in the face of its own fast-growing population and increasing demand for quality foodstuffs. Increasing food production will be limited in the long run by the availability of arable soil - so minimissing food losses seems the ultimate answer, and the irradiation process offers just that. What distributors, producers, exporters and retailers need to know in detail now is how much it will cost for particular applications in various circumstances. Techno-economic feasibility studies are essential

  12. Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Jagtap, T.G.; Naik, C.G.

    Crude aqueous methanol extracts obtained from 31 species of various marine organisms (including floral and faunal), were screened for their antifungal activity against food poisoning strains of Aspergillus. Seventeen species exhibited mild (+ = zone...

  13. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, M.P.M.; Schuren, F.H.J.; Zuijlen, van A.C.M.; Brul, S.; Montijn, R.C.; Abee, T.; Kort, R.

    2011-01-01

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus

  14. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, Martien P M; Schuren, Frank H J; van Zuijlen, Andre C M; Brul, Stanley; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus

  15. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    Science.gov (United States)

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  16. Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces

    DEFF Research Database (Denmark)

    Hjelm, Mette; Hilbert, Lisbeth Rischel; Møller, Per

    2002-01-01

    The aim of this study is to compare the number of attached bacteria, Shewanella putrefaciens, on stainless steel with different silver surfaces. Thus evaluating if silver surfaces could contribute to a higher hygienic status in the food industry. Bacterial adhesion to three types of silver surfaces...... (new silver, tarnished silver and sulphide treated silver) was compared to adhesion to stainless steel (AISI 316). Numbers of attached bacteria (cfu cm-2) were estimated using the Malthus indirect conductance method. A lower number of attached bacteria were measured on new silver surfaces compared...... to stainless steel for samples taken after 24 hours. However this was not significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared to stainless steel and some, but not all, experiments showed statistically significant. A difference of more...

  17. Performance of mycological media in enumerating desiccated food spoilage yeasts: an interlaboratory study.

    Science.gov (United States)

    Beuchat, L R; Frandberg, E; Deak, T; Alzamora, S M; Chen, J; Guerrero, A S; López-Malo, A; Ohlsson, I; Olsen, M; Peinado, J M; Schnurer, J; de Siloniz, M I; Tornai-Lehoczki, J

    2001-10-22

    Dichloran 18% glycerol agar (DG18) was originally formulated to enumerate nonfastidious xerophilic moulds in foods containing rapidly growing Eurotium species. Some laboratories are now using DG18 as a general purpose medium for enumerating yeasts and moulds, although its performance in recovering yeasts from dry foods has not been evaluated. An interlaboratory study compared DG18 with dichloran rose bengal chloramphenicol agar (DRBC), plate count agar supplemented with chloramphenicol (PCAC), tryptone glucose yeast extract chloramphenicol agar (TGYC), acidified potato dextrose agar (APDA), and orange serum agar (OSA) for their suitability to enumerate 14 species of lyophilized yeasts. The coefficient of variation for among-laboratories repeatability within yeast was 1.39% and reproducibility of counts among laboratories was 7.1%. The order of performance of media for recovering yeasts was TGYC > PCAC = OSA > APDA > DRBC > DG 18. A second study was done to determine the combined effects of storage time and temperature on viability of yeasts and suitability of media for recovery. Higher viability was retained at -18 degrees C than at 5 degrees C or 25 degrees C for up to 42 weeks, although the difference in mean counts of yeasts stored at -18 degrees C and 25 degrees C was only 0.78 log10 cfu/ml of rehydrated suspension. TGYC was equal to PCAC and superior to the other four media in recovering yeasts stored at -18 degrees C, 5 degrees C, or 25 degrees C for up to 42 weeks. Results from both the interlaboratory study and the storage study support the use of TGYC for enumerating desiccated yeasts. DG18 is not recommended as a general purpose medium for recovering yeasts from a desiccated condition.

  18. Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria.

    Science.gov (United States)

    Kim, Dong-Hyeon; Jeong, Dana; Kim, Hyunsook; Kang, Il-Byeong; Chon, Jung-Whan; Song, Kwang-Young; Seo, Kun-Ho

    2016-01-01

    Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus , Staphylococcus aureus , Listeria monocytogenes , Enterococcus faecalis , Escherichia coli , Salmonella Enteritidis , Pseudomonas aeruginosa , and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus , E. coli , S . Enteritidis, P. aeruginosa , and C. sakazakii were inhibited, while B. cereus , S. aureus , E. coli , S . Enteritidis, P. aeruginosa , and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus , S . Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation.

  19. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    Science.gov (United States)

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (food safety concerns related to their resilient existence on surfaces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. [Hazardous food-borne fungi and present and future approaches to the mycotoxin regulations in Japan].

    Science.gov (United States)

    Takatori, Kosuke; Aihara, Maki; Sugita-Konishi, Yoshiko

    2006-01-01

    In recent years, various food-related accidents and health scares have dissipated trust in the food industry. Health hazards resulting from food contaminated with fungi is increasing. Food contamination by fungi causes many problems, especially in Japan, which relies on foreign countries for about 60% of its food: the contamination of imported food by fungi and mycotoxins constitutes a serious problem. As the quantity of imported food increases and changes in food distribution have occurred, so too has the number and type of fungi causing food-related damages; osmophilic and thermotolerant fungi, in addition to the mainstream fungi of genera Cladosporium, Pecinillium, and Aspergillus, have become a problem. Although European countries and the U.S. have recently conducted risk assessments for mycotoxins, Japan has not attained an international level in the determination of baseline values. However, in addition to risk management for Aflatoxin M1, Ochratoxin, T-2 toxin/HT-2 toxin, and Fumonisin, determination of baseline values for mycotoxins is beginning in Japan. In this review, we summarize hazardous food-borne fungi, and present and future approaches to the mycotoxin regulations in Japan.

  1. Spoilage Science

    Science.gov (United States)

    Science and Children, 2005

    2005-01-01

    Have you ever tucked away a piece of fruit for later and returned to find it past its prime? Or found some leftovers that had outlived their welcome in the refrigerator? Whether it's fresh or processed, all food eventually spoils. Methods such as freezing, canning, and the use of preservatives lengthen the lifespan of foods, and we--and the modern…

  2. Fungi

    DEFF Research Database (Denmark)

    Hajek, Ann E.; Meyling, Nicolai Vitt

    2018-01-01

    been the focus of most ecological research. Some taxa of invertebrate pathogenic fungi have evolved adaptations for utilizing living plants as substrates, and these lifestyles have recently received increased attention from researchers following the initial documentations of such plant associations...

  3. A Double-Stimuli-Responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices.

    Science.gov (United States)

    Xu, Xiao-Yu; Lian, Xiao; Hao, Ji-Na; Zhang, Chi; Yan, Bing

    2017-10-01

    Unsafe food is a huge threat to human health and the economy, and detecting food spoilage early is an ongoing and imperative need. Herein, a simple and effective strategy combining a fluorescence sensor and one-to-two logic operation is designed for monitoring biogenic amines, indicators of food spoilage. Sensors (methyl red@lanthanide metal-organic frameworks (MR@EuMOFs)) are created by covalently modifying MR into NH 2 -rich EuMOFs, which have a high quantum yield (48%). A double-stimuli-responsive fluorescence center is produced via energy transfer from the ligands to Eu 3+ and MR. Portable sensory hydrogels are obtained by dispersing and solidifying MR@EuMOFs in water-phase sodium salt of carboxy methyl cellulose (CMC-Na). The hydrogels exhibit a color transition upon "smelling" histamine (HI) vapor. This transition and shift in the MR-based emission peak are closely related to the HI concentration. Using the HI concentration as the input signal and the two fluorescence emissions as output signals, an advanced analytical device based on a one-to-two logic gate is constructed. The four output combinations, NOT (0, 1), YES (1, 0), PASS 1 (1, 1), and PASS 0 (0, 0), allow the direct analysis of HI levels, which can be used for real-time food-freshness evaluation. The novel strategy suggested here may be a new application for a molecular logic system in the sensing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microbiological Spoilage of Dairy Products

    Science.gov (United States)

    Ledenbach, Loralyn H.; Marshall, Robert T.

    The wide array of available dairy foods challenges the microbiologist, engineer, and technologist to find the best ways to prevent the entry of microorganisms, destroy those that do get in along with their enzymes, and prevent the growth and activities of those that escape processing treatments. Troublesome spoilage microorganisms include aerobic psychrotrophic Gram-negative bacteria, yeasts, molds, heterofermentative lactobacilli, and spore-forming bacteria. Psychrotrophic bacteria can produce large amounts of extracellular hydrolytic enzymes, and the extent of recontamination of pasteurized fluid milk products with these bacteria is a major determinant of their shelf life. Fungal spoilage of dairy foods is manifested by the presence of a wide variety of metabolic by-products, causing off-odors and flavors, in addition to visible changes in color or texture.

  5. Quantitative assessment of the risk of microbial spoilage in foods. Prediction of non-stability at 55 °C caused by Geobacillus stearothermophilus in canned green beans.

    Science.gov (United States)

    Rigaux, Clémence; André, Stéphane; Albert, Isabelle; Carlin, Frédéric

    2014-02-03

    Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G. stearothermophilus in canned green beans manufactured by a French company. The model accounts for initial microbial contaminations of fresh unprocessed green beans with G. stearothermophilus, cross-contaminations in the processing chain, inactivation processes and probability of survival and growth. The sterilization process is modeled by an equivalent heating time depending on sterilization value F₀ and on G. stearothermophilus resistance parameter z(T). Following the recommendations of international organizations, second order Monte-Carlo simulations are used, separately propagating uncertainty and variability on parameters. As a result of the model, the mean predicted non-stability rate is of 0.5%, with a 95% uncertainty interval of [0.1%; 1.2%], which is highly similar to data communicated by the French industry. A sensitivity analysis based on Sobol indices and some scenario tests underline the importance of cross-contamination at the blanching step, in addition to inactivation due to the sterilization process. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Meat spoilage during distribution.

    Science.gov (United States)

    Nychas, George-John E; Skandamis, Panos N; Tassou, Chrysoula C; Koutsoumanis, Konstantinos P

    2008-01-01

    Meat spoilage during distribution can be considered as an ecological phenomenon that encompasses the changes of the available substrata (e.g., low molecular compounds), during the prevailing of a particular microbial association, the so-called specific spoilage organisms (SSO). In fact, spoilage of meat depends on an even smaller fraction of SSO, called ephemeral spoilage organisms (ESO). These ESO are the consequence of factors that dynamically persist or imposed during, e.g., processing, transportation and storage in the market. Meanwhile spoilage is a subjective judgment by the consumer, which may be influenced by cultural and economic considerations and background as well as by the sensory acuity of the individual and the intensity of the change. Indeed, when spoilage progresses, most consumers would agree that gross discoloration, strong off-odors, and the development of slime would constitute the main qualitative criteria for meat rejection. On the other hand, meat industry needs rapid analytical methods or tools for quantification of these indicators to determine the type of processing needed for their raw material and to predict remaining shelf life of their products. The need of an objective evaluation of meat spoilage is of great importance. The use of metabolomics as a potential tool for the evaluation of meat spoilage can be of great importance. The microbial association of meat should be monitored in parallel with the estimation of changes occurring in the production and/or assimilation of certain compounds would allow us to evaluate spoilage found or produced during the storage of meat under different temperatures as well as packaging conditions.

  7. Heat-resistant fungi of importance to the food and beverage industry.

    Science.gov (United States)

    Tournas, V

    1994-01-01

    Spoilage of pasteurized and canned fruit and fruit products caused by heat-resistant molds have been reported repeatedly in recent years. Species most commonly implicated in fruit and fruit product disintegration are Byssochlamys fulva, Byssochlamys nivea, Neosartorya fischeri, Talaromyces flavus, and Eupenicillium brefeldianum. These organisms are saprophytic rather than parasitic and usually contaminate fruits on or near the ground. They can survive heat treatments used for fruit processing and can grow and spoil the products during storage at room temperature, which results in great economic losses. Mold heat resistance is attributed to the formation of sexual spores, ascospores. Ascospores have a wide range of heat resistance, depending on species, strain, age of organism, heating medium, pH, presence of sugars, fats, and acids in heating medium, growth conditions, etc. The mechanism(s) of thermoresistance are not clear; probably some very stable compound(s) critical to germination and outgrowth are present in the heat-resistant ascospores. Besides spoilage, the heat-resistant molds produce a number of toxic secondary metabolites, such as byssotoxin A; byssochlamic acid; the carcinogen, patulin, the tremorgenic substances, fumitremorgin A and C, and verruculogen; fischerin, which caused fatal peritonitis in mice; and eupenifeldin, a compound possessing cytotoxicity as well as in vivo antitumor activity. Growth of heat-resistant fungi can be controlled by lowering the water activity, adding sulfur dioxide, sorbate, or benzoate; washing of fruits in hypochlorite solution before heat treatment reduces the number of ascospores and makes the heat destruction more successful. More research is needed to elucidate the mechanism(s) of thermoresistance and develop new methods for the complete inactivation of resistant ascospores.

  8. Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators

    Directory of Open Access Journals (Sweden)

    Sema Sandikci Altunatmaz

    2012-12-01

    Full Text Available The purpose of this study was to determine the microbiological air quality (psychrotrophic bacteria and airborne fungi and distribution of fungi in different types of ready-to-eat (RTE food-storage refrigerators (n=48 at selected retail stores in the city of Edirne, Turkey. Refrigerators were categorized according to the type of RTE food-storage: meat products, vegetables, desserts, or a mix of food types. Microbiological quality of air samples was evaluated by using a Mas-100 Eco Air Sampler. Four refrigerators (all containing meat products, 8.3% produced air samples with undetectable microorganisms. The highest detected mean value of airborne psychrotrophic bacteria and fungi was 82.3 CFU/m³ and 54.6 CFU/m³, respectively and were found in mixed-food refrigerators. The dominant airborne fungal genera found were Penicillium (29.0%, Aspergillus (12.0%, Mucor (9%, Cladosporium (8%, Botyrtis (7%, and Acremonium (6%. By definition, RTE food does not undergo a final treatment to ensure its safety prior to consumption. Therefore, ensuring a clean storage environment for these foods is important to prevent food-borne disease and other health risks.

  9. Effects of water activity on the performance of potassium sorbate and natamycin as preservatives against cheese spoilage moulds

    Directory of Open Access Journals (Sweden)

    Marín P.

    2017-10-01

    Full Text Available This work investigated the effects of the food preservatives potassium sorbate and natamycin, combined with different levels of ionic (sodium chloride and non-ioinic (glycerol water activity (aw, on growth of fungi involved in cheese spoilage. In general, the combined effect of water stress and presence of preservatives enhanced fungal inhibition. However, some doses of potassium sorbate (0.02% and natamycin (1, 5 and 10 ppm were able to stimulate growth of Aspergillus varians, Mucor racemosus, Penicillium chrysogenum and P. roqueforti at aw values in the range of 0.93–0.97. P. solitum was the only species whose growth was consistently reduced by any doses of preservative. The results also showed that sodium chloride and glycerol differentially affected the efficacy of preservatives. This study indicates that aw of cheese is a critical parameter to be considered in the formulation of preservative coatings used against fungal spoilage.

  10. Coprophilous Streptomycetes and Fungi - Food Sources for Enchytraeid Worms (Enchytraeidae)

    Czech Academy of Sciences Publication Activity Database

    Krištůfek, Václav; Nováková, Alena; Pižl, Václav

    2001-01-01

    Roč. 46, č. 6 (2001), s. 555-558 ISSN 0015-5632 R&D Projects: GA AV ČR IAA6066001 Institutional research plan: CEZ:AV0Z6066911 Keywords : food selection * vermicomposting * Eisenia and rei Subject RIV: EH - Ecology, Behaviour Impact factor: 0.776, year: 2001

  11. Detection of Food Spoilage and Pathogenic Bacteria Based on Ligation Detection Reaction Coupled to Flow-Through Hybridization on Membranes

    Directory of Open Access Journals (Sweden)

    K. Böhme

    2014-01-01

    Full Text Available Traditional culturing methods are still commonly applied for bacterial identification in the food control sector, despite being time and labor intensive. Microarray technologies represent an interesting alternative. However, they require higher costs and technical expertise, making them still inappropriate for microbial routine analysis. The present study describes the development of an efficient method for bacterial identification based on flow-through reverse dot-blot (FT-RDB hybridization on membranes, coupled to the high specific ligation detection reaction (LDR. First, the methodology was optimized by testing different types of ligase enzymes, labeling, and membranes. Furthermore, specific oligonucleotide probes were designed based on the 16S rRNA gene, using the bioinformatic tool Oligonucleotide Retrieving for Molecular Applications (ORMA. Four probes were selected and synthesized, being specific for Aeromonas spp., Pseudomonas spp., Shewanella spp., and Morganella morganii, respectively. For the validation of the probes, 16 reference strains from type culture collections were tested by LDR and FT-RDB hybridization using universal arrays spotted onto membranes. In conclusion, the described methodology could be applied for the rapid, accurate, and cost-effective identification of bacterial species, exhibiting special relevance in food safety and quality.

  12. Xerophiles and other fungi associated with cereal baby foods locally produced in Uganda

    Directory of Open Access Journals (Sweden)

    Mady A. Ismail

    2013-12-01

    Full Text Available Fifty samples from five baby food products mainly made of cereal flour(s were analyzed. The moisture contents of these products were between 11.14% and 11.9%, a level below 14.0%, the recommended level for safe storage of cereal grains and their products. The mycological analysis was carried out using the dilution plate method and two isolation media (DG18 for isolation of xerophilic fungi and DRBC for fungi in general. A total of 80 species related to 37 genera in addition to some unidentified fungal and yeast species were recorded on both media from the five products. The products were contaminated abundantly by xerophilic fungi which were occurring in 88% of food samples and accounting for 18.1% of the total CFU as recorded on DG18. The highest contamination level by xerophiles was registered in Mwebaza rice porridge (a component of rice flour and the lowest in Mukuza (a product of maize, soyabean and sorghum flours. 11 xerophilic species were recorded of which Aspergillus and Eurotium (4 species each were the predominant giving rise to 9.1% and 8.9% of the total CFU, with A. wentii, A. candidus, E. cristatum and E. repens were the most contaminating species. Of the fungi recorded other than xerophiles, species of Aspergillus (particularly A. flavus followed by A. niger, Penicillium (P. citrinum, P. oxalicum, Fusarium (F. solani, F. tricinctum, Cladosporium (C. sphaerospermum and yeasts were the most predominant. Contamination of such foods is a matter of health hazard as these foods are for babies. So, the use of fresh, well-dried and uncontaminated flours for production of such foods is recommended.

  13. Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (anamorph Paecilomyces variotii).

    Science.gov (United States)

    Houbraken, Jos; Varga, János; Rico-Munoz, Emilia; Johnson, Shawn; Samson, Robert A

    2008-03-01

    Paecilomyces variotii is a common cosmopolitan species that is able to spoil various food- and feedstuffs and is frequently encountered in heat-treated products. However, isolates from heat-treated products rarely form ascospores. In this study we examined by using molecular techniques and mating tests whether this species can undergo a sexual cycle and form ascospores. The population structure of this species was examined by analyzing the nuclear ribosomal internal transcribed spacer 1 (ITS1) and ITS2 and the 5.8S rRNA gene, as well as partial beta-tubulin, actin, and calmodulin gene sequences. Phylogenetic analyses revealed that P. variotii is a highly variable species. Partition homogeneity tests revealed that P. variotii has a recombining population structure. In addition to sequence analyses, mating experiments indicated that P. variotii is able to form ascomata and ascospores in culture in a heterothallic manner. The distribution of MAT1-1 and MAT1-2 genes showed a 1:1 ratio in the progeny of the mating experiments. From the sequence analyses and mating data we conclude that P. variotii is the anamorph of Talaromyces spectabilis and that it has a biallelic heterothallic mating system. Since Paecilomyces sensu stricto anamorphs group within Byssochlamys, a new combination Byssochlamys spectabilis is proposed.

  14. How about food irradiation? Its history and usefulness. (3) Irradiation effects on food and decrease in fungi

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    Inhibiting germination of vegetables and grade control of maturity of fruits, destroy of insect pest and parasite, disinfection of meats and fishes, bactericidal action of dry foods such as spices, and taste and color change of irradiated foods and perfect bactericidal action are stated. Application of food irradiation contains inhibiting germination, insecticidal action, sterilization of insect pest, grade control of maturity, inhibition of food poisoning, decrease in fungi, improvement of properties, and perfect bactericidal action. Each treatment of foods is described by the effects of three exposure doses such as the low exposure dose until 1 kGy, middle exposure dose from 1 to 10 kGy and high from 10 to 75 kGy. (S.Y.)

  15. Antibacterial activity of Rosmarinus officinalis L. and Thymus vulgaris L. essential oils and their combination against food-borne pathogens and spoilage bacteria in ready-to-eat vegetables.

    Science.gov (United States)

    Iseppi, Ramona; Sabia, Carla; de Niederhäusern, Simona; Pellati, Federica; Benvenuti, Stefania; Tardugno, Roberta; Bondi, Moreno; Messi, Patrizia

    2018-06-06

    The antibacterial activity of Rosmarinus officinalis L. and Thymus vulgaris L. essential oils (EOs), and their combination against food-borne and spoilage bacteria (Listeria monocytogenes, Salmonella enteritidis, Yersinia enterocolitica, Escherichia coli and Pseudomonas spp.) was determined. The EOs inhibitory effect was evaluated both in vitro by using the disk diffusion assay and the minimum inhibitory concentration (MIC) determination, and on food by using an artificially contaminated ready-to-eat (RTE) vegetables. The results showed that the lowest MIC values were obtained with R. officinalis and T. vulgaris EOs against E. coli (4 and 8 μL/mL, respectively). The incorporation of the EOs alone or their combination in RTE vegetables reduced the viable counts of all the tested strains. Lastly, in the on food study we simulated the worst hygienic conditions, obtaining results that can be considered a warranty of safety.

  16. An investigation of radiosensitivity of selected stored seed and seed borne fungi

    International Nuclear Information System (INIS)

    Maity, Jyoti Prakash; Chatterjee, S.; Mishra, D.; Chakraborty, A.; Saha, A.; Santra, S.C.; Chanda, S.

    2004-01-01

    Spoilage of nutritional value of the grains by the microbes, especially those producing mycotoxins, is a worldwide economic problem. The decontamination method, using gamma ray or fast electrons, is receiving growing attention. The present investigation was designed to determine an appropriate dose-range of gamma radiation for the stored grains to reduce levels of pathogenic fungi with minimal loss in viability, food value and/or germinating potential of the selected seeds. Further the study also aimed at assessing response of specific fungus to gamma irradiation in isolated condition and when attached to seeds to discern host-specific interaction if any, of the concerned fungi

  17. 104 Key words: Moringa, marinade, bacteria, fungi, catfish, smoke ...

    African Journals Online (AJOL)

    Osondu

    2013-01-16

    Jan 16, 2013 ... spoilage thus limiting economic loss and possible heath risk to consumers. Key words: Moringa, marinade, bacteria, fungi, catfish, smoke-dried. Introduction ..... were reared because E. coli is an indicator organism and its ...

  18. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples

    International Nuclear Information System (INIS)

    Peltomaa, Riikka; Vaghini, Silvia; Patiño, Belén; Benito-Peña, Elena; Moreno-Bondi, María C.

    2016-01-01

    Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging. - Highlights: • Optical genosensors detect fumonisin producing Fusarium species in maize samples. • Oligonucleotide probes designed on the intergenic spacer region of rDNA can distinguish between closely related species. • Sandwich hybridization assay with magnetic microbeads allows species-specific detection of Fusarium spp. directly from PCR.

  19. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaa, Riikka; Vaghini, Silvia [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Patiño, Belén [Department of Microbiology III, Faculty of Biology, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Benito-Peña, Elena, E-mail: elenabp@ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Moreno-Bondi, María C., E-mail: mcmbondi@ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain)

    2016-09-07

    Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging. - Highlights: • Optical genosensors detect fumonisin producing Fusarium species in maize samples. • Oligonucleotide probes designed on the intergenic spacer region of rDNA can distinguish between closely related species. • Sandwich hybridization assay with magnetic microbeads allows species-specific detection of Fusarium spp. directly from PCR.

  20. Rapid measurement of meat spoilage using fluorescence spectroscopy

    Science.gov (United States)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  1. Synergism between hydrogen peroxide and seventeen acids against five agri-food-borne fungi and one yeast strain.

    Science.gov (United States)

    Martin, H; Maris, P

    2012-12-01

    The objective of this study was to evaluate fungicidal efficacy of hydrogen peroxide administered in combination with 17 mineral and organic acids authorized for use in the food industry. The assays were performed on a 96-well microplate using a microdilution technique based on the checkerboard titration method. The six selected strains (one yeast and five fungi) were reference strains and strains representative of contaminating fungi found in the food industry. Each synergistic hydrogen peroxide/acid combination found after fifteen minutes contact time at 20 °C in distilled water was then tested in conditions simulating four different use conditions. Twelve combinations were synergistic in distilled water, eleven of these remained synergistic with one or more of the four mineral and organic interfering substances selected. Hydrogen peroxide/formic acid combination remained effective against four strains and was never antagonistic against the other two fungi. Combinations with propionic acid and acetic acid stayed synergistic against two strains. Those with oxalic acid and lactic acid kept their synergism only against Candida albicans. No synergism was detected against Penicillium cyclopium. Synergistic combinations of disinfectants were revealed, among them the promising hydrogen peroxide/formic acid combination. A rapid screening method developed in our laboratory for bacteria was adapted to fungi and used to reveal the synergistic potential of disinfectants and/or sanitizers combinations. © 2012 The Society for Applied Microbiology.

  2. Fish spoilage bacteria - problems and solutions

    DEFF Research Database (Denmark)

    Gram, Lone; Dalgaard, Paw

    2002-01-01

    Microorganisms are the major cause of spoilage of most seafood products. However, only a few members of the microbial community, the specific spoilage organisms (SSOs), give rise to the offensive off-flavours associated with seafood spoilage. Combining microbial ecology, molecular techniques, ana...

  3. Microbiological Spoilage of Fruits and Vegetables

    Science.gov (United States)

    Barth, Margaret; Hankinson, Thomas R.; Zhuang, Hong; Breidt, Frederick

    Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

  4. Ecophysiological characterization of common food-borne fungi in relation to pH and water activity under various atmospheric compositions

    DEFF Research Database (Denmark)

    Haasum, Iben; Nielsen, Per Væggemose

    1998-01-01

    The combined effect of pH, water activity (aw), oxygen (O2) and carbon dioxide (CO2) levels on growth and sporulation of 10 common food-borne fungi were studied. The use of a multivariate statistical method (PLS) for the analysis of data showed, that the fungi could be grouped according to their ......The combined effect of pH, water activity (aw), oxygen (O2) and carbon dioxide (CO2) levels on growth and sporulation of 10 common food-borne fungi were studied. The use of a multivariate statistical method (PLS) for the analysis of data showed, that the fungi could be grouped according......% and from 52 to 100% respectively. Sporulation of the fungi was sensitive to all tested factors. Furthermore, interaction of CO2 and aw displayed a significant effect on sporulation. It was shown that different fungal species associated with the same ecosystem responded similarly to changes in the tested...

  5. Development and validation of a colorimetric sensor array for fish spoilage monitoring

    DEFF Research Database (Denmark)

    Morsy, Mohamed K.; Zor, Kinga; Kostesha, Natalie

    2016-01-01

    their color changes in response to compounds present in fresh products (hexanal, 1-octane-3-ol) used as negative controls. The colorimetric sensor array was used to follow fish spoilage over time at room temperature for up to 24 h as well as at 4 °C for 9 days. Additionally, fish decay was monitored using......Given the need for non-destructive methods and sensors for food spoilage monitoring, we have evaluated sixteen chemo-sensitive compounds incorporated in an array for colorimetric detection of typical spoilage compounds (trimethylamine, dimethylamine, cadaverine, putrescine) and characterized...

  6. Prescribed burning in a Eucalyptus woodland suppresses fruiting of hypogeous fungi, an important food source for mammals.

    Science.gov (United States)

    Trappe, James M; Nicholls, A O; Claridge, Andrew W; Cork, Steven J

    2006-11-01

    Fruit bodies of hypogeous fungi are an important food source for many small mammals and are consumed by larger mammals as well. A controversial hypothesis that prescribed burning increases fruiting of certain hypogeous fungi based on observations in Tasmania was tested in the Australian Capital Territory to determine if it applied in a quite different habitat. Ten pairs of plots, burnt and nonburnt, were established at each of two sites prescribe-burnt in May 1999. When sampled in early July, after autumn rains had initiated the fungal fruiting season, species richness and numbers of fruit bodies on the burnt plots were extremely low: most plots produced none at all. Both species richness and fruit body numbers were simultaneously high on nonburnt plots. One of the sites was resampled a year after the initial sampling. At that time species richness and fruit body abundance were still significantly less on burnt plots than on nonburnt, but a strong trend towards fungal recovery on the burnt plots was evident. This was particularly so when numbers of fruit bodies of one species, the hypogeous agaric Dermocybe globuliformis, were removed from the analysis. This species strongly dominated the nonburnt plots but was absent from burnt plots in both years. The trend towards recovery of fruit body abundance in the burnt plots one year after the burn was much more pronounced with exclusion of the Dermocybe data. The Tasmanian-based hypothesis was based mostly on the fruiting of two fire-adapted species in the Mesophelliaceae. Neither species occurred on our plots. Accordingly, the results and conclusions of the Tasmanian study cannot be extrapolated to other habitats without extensive additional study. Implications for management of habitat for fungi and the animals that rely on the fungi as a food source are discussed.

  7. Longterm storage of post-packaged bread by controlling spoilage pathogens using Lactobacillus fermentum C14 isolated from homemade curd.

    Directory of Open Access Journals (Sweden)

    Soma Barman

    Full Text Available One potent lactic acid bacterial strain C14 with strong antifungal activity was isolated from homemade curd. Based on morphological as well as biochemical characters and 16S rDNA sequence homology the strain was identified as Lactobacillus fermentum. It displayed a wide antimicrobial spectrum against both Gram-positive and Gram-negative pathogenic bacteria, and also against number of food spoilage, plant and human pathogenic fungi. The cell free supernatant (CFS of the strain C14 was also effective against the fungi tested. Inhibition of radial growth of Penicillium digitatum, Trichophyton rubrum and Mucor sp. was noticed in the presence of CFS of C14 even at low concentration (1%. More than 94.3 ± 1.6% and 91.5 ± 2.2% inhibition of conidial germination of P. digitatum and Mucor sp. were noticed in the presence of 10-fold-concentrated CFS of C14. Massive deformation of the fungal mycelia was observed by SEM studies, and losses of cellular proteins and DNA are also evident upon its treatment with C14. HPLC analysis revealed the presence of phenyl lactic acid, lactic acid along with some unidentified compounds in the antifungal extract. Challenge experiment showed immense potential of the strain C14 in preventing the spoilage of bread samples caused by Mucor sp. and Bacillus subtilis. The bread samples remained fresh upto 25 days even after inoculation with Mucor sp. (3.7 × 104 spores /ml and B. subtilis (4.6 × 104 CFU /ml. Along with the antifungal properties, the isolated lactic acid bacterial strain also showed very good antioxidant activities. Unchanged level of liver enzymes serum glutamic pyruvic transaminase and serum glutamic oxaloacetic transaminase in albino mice upon feeding with C14 also suggested non-toxic nature of the bacterial isolate.

  8. Occurrence of toxigenic fungi and determination of mycotoxins by HPLC-FLD in functional foods and spices in China markets.

    Science.gov (United States)

    Kong, Weijun; Wei, Riwei; Logrieco, Antonio F; Wei, Jianhe; Wen, Jing; Xiao, Xiaohe; Yang, Meihua

    2014-03-01

    Twenty-four samples including 14 functional foods and 10 spices obtained from Chinese markets were examined for their mould profile. The mycotoxin contamination levels were also determined by an optimized HPLC-FLD method. 124 fungal isolates belonging to four different genera were recovered with Aspergillus and Penicillium as predominant fungi, with an incidence of 66.1% and 15.3%, respectively. In functional foods Aspergillus niger section (57.1%) was isolated more frequently, followed by Aspergillus flavi section (50.0%) and Aspergillus ochraceus section (21.4%), with the most contaminated samples being Coix seeds. Similar fungal presence and frequency were encountered in spice with A. niger section group (60.0%) and A. flavi section (40.0%) as main fungi. Cumin and Pricklyash peel samples showed the highest fungal contamination. Four functional foods and three spices were found to be positive at low levels for mycotoxins including aflatoxin B1 (up to 0.26μg/kg) and ochratoxin A (OTA) (5.0μg/kg). The more frequently detected mycotoxin was AFB1 (16.7%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Lactobacilli and tartrazine as causative agents of red-color spoilage in cucumber pickle products.

    Science.gov (United States)

    Pérez-Díaz, I M; Kelling, R E; Hale, S; Breidt, F; McFeeters, R F

    2007-09-01

    The cucumber pickling industry has sporadically experienced spoilage outbreaks in pickled cucumber products characterized by development of red color on the surface of the fruits. Lactobacillus casei and Lactobacillus paracasei were isolated from 2 outbreaks of this spoilage that occurred about 15 y apart during the last 3 decades. Both organisms were shown to produce this spoilage when inoculated into pickled cucumbers while concomitantly degrading the azo dye tartrazine (FD&C yellow nr 5). This food dye is used as a yellow coloring in the brine cover solutions of commercial pickled cucumber products. The red color does not occur in the absence of tartrazine, nor when turmeric is used as a yellow coloring in the pickles. Addition of sodium benzoate to the brine cover solutions of a pickled cucumber product, more specifically hamburger dill pickles, prevented growth of these lactic acid bacteria and the development of the red spoilage.

  10. Microbiological spoilage of fish and fish products

    DEFF Research Database (Denmark)

    Gram, Lone; Huss, Hans Henrik

    1996-01-01

    Spoilage of fresh and lightly preserved fish products is caused by microbial action. This paper reviews the current knowledge in terms of the microbiology of fish and fish products with particular emphasis on identification of specific spoilage bacteria and the qualitative and quantitative...... biochemical indicators of spoilage. Shewanzella putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish regardless of the origin of the fish. Modified atmosphere stored marine fish from temperate waters are spoiled by the CO2 resistant Photobacterium phosphoreum whereas Gram......- positive bacteria are likely spoilers of CO2 packed fish from fresh or tropical waters. Fish products with high salt contents may spoil due to growth of halophilic bacteria (salted fish) or growth of anaerobic bacteria and yeasts (barrel salted fish). Whilst the spoilage of fresh and highly salted fish...

  11. Characterization and control of Mucor circinelloides spoilage in yogurt.

    Science.gov (United States)

    Snyder, Abigail B; Churey, John J; Worobo, Randy W

    2016-07-02

    Consumer confidence in the food industry is severely affected by large-scale spoilage incidents. However, relatively little research exists on spoilage potential of members of the fungal subphylum Mucormycotina (e.g. Mucor), which includes dimorphic spoilage organisms that can switch between a yeast-like and hyphal phase depending on environmental conditions. The presence of Mucor circinelloides in yogurt may not cause spoilage, but growth and subsequent changes in quality (e.g. container bloating) can cause spoilage if not controlled. The purpose of this study was to evaluate the effects on M. circinelloides of pasteurization regimen, natamycin concentrations, and storage temperature in yogurt production, as measured by fungal proliferation and carbon dioxide production. A strain of M. circinelloides isolated from commercially spoiled yogurt showed greater yogurt-spoilage potential than clinical isolates and other industrial strains. D-values and z-values were determined for the spoilage isolate in milk as an evaluation of the fungus' ability to survive pasteurization. Natamycin was added to yogurt at 0, 5, 10, 15, and 20ppm (μg/ml) to determine its ability to inhibit M. circinelloides over the course of month-long challenge studies at 4°C, 15°C, and 25°C. Survivors were recovered on acidified PDA and carbon dioxide levels were recorded. The D-values at 54°C, 56°C, and 58°C for hyphae/sporangiospores were (in min) 38.31±0.02, 10.17±0.28, and 1.94±0.53, respectively, which yielded a z-value of 3.09°C. The D-values at 51°C, 53°C, and 55°C for yeast-like cells were (in min) 14.25±0.12, 6.87±1.19, and 2.44±0.35, respectively, which yielded a z-value of 0.34°C. These results indicated that M. circinelloides would not survive fluid milk pasteurization if contamination occurred prior to thermal treatment. CO2 production was only observed when M. circinelloides was incubated under low-oxygen conditions, and occurred only at temperatures above 4

  12. isolation and identification of postharvest spoilage fungi associated

    African Journals Online (AJOL)

    DR. AMINU

    (5%). Proper handling from the farm as well as during storage and the avoidance of mixing of diseased ones with the healthy ones were identified as important factors in preventing loss. The use of suitable chemical treatment of the orange is also recommended as means of reducing economic loss due to fungal pathogens.

  13. Growth Inhibition of Grain Spoilage Fungi by Selected Herbs and ...

    African Journals Online (AJOL)

    http://dx.doi.org/10.4314/star.v3i4.19 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers ...

  14. Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition.

    Science.gov (United States)

    Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng

    2012-04-10

    Filamentous fungi are widely exploited in food industry due to their abilities to secrete large amounts of enzymes and metabolites. The recent availability of fungal genome sequences has provided an opportunity to explore the genomic characteristics of these food-related filamentous fungi. In this paper, we selected 12 representative filamentous fungi in the areas of food processing and safety, which were Aspergillus clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus, Monascus ruber, Neurospora crassa, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma reesei, and did the comparative studies of their genomic characteristics of tRNA gene distribution, codon usage pattern and amino acid composition. The results showed that the copy numbers greatly differed among isoaccepting tRNA genes and the distribution seemed to be related with translation process. The results also revealed that genome compositional variation probably constrained the base choice at the third codon, and affected the overall amino acid composition but seemed to have little effect on the integrated physicochemical characteristics of overall amino acids. The further analysis suggested that the wobble pairing and base modification were the important mechanisms in codon-anticodon interaction. In the scope of authors' knowledge, it is the first report about the genomic characteristics analysis of food-related filamentous fungi, which would be informative for the analysis of filamentous fungal genome evolution and their practical application in food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Microbiological spoilage of fish and fish products.

    Science.gov (United States)

    Gram, L; Huss, H H

    1996-11-01

    Spoilage of fresh and lightly preserved fish products is caused by microbial action. This paper reviews the current knowledge in terms of the microbiology of fish and fish products with particular emphasis on identification of specific spoilage bacteria and the qualitative and quantitative biochemical indicators of spoilage. Shewanella putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish regardless of the origin of the fish. Modified atmosphere stored marine fish from temperate waters are spoiled by the CO2 resistant Photobacterium phosphoreum whereas Gram-positive bacteria are likely spoilers of CO2 packed fish from fresh or tropical waters. Fish products with high salt contents may spoil due to growth of halophilic bacteria (salted fish) or growth of anaerobic bacteria and yeasts (barrel salted fish). Whilst the spoilage of fresh and highly salted fish is well understood, much less is known about spoilage of lightly preserved fish products. It is concluded that the spoilage is probably caused by lactic acid bacteria, certain psychotrophic Enterobacteriaceae and/or Photobacterium phosphoreum. However, more work is needed in this area.

  16. Red colorants from filamentous fungi: Are they ready for the food industry?

    OpenAIRE

    Dufossé , Laurent

    2017-01-01

    International audience; Food components of microbial-origin have a long history in food science and the food industry. Thickening and gelling agents, flavour enhancers, polyunsaturated fatty acids, flavour compounds, vitamins, essential amino acids, and acidulants are some examples of such ingredients. This paper will provide an update on the current worldwide situation for four different fungal reds: (i) carotenoid lycopene (simple compound, complex current status); (ii) molecular biology on...

  17. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  18. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  19. Organic farmers use of wild food plants and fungi in a hilly area in Styria (Austria)

    Science.gov (United States)

    2010-01-01

    Background Changing lifestyles have recently caused a severe reduction of the gathering of wild food plants. Knowledge about wild food plants and the local environment becomes lost when plants are no longer gathered. In Central Europe popular scientific publications have tried to counter this trend. However, detailed and systematic scientific investigations in distinct regions are needed to understand and preserve wild food uses. This study aims to contribute to these investigations. Methods Research was conducted in the hill country east of Graz, Styria, in Austria. Fifteen farmers, most using organic methods, were interviewed in two distinct field research periods between July and November 2008. Data gathering was realized through freelisting and subsequent semi-structured interviews. The culinary use value (CUV) was developed to quantify the culinary importance of plant species. Hierarchical cluster analysis was performed on gathering and use variables to identify culture-specific logical entities of plants. The study presented was conducted within the framework of the master's thesis about wild plant gathering of the first author. Solely data on gathered wild food species is presented here. Results Thirty-nine wild food plant and mushroom species were identified as being gathered, whereas 11 species were mentioned by at least 40 percent of the respondents. Fruits and mushrooms are listed frequently, while wild leafy vegetables are gathered rarely. Wild foods are mainly eaten boiled, fried or raw. Three main clusters of wild gathered food species were identified: leaves (used in salads and soups), mushrooms (used in diverse ways) and fruits (eaten raw, with milk (products) or as a jam). Conclusions Knowledge about gathering and use of some wild food species is common among farmers in the hill country east of Graz. However, most uses are known by few farmers only. The CUV facilitates the evaluation of the culinary importance of species and makes comparisons

  20. Organic farmers use of wild food plants and fungi in a hilly area in Styria (Austria

    Directory of Open Access Journals (Sweden)

    Schunko Christoph

    2010-06-01

    Full Text Available Abstract Background Changing lifestyles have recently caused a severe reduction of the gathering of wild food plants. Knowledge about wild food plants and the local environment becomes lost when plants are no longer gathered. In Central Europe popular scientific publications have tried to counter this trend. However, detailed and systematic scientific investigations in distinct regions are needed to understand and preserve wild food uses. This study aims to contribute to these investigations. Methods Research was conducted in the hill country east of Graz, Styria, in Austria. Fifteen farmers, most using organic methods, were interviewed in two distinct field research periods between July and November 2008. Data gathering was realized through freelisting and subsequent semi-structured interviews. The culinary use value (CUV was developed to quantify the culinary importance of plant species. Hierarchical cluster analysis was performed on gathering and use variables to identify culture-specific logical entities of plants. The study presented was conducted within the framework of the master's thesis about wild plant gathering of the first author. Solely data on gathered wild food species is presented here. Results Thirty-nine wild food plant and mushroom species were identified as being gathered, whereas 11 species were mentioned by at least 40 percent of the respondents. Fruits and mushrooms are listed frequently, while wild leafy vegetables are gathered rarely. Wild foods are mainly eaten boiled, fried or raw. Three main clusters of wild gathered food species were identified: leaves (used in salads and soups, mushrooms (used in diverse ways and fruits (eaten raw, with milk (products or as a jam. Conclusions Knowledge about gathering and use of some wild food species is common among farmers in the hill country east of Graz. However, most uses are known by few farmers only. The CUV facilitates the evaluation of the culinary importance of species and

  1. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity.

