WorldWideScience

Sample records for food contact surfaces

  1. Bacterial adhesion capacity on food service contact surfaces.

    Science.gov (United States)

    Fink, Rok; Okanovič, Denis; Dražič, Goran; Abram, Anže; Oder, Martina; Jevšnik, Mojca; Bohinc, Klemen

    2017-06-01

    The aim of this study was to analyse the adhesion of E. coli, P. aeruginosa and S. aureus on food contact materials, such as polyethylene terephthalate, silicone, aluminium, Teflon and glass. Surface roughness, streaming potential and contact angle were measured. Bacterial properties by contact angle and specific charge density were characterised. The bacterial adhesion analysis using staining method and scanning electron microscopy showed the lowest adhesion on smooth aluminium and hydrophobic Teflon for most of the bacteria. However, our study indicates that hydrophobic bacteria with high specific charge density attach to those surfaces more intensively. In food services, safety could be increased by selecting material with low adhesion to prevent cross contamination.

  2. Microbial survival on food contact surfaces in the context of food hygiene regulation

    International Nuclear Information System (INIS)

    Stuart-Moonlight, Belinda Isobel

    2001-01-01

    Bacterial food poisoning causes substantial suffering and financial loss worldwide. One way organisms enter foods is via cross contamination directly or indirectly from structural and food contact surfaces. An 'in situ' method was developed for the detection of surviving bacteria on surfaces. Samples of test surfaces were overlaid with agar and after incubation, colonies were visualised by reaction with nitroblue tetrazolium, which was reduced to a purple insoluble dye. It was shown that the death of bacteria applied as liquid films to surfaces, occurred largely at the point of drying. For impervious surfaces (ceramic, stainless steel, glass and polystyrene), surface type had little effect on survival. In contrast, survival was markedly affected by the nature of the suspension fluid in which cells were dried. In deionised water, survival was low and for Gram negative organisms was strongly influenced by cell density. Where cells were dried in simulated food films (containing brain heart infusion, NaCI, serum or sucrose), survival values increased with increasing concentrations and approached 100% for Staphylococcus aureus cells suspended in 10% w/v sucrose. The survival of Gram positive organisms on impervious surfaces was generally greater than for Gram negative organisms and consistent with this observation, scanning electron microscopy indicated that Gram negative cells collapsed during drying. On wood surfaces, survival was generally similar to or higher than on impervious surfaces. However, neither of the Gram positive organisms tested (Staphylococcus aureus and Listeria monocytogenes) could be recovered following inoculation onto the surface of the African hard-wood, iroko, although Gram negative organisms survived well. Scanning electron microscopy confirmed that cells had not been adsorbed below the wood surface and an ethanol-soluble toxic factor was extracted from iroko, which killed Staphylococcus aureus cells, but had no effect on the viability of

  3. Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging

    Science.gov (United States)

    Hyperspectral fluorescence imaging methods were utilized to evaluate the potential of multispectral fluorescence methods for detection of pathogenic biofilm formations on four types of food contact surface materials: stainless steel, high density polyethylene (HDPE) commonly used for cutting boards,...

  4. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing.

    Science.gov (United States)

    Sommers, Christopher H; Sheen, Shiowshuh

    2015-09-01

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharyngeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food and food contact surfaces was investigated. When a commercial UV-C conveyor was used (5 mW/cm(2)/s) 0.5 J/cm(2) inactivated >7 log of the Y. pestis cocktail on agar plates. At 0.5 J/cm(2), UV-C inactivated ca. 4 log of Y. pestis in beef, chicken, and catfish, exudates inoculated onto high density polypropylene or polyethylene, and stainless steel coupons, and >6 log was eliminated at 1 J/cm(2). Approximately 1 log was inactivated on chicken breast, beef steak, and catfish fillet surfaces at a UV-C dose of 1 J/cm(2). UV-C treatment prior to freezing of the foods did not increase the inactivation of Y. pestis over freezing alone. These results indicate that routine use of UV-C during food processing would provide workers and consumers some protection against Y. pestis. Published by Elsevier Ltd.

  5. Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food.

    Science.gov (United States)

    Miranda, Robyn C; Schaffner, Donald W

    2016-11-01

    Bacterial cross-contamination from surfaces to food can contribute to foodborne disease. The cross-contamination rate of Enterobacter aerogenes on household surfaces was evaluated by using scenarios that differed by surface type, food type, contact time (food types were watermelon, bread, bread with butter, and gummy candy. Surfaces (25 cm 2 ) were spot inoculated with 1 ml of inoculum and allowed to dry for 5 h, yielding an approximate concentration of 10 7 CFU/surface. Foods (with a 16-cm 2 contact area) were dropped onto the surfaces from a height of 12.5 cm and left to rest as appropriate. Posttransfer, surfaces and foods were placed in sterile filter bags and homogenized or massaged, diluted, and plated on tryptic soy agar. The transfer rate was quantified as the log percent transfer from the surface to the food. Contact time, food, and surface type all had highly significant effects (P food, while the least bacteria transferred to gummy candy (∼0.1 to 62%). Transfer of bacteria to bread (∼0.02 to 94%) was similar to transfer of bacteria to bread with butter (∼0.02 to 82%), and these transfer rates under a given set of conditions were more variable than with watermelon and gummy candy. The popular notion of the "five-second rule" is that food dropped on the floor and left there for foods (watermelon, bread, bread with butter, and gummy candy), four different contact times (food and the surface, are of equal or greater importance. Some transfer takes place "instantaneously," at times of <1 s, disproving the five-second rule. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Differential MS2 Interaction with Food Contact Surfaces Determined by Atomic Force Microscopy and Virus Recovery.

    Science.gov (United States)

    Shim, J; Stewart, D S; Nikolov, A D; Wasan, D T; Wang, R; Yan, R; Shieh, Y C

    2017-12-15

    Enteric viruses are recognized as major etiologies of U.S. foodborne infections. These viruses are easily transmitted via food contact surfaces. Understanding virus interactions with surfaces may facilitate the development of improved means for their removal, thus reducing transmission. Using MS2 coliphage as a virus surrogate, the strength of virus adhesion to common food processing and preparation surfaces of polyvinyl chloride (PVC) and glass was assessed by atomic force microscopy (AFM) and virus recovery assays. The interaction forces of MS2 with various surfaces were measured from adhesion peaks in force-distance curves registered using a spherical bead probe preconjugated with MS2 particles. MS2 in phosphate-buffered saline (PBS) demonstrated approximately 5 times less adhesion force to glass (0.54 nN) than to PVC (2.87 nN) ( P force for PVC (∼0 nN) and consistently increased virus recovery by 19%. With direct and indirect evidence of virus adhesion, this study illustrated a two-way assessment of virus adhesion for the initial evaluation of potential means to mitigate virus adhesion to food contact surfaces. IMPORTANCE The spread of foodborne viruses is likely associated with their adhesive nature. Virus attachment on food contact surfaces has been evaluated by quantitating virus recoveries from inoculated surfaces. This study aimed to evaluate the microenvironment in which nanometer-sized viruses interact with food contact surfaces and to compare the virus adhesion differences using AFM. The virus surrogate MS2 demonstrated less adhesion force to glass than to PVC via AFM, with the force-contributing factors including the intrinsic nature and the topography of the contact surfaces. This adhesion finding is consistent with the virus recoveries, which were determined indirectly. Greater numbers of viruses were recovered from glass than from PVC, after application at the same levels. The stronger MS2 adhesion onto PVC could be interrupted by incorporating a

  7. Microbial counts of food contact surfaces at schools depending on a feeding scheme

    Directory of Open Access Journals (Sweden)

    Nthabiseng Nhlapo

    2014-11-01

    Full Text Available The prominence of disease transmission between individuals in confined environments is a concern, particularly in the educational environment. With respect to school feeding schemes, food contact surfaces have been shown to be potential vehicles of foodborne pathogens. The aim of this study was to assess the cleanliness of the surfaces that come into contact with food that is provided to children through the National School Nutrition Programme in central South Africa. In each school under study, microbiological samples were collected from the preparation surface and the dominant hand and apron of the food handler. The samples were analysed for total viable counts, coliforms, Escherichia coli, Staphylococcus aureus and yeasts and moulds. The criteria specified in the British Columbia Guide for Environmental Health Officers were used to evaluate the results. Total viable counts were high for all surfaces, with the majority of colonies being too numerous to count (over 100 colonies per plate. Counts of organisms were relatively low, with 20% of the surfaces producing unsatisfactory enumeration of S. aureus and E. coli and 30% unsatisfactory for coliforms. Yeast and mould produced 50% and 60% unsatisfactory counts from preparation surfaces and aprons, respectively. Statistically significant differences could not be established amongst microbial counts of the surfaces, which suggests cross-contamination may have occurred. Contamination may be attributed to foodstuffs and animals in the vicinity of the preparation area rather than to the food handlers, because hands had the lowest counts of enumerated organisms amongst the analysed surfaces.

  8. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials.

    Science.gov (United States)

    Corcoran, M; Morris, D; De Lappe, N; O'Connor, J; Lalor, P; Dockery, P; Cormican, M

    2014-02-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities.

  9. Microbiological Quality of Food Contact Surfaces in A Hospital Kitchen in Shiraz, Iran, 2014

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2015-10-01

    Full Text Available Background: The consumption of healthy food is considered as an essential need to devoid the physical, chemical, and biological hazards. The importance of this issue is more conspicuous in places such as hospitals where people with somehow compromised immune systems are under treatment. Therefore, this research aimed to evaluate the microbiological quality of food contact surfaces in a kitchen in one of the hospitals of Shiraz University of Medical Sciences. Methods: In the present study, samples were taken from 48 food contact surfaces according to ISO 18593:2004(E and placed into the bags containing diluting solution; they were then transferred to the laboratory for microbial analysis in the cold chain. The microbial analysis was carried out according to ISO 4833-1:2013 and BS ISO 4832:2006 for enumeration of total bacterial count and coliform. Results: Based on the results presented here, 39.6% and 85.7% of the samples showed acceptable contamination with regard to the enumeration of total bacterial and coliform count. Besides, 18.2% and 72.7 % of work surfaces groups (cutting board, table, and hand showed acceptable contamination with regard to the enumeration of total bacterial count and coliform in comparison to the standards. Furthermore, 45.9% and 89.2% of other surfaces showed acceptable total bacterial and coliform count, respectively. Conclusion: The results showed that safe management of the kitchen, education of the staff and also improvement of the equipment used are necessary.