    Science.gov (United States)

    Fougy, Lysiane; Desmonts, Marie-Hélène; Coeuret, Gwendoline; Fassel, Christine; Hamon, Erwann; Hézard, Bernard; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane

    2016-07-01

    . However, salt has been used for a very long time as a hurdle technology, and salt reduction in meat products raises the question of spoilage and waste of food. The study was conceived to assess the role of sodium chloride reduction in meat products, both at the level of spoilage development and at the level of bacterial diversity, using 16S rRNA amplicon sequencing and raw pork sausage as a meat model. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity

    Science.gov (United States)

    Fougy, Lysiane; Desmonts, Marie-Hélène; Coeuret, Gwendoline; Fassel, Christine; Hamon, Erwann; Hézard, Bernard; Champomier-Vergès, Marie-Christine

    2016-01-01

    dietary salt intake. However, salt has been used for a very long time as a hurdle technology, and salt reduction in meat products raises the question of spoilage and waste of food. The study was conceived to assess the role of sodium chloride reduction in meat products, both at the level of spoilage development and at the level of bacterial diversity, using 16S rRNA amplicon sequencing and raw pork sausage as a meat model. PMID:27107120

  3. Research regarding the antimicrobial activity of essential oils against food borne bacteria and toxigenic fungi

    Directory of Open Access Journals (Sweden)

    ALINA A. DOBRE

    2011-12-01

    Full Text Available The aim of this research was to evaluate the in vitro antimicrobial activity of seven essential oils against four different bacterial and five fungal strains that are involved in food poisoning and/or food decay: Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella enteritidis, Fusarium graminearum, Fusarium culmorum, Aspergillus flavus, Aspergillus oryzae and Aspergillus brasiliensis, using two methods: agar disc diffusion method and disc volatilization method. The majority of the selected essential oils presented inhibitory activity against all the microorganisms tested but essential oils of oregano, thyme and clove proved to develop the best antibacterial and antifungal activity both in direct contact and volatilization method and could be used for further investigation in active packaging of food.

  4. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    by spoilage microorganisms in reduced salt, even with pH as low as 3.2. Efforts to reduce salt in commercial brining operations will need to include control measures for this increased susceptibility to spoilage. Lactobacillus buchneri was identified as a potential causative agent and could be used as a target in development of such control measures. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  5. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria

    Czech Academy of Sciences Publication Activity Database

    Pastorková, E.; Žáková, T.; Landa, Přemysl; Nováková, J.; Vadlejch, J.; Kokoška, L.

    2013-01-01

    Roč. 161, č. 3 (2013), s. 209-213 ISSN 0168-1605 R&D Projects: GA MŠk(CZ) LD11005 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phenolic compound * Antimicrobial activity * Wine spoilage microorganism Subject RIV: GM - Food Processing Impact factor: 3.155, year: 2013

  6. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions.

    Science.gov (United States)

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-10-07

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant-plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or (15)N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a (15)N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants.

  7. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant–plant interactions

    Science.gov (United States)

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-01-01

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant–plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or 15N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a 15N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants. PMID:22859596

  8. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2016-09-01

    Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans, draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance.

    Science.gov (United States)

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-03-10

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments.

  10. Development of methods for the 'early detection' toxigenic fungi in food matrices

    International Nuclear Information System (INIS)

    Nobili, Chiara; Del Fiore, Antonella; De Rossi, Patrizia; Tolaini, Valentina

    2015-01-01

    The quality of a food product is intended, in addition that as a consumer suitability for possession of requirements Toilet, also for the presence of characteristics of merit and excellence from a chemical, physical and sensory, in a market increasingly attentive to the demands of Modern demanding and informed consumer. In this work the diagnostic techniques are described that by allowing detecting the presence of the fungus in the early times, when other inspection methods do not allow it, may make a concrete contribution to the contamination control fungal and to the prevention of any synthesis of mycotoxins. [it

  11. Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater.

    Science.gov (United States)

    Zahmatkesh, Mostafa; Spanjers, Henri; van Lier, Jules B

    2017-11-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot fungi (WRF): Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus and Pleurotus pulmonarius were tested to remove humic acids (HA) from a real humic-rich industrial treated WW of a food-processing plant. The HA removal was assessed by color measurement and size-exclusion chromatography (SEC) analysis. T. versicolor showed the best decolorization efficiency of 90% and yielded more than 45% degradation of HA, which was the highest among the tested fungal strains. The nitrogen limitation was studied and results showed that it affected the fungal extracellular laccase and manganese peroxidase (MnP) activities. The results of the SEC analysis revealed that the mechanism of HA removal by WRF involves degradation of large HA molecules to smaller molecules, conversion of HA to fulvic acid-like molecules and also biosorption of HA by fungal mycelia. The effect of HS on the growth of WRF was investigated and results showed that the inhibition or stimulation of growth differs among the fungal strains.

  12. Production of Ethanol and Biomass from Thin Stillage Using Food-Grade Zygomycetes and Ascomycetes Filamentous Fungi

    Directory of Open Access Journals (Sweden)

    Jorge A. Ferreira

    2014-06-01

    Full Text Available A starch-based ethanol facility producing 200,000 m3 ethanol/year also produces ca. 2 million m3 thin stillage, which can be used to improve the entire process. In this work, five food-grade filamentous fungi, including a Zygomycete and four Ascomycetes were successfully grown in thin stillage containing 9% solids. Cultivation with Neurospora intermedia led to the production of ca. 16 g·L−1 biomass containing 56% (w/w crude protein, a reduction of 34% of the total solids, and 5 g·L−1 additional ethanol. In an industrial ethanol production process (200,000 m3 ethanol/year, this can potentially lead to the production of 11,000 m3 extra ethanol per year. Cultivation with Aspergillus oryzae resulted in 19 g·L−1 biomass containing 48% (w/w crude protein and the highest reduction of the thin stillage glycerol (54% among the Ascomycetes. Cultivation with Rhizopus sp. produced up to 15 g·L−1 biomass containing 55% (w/w crude protein. The spent thin stillage had been reduced up to 85%, 68% and 21% regarding lactic acid, glycerol and total solids, respectively. Therefore, N. intermedia, in particular, has a high potential to improve the ethanol process via production of additional ethanol and high-quality biomass, which can be considered for animal feed applications such as for fish feed.

  13. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio ...

  14. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  15. Mycotoxins and Mycotoxigenic Fungi in Poultry Feed for Food-Producing Animals

    Directory of Open Access Journals (Sweden)

    Mariana Vanesa Greco

    2014-01-01

    Full Text Available Moulds are capable of reducing the nutritional value of feedstuff as well as elaborating several mycotoxins. Mycotoxin-contaminated feed has adverse effects on animal health and productivity. Also, mycotoxins may be carried over into meat and eggs when poultry are fed with contaminated feed. In a point prevalence study feedstuff used for poultry nutrition in Argentina was analyzed for fungal flora, natural incidence of selected mycotoxins, and nutritional quality. Ten mould genera were recovered, six of them known to be mycotoxigenic. More than 28 species were determined. Fumonisins were detected in all the samples (median 1,750 ppb. Forty-four out of 49 samples (90% were contaminated with DON (median 222 ppb and OTA (median 5 ppb. Also, 44 out of 49 samples were contaminated with aflatoxins (median 2.685 ppb, 42 samples (86% with ZEA (median 50 ppb, and 38 samples (78% with T2-toxin (median 50 ppb. Ninety percent of the samples had at least one type of nutritional deficiency. This study indicates the need for continuous assessment of the mycological status of animal feed production, in order to feed animals for optimal performance ensuring food safety.

  16. Mycotoxins and mycotoxigenic fungi in poultry feed for food-producing animals.

    Science.gov (United States)

    Greco, Mariana Vanesa; Franchi, María Luisa; Rico Golba, Silvia Laura; Pardo, Alejandro Guillermo; Pose, Graciela Noemí

    2014-01-01

    Moulds are capable of reducing the nutritional value of feedstuff as well as elaborating several mycotoxins. Mycotoxin-contaminated feed has adverse effects on animal health and productivity. Also, mycotoxins may be carried over into meat and eggs when poultry are fed with contaminated feed. In a point prevalence study feedstuff used for poultry nutrition in Argentina was analyzed for fungal flora, natural incidence of selected mycotoxins, and nutritional quality. Ten mould genera were recovered, six of them known to be mycotoxigenic. More than 28 species were determined. Fumonisins were detected in all the samples (median 1,750 ppb). Forty-four out of 49 samples (90%) were contaminated with DON (median 222 ppb) and OTA (median 5 ppb). Also, 44 out of 49 samples were contaminated with aflatoxins (median 2.685 ppb), 42 samples (86%) with ZEA (median 50 ppb), and 38 samples (78%) with T2-toxin (median 50 ppb). Ninety percent of the samples had at least one type of nutritional deficiency. This study indicates the need for continuous assessment of the mycological status of animal feed production, in order to feed animals for optimal performance ensuring food safety.

  17. Mycotoxins and Mycotoxigenic Fungi in Poultry Feed for Food-Producing Animals

    Science.gov (United States)

    Greco, Mariana Vanesa; Rico Golba, Silvia Laura; Pardo, Alejandro Guillermo; Pose, Graciela Noemí

    2014-01-01

    Moulds are capable of reducing the nutritional value of feedstuff as well as elaborating several mycotoxins. Mycotoxin-contaminated feed has adverse effects on animal health and productivity. Also, mycotoxins may be carried over into meat and eggs when poultry are fed with contaminated feed. In a point prevalence study feedstuff used for poultry nutrition in Argentina was analyzed for fungal flora, natural incidence of selected mycotoxins, and nutritional quality. Ten mould genera were recovered, six of them known to be mycotoxigenic. More than 28 species were determined. Fumonisins were detected in all the samples (median 1,750 ppb). Forty-four out of 49 samples (90%) were contaminated with DON (median 222 ppb) and OTA (median 5 ppb). Also, 44 out of 49 samples were contaminated with aflatoxins (median 2.685 ppb), 42 samples (86%) with ZEA (median 50 ppb), and 38 samples (78%) with T2-toxin (median 50 ppb). Ninety percent of the samples had at least one type of nutritional deficiency. This study indicates the need for continuous assessment of the mycological status of animal feed production, in order to feed animals for optimal performance ensuring food safety. PMID:25126610

  18. Use of Cymbopogon citratus essential oil in food preservation: Recent advances and future perspectives.

    Science.gov (United States)

    Ekpenyong, Christopher E; Akpan, Ernest E

    2017-08-13

    The economic burdens and health implications of food spoilage are increasing. Contamination of food sources by fungi, bacteria, yeast, nematodes, insects, and rodents remains a major public health concern. Research has focused on developing safer natural products and innovations to meet consumers' acceptance as alternatives to synthetic food preservatives. Many recent novel preservative techniques and applications of both natural and synthetic origin continue to proliferate in food and chemical industries. In particular, some essential oils of plant origin are potent food preservatives and are thus attractive alternatives to synthetic preservatives. This paper provides an overview of recent advances and future prospects in assessing the efficacy of the use of Cymbopogon citratus (lemongrass) essential oil in food preservation. The possible mechanisms of action and toxicological profile as well as evidence for or against the use of this essential oil as an alternative to synthetic food preservatives in domestic and industrial applications are discussed.

  19. Yeasts in foods and beverages: impact on product quality and safety.

    Science.gov (United States)

    Fleet, Graham H

    2007-04-01

    The role of yeasts in food and beverage production extends beyond the well-known bread, beer and wine fermentations. Molecular analytical technologies have led to a major revision of yeast taxonomy, and have facilitated the ecological study of yeasts in many other products. The mechanisms by which yeasts grow in these ecosystems and impact on product quality can now be studied at the level of gene expression. Their growth and metabolic activities are moderated by a network of strain and species interactions, including interactions with bacteria and other fungi. Some yeasts have been developed as agents for the biocontrol of food spoilage fungi, and others are being considered as novel probiotic organisms. The association of yeasts with opportunistic infections and other adverse responses in humans raises new issues in the field of food safety.

  20. A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain

    Science.gov (United States)

    de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H.; Ratcliffe, N. M.; Sivanand, P. S.; Spencer-Phillips, P. T. N.

    2003-04-01

    Sensors based on composites of metal oxides were fabricated and tested extensively under high-humidity and high-flow conditions with exposure to vapours reported to increase in the headspace of wheat grain (Triticum aestivum cv Hereward) colonized by fungi. The sensors that exhibited high sensitivity to target vapours combined with high stability were selected for inclusion into a four-sensor array prototype system. A sampling protocol aligned to parallel gas chromatography-mass spectrometry and human olfactory assessment studies was established for use with the sensor system. The sensor system was utilized to assess irradiated wheat samples that had been conditioned to 25% moisture content and inoculated with pathogens known to cause spoilage of grain in storage. These included the fungi Penicillium aurantiogriseum, Penicillium vulpinum, Penicillium verrucosum, Fusarium culmorum, Aspergillus niger, and Aspergillus flavus and the actinomycete, Streptomyces griseus. The sensor system successfully tracked the progress of the infections from a very early stage and the results were compared with human olfactory assessment panels run concurrently. A series of dilution studies were undertaken using previously infected grain mixed with sound grain, to improve the sensitivity and maximize the differentiation of the sensor system. An optimum set of conditions including incubation temperature, incubation time, sampling time, and flow rate were ascertained utilizing this method. The sensor system differentiated samples of sound grain from samples of sound grain with 1% (w/w) fungus infected grain added. Following laboratory trials, the prototype sensor system was evaluated in a commercial wheat grain intake facility. Thresholds calculated from laboratory tests were used to differentiate between sound and infected samples (classified by intake laboratory technicians) collected routinely from trucks delivering grain for use in food manufacture. All samples identified as having

  1. Bacterial spoilage profiles to identify irradiated fish

    International Nuclear Information System (INIS)

    Alur, M.D.; Venugopal, V.; Nerkar, D.P.; Nair, P.M.

    1991-01-01

    Effects of low dose gamma-irradiation of fish product on spoilage potentials of bacteria (Aeromonas hydrophila, Salmonella typhimurium, Bacillus megaterium, and Pseudomonas marinoglutinosa) and mixed flora were examined for ability to proliferate in radurized fish and produce volatile acids (TVA) and bases (TVBN). Bacteria proliferated well in unirradiated and irradiated fish, but formation of VA and VB were lower in irradiated than unirradiated counterparts. This was found in Bombay duck, Indian mackerel, white pomfret, seer and shrimp gamma-irradiated at 0 to 5 kGy under ice. TVA and TVBN produced by the organisms or mixed flora from fish were only 30-50% those of controls. A method for identifying radiation-processed fish could evolve based on lower susceptibility of irradiated fish to bacterial spoilage

  2. Wild food plants and wild edible fungi of Heihe valley (Qinling Mountains, Shaanxi, central China: herbophilia and indifference to fruits and mushrooms

    Directory of Open Access Journals (Sweden)

    Yongxiang Kang

    2012-12-01

    Full Text Available The aim of the study was to investigate knowledge and use of wild food plants and fungi in Han (i.e. Chinese nationality villages in central China, including famine plants used in the respondents' childhood. A valley adjacent to the extremely species-rich temperate forest vegetation of the Taibai Nature Reserve was chosen. Eighty-two people from 5 villages took part in the study. Altogether, 159 wild food plant species and 13 fungi folk taxa were mentioned by informants. The mean number of freelisted wild foods was very high (24.8; median – 21.5. An average respondent listed many species of wild vegetables (mean – 17, me- dian – 14.5, a few wild fruits (mean – 5.9 and median – 6 and very few fungi (mean – 1.9, median – 1, which they had eaten. Over 50% of respondents mentioned gathering the young shoots or leaves of Celastrus orbiculatus, Staphylea bumalda and S. holocapra, Caryopteris divaricata, Helwingia japonica, Pteridium aquilinum, Pimpinella sp., Amaranthus spp., Matteucia struthiopteris, Allium spp., Cardamine macrophylla and Chenopodium album. Only one species of fruits (Schisandra sphenanthera and none of the mushrooms were mentioned by over half of the respondents. Although very diverse, it can be noted that the use of wild vegetables has decreased compared to the second half of the 20th century, as informants listed several plants which they had stopped using (e.g. Abelia engleriana due to the availability of cultivated vegetables and other foodstuffs. On the other hand, the collection of the most well-known wild vegetables is maintained by selling them to tourists visiting agritourist farms, and restaurants.

  3. Microbiological Spoilage of High-Sugar Products

    Science.gov (United States)

    Thompson, Sterling

    The high-sugar products discussed in this chapter are referred to as chocolate, sugar confectionery (non-chocolate), liquid sugars, sugar syrups, and honey. Products grouped in the sugar confectionery category include hard candy, soft/gummy candy, caramel, toffee, licorice, marzipan, creams, jellies, and nougats. A common intrinsic parameter associated with high-sugar products is their low water activity (a w), which is known to inhibit the growth of most spoilage and pathogenic bacteria. However, spoilage can occur as a result of the growth of osmophilic yeasts and xerophilic molds (Von Richter, 1912; Anand & Brown, 1968; Brown, 1976). The a w range for high-sugar products is between 0.20 and 0.80 (Banwart, 1979; Richardson, 1987; Lenovich & Konkel, 1992; ICMSF, 1998; Jay, Loessner, & Golden, 2005). Spoilage of products, such as chocolate-covered cherries, results from the presence of yeasts in the liquid sugar brine or the cherry. Generally, the spoiled product will develop leakers. The chocolate covering the cherry would not likely be a source of yeast contamination.

  4. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  5. Essential Oil of Common Thyme as a Natural Antimicrobial Food Additive

    Directory of Open Access Journals (Sweden)

    Jasna Dolenc Koce

    2014-01-01

    Full Text Available Antimicrobial activities of thyme essential oil against selected microorganisms, including Fusarium sp., Armillaria mellea, Bacillus cereus, Staphylococcus aureus, Buttiauxella sp., Klebsiella pneumoniae, Escherichia coli K-12, AmpC-producing E. coli Z, ESBL-producing E. coli strain of KM clonal group ST131, and E. coli 1138 were evaluated. The antimicrobial efficacy of thyme essential oil was determined using agar well diffusion assays. The growth of all tested bacteria was inhibited at thyme essential oil fractions higher than 1 %, while a fraction of 10 % was needed to inhibit the growth of fungi. We demonstrate that thyme essential oil has a promising activity against food spoilage bacteria, and also against multiresistant AmpC-producing and ESBL-producing bacterial strains isolated from food, which have recently been recognised as public health concerns. On the basis of our data, the thyme essential oil has a potential for use as a growth inhibitor of multidrug-resistant bacteria, and food spoilage and pathogenic bacteria and fungi, to replace commonly used semi-synthetic antimicrobial products.

  6. Mycology and spoilage of retail cashew nuts | Adebajo | African ...

    African Journals Online (AJOL)

    All the species recovered induced detectable loss in weights of the milled nuts, though to varying extents and would be expected to cause considerable spoilage of the nuts. Key words: Cashew nut, Anacardium occidentale, fungal count, mycology, Aspergillus sp., Penicillium sp., spoilage. African Journal of Biotechnology ...

  7. Effect of different storage temperatures on bacterial spoilage of ...

    African Journals Online (AJOL)

    This study determined the bacterial organisms associated with Oreochromis niloticus spoilage at two storage temperatures (6 and 20°C) and also assessed the ability of the individual bacterial isolates to cause spoilage at the two storage temperatures. Bacteriological analysis revealed the association of five bacteria ...

  8. Bacterial spoilage of fresh meat in some selected Lagos markets ...

    African Journals Online (AJOL)

    A study of the bacteria associated with spoilage of fresh meat was carried out. The flora causing spoilage of meat include Alcaligenes liquefaciens, Bacillus subtilis, Clostridium perfringes, Escherichia coli, Klebsiella pneumoniae, Lactobacillus sp., Micrococcus varians, Pseudomonas aeruginosa, Sarcina sp. Serratia ...

  9. Physiological characteristics of fungi associated with dairy products

    DEFF Research Database (Denmark)

    Haasum, Iben

    mode of the mycelium. Germination of spores is a key event in the fungal life cycle giving rise to colonization by a growing mycelium. Understanding of the factors controlling germination are of major importance as no infection of food-stuffs will occur if spores do not germinate. Food spoilage...

  10. Antibacterial Activity of Zataria multiflora Boiss Essential Oil against Some Fish Spoilage Bacteria

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi

    2017-09-01

    Full Text Available Background: The aim of this study was to investigate antimicrobial effect of Zataria multiflora Boiss essential oil (EO against six fish spoilage bacteria for evaluation of its potential utilization in the preservation of minimally processed fish products. Methods: Firstly, GC-MS analysis of the EO was performed to determine its chemical composition. Then, antibacterial effect of the EO in a range of 0.031 to 4 mg/ml was tested against different fish spoilage bacteria such as Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas fluorescens, Shewanella putrefaciens, Escherichia coli and Bacillus subtilis by broth microdilution method to determine minimum inhibitory (MIC and minimum bactericidal (MBC concentrations. Results: GC-MS results showed that phenolic components such as carvacrol (51.55% and thymol (25.49% were predominant constituents of the EO. Zataria multiflora Boiss EO exhibited strong antimicrobial activity against all tested bacteria. Shewanella Putrefaciens was the most sensitive bacteria with MBC value of 0. 5 mg/ml. Conclusion: According to the results, this EO could be used as an important natural alternative to prevent bacterial growth in food specially seafood products to preserve them against bacterial spoilage.

  11. Food preservative potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against mycotoxigenic fungi

    DEFF Research Database (Denmark)

    Nguefack, J.; Dongmo, J. B. Lekagne; Dakole, C. D.

    2009-01-01

    The food preservative potential of essential oils from three aromatic plants Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris and their fractions was investigated against two mycotoxigenic strains each of Aspergillus ochraceus, Penicillium expansum and P. verrucosum. The fungicidal...

  12. Food irradiation: An update

    International Nuclear Information System (INIS)

    Morrison, Rosanna M.

    1984-01-01

    Recent regulatory and commercial activity regarding food irradiation is highlighted. The effects of irradiation, used to kill insects and microorganisms which cause food spoilage, are discussed. Special attention is given to the current regulatory status of food irradiation in the USA; proposed FDA regulation regarding the use of irradiation; pending irradiation legislation in the US Congress; and industrial applications of irradiation

  13. Mysterious Mycorrhizae? A Field Trip & Classroom Experiment to Demystify the Symbioses Formed between Plants & Fungi

    Science.gov (United States)

    Johnson, Nancy C.; Chaudhary, V. Bala; Hoeksema, Jason D.; Moore, John C.; Pringle, Anne; Umbanhowar, James A.; Wilson, Gail W. T.

    2009-01-01

    Biology curricula cover fungi in units on bacteria, protists, and primitive plants, but fungi are more closely related to animals than to bacteria or plants. Like animals, fungi are heterotrophs and cannot create their own food; but, like plants, fungi have cell walls, and are for the most part immobile. Most species of fungi have a filamentous…

  14. Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices

    Science.gov (United States)

    Aneja, Kamal Rai; Dhiman, Romika; Aggarwal, Neeraj Kumar; Aneja, Ashish

    2014-01-01

    Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed. PMID:25332721

  15. Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices

    Directory of Open Access Journals (Sweden)

    Kamal Rai Aneja

    2014-01-01

    Full Text Available Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.

  16. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices.

    Science.gov (United States)

    Aneja, Kamal Rai; Dhiman, Romika; Aggarwal, Neeraj Kumar; Aneja, Ashish

    2014-01-01

    Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.

  17. Radiation microbiology relevant to the food industry

    International Nuclear Information System (INIS)

    Holzapfel, W.H.

    1985-01-01

    Destruction or inactivation of most microbial cells takes place at relatively low doses of gamma irradiation, making 'pasteurising' treatment of several food commodities in the dose range of 1 to 10 kGy a feasible decontamination method. Several factors may influence the effectiveness of an irradiation process, and should be taken into account when radurisation of foods is practised. Damage to microbes is enhanced in the presence of oxygen and at low pH levels, whereas substances such as sulfhydryl compounds tend to act as protectors. Living organisms may be arranged in the order of increasing resistance to ionising radiation, as follows: higher animals, insects, vegetative bacteria, yeasts and fungi, bacterial endospores and viruses. Most food spoilage organisms as well as food-borne pathogens (D 10 -values for the majority ranging between 0,08 and 0,5 kGy) are sensitive to relatively small irradiation doses. Although several bacterial endospores may survive in radurised foods (D 10 -values ranging between 1,5 and 5,0 kGy), additional safety factors (e.g. low pH, refrigeration, reduced Eh, reduced a w , preservatives) may contribute to the shelf stability of a given food

  18. Toxins of filamentous fungi.

    Science.gov (United States)

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    Mycotoxins are low-molecular-weight secondary metabolites of fungi. The most significant mycotoxins are contaminants of agricultural commodities, foods and feeds. Fungi that produce these toxins do so both prior to harvest and during storage. Although contamination of commodities by toxigenic fungi occurs frequently in areas with a hot and humid climate (i.e. conditions favorable for fungal growth), they can also be found in temperate conditions. Production of mycotoxins is dependent upon the type of producing fungus and environmental conditions such as the substrate, water activity (moisture and relative humidity), duration of exposure to stress conditions and microbial, insect or other animal interactions. Although outbreaks of mycotoxicoses in humans have been documented, several of these have not been well characterized, neither has a direct correlation between the mycotoxin and resulting toxic effect been well established in vivo. Even though the specific modes of action of most of the toxins are not well established, acute and chronic effects in prokaryotic and eukaryotic systems, including humans have been reported. The toxicity of the mycotoxins varies considerably with the toxin, the animal species exposed to it, and the extent of exposure, age and nutritional status. Most of the toxic effects of mycotoxins are limited to specific organs, but several mycotoxins affect many organs. Induction of cancer by some mycotoxins is a major concern as a chronic effect of these toxins. It is nearly impossible to eliminate mycotoxins from the foods and feed in spite of the regulatory efforts at the national and international levels to remove the contaminated commodities. This is because mycotoxins are highly stable compounds, the producing fungi are ubiquitous, and food contamination can occur both before and after harvest. Nevertheless, good farm management practices and adequate storage facilities minimize the toxin contamination problems. Current research is

  19. A mechanistic approach to postirradiation spoilage kinetics of fish

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: In order to simulate postirradiation spoilage of fish, the mechanistic aspects of the growth of surviving microorganisms during chill storage and their product formation in irradiated fish were analyzed. Anchovy (Engraulis encrasicholus) samples those unirradiated and irradiated at 1, 2 and 3 kGy doses of gamma radiation were stored at +2 o C for 21 days. Total bacterial counts (TBC) and trimethylamine (TMA) analysis of the samples were done periodically during storage. Depending on the proposed spoilage mechanism, kinetic model equations were derived. By using experimental data of TBC and TMA in the developed model, the postirradiation spoilage parameters including growth rate constant, inital and maximum attainable TBC, lag time and TMA yield were evaluated and microbial spoilage of fish was simulated for postirradiation storage. Shelf life of irradiated fish was estimated depending on the spoilage kinetics. Dose effects on the kinetic parameters were analyzed. It is suggested that the kinetic evaluation method developed in this study may be used for quality assessment, shelf life determination and dose optimization for radiation preservation of fish

  20. Filamentous Fungi.

    Science.gov (United States)

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  1. Chemical Composition, Toxicity and Antifungal Activities of Megaphrynium macrostachyum (K. Schum Leaf Extract against Foodborne Fungi

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Oluwasola ADEOGUN

    2017-09-01

    Full Text Available This study aimed to examine the preservative potential of Megaphrynium macrostachyum on fungi responsible for the deterioration of orange juice and corn Jell-O. The phytochemicals from plants’ leaves were extracted with four solvents: acetone, aqueous, ethanol and hexane. The solvents were differently and tested against fungi isolated from orange juice and corn Jell-O using disc diffusion method. Phytochemical screening of the extracts from the leaves was carried out, and the most active extract was tested via GC-MS for the essential oils and HPLC fingerprinting. The toxicity test of the extracts against brine shrimp was carried out after exposure for 24 hours. The toxicity test showed that the extracts were non-toxic on the Brine Shrimps at LC50 (379.21μg/ml and 107.21μg/ml for aqueous and ethanol extracts. The qualitative phytochemical test reported the presence of alkaloids, tannins, saponins, flavonoids, steroids, and terpenoids in different extracts of the plant’ leaves. The quantitative phytochemical determination of the most active extract revealed alkaloids with the highest contents of 107.48mg/100g. The GC-MS analyses of the fresh leaves of the plants revealed the presence of isodecane with the highest percentage at 15.56%. The GC-MS analyses of the dried leaves revealed isodecane with the highest percentage at 10.43%. The HPLC analysis revealed the presence of various phytochemical constituents in the dried leaves. This study has been able to establish the potency of Megaphrynium macrostachyum leaves on fungi associated with the spoilage of Citrus sinensis (orange juice and Corn Jell-O (‘Eko’ which contribute to tremendous research towards the use and acknowledgment of natural antimicrobials for the preservation of food.

  2. Relationship between fungal contamination and ergosterol content and control of wheat grain spoilage by gamma rays

    International Nuclear Information System (INIS)

    Shahin, A.M.; Mahrous, S.R.; Aziz, N.H.; El-Zeany, S.M.

    2003-01-01

    The fungal flora and the ergosterol content of wheat grains were determined and the effect of gamma-irradiation on some important grain fungi to control mould spoilage of wheat grains was also investigated. At the start of storage, the ergosterol content and the number of moulds of wheat grains were 3.3μg/g and 3x10 3 /g, respectively and the technological values as germinative capacity and fat acidity were wholly satisfactory. After 50 days of storage, the ergosterol content and the number of moulds of the grains were 45.5 μg/g and 80x10 5 /g, respectively and all the germinative capacity and fat acidity values were not satisfactory. The ergosterol content of wheat grains irradiated at a dose level 3 kGy was 0.5 μg/g and the number of moulds were 8x10 2 /g. After 50 days of storage, the ergosterol content of the 3 kGy irradiated grains was 0.90 μg/g and the number of moulds were 15x10 2 /g and all the technological values were satisfactory. The fungal biomass and the ergosterol content of some grains fungi were decreased by increasing the irradiation dose levels. At irradiation dose level 4 kGy, there was no ergosterol in wheat grains and the moulds were completely inhibited and the technological values are wholly satisfactory over 50 days of storage

  3. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-01-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples. PMID:26221105

  4. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    International Nuclear Information System (INIS)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fátima; Teófilo, Reinaldo F.; Vitor, Débora M.; Reis Coimbra, Jane Sélia dos; Andrade, Nélio José de; Sousa, Frederico B. de; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na 4 P 2 O 7 ), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  5. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma.

    Science.gov (United States)

    Patange, Apurva; Boehm, Daniela; Bueno-Ferrer, Carmen; Cullen, P J; Bourke, Paula

    2017-09-01

    Brochothrix thermosphacta is the predominant spoilage microorganism in meat and its control in processing environments is important to maintain meat product quality. Atmospheric cold plasma is of interest for control of pathogenic and spoilage microorganisms in foods. This study ascertained the potential of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) for control of B. thermosphacta, taking microbial and food environment factors into consideration, and investigated the shelf-life of lamb chop after in-package plasma treatment in modified atmosphere. Community profiling was used to assess the treatment effects on the lamb microflora. ACP treatment (80 kV) for 30s inactivated B. thermosphacta populations below detection levels in PBS, while 5 min treatment achieved a 2 Log cycle reduction using a complex meat model medium and attached cells. The antimicrobial efficacy of plasma was reduced but still apparent on lamb chop surface-inoculated with high concentrations of B. thermosphacta. Lamb chop treated under modified atmosphere exhibited reduced microbial growth over the product shelf-life and community profiling showed no evident changes to the microbial populations after the treatment. The overall results indicated potential of ACP to enhance microbial control leading to meat storage life extension through adjusting the modality of treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of nano-encapsulation systems for the food antifungal natamycin : Formulation, characterization and post-processing

    NARCIS (Netherlands)

    Bouaoud, C.

    2016-01-01

    Food spoilage has become in the last decades one of the biggest challenges faced by the food industry, with a significant amount of products thrown away at every step of the supply chain. Microbial contamination is listed as one of the major causes of food spoilage and can be at a large extent

  7. Seafood Spoilage Predictor - development and distribution of a product specific application software

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Buch, P.; Silberg, Steen

    2002-01-01

    To allow shelf-life prediction of a range of products, the Seafood Spoilage Predictor (SSP) software has been developed to include both kinetic models for growth of specific spoilage microorganisms and empirical relative rates of spoilage models. SSP can read and evaluate temperature profile data...

  8. Design of a species-specific PCR method for the detection of the heat-resistant fungi Talaromyces macrosporus and Talaromyces trachyspermus.

    Science.gov (United States)

    Yamashita, S; Nakagawa, H; Sakaguchi, T; Arima, T-H; Kikoku, Y

    2018-01-01

    Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage

  9. Isolation, identification and in silico analysis of alpha-amylase gene of Aspergillus niger strain CSA35 obtained from cassava undergoing spoilage

    Directory of Open Access Journals (Sweden)

    Oghenetega J. Avwioroko

    2018-07-01

    Full Text Available In this investigation, a gene (CDF_Amyl encoding extracellular α-amylase in Aspergillus niger strain CSA35 associated with cassava spoilage was amplified using specific primers and characterized in silico. The gene had a partial nucleotide sequence of 968 bp and encoded a protein of 222 aa residues with a molecular weight and isoelectric point of 25.13 kDa and 4.17, respectively. Its catalytic site was located in the active site domain. BLASTp analysis showed that the protein primary sequence of the α-amylase gene had 98% and 99% homologies with the α-amylase of A. niger and A. oryzae RIB40, respectively. The gene is more closely related to α-amylase genes from fungi than to bacterial, plant, or animal α-amylase genes. Restriction mapping of the gene showed it can be digested with restriction enzymes like NcoI, PstI, SmaI, and BcLI among others but not with EcoRI and EcoRV. Its protein product had a hydrophobicity score of − 0.43 but no transmembrane helix. The CDF_Amyl protein was subcellularly localized in the secretory pathway, an indication of its release into extracellular space after secretion. Also, the 3D structure of the CDF-Amyl protein was barrel-shaped with domains characteristic of α-amylases. The encoded α-amylase Vmax is 6.90 U/mg protein and Km is 6.70 mg/ml. It was concluded that the unique characteristics of the CDF_Amyl gene and its deduced protein could find applications in biotechnological, food and pharmaceutical industries where cloning and further modification of this gene would be required for product development and improvement.

  10. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    Science.gov (United States)

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  12. Microorganisms associated with the spoilage of avocado pear ...

    African Journals Online (AJOL)

    The microorganisms associated with the spoilage of Avocado pear, Persea americana fruits, purchased fresh from various markets in Benin City were investigated. The pour plate method was used for the isolation. A total of nine species of microorganisms were isolated and identified in this study. They comprise of seven ...

  13. Spoilage potential of Paenibacillussp. in Brazilian raw milk

    Directory of Open Access Journals (Sweden)

    José Carlos Ribeiro Júnior

    2016-04-01

    Full Text Available ABSTRACT: Bacterial spores are widespread in the environment and can contaminate milk. Spores are resistant to thermal conditions and your germination reduces milk shelf-life because the aerobic bacteria that are sporulated produce proteases and lipases. The aim of this study was identify Paenibacillus sp., the spoilage microbiota, arising from the germination of spores in raw milk and your spoilage potential. Twenty different milk samples were treated at 80°C/12min and plated to isolate spore-forming bacteria. These strains were picked in milk agar and tributyrin agar for verification of their potential proteolytic and lipolytic activities, respectively. Amplification and sequencing of the 16S rRNA gene of the strains for identification by similarity to the DNA sequences deposited in GenBank was performed. One hundred and thirty-seven isolates were obtained, of which 40 (29.2% showed spoilage activity for milk. Of these, three (7.5% were identified as strains of Paenibacillus sp., and all were lipolytic. Paenibacillus sp. have been identified as primarily responsible for the spoilage of pasteurized milk with a long shelf-life in other countries. To increase the shelf-life of Brazilian pasteurized milk, it is important to identify the sporulated microbes to determine their origin and to control the contamination of milk by vegetative forms such as spores.

  14. Bacterial spoilage of meat and cured meat products

    NARCIS (Netherlands)

    Borch, E.; Kant-Muermans, M.L.T.; Blixt, Y.

    1996-01-01

    The influence of environmental factors (product composition and storage conditions) on the selection, growth rate and metabolic activity of the bacterial flora is presented for meat (pork and beef) and cooked, cured meat products. The predominant bacteria associated with spoilage of refrigerated

  15. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. © 2015 Institute of Food Technologists®

  16. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage

    Directory of Open Access Journals (Sweden)

    Ziola Barry

    2009-09-01

    Full Text Available Abstract Background Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol. Use of antimicrobial compounds (e.g., hop-compounds, Penicillin by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Results Lactic acid bacteria susceptibility test broth medium (LSM used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Conclusion Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  17. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage.

    Science.gov (United States)

    Haakensen, Monique; Vickers, David M; Ziola, Barry

    2009-09-07

    Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol). Use of antimicrobial compounds (e.g., hop-compounds, Penicillin) by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Lactic acid bacteria susceptibility test broth medium (LSM) used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  18. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    Science.gov (United States)

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  19. Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning.

    Science.gov (United States)

    Ellis, David I; Broadhurst, David; Kell, Douglas B; Rowland, Jem J; Goodacre, Royston

    2002-06-01

    Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable "fingerprints." Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 10(7) bacteria.g(-1) the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.

  20. Activity of R(+) limonene on the maximum growth rate of fish spoilage organisms and related effects on shelf-life prolongation of fresh gilthead sea bream fillets.

    Science.gov (United States)

    Giarratana, Filippo; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro; Panebianco, Antonio

    2016-11-21

    R(+)limonene (LMN) is the major aromatic compound in essential oils obtained from oranges, grapefruits, and lemons. The improvement of preservation techniques to reduce the growth and activity of spoilage microorganisms in foods is crucial to increase their shelf life and to reduce the losses due to spoilage. The aim of this work is to evaluate the effect of LMN on the shelf life of fish fillets. Its effectiveness was preliminarily investigated in vitro against 60 strains of Specific Spoilage Organisms (SSOs) and then on gilt-head sea bream fillets stored at 2±0.5°C for 15days under vacuum. LMN showed a good inhibitory effect against tested SSOs strains. On gilt-head sea bream fillets, LMN inhibited the growth SSOs effectively, and its use resulted in a shelf-life extension of ca. 6-9days of treated fillets, compared to the control samples. The LMN addition in Sparus aurata fillets giving a distinctive smell and like-lemon taste to fish fillets that resulted pleasant to panellists. Its use contributed to a considerable reduction of fish spoilage given that the fillets treated with LMN were still sensory acceptable after 15days of storage. LMN may be used as an effective antimicrobial system to reduce the microbial growth and to improve the shelf life of fresh gilt-head sea bream fillets. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Classification of photobacteria associated with spoilage of fish products by numerical taxanomy and pyrolysis mass spectrometry

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Manfio, G.P.; Goodfellow, M.

    1997-01-01

    , from spoiled products and by using a specific detection method. The data were analysed using the similarity coefficient and the unweighted pair-group with arithmetic averages algorithm. In addition twenty-six of the fish isolates and five reference strains were analysed by Curie-point pyrolysis mass...... sub-groups. One sub-group of psychrotolerant P. phosphoreum strains, which was selected in modified atmosphere packed fish stored at low temperature, was also highlighted using each of the methods. The importance of classifying food spoilage bacteria has been shown and a simple key generated......Forty strains of luminous and non-luminous Photobacterium phosphoreum isolates from cod (Gadus morhua) and seven reference strains of psychrotolerant and mesophilic photobacteria were examined for 156 unit characters in a numerical taxonomic study. The fish strains were isolated from the intestines...

  2. Identification of mycotoxigenic fungi using an oligonucleotide microarray

    CSIR Research Space (South Africa)

    Barros, E

    2013-01-01

    Full Text Available Mycotoxins are secondary metabolites produced by fungi; they can play a role as food contaminants and have the ability to negatively influence human and animal health. To improve food safety and to protect consumers from harmful contaminants...

  3. Antimicrobial Effect of Filipendula ulmaria Plant Extract Against Selected Foodborne Pathogenic and Spoilage Bacteria in Laboratory Media, Fish Flesh and Fish Roe Product

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2011-01-01

    Full Text Available Water-methanol extract from Filipendula ulmaria contains a variety of phenolic compounds, such as caffeic, p-coumaric and vanillic acid, myricetin, etc, which demonstrate antibacterial activity. Monitoring this activity in the broth using absorbance measurements showed that species of the Enterobacteriaceae family were more resistant than other Gram-negative and Gram-positive bacteria tested. Acidic environment enhanced the antibacterial activity of Filipendula ulmaria extract when it was tested against Salmonella Enteritidis PT4 and Listeria monocytogenes Scott A. The efficacy of Filipendula ulmaria extract against selected foodborne psychrotrophic bacteria was also tested using solid laboratory media and low incubation temperatures for better simulation of food preservation conditions. Higher concentrations of the extract, compared to minimum inhibitory concentration determined in the broth, were needed for satisfactory inhibition of spoilage bacteria. Potential use of Filipendula ulmaria extract as natural food preservative was also examined against natural spoilage flora and inoculated pathogenic bacteria on fish flesh and fish roe product (tarama salad. No significant differences of viable populations of spoilage or pathogenic bacteria were found between the treated samples and controls. Further trials of Filipendula ulmaria extract should be carried out in acidic foods with low fat and protein content, supplemented with additional adjuncts, in order to explore its potential as effective natural food antimicrobial agent.

  4. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  5. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  6. Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage.

    Science.gov (United States)

    Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu

    2018-05-01

    Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.