  10. Nigerian Food Journal: Contact

    African Journals Online (AJOL)

    Nigerian Food Journal. ... Nigerian Food Journal: Contact. Journal Home > About the Journal > Nigerian Food Journal: Contact. Log in or Register to get access to full text downloads. ... Mailing Address. Department of Food Science and Technology University of Agriculture, Makurdi, Nigeria ...

  11. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  12. An Immunoassay for Quantification of Contamination by Raw Meat Juice on Food Contact Surfaces.

    Science.gov (United States)

    Chen, Fur-Chi; Godwin, Sandria; Chambers, Edgar

    2016-11-01

    Raw chicken products often are contaminated with Salmonella and Campylobacter , which can be transmitted from packages to contact surfaces. Raw meat juices from these packages also provide potential media for cross-contamination. There are limited quantitative data on the levels of consumer exposure to raw meat juice during shopping for and handling of chicken products. An exposure assessment is needed to quantify the levels of transmission and to assess the risk. An enzyme-linked immunosorbent assay (ELISA) was developed and validated for quantitative detection of raw meat juice on hands and various food contact surfaces. Analytical procedures were designed to maximize the recovery of raw meat juice from various surfaces: hands, plastic, wood, stainless steel, laminated countertops, glass, and ceramics. The ELISA was based on the detection of a soluble muscle protein, troponin I (TnI), in the raw meat juice. The assay can detect levels as low as 1.25 ng of TnI, which is equivalent to less than 1 μl of the raw meat juice. The concentrations of TnI in the raw meat juices from 10 retail chicken packages, as determined by ELISA, were between 0.46 and 3.56 ng/μl, with an average of 1.69 ng/μl. The analytical procedures, which include swabbing, extraction, and concentration, enable the detection of TnI from various surfaces. The recoveries of raw meat juice from surfaces of hands were 92%, and recoveries from other tested surfaces were from 55% on plastic cutting boards to 75% on laminated countertops. The ELISA developed has been used for monitoring the transfer of raw meat juice during shopping for and handling of raw chicken products in our studies. The assay also can be applied to other raw meat products, such as pork and beef.

  13. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing

    Science.gov (United States)

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharangeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food an...

  14. Microbiological levels of randomly selected food contact surfaces in hotels located in Spain during 2007-2009.

    Science.gov (United States)

    Doménech-Sánchez, Antonio; Laso, Elena; Pérez, María José; Berrocal, Clara Isabel

    2011-09-01

    The aim of this study was to survey the microbial levels of food contact surfaces in hotels. Microbiological levels of 4611 surfaces (chopping machines, kitchenware, knives, worktops, and cutting boards) from 280 different facilities in Spain were determined in a 3-year period. The contact-plate technique was used throughout the survey. Overall, the mean of the log of total aerobic count cm(-2) was 0.62, better than those reported for child-care and assisted living facilities. Significant differences were detected among different types of surfaces, time of sampling, season, and year. The majority (74%) of food contact surfaces sampled in Spanish hotels was within the recommended standard of <1.3 log CFU cm(-2), and differences depend on several factors. Our results set a representative picture of the actual situation in our resorts and establish the basis for the development of educational programs to improve food handlers' knowledge of foodborne diseases and their transmission via food contact surfaces.

  15. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    International Nuclear Information System (INIS)

    Reinke, Svenja K; Hauf, Katharina; Heinrich, Stefan; Vieira, Josélio; Palzer, Stefan

    2015-01-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations. (paper)

  16. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    Science.gov (United States)

    Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2015-11-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.

  17. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  18. Control of Listeria innocua Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat.

    Science.gov (United States)

    Jeon, Hye Ri; Kwon, Mi Jin; Yoon, Ki Sun

    2018-04-01

    Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.

  19. Rough Surface Contact

    Directory of Open Access Journals (Sweden)

    T Nguyen

    2017-06-01

    Full Text Available This paper studies the contact of general rough curved surfaces having nearly identical geometries, assuming the contact at each differential area obeys the model proposed by Greenwood and Williamson. In order to account for the most general gross geometry, principles of differential geometry of surface are applied. This method while requires more rigorous mathematical manipulations, the fact that it preserves the original surface geometries thus makes the modeling procedure much more intuitive. For subsequent use, differential geometry of axis-symmetric surface is considered instead of general surface (although this “general case” can be done as well in Chapter 3.1. The final formulas for contact area, load, and frictional torque are derived in Chapter 3.2.