  7. Phytoalexins as Possible Controlling Agents of Microbial Spoilage of Irradiated Fresh Fruit and Vegetables During Storage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, S. A. [Radiobiology Department, Nuclear Research Center, Atomic Energy Commission, Cairo (Egypt)

    1978-04-15

    The decline in bio generating capacity to form natural antibiotic compounds (phytoalexins), rishitin and lubimin in potato tubers and rishitin in tomatoes, after gamma irradiation seems to be the essence of the suppression of natural immunity exhibited by an increase in per cent of rotted tubers and fruits during storage. In vitro studies postulated that the rot-causing fungi Phytophthora infestons (Mond) De Bary, Alternaria solani (Ellis and Martin) James and Grout, Botrytis cinerea Persson., Fusarium oxysporum Syder and Hansen and Rhizopus stolonifer Ehrenberg were significantly controlled by the application of phytoalexins that had been initially formed by potato tubers (rishitin), tomato fruits (rishitin) and pepper fruits (capsidiol). In vivo studies revealed that post-irradiation treatment of potato tubers and tomato fruits with phytoalexins that had been produced by the same plant organ or by another of the same family seems to be experimentally feasible to reduce the radiation dose or increase the efficiency of irradiation in controlling microbial spoilage during storage of irradiated potatoes and tomatoes. (author)

  8. Phytoalexins as possible controlling agents of microbial spoilage of irradiated fresh fruit and vegetables during storage

    International Nuclear Information System (INIS)

    El-Sayed, S.A.

    1978-01-01

    The decline in biogenerating capacity to form natural antibiotic compounds (phytoalexins), rishitin and lubimin in potato tubers and rishitin in tomatoes, after gamma irradiation seems to be the essence of the suppression of natural immunity exhibited by an increase in per cent of rotted tubers and fruits during storage. In vitro studies postulated that the rot-causing fungi Phytophthora infestans (Mond) De Bary, Alternaria solani (Ellis and Martin) James and Grout, Botrytis cinerea Persson., Fusarium oxysporum Syder and Hansen and Rhizopus stolonifer Ehrenberg were significantly controlled by the application of phytoalexins that had been initially formed by potato tubers (rishitin), tomato fruits (rishitin) and pepper fruits (capsidiol). In vivo studies revealed that post-irradiation treatment of potato tubers and tomato fruits with phytoalexins that had been produced by the same plant organ or by another of the same family seems to be experimentally feasible to reduce the radiation dose or increase the efficiency of irradiation in controlling microbial spoilage during storage of irradiated potatoes and tomatoes. (author)

  9. Microbial control and food Preservation: Theory and practice:Principles of food preservation

    Science.gov (United States)

    Food preservation is an action or method used to maintain foods at certain desirable properties or quality to obtain maximum benefit. A good method of food preservation is one that slows down or prevents altogether the action of the agents of spoilage without damaging the food. To achieve this, cert...

  10. Impedimetric method for physiologically characterisation of fungi

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Petersen, Karina

    1998-01-01

    Fungi are playing an important role in the food and pharmaceutical industry today, both as starter cultures, fermentation organisms, and as contaminants. Characterisation of fungal growth is normally time consuming as it includes measurements and study on a wide range of media at different...... temperatures, pH, water activity and atmosphere composition. Nevertheless is it important information in ecophysiological studies, where the growth potential by fungi are related to composition and storage of food. It is therefore of great interest to device a rapid method for characterisation of fungi.......The objective was to determine the growth phases of various fungi using an impedimetric method and compare this with traditional methods using agar plates, in order to determine if this rapid method can replace the traditional method.The method is based on impedimetric assessment of growth on the Bactometer 128...

  11. Chemical ecology of fungi.

    Science.gov (United States)

    Spiteller, Peter

    2015-07-01

    Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.

  12. Combination irradiation treatments for food safety and phytosanitary uses

    Science.gov (United States)

    Combination of irradiation treatment with other preservation techniques is of potential importance in enhancing the effectiveness and reducing the energy or dose requirement for destroying food borne illness and spoilage organisms while retaining or improving product quality. Phytosanitary irradiati...

  13. Food irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko; Kikuchi, Masahiro

    2009-01-01

    Food irradiation can have a number of beneficial effects, including prevention of sprouting; control of insects, parasites, pathogenic and spoilage bacteria, moulds and yeasts; and sterilization, which enables commodities to be stored for long periods. It is most unlikely that all these potential applications will prove commercially acceptable; the extend to which such acceptance is eventually achieved will be determined by practical and economic considerations. A review of the available scientific literature indicates that food irradiation is a thoroughly tested food technology. Safety studies have so far shown no deleterious effects. Irradiation will help to ensure a safer and more plentiful food supply by extending shelf-life and by inactivating pests and pathogens. As long as requirement for good manufacturing practice are implemented, food irradiation is safe and effective. Possible risks of food irradiation are not basically different from those resulting from misuse of other processing methods, such as canning, freezing and pasteurization. (author)

  14. 18 Evaluation of Microbial Spoilage of Some Aquacultured Fresh ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    bacteria species namely; Staphylococcus aureus, Klebsiella sp., Salmonella sp., Escherichia coli, Pseudomonas sp., and four fungi species namely; Aspergillis niger, Geotrichum sp., Rhizopus sp. and .... Penicillium sp .... FERMENTATION.

  15. Binary combination of epsilon-poly-L-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat.

    Science.gov (United States)

    Hyldgaard, Morten; Meyer, Rikke L; Peng, Min; Hibberd, Ashley A; Fischer, Jana; Sigmundsson, Arnar; Mygind, Tina

    2015-12-23

    Proliferation of microbial population on fresh poultry meat over time elicits spoilage when reaching unacceptable levels, during which process slime production, microorganism colony formation, negative organoleptic impact and meat structure change are observed. Spoilage organisms in raw meat, especially Gram-negative bacteria can be difficult to combat due to their cell wall composition. In this study, the natural antimicrobial agents ε-poly-L-lysine (ε-PL) and isoeugenol were tested individually and in combinations for their activities against a selection of Gram-negative strains in vitro. All combinations resulted in additive interactions between ε-PL and isoeugenol towards the bacteria tested. The killing efficiency of different ratios of the two antimicrobial agents was further evaluated in vitro against Pseudomonas putida. Subsequently, the most efficient ratio was applied to a raw turkey meat model system which was incubated for 96 h at spoilage temperature. Half of the samples were challenged with P. putida, and the bacterial load and microbial community composition was followed over time. CFU counts revealed that the antimicrobial blend was able to lower the amount of viable Pseudomonas spp. by one log compared to untreated samples of challenged turkey meat, while the single compounds had no effect on the population. However, the compounds had no effect on Pseudomonas spp. CFU in unchallenged meat. Next-generation sequencing offered culture-independent insight into population diversity and changes in microbial composition of the meat during spoilage and in response to antimicrobial treatment. Spoilage of unchallenged turkey meat resulted in decreasing species diversity over time, regardless of whether the samples received antimicrobial treatment. The microbiota composition of untreated unchallenged meat progressed from a Pseudomonas spp. to a Pseudomonas spp., Photobacterium spp., and Brochothrix thermosphacta dominated food matrix on the expense of low

  16. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  17. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  18. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  19. Control of Native Spoilage Yeast on Dealcoholized Red Wine by Preservatives Alone and in Binary Mixtures.

    Science.gov (United States)

    Sánchez-Rubio, Marta; Guerrouj, Kamal; Taboada-Rodríguez, Amaury; López-Gómez, Antonio; Marín-Iniesta, Fulgencio

    2017-09-01

    In order to preserve a commercial dealcoholized red wine (DRW), a study with 4 preservatives and binary mixtures of them were performed against 2 native spoilage yeasts: Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for potassium sorbate, sodium benzoate, sodium metabisulfite and dimethyl dicarbonate (DMDC) were evaluated in DRW stored at 25 °C. MICs of potassium sorbate and sodium metabisulfite were 250 and 60 mg/kg, respectively for both target strains. However for sodium benzoate, differences between yeasts were found; R. mucilaginosa was inhibited at 125 mg/kg, while S. cerevisiae at 250 mg/kg. Regarding MFC, differences between strains were only found for sodium metabisulfite obtaining a MFC of 500 mg/kg for R. mucilaginosa and a MFC of 250 mg/kg for S. cerevisiae. Potassium sorbate and sodium benzoate showed the MFC at 1000 mg/kg and DMDC at 200 mg/kg. Regarding the effect of binary mixtures the Fractional Fungicidal Concentration Index (FFC i ) methodology showed that binary mixtures of 100 mg/kg DMDC/200 mg/kg potassium sorbate (FFC i = 0.7) and 50 mg/kg DMDC / 400 mg/kg sodium benzoate (FFC i = 0.65) have both synergistic effect against the 2 target strains. These binary mixtures can control the growth of spoilage yeasts in DRW without metabisulfite addition. The results of this work may be important in preserving the health of DRW consumers by eliminating the use of metabisulfite and reducing the risk of growth of R. mucilagosa, recently recognized as an emerging pathogen. © 2017 Institute of Food Technologists®.

  20. Kinetics of spoilage fermentation in radurized fish and optimization of irradiation process

    International Nuclear Information System (INIS)

    Tukenmez, I.; Ersen, M.S.; Bakioglu, A.T.

    1997-01-01

    Kinetic studies on radiation-inactivation and the postirradiation growth of spoilage microorganisms during chill storage and their product formation inradurized fish were carried out. Anchovy (Engraulis encrasicholus) samples unirradiated, and those irradiated at 1,2 and 3 kGy doses of gamma radiation were stored at +2 o C for 21 days. Microbiological analyses of mesophilic, psycrophilic and total bacterial counts (TBC) and chemical analyses of trimethylamine (TMA) and total volatile bases (TVB) of the samples were done immediately after irradiation and periodically during storage. Radiation induced inactivations of bacteria were expressed with a first-order decreasing kinetics. A spoilage fermentation modeling was used to evaluate the quality control parameters of radurized fish in which the increase in TBC of survivor microorganisms during storage was described by a first-order growth with a lag phase and the production of TMA and TVB was described by a growth associated product formation. Examinations of the dose effects on the kinetic parameters resulted in that the relation between the product formation rate constants and the irradiation dose represented a parabolic function which was satisfactorily used to determine optimum irradiation dose. Optimum irradiation dose was found 1.719+- 0.471 kGy with TVB data resulting in an extended shelf-life of 15-16 days of fish. It is suggested that the kinetic evaluation method developed in this study may be substitute for or used with the analytical estimate in use comprising microbiological chemical and organoleptic controls for quality assessment and dose optimization of radurization processing of fish and other sea foods.(2 tab s. and 24 refs.)

  1. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  2. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials

    Directory of Open Access Journals (Sweden)

    Lorenzo Siroli

    2017-12-01

    Full Text Available The aim of this work was to study the interaction of corrugated and plastic materials with pathogenic and spoiling microorganisms frequently associated to fresh produce. The effect of the two packaging materials on the survival during the storage of microorganisms belonging to the species Escherichia coli, Listeria monocytogenes, Salmonella enteritidis, Saccharomyces cerevisiae, Lactobacillus plantarum, Pseudomonas fluorescens, and Aspergillus flavus was studied through traditional plate counting and scanning electron microscopy (SEM. The results obtained showed that cardboard materials, if correctly stored, reduced the potential of packaging to cross-contaminate food due to a faster viability loss by spoilage and pathogenic microorganisms compared to the plastic ones. In fact, the cell loads of the pathogenic species considered decreased over time independently on the inoculation level and packaging material used. However, the superficial viability losses were significantly faster in cardboard compared to plastic materials. The same behavior was observed for the spoilage microorganisms considered. The SEM microphotographs indicate that the reduction of superficial contamination on cardboard surfaces was due to the entrapping of the microbial cells within the fibers and the pores of this material. In addition, SEM data showed that the entrapped cells were subjected to more or less rapid lyses, depending on the species, due to the absence of water and nutrients, with the exception of molds. The latter spoilers were able to proliferate inside the cardboard fibers only when the absorption of water was not prevented during the storage. In conclusion, the findings of this work showed the reduction of cross-contamination potential of corrugated compared to plastic packaging materials used in fruit and vegetable sector. However, the findings outlined the importance of hygiene and low humidity during cardboard storage to prevent the mold growth on

  3. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  4. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging.

    Science.gov (United States)

    Vasile, Cornelia; Sivertsvik, Morten; Miteluţ, Amalia Carmen; Brebu, Mihai Adrian; Stoleru, Elena; Rosnes, Jan Thomas; Tănase, Elisabeta Elena; Khan, Waqas; Pamfil, Daniela; Cornea, Călina Petruţa; Irimia, Anamaria; Popa, Mona Elena

    2017-01-07

    The antifungal, antibacterial, and antioxidant activity of four commercial essential oils (EOs) (thyme, clove, rosemary, and tea tree) from Romanian production were studied in order to assess them as bioactive compounds for active food packaging applications. The chemical composition of the oils was determined with the Folin-Ciocâlteu method and gas chromatography coupled with mass spectrometry and flame ionization detectors, and it was found that they respect the AFNOR/ISO standard limits. The EOs were tested against three food spoilage fungi- Fusarium graminearum , Penicillium corylophilum, and Aspergillus brasiliensis -and three potential pathogenic food bacteria- Staphylococcus aureus , Escherichia coli, and Listeria monocytogenes -using the disc diffusion method. It was found that the EOs of thyme, clove, and tea tree can be used as antimicrobial agents against the tested fungi and bacteria, thyme having the highest inhibitory effect. Concerning antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) methods, it has been established that the clove oil exhibits the highest activity because of its high phenolic content. Promising results were obtained by their incorporation into chitosan emulsions and films, which show potential for food packaging. Therefore, these essential oils could be suitable alternatives to chemical additives, satisfying the consumer demand for naturally preserved food products ensuring its safety.

  5. Mechanism of Action of Electrospun Chitosan-Based Nanofibers against Meat Spoilage and Pathogenic Bacteria.

    Science.gov (United States)

    Arkoun, Mounia; Daigle, France; Heuzey, Marie-Claude; Ajji, Abdellah

    2017-04-06

    This study investigates the antibacterial mechanism of action of electrospun chitosan-based nanofibers (CNFs), against Escherichia coli , Salmonella enterica serovar Typhimurium, Staphylococcus aureus and Listeria innocua , bacteria frequently involved in food contamination and spoilage. CNFs were prepared by electrospinning of chitosan and poly(ethylene oxide) (PEO) blends. The in vitro antibacterial activity of CNFs was evaluated and the susceptibility/resistance of the selected bacteria toward CNFs was examined. Strain susceptibility was evaluated in terms of bacterial type, cell surface hydrophobicity, and charge density, as well as pathogenicity. The efficiency of CNFs on the preservation and shelf life extension of fresh red meat was also assessed. Our results demonstrate that the antibacterial action of CNFs depends on the protonation of their amino groups, regardless of bacterial type and their mechanism of action was bactericidal rather than bacteriostatic. Results also indicate that bacterial susceptibility was not Gram-dependent but strain-dependent, with non-virulent bacteria showing higher susceptibility at a reduction rate of 99.9%. The susceptibility order was: E. coli > L. innocua > S. aureus > S. Typhimurium. Finally, an extension of one week of the shelf life of fresh meat was successfully achieved. These results are promising and of great utility for the potential use of CNFs as bioactive food packaging materials in the food industry, and more specifically in meat quality preservation.

  6. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    Science.gov (United States)

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  7. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    Science.gov (United States)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  8. Higher marine fungi from mangroves (Manglicolous fungi)

    Digital Repository Service at National Institute of Oceanography (India)

    ChinnaRaj, S.

    of higher marine fungi which included 23 Ascomycetes, 2 Basidiomycetes and 17 Deuteromycetes (Kohlmeyer and Kohlmeyer, 1979). Hyde (1990a) listed 120 species from 29 mangroves from all over the World this includes 87 Ascomycetes, 2 Basidiomycetes and 31...

  9. Spoilage potential of brettanomyces bruxellensis strains isolated from Italian wines.

    Science.gov (United States)

    Guzzon, Raffaele; Larcher, Roberto; Guarcello, Rosa; Francesca, Nicola; Settanni, Luca; Moschetti, Giancarlo

    2018-03-01

    Brettanomyces bruxellensis is an important wine spoilage agent. In this study a population of Brettanomyces strains isolated from Italian wines was thoroughly investigated to evaluate adaptability to wine conditions and spoilage potential. The presumptive isolates of Brettanomyces were identified at species level with 26S rRNA gene sequencing and species-specific PCR, and subsequently subjected to analysis of intra-species variability through the study of intron splice sites (ISS-PCR). Although, some strains were tracked in wines from different regions, extensive genetic biodiversity was observed within the B. bruxellensis population investigated. All strains were evaluated for their growth ability in the presence of ethanol, high sugar content, low pH, different temperatures and sulphur dioxide, using optical density and flow cytometry measurement. The ability of yeasts to produce ethyl phenols in red wines with different chemical compositions was evaluated by means of high performance liquid chromatography with electrochemical detection (HPLC-ECD). The results highlighted wide variability in B. bruxellensis in response to wine limiting factors and in terms of the accumulation of ethyl phenols. As regards this last aspect, the differences found among strains were closely related to chemical composition of wine and strain resistance to environmental stress factors, making a priori evaluation of risk of wine alteration quite difficult. These results suggest that strategies for the control of Brettanomyces should be tailored on the basis of strain distribution and wine characteristics. Copyright © 2017. Published by Elsevier Ltd.

  10. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance

    OpenAIRE

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-01-01

    eLife digest Many microbes?including bacteria and fungi?can affect the food and drink we consume, for better and for worse. Some spoil food, making it less tasty or even harmful to health. However, microbes can also be important ingredients: for example, yeast ferments malted barley sugars to make the alcohol and flavor of beer. Nowadays, many beers are made under carefully controlled conditions, where the only microbes in the beer should be the strain of yeast added to the barley sugars. A m...

  11. Proteomics of industrial fungi: trends and insights for biotechnology

    NARCIS (Netherlands)

    Oliveira, J.M.; Graaff, de L.H.

    2011-01-01

    Filamentous fungi are widely known for their industrial applications, namely, the production of food-processing enzymes and metabolites such as antibiotics and organic acids. In the past decade, the full genome sequencing of filamentous fungi increased the potential to predict encoded proteins

  12. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs.

    Science.gov (United States)

    Balaguer, Mari Pau; Lopez-Carballo, Gracia; Catala, Ramon; Gavara, Rafael; Hernandez-Munoz, Pilar

    2013-09-16

    Gliadin films incorporating 1.5, 3 and 5% cinnamaldehyde (g/100g protein) were tested against food-spoilage fungi Penicillium expansum and Aspergillus niger in vitro, and were employed in an active food packaging system for sliced bread and cheese spread. Gliadin films incorporating cinnamaldehyde were highly effective against fungal growth. P. expansum and A. niger were completely inhibited after storage in vitro for 10 days in the presence of films incorporating 3% cinnamaldehyde. Indeed 1.5% cinnamaldehyde was sufficient in the case of P. expansum. The amount of cinnamaldehyde retained in films after storage for 45 days at 20 °C and 0% RH was also sufficient in most cases to prevent fungal growth in vitro. Active food packaging with gliadin films incorporating 5% cinnamaldehyde increased the shelf-life of both sliced bread and cheese spread. Mold growth was observed on sliced bread after 27 days of storage at 23 °C with active packaging, whereas in the control bread packaged without the active film fungal growth appeared around the fourth day. In the cheese spread, no fungi were observed after 26 days of storage at 4 °C when the product was packaged with the active film. However, growth of fungi was observed in control packaged cheese after 16 days of storage. This work demonstrates a noteworthy potential of these novel bioplastics incorporating natural antimicrobial compounds as innovative solutions to be used in active food packaging to extend shelf-life of food products. © 2013 Elsevier B.V. All rights reserved.

  13. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.

    Science.gov (United States)

    Golden, Max C; Wanless, Brandon J; David, Jairus R D; Lineback, D Scott; Talley, Ryan J; Kottapalli, Bala; Glass, Kathleen A

    2017-08-01

    Clostridium botulinum is a foreseeable biological hazard in prepared refrigerated meals that needs to be addressed in food safety plans. The objective of this study was to evaluate the effect of product composition and storage temperature on the inhibition of botulinum toxin formation in nine experimental meals (meat, vegetable, or carbohydrate based). Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin in samples stored at 25°C for up to 96 h for phase 1, or at 25°C for 12 h and then transferred to 12.5°C for up to 12 and 6 weeks in phases 1 and 2, respectively. For phase 1, none of the treatments (equilibrated pH 5.8) supported toxin production when stored at 25°C for 48 h, but toxin production was observed in all treatments at 72 h. For the remaining experiments with storage at 12.5°C, toxin production was dependent on equilibrated pH, storage time, and growth of indigenous spoilage microorganisms. In phase 1, no gross spoilage and no botulinum toxin was detected for any treatment (pH ≤5.8) stored at 12.5°C for 12 weeks. In phase 2, gross spoilage varied by commodity, with the brussels sprouts meal with pH 6.5 showing the most rapid spoilage within 2 weeks and botulinum toxin detected at 5 and 6 weeks for the control and cultured celery juice treatments, respectively. In contrast, spoilage microbes decreased the pH of a pH 5.9 beef treatment by 1.0 unit, potentially inhibiting C. botulinum through 6 weeks at 12.5°C. None of the other treatments with pH 5.8 or below supported toxin production or spoilage. This study provides validation for preventive controls in refrigerated meals. These include equilibrated product pH and storage temperature and time to inhibit toxin formation by proteolytic C. botulinum, but the impact of indigenous microflora on safety and interpretation of challenge studies is also highlighted.

  14. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    Science.gov (United States)

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  15. Basics of radiation microbiology for food protection

    International Nuclear Information System (INIS)

    Wills, P.A.

    1985-01-01

    The microbiological basics of food poisoning, food spoilage, and ionizing energy treatments are presented. Factors influencing the microbial resistance of ionizing radiation, including the use of physical agents for combination treatments, are briefly reviewed, and parameters involved in dose selection are considered

  16. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in

  17. Facts about food irradiation: Status and trends

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet introduces the concept of irradiating food to reduce post-harvest losses from infestation, contamination and spoilage, to lower the incidence of foodborne diseases and to assist international trade in food products by offering an alternative to fumigation or some other treatments that may not be acceptable to the importing countries

  18. Species-Level Discrimination of Psychrotrophic Pathogenic and Spoilage Gram-Negative Raw Milk Isolates Using a Combined MALDI-TOF MS Proteomics-Bioinformatics-based Approach.

    Science.gov (United States)

    Vithanage, Nuwan R; Bhongir, Jeevana; Jadhav, Snehal R; Ranadheera, Chaminda S; Palombo, Enzo A; Yeager, Thomas R; Datta, Nivedita

    2017-06-02

    Identification of psychrotrophic pathogenic and spoilage Gram-negative bacteria using rapid and reliable techniques is important in commercial milk processing, as these bacteria can produce heat-resistant proteases and act as postprocessing contaminants in pasteurized milk. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is a proven technology for identification of bacteria in food, however, may require optimization for identification of pathogenic and spoilage bacteria in milk and dairy products. The current study evaluated the effects of various culture conditions and sample preparation methods on assigning of raw milk isolates to the species level by MALDI-TOF MS. The results indicated that culture media, incubation conditions (temperature and time), and sample preparation significantly affected the identification rates of bacteria to the species level. Nevertheless, the development of spectral libraries of isolates grown on different media using a web tool for hierarchical clustering of peptide mass spectra (SPECLUST) followed by a ribosomal protein based bioinformatics approach significantly enhanced the assigning of bacteria, with at least one unique candidate biomarker peak identified for each species. Phyloproteomic relationships based on spectral profiles were compared to phylogenetic analysis using 16S rRNA gene sequences and demonstrated similar clustering patterns with significant discriminatory power. Thus, with appropriate optimization, MALDI-TOF MS is a valuable tool for species-level discrimination of pathogenic and milk spoilage bacteria.

  19. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo-metabolome...

  20. Marine fungi: A critique

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.

    in the sea have been ignored to a large extent. However, several instances of terrestrial species of fungi, active in marine environment have been reported. The arguments to support the view that terrestrial species of fungi by virtue of their physiological...

  1. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5-5.5).

    Science.gov (United States)

    Guynot, M E; Ramos, A J; Sanchis, V; Marín, S

    2005-05-25

    A hurdle technology approach has been applied to control common mold species causing spoilage of intermediate moisture bakery products (Eurotium spp., Aspergillus spp., and Penicillium corylophilum), growing on a fermented bakery product analogue (FBPA). The factors studied included a combination of different levels of weak acid preservatives (potassium sorbate, calcium propionate, and sodium benzoate; 0-0.3%), pH (4.5-5.5), and water activity (a(w); 0.80-0.90). Potassium sorbate was found to be the most effective in preventing fungal spoilage of this kind of products at the maximum concentration tested (0.3%) regardless of a(w). The same concentration of calcium propionate and sodium benzoate was effective only at low a(w) levels. On the other hand, potassium sorbate activity was slightly reduced at pH 5.5, the 0.3% being only effective at 0.80 a(w). These findings indicate that potassium sorbate may be a suitable preserving agent to inhibit deterioration of a FBPA of slightly acidic pH (near 4.5) by xerophilic fungi. Further studies have to be done in order to adjust the minimal inhibitory concentration necessary to obtain a product with the required shelf life.

  2. Food irradiation and sterilization

    Science.gov (United States)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  3. Food irradiation and sterilization

    International Nuclear Information System (INIS)

    Josephson, E.S.

    1981-01-01

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25 to 70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning in achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70 to 80 0 C (bacon to 53 0 C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurrence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40 0 C to -20 0 C). Radappertized foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for 'wholesomeness' (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effects of radappertization on the 'wholesomeness' characteristics of these foods. (author)

  4. Incorporation of nisin in natural casing for the control of spoilage microorganisms in vacuum packaged sausage

    Directory of Open Access Journals (Sweden)

    Joyce Regina de Barros

    2010-12-01

    Full Text Available This study aimed to evaluate the effectiveness of natural casing treatment with nisin and phosphoric acid on control of spoilage microorganisms in vacuum packaged sausages. Ovine casings were dipped in the following baths: 1 0.1% food grade phosphoric acid; 2 5.0 mg/L nisin; 3 0.1% phosphoric acid and 5.0 mg/L nisin; and 4 sterile water (control. The sausages were produced in a pilot plant, stuffed into the pretreated natural casings, vacuum packaged and stored at 4 and 10 °C for 56 days. The experiments were performed according to a full factorial design 2³, totalizing 8 treatments that were repeated in 3 blocks. Aerobic plate counts and lactic acid bacteria analysis were conducted at 1, 14, 28, 42 and 56 days of storage. Treatment of casings with phosphoric acid 0.1% alone did not inhibit the growth of lactic acid bacteria and reduced the aerobic plate count by 1 log. The activity of nisin against lactic acid bacteria was enhanced by the addition of phosphoric acid, demonstrating a synergistic effect. Furthermore nisin activity was more evident at lower storage temperature (4 ºC. Therefore treatment of the natural casings with nisin and phosphoric acid, combined with low storage temperature, are obstacles that present a potential for controlling the growth of lactic acid bacteria in vacuum packaged sausage.

  5. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts

    DEFF Research Database (Denmark)

    Rasch, Maria; Andersen, Jens Bo; Nielsen, Kristian Fog

    2005-01-01

    Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although...... the bacterial population reached levels similar to those in the commercial sprouts, 10(8) to 10(9) CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean...... sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic...

  6. Food preservation by irradiation

    International Nuclear Information System (INIS)

    Kooij, J. van

    1981-01-01

    Twenty-five years of development work on the preservation of food by irradiation have shown that this technology has the potential to reduce post-harvest losses and to produce safe foods. The technological feasibility has been established but general acceptance of food irradiation by national regulatory bodies and consumers requires attention. The positive aspects of food preservation by irradiation include: the food keeps its freshness and its physical state, agents which cause spoilage (bacteria, etc.) are eliminated, recontamination does not take place, provided packaging materials are impermeable to bacteria and insects. It inhibits sprouting of root crops, kills insects and parasites, inactivates bacteria, spores and moulds, delays ripening of fruit, improves the technological properties of food. It makes foods biologically safe, allows the production of shelf-stable foods and is excellent for quarantine treatment, and generally improves food hygiene. The dose ranges needed for effective treatment are given

  7. Antibacterial Activity of Zataria multiflora Boiss Essential Oil against Some Fish Spoilage Bacteria

    OpenAIRE

    Mohammad Hashemi; Saber Barkhori-Mehni; Saeed Khanzadi; Mohammad Azizzadeh

    2017-01-01

    Background: The aim of this study was to investigate antimicrobial effect of Zataria multiflora Boiss essential oil (EO) against six fish spoilage bacteria for evaluation of its potential utilization in the preservation of minimally processed fish products. Methods: Firstly, GC-MS analysis of the EO was performed to determine its chemical composition. Then, antibacterial effect of the EO in a range of 0.031 to 4 mg/ml was tested against different fish spoilage bacteria such as Aeromonas h...

  8. Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef.

    Science.gov (United States)

    Säde, Elina; Penttinen, Katri; Björkroth, Johanna; Hultman, Jenni

    2017-04-01

    Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O 2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    Science.gov (United States)

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  10. Spoilage potential of Pseudomonas species isolated from goat milk.

    Science.gov (United States)

    Scatamburlo, T M; Yamazi, A K; Cavicchioli, V Q; Pieri, F A; Nero, L A

    2015-02-01

    Pseudomonas spp. are usually associated with spoilage microflora of dairy products due to their proteolytic potential. This is of particular concern for protein-based products, such as goat milk cheeses and fermented milks. Therefore, the goal of the present study was to characterize the proteolytic activity of Pseudomonas spp. isolated from goat milk. Goat milk samples (n=61) were obtained directly from bulk tanks on dairy goat farms (n=12), and subjected to a modified International Organization for Standardization (ISO) protocol to determine the number and proteolytic activity of Pseudomonas spp. Isolates (n=82) were obtained, identified by PCR, and subjected to pulsed-field gel electrophoresis with XbaI macro-restriction. Then, the isolates were subjected to PCR to detect the alkaline protease gene (apr), and phenotypic tests were performed to check proteolytic activity at 7°C, 25°C, and 35°C. Mean Pseudomonas spp. counts ranged from 2.9 to 4.8 log cfu/mL, and proteolytic Pseudomonas spp. counts ranged from 1.9 to 4.6 log cfu/mL. All isolates were confirmed to be Pseudomonas spp., and 41 were identified as Pseudomonas fluorescens, which clustered into 5 groups sharing approximately 82% similarity. Thirty-six isolates (46.9%) were positive for the apr gene; and 57 (69.5%) isolates presented proteolytic activity at 7°C, 82 (100%) at 25°C, and 64 (78%) at 35°C. The isolates were distributed ubiquitously in the goat farms, and no relationship among isolates was observed when the goat farms, presence of apr, pulsotypes, and proteolytic activity were taken into account. We demonstrated proteolytic activity of Pseudomonas spp. present in goat milk by phenotypic and genotypic tests and indicated their spoilage potential at distinct temperatures. Based on these findings and the ubiquity of Pseudomonas spp. in goat farm environments, proper monitoring and control of Pseudomonas spp. during production are critical. Copyright © 2015 American Dairy Science Association

  11. MALDI-Imaging Mass Spectrometry of Ochratoxin A and Fumonisins in Mold-Infected Food.

    Science.gov (United States)

    Hickert, Sebastian; Cramer, Benedikt; Letzel, Matthias C; Humpf, Hans-Ulrich

    2016-09-06

    Mycotoxins are toxic secondary metabolites produced by various fungi. Their distribution within contaminated material is of high interest to obtain insight into infection mechanisms and the possibility of reducing contamination during food processing. Various vegetable foodstuffs were infected with fungi of the genera Fusarium and Aspergillus. The localization of the produced mycotoxins was studied by matrix assisted laser desorption ionization time of flight imaging mass spectrometry (MALDI-MSI) of cryosections obtained from infected material. The results were confirmed by HPLC-electrospray ionization triple quadrupole mass spectrometry (HPLC/MS/MS). The mycotoxins ochratoxin A (OTA) and fumonisins of the B- and C-series (FB 1 , FB 2 , FB 3 , FB 4 , FC 2/3 , and FC 4 ) as well as partially hydrolyzed fumonisins (pHFB 1 , pHFB 2 , pHFB 3 , pHFC 1 , and pHFC 2/3 ) could successfully be detected by MALDI-IMS in mold-infested foodstuffs. The toxins are distributed differently in the material: OTA is co-localized with visible fungal spoilage while fumonisins could be detected throughout the whole sample. This work shows the applicability of MALDI-Imaging Mass Spectrometry (MALDI-MSI) to mycotoxin analysis. It has been demonstrated that the analyzed mycotoxins are differently distributed within moldy foodstuffs. These findings show the potential of MALDI-MSI for the localization of these hazardous compounds in various plant tissues. This article is protected by copyright. All rights reserved.

  12. [Food additives and healthiness].

    Science.gov (United States)

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects.

  13. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  14. Maarja Unduski 'Fungi'

    Index Scriptorium Estoniae

    1999-01-01

    24. nov.-st Linnagaleriis Tallinnas Maarja Unduski kolmas isiknäitus 'Fungi'. Eksponeeritud hiigelseened ja rida värviliste lehtedega ramatuid, mille kaante valmistamisel on autor esmakordselt kasutanud ka lõuendit ja paberreljeefi.

  15. Manglicolous fungi from India

    Digital Repository Service at National Institute of Oceanography (India)

    Chinnaraj, S.; Untawale, A.G.

    This paper deals with nine Ascomycetous fungi viz. Rhizophila marina Hyde et Jones, Trematosphaeria striatispora Hyde, Lineolata rhizophorae (Kohlm. et. Kohlm.) Kohlm. et. Volkm.-Kohlm., Caryosporella rhizophorae Kohlm., Passeriniella savoryellopsis...

  16. Food irradiation

    International Nuclear Information System (INIS)

    Migdal, W.

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author)

  17. Food irradiation

    International Nuclear Information System (INIS)

    1991-01-01

    Processing of food with low levels of radiation has the potential to contribute to reducing both spoilage of food during storage - a particular problem in developing countries - and the high incidence of food-borne disease currently seen in all countries. Approval has been granted for the treatment of more than 30 products with radiation in over 30 countries but, in general, governments have been slow to authorize the use of this new technique. One reason for this slowness is a lack of understanding of what food irradiation entails. This book aims to increase understanding by providing information on the process of food irradiation in simple, non-technical language. It describes the effects that irradiation has on food, and the plant and equipment that are necessary to carry it out safely. The legislation and control mechanisms required to ensure the safety of food irradiation facilities are also discussed. Education is seen as the key to gaining the confidence of the consumers in the safety of irradiated food, and to promoting understanding of the benefits that irradiation can provide. (orig.) With 4 figs., 1 tab [de

  18. Development of Volatile Oil of Mustard and Vanillin as an Effective Food Preservation System for Military Bread and Baked Goods

    National Research Council Canada - National Science Library

    Muller, Wayne S; Sikes, Anthony; Yeomans, Walter; Anderson, Danielle; Senecal, Andy

    2006-01-01

    ...) vanillin is an effective food preservation system for molds and yeast. Four bread spoilage organisms were evaluated in the study Penicillium notatum, Rhizopus stolonifer, Aspergillus niger, and Saccharomycopsis fibuligera...

  19. Inactivation of the Radiation-Resistant Spoilage Bacterium Micrococcus radiodurans

    Science.gov (United States)

    Duggan, D. E.; Anderson, A. W.; Elliker, P. R.

    1963-01-01

    A simplified technique permitting the pipetting of raw puréed meats for quantitative bacteriological study is described for use in determining survival of these non-sporing bacteria, which are exceptionally resistant to radiation. Survival curves, using gamma radiation as the sterilizing agent, were determined in raw beef with four strains of Micrococcus radiodurans. Survival curves of the R1 strain in other meat substrates showed that survival was significantly greater in raw beef and raw chicken than in raw fish or in cooked beef. Resistance was lowest in the buffer. Cells grown in broth (an artificial growth medium) and resuspended in beef did not differ in resistance from cells that had been grown and irradiated in beef. Survival rate was statistically independent of the initial cell concentration, even though there appeared to be a correlation between lower death rate and lower initial cell concentrations. The initial viable count of this culture of the domesticated R1 strain in beef was reduced by a factor of about 10-5 by 3.0 megarad, and 4.0 megarad reduced the initial count by a factor of more than 10-9. Data suggest that M. radiodurans R1 is more resistant to radiation than spore-forming spoilage bacteria for which inactivation rates have been published. PMID:14063780

  20. Prediction of Mold Spoilage for Soy/Polyethylene Composite Fibers

    Directory of Open Access Journals (Sweden)

    Chinmay Naphade

    2015-01-01

    Full Text Available Mold spoilage was determined over 109 days on soy/PE fibers held under controlled temperatures (T ranging from 10°C to 40°C and water activities (aw from 0.11 to 0.98. Water activities were created in sealed containers using saturated salt solutions and placed in temperature-controlled incubators. Soy/PE fibers that were held at 0.823 aw or higher exhibited mold growth at all temperatures. As postulated, increased water activity (greater than 0.89 and temperature (higher than 25°C accelerated mold growth on soy/PE fibers. A slower mold growth was observed on soy/PE fibers that were held at 0.87 aw and 10°C. A Weibull model was employed to fit the observed logarithmic values of T, aw, and an interaction term log⁡T×log⁡aw and was chosen as the final model as it gave the best fit to the raw mold growth data. These growth models predict the expected mold-free storage period of soy/PE fibers when exposed to various environmental temperatures and humidities.

  1. Recall costs balanced against spoilage control in Dutch custard.

    Science.gov (United States)

    Velthuis, A G J; Reij, M W; Baritakis, K; Dang, M; van Wagenberg, C P A

    2010-06-01

    The relation between the moment at which a recall of Dutch custard is initiated and the direct costs of this recall was investigated. A simulation model of the custard supply chain was developed to compare scenarios with and without a quarantine of 48 h at the storage of the production plant. The model consists of 3 parts: 1) the distribution of a 24,000-L batch of custard over the supply chain over time is simulated; 2) the time to detect spoilage bacteria with a recontamination test procedure is simulated; and 3) the direct recall costs of custard over the different parts of the supply chain are calculated. Direct recall costs increase from about 25,000 euros/batch to 36,171 euros/batch from 57 to 135 h in the situation without quarantine and from 25,000 euros/batch to 36,648 euros/batch from 123 h to 163 h for the situation with quarantine. Then costs decrease because more and more custard is at the consumer level and only 0.13% of the consumers will ask for a refund. With low true contamination probabilities quarantine is not profitable, but at later detection moments with high probabilities it is. We conclude that a simulation model is a helpful tool to evaluate the efficiency of risk management strategies like end product testing and a quarantine situation. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Ancient Item Spoilage Ritual Used in Nomadic Burial Rite

    Directory of Open Access Journals (Sweden)

    Beisenov Arman Z.

    2017-07-01

    Full Text Available The article considers the findings of items in ancient burials which were intentionally spoiled prior to deposition in graves. This tradition was widely spread both in terms of chronology and geography, and therefore cannot be attributed to any individual cultures or regions. The authors present new information on the ritual obtained during an investigation of Borsyk burial mound of the Middle Sarmatian period located in West Kazakhstan. The central grave of barrow 6 contained a heavily damaged bronze cauldron. The grave was looted in antiquity. Individual scattered bones of a human skeleton and minor gold foil adornments from the ceremonial dress of a nobleman were discovered in the grave. The authors suggest that the cauldron was intentionally deformed by the participants of an ancient mortuary and memorial ritual. According to the principal hypothesis concerning the essence of this ritual, spoilage of the items was related to the idea of assign the items with “different” and “transcendent” properties, which resulted from the necessity of burying the owner. Cauldrons played an important role in the life of steppe leaders. The authors assume a sacral nature of the use of cauldrons in the culture of steppe peoples associated with feasts, battles, and sacred hunting. Perhaps, there was a tradition of burying cauldrons together with their owners after spoiling the items in view of the concept of the other world and the role of a heroic leader therein.

  3. Fate and control of pathogenic and spoilage micro-organisms in orange blossom (Citrus aurantium) and rose flower (Rosa centifolia) hydrosols.

    Science.gov (United States)

    Labadie, C; Cerutti, C; Carlin, F

    2016-12-01

    Hydrosols are hydrodistillation products used in food and cosmetic industries, perfumery, pharmacy and aromatherapy. The ability of preservatives to control previously reported bacterial proliferation and spoilage was evaluated. All tested preservatives were authorized for food and cosmetic application. Major pathogens of concern for foods and cosmetics were poorly able to grow in rose and orange blossom hydrosols when inoculated and incubated at 30°C. Commercial antimicrobials, such as isothiazolinone, chlorphenesin and paraben solutions, benzyl alcohol and sodium benzoate at pH = 5·0, controlled the growth of Pseudomonas and Burkholderia sp. strains representative of the natural microbiota of both hydrosols for >90 days at 30°C, only at concentrations close to the authorized limits. Concentrations of some of the tested preservatives that controlled growth at 5°C were lower than at 30°C. Pathogenic micro-organisms likely represent a low risk in rose flower and orange blossom hydrosol. However, the oligotrophic character of hydrosols and the antimicrobial properties of their essential oils do not prevent microbiological spoilage by the naturally present microbiota. In the absence of aseptic conditions and microbial inactivation process, only preservatives can stabilize hydrosols for a several-month storage. Several effective preservatives have been identified. © 2016 The Society for Applied Microbiology.

  4. Evaluation of maize cultivars for their susceptibility towards mycotoxigenic fungi under storage conditions

    CSIR Research Space (South Africa)

    Dawlal, P

    2012-01-01

    Full Text Available Maize cultivation comprises the largest area of farmland in South Africa and it is the largest food crop consumed by the majority of its population. However, this food crop is frequently associated with mycotoxin contamination. Mycotoxigenic fungi...

  5. Application of low dose radiation for preservation of sea foods

    International Nuclear Information System (INIS)

    Venugopal, V.; Nair, P.M.

    1994-01-01

    Treatment of food with low doses of gamma radiation has been recognized to have two main advantages. These consist of: (1) improvement of food safety by elimination of pathogens and (2) reduction of microbial spoilage and extension of shelf life of perishable items by reducing the number of viable spoilage organisms. Studies during the last few decades have conclusively proved the beneficial effects of radiation with respect to fishery products. The three potential areas of application to fish products include: (i) radurization for shelf life extension (ii) radicidation to eliminate food borne pathogens in the products and (iii) radiation treatment to dried products to control insects

  6. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  7. Purification of leucocin A for use on wieners to inhibit Listeria monocytogenes in the presence of spoilage organisms.