  20. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.; Teixeira, P. [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Tavares, C.J. [Center of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Azeredo, J., E-mail: jazeredo@deb.uminho.pt [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO{sub 2}) and, more recently, nitrogen-doped titanium dioxide (N-TiO{sub 2}) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO{sub 2} coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO{sub 2} coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10{sup 6} CFU/ml on glass and 2.37 × 10{sup 7} on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO{sub 2} coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly

  1. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    International Nuclear Information System (INIS)

    Rodrigues, D.; Teixeira, P.; Tavares, C.J.; Azeredo, J.

    2013-01-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO 2 ) and, more recently, nitrogen-doped titanium dioxide (N-TiO 2 ) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO 2 coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO 2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10 6 CFU/ml on glass and 2.37 × 10 7 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO 2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne

  2. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Science.gov (United States)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  3. Nordic project food contact materials

    DEFF Research Database (Denmark)

    Li, Ågot; Tesdal Håland, Julie; Petersen, Jens Højslev

    Denmark, Finland, Faroe Islands, Iceland, Norway and Sweden have in 2013––2015 conducted a Nordic project on food contact materials. Food contact materials are used in all stages of food production and can be a general source of contamination. The food safety authorities in most of the Nordic...... countries have had a limited focus on the FCM area with the exception of Denmark and Finland. The aim of the project was therefore to control establishments producing, importing or using plastic food contact materials as well as to increase the knowledge of the inspectors performing these controls....... The focus of the inspections was to control the declaration of compliance (DoC) for plastic food contact materials. The requirement for a Doc is mandatory in order to ensure that the FCM complies with the legislation. In addition some products were analyzed for phthalates....

  4. Efficacy of a Food-grade Mixture of Volatile Compounds to Reduce Salmonella Levels on Food Contact Surfaces

    Science.gov (United States)

    Introduction: Volatile organic compounds (VOCs) released from an endophytic fungus, Muscodor crispans, have been shown to have antimicrobial activity against many fungal and bacterial species. These VOCs have been synthesized into a commercial mixture called “B-23”, which may be a useful surface san...

  5. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying.

    Science.gov (United States)

    Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon

    2014-11-17

    We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers

    Directory of Open Access Journals (Sweden)

    Evandro Leite de Souza

    2014-01-01

    Full Text Available This study assessed the capacity of adhesion, the detachment kinetic and the biofilm formation by Staphylococcus aureus isolated from food services on stainless steel and polypropylene surfaces (2 x 2 cm when cultivated in a meat-based broth at 28 and 7 ºC. It was also to study the efficacy of the sanitizers sodium hypochlorite (250 mg/L and peracetic acid (30 mg/L in inactivating the bacterial cells in the preformed biofilm. S. aureus strains adhered in high numbers regardless the assayed surface kind and incubation temperature over 72 h. Cells detachment of surfaces revealed high persistence over the incubation period. Number of cells needed for biofilm formation was noted at all experimental systems already after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered on polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacity to adhere and form biofilm on polypropylene and stainless steel surfaces under different growth conditions. Moreover, the cells in biofilm matrix were resistant for total removal when submitted to the exposure to sanitizers.

  7. Attachment behaviour of Escherichia coli K12 and Salmonella Typhimurium P6on food contact surfaces for food transportation

    DEFF Research Database (Denmark)

    Abban, Stephen; Jakobsen, Mogens; Jespersen, Lene

    2012-01-01

    The role of cargo container lining materials aluminium, a fibre reinforced plastic (FRP) and stainless steel in bacterial cross contamination during transport was assessed. For this, attachment and detachment of Escherichia coli K12 and Salmonella Typhimurium P6 on the three surfaces in the absence....... Typhimurium P6 respectively. Correlation with roughness average was poor; r = -0.425 and -0.413 respectively for E. coli K12 and S. Typhimurium P6. Presence of residue caused significant reduction (p ... material sections of the same surfaces. We report these observations for the first time for aluminium and the FRP material and in part for stainless steel. The S. Typhimurium P6 strain also had significantly higher level of attachment than the E. coli K12 strain. Our findings show that food residue...

  8. Development of Titanium Dioxide (TiO2 ) Nanocoatings on Food Contact Surfaces and Method to Evaluate Their Durability and Photocatalytic Bactericidal Property.