    Science.gov (United States)

    Balay, Danielle R; Dangeti, Ramana V; Kaur, Kamaljit; McMullen, Lynn M

    2017-08-16

    The aims of this study were to improve the method for purification of leucocin A to increase yield of peptide and to evaluate the efficacy of leucocin A and an analogue of leucocin A (leucocin N17L) to inhibit the growth of Listeria monocytogenes on wieners in the presence of spoilage organisms. Leucocin A was produced by Leuconostoc gelidum UAL187 and purified with a five-fold increase in yield; leucocin N17L was synthesized replacing asparagine at residue 17 with leucine. Five strains of L. monocytogenes associated with foodborne illness were used to assess bacteriocin efficacy in vitro and in situ. Minimum inhibitory concentrations could not be determined in broth; however, on agar the minimum inhibitory concentrations ranged from 11.7-62.5μM and 62.5->500μM for leucocin A and leucocin N17L, respectively. Leucocin N17L was less effective than the native bacteriocin at controlling the growth of L. monocytogenes. The inactivation profiles of L. monocytogenes in broth in the presence of leucocin A suggested each isolate had different levels of resistance to the bacteriocin as determined by the initial bactericidal effect. The formation of spontaneously resistance subpopulations were also observed for each strain of L. monocytogenes. In situ, wieners were inoculated with the spoilage organisms, Carnobacterium divergens and Brochothrix thermosphacta, followed by surface application of purified leucocin A, and inoculated with a cocktail of L. monocytogenes. Wieners were vacuum packaged and stored at 7°C for 16d. Leucocin A reduced the counts L. monocytogenes on wieners during storage, regardless of the presence of C. divergens. B. thermosphacta was unaffected by the presence of leucocin A on wieners over the duration of storage. This study suggests that leucocin A may be beneficial to industry as a surface application on wieners to help reduce L. monocytogenes counts due to post-processing contamination even in the presence of spoilage organisms. However, further

  8. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  9. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Thymus vulgaris (red thyme and Caryophyllus aromaticus (clove essential oils to control spoilage microorganisms in pork under modified atmosphere

    Directory of Open Access Journals (Sweden)

    Serena D'Amato

    2016-08-01

    Full Text Available In recent years, it has been confirmed that essential oils (EOs exert antimicrobial activity as they are able to inhibit cell growth and inactivate microbial cells. The application of biopreservation strategies by means of EOs opens up interesting perspectives in the food industry, including meat production. The paper aims to evaluate the effects of Thymus vulgaris (red thyme and Caryophyllus aromaticus (cloves EOs on the development of the spoilage population of fresh pork packaged under modified atmosphere (MAP. In particular, the research was focused on Brochothrix thermosphacta, a specific spoilage microorganism of fresh meat packed in anaerobic conditions or under MAP. Amongst seven EOs, those that showed the highest antimicrobial activity on 5 B. thermosphacta strains in vitro were: cloves [minimum inhibitory concentration (MIC 0.6-2.5 mg/mL], savory (MIC 2.5-5.0 mg/mL, and red thyme (MIC 2.5 to 20 mg/mL. Red thyme and cloves EOs were selected for meat treatment, by increasing the dose at 20 and 40 mg/mL respectively, to take into account the matrix effect that can reduce EO availability. In spite of the minor efficacy observed in vitro, 40 mg/mL red thyme EO strongly limited the growth of B. thermosphacta in pork samples up to day 6 of storage [below 3.0 Log colony forming unit (CFU/g, starting from 2.0 Log CFU/g at time 0], and exerted an antimicrobial effect also on the aerobic mesophilic count. Good results were obtained also with 20 mg/mL red thyme EO. The control of B. thermosphacta growth through EOs encourages research on alternative methods for extending the shelf life of fresh meat under MAP.

  11. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp.

    Science.gov (United States)

    Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo

    2015-12-23

    The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.

  12. Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2011-04-01

    Full Text Available Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were 2.6~2.7×106, 4.6×105, 1.2×106 CFU/g of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at 28℃, the microbial diversity had been changed. The total aerobic bacterial numbers increased to 1.1~4.6×108, 4.9×107, and 7.6×108 CFU/g of fresh weight for lettuce, perilla leaf, and chicory that is about 102 times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48% was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.

  13. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Li, Bing; Peters, Brian M; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2017-09-01

    The present study aimed at investigating the capability of L. plantarum strain BM-LP14723 to enter into and recover from the viable but nonculturable (VBNC) state and to cause beer spoilage. VBNC state was induced by incubating in beer with subculturing or low temperature treatment. Culturable, total, and viable cells numbers were assessed by MRS agar plate counting, acridine orange direct counting, and Live/Dead BacLight bacterial viability kit, respectively. Organic acids concentrations were measured by reversed-phase high performance liquid chromatography. VBNC L. plantarum cells were detected after 189 ± 1.9 days low temperature treatment or 29 ± 0.7 subcultures in beer. The VBNC L. plantarum retained spoilage capability. Addition of catalase is an effective method for the recovery of the VBNC L. plantarum cells. L. plantarum strain BM-LP14723 is capable of entering into and recovery from the VBNC state and maintained spoilage capability. The current study presented that beer-spoilage L. plantarum can hide both in breweries and during transporting and marketing process and thus lead to beer-spoilage incidents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres.

    Science.gov (United States)

    Kuuliala, L; Al Hage, Y; Ioannidis, A-G; Sader, M; Kerckhof, F-M; Vanderroost, M; Boon, N; De Baets, B; De Meulenaer, B; Ragaert, P; Devlieghere, F

    2018-04-01

    During fish spoilage, microbial metabolism leads to the production of volatile organic compounds (VOCs), characteristic off-odors and eventual consumer rejection. The aim of the present study was to contribute to the development of intelligent packaging technologies by identifying and quantifying VOCs that indicate spoilage of raw Atlantic cod (Gadus morhua) under atmospheres (%v/v CO 2 /O 2 /N 2 ) 60/40/0, 60/5/35 and air. Spoilage was examined by microbiological, chemical and sensory analyses over storage time at 4 or 8 °C. Selected-ion flow-tube mass spectrometry (SIFT-MS) was used for quantifying selected VOCs and amplicon sequencing of the 16S rRNA gene was used for the characterization of the cod microbiota. OTUs classified within the Photobacterium genus increased in relative abundance over time under all storage conditions, suggesting that Photobacterium contributed to spoilage and VOC production. The onset of exponential VOC concentration increase and sensory rejection occurred at high total plate counts (7-7.5 log). Monitoring of early spoilage thus calls for sensitivity for low VOC concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Cornelia Vasile

    2017-01-01

    Full Text Available The antifungal, antibacterial, and antioxidant activity of four commercial essential oils (EOs (thyme, clove, rosemary, and tea tree from Romanian production were studied in order to assess them as bioactive compounds for active food packaging applications. The chemical composition of the oils was determined with the Folin–Ciocâlteu method and gas chromatography coupled with mass spectrometry and flame ionization detectors, and it was found that they respect the AFNOR/ISO standard limits. The EOs were tested against three food spoilage fungi—Fusarium graminearum, Penicillium corylophilum, and Aspergillus brasiliensis—and three potential pathogenic food bacteria—Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes—using the disc diffusion method. It was found that the EOs of thyme, clove, and tea tree can be used as antimicrobial agents against the tested fungi and bacteria, thyme having the highest inhibitory effect. Concerning antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2’-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS methods, it has been established that the clove oil exhibits the highest activity because of its high phenolic content. Promising results were obtained by their incorporation into chitosan emulsions and films, which show potential for food packaging. Therefore, these essential oils could be suitable alternatives to chemical additives, satisfying the consumer demand for naturally preserved food products ensuring its safety.

  16. Detection of food treated with ionizing radiation

    International Nuclear Information System (INIS)

    Delincee, H.

    1998-01-01

    Treatment of food with ionizing energy-'food irradiation'- is finally becoming reality in many countries. The benefits include an improvement in food hygiene, spoilage reduction and extension of shelf-life. Although properly irradiated food is safe and wholesome, consumers should be able to make their own free choice between irradiated and non-irradiated food. For this purpose labelling is indispensable. In order to check compliance with existing regulations, detection of radiation treatment by analysing the food itself is highly desirable. Significant progress has been made in recent years in developing analytical detection methods utilizing changes in food originating from the radiation treatment

  17. Mutualistic fungi control crop diversity in fungus-growing ants

    DEFF Research Database (Denmark)

    Poulsen, Michael; Boomsma, Jacobus J

    2005-01-01

    Leaf-cutting ants rear clonal fungi for food and transmit the fungi from mother to daughter colonies so that symbiont mixing and conflict, which result from competition between genetically different clones, are avoided. Here we show that despite millions of years of predominantly vertical...... transmission, the domesticated fungi actively reject mycelial fragments from neighboring colonies, and that the strength of these reactions are in proportion to the overall genetic difference between these symbionts. Fungal incompatibility compounds remain intact during ant digestion, so that fecal droplets...

  18. Bioinformatic Analysis of Genomic and Transcriptomic Variation in Fungi

    OpenAIRE

    Gehrmann, T.

    2018-01-01

    Fungi are microorganisms whose astounding variety can be found in every conceivable ecosystem on the planet. Fungi are nutrient recyclers, playing an irreplaceable role in the carbon cycle. They grow on land and in the sea, on plants and animals and in the soil. They feed us as mushrooms, and drive our economy as bioreactors. They leaven our bread and brew our beer, nourish our crops and spoil our food. They even directly play a role in human health. Fungi are, however, far more complex organ...

  19. Controlling Vibrio vulnificus and spoilage bacteria in fresh shucked oysters using natural antimicrobials.

    Science.gov (United States)

    Mahmoud, B S M

    2014-01-01

    This study evaluated the efficacy of grape seed extract (GE), citric acid (CA) and lactic acid (LA) on the inactivation of Vibrio vulnificus and inherent microflora in fresh shucked oysters. The minimum inhibitory concentration (MIC) of GE, CA or LA against V. vulnificus was determined. Furthermore, the shucked oysters were artificially inoculated with V. vulnificus. The inoculated shucked oysters (25 g) were then dipped in 250 ml GE, CA or LA solutions for 10 min. The population of V. vulnificus in shucked oysters was determined. The effects of the treatments with GE, CA or LA solutions on the inherent microbiota in fresh shucked oysters during storage at 5°C for 20 days were also studied. The MICs of GE, CA or LA against V. vulnificus were 10.0, 5.0 or 1.0 mg ml(-1), respectively. The concentrations of 500, 300 or 150 mg ml(-1) GE, CA or LA solutions were needed to reduce the population of V. vulnificus to below the detection level (1.0 log g(-1)). Treatment with 500, 300, 150 mg ml(-1) GE, CA or LA significantly reduced the initial inherent microbiota in fresh shucked oysters, and inherent levels were significantly (P Oysters filter large volume of seawater during their feeding activities that concentrate bacteria such as Vibrio vulnificus in their body. The presence of V. vulnificus in oysters has a serious impact on public health and international trade. There is increasing concern over the use of chemical preservatives. Furthermore, the food industry is looking for new natural preservation methods. This study indicated that lactic acid and citric acid wash solutions could offer an inexpensive, natural and strong approach to control V. vulnificus and spoilage bacteria in fresh shucked for the oyster industry. © 2013 The Society for Applied Microbiology.

  20. Heteroresistance and fungi.

    Science.gov (United States)

    Ferreira, Gabriella F; Santos, Daniel A

    2017-09-01

    The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal. © 2017 Blackwell Verlag GmbH.

  1. Occurrence and growth of yeasts in processed meat products - implications for potential spoilage

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Jacobsen, Tomas; Jespersen, Lene

    2008-01-01

    of the processed meat products. The yeast microflora was complex with 4-12 different species isolated from the different production sites. In general, Candida zeylanoides, Debaryomyces hansenii and the newly described Candida alimentaria were found to be the dominant yeast species. In addition, three putatively......Spoilage of meat products is in general attributed to bacteria but new processing and storage techniques inhibiting growth of bacteria may provide opportunities for yeasts to dominate the microflora and cause spoilage of the product. With the aim of obtaining a deeper understanding of the potential...... role of yeast in spoilage of five different processed meat products (bacon, ham, salami and two different liver patés), yeasts were isolated, enumerated and identified during processing, in the final product and in the final product at the end of shelf life. Yeasts were isolated along the bacon...

  2. Fungi and mycotoxins in cocoa: from farm to chocolate.

    Science.gov (United States)

    Copetti, Marina V; Iamanaka, Beatriz T; Pitt, John I; Taniwaki, Marta H

    2014-05-16

    Cocoa is an important crop, as it is the raw material from which chocolate is manufactured. It is grown mainly in West Africa although significant quantities also come from Asia and Central and South America. Primary processing is carried out on the farm, and the flavour of chocolate starts to develop at that time. Freshly harvested pods are opened, the beans, piled in heaps or wooden boxes, are fermented naturally by yeasts and bacteria, then dried in the sun on wooden platforms or sometimes on cement or on the ground, where a gradual reduction in moisture content inhibits microbial growth. Beans are then bagged and marketed. In processing plants, the dried fermented beans are roasted, shelled and ground, then two distinct processes are used, to produce powdered cocoa or chocolate. Filamentous fungi may contaminate many stages in cocoa processing, and poor practices may have a strong influence on the quality of the beans. Apart from causing spoilage, filamentous fungi may also produce aflatoxins and ochratoxin A. This review deals with the growth of fungal species and formation of mycotoxins during the various steps in cocoa processing, as well as reduction of these contaminants by good processing practices. Methodologies for fungal and mycotoxin detection and quantification are discussed while current data about dietary exposure and regulation are also presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available Estimation of fungal contamination of barley grain is important as certain fungi can proliferate during the malting process. The following factors which may affect the enumeration of fungi were evaluated: dilution versus direct plating, pre...

  4. Intake assessment of the food additives nitrite (E 249 and E 250) and nitrate (E 251 and E 252)

    NARCIS (Netherlands)

    Sprong RC; Niekerk EM; Beukers MH; VVH; V&Z

    2017-01-01

    Nitrate and nitrite are authorised as preservatives in certain food products, such as salami, ham (nitrite) and cheese (nitrate). They prevent food spoilage and protect the consumer against food-borne pathogens. Next to that, nitrate and nitrite play a role in food colour retention and contribute to

  5. Food irradiation now

    International Nuclear Information System (INIS)

    1982-01-01

    From the start the Netherlands has made an important contribution to the irradiation of food through microbiological and toxicological research as well as through the setting-up of a pilot plant by the government and through the practical application of 'Gammaster' on a commercial basis. The proceedings of this tenth anniversary symposium of 'Gammaster' present all aspects of food irradiation and will undoubtedly help to remove the many misunderstandings. They offer information and indicate to the potential user a method that can make an important contribution to the prevention of decay and spoilage of foodstuffs and to the exclusion of food-borne infections and food poisoning in man. The book includes 8 contributions and 4 panel discussions in the field of microbiology; technology; legal aspects; and consumer aspects of food irradiation. As an appendix, the report 'Wholesomeness of irradiated food' of a joint FAO/IAEA/WHO Expert Committee has been added. (orig./G.J.P.)

  6. Novel natural food antimicrobials.

    Science.gov (United States)

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  7. Genera of phytopathogenic fungi

    NARCIS (Netherlands)

    Marin-Felix, Y.; Hernández-Restrepo, Margarita; Wingfield, M.J.; Akulov, A.; Carnegie, A.J.; Cheewangkoon, R.; Gramaje, D.; Groenewald, J.Z.; Guarnaccia, V.; Halleen, F.; Lombard, L.; Luangsa-ard, J.; Marincowitz, S.; Moslemi, A.; Mostert, L.; Quaedvlieg, W.; Schumacher, R.K.; Spies, C.F.J.; Thangavel, R.; Taylor, P.W.J.; Wilson, A.M.; Wingfield, B.D.; Wood, A.R.; Crous, P.W.

    2019-01-01

    This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA

  8. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  9. Fun with Fungi.

    Science.gov (United States)

    McLure, John W.

    1993-01-01

    Describes hands-on activities with fungi that may provoke the curiosity of early adolescents and increase their enjoyment and understanding of a vast, important portion of botany. Some of the activities may be conducted during the winter months when most fieldwork ceases. (PR)

  10. Fungi that Infect Humans.

    Science.gov (United States)

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  11. Philatelic Mycology: Families of Fungi

    NARCIS (Netherlands)

    Marasas, W.F.O.; Marasas, H.M.; Wingfield, M.J.; Crous, P.W.

    2014-01-01

    Philately, the study of postage stamps, and mycology, the study of fungi, are seldom connected by those that practice these very different activities. When associated, philatelic mycology would be considered as the study of fungi on stamps. The Fungi touch every aspect of our daily lives, most

  12. Recycled palm oil spoilage: Correlation between physicochemical properties and oleophilicity

    Science.gov (United States)

    Kadir, Ili Afiqa Ab; Zubairi, Saiful Irwan; Jurid, Lailatul Syema

    2016-11-01

    Palm oil is widely used for domestic and commercial frying due to its techno-economic advantages as compared to other vegetable oils. However, if the oil is used beyond its recommended usage cycle, it might lead to oil spoilage. Therefore this study focuses on the comprehensive analysis of chemical and physical properties of recycled palm oil. Recycled palm oil was prepared by frying potato strips up to 4 batches; 5 cycles for each batch) was carried out with potato (g)-to-oil (ml) ratio of 3/20 prior to physico-chemical analysis (moisture content, color measurement, viscosity, density and iodine value. From 5 tests used to indicate physico-chemical properties of recycled palm oil, only color measurement, viscosity and IV shows results accordingly to theories. Whereas moisture content and density were not comply to theories. With increasing frying times, recycled palm oil color has been darker due to chemical reaction that occurs during frying. The trend line illustrates that with increasing frying times, recycled palm oil lightness decreases. It also means that its color has been darker. Meanwhile, b* rate increase indicating that recycled palm oil show tendency towards green color. Whereas, a* rate decreased, showing low tendency towards red color. Viscosity and moisture content increase with frying cycle. This situation occurred might be due to formation of hydrolysis products which are volatile while frying process. But the remaining non-volatile compounds among the hydrolysis products might also accumulate in palm oil and thus affect the total oil/fat chemical changes. Meanwhile the density of palm oil was quite constant at 0.15 g/cm3 except for cycle 2 with 0.17 g/cm3. The result obtained from this experiment were comply with previous study that stated frying batch number is a significant variable (a = 0.05) affecting the density of oil only after 20 frying batch. The contact angle of recycled palm oil on PHBV thin film was more than 90 °. Hence it shows

  13. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    Science.gov (United States)

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  14. Methods to preserve potentially toxigenic fungi

    Directory of Open Access Journals (Sweden)

    Lucas Costa Guimarães

    2014-01-01

    Full Text Available Microorganisms are a source of many high-value compounds which are useful to every living being, such as humans, plants and animals. Since the process of isolating and improving a microorganism can be lengthy and expensive, preserving the obtained characteristic is of paramount importance, so the process does not need to be repeated. Fungi are eukaryotic, achlorophyllous, heterotrophic organisms, usually filamentous, absorb their food, can be either macro or microscopic, propagate themselves by means of spores and store glycogen as a source of storage. Fungi, while infesting food, may produce toxic substances such as mycotoxins. The great genetic diversity of the Kingdom Fungi renders the preservation of fungal cultures for many years relevant. Several international reference mycological culture collections are maintained in many countries. The methodologies that are most fit for preserving microorganisms for extended periods are based on lowering the metabolism until it reaches a stage of artificial dormancy . The goal of this study was to analyze three methods for potentially toxigenic fungal conservation (Castellani's, continuous subculture and lyophilization and to identify the best among them.

  15. Population performance of collembolans feeding on soil fungi from different ecological niches

    DEFF Research Database (Denmark)

    Larsen, J.; Johansen, A.; Larsen, S.E.

    2008-01-01

    The potential reproductive value of arbuscular mycorrhizal fungi (Gloinus intraradices and Glomus invermaium), root pathogenic fungi (Rhizoctonia solani and Fusarium culmorum) and saprotrophic fungi (Penicillium hordei and Trichoderma harzianum) were examined for the collembolans Folsomia candida....... Different quality indicators such as the C:N ratio of the fungal food sources as well as other biological parameters are discussed in relation to their reproductive value and Collembola preferential feeding. (c) 2007 Elsevier Ltd. All rights reserved....

  16. Photocatalytic disinfection of spoilage bacteria Pseudomonas fluorescens and Macrococcus caseolyticus by nano-TiO2

    Science.gov (United States)

    Photocatalytic disinfection of spoilage bacteria gram-negative (G-) P. fluorescens and gram-positive (G+) M. caseolyticus by nano-TiO2 under different experimental conditions and the disinfection mechanism were investigated. The experimental conditions included the initial bacterial populations, nan...

  17. The occurrence of spoilage yeasts in cream-filled bakery products.

    Science.gov (United States)

    Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Cardinali, Federica; Pasquini, Marina; Aquilanti, Lucia; Clementi, Francesca

    2017-04-01

    Filling creams can provide an adequate substrate for spoilage yeasts because some yeasts can tolerate the high osmotic stress in these products. To discover the source of spoilage of a cream-filled baked product, end products, raw materials, indoor air and work surfaces were subjected to microbiological and molecular analyses. The efficacy of disinfectants against spoilage yeasts was also assessed. The analyses on end products revealed the presence of the closest relatives to Zygosaccharomyces bailii with counts ranging from 1.40 to 4.72 log cfu g -1 . No spoilage yeasts were found in the indoor air and work surfaces. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis, carried out directly on filling creams collected from unopened cans, showed the presence of bands ascribed to the closest relatives to Z. bailii sensu lato, although with counts products, reliable and sensitive methods must be used. Moreover, hygiene and the application of good manufacturing practices represent the most efficient way for the prevention and minimization of cross-contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Spoilage of lightly salted lumpfish (Cyclopterus lumpus) roe at 5°C

    DEFF Research Database (Denmark)

    Basby, Merethe; Jeppesen, V.F.; Huss, Hans Henrik

    1998-01-01

    sulphury, sour odors. The microflora consisted of lactic acid bacteria, Enterobacteriaceae and Vibrio spp. Concentration of lactic acid, acetic acid, trimethylamine and total volatile bases were unrelated to spoilage odors. Volatile sulfur compounds (H2S, probably CS2, CH3SH and CH3CH2SH or CH3SCH3...

  19. Effect of Some Plant Extracts on the Microbial Spoilage of Cajanus ...

    African Journals Online (AJOL)

    The effect of ethanolic extracts of seven plant sources on the microbial spoilage of Cajanus cajan extract was investigated. The results showed that the extracts obtained from Aloe vera, bitter leaf, Gultiferae (garcinia or bitter kola), Ocimum gratissimum (scent leaf) and Zingiber officialae (ginger) were effective against ...

  20. Irradiation of foods

    International Nuclear Information System (INIS)

    Pai, J.S.

    2001-01-01

    Although irradiation is being investigated for the last more than 50 years for the application in preservation of food, it has not yet been exploited commercially in some countries like India. No other food processing technique has undergone such close scrutiny. There are many advantages to this process, which few others can claim. The temperature remains ambient during the process and the form of the food does not change resulting in very few changes in the sensory and nutritive quality of the food product. At the same time the microorganisms are effectively destroyed. Most of the spoilage and pathogenic organisms are sensitive to irradiation. Fortunately, most governments are supportive for the process and enacting laws permitting the process for foods

  1. Fractals and foods.

    Science.gov (United States)

    Peleg, M

    1993-01-01

    Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.

  2. Societal benefits of food irradiation

    International Nuclear Information System (INIS)

    Prakash, Anuradha

    2013-01-01

    Food irradiation has a direct impact on society by reducing the occurrence of food-borne illness, decreasing food spoilage and waste, and facilitating global trade. Food irradiation is approved in 40 countries around the world to decontaminate food of disease and spoilage causing microorganisms, sterilize insect pests, and inhibit sprouting. A recent estimate suggests that 500,000 metric of food is currently irradiated worldwide, primarily to decontaminate spices. Since its first use in the 1960s the use of irradiation for food has grown slowly, but it remains the major technology of choice for certain applications. The largest growth sector in recent years has been phytosanitary irradiation of fruit to disinfest fruit intended for international shipment. For many countries which have established strict quarantine standards, irradiation offers as an effective alternative to chemical fumigants some of which are being phased out due to their effects on the ozone layer. Insects can be sterilized at very low dose levels, thus quality of fruit can be maintained. Irradiation is also highly effective in destroying microbial pathogens such as Salmonella spp., E. coli, and Listeria, hence its application for treatment of spices, herbs, dried vegetables, frozen seafood, poultry, and meat and its contribution to reducing foodborne illnesses. Unfortunately the use of irradiation for improving food safety has been under-exploited. This presentation will provide details on the use, benefits, opportunities, and challenges of food irradiation. (author)

  3. Nuclear movement in fungi.

    Science.gov (United States)

    Xiang, Xin

    2017-12-11

    Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.

  4. Psychological aspects of food safety risk perception

    DEFF Research Database (Denmark)

    Scholderer, Joachim

    signals, motivating approach. Novelty, and the detection of certain olfactory and visual cues associated with spoilage or contamination, act as orientation or threat signals and motivate closer inspection or avoidance. Anticipatory affects are an inherent part of these behaviour regulation systems...... problematic food safety behaviours are likely to occur. The presentation will begin with an overview of the relevant psychological mechanisms that regulate approach and avoidance behaviour with respect to potentially hazardous foods. Learned representations of familiarity and reward value act as safety...

  5. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens Composição química e atividade antimicrobiana de óleos essenciais de plantas selecionadas cultivadas no Sul do Brasil contra micro-organismos patogênicos e deteriorantes de alimentos

    Directory of Open Access Journals (Sweden)

    Sheila Mello da Silveira

    2012-07-01

    Full Text Available The chemical composition of 10 selected plant essential oils obtained by steam distillation was determined by GC and GC/MS. The antimicrobial activity of the essential oils was screened against 12 important food-related bacterial strains by agar disc-diffusion assay. MIC and MBC were determined for the essential oils that presented the highest activity in the agar disc-diffusion test. The most active essential oils against the tested bacteria were, in descending order, lemongrass (Cymbopogon flexuosus, basil (Ocimum basilicum, oregano (Origanum vulgare, cinnamon leaf (Cinnamomum zeylanicum, and laurel (Laurus nobilis. Except for S. Typhimurium, the tested bateria were inhibited at MIC values lower or equal to 0.62mg mL-1 by lemongrass (Cymbopogon flexuosus essential oil. Yersinia enterocolitica presented the highest sensitivity to all essential oils tested (CMI≤0.62mg mL-1. There was a significant correlation (PA composição química de 10 óleos essenciais obtidos por destilação a vapor foi determinada por CG/DIC e CG/EM. A atividade antimicrobiana dos óleos essenciais foi detectada através do método de difusão em ágar frente a 12 espécies de bactérias de importância em alimentos. As CMI e CMB foram determinadas para os óleos essenciais que na difusão em ágar evidenciaram maior atividade. Os óleos essenciais que apresentaram maior atividade contra as bactérias testadas foram, em ordem decrescente, os de capim-limão (Cymbopogon flexuosus, manjericão (Ocimum basilicum, orégano (Origanum vulgare, folha de canela (Cinnamomum zeylanicum e louro (Laurus nobilis. Com exceção de S. Typhimurium, o óleo essencial de capim limão (Cymbopogon flexuosus apresentou valores de CMI e CMB iguais ou inferiores a 0,62mg mL-1 contra os micro-organismos testados. Yersinia enterocolitica foi o patógeno mais sensível frente a todos os óleos essenciais avaliados (CMI≤0,62mg mL-1. Foi detectada correlação significativa (P<0,05 entre os n

  6. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  7. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces ' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus . These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p -coumaric acid, a trait not shared among the spoilage strains.

  8. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans

    OpenAIRE

    Junyan Liu; Yang Deng; Brian M. Peters; Lin Li; Bing Li; Lequn Chen; Zhenbo Xu; Mark E. Shirtliff

    2016-01-01

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA1...

  9. Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi

    NARCIS (Netherlands)

    Han, Y.; Joosten, H.J.; Niu, W.; Zhao, Z.; Mariano, P.S.; McCalman, M.; Kan, van J.; Schaap, P.J.; Dunaway-Mariano, D.

    2007-01-01

    Oxalate secretion by fungi is known to be associated with fungal pathogenesis. In addition, oxalate toxicity is a concern for the commercial application of fungi in the food and drug industries. Although oxalate is generated through several different biochemical pathways, oxaloacetate

  10. Food irradiation nears commercial development

    International Nuclear Information System (INIS)

    1981-01-01

    One person out of eight in the world today suffers from chronic undernourishment. This problem is likely to get worse as the world's population doubles during the next thirty to forty years. Since about 25% or more of our harvested food is lost due to various kinds of wastage and spoilage, food preservation is no less important than food production. To supply the world's demand for food, it is more reasonable to conserve what is produced than to produce more to compensate for subsequent losses. Thus, it is obvious that all methods of preserving food and agricultural produce should be examined to see if their use might alleviate the world's food shortage, and that to develop better and safer techniques of food preservation will improve food supplies. Food preservation is an ever greater problem for the developing countries, not only because of their chronic problems of undernourishment, but also because most of them are in tropical or sub-tropical regions where food spoilage is rapid. The IAEA and the Food and Agriculture Organization (FAO) held a symposium on food irradiation at Colombo in Sri Lanka. The symposium paid special attention to the use of food irradiation in preserving tropical fruits as well as fish and fish products. It also examined the cost of the food irradiation process and compared it with those of conventional processes. Food irradiation is one field in which advance is most likely to be achieved through international co-operation. This co-operation has been supported by the IAEA and FAO in a number of ways. During the last 15 years three previous symposia (Karlsruhe, 1966; Bombay, 1972; Wageningen, 1977), numerous panel meetings, and training courses, have been held on this subject and many nations' food irradiation projects have been supported by technical assistance and co-ordinated research programmes

  11. Food preservation by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-02-15

    As shortages of food and energy still continue to constitute the major threats to the well-being of the human race, all actions aiming at overcoming these problems must be assigned vital importance. Of the two complementary ways of solving the food problem (i.e., increasing the production of food and decreasing the spoilage of food) a novel method designed to contribute to the latter purpose has been discussed at this symposium hosted by The Netherlands and held under the aegis of the Food and Agriculture Organization of the United Nations, the International Atomic Energy Agency and the World Health Organization. Progress made since the last symposium of this kind (Bombay, India, 1972) was reviewed from the technological, economic and wholesomeness points of view by participants from 39 countries (60% of the latter were of the developing world). From the reports presented on the use of radiations to control physiological changes in plants, feasibility of radiation preservation of potatoes, onions, garlic, as well as of some tropical and subtropical fruits (mangoes, papayas, litchis and avocado) was confirmed. For potatoes, onions and mangoes, optimal conditions of treatment and storage were established on a larger scale, combined with sizeable consumer trials. Combinations of ionizing radiation with chemicals (salycilic acid, for potatoes), and physical agents (ultraviolet rays, for papayas) have been reported to be successful against the incidence of rot. A considerable number of papers dealt with the control of microbiological spoilage of foods. Work since 1972 has shown that radurization of fruits and vegetables (bananas, mangoes, dried dates, endive, chickory, onions, soup-greens), meat, poultry, marine products (mackerel, cod and plaice fillets, shrimps), decontamination of food ingredients and food technology aids (enzyme preparations, proteins, starch, spices), radappertization of meat and animal feedstuffs as well as combination treatments with salt, heat

  12. Food preservation by irradiation

    International Nuclear Information System (INIS)

    1978-01-01

    As shortages of food and energy still continue to constitute the major threats to the well-being of the human race, all actions aiming at overcoming these problems must be assigned vital importance. Of the two complementary ways of solving the food problem (i.e., increasing the production of food and decreasing the spoilage of food) a novel method designed to contribute to the latter purpose has been discussed at this symposium hosted by The Netherlands and held under the aegis of the Food and Agriculture Organization of the United Nations, the International Atomic Energy Agency and the World Health Organization. Progress made since the last symposium of this kind (Bombay, India, 1972) was reviewed from the technological, economic and wholesomeness points of view by participants from 39 countries (60% of the latter were of the developing world). From the reports presented on the use of radiations to control physiological changes in plants, feasibility of radiation preservation of potatoes, onions, garlic, as well as of some tropical and subtropical fruits (mangoes, papayas, litchis and avocado) was confirmed. For potatoes, onions and mangoes, optimal conditions of treatment and storage were established on a larger scale, combined with sizeable consumer trials. Combinations of ionizing radiation with chemicals (salycilic acid, for potatoes), and physical agents (ultraviolet rays, for papayas) have been reported to be successful against the incidence of rot. A considerable number of papers dealt with the control of microbiological spoilage of foods. Work since 1972 has shown that radurization of fruits and vegetables (bananas, mangoes, dried dates, endive, chickory, onions, soup-greens), meat, poultry, marine products (mackerel, cod and plaice fillets, shrimps), decontamination of food ingredients and food technology aids (enzyme preparations, proteins, starch, spices), radappertization of meat and animal feedstuffs as well as combination treatments with salt, heat

  13. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Natural substrata for corticioid fungi

    Directory of Open Access Journals (Sweden)

    Eugene O. Yurchenko

    2013-12-01

    Full Text Available The paper reviews the types of substrata inhabited by non-poroid resupinate Homobasidiomycetes in situ in global scale with both examples from literature sources and from observations on Belarus corticioid fungi biota. The groups of organic world colonized by corticioid basidiomata and vegetative mycelium are arboreous, semi-arboreous, and herbaceous vascular plants, Bryophyta, epiphytic coccoid algae, lichenized and non-lichenized fungi, and occasionally myxomycetes and invertebrates. The fungi occur on living, dying, and dead on all decay stages parts of organisms. Besides, the fungi are known on soil, humus, stones, artificial inorganic and synthetic materials and dung.

  15. Fusarium and other opportunistic hyaline fungi

    Science.gov (United States)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  16. Food irradiation - A new way to process food

    International Nuclear Information System (INIS)

    1987-01-01

    The film shows how irradiation of food by ionizing energy (gamma rays or beams of electrons) can help cut down post-harvest losses of food such as cereals, meat, fish and shellfish and fresh or dried fruits and vegetables. One quarter to one third of the total world food production is lost due to sprouting, destruction by insects and parasites, spoilage by micro-organisms such as bacteria and funghi, and premature ripening. Food contamination not only leads to economic problems but can also cause diseases such as trichinosis, toxoplasmosis, etc. The new technique of food irradiation has been studied by independent groups of experts whose evaluations without exception have been favourable. One of the main advantages is that there are no chemical residues. On the long run, food irradiation will help to assure world-wide food security

  17. Biochemiluminescence of certain fungi

    Directory of Open Access Journals (Sweden)

    Janusz Sławiński

    2014-11-01

    Full Text Available Twelve species of fungi growing on the Sabouraud medium in darkness and illumination in an incubator, were tested to find out their ability to emit the ultra-weak biochemiluminescence. Using a sensitive photon-counling device, it was possible to measure biochemiluminescence intensity during ten days of cultures growth. Boletus edulis, Pestalotia funerea and Microsporum gypseum displayed biochemiluminescence, while Aspergillus nidulans, A. quadrilineatus, Beauveria bassiana, Macrophoma candollei, Mucor lausanensis, Paecilomyces farinosus, Penicillium sp., Trichoderma lignorum and Tricholoma equestre failed to do it. Illumination put down biochemiluminescence and stimulated colour formation in both mycelia and in the medium.

  18. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    Science.gov (United States)

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  19. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    Science.gov (United States)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  20. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-04

    May 4, 2016 ... food, chemical, and pharmaceutical industry means the current global ... be the most convenient biosystem for industrial applications ... Fungi are capable of producing several enzymes for ... strains, and the process results in losses to the isolation ..... technical and economic burdens of lipase production.

  1. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buf...... from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces...

  2. Knowledge and practices of food hygiene and safety among camel ...

    African Journals Online (AJOL)

    The respondents showed low knowledge in answering questions regarding spoilage microorganisms and effective cleaning of containers. About 53% of women retailers used rejected/spoiled milk for household consumption. This could result in a high food safety risk. Therefore, training of actors along the camel milk value ...

  3. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates.

    Science.gov (United States)

    Haakensen, M; Schubert, A; Ziola, B

    2009-03-15

    Identification of the beer-spoilage Lactobacillus and Pediococcus bacteria has largely taken two approaches; identification of spoilage-associated genes or identification of specific species of bacteria regardless of ability to grow in beer. The problem with these two approaches is that they are either overly inclusive (i.e., detect all bacteria of a given species regardless of spoilage potential) or overly selective (i.e., rely upon individual, putative spoilage-associated genes). Our goal was to design a method to assess the ability of Lactobacillus and Pediococcus to spoil beer that is independent of speciation or genetic background. In searching for a method by which to differentiate between beer-spoilage bacteria and bacteria that cannot grow in beer, we explored the ability of lactobacilli and pediococci isolates to grow in the presence of varying concentrations of hop-compounds and ethanol in broth medium versus on agar medium. The best method for differentiating between bacteria that can grow in beer and bacteria that do not pose a threat as beer-spoilage organisms was found to be a hop-gradient agar plate containing ethanol. This hop-gradient agar plate technique provides a rapid and simple solution to the dilemma of assessing the ability of Lactobacillus and Pediococcus isolates to grow in beer, and provides new insights into the different strategies used by these bacteria to survive under the stringent conditions of beer.

  4. Isolation and Identification of Spoilage Yeasts in Wine Samples by MALDI-TOF MS Biotyper

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-05-01

    Full Text Available Many genera and species of microorganisms can be found in grape musts and wines at various times during the winemaking process. For instance, Saccharomyces, Brettanomyces, and Pediococcus can be found together in wine. There are many species of yeast involved in wine spoilage during storage. Aim of this study was to isolate the spoilage yeasts from wine samples with using special selective agar media and identified on species level by Matrix-Assisted Laser Desorption/Ionization-Time of Fly Mass Spectrometry (MALDI-TOF MS. Six red wines used in this study. We identified 10 yeast species from 152 isolates. The most common species in wine samples was Saccharomyces cerevisiae. We also identified four Candida species, two Zygosaccharomyces species and one species from genus Rhodotorula, Saccharomycodes and Dekkera.

  5. Volatile sulfur compounds in foods as a result of ionizing radiation

    Science.gov (United States)

    Ionizing radiation improves food safety and extends shelf life by inactivating food-borne pathogens and spoilage microorganisms. However, irradiation may induce the development of an off-odor, particularly at high doses. The off-odor has been called “irradiation odor”. Substantial evidence suggests ...

  6. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads

    Science.gov (United States)

    Active antimicrobial packaging interacts with packaged food and headspace to reduce, retard, or even inhibit the growth of spoilage and pathogenic microorganisms. Sachets and pads are one of the most successful applications of active food packaging. This review discusses recent developments of antim...

  7. Inhibitory Properties of Lactic Acid Bacteria against Moulds Associated with Spoilage of Bakery Products

    OpenAIRE

    I. A. Adesina; A. O. Ojokoh; D. J. Arotupin

    2017-01-01

    Aim: To evaluate the potentiality of LAB strains isolated from different fermented products to inhibit moulds associated with spoilage of bakery products. Methodology: Lactic acid bacterial (LAB) strains obtained from fermented products (“burukutu”, “pito”, yoghurt, and “iru”) were screened for antifungal activity against moulds (Aspergillus flavus, Aspergillus fumigatus, Aspergillus repens and Penicillium sp.) isolated from spoilt bakery products. Inhibitory activities of the lactic acid...

  8. Effect of microbial cell-free meat extract on the growth of spoilage bacteria.

    Science.gov (United States)

    Nychas, G-J E; Dourou, D; Skandamis, P; Koutsoumanis, K; Baranyi, J; Sofos, J

    2009-12-01

    This study examined the effect of microbial cell-free meat extract (CFME) derived from spoiled meat, in which quorum sensing (QS) compounds were present, on the growth kinetics (lag phase, and growth rate) of two spoilage bacteria, Pseudomonas fluorescens and Serratia marcescens. Aliquots of CFME from spoiled meat were transferred to Brain Heart Infusion broth inoculated with 10(3) CFU ml(-1) of 18 h cultures of Ps. fluorescens or Ser. marcescens, both fresh meat isolates; CFME derived from unspoiled fresh meat ('clean' meat) served as a control. Changes in impedance measurements were monitored for 48 h, and the detection time (Tdet) was recorded. It was found that in the absence of CFME containing QS compounds the Tdet was shorter (P meat. The rate of growth of Ps. fluorescens, recorded as the maximum slope rate of conductance changes (MSrCC), after Tdet, was higher (P meat. Similar results in MSrCC of impedance changes were obtained for Ser. marcescens. The study indicated that the growth rate (expressed in MSrCC units) of meat spoilage bacteria in vitro was enhanced in samples supplemented with CFME containing QS compounds compared to control samples (i.e., without CFME or with CFME from 'clean' meat). This behaviour may explain the dominant role of these two bacteria in the spoilage of meat. These results illustrate the potential effect of signalling compounds released during storage of meat on the behaviour of meat spoilage bacteria. Understanding such interactions may assist in the control of fresh meat quality and the extension of its shelf life.

  9. Spoilage and shelf-life extension of fresh fish and shellfish.

    Science.gov (United States)

    Ashie, I N; Smith, J P; Simpson, B K

    1996-01-01

    Fresh fish and shellfish are highly perishable products due to their biological composition. Under normal refrigerated storage conditions, the shelf life of these products is limited by enzymatic and microbiological spoilage. However, with increasing consumer demands for fresh products with extended shelf life and increasing energy costs associated with freezing and frozen storage, the fish-processing industry is actively seeking alternative methods of shelf life preservation and marketability of fresh, refrigerated fish and at the same time economizing on energy costs. Additional methods that could fulfill these objectives include chemical decontamination, low-dose irradiation, ultra-high pressure, and modified atmosphere packaging (MAP). This review focuses on the biochemical and microbiological composition of fresh fish/shellfish, the spoilage patterns in these products, factors influencing spoilage, and the combination treatments that can be used in conjunction with refrigeration to extend the shelf life and keeping quality of fresh fish/shellfish. The safety concerns of minimally processed/MAP fish, specifically with respect to the growth of Clostridium botulinum type E, is also addressed.