    Science.gov (United States)

    Yemmireddy, Veerachandra K; Farrell, Glenn D; Hung, Yen-Con

    2015-08-01

    Titanium dioxide (TiO2 ) is a well-known photocatalyst for its excellent bactericidal property under UVA light. The purpose of this study was to develop physically stable TiO2 coatings on food contact surfaces using different binding agents and develop methods to evaluate their durability and microbicidal property. Several types of organic and inorganic binders such as polyvinyl alcohol, polyethylene glycol, polyurethane, polycrylic, sodium and potassium silicates, shellac resin, and other commercial binders were used at 1:1 to 1:16 nanoparticle to binder weight ratios to develop a formulation for TiO2 coating on stainless steel surfaces. Among the tested binders, polyurethane, polycrylic, and shellac resin were found to be physically more stable when used in TiO2 coating at 1:4 to 1:16 weight ratio. The physical stability of TiO2 coatings was determined using adhesion strength and scratch hardness tests by following standard ASTM procedures. Further, wear resistance of the coatings was evaluated based on a simulated cleaning procedure used in food processing environments. TiO2 coating with polyurethane at a 1:8 nanoparticle to binder weight ratio showed the highest scratch hardness (1.08 GPa) followed by coating with polycrylic (0.68 GPa) and shellac (0.14 GPa) binders. Three different techniques, namely direct spreading, glass cover-slip, and indented coupon were compared to determine the photocatalytic bactericidal property of TiO2 coatings against Escherichia coli 0157:H7 at 2 mW/cm(2) UVA light intensity. Under the tested conditions, the indented coupon technique was found to be the most appropriate method to determine the bactericidal property of TiO2 coatings and showed a reduction of 3.5 log CFU/cm(2) in 2 h. © 2015 Institute of Food Technologists®

  9. Growth and biofilm formation by Listeria monocytogenes in catfish mucus extract on four food-contact surfaces at 22°C and 10°C and their reduction by commercial disinfectants

    Science.gov (United States)

    The objective of this study was to determine the effect of strain and temperature on growth and biofilm formation by Listeria monocytogenes (Lm) in high and low concentrations of catfish mucus extract on different food-contact surfaces at 10°C and 22°C. The second objective of this study was to eval...

  10. TRANSFER EFFICIENCIES OF PESTICIDES FROM HOUSEHOLD FLOORING SURFACES TO FOODS

    Science.gov (United States)

    The transfer of pesticides from household surfaces to foods was measured to determine if excess dietary exposure potentially occurs when children's foods contact contaminated surfaces prior to being. Three common household surfaces (ceramic tile, hardwood flooring, and carpet) w...

  11. Emission of perfluoroalkyl carboxylic acids (PFCA) from heated surfaces made of polytetrafluoroethylene (PTFE) applied in food contact materials and consumer products.

    Science.gov (United States)

    Schlummer, Martin; Sölch, Christina; Meisel, Theresa; Still, Mona; Gruber, Ludwig; Wolz, Gerd

    2015-06-01

    Polytetrafluoroethylene (PTFE) has been widely discussed as a source of perfluorooctanoic acid (PFOA), which has been used in the production of fluoropolymers. PTFE may also contain unintended perfluoroalkyl carboxylic acids (PFCAs) caused by thermolysis of PTFE, which has been observed at temperatures above 300°C. Common PTFE coated food contact materials and consumer goods are operated at temperatures above 200°C. However, knowledge on possible emissions of PFCAs is limited. Therefore, it was the aim of this study to investigate and evaluate the emission of PFCAs from PTFE coated products with both, normal use and overheating scenarios. Four pans, claimed to be PFOA free, and nine consumer products were investigated. At normal use conditions (PTFE surfaces were trapped for 1h. Overheating scenarios (>260°C) recorded emissions during a 30min heating of empty pans on a stove. Emissions were analyzed by LC-ESI-MS. Results indicate the emission of PFCAs, whereas no perfluorinated sulfonic acids were traced. At normal use conditions total emissions of PFCAs accounted for 4.75ng per hour. Overheated pans, however, released far higher amounts with up to 12190ng PFCAs per hour at 370°C. Dominating contributors where PFBA and PFOA at normal use and PFBA and PFPeA during overheating. Temperature seems to be the main factor controlling the emission of PFCAs. A worst case estimation of human exposure revealed that emissions of PFCAs from heated PTFE surfaces would be far below the TDI of 1500ng PFOA per kg body weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  13. Effect of inoculum size, bacterial species, type of surfaces and contact time to the transfer of foodborne pathogens from inoculated to non-inoculated beef fillets via food processing surfaces.

    Science.gov (United States)

    Gkana, E; Chorianopoulos, N; Grounta, A; Koutsoumanis, K; Nychas, G-J E

    2017-04-01

    The objective of the present study was to determine the factors affecting the transfer of foodborne pathogens from inoculated beef fillets to non-inoculated ones, through food processing surfaces. Three different levels of inoculation of beef fillets surface were prepared: a high one of approximately 10 7  CFU/cm 2 , a medium one of 10 5  CFU/cm 2 and a low one of 10 3  CFU/cm 2 , using mixed-strains of Listeria monocytogenes, or Salmonella enterica Typhimurium, or Escherichia coli O157:H7. The inoculated fillets were then placed on 3 different types of surfaces (stainless steel-SS, polyethylene-PE and wood-WD), for 1 or 15 min. Subsequently, these fillets were removed from the cutting boards and six sequential non-inoculated fillets were placed on the same surfaces for the same period of time. All non-inoculated fillets were contaminated with a progressive reduction trend of each pathogen's population level from the inoculated fillets to the sixth non-inoculated ones that got in contact with the surfaces, and regardless the initial inoculum, a reduction of approximately 2 log CFU/g between inoculated and 1st non-inoculated fillet was observed. S. Typhimurium was transferred at lower mean population (2.39 log CFU/g) to contaminated fillets than E. coli O157:H7 (2.93 log CFU/g), followed by L. monocytogenes (3.12 log CFU/g; P < 0.05). Wooden surfaces (2.77 log CFU/g) enhanced the transfer of bacteria to subsequent fillets compared to other materials (2.66 log CFU/g for SS and PE; P < 0.05). Cross-contamination between meat and surfaces is a multifactorial process strongly depended on the species, initial contamination level, kind of surface, contact time and the number of subsequent fillet, according to analysis of variance. Thus, quantifying the cross-contamination risk associated with various steps of meat processing and food establishments or households can provide a scientific basis for risk management of such products. Copyright © 2016 Elsevier Ltd

  14. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  15. Surface contact fatigue failures in gears

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-06-01

    Full Text Available Surface contact fatigue is the most common cause of gear failure. It results in damage to contacting surfaces which can significantly reduce the load-carrying capacity of components, and may ultimately lead to complete failure of a gear. Three types...

  16. The contact sport of rough surfaces

    Science.gov (United States)

    Carpick, Robert W.

    2018-01-01

    Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.

  17. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    Science.gov (United States)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  18. Stainless steel in contact with food and bevarage

    Directory of Open Access Journals (Sweden)

    Sveto Cvetkovski

    2012-12-01

    Full Text Available Stainless steels are probably the most important materials in the food and beverage industries. The main reason for such broad implementation of stainless steel in contact with food are excellent properties which they possess such as corrosion resistance, resistance to high and low temperatures, very good mechanical and physical properties, aesthetic appeal, inertness of surface, durability, easy cleaning and recycling. Low thermal conductivity of these steels produces steeper temperature coefficient provoking an increased distortion, shrinkage and stresses compared with carbon steel.

  19. Surface coating for blood-contacting devices

    Science.gov (United States)

    Nair, Ajit Kumar Balakrishnan

    The major problems always encountered with the blood-contacting surfaces are their compatibility, contact blood damage, and thrombogenicity. Titanium nitride (TiN) is a hard, inert, ceramic material that is widely used in the engineering industry. TiN has been proven to be a good biomaterial in its crystalline form, in orthopedic, and in tissue implant applications. This dissertation describes a method to coat amorphous TiN on the blood-contacting surfaces of certain medical devices using the room-temperature sputtering process and to characterize, to test, and to evaluate the coating for a reliable, durable, and compatible blood-contacting surface The blood-compatibility aspects were evaluated with standard, established protocols and procedures to prove the feasibility. An amorphous TiN coating is developed, characterized, tested, and blood compatibility evaluated by applying to the blood-contacting surfaces of stainless steel, catheters, and blood filters. The flexibility characteristics were proven by applying it to the diaphragms of the pulsatile pneumatic ventricular assist device. The results show that amorphous titanium nitride is flexible and adherent to polymeric substrates like polyurethane and polyester. Blood compatibility evaluation showed comparable results with catheters and superior behavior with stainless steel and polyester filters. It is concluded that amorphous titanium nitride can be considered to be applied to the surfaces of some of the medical devices in order to improve blood compatibility.

  20. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Science.gov (United States)

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Scientific Challenges in the Risk Assessment of Food Contact Materials

    DEFF Research Database (Denmark)

    Muncke, Jane; Backhaus, Thomas; Geueke, Birgit

    2017-01-01

    formed in the production processes. Several factors hamper effective RA for many FCMs, including a lack of information on chemical identity, inadequate assessment of hazardous properties, and missing exposure data. Companies make decisions about the safety of some food contact chemicals (FCCs) without......Food contact articles (FCAs) are manufactured from food contact materials (FCMs) that include plastics, paper, metal, glass, and printing inks. Chemicals can migrate from FCAs into food during storage, processing, and transportation. Food contact materials' safety is evaluated using chemical risk...... to enhance the safety of food contact articles. Based on our evaluation of the evidence, we conclude that current regulations are insufficient for addressing chemical exposures from FCAs. RA currently focuses on monomers and additives used in the manufacture of products, but it does not cover all substances...

  2. Contact and non-contact ultrasonic measurement in the food industry: a review

    International Nuclear Information System (INIS)

    Mohd Khairi, Mohd Taufiq; Ibrahim, Sallehuddin; Md Yunus, Mohd Amri; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated. (topical review)

  3. Contact and non-contact ultrasonic measurement in the food industry: a review

    Science.gov (United States)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  4. 3D geophysical inversion for contact surfaces

    Science.gov (United States)

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and

  5. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  6. The estimation of dynamic contact angle of ultra-hydrophobic surfaces using inclined surface and impinging droplet methods

    Science.gov (United States)

    Jasikova, Darina; Kotek, Michal

    2014-03-01

    The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.