  10. FILAMENTOUS FUNGI ON GRAPES IN CENTRAL SLOVAK WINE REGION

    Directory of Open Access Journals (Sweden)

    Ľubomír Rybárik

    2014-02-01

    Full Text Available The concern about filamentous fungi in the vineyards has traditionally been linked to spoilage of grapes due to fungal growth. The aims of this study were to monitor the mycobiota in Central Slovak wine region. The Central Slovak wine region is divided into seven different subregions. In this work we had ten grape samples from seven various wine growing subregions and eight different villages. Five of these samples were from white grape berries and five were from red grape berries. The sample nr. 7 was without chemical protection (interspecific variety and three samples (nr. 8, 9, 10 were from bio-production. In the samples were determined exogenous contamination (direct platting method and endogenous contamination (surface-disinfected grapes. The exogenous mycobiota was determined by the method that each sample of 50 grape berries without visible damage was direct plated on to a DRBC agar medium. In exogenous contamination was detected 17 different genera Alternaria, Arthrinium, Aspergillus, Bipolaris, Botrytis, Cladosporium, Cunninghamella, Epicoccum, Fusarium, Geotrichum, Chaetomium, Mucor, Penicillium, Phoma, Rhizopus, Sordaria, Trichoderma and group Mycelia sterilia in which we included all colony of filamentous fungi that after incubation did not create fruiting bodies necessary for identification to genera level. By the endogenous contamination was each sample of 50 grape berries was surface-disinfected with sodium hypochlorite solution (1% for 1 min, rinsed in sterile distilled water three times and plated onto a DRBC (Dichloran Rose Bengal Chloramphenicol medium, Merck, Germany. The plates were incubated at 25±1 ºC for 7 days in the dark. By the endogenous plating method was identified 15 different genera from all ten samples Alternaria, Arthrinium, Aspergillus, Botrytis, Cladosporium, Epicoccum, Fusarium, Geotrichum, Gelasinospora, Chaetomium, Mucor, Penicillium, Phoma, Rhizopus, Trichoderma and Mycelia sterilia.

  11. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  12. Technology of food preservation by irradiation

    International Nuclear Information System (INIS)

    Thomas, Paul

    1997-01-01

    Food Technology Division, Bhabha Atomic Research Centre, Mumbai has demonstrated that radiation processing of foods can contribute to nations food security by reducing post-harvest losses caused by insect infestation, microbial-spoilage and physiological changes. The technology has commercial potential for the conservation of cereals, pulses and their products, spices, onions, potatoes, garlic, some tropical fruits, sea foods, meat and poultry. Irradiation can ensure hygienic quality in foods including frozen foods by eliminating food borne pathogens and parasitic organisms. It offers a viable environment friendly alternative to chemical fumigants for quarantine treatment against insect pests in agricultural and horticultural products entering international trade. The safety and nutritional adequacy of irradiated foods for human consumption is well established. About 40 countries including India have regulations permitting irradiation of foods and 28 countries are irradiating foods for processing industries and institutional catering

  13. Production Method that Leads to TiO2 Nanofibrous Structure Usable in Food Packaging

    Directory of Open Access Journals (Sweden)

    Kovář Radovan

    2016-12-01

    Full Text Available Burned inorganic nanofibers most often occur in the nature in two forms: rutile and anatase. Today, the production of rutile is about to end, while anatase provides more application possibilities. The resulting fiber structure is determined by calcination. It is necessary to find the optimal temperature as well as time, during which the fibers must withstand temperature load. For such method of calcination, it is necessary to create a special design of continuous furnace. Anatase has application in food packaging. Packages containing anatase are used for: food safety, improved packaging for spoilage reduction, sensors for detection of pathogens and spoilage, disinfectants and antimicrobial surfaces.

  14. Some mycogenous fungi from Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Chlebicki

    2014-08-01

    Full Text Available In the present paper the results of earlier studies on mycogenous fungi which were gathered occasionally are summarized. Fifieen specres. previously Pyrenomycetes s.l., have been found growing on other fungi Immothia hypoxylon and Lophiostoma polyporicola are new species to the Polish mycoflora. Sphaeronaemella Kulczyńskiana described by K. R o u p p e r t (1912 is considered to be Eleuteromyces subultus. Relatively high number of fungi inhabiting stromata of Diatrypella favacea is probably connected with its early colonization of the Polish area.

  15. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  16. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ.

    Science.gov (United States)

    Wang, Guang-Yu; Wang, Hu-Hu; Han, Yi-Wei; Xing, Tong; Ye, Ke-Ping; Xu, Xing-Lian; Zhou, Guang-Hong

    2017-05-01

    Microorganisms play an important role in the spoilage of chilled chicken. In this study, a total of 53 isolates, belonging to 7 species of 3 genera, were isolated using a selective medium based on the capacity to spoil chicken juice. Four isolates, namely Aeromonas salmonicida 35, Pseudomonas fluorescens H5, Pseudomonas fragi H8 and Serratia liquefaciens 17, were further characterized to assess their proteolytic activities in vitro using meat protein extracts and to evaluate their spoilage potential in situ. The in vitro studies showed that A. salmonicida 35 displayed the strongest proteolytic activity against both sarcoplasmic and myofibrillar proteins. However, the major spoilage isolate in situ was P. fragi H8, which exhibited a fast growth rate, slime formation and increased pH and total volatile basic nitrogen (TVBN) on chicken breast fillets. The relative amounts of volatile organic compounds (VOCs) originating from the microorganisms, including alcohols, aldehydes, ketones and several sulfur compounds, increased during storage. In sum, this study demonstrated the characteristics of 4 potential spoilage bacteria on chilled yellow-feather chicken and provides a simple and convenient method to assess spoilage bacteria during quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Metabolic Profiling of Food Protective Cultures by in vitro NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ebrahimi, Parvaneh

    Food spoilage is of major concern to the food industry, because it leads to considerable economic losses, a deteriorated environmental food-print, and to possible public health hazards. In order to limit food spoilage, research on the preservation of food products has always received particular......-called protective cultures) has unexploited potential to inhibit the growth of pathogenic microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation in food products effectively, detailed knowledge on the metabolism of protective cultures is required. The present Ph......D project is mainly focused on the application of in vitro NMR spectroscopy for studying the metabolism of protective cultures. As an important part of this work, an analytical protocol was developed for realtime in vitro NMR measurements of bacterial fermentation, which includes guidelines from the sample...

  18. Status of food irradiation in Pakistan

    International Nuclear Information System (INIS)

    Wahid, M.; Sattar, A.; Khan, I.

    1985-01-01

    Radiation preservation of various foods was studied. Optimum radiation-doses were established for controlling insect infestation, reducing microbial spoilage, extending storage life, delaying ripening of fresh fruits or vegetables and increasing nutritional value through sprouting of seeds. Influence of radiation physico-chemical properties and nutrients as well as antinutrients of foods was studied. Technical feasibility of radiation preservation of several food materials was established. Commercial trials on radiation preservation of potatoes were completed and cost economics calculated. The results of these findings have briefly been described. (authors)

  19. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  20. LTR retrotransposons in fungi.

    Directory of Open Access Journals (Sweden)

    Anna Muszewska

    Full Text Available Transposable elements with long terminal direct repeats (LTR TEs are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (8000 elements. The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other.

  1. Behaviour of co-inoculated pathogenic and spoilage bacteria on poultry following several decontamination treatments.

    Science.gov (United States)

    Alonso-Hernando, Alicia; Capita, Rosa; Alonso-Calleja, Carlos

    2012-10-01

    The potential of chemical decontaminants to cause harmful effects on human health is among the causes of the rejection of antimicrobial treatments for removing surface contamination from poultry carcasses in the European Union. This study was undertaken to determine whether decontaminants might give a competitive advantage to pathogenic bacteria on poultry and involve a potential risk to consumer. A total of 144 chicken legs were co-inoculated with similar concentrations of pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica serotype Enteritidis or Escherichia coli) and spoilage bacteria (Brochothrix thermosphacta or Pseudomonas fluorescens). Samples were dipped for 15min in solutions (w/v) of trisodium phosphate (12%; TSP), acidified sodium chlorite (1200ppm; ASC), citric acid (2%; CA), peroxyacids (220ppm; PA) or chlorine dioxide (50ppm; CD), or were left untreated (control). Microbiological analyses were carried out on day 0 and every 24h until day 7 of storage (at 10±1°C). The modified Gompertz equation was used as the primary model to fit observed data. TSP, ASC and CA were effective in extending the lag phase (L, ranging from 1.47±1.34days to 4.06±1.16days) and in decreasing the concentration of bacteria during the stationary phase (D, ranging from 2.46±0.51 log(10) cfu/cm(2) to 8.64±0.53 log(10) cfu/cm(2)), relative to the control samples (L values ranging from 0.59±0.38days and 2.52±2.28days, and D values ranging from 6.32±0.89 log(10) cfu/cm(2) to 9.39±0.39 log(10) cfu/cm(2), respectively). Both on untreated and on most decontaminated samples the overgrowth of spoilage bacteria among the species tested was observed throughout storage, suggesting that spoilage would occur prior to any noteworthy increase in the levels of pathogenic microorganisms. However, L. monocytogenes counts similar to, or higher than, those for spoilage bacteria were observed on samples treated with TSP, ASC or CA, suggesting that these

  2. Combination treatment of gamma radiation and paraben in controlling spoilage of poultry meat

    International Nuclear Information System (INIS)

    Shiralkar, N.D.; Rege, D.V.

    1977-01-01

    With a view of controlling spoilage, combination treatment of poultry meat with gamma radiation and a chemical preservative has been investigated. Raw poultry pieces of about 25 g. weight were dipped in 0.1% propyl-paraben solution for two hours and were given a 0.1 Mrad dose from 60 Co gamma radiation. It was found that paraben was not affected by irradiation. The flavour evaluation scores indicated the shelf-life of poultry meat was prolonged by a couple of days as compared to untreated controls in refrigerated storage. (M.G.B.)

  3. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  4. Proceedings of a seminar on food irradiation

    International Nuclear Information System (INIS)

    1985-07-01

    International interest in the industrial use of ionizing radiation as a means of food preservation has increased rapidly following the favourable outcome of many years of intensive research on the health implications of food irradiation. The introduction in the U.S. and elsewhere of legislation restricting the use of chemical additives to foods for both human and animal consumption has contributed to this development. A high priority must be given to coordinating legislation on food irradiation within the European Community if international trade in irradiated foods is to make progress and food losses by spoilage and by insect infestation are to be minimised. Speakers from the United Kigdom, France and Germany describe the legislative and developmental situation in their respective countries. The implication for the Irish food industry is presented by scientists working on food research and development and regulatory aspects in Ireland are also discussed

  5. Food irradiation: current problems and future potential

    International Nuclear Information System (INIS)

    Kilcast, D.

    1995-01-01

    Food irradiation is one of a set of processing technologies that can be used to increase the microbiological safety and shelf-life of a wide range of foods. Ionizing radiation is used to generate highly active chemical species within the food, which react with DNA. Under normal usage conditions, the food receives a pasteurizing treatment that gives a valuable reduction in common food-spoilage organisms and food pathogens. This review describes how the process is used in practice, including the benefits and limitations. The nature of changes to food components are outlined, together with the development of practical detection methods that utilize these changes. The legislative position of food irradiation is outlined, with the specific example of the introduction of the technology within the UK. The reasons for the slow uptake in the use of the technology are discussed, and the problem of consumer acceptance is addressed. (author)

  6. The use of chitooligosaccharide in beer brewing for protection against beer-spoilage bacteria and its influence on beer performance.

    Science.gov (United States)

    Zhao, Xue; Yu, Zhimin; Wang, Ting; Guo, Xuan; Luan, Jing; Sun, Yumei; Li, Xianzhen

    2016-04-01

    To identify a biological preservative that can protect beer from microbial contamination, which often results in the production of turbidity and off-flavor. The antimicrobial activity of a chitooligosaccharide against beer-spoilage bacteria and its effect on the fermentation performance of brewer's yeast was studied. Chitooligosaccharide with an average 2 kDa molecular weight was the best at inhibiting all tested beer-spoilage bacteria. The application of chitooligosaccharide in the brewing process did not influence the fermentation of brewer's yeast. The change in beer performance induced by the contamination of Lactobacillus brevis could be effectively controlled by application of chitooligosaccharide in the beer brewing process. The experimental data suggested that chitooligosaccharide should be an excellent preservative to inhibit beer-spoilage bacteria in the brewing process and in the end product.

  7. Importance of nuclear technology in the conservation and production of nutritional fungi

    International Nuclear Information System (INIS)

    Sajet, A.S.

    2008-01-01

    The shortfall in food and field crops due to bad weather and the incidence of insects and microbes during harvesting, handling and storage under non-suitable conditions, called the attention of researchers to try to minimize the damage happening and by various means, whether to develop sources of new food, such as producing nutritional fungi, or by following non-traditional methods of anti-microbes and insects such as the use of radiation as a safe and successful way to save the food without any toxic effects. Permits have been issued for food irradiation by many international organizations including IAEA, World Health Organization and FAO. Nutritional fungi is one of the food sources used as food fit for human consumption in various countries around the world due to their importance which includes many aspects: the nutritional and health value; medical significance; environmental importance and industrial importance. Nuclear technology has contributed in many of the developments in the production and conservation of nutritional fungi, notably, biological studies of nutritional fungi, production technology of fungus, the role of radiation in the preparation and improvement of the nutritional media, improvement of the fungus strains, the use of radiation in the conservation of nutritional fungi and the detection of irradiated nutritional fungus.

  8. The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Chen, Lequn; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2017-10-01

    This study aimed to investigate the viable but nonculturable (VBNC) state and genomic features of a beer-spoilage strain, Lactobacillus caseiBM-LC14617. Induction on the VBNC state of L. casei strain BM-LC14617 was conducted by both low-temperature storage and continuous passage in beer, and formation of VBNC state was detected after 196 ± 3.3 days and 32 ± 1.6 subcultures, respectively. Resuscitation of VBNC cells was successfully induced by addition of catalase, and culturable, VBNC, and resuscitated cells shared similar beer-spoilage capability. Whole genome sequencing was performed, and out of a total of 3,964 predicted genes, several potential VBNC and beer-spoilage-associated genes were identified. L. casei is capable of entering into and resuscitating from the VBNC state and possesses beer-spoilage capability. The genomic characterization yield insightful elucidation of VBNC state for L. casei. This study represents the first evidence on VBNC state induction of L. casei and beer-spoilage capability of VBNC and resuscitated cells. Also, this is the first genomic characterization of L. casei as a beer-spoilage bacterium. The current study may aid in further study on L. casei and other beer-spoilage bacteria, and guide the prevention and control of beer spoilage. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Nanostructures for delivery of natural antimicrobials in food.

    Science.gov (United States)

    Lopes, Nathalie Almeida; Brandelli, Adriano

    2017-04-10

    Natural antimicrobial compounds are a topic of utmost interest in food science due to the increased demand for safe and high-quality foods with minimal processing. The use of nanostructures is an interesting alternative to protect and delivery antimicrobials in food, also providing controlled release of natural compounds such as bacteriocins and antimicrobial proteins, and also for delivery of plant derived antimicrobials. A diversity of nanostructures are capable of trapping natural antimicrobials maintaining the stability of substances that are frequently sensitive to food processing and storage conditions. This article provides an overview on natural antimicrobials incorporated in nanostructures, showing an effective antimicrobial activity on a diversity of food spoilage and pathogenic microorganisms.

  10. Detection of irradiated foods by the DEFT/APC method

    International Nuclear Information System (INIS)

    Yuecel, P. K.; Koeseoglu, T.; Halkman, H. B. D.

    2009-01-01

    Irradiation technology is used to prevent the spoilage losses and to improve the hygienic quality of foods. Appropriate techniques for the detection of irradiated foods are needed to guarantee the proper consumer information and to facilitate the trade of irradiated foods. The characteristics of the microbial population of irradiated foods have been used for developing detection methods for irradiated foods. This microbiological method is based on the comparison of an aerobic plate count (APC) with a count obtained with the direct epifluorescent filter technique (DEFT) for the detection of irradiation of foodstuffs.

  11. Lectins in human pathogenic fungi.

    Science.gov (United States)

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  12. Risk assessment of fungal spoilage: A case study of Aspergillus niger on yogurt.

    Science.gov (United States)

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2017-08-01

    A quantitative risk assessment model of yogurt spoilage by Aspergillus niger was developed based on a stochastic modeling approach for mycelium growth by taking into account the important sources of variability such as time-temperature conditions during the different stages of chill chain and individual spore behavior. Input parameters were fitted to the appropriate distributions and A. niger colony's diameter at each stage of the chill chain was estimated using Monte Carlo simulation. By combining the output of the growth model with the fungus prevalence, that can be estimated by the industry using challenge tests, the risk of spoilage translated to number of yogurt cups in which a visible mycelium of A. niger is being formed at the time of consumption was assessed. The risk assessment output showed that for a batch of 100,000 cups in which the percentage of contaminated cups with A. niger was 1% the predicted numbers (median (5 th , 95 th percentiles)) of the cups with a visible mycelium at consumption time were 8 (5, 14). For higher percentages of 3, 5 and 10 the predicted numbers (median (5 th , 95 th percentiles)) of the spoiled cups at consumption time were estimated to be 24 (16, 35), 39 (29, 52) and 80 (64, 94), respectively. The developed model can lead to a more effective risk-based quality management of yogurt and support the decision making in yogurt production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. American lobsters (Homarus americanus not surviving during air transport: evaluation of microbial spoilage

    Directory of Open Access Journals (Sweden)

    Erica Tirloni

    2016-05-01

    Full Text Available Eighteen American lobsters (Homarus americanus, dead during air transport, were analysed in order to evaluate the microbial population of meat, gills and gut: no specific studies have ever been conducted so far on the microbiological quality of American lobsters’ meats in terms of spoilage microbiota. The meat samples showed very limited total viable counts, in almost all the cases below the level of 6 Log CFU/g, while higher loads were found, as expected, in gut and gills, the most probable source of contamination. These data could justify the possibility to commercialise these notsurviving subjects, without quality concerns for the consumers. Most of the isolates resulted to be clustered with type strains of Pseudoalteromonas spp. (43.1% and Photobacterium spp. (24.1%, and in particular to species related to the natural marine environment. The distribution of the genera showed a marked inhomogeneity among the samples. The majority of the isolates identified resulted to possess proteolytic (69.3% and lipolytic ability (75.5%, suggesting their potential spoilage ability. The maintanance of good hygienical practices, especially during the production of ready-to-eat lobsters-based products, and a proper storage could limit the possible replication of these microorganisms.

  14. American Lobsters (Homarus Americanus) not Surviving During Air Transport: Evaluation of Microbial Spoilage.

    Science.gov (United States)

    Tirloni, Erica; Stella, Simone; Gennari, Mario; Colombo, Fabio; Bernardi, Cristian

    2016-04-19

    Eighteen American lobsters ( Homarus americanus ), dead during air transport, were analysed in order to evaluate the microbial population of meat, gills and gut: no specific studies have ever been conducted so far on the microbiological quality of American lobsters' meats in terms of spoilage microbiota. The meat samples showed very limited total viable counts, in almost all the cases below the level of 6 Log CFU/g, while higher loads were found, as expected, in gut and gills, the most probable source of contamination. These data could justify the possibility to commercialise these not-surviving subjects, without quality concerns for the consumers. Most of the isolates resulted to be clustered with type strains of Pseudoalteromonas spp. (43.1%) and Photobacterium spp. (24.1%), and in particular to species related to the natural marine environment. The distribution of the genera showed a marked inhomogeneity among the samples. The majority of the isolates identified resulted to possess proteolytic (69.3%) and lipolytic ability (75.5%), suggesting their potential spoilage ability. The maintanance of good hygienical practices, especially during the production of ready-to-eat lobsters-based products, and a proper storage could limit the possible replication of these microorganisms.

  15. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    Science.gov (United States)

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  16. Characterisation and detection of spoilage mould responsible for black spot in dry-cured fermented sausages.

    Science.gov (United States)

    Lozano-Ojalvo, Daniel; Rodríguez, Alicia; Cordero, Mirian; Bernáldez, Victoria; Reyes-Prieto, Mariana; Córdoba, Juan J

    2015-02-01

    Moulds responsible for black spot spoilage of dry-cured fermented sausages were characterised. For this purpose, samples were taken from those dry-cured fermented sausages which showed black spot alteration. Most of the mould strains were first tentatively identified as Penicillium spp. due to their morphological characteristics in different culture conditions, with one strain as Cladosporium sp. The Cladosporium strain was the only one which provoked blackening in culture media. This strain was further characterised by sequencing of ITS1-5.8S-ITS2 rRNA and β-tubulin genes. This mould strain was able to reproduce black spot formation in dry-cured fermented sausage 'salchichón' throughout the ripening process. In addition, a specific and sensitive real-time PCR method was also developed to detect Cladosporium oxysporum responsible for the black spot formation in sausages. This method could be of great interest for the meat industry to detect samples contaminated with this mould before spoilage of product avoiding economic losses for this sector.

  17. Characterization of spoilage bacteria in pork sausage by PCR-DGGE analysis

    Directory of Open Access Journals (Sweden)

    Francesca Silva Dias

    2013-09-01

    Full Text Available To investigate microbial diversity and identify spoilage bacteria in fresh pork sausages during storage, twelve industrial pork sausages of different trademarks were stored at 4 ºC for 0, 14, 28 and 42 days, 80% relative humidity and packaged in sterile plastic bags. Microbiological analysis was performed. The pH and water activity (a w were measured. The culture-independent method performed was the Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE. The culture-dependent method showed that the populations of mesophilic bacteria and Lactic Acid Bacteria (LAB increased linearly over storage time. At the end of the storage time, the average population of microorganisms was detected, in general, at the level of 5 log cfu g-1. A significant (P < 0.005 increase was observed in pH and a w values at the end of the storage time. The PCR-DGGE allowed a rapid identification of dominant communities present in sausages. PCR-DGGE discriminated 15 species and seven genera of bacteria that frequently constitute the microbiota in sausage products. The most frequent spoilage bacteria identified in the sausages were Lactobacillus sakei and Brochothrix thermosphacta. The identification of dominant communities present in fresh pork sausages can help in the choice of the most effective preservation method for extending the product shelf-life.

  18. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  19. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-03-13

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  20. Fungi isolated in school buildings

    Directory of Open Access Journals (Sweden)

    Elżbieta Ejdys

    2013-12-01

    Full Text Available The aim of the study was to determine the species composition of fungi occurring on wall surfaces and in the air in school buildings. Fungi isolated from the air using the sedimentation method and from the walls using the surface swab technique constituted the study material. Types of finish materials on wall surfaces were identified and used in the analysis. Samples were collected in selected areas in two schools: classrooms, corridors, men's toilets and women's toilets, cloakrooms, sports changing rooms and shower. Examinations were conducted in May 2005 after the heating season was over. Fungi were incubated on Czapek-Dox medium at three parallel temperatures: 25, 37 and 40°C, for at least three weeks. A total of 379 isolates of fungi belonging to 32 genera of moulds, yeasts and yeast-like fungi were obtained from 321 samples in the school environment. The following genera were isolated most frequently: Aspergillus, Penicillium and Cladosporium. Of the 72 determined species, Cladosporium herbarum, Aspergillus fumigatus and Penicillium chrysogenum occurred most frequently in the school buildings. Wall surfaces were characterised by an increased prevalence of mycobiota in comparison with the air in the buildings, with a slightly greater species diversity. A certain species specificity for rough and smooth wall surfaces was demonstrated. Fungi of the genera Cladosporium and Emericella with large spores adhered better to smooth surfaces while those of the genus Aspergillus with smaller conidia adhered better to rough surfaces. The application of three incubation temperatures helped provide a fuller picture of the mycobiota in the school environment.

  1. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  2. Irradiated food: too hot to handle?

    International Nuclear Information System (INIS)

    Coghlan, Andy.

    1990-01-01

    This article discusses current arguments for and against the irradiation of food for human consumption. The technique, which involves bombarding batches of food with gamma rays, x rays or accelerated electrons, is claimed to halt spoilage, kill bacteria and thus extend the shelf-life of various foodstuffs. Irradiated foods are at present indistinguishable from non-irradiated food and this problem may not be solved before the government's bill legalizes the process. Opponents claim the technique may not be safe and that the food industry may use it to fool consumers into buying rotten foods. Proponents say that even though many foods, such as poultry, seafood, fruits, vegetables and spices may be treated, it is unlikely that more than a small proportion will be. They reject safety worries as alarmist exaggeration. (UK)

  3. Role of radiation technology in preservation of food and agricultural commodities

    International Nuclear Information System (INIS)

    Rajput, Sanjay

    2016-01-01

    Several technological benefits can be achieved by gamma radiation processing of agricultural commodities and food include: inhibition of sprouting in tubers, bulbs and rhizomes; disinfestation of insect pests in stored products; disinfestation of quarantine pests in fresh produce; delay in ripening and senescence in fruits and vegetables; destruction of microbes responsible for spoilage of food; elimination of parasites and pathogens of public health importance in food

  4. The wholesomeness of irradiated food

    International Nuclear Information System (INIS)

    Elias, P.S.; Matsuyama, A.

    1978-01-01

    It is apparent that there is a need for protection of the consumer and a need for governmental authorities to insure a safe and wholesome food supply for the population. Based on objective and scientific evidence regarding the safety of food irradiation, national and international health authorities are able to determine whether irradiated food is acceptable for human consumption. Following a thorough review of all available data, the Joint FAO/IAEA/WHO Expert Committee unconditionally approved wheat and ground wheat products and papaya irradiated for disingestation at a maximum dose of 100 krad, potatoes irradiated for sprout control at a maximum dose not exceeding 15 krad, and chicken irradiated at a maximum dose of 700 krad to reduce microbiological spoilage. Lastly, it unconditionally approved strawberries irradiated at a maximum dose of 300 krad to prolong storage. Onions at irradiated for sprout control at a maximum dose of 15 krad were temporarily approved, subject to preparation of further data on multigeneration reproduction studies on rats. Codfish and redfish eviscerated after irradiation at a maximum dose of 220 krad to reduce microbiological spoilage were also approved, based on the results of various studies in progress. Temporary, conditional approval of rice irradiated for insect disinfestation at a maximum dose of 100 krad was based on results of long-term studies on rats and monkies, available in the next review. Due to insufficient data, no decision regarding irradiated mushrooms was made. (Bell, E.)

  5. Fight Fungi with Fungi: Antifungal Properties of the Amphibian Mycobiome

    Directory of Open Access Journals (Sweden)

    Patrick J. Kearns

    2017-12-01

    Full Text Available Emerging infectious diseases caused by fungal taxa are increasing and are placing a substantial burden on economies and ecosystems worldwide. Of the emerging fungal diseases, chytridomycosis caused by the fungus Batrachochytrium dendrobatidis (hereafter Bd is linked to global amphibian declines. Amphibians have innate immunity, as well as additional resistance through cutaneous microbial communities. Despite the targeting of bacteria as potential probiotics, the role of fungi in the protection against Bd infection in unknown. We used a four-part approach, including high-throughput sequencing of bacterial and fungal communities, cultivation of fungi, Bd challenge assays, and experimental additions of probiotic to Midwife Toads (Altyes obstetricans, to examine the overlapping roles of bacterial and fungal microbiota in pathogen defense in captive bred poison arrow frogs (Dendrobates sp.. Our results revealed that cutaneous fungal taxa differed from environmental microbiota across three species and a subspecies of Dendrobates spp. frogs. Cultivation of host-associated and environmental fungi realved numerous taxa with the ability to inhibit or facilitate the growth of Bd. The abundance of cutaneous fungi contributed more to Bd defense (~45% of the fungal community, than did bacteria (~10% and frog species harbored distinct inhibitory communities that were distinct from the environment. Further, we demonstrated that a fungal probiotic therapy did not induce an endocrine-immune reaction, in contrast to bacterial probiotics that stressed amphibian hosts and suppressed antimicrobial peptide responses, limiting their long-term colonization potential. Our results suggest that probiotic strategies against amphibian fungal pathogens should, in addition to bacterial probiotics, focus on host-associated and environmental fungi such as Penicillium and members of the families Chaetomiaceae and Lasiosphaeriaceae.

  6. Food irradiation - a viable technology for reducing postharvest losses of food

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1985-01-01

    Research and development in the past 30 years have clearly demonstrated that food irradiation is a safe, effective and environmentally clean process of food preservation. Twenty-seven countries have approved over 40 irradiated foods or groups of related food items for human consumption, either on an unconditional or a restricted basis. The technology is beginning to play an important role in reducing post-harvest losses of food and in facilitating wider distribution of food in the trade. Its wide application in solving microbial spoilage losses of food, insect disinfestation, improving hygienic qualities, slowing down physiological processes of foods is reviewed. Special emphasis is placed on applications of direct relevance to countries in Asia and the Pacific region

  7. Influence of audiovisuals and food samples on consumer acceptance of food irradiation

    International Nuclear Information System (INIS)

    Pohlman, A.J.; Wood, O.B.; Mason, A.C.

    1994-01-01

    The effects of audiovisual presentation on consumers' knowledge and attitudes toward food irradiation were demonstrated. Food irradiation is a method of food preservation that can destroy the microorganisms responsible for many foodborne illnesses and food spoilage. However, the food industry has been slow to adopt this method because it is unsure of consumer acceptance. One hundred and seventy-nine consumers were given a slide-tape presentation on food irradiation. Test subjects were also presented with a sample of irradiated strawberries. It was found that participants knew more about and were more positive toward food irradiation following the educational program. These findings demonstrate the value of educational materials in influencing the food preferences of consumers

  8. Food irradiation - a viable technology for reducing post harvest losses of food

    International Nuclear Information System (INIS)

    Loaharanu, O.

    1985-01-01

    Research and development in the past 30 years have clearly demonstrated that food irradiation is a safe, effective and environmentally clean process of food preservation. Twenty-seven countries have approved over 40 irradiated foods or groups of related food items for human consumption, either on an unconditional or a restricted basis. The technology is beginning to play an important role in reducing post-harvest losses of food in facilitating wider distribution of food in the trade. Its wide application in solving microbial spoilage loss of food, insect disinfestation, improving hygenic qualities, slowing down physiological processes of foods is reviewed. Special emphasis is placed on applications of direct relevance to countries in Asia and the Pacific region. (author)

  9. Carnobacterium: positive and negative effects in the environment and in foods

    DEFF Research Database (Denmark)

    Leisner, J.J.; Laursen, B.G.; Prevost, H.

    2007-01-01

    variation. The responsible spoilage metabolites are not well characterized, but branched alcohols and aldehydes play a partial role. Their production of tyramine in foods is critical for susceptible individuals, but carnobacteria are not otherwise human pathogens. Carnobacterium maltaromaticum can be a fish...

  10. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  11. Potential use of Rosemary, Propolis and Thyme as Natural Food Preservatives

    NARCIS (Netherlands)

    Tzima, K.; Makris, D.; Nikiforidis, C.V.; Mourtzinos, I.

    2015-01-01

    The use of preservatives in food stuffs and beverages is essential in order to prevent spoilage due to microbial growth or undesirable chemical changes. However, the use of synthetic additives has been associated with various health problems. Therefore, consumers have turned suspicious and obverted

  12. Molecular and phenotypic characterization of anamorphic fungi

    OpenAIRE

    Madrid Lorca, Hugo

    2011-01-01

    Anamorphic fungi (those reproducing asexually) are a big part of kingdom Fungi. Most of them occur as saprobes in nature, but numerous species are pathogenic to plants and animals including man. With the aim of contributing to the knowledge of the diversity and distribution of anamorphic fungi, we performed a phenotypic and molecular characterization of environmental and clinical isolates of these fungi. Based on a polyphasic taxonomy approach which included morphology, physiology and DNA seq...

  13. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon

    DEFF Research Database (Denmark)

    Gimenez, B.; Dalgaard, Paw

    2004-01-01

    Aims: To evaluate and model the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon.Methods and Results: Growth kinetics of L. monocytogenes, lactic acid bacteria (LAB), Enterobacteriaceae, enterococci and Photobacterium phosphoreum were determined...

  14. Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken

    Science.gov (United States)

    Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT©) technology and are the first complete ...

  15. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans.

    Science.gov (United States)

    Liu, Junyan; Deng, Yang; Peters, Brian M; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E

    2016-11-07

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans.

  16. Autoinducer-2-like activity associated with foods and its interaction with food additives.

    Science.gov (United States)

    Lu, Lingeng; Hume, Michael E; Pillai, Suresh D

    2004-07-01

    The autoinducer-2 (AI-2) molecule produced by bacteria as part of quorum sensing is considered to be a universal inducer signal in bacteria because it reportedly influences gene expression in a variety of both gram-negative and gram-positive bacteria. The objective of this study was to determine whether selected fresh produce and processed foods have AI-2-like activity and whether specific food additives can act as AI-2 mimics and result in AI-2-like activity. The luminescence-based response of the reporter strain Vibrio harveyi BB170 was used as the basis for determining AI-2 activity in the selected foods and food ingredients. Maximum AI-2 activity was seen on the frozen fish sample (203-fold, compared with the negative control) followed by tomato, cantaloupe, carrots, tofu, and milk samples. Interestingly, some samples were capable of inhibiting AI-2 activity. Turkey patties showed the highest inhibition (99.8% compared with the positive control) followed by chicken breast (97.5%), homemade cheeses (93.7%), beef steak (90.6%), and beef patties (84.4%). AI-2 activity was almost totally inhibited by sodium propionate, whereas sodium benzoate caused 93.3% inhibition, compared with 75% inhibition by sodium acetate. Sodium nitrate did not have any appreciable effect, even at 200 ppm. Understanding the relationships that exist between AI-2 activity on foods and the ecology of pathogens and food spoilage bacteria on foods could yield clues about factors controlling food spoilage and pathogen virulence.

  17. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef.

    Science.gov (United States)

    Ercolini, Danilo; Russo, Federica; Nasi, Antonella; Ferranti, Pasquale; Villani, Francesco

    2009-04-01

    Mesophilic and psychrotrophic populations from refrigerated meat were identified in this study, and the spoilage potential of microbial isolates in packaged beef was evaluated by analyzing the release of volatile organic compounds (VOC) by gas chromatography-mass spectrometry (GC/MS). Fifty mesophilic and twenty-nine psychrotrophic isolates were analyzed by random amplified polymorphic DNA-PCR, and representative strains were identified by 16S rRNA gene sequencing. Carnobacterium maltaromaticum and C. divergens were the species most frequently found in both mesophilic and psychrotrophic populations. Acinetobacter baumannii, Buttiauxella spp. and Serratia spp. were identified among the mesophilic isolates, while Pseudomonas spp. were commonly identified among the psychrotrophs. The isolates were further characterized for their growth at different temperatures and their proteolytic activity in vitro on meat proteins extracts at 7 degrees C. Selected proteolytic strains of Serratia proteamaculans, Pseudomonas fragi, and C. maltaromaticum were used to examine their spoilage potential in situ. Single strains of these species and mixtures of these strains were used to contaminate beef chops that were packed and stored at 7 degrees C. At time intervals up to 1 month, viable counts were determined, and VOC were identified by GC/MS. Generally, the VOC concentrations went to increase during the storage of the contaminated meats, and the profiles of the analyzed meat changed dramatically depending on the contaminating microbial species. About 100 volatiles were identified in the different contaminated samples. Among the detected volatiles, some specific molecules were identified only when the meat was contaminated by a specific microbial species. Compounds such as 2-ethyl-1-hexanol, 2-buten-1-ol, 2-hexyl-1-octanol, 2-nonanone, and 2-ethylhexanal were detectable only for C. maltaromaticum, which also produced the highest number of aldehydes, lactones, and sulfur compounds. The

  18. Antimicrobial activity of broccoli (Brassica oleracea var. italica) cultivar Avenger against pathogenic bacteria, phytopathogenic filamentous fungi and yeast.

    Science.gov (United States)

    Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E

    2018-01-01

    The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.

  19. Wild ideas in food

    DEFF Research Database (Denmark)

    Münke, Christopher; Halloran, Afton Marina Szasz; Vantomme, Paul

    2015-01-01

    Foraging for all manner of wild plants, animals and fungi and their products makes up part of the traditional diets of approximately 300 million worldwide (Bharucha and Pretty, 2010). Furthermore, their relevance in the global food supply is often underestimated, as policies and statistics...

  20. Antifungal Microbial Agents for Food Biopreservation-A Review.

    Science.gov (United States)

    Leyva Salas, Marcia; Mounier, Jérôme; Valence, Florence; Coton, Monika; Thierry, Anne; Coton, Emmanuel

    2017-07-08

    Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments-including fungicides and chemical preservatives-are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for 'clean label' food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.

  1. ENHANCING FOOD SAFETY AND STABILITY THROUGH IRRADIATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad Shah

    2014-04-01

    Full Text Available Food irradiation is one of the non thermal food processing methods. It is the process of exposing food materials to the controlled amounts of ionizing radiations such as gamma rays, X-rays and accelerated electrons, to improve microbiological safety and stability. Irradiation disrupts the biological processes that lead to decay of food quality. It is an effective tool to reduce food-borne pathogens, spoilage microorganisms and parasites; to extend shelf-life and for insect disinfection. The safety and consumption of irradiated foods have been extensively studied at national levels and in international cooperations and have concluded that foods irradiated under appropriate technologies are both safe and nutritionally adequate. Specific applications of food irradiation have been approved by national legislations of more than 55 countries worldwide. This review aims to discuss the applications of irradiation in food processing with the emphasis on food safety and stability.

  2. Promotion of food irradiation in Japan

    International Nuclear Information System (INIS)

    Kondo, Shunsuke; Tanaka, Shunichi; Tada, Mikitaro; Furuta, Masakazu; Kume, Tamikazu; Hayashi, Toru; Yamamoto, Kazuko

    2007-01-01

    Atomic Energy Commission of Japan has organized special symposia inviting citizens and consumers on food irradiation based on the report presented by expert members meeting discussing about food irradiation in various countries as well as in Japan. This document summarizes the lectures and talks presented at the symposia: usefulness of food irradiation, one of the most effective means of sterilization to ensure sanitary supplies and to prevent loss from spoilage, activities of the subcommittee consisting of experts of this field, a report of the open forum with public participants on food irradiation, present status of detection techniques for the irradiated foods, the role of phyto-sanitary measures in plant protection, and how to realize the consumer's free choices for irradiated foods. (S. Ohno)

  3. Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products.

    Science.gov (United States)

    Marín, S; Vinaixa, M; Brezmes, J; Llobet, E; Vilanova, X; Correig, X; Ramos, A J; Sanchis, V

    2007-02-28

    A MS-based electronic nose was used to detect fungal spoilage (measured as ergosterol concentration) in samples of bakery products. Bakery products were inoculated with different Eurotium, Aspergillus and Penicillium species, incubated in sealed vials and their headspace sampled after 2, 4 and 7 days. Once the headspace was sampled, ergosterol content was determined in each sample. Different electronic nose signals were recorded depending on incubation time. Both the e-nose signals and ergosterol levels were used to build models for prediction of ergosterol content using e-nose measurements. Accuracy on prediction of those models was between 87 and 96%, except for samples inoculated with Penicillium corylophilum where the best predictions only reached 46%.

  4. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Mejlholm, Ole; Christiansen, T.J.

    1997-01-01

    Occurrence and growth of Photobacterium phosphoreum were studied in 20 experiments with fresh fish from Denmark, Iceland and Greece. The organism was detected in all marine fish species but not in fish from fresh water. Growth of P. phosphoreum to high levels (>10(7) cfu g(-1)) was observed in most...... products and the organism is likely to be of importance for spoilage of several modified atmosphere-packed (MAP) marine fish species when stored at chill temperatures. Some microbiological methods recommended for control of fish products by national and international authorities are inappropriate...... for detection of psychrotolerant and heat-labile micro-organisms like P. phosphoreum. These methods have been used in many previous studies of MAP fish and this could explain why, contrary to the findings in the present study, P. phosphoreum in general was not detected previously in spoiled MAP fish....

  5. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control.

    Science.gov (United States)

    Bueno-Pallero, Francisco Ángel; Blanco-Pérez, Rubén; Dionísio, Lídia; Campos-Herrera, Raquel

    2018-05-01

    Entomopathogenic nematodes (EPNs) and fungi (EPF) are well known biological control agents (BCAs) against insect pests. Similarly, the nematophagous fungi (NF) are considered good BCA candidates for controlling plant parasitic nematodes. Because NF can employ EPNs as food and interact with EPF, we speculate that the simultaneous application of EPNs and EPF might result in higher insect mortality, whereas the triple species combination with NF will reduce the EPN and EPF activity by predation or inhibition. Here we evaluated single, dual (EPN + EPF, EPF + NF, EPN + NF) and triple (EPN + EPF + NF) combinations of one EPN, Steinernema feltiae (Rhabditida: Steinernematidae), one EPF, Beauveria bassiana (Hypocreales: Clavicipitaceae), and two NF, Arthrobotrys musiformis (Orbiliales: Orbiliaceae) and Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) under laboratory conditions. First, we showed that EPF reduced the growth rate of NF and vice versa when combined in both rich and limiting media, suggesting a negative interaction when combining both fungi. Three different fungal applications (contact with mycelia-conidia, immersion in conidial suspension, and injection of conidial suspension) were tested in single, dual and triple species combinations, evaluating Galleria mellonella (Lepidoptera: Pyralidae) larval mortality and time to kill. When mycelia was presented, the EPF appeared to be the dominant in combined treatments, whereas in immersion exposure was the EPN. In both types of exposure, NF alone did not produce any effect on larvae. However, when A. musiformis was injected, it produced larval mortalities >70% in the same time span as EPN. Overall, additive effects dominated the dual and triple combinations, with the exception of injection method, where synergisms occurred for both NF species combined with EPN + EPF. This study illustrates how differences in species combination and timing of fungal arrival can modulate the action

  6. Nanotechnology for Food Packaging and Food Quality Assessment.

    Science.gov (United States)

    Rossi, Marco; Passeri, Daniele; Sinibaldi, Alberto; Angjellari, Mariglen; Tamburri, Emanuela; Sorbo, Angela; Carata, Elisabetta; Dini, Luciana

    Nanotechnology has paved the way to innovative food packaging materials and analytical methods to provide the consumers with healthier food and to reduce the ecological footprint of the whole food chain. Combining antimicrobial and antifouling properties, thermal and mechanical protection, oxygen and moisture barrier, as well as to verify the actual quality of food, e.g., sensors to detect spoilage, bacterial growth, and to monitor incorrect storage conditions, or anticounterfeiting devices in food packages may extend the products shelf life and ensure higher quality of foods. Also the ecological footprint of food chain can be reduced by developing new completely recyclable and/or biodegradable packages from natural and eco-friendly resources. The contribution of nanotechnologies to these goals is reviewed in this chapter, together with a description of portable devices ("lab-on-chip," sensors, nanobalances, etc.) which can be used to assess the quality of food and an overview of regulations in force on food contact materials. © 2017 Elsevier Inc. All rights reserved.