  7. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  8. Verification of aspheric contact lens back surfaces.

    Science.gov (United States)

    Dietze, Holger H; Cox, Michael J; Douthwaite, William A

    2003-08-01

    To suggest a tolerance level for the degree of asphericity of aspheric rigid gas-permeable contact lenses and to find a simple method for its verification. Using existing tolerances for the vertex radius, tolerance limits for eccentricity and p values and were calculated. A keratometer-based method and a method based on sag measurements were used to measure the vertex radius and eccentricity of eight concave progressively aspheric surfaces and six concave ellipsoidal surfaces. The results were compared with a gold standard measurement made using a high-precision mechanical instrument (Form Talysurf). The suggested tolerance for eccentricity and p value and is +/-0.05. The keratometer method was very accurate and precise at measuring the vertex radius (mean deviation +/- SD from Talysurf results, -0.002 +/- 0.008 mm). The keratometer was more precise than and similar in accuracy to the sag method for measurement of asphericity (mean deviation of keratometer method results from Talysurf results, 0.017 +/- 0.018; mean deviation of sag method results from Talysurf results using five semichords, -0.016 +/- 0.032). Neither method was precise enough to verify the asphericity within the suggested tolerance. The keratometer can be efficiently used to verify the back vertex radius within its International Organization for Standardization tolerance and the back surface asphericity within an eccentricity/p value tolerance of +/-0.1. The method is poor for progressive aspheres with large edge blending zones. Deriving the eccentricity from sag measurements is a potential alternative if the mathematical description of the surface is known. The limiting factor of this method is the accuracy and precision of individual sag measurements.

  9. Siloxanes in silicone products intended for food contact

    DEFF Research Database (Denmark)

    Cederberg, Tommy Licht; Jensen, Lisbeth Krüger

    oligomers which might migrate to the food when the product is being used. DTU has proposed two action limits for low molecular weight siloxanes in food contact materials. For the sum of cyclic siloxanes D3 to D8 the limits are 12 mg/kg food for adults and 2 mg/kg food for children. For the sum of cyclic...... siloxanes D3 to D13 and linear siloxanes L3-L13 the limit is 60 mg/kg food. In 49 samples of silicone products intended for food contact from the Norwegian markets content of siloxanes has been measured. Coated paper for baking constituted 8 of the samples and in none of those samples siloxanes were found......Silicone is used in food contact materials due to its excellent physical and chemical properties. It is thermostable and flexible and is used in bakeware and kitchen utensils. Silicone is also used to coat paper to make it water and fat resistant. There is no specific regulation in EU which covers...

  10. Effect of surfaces similarity on contact resistance of fractal rough surfaces under cyclic loading

    Science.gov (United States)

    Gao, Yuanwen; Liu, Limei; Ta, Wurui; Song, Jihua

    2018-03-01

    Although numerous studies have shown that contact resistance depends significantly on roughness and fractal dimension, it remains elusive how they affect contact resistance between rough surfaces. The interface similarity index is first proposed to describe the similarity of the contact surfaces, which gives a good indication of the actual contact area between surfaces. We reveal that the surfaces' similarity be an origin of contact resistance variation. The cyclic loading can increase the contact stiffness, and the contact stiffness increases with the increase of the interface similarity index. These findings explain the mechanism of surface roughness and fractal dimension on contact resistance, and also provide reference for the reliability design of the electrical connection.

  11. Migration of compounds from food contact materials and articles

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev

    2003-01-01

    This chapter presents the different types of food contact/packaging materials (plastics, paper and cardboard, metals, glass, rubbers, lacquers and coatings) and discusses the EU legislation concerning the safety of using these materials. Case studies on the migration of lead, bisphenol A, bisphen...

  12. Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces

    OpenAIRE

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  13. Moving contact lines on vibrating surfaces

    Science.gov (United States)

    Solomenko, Zlatko; Spelt, Peter; Scott, Julian

    2017-11-01

    Large-scale simulations of flows with moving contact lines for realistic conditions generally requires a subgrid scale model (analyses based on matched asymptotics) to account for the unresolved part of the flow, given the large range of length scales involved near contact lines. Existing models for the interface shape in the contact-line region are primarily for steady flows on homogeneous substrates, with encouraging results in 3D simulations. Introduction of complexities would require further investigation of the contact-line region, however. Here we study flows with moving contact lines on planar substrates subject to vibrations, with applications in controlling wetting/dewetting. The challenge here is to determine the change in interface shape near contact lines due to vibrations. To develop further insight, 2D direct numerical simulations (wherein the flow is resolved down to an imposed slip length) have been performed to enable comparison with asymptotic theory, which is also developed further. Perspectives will also be presented on the final objective of the work, which is to develop a subgrid scale model that can be utilized in large-scale simulations. The authors gratefully acknowledge the ANR for financial support (ANR-15-CE08-0031) and the meso-centre FLMSN for use of computational resources. This work was Granted access to the HPC resources of CINES under the allocation A0012B06893 made by GENCI.