  7. Food irradiation: a look at regulatory status, consumer acceptance, and economies of scale

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, R. M. [Economic Research Service, USDA (United States)

    1986-02-15

    Food irradiation is receiving renewed attention by many individuals--scientists, policy makers, agricultural producers, public health officials, and consumers. Interest in food irradiation’s benefits and limitations has been piqued by recent concerns over the safety of chemical fumigants and preservatives and interest in reducing the incidence of food borne diseases. Individuals concerned with food shortage problems in developing countries are anxious to see if irradiation can be used to eliminate high spoilage losses in those countries. Food processors and retailers are always looking for less costly preservation methods and exploring new techniques to achieve desirable qualities in fresh and processed foods.

  8. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi

    Directory of Open Access Journals (Sweden)

    Xiaohan Wang

    2017-11-01

    Full Text Available Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs, are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan–Xaa, proline–Xaa, non-tryptophan–non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.

  9. Evolution of entomopathogenicity in fungi.

    Science.gov (United States)

    Humber, Richard A

    2008-07-01

    The recent completions of publications presenting the results of a comprehensive study on the fungal phylogeny and a new classification reflecting that phylogeny form a new basis to examine questions about the origins and evolutionary implications of such major habits among fungi as the use of living arthropods or other invertebrates as the main source of nutrients. Because entomopathogenicity appears to have arisen or, indeed, have lost multiple times in many independent lines of fungal evolution, some of the factors that might either define or enable entomopathogenicity are examined. The constant proximity of populations of potential new hosts seem to have been a factor encouraging the acquisition or loss of entomopathogenicity by a very diverse range of fungi, particularly when involving gregarious and immobile host populations of scales, aphids, and cicadas (all in Hemiptera). An underlying theme within the vast complex of pathogenic and parasitic ascomycetes in the Clavicipitaceae (Hypocreales) affecting plants and insects seems to be for interkingdom host-jumping by these fungi from plants to arthropods and then back to the plant or on to fungal hosts. Some genera of Entomophthorales suggest that the associations between fungal pathogens and their insect hosts appear to be shifting away from pathogenicity and towards nonlethal parasitism.

  10. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  11. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms.

    Science.gov (United States)

    Timmermans, R A H; Nierop Groot, M N; Nederhoff, A L; van Boekel, M A J S; Matser, A M; Mastwijk, H C

    2014-03-03

    Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the quality. In this study, pathogenic and spoilage micro-organisms relevant in refrigerated fruit juices were studied to determine the impact of process parameters and juice composition on the effectiveness of the PEF process to inactivate the micro-organisms. Experiments were performed using a continuous-flow PEF system at an electrical field strength of 20 kV/cm with variable frequencies to evaluate the inactivation of Salmonella Panama, Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae in apple, orange and watermelon juices. Kinetic data showed that under the same conditions, S. cerevisiae was the most sensitive micro-organism, followed by S. Panama and E. coli, which displayed comparable inactivation kinetics. L. monocytogenes was the most resistant micro-organism towards the treatment conditions tested. A synergistic effect between temperature and electric pulses was observed at inlet temperatures above 35 °C, hence less energy for inactivation was required at higher temperatures. Different juice matrices resulted in a different degree of inactivation, predominantly determined by pH. The survival curves were nonlinear and could satisfactorily be modeled with the Weibull model. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Australian wine consumers’ acceptance of and attitudes toward the use of additives in wine and food production

    OpenAIRE

    Saltman Y; Johnson TE; Wilkinson KL; Bastian SEP

    2015-01-01

    Yaelle Saltman, Trent E Johnson, Kerry L Wilkinson, Susan EP Bastian Department of Wine and Food, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, Australia. Abstract: Additives are routinely used in food and wine production to enhance product quality and/or prevent spoilage. Compared with other industries, the wine industry is only permitted to use a limited number of additives. Whereas flavor additives are often used to intensify the aroma and f...

  13. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    Science.gov (United States)

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi.

    Science.gov (United States)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J

    2010-12-31

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.

  15. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2010-12-01

    Full Text Available Abstract Background Leaf-cutting (attine ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. Results We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21% of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Conclusions Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to

  16. Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria

    Directory of Open Access Journals (Sweden)

    Samuel Mailafia

    2017-04-01

    Full Text Available Aim: Annual reports have shown that 20% of fruits and vegetables produced are lost to spoilage. This study was undertaken to isolate and identify fungi that are associated with spoilt fruits commonly sold in Gwagwalada market, Abuja, and recommend appropriate control measure. Materials and Methods: The study was conducted in Gwagwalada metropolis, Gwagwalada Area Council of the Federal Capital Territory, Abuja, Nigeria. A total of 100 spoilt fruits which include pawpaw (Carica papaya, orange (Citrus sinensis, tomato (Lycopersicon esculentum, pineapple (Ananas comosus, and watermelon (Citrullus vulgaris were purchased and examined for the presence of fungal organisms using standard methods. The data collected were analyzed using simple descriptive statistics (frequency and mean and analysis of variance (p<0.05. Results: Aspergillus niger had the highest occurrence in pineapple, watermelon, oranges, pawpaw, and tomatoes with a frequency of 38%. Fusarium avenaceum followed with the frequency of occurrence of 31% in fruits such as pineapple, watermelon, oranges, pawpaw, and tomatoes while Penicillium digitatum and Rhizopus stolonifer had the least frequency of 4% each in tomato; and orange and tomato, respectively. Other fungal species were identified as yeast (Saccharomyces species (10%, Fusarium solani (8%, and Aspergillus flavus (5%. The highest prevalence rate was 70% of A. niger from orange followed by F. avenaceum of which 65% isolates were recovered from pawpaw. Other fungal organisms such as yeast (Saccharomyces species, P. digitatum and R. stolonifer were isolated with varying prevalence (40%, 20%, and 5% from watermelon, tomato, and orange, respectively. However, there was no significant difference in the fungal load of the various fruits studied (analysis of variance=478.2857, p<0.05, F=4.680067 and df=34. Conclusion: The pathogenic fungi species associated with fruits spoilage in this study are of economical and public health

  17. The Effect of High Hydrostatic Pressure on Microorganisms in Food Preservation

    OpenAIRE

    M. Arici

    2006-01-01

    High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. High-pressure treatments are receiving a great deal of attention for the inactivation of microorganisms in food processing, pressure instead of temperature is used as stabilizing factor. High hydrostatic pressure treatment is the most studied alternative process, many works reported successful results in inactivating a wide range of microorganisms under ...

  18. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Li, Bing; Peters, Brian M; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2017-06-01

    This study aimed to investigate the spoilage capability of Lactobacillus lindneri during the induction and resuscitation of viable but nonculturable (VBNC) state. L. lindneri strain was identified by sequencing the PCR product (amplifying 16S rRNA gene) using ABI Prism 377 DNA Sequencer. During the VBNC state induction by low temperature storage and beer adaption, total, culturable, and viable cells were assessed by acridine orange direct counting, plate counting, and Live/Dead BacLight bacterial viability kit, respectively. Organic acids and diacetyl concentration were measured by reversed-phase high performance liquid chromatography and head dpace gas chromatography, respectively. VBNC state of L. lindneri was successfully induced by both beer adaption and low temperature storage, and glycerol frozen stock was the optimal way to maintain the VBNC state. Addition of catalase was found to be an effective method for the resuscitation of VBNC L. lindneri cells. Furthermore, spoilage capability remained similar during the induction and resuscitation of VBNC L. lindneri. This is the first report of induction by low temperature storage and resuscitation of VBNC L. lindneri strain, as well as the first identification of spoilage capability of VBNC and resuscitated L. lindneri cells. This study indicated that the potential colonization of L. lindneri strain in brewery environment, formation and resuscitation of VBNC state, as well as maintenance in beer spoilage capability, may be an important risk factor for brewery environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Food irradiation: an alternative technology

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P

    1986-12-31

    History has shown that man has continued to search for methods to protect his food from various spoilage agents. Traditional methods of food preservation such as drying, salting, fermentation, have been known for centuries and are being practised even today. Within the past century, modern technologies such as canning, freezing, refrigeration, the use of preservatives and pesticides, have further equipped man with an arsenal of methods to combat food losses and to increase the quantity, quality and safety of our food supplies. The most recent technology, irradiation, has gone through a great deal of research and development in the past 40 years and has shown a strong potential as another method for food preservation. As irradiation is still not familiar to the public at large, this paper attempts to inform scientists, officials, representatives of the food industry, and consumers of the global situation of the safety, benefits and applications of food irradiation by answering common questions often asked about the technology today. Special emphasis will be placed on the possible contribution of food irradiation to ASEAN

  20. Food irradiation: an alternative technology

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1985-01-01

    History has shown that man has continued to search for methods to protect his food from various spoilage agents. Traditional methods of food preservation such as drying, salting, fermentation, have been known for centuries and are being practised even today. Within the past century, modern technologies such as canning, freezing, refrigeration, the use of preservatives and pesticides, have further equipped man with an arsenal of methods to combat food losses and to increase the quantity, quality and safety of our food supplies. The most recent technology, irradiation, has gone through a great deal of research and development in the past 40 years and has shown a strong potential as another method for food preservation. As irradiation is still not familiar to the public at large, this paper attempts to inform scientists, officials, representatives of the food industry, and consumers of the global situation of the safety, benefits and applications of food irradiation by answering common questions often asked about the technology today. Special emphasis will be placed on the possible contribution of food irradiation to ASEAN

  1. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  2. BIOMODIFICATION OF KENAF USING WHITE ROT FUNGI

    OpenAIRE

    Rasmina Halis,; Hui Rus Tan,; Zaidon Ashaari,; Rozi Mohamed

    2012-01-01

    White rot fungi can be used as a pretreatment of biomass to degrade lignin. It also alters the structure of the lignocellulosic matter, thus increasing its accessibility to enzymes able to convert polysaccharides into simple sugars. This study compares the ability of two species of white rot fungi, Pycnoporous sanguineus and Oxyporus latemarginatus FRIM 31, to degrade lignin in kenaf chips. The white rot fungi were originally isolated from the tropical forest in Malaysia. Kenaf chips were fir...

  3. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes.

    Science.gov (United States)

    Hart, Miranda; Ehret, David L; Krumbein, Angelika; Leung, Connie; Murch, Susan; Turi, Christina; Franken, Philipp

    2015-07-01

    Arbuscular mycorrhizal (AM) fungi can affect many different micronutrients and macronutrients in plants and also influence host volatile compound synthesis. Their effect on the edible portions of plants is less clear. Two separate studies were performed to investigate whether inoculation by AM fungi (Rhizophagus irregularis, Funneliformis mosseae, or both) can affect the food quality of tomato fruits, in particular common minerals, antioxidants, carotenoids, a suite of vitamins, and flavor compounds (sugars, titratable acids, volatile compounds). It was found that AM fungal inoculation increased the nutrient quality of tomato fruits for most nutrients except vitamins. Fruit mineral concentration increased with inoculation (particularly N, P, and Cu). Similarly, inoculated plants had fruit with higher antioxidant capacity and more carotenoids. Furthermore, five volatile compounds were significantly higher in AM plants compared with non-AM controls. Taken together, these results show that AM fungi represent a promising resource for improving both sustainable food production and human nutritional needs.

  4. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Nielsen, Per Væggemose

    2004-01-01

    moisture sponge cake types (a(w) 0.80-0.95, pH 4.7-7.4). Initially, rye bread conditions (a(w) 0.94-0.97 and pH 4.4-4.8) in combination with calcium propionate were investigated. Results showed that the highest concentration of propionate (0.3%) at all conditions apart from high a(w) (0.97) and high pH (4...... enhanced at high water activity levels. The effect of propionate on production of secondary metabolites (mycophenolic acid, rugulovasine, echinulin, flavoglaucin) was also studied, and variable or isolate dependent results were found. Subsequently, a screening experiment representing a wider range...

  5. Effects of a spoilage yeast from silage on in vitro ruminal fermentation.

    Science.gov (United States)

    Santos, M C; Lock, A L; Mechor, G D; Kung, L

    2015-04-01

    Feeding silages with high concentrations of yeasts from aerobic spoilage is often implicated as a cause of poor animal performance on dairies. Our objective was to determine if a commonly found spoilage yeast, isolated from silage, had the potential to alter in vitro ruminal fermentations. A single colony of Issatchenkia orientalis, isolated from high-moisture corn, was grown in selective medium. The yeast culture was purified and added to in vitro culture tubes containing a total mixed ration (43% concentrate, 43% corn silage, 11% alfalfa haylage, and 3% alfalfa hay on a dry matter basis), buffer, and ruminal fluid to achieve added theoretical final concentrations of 0 (CTR), 4.40 (low yeast; LY), 6.40 (medium yeast; MY), and 8.40 (high yeast; HY) log10 cfu of yeast/mL of in vitro fluid. Seven separate tubes were prepared for each treatment and each time point and incubated for 12 and 24h at 39 °C. At the end of the incubation period, samples were analyzed for pH, yeast number, neutral detergent fiber (NDF) digestibility, volatile fatty acids (VFA), and fatty acids (FA). We found that total viable yeast counts decreased for all treatments in in vitro incubations but were still relatively high (5.3 log10 cfu of yeasts/mL) for HY after 24h of incubation. Addition of HY resulted in a lower pH and higher concentration of total VFA in culture fluid compared with other treatments. Moreover, additions of MY and HY decreased in vitro NDF digestibility compared with CTR, and the effect was greatest for HY. Overall, the biohydrogenation of dietary unsaturated FA was not altered by addition of I. orientalis and decreased over time with an increase in the accumulation of saturated FA, especially palmitic and stearic acids. We conclude that addition of I. orientalis, especially at high levels, has the potential to reduce in vitro NDF digestion and alter other aspects of ruminal fermentations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All

  6. Lipidomics as an important key for the identification of beer-spoilage bacteria.

    Science.gov (United States)

    Řezanka, T; Matoulková, D; Benada, O; Sigler, K

    2015-06-01

    Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was used for characterizing intact plasmalogen phospholipid molecules in beer-spoilage bacteria. Identification of intact plasmalogens was carried out using collision-induced dissociation and the presence of suitable marker molecular species, both qualitative and quantitative, was determined in samples containing the anaerobic bacteria Megasphaera and Pectinatus. Using selected ion monitoring (SIM), this method had a limit of detection at 1 pg for the standard, i.e. 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine and be linear in the range of four orders of magnitude from 2 pg to 20 ng. This technique was applied to intact plasmalogen extracts from the samples of contaminated and uncontaminated beer without derivatization and resulted in the identification of contamination of beer by Megasphaera and Pectinatus bacteria. The limit of detection was about 830 cells of anaerobic bacteria, i.e. bacteria containing natural cyclopropane plasmalogenes (c-p-19:0/15:0), which is the majority plasmalogen located in both Megasphaera and Pectinatus. The SIM ESI-MS method has been shown to be useful for the analysis of low concentration of plasmalogens in all biological samples, which were contaminated with anaerobic bacteria, e.g. juice, not only in beer. Significance and impact of the study: Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) using collision-induced dissociation was used to characterize intact plasmalogen phospholipid molecules in beer-spoilage anaerobic bacteria Megasphaera and Pectinatus. Using selected ion monitoring (SIM), this method has a detection limit of 1 pg for the standard 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine and is linear within four orders of magnitude (2 pg to 20 ng). The limit of detection was about 830 cells of bacteria containing natural cyclopropane plasmalogen (c-p-19:0/15:0). SIM ESI-MS method is useful for analyzing low

  7. A microbial spoilage profile of half shell Pacific oysters (Crassostrea gigas) and Sydney rock oysters (Saccostrea glomerata).

    Science.gov (United States)

    Madigan, Thomas L; Bott, Nathan J; Torok, Valeria A; Percy, Nigel J; Carragher, John F; de Barros Lopes, Miguel A; Kiermeier, Andreas

    2014-04-01

    This study aimed to assess bacterial spoilage of half shell Pacific and Sydney rock oysters during storage using microbial culture and 16S rRNA pyrosequencing. Odour and pH of oyster meats were also investigated. Estimation of microbiological counts by microbial culture highlighted growth of psychrotrophic bacteria. During storage, odour scores (a score describing deterioration of fresh odours where a score of 1 is fresh and 4 is completely spoiled) increased from 1.0 to 3.0 for Pacific oysters and from 1.3 to 3.4 for Sydney rock oysters. pH results obtained for both species fluctuated during storage (range 6.28-6.73) with an overall increase at end of storage. Pyrosequencing revealed that the majority of bacteria at Day 0 represented taxa from amongst the Proteobacteria, Tenericutes and Spirochaetes that have not been cultured and systematically described. During storage, Proteobacteria became abundant with Pseudoalteromonas and Vibrio found to be dominant in both oyster species at Day 7. Analysis of the pyrosequencing data showed significant differences in bacterial profiles between oyster species and storage time (both P = 0.001). As oysters spoiled, bacterial profiles between oyster species became more similar indicating a common spoilage profile. Data presented here provides detailed insight into the changing bacterial profile of shucked oysters during storage and has identified two genera, Pseudoalteromonas and Vibrio, as being important in spoilage of shucked oysters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Pathogenic psychrotolerant sporeformers: an emerging challenge for low-temperature storage of minimally processed foods.

    Science.gov (United States)

    Markland, Sarah M; Farkas, Daniel F; Kniel, Kalmia E; Hoover, Dallas G

    2013-05-01

    Sporeforming bacteria are a significant problem in the food industry as they are ubiquitous in nature and capable of resisting inactivation by heat and chemical treatments designed to inactivate them. Beyond spoilage issues, psychrotolerant sporeformers are becoming increasingly recognized as a potential hazard given the ever-expanding demand for refrigerated processed foods with extended shelf-life. In these products, the sporeforming pathogens of concern are Bacillus cereus, Bacillus weihenstephanensis, and Clostridium botulinum type E. This review article examines the foods, conditions, and organisms responsible for the food safety issue caused by the germination and outgrowth of psychrotolerant sporeforming pathogens in minimally processed refrigerated foods.

  9. Ecological-friendly pigments from fungi.

    Science.gov (United States)

    Durán, Nelson; Teixeira, Maria F S; De Conti, Roseli; Esposito, Elisa

    2002-01-01

    The dyestuff industry is suffering from the increases in costs of feedstock and energy for dye synthesis, and they are under increasing pressure to minimize the damage to the environment. The industries are continuously looking for cheaper, more environmentally friendly routes to existing dyes. The aim of this minireview is to discuss the most important advances in the fungal pigment area and its interest in biotechnological applications. Characteristic pigments are produced by a wide variety of fungi and the chemical composition of natural dyes are described. These pigments exhibit several biological activities besides cytotoxicity. The synthetic pigments authorized by the EC and in USA and the natural pigments available in the world market are discussed. The obstacle to the exploitation of new natural pigments sources is the food legislation, requesting costly toxicological research, manufacturing costs, and acceptance by consumers. The dislike for novel ingredients is likely to be the biggest impediment for expansion of the pigment list in the near future. If the necessary toxicological testing and the comparison with accepted pigments are made, the fungal pigments, could be acceptable by the current consumer. The potentiality of pigment production in Brazil is possible due to tremendous Amazonian region biodiversity.

  10. Production and chemical characterization of pigments in filamentous fungi.

    Science.gov (United States)

    Souza, Patrícia Nirlane da Costa; Grigoletto, Tahuana Luiza Bim; de Moraes, Luiz Alberto Beraldo; Abreu, Lucas M; Guimarães, Luís Henrique Souza; Santos, Cledir; Galvão, Luciano Ribeiro; Cardoso, Patrícia Gomes

    2016-01-01

    Production of pigments by filamentous fungi is gaining interest owing to their use as food colourants, in cosmetics and textiles, and because of the important biological activities of these compounds. In this context, the objectives of this study were to select pigment-producing fungi, identify these fungi based on internal transcribed spacer sequences, evaluate the growth and pigment production of the selected strains on four different media, and characterize the major coloured metabolites in their extracts. Of the selected fungal strains, eight were identified as Aspergillus sydowii (CML2967), Aspergillus aureolatus (CML2964), Aspergillus keveii (CML2968), Penicillium flavigenum (CML2965), Penicillium chermesinum (CML2966), Epicoccum nigrum (CML2971), Lecanicillium aphanocladii (CML2970) and Fusarium sp. (CML2969). Fungal pigment production was influenced by medium composition. Complex media, such as potato dextrose and malt extract, favoured increased pigment production. The coloured compounds oosporein, orevactaene and dihydrotrichodimerol were identified in extracts of L. aphanocladii (CML2970), E. nigrum (CML2971), and P. flavigenum (CML2965), respectively. These results indicate that the selected fungal strains can serve as novel sources of pigments that have important industrial applications.

  11. Effect of gamma radiation on fungi contaminating powdered cinnamon

    International Nuclear Information System (INIS)

    EL-Bazza, Z.E.

    1988-01-01

    Thirty fungal organisms were isolated from ten samples of powdered cinnamon. These fungal cultures, identified as aspergillus and penicillium sp., Were screened for aflatoxins B 1, B 2, G 1 and G 2 production. One isolate could produce aflatoxin B 1 and identified as aspergillus flavus. The D 1 0 value for this strain of aspergillus flavus was 0.35 kGy in aqueous suspension. The dose level of 4 kGy was found to be sufficient for decontamination of fungi present on one batch of powdered cinnamon investigated. This dose is within the accepted irradiation dose mentioned by the joint FAO/IAEA/WHO expert committee on irradiated foods

  12. Potential wood protection strategies using physiological requirements of wood degrading fungi

    NARCIS (Netherlands)

    Sailer, M.F.; Etten, B.D. van

    2004-01-01

    Due to the increasing restrictions in the use of wood preserving biocides a number of potential biocide free wood preserving alternatives are currently assessed. Wood degrading fungi require certain conditions in the wood in order to be able to use wood as a food source. This paper discusses the

  13. [Application of Fourier transform infrared spectroscopy in identification of wine spoilage].

    Science.gov (United States)

    Zhao, Xian-De; Dong, Da-Ming; Zheng, Wen-Gang; Jiao, Lei-Zi; Lang, Yun

    2014-10-01

    In the present work, fresh and spoiled wine samples from three wines produced by different companies were studied u- sing Fourier transform infrared (FTIR) spectroscopy. We analyzed the physicochemical property change in the process of spoil- age, and then, gave out the attribution of some main FTIR absorption peaks. A novel determination method was explored based on the comparisons of some absorbance ratios at different wavebands although the absorbance ratios in this method were relative. Through the compare of the wine spectra before and after spoiled, the authors found that they were informative at the bands of 3,020~2,790, 1,760~1,620 and 1,550~800 cm(-1). In order to find the relation between these informative spectral bands and the wine deterioration and achieve the discriminant analysis, chemometrics methods were introduced. Principal compounds analysis (PCA) and soft independent modeling of class analogy (SIMCA) were used for classifying different-quality wines. And partial least squares discriminant analysis (PLS-DA) was applied to identify spoiled wines and good wines. Results showed that FTIR technique combined with chemometrics methods could effectively distinguish spoiled wines from fresh samples. The effect of classification at the wave band of 1 550-800 cm(-1) was the best. The recognition rate of SIMCA and PLSDA were respectively 94% and 100%. This study demonstrates that Fourier transform infrared spectroscopy is an effective tool for monitoring red wine's spoilage and provides theoretical support for developing early-warning equipments.

  14. Assessment of system reliability for a stochastic-flow distribution network with the spoilage property

    Science.gov (United States)

    Lin, Yi-Kuei; Huang, Cheng-Fu; Yeh, Cheng-Ta

    2016-04-01

    In supply chain management, satisfying customer demand is the most concerned for the manager. However, the goods may rot or be spoilt during delivery owing to natural disasters, inclement weather, traffic accidents, collisions, and so on, such that the intact goods may not meet market demand. This paper concentrates on a stochastic-flow distribution network (SFDN), in which a node denotes a supplier, a transfer station, or a market, while a route denotes a carrier providing the delivery service for a pair of nodes. The available capacity of the carrier is stochastic because the capacity may be partially reserved by other customers. The addressed problem is to evaluate the system reliability, the probability that the SFDN can satisfy the market demand with the spoilage rate under the budget constraint from multiple suppliers to the customer. An algorithm is developed in terms of minimal paths to evaluate the system reliability along with a numerical example to illustrate the solution procedure. A practical case of fruit distribution is presented accordingly to emphasise the management implication of the system reliability.

  15. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum.

    Science.gov (United States)

    Jääskeläinen, Elina; Johansson, Per; Kostiainen, Olli; Nieminen, Timo; Schmidt, Georg; Somervuo, Panu; Mohsina, Marzia; Vanninen, Paula; Auvinen, Petri; Björkroth, Johanna

    2013-02-01

    Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) which causes spoilage in cold-stored modified-atmosphere-packaged (MAP) meat products. In addition to the fermentative metabolism, L. gasicomitatum is able to respire when exogenous heme and oxygen are available. In this study, we investigated the respiration effects on growth rate, biomass, gene expression, and volatile organic compound (VOC) production in laboratory media and pork loin. The meat samples were evaluated by a sensory panel every second or third day for 29 days. We observed that functional respiration increased the growth (rate and yield) of L. gasicomitatum in laboratory media with added heme and in situ meat with endogenous heme. Respiration increased enormously (up to 2,600-fold) the accumulation of acetoin and diacetyl, which are buttery off-odor compounds in meat. Our transcriptome analyses showed that the gene expression patterns were quite similar, irrespective of whether respiration was turned off by excluding heme from the medium or mutating the cydB gene, which is essential in the respiratory chain. The respiration-based growth of L. gasicomitatum in meat was obtained in terms of population development and subsequent development of sensory characteristics. Respiration is thus a key factor explaining why L. gasicomitatum is so well adapted in high-oxygen packed meat.

  16. Use of ion chromatography for monitoring microbial spoilage in the fruit juice industry.

    Science.gov (United States)

    Trifirò, A; Saccani, G; Gherardi, S; Vicini, E; Spotti, E; Previdi, M P; Ndagijimana, M; Cavalli, S; Reschiotto, C

    1997-05-16

    Fruit juices and purees are defined as fermentable, but unfermented, products obtained by mechanical processing of fresh fruits. The presence of undesired metabolites derived from microbial growth can arise from the use of unsuitable fruit or from defects in the production line or subsequent contamination. This involves a loss in the overall quality that cannot be resolved by thermal treatment following the start of fermentation. With these considerations, together with microbiological control, the analysis of different metabolites, which can be considered as microbial growth markers, such as alcohols (i.e. ethanol, etc.), acids (i.e. acetic, fumaric, lactic, etc.) is fundamental in order to achieve a better evaluation of product quality. Enzymatic determination and other single-component analytical techniques are often used for the determination of these metabolites. When the microbial spoilage is not well known, this results in a long and cumbersome procedure. A versatile technique that is capable of determining many metabolites in one analysis could be helpful in improving routine quality control. For this purpose, an ion chromatographic technique, such as ion exclusion, for separation, and diode array spectrophotometry and conductivity, for detection, were evaluated. Both different industrial samples and inoculated samples were analyzed.

  17. Antimicrobial Activity of Various Plant Extracts on Pseudomonas Species Associated with Spoilage of Chilled Fish

    Directory of Open Access Journals (Sweden)

    Osan Bahurmiz

    2016-11-01

    Full Text Available The antimicrobial activity of various plant extracts on Pseudomonas bacteria isolated from spoiled chilled tilapia (Oreochromis sp. was evaluated in this study. In the first stage of this study, red tilapia was subjected to chilled storage (4°C for 3 weeks, and spoilage bacteria were isolated and identified from the spoiled fish. Pseudomonas was the dominant bacteria isolated from the spoiled fish and further identification revealed that P. putida, P. fluorescens and Pseudomonas spp. were the main species of this group. In the second stage, methanolic extracts of 15 selected plant species were screened for their antimicrobial activity, by agar disc diffusion method, against the Pseudomonas isolates. Results indicated that most of the extracts had different degrees of activity against the bacterial isolates. The strongest activity was exhibited by bottlebrush flower (Callistemon viminalis extract. This was followed by extracts from guava bark (Psidium guajava and henna leaf (Lawsonia inermis. Moderate antimicrobial activities were observed in extracts of clove (Syzygium aromaticum, leaf and peel of tamarind (Tamarindus indica, cinnamon bark (Cinnamomum zeylanicum, wild betel leaf (Piper sarmentosum and fresh thyme (Thymus spp.. Weak or no antimicrobial activity was observed from the remaining extracts. The potential antimicrobial activity shown by some plant extracts in this study could significantly contribute to the fish preservation.

  18. Microbial spoilage, instability risk of antacid suspension in the presence of commonly used preservative system.

    Science.gov (United States)

    Khan, Jamshaid Ali; Khan, Imran Ullah; Iqbal, Zafar; Nasir, Fazli; Muhammad, Salar; Hannan, Peer Abdul; Ullah, Irfan

    2015-09-01

    Manifestation of microbial spoilage of any product by bacteria and to assess the effectiveness of the anti-microbial preservatives (parabens) used for the prevention and stability purpose. The aim of the present work is to study the effectiveness of preservatives used in the antacid suspensions and to analyze the effect of microbial growth on the quality of respective antacid suspensions. Samples of various antacid suspensions were randomly collected from local market and Government hospital pharmacies. Three different antacid formulations were prepared in the laboratory. All the formulations were preliminarily evaluated on the basis of organoleptic characteristics, pH, viscosity and assay. Efficacy of the preservative system in suspension formulation was determined by inoculating the samples in its final container, with specific strains of bacteria i.e. Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538, taking samples from the inoculated preparation at specified intervals of time i.e. 0 time, 07 days, 14 days and 28 days, growing it on nutrient agar medium and colony forming units (CFUs) were scored by plate count. At the same time the samples were also subjected to qualitative and quantitative testing. The decrease in CFU and alteration in assay, pH and viscosity was observed in all the formulations except formulation M2 and F3 that showed stability throughout the study period.

  19. Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii.

    Science.gov (United States)

    Portugal, Cauré; Pinto, Luís; Ribeiro, Miguel; Tenorio, Carmen; Igrejas, Gilberto; Ruiz-Larrea, Fernanda

    2015-10-01

    Wine microbiota is complex and includes a wide diversity of yeast species. Few of them are able to survive under the restrictive conditions of dry red wines. In our study we detected and identified seven yeast species of the order Saccharomycetales that can be considered potential spoilers of wines due to physiological traits such as acidogenic metabolism and off-odor generation: Arthroascus schoenii, Candida ishiwadae, Meyerozyma guilliermondii, Pichia holstii, Pichia manshurica, Trigonopsis cantarellii, and Trigonopsis variabilis. Based on the prevalence of T. cantarellii isolates in the wine samples of our study, we further characterized this species, determined molecular and phenotypic features, and performed a proteomic analysis to identify differentially expressed proteins at mid-exponential growth phase in the presence of ethanol in the culture broth. This yeast species is shown to be able to grow in the presence of ethanol by expressing heat shock proteins (Hsp70, Hsp71) and a DNA damage-related protein (Rad24), and to be able to confer spoilage characteristics on wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of storage temperature on the fungal and chemical spoilage of maize grains and flour

    International Nuclear Information System (INIS)

    Akhter, T.; Sattar, A.; Khan, I.; Ahmed, A.

    1989-01-01

    The chemical and fungal spoilage of maize grains and flour of Sarhad White and Sarhad Yellow varieties in relation to time temperature (10 C, 15 C, 20 C and room (30-56 C) storage period at 8-12 months was studied. The results showed that total fungal counts and percent infestation markedly increased with advanced storage and increased temperature. Percentage germination generally decreased during extended storage. Peroxide values of both the grain and flour increased with increasing temperature and storage time. At the end of one year storage the total fungal counts in the grain and flour of Sarhad White and Sarhad Yellow ranged 13.6x10/sup 12/ - 20.0x10/sup 13/ and Yellow ranged 17.1x10/sup 13/ - 22.1x10/sup 14/ respectively. germination and infestation percentage of the grains of Sarhad White and Sarhad Yellow ranged 76-78% and 96-99%. The peroxide value ranged 6.6-7.0 and 6.4-6.8 meg/Kg in the grain and flour of Sarhad White respectively after one year storage. There was more fungal infestation, fungal counts and peroxidation in the grain and flour Sarhad Yellow than that of Sarhad White. (author)

  1. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  2. Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi.

    Science.gov (United States)

    Batta, Yacoub A

    2016-01-01

    The present article describes the technique used for preparing the invert emulsion (water-in-oil type) then, selecting the most proper formulation of invert emulsion for being used as a carrier formulation of entomopathogenic fungi. It also describes the method used for testing the efficacy of the formulated fungi as biocontrol agents of targeted insects. Detailed examples demonstrating the efficacy of formulated strains of entomopathogenic fungi against certain species of insect pests were included in the present article. The techniques and methods described in this article are reproducible and helpful in enhancing the effectiveness of formulated fungi against wide range of targeted insects in comparison with the unformulated form of these fungi. Also, these techniques and methods can be used effectively in crop protection and in the integrated pest management programs. Finally, it is important to indicate that the ingredients used for preparation of the invert emulsion have no environmental side-effects or health risks since these ingredients are safe to use and can be used in manufacturing of cosmetics or as food additives.•Description of method used for preparation of invert emulsion (water-in-oil type) and selecting the most stable and non-viscous emulsion.•Description of technique used for introducing the entomopathogenic fungi into the selected stable and non-viscous invert emulsion.•Description of method for testing the efficacy of introduced entomopathogenic fungus into the selected invert emulsion against targeted insects with detailed examples on the efficacy testing.

  3. Fungi and fungi-like Oomycetes isolated from affected leaves of rhododendron

    Directory of Open Access Journals (Sweden)

    Maria Kowalik

    2013-12-01

    Full Text Available The aim of the work is to identify fungi and fungi-like Oomycetes occurring on affected leaves of rhododendron Rhododendron L. Mycological analyses were carried out on 200 leaves collected from green areas of Kraków from May till September 2005. Isolated fungi-like Oomycetes belonged to 67 taxa. The most frequently found fungi included: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Coelophoma empetri, Nigrospora sphaerica, Pestalotia sydowiana, Phialophora cyclaminis, Phomopsis archeri, Septoria azalea and Sordaria fimicola. Among fungi-like organisms Phytophthora cinnamomi and P. citricola were isolated.

  4. Application of food irradiation in developing countries

    International Nuclear Information System (INIS)

    1966-01-01

    The panel on the Application of Food Irradiation in Developing Countries was convened in Vienna by the International Atomic Energy Agency (IAEA) in August 1964. The members of this panel examined the problem of food preservation in geographical areas where much food was lost through spoilage, deterioration and insect infestation. It was thought, that radiation treatment should be used to solve these preservation problems. The attendees included 13 experts, four observers from research organizations, and 2 representatives from the Food and Agriculture Organization (FAO) in Rome. The members of the panel examined the use of ionizing radiation to preserve fish, fruits, and vegetables and to inactivate disease producing viruses which are closely associated with animal products. Refs, figs and tabs

  5. Application of food irradiation in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    1966-05-01

    The panel on the Application of Food Irradiation in Developing Countries was convened in Vienna by the International Atomic Energy Agency (IAEA) in August 1964. The members of this panel examined the problem of food preservation in geographical areas where much food was lost through spoilage, deterioration and insect infestation. It was thought, that radiation treatment should be used to solve these preservation problems. The attendees included 13 experts, four observers from research organizations, and 2 representatives from the Food and Agriculture Organization (FAO) in Rome. The members of the panel examined the use of ionizing radiation to preserve fish, fruits, and vegetables and to inactivate disease producing viruses which are closely associated with animal products. Refs, figs and tabs.

  6. Radiation preservation of food. Efficiency and wholesomeness

    International Nuclear Information System (INIS)

    Saint-Lebe, Louis; Raffi, Jacques; Henon, Yves.

    1982-03-01

    This document reviews the applications of ionizing radiations in the food industry. The two first chapters feature the characteristics of the three types of ionizing radiations that can be used (gamma rays from cobalt 60 and caesium 137, X rays, electron beams) and their action on foodstuff and the food spoilage organisms. The third chapter is a review of toxicological studies based on two complementary approaches: animal assays and studies on the radiolysis products. It provides the evidences that lead the international experts to regard irradiated food as safe for human consumption. In the fourth chapter, the problems of identification of irradiated food and the possible controls are exposed. The authors conclude by suggesting the measures that would allow commercial application in France [fr

  7. Antioxidants in foods: state of the science important to the food industry.

    Science.gov (United States)

    Finley, John W; Kong, Ah-Ng; Hintze, Korry J; Jeffery, Elizabeth H; Ji, Li Li; Lei, Xin Gen

    2011-07-13

    Antioxidant foods and ingredients are an important component of the food industry. In the past, antioxidants were used primarily to control oxidation and retard spoilage, but today many are used because of putative health benefits. However, the traditional message that oxidative stress, which involves the production of reactive oxygen species (ROS), is the basis for chronic diseases and aging is being reexamined. Accumulating evidence suggests that ROS exert essential metabolic functions and that removal of too many ROS can upset cell signaling pathways and actually increase the risk of chronic disease. It is imperative that the food industry be aware of progress in this field to present the science relative to foods in a forthright and clear manner. This may mean reexamining the health implications of adding large amounts of antioxidants to foods.

  8. Spectral imaging for contamination detection in food

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    application of the technique is finding anomalies I supposedly homogeneous matter or homogeneous mixtures. This application occurs frequently in the food industry when different types of contamination are to be detected. Contaminants could be e.g. foreign matter, process-induced toxins, and microbiological...... spoilage. Many of these contaminants may be detected in the wavelength range visible to normal silicium-based camera sensors i.e. 350-1050 nm with proper care during sample preparation, sample presentation, image acquisition and analysis. This presentation will give an introduction to the techniques behind...

  9. Mites and fungi in heavily infested stores in the Czech Republic.

    Science.gov (United States)

    Hubert, J; Stejskal, V; Munzbergová, Z; Kubátová, A; Vánová, M; Zd'árková, E

    2004-12-01

    Toxigenic and allergen-producing fungi represent a serious hazard to human food and animal feed safety. Ninety-four fungal species were isolated from mite-infested samples of seeds taken from Czech seed stores. Fungi were isolated from the surface of four kinds of seeds (wheat, poppy, lettuce, and mustard) and from the gut and external surface of five species of mites (i.e., Acarus siro L., 1758, Caloglyphus rhizoglyphoides (Zachvatkin, 1973), Lepidoglyphus destructor (Schrank, 1781), Tyrophagus putrescentnae (Schrank, 1781) and Cheyletus malaccensis Oudemans 1903) separately. Multivariate analysis of fungi complex composition showed that the frequency of fungal was species significantly influenced by the kind of seed. Fungal frequencies differed between mites gut and exoskeleton surface and between the surfaces of mites and seeds. Three groups of fungal species were recognized: 1) mite surface-associated fungi: Penicillium brevicompactum, Alternaria alternata, and Aspergillus versicolor; 2) mite surface- and seed-associated fungi: Aspergillus niger, Penicillium crustosum, Penicillium aurantiogriseum, Penicillium chrysogenum, and Aspergillus flavus; and 3) seed-associated fungi: Cladosporium herbarum, Mucor dimorphosporus f. dimorphosporus, Botrytis cinerea, Penicillium griseofulvum, and Eurotium repens. Mite-carried species of microfungi are known to produce serious mycotoxins (e.g., aflatoxin B1, cyclopiazonic acid, sterigmatocystin, ochratoxin A, and nephrotoxic glycopeptides) as well as allergen producers (e.g., A. alternata and P. brevicompactum). Storage mites may play an important role in the spread of some medically hazardous micromycetes. In addition, these mite-fungi associations may heighten the risk of occurrence of mycotoxins in food and feed stuffs and cause mixed contamination by fungal and mite allergens.

  10. Aquatic fungi in the Lake Sejny complex

    OpenAIRE

    Bazyli Czeczuga

    2014-01-01

    The mycoflora of the Lake Sejny complex was studied. Samples of water were collected in 1990-1991 for hydrochemical analysis and determination of fungi species. In total 69 species of fungi reported for the first time from Poland (Myzocylium vermicolum, Angulospora aquatica, Zoophthora rhizospora).

  11. Aquatic fungi in the Lake Sejny complex

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available The mycoflora of the Lake Sejny complex was studied. Samples of water were collected in 1990-1991 for hydrochemical analysis and determination of fungi species. In total 69 species of fungi reported for the first time from Poland (Myzocylium vermicolum, Angulospora aquatica, Zoophthora rhizospora.

  12. Antibacterial activity of marine-derived fungi

    DEFF Research Database (Denmark)

    Christophersen, Carsten; Crescente, Oscar; Frisvad, Jens Christian

    1998-01-01

    A total of 227 marine isolates of ubiqituous fungi were cultivated on different media and the secondary metabolite content of the extracts (ethyl acetate/chlorofonn/methanol 3 : 2 : 1) characterized by HPLC. The fungi were secured from animals, plants and sediments of Venezuelan waters (0-10 m...

  13. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  14. Promising carbons for supercapacitors derived from fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Yang, Fan; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2011-06-24

    Activated carbons with promising performance in capacitors are produced from fungi via a hydrothermal assistant pyrolysis approach. This study introduces a facile strategy to discover carbonaceous materials and triggers interest in exploring fungi for material science applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    Vinichuk, M.; Taylor, A.; Rosen, K.; Nikolova, I.; Johanson, K.J.

    2009-01-01

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  16. Fossil evidence of the zygomycetous fungi

    NARCIS (Netherlands)

    Krings, M.; Taylor, T.N.; Dotzler, N.

    2013-01-01

    Molecular clock data indicate that the first zygomycetous fungi occurred on Earth during the Precambrian, however, fossil evidence of these organisms has been slow to accumulate. In this paper, the fossil record of the zygomycetous fungi is compiled, with a focus on structurally preserved

  17. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Wiesel, Lea; Dubchak, Sergiy; Turnau, Katarzyna; Broadley, Martin R.; White, Philip J.

    2015-01-01

    Contamination of soils with radioisotopes of caesium (Cs) is of concern because of their emissions of harmful β and γ radiation. Radiocaesium enters the food chain through vegetation and the intake of Cs can affect the health of organisms. Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with plants through colonization of the roots and previous studies on the influence of AM on Cs concentrations in plants have given inconsistent results. These studies did not investigate the influence of Cs on AM fungi and it is therefore not known if Cs has a direct effect on AM colonization. Here, we investigated whether Cs influences AM colonization and if this effect impacts on the influence of Rhizophagus intraradices on Cs accumulation by Medicago truncatula. M. truncatula was grown with or without R. intraradices in pots containing different concentrations of Cs. Here, we present the first evidence that colonization of plants by AM fungi can be negatively affected by increasing Cs concentrations in the soil. Mycorrhizal colonization had little effect on root or shoot Cs concentrations. In conclusion, the colonization by AM fungi is impaired by high Cs concentrations and this direct effect of soil Cs on AM colonization might explain the inconsistent results reported in literature that have shown increased, decreased or unaffected Cs concentrations in AM plants. - Highlights: • Colonization of plants by arbuscular mycorrhizal fungi is negatively affected by increasing soil caesium concentrations. • Shoot caesium concentrations are not influenced by AM fungi at soil caesium concentrations above about 3 μg Cs kg −1 . • The direct effect of caesium on AM fungi might impact on the influence of AM fungi on Cs accumulation in plants. • This might explain the inconsistent results reported in literature on Cs accumulation in AM plants

  18. Thermophilic Fungi: Their Physiology and Enzymes†

    Science.gov (United States)

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  19. Occurrence of keratinophilic fungi on Indian birds.

    Science.gov (United States)

    Dixit, A K; Kushwaha, R K

    1991-01-01

    Keratinophilic fungi were isolated from feathers of most common Indian birds, viz. domestic chicken (Gallus domesticus), domestic pigeon (Columba livia), house sparrow (Passer domesticus), house crow (Corvus splendens), duck (Anas sp.), rose-ringed parakeet (Psittacula krameri). Out of 87 birds, 58 yielded 4 keratinophilic fungal genera representing 13 fungal species and one sterile mycelium. The isolated fungi were cultured on Sabouraud's dextrose agar at 28 +/- 2 degrees C. Chrysosporium species were isolated on most of the birds. Chrysosporium lucknowense and Chrysosporium tropicum were the most common fungal species associated with these Indian birds. Maximum occurrence of fungi (47%) was recorded on domestic chickens and the least number of keratinophilic fungi was isolated from the domestic pigeon and duck. The average number of fungi per bird was found to be the 0.44.

  20. Food preservation : relevance of nuclear techniques to developing nations

    International Nuclear Information System (INIS)

    Aiyar, A.S.; Sundaram, K.

    1977-01-01

    The usefulness of radiation processes over conventional methods for preservation of foods has been discussed in detail. There are five distinct objectives that can be achieved by exposing food to ionising radiation, and these are : (a) total elimination of food spoilage or disease-causing organisms, thus confering indefinite stability on the pre-packaged food; (b) significant reduction of spoilage microorganisms to enable extended shelf-life; (c) inactivation of organisms that poses public health hazards; (d) elimination of losses in dry foods due to insect infestation, by killing the eggs and their insects; and (e) control of post-harvest physiological processes such as sprouting, ripening etc. For highly perishable sea foods, such as, Bombay Duck, irradiation represents the only possible soultion to the problem of its preservation in the fresh state. An evaluation of the wholesomeness of irradiated mackerel is currently underway in India as part of an international effort at obtaining such data collectively, to minimise the enormour costs involved in such experimentation. Recently, clearances have been authorised for the release of irradiated foods for human consumption. A summary of international approvals for radiation preservation processes is presented. (A.K.)

  1. Influence of temperature, water activity and pH on growth of some xerophilic fungi.

    Science.gov (United States)

    Gock, Melissa A; Hocking, Ailsa D; Pitt, John I; Poulos, Peter G

    2003-02-25

    The combined effects of water activity (aw), pH and temperature on the germination and growth of seven xerophilic fungi important in the spoilage of baked goods and confectionery were examined. Eurotium rubrum, E. repens, Wallemia sebi, Aspergillus penicillioides, Penicillium roqueforti, Chrysosporium xerophilum and Xeromyces bisporus were grown at 25, 30 and 37 degrees C on media with pH values of 4.5, 5.5, 6.5 and 7.5 and a range of water activities (aw) from 0.92 to 0.70. The aw of the media was controlled with a mixture of equal parts of glucose and fructose. Temperature affected the minimum aw for germination for most species. For example, P. roqueforti germinated at 0.82 aw at 25 degrees C, 0.86 aw at 30 degrees C and was unable to germinate at 37 degrees C. E. repens germinated at 0.70 aw at 30 degrees C, but at 25 and 37 degrees C, its minimum aw for germination was 0.74. C. xerophilum and X. bisporus germinated at 0.70 aw at all three temperatures. The optimum growth occurred at 25 degrees C for P. roqueforti and W. sebi, at 30 degrees C for Eurotium species, A. penicillioides and X. bisporus and at 37 degrees C for C. xerophilum. These fungi all grew faster under acidic than neutral pH conditions. The data presented here provide a matrix that will be used in the development of a mathematical model for the prediction of the shelf life of baked goods and confectionery.

  2. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  3. Fungi in neotropical epiphyte roots.

    Science.gov (United States)

    Bermudes, D; Benzing, D H

    1989-01-01

    Roots of thirty-eight Ecuadoran vascular epiphytes, representing eleven angiosperm families, were examined for the presence of symbiotic microorganisms. Most orchid roots contained fungal endophytes like those that regularly infect terrestrial counterparts. Hyphae were also common in and on nonorchid roots, but assignments of these relationships to known mycorrhizal morphologies was not possible in all cases. Evidence of vesicular-arbuscular mycorrhizae (VAM) existed in a number of subjects while in Ericaceae and Campanulaceae a fungal association similar to the demateaceous surface fungi (DSF) described for alpine and prarie plants was usually present. Some associations were characterized by multicellular propagules on root surfaces. The significance of these findings and the factors likely to influence occurrence and consequences of root-fungus mutualisms in tropical forest canopies are discussed. Facts and considerations that could aid future inquiry on these systems are provided.

  4. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Directory of Open Access Journals (Sweden)

    Chengqun Lv

    Full Text Available Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  5. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Science.gov (United States)

    Lv, Chengqun; Huang, Baoling; Qiao, Mengji; Wei, Jiguang; Ding, Bo

    2011-01-01

    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  6. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    Science.gov (United States)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  7. Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants

    Directory of Open Access Journals (Sweden)

    Fernando C. Pagnocca

    2012-01-01

    Full Text Available Ants in the tribe Attini (Hymenoptera: Formicidae comprise about 230 described species that share the same characteristic: all coevolved in an ancient mutualism with basidiomycetous fungi cultivated for food. In this paper we focused on fungi other than the mutualistic cultivar and their roles in the attine ant symbiosis. Specialized fungal parasites in the genus Escovopsis negatively impact the fungus gardens. Many fungal parasites may have small impacts on the ants' fungal colony when the colony is balanced, but then may opportunistically shift to having large impacts if the ants' colony becomes unbalanced.

  8. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    Science.gov (United States)

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  9. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector

    Directory of Open Access Journals (Sweden)

    Shruti Shukla

    2017-12-01

    Full Text Available Safety of food is a noteworthy issue for consumers and the food industry. A number of complex challenges associated with food engineering and food industries, including quality food production and safety of the food through effective and feasible means can be explained by nanotechnology. However, nanoparticles have unique physicochemical properties compared to normal macroparticles of the same composition and thus could interact with living system in surprising ways to induce toxicity. Further, few toxicological/safety assessments have been performed on nanoparticles, thereby necessitating further research on oral exposure risk prior to their application to food. Liposome nanoparticles are viewed as attractive novel materials by the food and medical industries. For example, nanoencapsulation of bioactive food compounds is an emerging application of nanotechnology. In several food industrial practices, liposome nanoparticles have been utilized to improve flavoring and nutritional properties of food, and they have been examined for their capacity to encapsulate natural metabolites that may help to protect the food from spoilage and degradation. This review focuses on ongoing advancements in the application of liposomes for food and pharma sector.

  10. Thermotolerance of meat spoilage lactic acid bacteria and their inactivation in vacuum-packaged vienna sausages.

    Science.gov (United States)

    Franz, C M; von Holy, A

    1996-02-01

    Heat resistance of three meat spoilage lactic acid bacteria was determined in vitro. D-values at 57, 60 and 63 degrees C were 52.9, 39.3 and 32.5 s for Lactobacillus sake, 34.9, 31.3 and 20.2 s for Leuconostoc mesenteroides and 22.5, 15.6 and 14.4 s for Lactobacillus curvatus, respectively. The three lactic acid bacteria were heat sensitive, as one log reductions in numbers were achieved at 57 degrees C in less than 60 s. Z-values could not be accurately determined as D-values did not change by a factor of 10 over the temperature range studied. In-package pasteurization processes were calculated using the highest in vitro D-value and applied to vacuum-packaged vienna sausages. Microbiological shelf life (time for lactic acid bacteria count to reach 5 x 10(6) CFU/g) increased from 7 days for non-pasteurized samples to 67, 99 and 119 days for samples of the three pasteurization treatments at 8 degrees C storage. Enterobacteriaceae were detected at levels of log 4.0 CFU/g in non-pasteurized samples, but were reduced to < log 1.0 CFU/g in pasteurized samples. The incidence of listeriae in non-pasteurized samples was low as only one Listeria innocua strain was isolated. No Listeria spp. were isolated from pasteurized samples. Numbers of Clostridium isolates increased from one in non-pasteurized samples to 25 in pasteurized samples. Increasing incidences of clostridia, and the presence of C. perfringens in pasteurized samples indicated that in-package pasteurization could compromise product safety.

  11. Advances in Genomics of Entomopathogenic Fungi.

    Science.gov (United States)

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Standard Guide for Irradiation of Finfish and Aquatic Invertebrates Used as Food to Control Pathogens and Spoilage Microorganisms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide outlines procedures and operations for the irradiation of raw, untreated, fresh (chilled), or frozen finfish and aquatic invertebrates, while ensuring that the irradiated product is safe and wholesome. 1.1.1 Aquatic invertebrates include molluscs, crustacea, echinoderms, etc. 1.1.1.1 Molluscs include bivalve shellfish, such as clams, mussels, and oysters; snails; and cephalopods, such as squid and octopus. 1.1.1.2 Crustacea include shellfish such as shrimp, lobster, crabs, prawns and crayfish. 1.1.1.3 Echinoderms include sea urchins and sea cucumbers. 1.2 This guide covers absorbed doses used to reduce the microbial and parasite populations in aquatic invertebrates and finfish. Such doses typically are below 10 kGy (1). 1.3 The use of reduced-oxygen packaging (vacuum or modified atmosphere, and including products packed in oil) with irradiated, raw product is not covered by this guide. The anaerobic environment created by reduced-oxygen packaging provides the potential for outgrowth o...

  13. Food irradiation: advantages and limitations

    International Nuclear Information System (INIS)

    Hernandes, N.K.; Vital, H. de C.; Sabaa-Srur, A.U.O.

    2003-01-01

    Food irradiation is a physical method of processing food (e.g. freezing, canning). It has been thoroughly researched over the last four decades and is recognized as a safe and wholesome method. It has the potential both of disinfesting dried food to reduce storage losses and disinfesting fruits and vegetables to meet quarantine requirements for export trade. Low doses of irradiation inhibit spoilage losses due to sprouting of root and tuber crops. Food- borne diseases due to contamination by pathogenic microorganisms and parasites of meat, poultry, fish, fishery products and spices are on the increase. Irradiation of these solid foods can decontaminate them of pathogenic organisms and thus provide safe food to the consumer. Irradiation can successfully replace the fumigation treatment of cocoa beans and coffee beans and disinfest dried fish, dates, dried fruits, etc. One of the most important advantages of food irradiation processing is that it is a coldprocess which does not significantly alter physico-chemical characters of the treated product. It can be applied to food after its final packaging. Similar to other physical processes of food processing, (e.g. canning, freezing), irradiation is a capital intensive process. Thus, adequate product volume must be made available in order to maximize the use of the facility and minimize the unit cost of treatment. Lack of harmonization of regulations among the countries which have approved irradiated foods hampers the introduction of this technique for international trade. Action at the international level has to be taken in order to remedy this situation. One of the important limitations of food irradiation processing is its slow acceptance by consumers, due inter alia to a perceived association with radioactivity. The food industry tends to be reluctant to use the technology in view of uncertainties regarding consumer acceptance of treated foods. Several market testing and consumer acceptance studies have been carried

  14. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    Science.gov (United States)

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats, as determined by PCR amplification procedure.

    Science.gov (United States)

    Broda, D M; Boerema, J A; Brightwell, G

    2009-07-01

    To determine possible preslaughter and processing sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats. Molecular methods based on the polymerase chain reaction (PCR) amplification of specific 16S rDNA fragments were used to detect the presence of Clostridium gasigenes, Clostridium estertheticum, Clostridium algidicarnis and Clostridium putrefaciens in a total of 357 samples collected from ten slaughter stock supply farms, slaughter stock, two lamb-processing plants, their environments, dressed carcasses and final vacuum-packed meat stored at -0.5 degrees C for 5(1/2) weeks. Clostridium gasigenes, C. estertheticum and C. algidicarnis/C. putrefaciens were commonly detected in farm, faeces, fleece and processing environmental samples collected at the slaughter floor operations prior to fleece removal, but all these micro-organisms were detected in only 4 out of 26 cooling floor and chiller environmental samples. One out of 42 boning room environmental samples tested positive for the presence of C. gasigenes and C. estertheticum, but 25 out of 42 of these samples were positive for C. algidicarnis/C. putrefaciens. Nearly all of the 31 faecal samples tested positive for the presence of C. gasigenes and C. estertheticum; however, only two of these samples were positive for C. algidicarnis and/or C. putrefaciens. Clostridial species that were subject to this investigation were frequently detected on chilled dressed carcasses. The major qualitative and quantitative differences between the results of PCR detection obtained with the primers specific for 'blown pack' -causing clostridia (C. gasigenes and C. estertheticum) and those obtained with primers specific for C. algidicarnis and C. putrefaciens suggest that the control of meat spoilage caused by different groups of meat clostridia is best approached individually for each group. This paper provides information significant for controlling meat spoilage-causing clostridia

  16. Combined Effect of Thermosonication and Slightly Acidic Electrolyzed Water to Reduce Foodborne Pathogens and Spoilage Microorganisms on Fresh-cut Kale.

    Science.gov (United States)

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-06-01

    This study evaluated the efficacy of individual treatments (thermosonication [TS+DW] and slightly acidic electrolyzed water [SAcEW]) and their combination on reducing Escherichia coli O157:H7, Listeria monocytogenes, and spoilage microorganisms (total bacterial counts [TBC], Enterobacteriaceae, Pseudomonas spp., and yeast and mold counts [YMC]) on fresh-cut kale. For comparison, the antimicrobial efficacies of sodium chlorite (SC; 100 mg/L) and sodium hypochlorite (SH; 100 mg/L) were also evaluated. Each 10 g sample of kale leaves was inoculated to contain approximately 6 log CFU/g of E. coli O157:H7 or L. monocytogenes. Each inoculated or uninoculated samples was then dip treated with deionized water (DW; control), TS+DW, and SAcEW at various treatment conditions (temperature, physicochemical properties, and time) to assess the efficacy of each individual treatment. The efficacy of TS+DW or SAcEW was enhanced at 40 °C for 3 min, with an acoustic energy density of 400 W/L for TS+DW and available chlorine concentration of 5 mg/L for SAcEW. At 40 °C for 3 min, combined treatment of thermosonication 400 W/L and SAcEW 5 mg/L (TS+SAcEW) was more effective in reducing microorganisms compared to the individual treatments (SAcEW, SC, SH, and TS+DW) and combined treatments (TS+SC and TS+SH), which significantly (P 3.24 log CFU/g, respectively. The results suggest that the combined treatment of TS+SAcEW has the potential as a decontamination process in fresh-cut industry. © 2015 Institute of Food Technologists®

  17. Use of ionizing radiation for preservation of food and feed products

    International Nuclear Information System (INIS)

    Josephson, E.S.; Brynjolfsson, A.; Wierbicki, E.

    1975-01-01

    Exposing food to ionizing radiation can contribute to closing the worldwide food deficit by reducing food spoilage losses, by making available more food of higher nutritional quality (animal protein food) to more people, and by keeping prices down by reducing losses. Because ionizing radiation kills disease-causing organisms, it can reduce the incidence of food-borne diseases. It also reduces our dependence upon some of the chemical additives, such as nitrites and nitrates, now being questioned by health authorities to control food spoilage and food-borne diseases. The three basic types of ionizing radiation used for processing of food are electrons (10 MeV maximum energy), X-rays (5 MeV maximum energy) produced by electrons in an X-ray target, and gamma rays from 60 Co and 137 Cs. Electrons, X-rays, and gamma rays cause ionization in the food by either the primary electrons or by the secondary electrons resulting from gamma or X-ray interactions in the food with little rise in temperature and little total chemical change. The ionized and activated molecules form unstable secondary products that kill the organisms. Another effect is to slow down post-harvest growth and maturation in some fruits and vegetables

  18. Public health aspects of food irradiation

    International Nuclear Information System (INIS)

    Kaferstein, F.

    1997-01-01

    Post-harvest losses due to sprouting, insect infestation and spoilage by microorganisms is a serious problem in many countries and commonly aggravates the problem of food shortages. In addition, many developing countries also depend largely on agricultural produce, such as grain, tuber and tropical fruit, as major export crops to earn foreign exchange. The use of ionizing radiation as an effective means of disinfecting and/or prolonging the self-life of several food products has been well documented in a number of developing countries. The World health organization (WHO) encourages its Member States to consider all measures to eliminate or reduce food borne pathogens in food and improve their supplies of safe and nutritious food. In regard to its contribution to food safety, food irradiation may be one of the most significant contributions to public health to be made by food science and technology since the introduction of pasteurization. Because the promotion of a safe, nutritious and adequate food supply is an essential component of its primary health care strategy, WHO is concerned that the unwarranted rejection or limitation of this process may endanger public health and deprive consumers of the choice of foods processed for safety. (Author)

  19. Public health aspects of food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaferstein, F [Director, Programme of Food Safety and Food Aid, WHO, CH-1211, Geneva 27, (Switzerland)

    1998-12-31

    Post-harvest losses due to sprouting, insect infestation and spoilage by microorganisms is a serious problem in many countries and commonly aggravates the problem of food shortages. In addition, many developing countries also depend largely on agricultural produce, such as grain, tuber and tropical fruit, as major export crops to earn foreign exchange. The use of ionizing radiation as an effective means of disinfecting and/or prolonging the self-life of several food products has been well documented in a number of developing countries. The World health organization (WHO) encourages its Member States to consider all measures to eliminate or reduce food borne pathogens in food and improve their supplies of safe and nutritious food. In regard to its contribution to food safety, food irradiation may be one of the most significant contributions to public health to be made by food science and technology since the introduction of pasteurization. Because the promotion of a safe, nutritious and adequate food supply is an essential component of its primary health care strategy, WHO is concerned that the unwarranted rejection or limitation of this process may endanger public health and deprive consumers of the choice of foods processed for safety. (Author)

  20. Public health aspects of food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaferstein, F. [Director, Programme of Food Safety and Food Aid, WHO, CH-1211, Geneva 27, (Switzerland)

    1997-12-31

    Post-harvest losses due to sprouting, insect infestation and spoilage by microorganisms is a serious problem in many countries and commonly aggravates the problem of food shortages. In addition, many developing countries also depend largely on agricultural produce, such as grain, tuber and tropical fruit, as major export crops to earn foreign exchange. The use of ionizing radiation as an effective means of disinfecting and/or prolonging the self-life of several food products has been well documented in a number of developing countries. The World health organization (WHO) encourages its Member States to consider all measures to eliminate or reduce food borne pathogens in food and improve their supplies of safe and nutritious food. In regard to its contribution to food safety, food irradiation may be one of the most significant contributions to public health to be made by food science and technology since the introduction of pasteurization. Because the promotion of a safe, nutritious and adequate food supply is an essential component of its primary health care strategy, WHO is concerned that the unwarranted rejection or limitation of this process may endanger public health and deprive consumers of the choice of foods processed for safety. (Author)

  1. Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects.

    Science.gov (United States)

    Ferreira, Jorge A; Mahboubi, Amir; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2016-09-01

    Filamentous ascomycetes fungi have had important roles in natural cycles, and are already used industrially for e.g. supplying of citric, gluconic and itaconic acids as well as many enzymes. Faster human activities result in higher consumption of our resources and producing more wastes. Therefore, these fungi can be explored to use their capabilities to convert back wastes to resources. The present paper reviews the capabilities of these fungi in growing on various residuals, producing lignocellulose-degrading enzymes and production of organic acids, ethanol, pigments, etc. Particular attention has been on Aspergillus, Fusarium, Neurospora and Monascus genera. Since various species are used for production of human food, their biomass can be considered for feed applications and so biomass compositional characteristics as well as aspects related to culture in bioreactor are also provided. The review has been further complemented with future research avenues. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    Science.gov (United States)

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  3. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis.

    Science.gov (United States)

    Parlapani, Foteini F; Kormas, Konstantinos Ar; Boziaris, Ioannis S

    2015-09-01

    Sea bream fillets are one of the most important value-added products of the seafood market. Fresh seafood spoils mainly owing to bacterial action. In this study an exploration of initial and spoilage microbiota of sea bream fillets stored under air and commercial modified atmosphere packaging (MAP) at 0 and 5 °C was conducted by 16S rRNA gene sequence analysis of isolates grown on plates. Sensory evaluation and enumeration of total viable counts and spoilage microorganisms were also conducted to determine shelf life and bacterial growth respectively. Different temperatures and atmospheres affected growth and synthesis of spoilage microbiota as well as shelf life. Shelf life under air at 0 and 5 °C was 14 and 5 days respectively, while under MAP it was 20 and 8 days respectively. Initial microbiota were dominated by Pseudomonas fluorescens, Psychrobacter and Macrococcus caseolyticus. Different temperatures and atmospheres affected the synthesis of spoilage microbiota. At the end of shelf life, different phylotypes of Pseudomonas closely related to Pseudomonas fragi were found to dominate in most cases, while Pseudomonas veronii dominated in fillets under MAP at 0 °C. Furthermore, in fillets under MAP at 5 °C, new dominant species such as Carnobacterium maltaromaticum, Carnobacterium divergens and Vagococcus fluvialis were revealed. Different temperature and atmospheric conditions affected bacterial growth, shelf life and the synthesis of spoilage microbiota. Molecular identification revealed species and strains of microorganisms that have not been reported before for sea bream fillets stored under various conditions, thus providing valuable information regarding microbiological spoilage. © 2014 Society of Chemical Industry.

  4. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  5. Distribution of sterigmatocystin in filamentous fungi

    DEFF Research Database (Denmark)

    Rank, Christian; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld

    2011-01-01

    . Six new ST producing fungi were discovered: Aspergillus asperescens, Aspergillus aureolatus, Aspergillus eburneocremeus, Aspergillus protuberus, Aspergillus tardus, and Penicillium inflatum and one new aflatoxin producer: Aspergillus togoensis (=Stilbothamnium togoense). ST was confirmed in 23...

  6. FUNGI ASSOCIATED WITH AFRICAN MUDFISH (Clarias gariepinus ...

    African Journals Online (AJOL)

    userpc

    Clarias gariepinus (African mudfish) and 144 fish holding water samples were collected from ... Finding these fungi in the fish holding water might have occurred through the use ... This increased .... microbial profile of some fish ponds in the.

  7. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  8. Thraustochytrid fungi associated with marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    Many of the diatoms collected from Arabian Sea were found to harbour thraustochytrid fungi on them. The fungus was identified as Ulkenia visurgensis and it could be grown on pine pollen in seawater. The fungus never infected healthy growing cultures...

  9. Preservation of food products by irradiation

    International Nuclear Information System (INIS)

    McGivney, W.T.

    1988-01-01

    The use of irradiation to preserve food has the potential to significantly enhance our capacity to maximize the quality and quantity of the food we consume. In a world in which distribution of food occurs across continents and in which malnourished populations are in dire need of basic food products, any safe, effective, and efficient means of preserving food is more than welcome. Irradiation, as a method for food preservation, has been studied for more than 30 years. This discussion focuses on this most recent method for the preservation of food with particular emphasis on its effects on the safety, nutritive, and aesthetic values of the food preserved by irradiation. The use of ionizing radiation as a method to preserve foods is one that has been demonstrated to be effective for a variety of food classes. Irradiation offers a means to decontaminate, disinfest, and retard the spoilage of the food supply. At the same time, it appears that the wholesomeness of these food products is maintained. Nutritive value can be sustained by use of effective doses of radiation. Concerns over the safety of irradiated food are rooted in questions regarding the potential induction of radioactivity, harmful radiolytic products, and pathogenic radiation-resistant or mutant strains of microorganisms. Research findings have allayed concerns over safety. However, more research is necessary to conclusively resolve these safety issues. Food irradiation is a promising technology that has and will contribute to our ability to feed the people of this world. This technology is but one of many available ways to preserve our greatest natural resource, the food supply. Enhancement of the ability to preserve food by irradiation will facilitate the distribution of food from fertile developed regions to the malnourished peoples of underdeveloped countries. 21 references

  10. The importance of fungi and mycology for addressing major global challenges*.

    Science.gov (United States)

    Lange, Lene

    2014-12-01

    In the new bioeconomy, fungi play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new biological drugs. This range of new uses of fungi all stand on the shoulders of the efforts of mycologists over generations: the scientific discipline mycology has built comprehensive understanding within fungal biodiversity, classification, evolution, genetics, physiology, ecology, pathogenesis, and nutrition. Applied mycology could not make progress without this platform. To unfold the full potentials of what fungi can do for both environment and man we need to strengthen the field of mycology on a global scale. The current mission statement gives an overview of where we are, what needs to be done, what obstacles to overcome, and which potentials are within reach. It further provides a vision for how mycology can be strengthened: The time is right to make the world aware of the immense importance of fungi and mycology for sustainable global development, where land, water and biological materials are used in a more efficient and more sustainable manner. This is an opportunity for profiling mycology by narrating the role played by fungi in the bioeconomy. Greater awareness and appreciation of the role of fungi can be used to build support for mycology around the world. Support will attract more talent to our field of study, empower mycologists around the world to generate more funds for necessary basic research, and strengthen the global mycology network. The use of fungi for unlocking the full potentials of the bioeconomy relies on such progress. The fungal kingdom can be an

  11. The isolation and identification of pathogenic fungi from Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae

    Directory of Open Access Journals (Sweden)

    Xiang Meng

    2017-10-01

    Full Text Available Background Litchi stink-bug, Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae, is one of the most widespread and destructive pest species on Litchi chinensis Sonn and Dimocarpus longan Lour in Southern China. Inappropriate use of chemical pesticides has resulted in serious environmental problems and food pollution. Generating an improved Integrated Pest Management (IPM strategy for litchi stink-bug in orchard farming requires development of an effective biological control agent. Entomopathogenic fungi are regarded as a vital ecological factor in the suppression of pest populations under field conditions. With few effective fungi and pathogenic strains available to control litchi stink-bug, exploration of natural resources for promising entomopathogenic fungi is warranted. Methods & Results In this study, two pathogenic fungi were isolated from cadavers of adult T. papillosa. They were identified as Paecilomyces lilacinus and Beauveria bassiana by morphological identification and rDNA-ITS homogeneous analysis. Infection of T. papillosa with B. bassiana and P. lilacinus occurred initially from the antennae, metameres, and inter-segmental membranes. Biological tests showed that the two entomopathogenic fungi induced high mortality in 2nd and 5th instar nymphs of T. papillosa. B. bassiana was highly virulent on 2nd instar nymphs of T. papillosa, with values for cadaver rate, LC50 and LT50 of 88.89%, 1.92 × 107 conidia/mL and 4.34 days respectively. Discussion This study provides two valuable entomopathogenic fungi from T. papillosa. This finding suggests that the highly virulent P. lilacinus and B. bassiana play an important role in the biocontrol of T. papillosa in China. These pathogenic fungi had no pollution or residue risk, and could provide an alternative option for IPM of litchi stink-bug.

  12. The isolation and identification of pathogenic fungi from Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae).

    Science.gov (United States)

    Meng, Xiang; Hu, Junjie; Ouyang, Gecheng

    2017-01-01

    Litchi stink-bug, Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae), is one of the most widespread and destructive pest species on Litchi chinensis Sonn and Dimocarpus longan Lour in Southern China. Inappropriate use of chemical pesticides has resulted in serious environmental problems and food pollution. Generating an improved Integrated Pest Management (IPM) strategy for litchi stink-bug in orchard farming requires development of an effective biological control agent. Entomopathogenic fungi are regarded as a vital ecological factor in the suppression of pest populations under field conditions. With few effective fungi and pathogenic strains available to control litchi stink-bug, exploration of natural resources for promising entomopathogenic fungi is warranted. In this study, two pathogenic fungi were isolated from cadavers of adult T. papillosa . They were identified as Paecilomyces lilacinus and Beauveria bassiana by morphological identification and rDNA-ITS homogeneous analysis. Infection of T. papillosa with B. bassiana and P. lilacinus occurred initially from the antennae, metameres, and inter-segmental membranes. Biological tests showed that the two entomopathogenic fungi induced high mortality in 2 nd and 5 th instar nymphs of T. papillosa . B. bassiana was highly virulent on 2 nd instar nymphs of T. papillosa , with values for cadaver rate, LC 50 and LT 50 of 88.89%, 1.92 × 10 7  conidia/mL and 4.34 days respectively. This study provides two valuable entomopathogenic fungi from T. papillosa . This finding suggests that the highly virulent P. lilacinus and B. bassiana play an important role in the biocontrol of T. papillosa in China. These pathogenic fungi had no pollution or residue risk, and could provide an alternative option for IPM of litchi stink-bug.

  13. Classification and infection mechanism of entomopathogenic fungi

    OpenAIRE

    Mora, Margy Alejandra Esparza; Castilho, Alzimiro Marcelo Conteiro; Fraga, Marcelo Elias

    2018-01-01

    ABSTRACT: Entomopathogenic fungi are important biological control agents throughout the world, have been the subject of intensive research for more than 100 years, and can occur at epizootic or enzootic levels in their host populations. Their mode of action against insects involves attaching a spore to the insect cuticle, followed by germination, penetration of the cuticle, and dissemination inside the insect. Strains of entomopathogenic fungi are concentrated in the following orders: Hypocre...

  14. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  15. Thermophilic Fungi: Their Physiology and Enzymes†

    OpenAIRE

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending Itp to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although wides...

  16. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    OpenAIRE

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer’s health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested ...

  17. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon ( Salmo salar ) at 2 degrees C

    DEFF Research Database (Denmark)

    Emborg, Jette; Laursen, B.G.; Rathjen, T.

    2002-01-01

    series of storage trials with naturally contaminated fresh and thawed modified atmosphere-packed (MAP) salmon at 2 degrees C. Photobacterium phosphoreum dominated the spoilage microflora of fresh MAP salmon at more than 106 cfu g-1 and the activity of this specific spoilage organism (SSO) limited...... small amounts of biogenic amines in this product. The elimination of P. phosphoreum by freezing allowed this bacteria to be identified as the SSO in fresh MAP salmon.Significance and Impact of the Study: The identification of P. phosphoreum as the SSO in fresh MAP salmon facilitates the development...

  18. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0 degrees C and 25 degrees C

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Vancanneyt, M.; Vilalta, N.E.

    2003-01-01

    MAP shrimps were characterized by phenotypic tests and identified as lactic acid bacteria (78 isolates), other Gram-positive bacteria (13 isolates) and Gram-negative bacteria (11 isolates). A selection of 48 LAB isolates were further characterized and identified by phenotypic tests and SDS-PAGE...... the dominant parts of spoilage associations of cooked and brined MAP shrimps stored at high and low temperatures, respectively. Significance and Impact of the Study: The SDS-PAGE technique and simple biochemical keys allowed the majority of LAB isolates from spoilage associations of cooked and brined MAP...

  19. Sex and the Imperfect Fungi.

    Science.gov (United States)

    Dyer, Paul S; Kück, Ulrich

    2017-06-01

    Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida , Aspergillus , Penicillium , and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.

  20. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment.

    Directory of Open Access Journals (Sweden)

    Serena Dollive

    Full Text Available Antibiotic use in humans has been associated with outgrowth of fungi. Here we used a murine model to investigate the gut microbiome over 76 days of treatment with vancomycin, ampicillin, neomycin, and metronidazole and subsequent recovery. Mouse stool was studied as a surrogate for the microbiota of the lower gastrointestinal tract. The abundance of fungi and bacteria was measured using quantitative PCR, and the proportional composition of the communities quantified using 454/Roche pyrosequencing of rRNA gene tags. Prior to treatment, bacteria outnumbered fungi by >3 orders of magnitude. Upon antibiotic treatment, bacteria dropped in abundance >3 orders of magnitude, so that the predominant 16S sequences detected became transients derived from food. Upon cessation of treatment, bacterial communities mostly returned to their previous numbers and types after 8 weeks, though communities remained detectably different from untreated controls. Fungal communities varied substantially over time, even in the untreated controls. Separate cages within the same treatment group showed radical differences, but mice within a cage generally behaved similarly. Fungi increased ∼40-fold in abundance upon antibiotic treatment but declined back to their original abundance after cessation of treatment. At the last time point, Candida remained more abundant than prior to treatment. These data show that 1 gut fungal populations change radically during normal mouse husbandry, 2 fungi grow out in the gut upon suppression of bacterial communities with antibiotics, and 3 perturbations due to antibiotics persist long term in both the fungal and bacterial microbiota.

  1. Reducing the bloater spoilage incidence in fermented green olives during storage

    Directory of Open Access Journals (Sweden)

    Brito, D.

    2002-09-01

    Full Text Available Fermented green olives of the variety “Picholine” were brined in 5% NaCl solutions, which were adjusted to pH 4.00 and 5.00 with lactic acid. Potassium sorbate was added to the brine at 0.05 % and the assays were inoculated with Lactobacillus plantarum strain I159, and Pichia anomala strains S18 from our collection. The pH values and microbial counts including Gram negative bacteria, yeasts and moulds, and lactic acid bacteria were followed during 6 months of storage. Results showed that even if the olives were inoculated with a high gas producing yeast (P. anomala S18, the attack of the fruits by the “bloater” spoilage was drastically reduced in the assays adjusted to pH4, added with potassium sorbate and inoculated with L. plantarum, without affecting the organoleptic characteristics of the product.Aceitunas verdes fermentadas de la variedad Picholine fueron colocadas en soluciones de salmuera al 5% en NaCl, ajustando el pH a 4,00 y 5,00 con ácido láctico. Se agregó sorbato potásico a la salmuera a una concentración del 0,05% y las muestras se inocularon con cepas de Lactobacllius plantarum I159 y Pichia anomala S18 de nuestra procedencia. Los valores del pH y el recuento microbiano incluyendo a las bacterias Gram-negativas, levaduras y mohos y bacterias del ácido láctico se siguieron durante los seis meses de almacenamiento. Los resultados mostraron que incluso inoculando las aceitunas con la levadura (P. anomala S18, productora de alta cantidad de gas, el ataque de los frutos por el alambrado se redujo drásticamente en las muestras ajustadas a pH4, a las que se añadió sorbato potásico e inoculó con Lactobacllius plantarum, sin verse afectadas las características organolépticas del producto.

  2. Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment.

    Science.gov (United States)

    Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R

    2015-08-01

    Cell suspensions of four Dekkera bruxellensis strains (CBS 2499, CBS 2797, CBS 4459 and CBS 4601) were subjected to heat treatment in deionized water at four different temperatures (55·0, 57·5, 60·0 and 62·5°C) to investigate their thermal resistance. The decimal reduction times at a specific temperature were calculated from the resulting inactivation curves: the D-values at 55·0°C ranged from 63 to 79·4 s, at 57·5°C from 39·6 to 46·1 s, at 60·0°C from 19·5 to 20·7 s, at 62·5°C from 10·2 to 13·7 s. The z-values were between 9·2 and 10·2°C, confirming that heat resistance is a strain-dependent character. A protocol for the sanitization of 225 l casks by immersion in hot water was set up and applied to contaminated 3-year-old barrels. The heat penetration through the staves was evaluated for each investigated temperature by positioning a thermal probe at 8 mm deep. A treatment at 60°C for an exposure time of 19 min allowed to eliminate the yeast populations up to a log count reduction of 8. Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses. Current sanitization protocols, performed using different chemicals, are ineffective due to the porous nature of the wood. The thermal inactivation of D. bruxellensis cells by hot water treatment proves to be efficacious and easy to perform, provided that the holding time at the killing temperature takes into account the filling time of the vessel and the time for the heat penetration into the wood structure. © 2015 The Society for Applied Microbiology.

  3. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae

    DEFF Research Database (Denmark)

    Flodgaard, Lars; Christensen, Allan Beck; Molin, Søren

    2003-01-01

    by Gram-negative bacteria participating in spoilage. As part of our investigation of the role of AHLs in food quality, we studied the AHL production in two Enterobacteriaceae isolated from cold-smoked salmon under growth conditions typical of those found in cold-smoked salmon. We tested the influence......H is approximately 6 and therefore only a low degree of pH-induced turnover is expected to occur in this product. Overall, our study demonstrates that food-derived Enterobacteriaceae produce AHLs of the same type and in the same magnitude when grown under food-relevant conditions as when grown in laboratory media...

  4. Modified atmosphere packaging for prevention of mold spoilage of bakery products with different pH and water activity levels.

    Science.gov (United States)

    Guynot, M E; Marín, S; Sanchis, V; Ramos, A J

    2003-10-01

    A sponge cake analog was used to study the influence of pH, water activity (aw), and carbon dioxide (CO2) levels on the growth of seven fungal species commonly causing bakery product spoilage (Eurotium amstelodami, Eurotium herbariorum, Eurotium repens, Eurotium rubrum, Aspergillus niger, Aspergillus flavus, and Penicillium corylophilum). A full factorial design was used. Water activity, CO2, and their interaction were the main factors significantly affecting fungal growth. Water activity at levels of 0.80 to 0.90 had a significant influence on fungal growth and determined the concentration of CO2 needed to prevent cake analog spoilage. At an aw level of 0.85, lag phases increased twofold when the level of CO2 in the headspace increased from 0 to 70%. In general, no fungal growth was observed for up to 28 days of incubation at 25 degrees C when samples were packaged with 100% CO2, regardless of the aw level. Partial least squares projection to latent structures regression was used to build a polynomial model to predict sponge cake shelf life on the basis of the lag phases of all seven species tested. The model developed explained quite well (R2 = 79%) the growth of almost all species, which responded similarly to changes in tested factors. The results of this study emphasize the importance of combining several hurdles, such as modified atmosphere packaging, aw, and pH, that have synergistic or additive effects on the inhibition of mold growth.

  5. High pressure treatment changes spoilage characteristics and shelf life of Pacific oysters ( Crassostrea gigas) during refrigerated storage

    Science.gov (United States)

    Cao, Rong; Zhao, Ling; Liu, Qi

    2017-04-01

    The effects of high pressure (HP) treatment on spoilage characteristic and shelf life extension of Pacific oysters ( Crassostrea gigas) during refrigerated storage were studied. Results showed that HP treatment of 275 MPa for 3 min or 300 MPa for 2 min could achieve 100% full release of oyster adductor muscle, pressures higher than 350 MPa caused excessive release as the shells of oysters were broken, thus use of higher pressures should be cautious in oyster processing industry because of its adverse impact on the appearance of shells. HP treatment (300 MPa, 2 min) was proper for the shucking of Pacific oyster ( Crassostrea gigas) in China. This treatment caused no organoleptic disadvantage. Moreover, HP treatment resulted in obvious differences in biochemical spoilage indicators (pH, TVB-N and TBARS) changes and volatile compounds profile determined by electronic nose during storage. HP treatment (300 MPa, 2 min) also led to a reduction of aerobic bacterial count (APC) by 1.27 log cycles. Furthermore, the APC values of oysters treated by HP were always lower than those of the control samples during storage. Based on the organoleptic, biochemical and microbiological indicators, shelf life of 6-8 d for control and 12 d for HP-treated oysters could be expected. HP treatment showed great potential in oyster processing and preservation.

  6. Unraveling microbial biofilms of importance for food microbiology.

    Science.gov (United States)

    Winkelströter, Lizziane Kretli; Teixeira, Fernanda Barbosa dos Reis; Silva, Eliane Pereira; Alves, Virgínia Farias; De Martinis, Elaine Cristina Pereira

    2014-07-01

    The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.

  7. Collection, identification and shelf life enhancement of wild edible fungi used by ethnic tribes of Madhya Pradesh, India

    International Nuclear Information System (INIS)

    Thakur, Rajendra Singh; Singh; Alpana; Gautam, Satendra; Shukla, Shashita; Deshmukh, Reena

    2015-01-01

    An extensive survey for collection and identification of wild edible fungi was undertaken in three districts namely Mandla, Dindori and Shahdol of Northern Hill Region of Chhattisgarh (An Agro-climatic Zone) belonging to Madhya Pradesh. A total of 9 species were documented as wild edible fungi used for food purpose by ethnic tribes of selected region. These wild edible fungi make a substantial contribution to the food security of tribal people of Madhya Pradesh. Identification was done on the basis of morphological characteristics. Termitomyces spp. recorded highest no. of spp. (7) followed by Scleroderma spp (1spp.) and Russula spp. (1spp). For shelf life enhancement, wild edible fungi were irradiated with 0,1.0, 1.5 or 2.0 kGy gamma radiation doses, packed in LDPE bags and stored at 50℃. T. heimii Natrajan showed 15 days, T. radicatus Natarajan 9 days, Scleroderma spp. Showed 24 days of shelf life treated with 1.5 kGy dose whereas Russula Spp., T. eurhizus (Berk) R.heim treated with 1.0 kGy radiation dose showed 9 days of shelf life in terms of all sensory attributes. All the irradiated mushrooms had lower PLW (Physiological Loss in Weight) and better microbial quality as compared to control. Nutritional quality of wild edible fungi was not affected adversely by gamma radiation. This type of study could contribute significantly to improve food security in tribal areas, whose potential as source of nutrition is currently undervalued. (author)

  8. Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis.

    Science.gov (United States)

    Braun, H; Woitsch, L; Hetzer, B; Geisen, R; Zange, B; Schmidt-Heydt, M

    2018-04-19

    A quarter of the world-wide crop is spoiled by filamentous fungi and their mycotoxins and weather extremes associated with the climate change lead to further deterioration of the situation. The ingestion of mycotoxins causes several health issues leading in the worst case to cancer in humans and animals. Common intervention strategies against mycotoxin producing fungi, such as the application of fungicides, may result in undesirable residues and in some cases to a stress induction of mycotoxin biosynthesis. Moreover, development of fungicide resistances has greatly impacted pre- and postharvest fungal diseases. Hence there is the need to develop alternative strategies to reduce fungal infestation and thus mycotoxin contamination in the food chain. Such a strategy for natural competition of important plant-pathogenic and mycotoxin producing fungi could be Trichoderma harzianum, a mycoparasitic fungus. Especially in direct comparison to certain tested fungicides, the inhibition of different tested fungal species by T. harzianum was comparable, more sustainable and in some cases more effective, too. Besides substantially reduced growth rates, a transcriptional based inhibition of mycotoxin biosynthesis in the competed Aspergillus species could be shown. Furthermore it could be clearly observed by high-resolution Scanning Electron Microscopy (SEM) that T. harzianum actively attaches to the competitor species followed by subsequent enzymatic lysis of those mycelial filaments. The analyzed isolate of T. harzianum MRI349 is not known to produce mycotoxins. In this study it could be successfully proven that T. harzianum as a biological competitor is an effective complement to the use of fungicides. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    Science.gov (United States)

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-05

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Grazing preference and utilization of soil fungi by Folsomia candida (Collembola)

    Science.gov (United States)

    Hedenec, Petr; Frouz, Jan

    2016-04-01

    Soil fungi are important food resources for soil fauna. Here we ask whether the collembolan Folsomia candida shows selectivity in grazing between four saprophytic fungi (Penicillium chrysogenum, Penicillium expansum, Absidia glauca, and Cladosporium herbarum), whether grazing preference corresponds to effects on collembolan reproduction, and whether the effects of fungi on grazing and reproduction depends on the fungal substrate, which included three kinds of litter (Alnus glutinosa, Salix caprea, and Quercus robur) and one kind of agar (yeast extract). On agar, Cladosporium herbarum and Absidia glauca were the most preferred fungi and supported the highest collembolan reproduction. On fungal-colonized litter, grazing preference was more affected by litter type than by fungal species whereas collembolan reproduction was affected by both litter type and fungal species. On fungal-colonized litter, the litter type that was most preferred for grazing did not support the highest reproduction, i.e., there was an inconsistency between food preference and suitability. Alder and willow were preferred over oak for grazing, but alder supported the least reproduction.

  11. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  12. Lignicolous fungi as potential natural sources of antioxidants

    Directory of Open Access Journals (Sweden)

    Karaman Maja A.

    2005-01-01

    Full Text Available As a result of an interest in natural derived metabolites around the world higher fungi (Basidiomycotina have taken on great importance in biochemical investigations. A large number of structurally divergent compounds - both cellular components and secondary metabolites - have been extracted and found to possess significant biological activity, such as an immunomodulative effect on the human body. Effects of fungal biomolecules as potential natural antioxidants have not been examined so far. Biochemical analysis have included in vitro testing of the influence of different extracts (water methanol, chloroform of selected fungal sporocarps on Fe2+/ascorbate-induced lipid peroxidation (LP in a lecithin liposome system by TBA assay, as well as various other procedures. Qualitative analysis by TLC revealed a distinction both between different extracts of the same fungal species and between similar extracts of different species. The results obtained on antioxidative activities (LP inhibition and "scavenging" activity indicate that MeOH extracts manifested a degree of activity higher than that of CHCl3 extracts with respect to antioxidative activity, the extracts can be ranged in the following declining order: Ganoderma lucidum, Ganoderma applanatum Meripilus giganteus, and Flammulina velutipes. The obtained results suggest that the analyzed fungi are of potential interest as sources of strong natural antioxidants in the food and cosmetics industries, whereas synthetic ones have proved to be carcinogenic.

  13. Comparative genome analysis of Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard; Nagy, Laszlo; Brown, Daren; Held, Benjamin; Baker, Scott; Blanchette, Robert; Boussau, Bastien; Doty, Sharon L.; Fagnan, Kirsten; Floudas, Dimitris; Levasseur, Anthony; Manning, Gerard; Martin, Francis; Morin, Emmanuelle; Otillar, Robert; Pisabarro, Antonio; Walton, Jonathan; Wolfe, Ken; Hibbett, David; Grigoriev, Igor

    2013-08-07

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism. Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.

  14. Culturable fungi in potting soils and compost.

    Science.gov (United States)

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Airborne fungi in an intensive care unit

    Directory of Open Access Journals (Sweden)

    C. L. Gonçalves

    2017-07-01

    Full Text Available Abstract The presence of airborne fungi in Intensive Care Unit (ICUs is associated with increased nosocomial infections. The aim of this study was the isolation and identification of airborne fungi presented in an ICU from the University Hospital of Pelotas – RS, with the attempt to know the place’s environmental microbiota. 40 Petri plates with Sabouraud Dextrose Agar were exposed to an environment of an ICU, where samples were collected in strategic places during morning and afternoon periods for ten days. Seven fungi genera were identified: Penicillium spp. (15.18%, genus with the higher frequency, followed by Aspergillus spp., Cladosporium spp., Fusarium spp., Paecelomyces spp., Curvularia spp., Alternaria spp., Zygomycetes and sterile mycelium. The most predominant fungi genus were Aspergillus spp. (13.92% in the morning and Cladosporium spp. (13.92% in the afternoon. Due to their involvement in different diseases, the identified fungi genera can be classified as potential pathogens of inpatients. These results reinforce the need of monitoring the environmental microorganisms with high frequency and efficiently in health institutions.

  17. Food irradiation in Romania - Achievements and expectations

    International Nuclear Information System (INIS)

    Ferdes, O.S.

    1993-01-01

    Irradiation or ionization of foodstuffs and agricultural products is an efficient but controversial method which can lead to the post-harvest spoilages reduction, the extension of shelf-life and to provide the food safety. This paper presents the status of food irradiation research and technologies in our country, and throughout the world, too. In Romania the food processing by irradiation (ionization) is not used for commercial purposes and there are not food irradiation plants, yet. There have been performed only research and pilot-experiments, only by the Institute of Food Research in co-operation and using the 6 0C o gamma-ray sources of the Institute of Chemical and Pharmaceutical Research and the Institute of Physics and Nuclear Engineering, both from Bucharest. These experiments have referred both to the basic aspects of the ionizing radiation interactions with the food essential constituents and to the technological aspects of irradiation from different items like: potatoes, onions, garlic, grain, cereals, wheat flour, fresh and dehydrated fruits and vegetables, mushrooms, meat, eggs, spices, ingredients, and biotechnological products. There are also presented the advantages and disadvantages of food irradiation, the world trends in this field and the future in Romania of this technology which was named, in 1989, by the Institute of Food Technologies (US), t he most versatile technology of the 20 -th Century, for tomorrow . (Author)

  18. Rock-eating fungi: Ectomycorrhizal fungi are picky eaters

    Science.gov (United States)

    Rosenstock, Nicholas; Smits, Mark; Berner, Christoffer; Kram, Pavel; Wallander, Hakan

    2014-05-01

    Ectomycorrhizal fungi, which form mutualistic symbiosis with the roots of most temperate and boreal forest trees, play a key role in the provision of nitrogen and phosphorus to their plant symbionts; they have also been shown to provide potassium and magnesium. Ectomycorhizal hyphae colonize and take up mineral nutrients (including P, K, and Mg) from primary mineral surfaces in the soil. It is poorly understood whether mineral colonization and uptake of nutrients from minerals can increase in accordance with host plant demand for these nutrients, and this question has been difficult to address in field settings. Ectomycorrhizal fungal communities are diverse and niche separation according to nutrient uptake and transport to the host is commonly considered one of the major factors maintaining diversity and shaping ectomycorrhizal community composition.We investigated ectomycorrhizal growth, community composition, and mineral colonization in a series of connected Norway spruce forests in the Czech republic. These forests have similar aspect, climate and stand history, but are underlain by different parent materials and are, as a result, limited by different nutrients. The productivity of forests overlying a high amount of serpentinite rock are co-limited by K and P, those growing on primarily granitic rock are limited by Mg, while those on amphibolite are N limited. We assessed the fungal community in both soil and in-growth mesh bags measuring biomarkers, using in-growth assays and performing community analysis with 454 sequencing of the ITS region. In-growth mesh bags were filled with quartz sand and incubated for two growing seasons in the soil. These mesh bags select for ectomycorrhizal hyphae and were either pure quartz sand or amended with ground apatite (Ca and P source), hornblende (Mg source) or biotite (K source). Ectomycorrhizal growth and community composition were most strongly affected by parent material. The phosphorus-limited site had the lowest tree

  19. Baiting of bacteria with hyphae of common soil fungi revealed a diverse group of potentially mycophagous secondary consumers in the rhizosphere

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J.A.; de Boer, W.

    2015-01-01

    Abstract Fungi and bacteria are primary consumers of plant-derived organic compounds and therefore considered as basal members of soil food webs. Trophic interactions among these microorganisms could, however, induce shifts in food web energy flows. Given increasing evidence for a prominent role of

  20. Food safety concerns deriving from the use of silver based food packaging materials: a case study.

    Directory of Open Access Journals (Sweden)

    Alessandra ePezzuto

    2015-10-01

    Full Text Available The formulation of innovative packaging solutions, exerting a functional antimicrobial role in slowing down food spoilage, is expected to have a significant impact on the food industry, allowing both the maintenance of food safety criteria for longer periods and the reduction of food waste. Different materials are considered able to exert the required antimicrobial activity, among which are materials containing silver. However, challenges exist in the application of silver to food contact materials due to knowledge gaps in the production of ingredients, stability of delivery systems in food matrices and health risks caused by the same properties which also offer the benefits. Aims of the present study were to test the effectiveness and suitability of two packaging systems, one of which contained silver, for packaging and storing Stracchino cheese, a typical Italian fresh cheese, and to investigate if there was any potential for consumers to be exposed to silver, via migration from the packaging to the cheese. Results did not show any significant difference in the effectiveness of the packaging systems on packaged Stracchino cheese, excluding that the active packaging systems exerted an inhibitory effect on the growth of spoilage microorganisms. Moreover, silver migrated into the cheese matrix throughout the storage time (24 days. Silver levels in cheese finally exceeded the maximum established level for the migration of a non-authorised substance through a functional barrier (Commission Regulation (EC No. 450/2009. This result poses safety concerns and strongly suggests the need for more research aimed at better characterizing the new packaging materials in terms of their potential impacts on human health and the environment.

  1. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Shah, Alok; Nanjappa, C.; Chauhan, O.P.

    2014-01-01

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  2. Moringa, marinade, bacteria, fungi, catfish, smoke-dried

    African Journals Online (AJOL)

    Osondu

    2013-01-16

    Jan 16, 2013 ... spoilage thus limiting economic loss and possible heath risk to consumers ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.1 2013. 1Department of Animal Production, University of Ilorin, Ilorin, ..... Molluscs by Major Fishing Areas. ... Microbiological quality of smoke-dried mangrove.

  3. Atrazine dissipation in a biobed system inoculated with immobilized white-rot fungi

    OpenAIRE

    Elgueta, Sebastian; Santos, Cledir; Santos, C.; Lima, Nelson; Diez, M. C.

    2016-01-01

    Due to the environmental concerns about the herbicide atrazine accumulation in food products and water reservoirs, there is a need to develop safe and economical methods for its dissipation. The main aim of this study was to evaluate the atrazine dissipation in a biobed system inoculated with immobilized white-rot fungi in a pelletized support (PS). All fungal isolates evaluated were efficient in colonizing the surface and inner parts of the PS and without differences observed in the coloniza...

  4. The importance of fungi and mycology for addressing major global challenges*

    OpenAIRE

    Lange, Lene

    2014-01-01

    In the new bioeconomy, fungi play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new...

  5. Grazing preference and utilization of soil fungi by .i.Folsomia candida./i. (Isotomidae: Collembola)

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Radochová, P.; Nováková, Alena; Kaneda, S.; Frouz, J.

    2013-01-01

    Roč. 55, Mar.-Apr. (2013), s. 66-70 ISSN 1164-5563 R&D Projects: GA MŠk LC06066 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : food preference test * soil microscopic fungi * reproductive test Subject RIV: EH - Ecology, Behaviour Impact factor: 2.146, year: 2013

  6. MICROSCOPIC FUNGI ISOLATED FROM POLISH HONEY

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2012-12-01

    Full Text Available The characterization of some honey samples from Poland was carried out on the basis of their microbiological (fungi and yeasts analysis. Most of the samples contained less than 20 % water. The amount of fungi found in the honey samples was less than 1 x 102 CFU.g-1 but 19 % of the samples had more yeasts than 1 x 102 CFU.g-1 – up to 5.7 x 102 CFU.g-1. The isolated fungi were Alternaria spp., Aspergillus spp., Cladosporium spp., Fusarium spp., Mycelia sterilia, Rhizopus spp. and Penicillium spp. The last genus was isolated very frequently. A total number of eight fungal Penicillium species were identified namely, Penicillium brevicompactum, P. commune, P. corylophilum, P. crustosum, P. expansum, P. griseofulvum, P. chrysogenum and P. polonicum. They were isolated using dilution plate method. The results showed that honeys produced in this region are of good microbiological quality.

  7. Virulence Factors IN Fungi OF Systemic Mycoses

    Directory of Open Access Journals (Sweden)

    KUROKAWA Cilmery Suemi

    1998-01-01

    Full Text Available Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.

  8. Genera of phytopathogenic fungi: GOPHY 1

    Directory of Open Access Journals (Sweden)

    Y. Marin-Felix

    2017-03-01

    Full Text Available Genera of Phytopathogenic Fungi (GOPHY is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.

  9. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    Science.gov (United States)

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer's health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B), 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G), and 29 as A. tamarii (all nonaflatoxigenic). Aflatoxins were detected in only one sample at 4.97 μg/kg. PMID:22666128

  10. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    Directory of Open Access Journals (Sweden)

    P. Rodrigues

    2012-01-01

    Full Text Available Aflatoxin contamination of nuts is an increasing concern to the consumer’s health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B, 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G, and 29 as A. tamarii (all nonaflatoxigenic. Aflatoxins were detected in only one sample at 4.97 μg/kg.

  11. Comparative Genome Analysis of Basidiomycete Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle; Nagy, Laszlo; Manning, Gerard; Baker, Scott; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Hibbett, David; Martin, Francis; Grigoriev, Igor

    2012-03-19

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypes found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.

  12. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes

    Directory of Open Access Journals (Sweden)

    Evelina Y. Basenko

    2018-03-01

    Full Text Available FungiDB (fungidb.org is a free online resource for data mining and functional genomics analysis for fungal and oomycete species. FungiDB is part of the Eukaryotic Pathogen Genomics Database Resource (EuPathDB, eupathdb.org platform that integrates genomic, transcriptomic, proteomic, and phenotypic datasets, and other types of data for pathogenic and nonpathogenic, free-living and parasitic organisms. FungiDB is one of the largest EuPathDB databases containing nearly 100 genomes obtained from GenBank, Aspergillus Genome Database (AspGD, The Broad Institute, Joint Genome Institute (JGI, Ensembl, and other sources. FungiDB offers a user-friendly web interface with embedded bioinformatics tools that support custom in silico experiments that leverage FungiDB-integrated data. In addition, a Galaxy-based workspace enables users to generate custom pipelines for large-scale data analysis (e.g., RNA-Seq, variant calling, etc.. This review provides an introduction to the FungiDB resources and focuses on available features, tools, and queries and how they can be used to mine data across a diverse range of integrated FungiDB datasets and records.

  14. Preliminary Studies for the Application of Irradiated-Food to Food Service Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Choi, Jong-Il; Song, Beom-Seok; Kim, Dong-Ho; Seo, Min-Won

    2008-04-15

    This study is to investigate ways to improve the marketability of irradiated food materials, through examining reports on toxicological safety and public acceptance of irradiated food materials. Many studies have reaffirmed the mutagenic, genotoxicological, microbiological, and nutritional safety of food irradiation, and consider it an important tool to reduce loss of food due to spoilage and pests. Although food irradiation could provide an opportunity to replace certain pesticides and food additives, there is ambivalence among consumers on whether or not the technology provides a real benefit. An easy and inexpensive tool to identify irradiation trace residue in foods, public trust building in industry through educating consumers with the benefit and uses of irradiation process are thought to be key elements for a successful market for irradiated food. Gamma irradiation at 50 kGy was applied to food materials for institutional food-service to evaluate their possible genotoxicity. The genotoxicity of 12 kinds of food materials irradiated at 50 kGy for institutional food-service was evaluated by Salmonella typhimurium reversion assay, chromosomal aberration test and in vivo micronucleus assay. The results of bacterial reversion assay with S. typhimurium TA98, TA100, TA1535 and TA1537 were negative in the 12 kinds of food materials irradiated at 50 kGy. No mutagenicity was detected in the assay with and without metabolic activation. In chromosomal aberration tests with CHL cells and in vivo mouse micronucleus assay, no significant difference in the incidences of chromosomal aberration and micronuclei was observed between non-irradiated and 50 kGy-irradiated food materials. These results indicate that food materials irradiated at 50 kGy for institutional food-service did not show any genotoxic effects under these experimental conditions.

  15. Preliminary Studies for the Application of Irradiated-Food to Food Service Industry

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Choi, Jong-Il; Song, Beom-Seok; Kim, Dong-Ho; Seo, Min-Won

    2008-04-01

    This study is to investigate ways to improve the marketability of irradiated food materials, through examining reports on toxicological safety and public acceptance of irradiated food materials. Many studies have reaffirmed the mutagenic, genotoxicological, microbiological, and nutritional safety of food irradiation, and consider it an important tool to reduce loss of food due to spoilage and pests. Although food irradiation could provide an opportunity to replace certain pesticides and food additives, there is ambivalence among consumers on whether or not the technology provides a real benefit. An easy and inexpensive tool to identify irradiation trace residue in foods, public trust building in industry through educating consumers with the benefit and uses of irradiation process are thought to be key elements for a successful market for irradiated food. Gamma irradiation at 50 kGy was applied to food materials for institutional food-service to evaluate their possible genotoxicity. The genotoxicity of 12 kinds of food materials irradiated at 50 kGy for institutional food-service was evaluated by Salmonella typhimurium reversion assay, chromosomal aberration test and in vivo micronucleus assay. The results of bacterial reversion assay with S. typhimurium TA98, TA100, TA1535 and TA1537 were negative in the 12 kinds of food materials irradiated at 50 kGy. No mutagenicity was detected in the assay with and without metabolic activation. In chromosomal aberration tests with CHL cells and in vivo mouse micronucleus assay, no significant difference in the incidences of chromosomal aberration and micronuclei was observed between non-irradiated and 50 kGy-irradiated food materials. These results indicate that food materials irradiated at 50 kGy for institutional food-service did not show any genotoxic effects under these experimental conditions

  16. Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Dalgaard, Paw

    2002-01-01

    Aims: To evaluate the antimicrobial effect of nine essential oils (EO) on P. phosphoreum and determine the effect of oregano oil on the shelf-life of modified atmosphere-packed (MAP) cod fillets. Methods and Results: The antimicrobial effect of EO was studied in a liquid medium and in product...... storage trials. Oils of oregano and cinnamon had strongest antimicrobial activity, followed by lemongrass, thyme, clove, bay, marjoram, sage and basil oils. Oregano oil (0.05%, v/w) reduced growth of P. phosphoreum in naturally contaminated MAP cod fillets and extended shelf-life from 11-12 d to 21-26 d...... at 2degreesC. Conclusions: Oregano oil reduced the growth of P. phosphoreum and extended the shelf-life of MAP cod fillets. Significance and Impact of the Study: Mild and natural preservation using EO can extend the shelf-life of MAP seafood through inhibiting the specific spoilage organism P...

  17. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage.

    Science.gov (United States)

    Liu, Sophie F; Petty, Alexander R; Sazama, Graham T; Swager, Timothy M

    2015-05-26

    Chemiresistive detectors for amine vapors were made from single-walled carbon nanotubes by noncovalent modification with cobalt meso-arylporphyrin complexes. We show that through changes in the oxidation state of the metal, the electron-withdrawing character of the porphyrinato ligand, and the counteranion, the magnitude of the chemiresistive response to ammonia could be improved. The devices exhibited sub-ppm sensitivity and high selectivity toward amines as well as good stability to air, moisture, and time. The application of these chemiresistors in the detection of various biogenic amines (i.e. putrescine, cadaverine) and in the monitoring of spoilage in raw meat and fish samples (chicken, pork, salmon, cod) over several days was also demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Patogenic fungi associated with blue lupine seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Over 10% ofseeds harvested in 1991 and 1992 (50 samples, 400 seeds in each sample proved to be infested with various fungi. Fusarium spp. and Botrytis cinerea were the most common pathogens isolated. Fusarium avenaceum was the most common and highIy pathogenic species. Fusarium semitectum and F. tricinctum were highly pathogenic to lupin seedlings but they were the least common Fusarium isolated from seeds. Similarily, Sclerotinia sclerotiorum was isolated only from 0,2% seeds tested but this fungus was highly pathogenic to lupin seedlings. Some other fungi know as lupin pathogens (F. oxysporum, Stemphylium botryosum, Pleiochaeta setosa and Phomopsis leptostromiformis were also noted in tested seeds.

  19. Processing- and product-related causes for food waste and implications for the food supply chain.

    Science.gov (United States)

    Raak, Norbert; Symmank, Claudia; Zahn, Susann; Aschemann-Witzel, Jessica; Rohm, Harald

    2017-03-01

    Reducing food waste is one of the prominent goals in the current research, which has also been set by the United Nations to achieve a more sustainable world by 2030. Given that previous studies mainly examined causes for food waste generation related to consumers, e.g., expectations regarding quality or uncertainties about edibility, this review aims at providing an overview on losses in the food industry, as well as on natural mechanisms by which impeccable food items are converted into an undesired state. For this, scientific literature was reviewed based on a keyword search, and information not covered was gathered by conducting expert interviews with representatives from 13 German food processing companies. From the available literature, three main areas of food waste generation were identified and discussed: product deterioration and spoilage during logistical operations, by-products from food processing, and consumer perception of quality and safety. In addition, expert interviews revealed causes for food waste in the processing sector, which were categorised as follows: losses resulting from processing operations and quality assurance, and products not fulfilling quality demands from trade. The interviewees explained a number of strategies to minimise food losses, starting with alternative tradeways for second choice items, and ending with emergency power supplies to compensate for power blackouts. It became clear that the concepts are not universally applicable for each company, but the overview provided in the present study may support researchers in finding appropriate solutions for individual cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Spoilage-related activity of Carnobacterium maltaromaticum strains in air-stored and vacuum-packed meat.

    Science.gov (United States)

    Casaburi, Annalisa; Nasi, Antonella; Ferrocino, Ilario; Di Monaco, Rossella; Mauriello, Gianluigi; Villani, Francesco; Ercolini, Danilo

    2011-10-01

    One hundred three isolates of Carnobacterium spp. from raw meat were analyzed by random amplification of polymorphic DNA (RAPD) and PCR and were identified by 16S rRNA gene sequencing. Forty-five strains of Carnobacterium maltaromaticum were characterized for their growth capabilities at different temperatures, NaCl concentrations, and pH values and for in vitro lipolytic and proteolytic activities. Moreover, their spoilage potential in meat was investigated by analyzing the release of volatile organic compounds (VOCs) in meat stored in air or vacuum packs. Almost all the strains were able to grow at 4, 10, and 20°C, at pH values of 6 to 9, and in the presence of 2.5% NaCl. The release of VOCs by each strain in beef stored at 4°C in air and vacuum packs was evaluated by headspace solid-phase microextraction (HS-SPME)-gas chromatography-mass spectrometry (GC-MS) analysis. All the meat samples inoculated and stored in air showed higher numbers of VOCs than the vacuum-packed meat samples. Acetoin, 1-octen-3-ol, and butanoic acid were the compounds most frequently found under both storage conditions. The contaminated meat samples were evaluated by a sensory panel; the results indicated that for all sensory odors, no effect of strain was significant (P > 0.05). The storage conditions significantly affected (P meat, and mozzarella cheese odors, which were more intense in meat stored in air than in vacuum packs but were never very intense. In conclusion, different strains of C. maltaromaticum can grow efficiently in meat stored at low temperatures both in air and in vacuum packs, producing volatile molecules with low sensory impacts, with a negligible contribution to meat spoilage overall.

  1. Spoilage-Related Activity of Carnobacterium maltaromaticum Strains in Air-Stored and Vacuum-Packed Meat ▿ †

    Science.gov (United States)

    Casaburi, Annalisa; Nasi, Antonella; Ferrocino, Ilario; Di Monaco, Rossella; Mauriello, Gianluigi; Villani, Francesco; Ercolini, Danilo

    2011-01-01

    One hundred three isolates of Carnobacterium spp. from raw meat were analyzed by random amplification of polymorphic DNA (RAPD) and PCR and were identified by 16S rRNA gene sequencing. Forty-five strains of Carnobacterium maltaromaticum were characterized for their growth capabilities at different temperatures, NaCl concentrations, and pH values and for in vitro lipolytic and proteolytic activities. Moreover, their spoilage potential in meat was investigated by analyzing the release of volatile organic compounds (VOCs) in meat stored in air or vacuum packs. Almost all the strains were able to grow at 4, 10, and 20°C, at pH values of 6 to 9, and in the presence of 2.5% NaCl. The release of VOCs by each strain in beef stored at 4°C in air and vacuum packs was evaluated by headspace solid-phase microextraction (HS-SPME)-gas chromatography-mass spectrometry (GC-MS) analysis. All the meat samples inoculated and stored in air showed higher numbers of VOCs than the vacuum-packed meat samples. Acetoin, 1-octen-3-ol, and butanoic acid were the compounds most frequently found under both storage conditions. The contaminated meat samples were evaluated by a sensory panel; the results indicated that for all sensory odors, no effect of strain was significant (P > 0.05). The storage conditions significantly affected (P meat, and mozzarella cheese odors, which were more intense in meat stored in air than in vacuum packs but were never very intense. In conclusion, different strains of C. maltaromaticum can grow efficiently in meat stored at low temperatures both in air and in vacuum packs, producing volatile molecules with low sensory impacts, with a negligible contribution to meat spoilage overall. PMID:21784913

  2. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-09-15

    Statistics show that over forty per cent of the human population, a large portion of which come from the Third World, are suffering from hunger and malnutrition. While the solution to these problems depends to a great extent on the food production strategies of the various governments, equally important is the need to preserve existing food supply by reducing food and crop spoilage. It has been reported that estimated losses due to bacterial spoilage are heavy; those of highly perishable commodities such as fish and fishery products have been reported as amounting to thirty per cent of the total catch. An additional loss of five to ten per cent due to insects and microbes during lengthy periods of drying and/or storage has also been reported. After about thirty years of research, treatment with ionizing radiations has been proved to be a valuable potential tool for reducing post-harvest storage losses and for preserving quickly perishable food from deterioration. Since irradiation is a purely physical method of food conservation, it may for many purposes become the preferred method, for it is an environmentally clean process not tainted with the chemical residue problem, it is energy saving, and it can, in many cases, produce effects that cannot be achieved by conventional techniques (e.g. decontamination of frozen food without significant temperature changes, disinfestation and decontamination of food in bulk and packaged). The preservative effects of ionizing radiations can often be advantageously combined with effects of other physical or chemical agents. The resulting ''combination treatments'' may involve synergistic or cumulative action of the combination partners, leading to a decreased treatment requirement for one or both agents. This in turn may result in cost and/or energy savings and may bring about improvements in the sensory properties and bacteriological quality of the food thus treated. To review progress in this field a Symposium on Combination

  3. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    International Nuclear Information System (INIS)

    1981-01-01

    Statistics show that over forty per cent of the human population, a large portion of which come from the Third World, are suffering from hunger and malnutrition. While the solution to these problems depends to a great extent on the food production strategies of the various governments, equally important is the need to preserve existing food supply by reducing food and crop spoilage. It has been reported that estimated losses due to bacterial spoilage are heavy; those of highly perishable commodities such as fish and fishery products have been reported as amounting to thirty per cent of the total catch. An additional loss of five to ten per cent due to insects and microbes during lengthy periods of drying and/or storage has also been reported. After about thirty years of research, treatment with ionizing radiations has been proved to be a valuable potential tool for reducing post-harvest storage losses and for preserving quickly perishable food from deterioration. Since irradiation is a purely physical method of food conservation, it may for many purposes become the preferred method, for it is an environmentally clean process not tainted with the chemical residue problem, it is energy saving, and it can, in many cases, produce effects that cannot be achieved by conventional techniques (e.g. decontamination of frozen food without significant temperature changes, disinfestation and decontamination of food in bulk and packaged). The preservative effects of ionizing radiations can often be advantageously combined with effects of other physical or chemical agents. The resulting ''combination treatments'' may involve synergistic or cumulative action of the combination partners, leading to a decreased treatment requirement for one or both agents. This in turn may result in cost and/or energy savings and may bring about improvements in the sensory properties and bacteriological quality of the food thus treated. To review progress in this field a Symposium on Combination

  4. Food hygienics

    International Nuclear Information System (INIS)

    Ryu, Yeong Gyun; Lee, Gwang Bae; Lee, Han Gi; Kim, Se Yeol

    1993-01-01

    This book deals with food hygienics with eighteen chapters, which mention introduction on purpose of food hygienics, administration of food hygienics, food and microscopic organism, sanitary zoology, food poisoning, food poisoning by poisonous substance, chronic poisoning by microscopic organism, food and epidemic control , control of parasitic disease, milk hygiene meat hygiene, an egg and seafood hygiene, food deterioration and preservation, food additives, food container and field hygiene, food facilities hygiene, food hygiene and environmental pollution and food sanitation inspection.

  5. Consumption of sweetened beverages as a risk factor of colonization of oral cavity by fungi - eating habits of university students.

    Science.gov (United States)

    Lll, Katarzyna Góralska; Klimczak, Alina; Rachubiński, Paweł; Jagłowska, Aleksandra; Kwapiszewska, Aleksandra

    2015-01-01

    Foods rich in sugar are an excellent substrate for the microorganisms that inhabit the initial sections of the gastrointestinal tract, and one of the most commonly available sources of sugar is the sweetened drink. Students represent an interesting sub-population; the large number of classes and associated stress levels promote fixing of unhealthy behaviors, e.g. tendency to consume a lot of sweetened drinks, for example cola-type or energetic drinks. Aim of this study was to determine the relationship between the amount of sugar consumed in beverages and the prevalence of fungi in the oral cavity. The investigated material consisted of oral washings. Participants completed original questionnaire regarding beverages consumed. The relationship between the consumption of sweetened beverages and risk of the presence of fungi in the oral cavity was determined. Fungi were isolated from 68.1% of examined subjects. Seven species of the genus Candida were observed. Higher prevalence of fungi was seen in the oral cavity of subjects who declared consumption of beverages containing sugar. 37.8% of respondents were found to consume with beverages doses of sugar exceeding the recommended daily requirement. Significantly greater prevalence of oral cavity fungi was noted in those exceeding the recommended GDA (76.3%), compared to of those who were not (68.7%). There were positive correlations between occurrence of fungi and consumption of sweetened carbonated drinks or adding sugar to coffee and tea. The addition of sugar to coffee/tea and sugar consumption above the recommended daily amount significantly increases the risk of colonization of the oral cavity by fungi. Students, due to invalid nutritional habits especially excessive consumption of beverages containing large amounts of sugar, belong to a group with a predisposition to the occurrence of fungi in the oral cavity.

  6. Effect of gamma-irradiation to prevent the spoilage of fried-Kamaboko

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H; Siagian, E G [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1979-08-01

    The study was done to determine the effect of irradiation on the shelf life and quality of a fish meat jelly product named as Fried-Kamaboko which is sometimes called as Satsumaage. Fresh samples were packed and sealed in cellophane coated polyvinylchloride bag with nitrogen gas, and irradiated at 0, 300 and 500 krad followed by storage at 10/sup 0/C. The results showed that irradiation of 300 krad extended the shelf life of Fried-Kamaboko to be 20 days, in contrast to unirradiated samples which were kept only 3 to 6 days at 10/sup 0/C. The species of main microorganisms which grew in unirradiated samples were Micrococcus, Moraxella-Acinetobacter, lactic acid bacteria, yeasts and molds. Irradiation of Fried-Kamaboko at 300 krad reduced the aforementioned flora to the yeasts. The most radio-resistant microorganisms of Fried-Kamaboko was brownish black Fungi identified as Spicaria, and its D/sub 10/ value was obtained to be 130 krad. No remarkable difference was observed between the irradiated Fried-Kamaboko and unirradiated ones with respect to the organoleptic evaluation. But off-odor was slightly induced with the dose of 500 krad irradiation.

  7. Effect of gamma-irradiation to prevent the spoilage of fried-Kamaboko

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Siagian, E.G.

    1979-01-01

    The study was done to determine the effect of irradiation on the shelf life and quality of a fish meat jelly product named as Fried-Kamaboko which is sometimes called as Satsumaage. Fresh samples were packed and sealed in cellophane coated polyvinylchloride bag with nitrogen gas, and irradiated at 0, 300 and 500 krad followed by storage at 10 0 C. The results showed that irradiation of 300 krad extended the shelf life of Fried-Kamaboko to be 20 days, in contrast to unirradiated samples which were kept only 3 to 6 days at 10 0 C. The species of main microorganisms which grew in unirradiated samples were Micrococcus, Moraxella-Acinetobacter, lactic acid bacteria, yeasts and molds. Irradiation of Fried-Kamaboko at 300 krad reduced the aforementioned flora to the yeasts. The most radio-resistant microorganisms of Fried-Kamaboko was brownish black Fungi identified as Spicaria, and its D 10 value was obtained to be 130 krad. No remarkable difference was observed between the irradiated Fried-Kamaboko and unirradiated ones with respect to the organoleptic evaluation. But off-odor was slightly induced with the dose of 500 krad irradiation. (author)

  8. Biodegradation of PAHs by fungi in contaminated-soil containing ...

    African Journals Online (AJOL)

    PAH) benzo(a)anthracene, benzo(a) fluoranthene, benzo(a) pyrene, chrysene and phenanthrene in a soil that was sterilized and inoculated with the nonligninolytic fungi, Fusarium flocciferum and Trichoderma spp. and the ligninolytic fungi, ...

  9. Composition of arbuscular mycorrhizal fungi associated with cassava

    African Journals Online (AJOL)

    SARAH

    2016-02-29

    Feb 29, 2016 ... Objectives: Arbuscular mycorrhizal fungi (AMF) form root symbiotic relationships with higher plants, but .... including growth habit of stem, stem colour, outer and inner root ..... of AM fungi to colonize roots, breaking down their.

  10. Aflatoxins Associated with Storage Fungi in Fish Feed

    African Journals Online (AJOL)

    Timothy Ademakinwa

    This study investigates storage fungi and aflatoxin in fish feed stored under three different ... secondary metabolites of fungi which are formed ... Department of Marine Sciences, Faculty of ... antibiotic is to inhibit the growth of any bacterial.

  11. Biodegrading effects of some rot fungi on Pinus caribaea wood ...

    African Journals Online (AJOL)

    morelet) in Ijaiye Forest Reserve, 38 km northwest of Ibadan, Nigeria. The wood samples were inoculated separately with two species of white-rot fungi; Corioliopsis polyzona and Pleurotus squarrosulus, and two species of brownrot fungi; ...

  12. Survey Study of Lipid Effect on Nisin Nanoliposome Formation and Application in Pasteurized Milk as a Food Model

    Directory of Open Access Journals (Sweden)

    Say-yed Hesameddin Tafreshi

    2015-03-01

    Full Text Available The use of bacteriocins, mainly nisin, is one of the most significant preservation technologies in food industries. Nisin encapsulation can improve stability and homogenous distribution in food matrices. In this study, liposomes of four various lipids (lipoid S 100, lipoid S PC-3, lipoid S PC and lipoid PC (DPPC were prepared by dehydration-rehydration method, compared for entrapment efficiency and lipid with the highest entrapment efficiency (DPPC was characterized. Inhibitory effects of encapsulated (DPPC nanoliposomes and free nisin on spoilage of pasteurized milk were also studied. Entrapment efficiency ranged from 14% (lipoid S 100 to 49% (DPPC. DPPC nanoliposomes were large unilamellar vesicles (LUV and had an asymmetric oval shape (elliptical with a mean diameter of 136 nm. Our study revealed that pasteurized milk spoilage was delayed by both of free and encapsulated nisin, but free nisin (with 38 days was significantly more efficient in comparison with encapsulated nisin (14 days.

  13. CRISPR-Cas Technologies and Applications in Food Bacteria.

    Science.gov (United States)

    Stout, Emily; Klaenhammer, Todd; Barrangou, Rodolphe

    2017-02-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.

  14. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  15. Electronic Nose for Microbiological Quality Control of Food Products

    Directory of Open Access Journals (Sweden)

    M. Falasconi

    2012-01-01

    Full Text Available Electronic noses (ENs have recently emerged as valuable candidates in various areas of food quality control and traceability, including microbial contamination diagnosis. In this paper, the EN technology for microbiological screening of food products is reviewed. Four paradigmatic and diverse case studies are presented: (a Alicyclobacillus spp. spoilage of fruit juices, (b early detection of microbial contamination in processed tomatoes, (c screening of fungal and fumonisin contamination of maize grains, and (d fungal contamination on green coffee beans. Despite many successful results, the high intrinsic variability of food samples together with persisting limits of the sensor technology still impairs ENs trustful applications at the industrial scale. Both advantages and drawbacks of sensor technology in food quality control are discussed. Finally, recent trends and future directions are illustrated.

  16. Common wood decay fungi found in the Caribbean Basin

    Science.gov (United States)

    D. Jean. Lodge

    2016-01-01

    There are hundreds of wood-decay fungi in the Caribbean Basin, but relatively few of these are likely to grow on manmade structures built of wood or wood-composites. The wood-decay fungi of greatest concern are those that cause brown-rot, and especially brown-rot fungi that are resistant to copper-based wood preservatives. Some fungi that grow in the Caribbean and...

  17. An introduction to the irradiation processing of foods

    International Nuclear Information System (INIS)

    Hackwood, S.

    1991-01-01

    The food industry has used a variety of methods over the years to preserve or extend the shelf life of food. These have included cooking, packaging, smoking, chilling, freezing, dehydrating and using chemical additives. More recently, ionising radiation has been used to extend the storage life of foods. More research has been focussed on the effects of irradiation on foods than has been directed at any other form of food processing. This research has spanned 40 years and has been carried out in many countries. Food irradiation can be used to: (a) inhibit the sprouting of vegetables; (b) delay the ripening of fruits; (c) kill insect pests in fruit, grains or spices; (d) reduce or eliminate food spoilage organisms; (e) reduce food poisoning bacteria on some meats and sea food products. This chapter includes sections on the historical background; general aspects of radiation; scientific, technological, microbiological and toxicological aspects of food irradiation; nutritional aspects of food irradiation; consumer attitudes; current status and legislation; labelling. It concludes that the relatively new process of preserving food by irradiation compliments rather than competes with the presently available traditional methods. (author)

  18. Global diversity and geography of soil fungi

    Science.gov (United States)

    Leho Tedersoo; Mohammad Bahram; Sergei Põlme; Urmas Kõljalg; Nourou S. Yorou; Ravi Wijesundera; Luis Villarreal Ruiz; Aida M. Vasco-Palacios; Pham Quang Thu; Ave Suija; Matthew E. Smith; Cathy Sharp; Erki Saluveer; Alessandro Saitta; Miguel Rosas; Taavi Riit; David Ratkowsky; Karin Pritsch; Kadri Põldmaa; Meike Piepenbring; Cherdchai Phosri; Marko Peterson; Kaarin Parts; Kadri Pärtel; Eveli Otsing; Eduardo Nouhra; André L. Njouonkou; R. Henrik Nilsson; Luis N. Morgado; Jordan Mayor; Tom W. May; Luiza Majukim; D. Jean Lodge; Su See Lee; Karl-Henrik Larsson; Petr Kohout; Kentaro Hosaka; Indrek Hiiesalu; Terry W. Henkel; Helery Harend; Liang-dong Guo; Alina Greslebin; Gwen Gretlet; Jozsef Geml; Genevieve Gates; William Dunstan; Chris Dunk; Rein Drenkhan; John Dearnaley; André De Kesel; Tan Dang; Xin Chen; Franz Buegger; Francis Q. Brearley; Gregory Bonito; Sten Anslan; Sandra Abell; Kessy Abarenkov

    2014-01-01

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples,we demonstrate that fungal richness is decoupled from plant diversity.The plant-to-fungus richness ratio declines exponentially toward the poles....

  19. Direct identification of fungi using image analysis

    DEFF Research Database (Denmark)

    Dørge, Thorsten Carlheim; Carstensen, Jens Michael; Frisvad, Jens Christian

    1999-01-01

    Filamentous fungi have often been characterized, classified or identified with a major emphasis on macromorphological characters, i.e. the size, texture and color of fungal colonies grown on one or more identification media. This approach has been rejcted by several taxonomists because of the sub......Filamentous fungi have often been characterized, classified or identified with a major emphasis on macromorphological characters, i.e. the size, texture and color of fungal colonies grown on one or more identification media. This approach has been rejcted by several taxonomists because...... of the subjectivity in the visual evaluation and quantification (if any)of such characters and the apparent large variability of the features. We present an image analysis approach for objective identification and classification of fungi. The approach is exemplified by several isolates of nine different species...... of the genus Penicillium, known to be very difficult to identify correctly. The fungi were incubated on YES and CYA for one week at 25 C (3 point inoculation) in 9 cm Petri dishes. The cultures are placed under a camera where a digital image of the front of the colonies is acquired under optimal illumination...

  20. Pyrene degradation by yeasts and filamentous fungi.

    Science.gov (United States)

    Romero, M Cristina; Salvioli, Mónica L; Cazau, M Cecilia; Arambarri, A M

    2002-01-01

    The saprotrophic soil fungi Fusarium solani (Mart.) Sacc., Cylindrocarpon didymum (Hartig) Wollenw, Penicillium variabile Sopp. and the yeasts Rhodotorula glutinis (Fresenius) Harrison and Rhodotorula minuta (Saito) Harrison were cultured in mineral medium with pyrene. The remaining pyrene concentrations were periodically determined during 20 incubation days, using HPLC. To assess the metabolism of pyrene degradation we added 0.1 microCi of [4,5,9,10] 14C-pyrene to each fungi culture and measured the radioactivity in the volatile organic substances, extractable, aqueous phase, biomass and 14CO2 fractions. The assays demonstrated that F. solani and R. glutinis metabolized pyrene as a sole source of carbon. Differences in their activities at the beginning of the cultures disappeared by the end of the experiment, when 32 and 37% of the original pyrene concentration was detected, for the soil fungi and yeasts, respectively. Among the filamentous fungi, F. solani was highly active and oxidized pyrene; moreover, small but significant degradation rates were observed in C. didymum and P. variahile cultures. An increase in the 14CO2 evolution was observed at the 17th day with cosubstrate. R. glutinis and R. minuta cultures showed similar ability to biotransform pyrene, and that 35% of the initial concentration was consumed at the end of the assay. The same results were obtained in the experiments with or without glucose as cosubstrate.