  14. The loaded surface profile: a new technique for the investigation of contact surfaces

    OpenAIRE

    McBride, J.W.

    2006-01-01

    Contact between rough surfaces produces a complex contact profile. The contact area is usually estimated according to roughness statistics in conjunction withsurface models or by examining the surfaces before and after contact. Most of the existing literature on loaded surface profiles is theoretical or numerical in nature. This paper presents a methodology for a new system to measure the loaded surface profile, based on a non-contact 3D laser profiler. The system allows the measurement of...

  15. Fabrication of zero contact angle ultra-super hydrophilic surfaces.

    Science.gov (United States)

    Jothi Prakash, C G; Clement Raj, C; Prasanth, R

    2017-06-15

    Zero contact angle surfaces have been created with the combined effect of nanostructure and UV illumination. The contact angle of titanium surface has been optimized to 3.25°±1°. with nanotubular structures through electrochemical surface modification. The porosity and surface energy of tubular TiO 2 layer play critical role over the surface wettability and the hydrophilicity of the surface. The surface free energy has been enhanced from 23.72mJ/m 2 (bare titanium surface) to 87.11mJ/m 2 (nanotubular surface). Similar surface with TiO 2 nanoparticles coating shows superhydrophilicity with contact angle up to 5.63°±0.95°. This implies liquid imbibition and surface curvature play a crucial role in surface hydrophilicity. The contact angle has been further reduced to 0°±0.86° by illuminating the surface with UV radiation. Results shows that by tuning the nanotube morphology, highly porous surfaces can be fabricated to reduce contact angle and enhance wettability. This study provides an insight into the inter-relationship between surface structural factors and ultra-superhydrophilic surfaces which can help to optimize thermal hydraulic and self cleaning surfaces. Copyright © 2017. Published by Elsevier Inc.

  16. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  17. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Directory of Open Access Journals (Sweden)

    Ulfah Rimayanti

    Full Text Available PURPOSE: To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP reading changes caused by wearing soft contact lenses (CLs. METHODS: One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL, with -5.0 diopters (D, -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. RESULTS: The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. CONCLUSIONS: Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  18. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Science.gov (United States)

    Rimayanti, Ulfah; Kiuchi, Yoshiaki; Uemura, Shohei; Takenaka, Joji; Mochizuki, Hideki; Kaneko, Makoto

    2014-01-01

    To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs). One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  19. Asperity interaction in adhesive contact of metallic rough surfaces

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    The analysis of adhesive contact of metallic rough surfaces considering the effect of asperity interaction is the subject of this investigation. The micro-contact model of asperity interactions developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64) is combined with the elastic plastic adhesive contact model developed by Chang et al (1988 Trans. ASME: J. Tribol. 110 50-6) to consider the asperity interaction and elastic-plastic deformation in the presence of surface forces simultaneously. The well-established elastic adhesion index and plasticity index are used to consider the different contact conditions. Results show that asperity interaction influences the load-separation behaviour in elastic-plastic adhesive contact of metallic rough surfaces significantly and, in general, adhesion is reduced due to asperity interactions

  20. On ruled surface in 3-dimensional almost contact metric manifold

    Science.gov (United States)

    Karacan, Murat Kemal; Yuksel, Nural; Ikiz, Hasibe

    In this paper, we study ruled surface in 3-dimensional almost contact metric manifolds by using surface theory defined by Gök [Surfaces theory in contact geometry, PhD thesis (2010)]. We also studied the theory of curves using cross product defined by Camcı. In this study, we obtain the distribution parameters of the ruled surface and then some results and theorems are presented with special cases. Moreover, some relationships among asymptotic curve and striction line of the base curve of the ruled surface have been found.

  1. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly...

  2. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  3. Ion-Induced Surface Modification of Magnetically Operated Contacts

    Directory of Open Access Journals (Sweden)

    Karen Arushanov

    2012-02-01

    Full Text Available A study has been made of permalloy (iron-nickel contacts of reed switches before and after ion-induced surface modification using atomic force and optical microscopy, Auger electron and X-ray photoelectron spectroscopy. It has been found that the formation of surface nitride layers enhances corrosion and erosion resistance of contacts. We proposed to produce such layers directly into sealed reed switches by means of pulsing glow-discharge nitrogen plasma.

  4. Multipoint contact modeling of nanoparticle manipulation on rough surface

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, M., E-mail: m.zakeri@tabrizu.ac.ir; Faraji, J.; Kharazmi, M. [University of Tabriz, School of Engineering Emerging Technologies (Iran, Islamic Republic of)

    2016-12-15

    In this paper, the atomic force microscopy (AFM)-based 2-D pushing of nano/microparticles investigated on rough substrate by assuming a multipoint contact model. First, a new contact model was extracted and presented based on the geometrical profiles of Rumpf, Rabinovich and George models and the contact mechanics theories of JKR and Schwartz, to model the adhesion forces and the deformations in the multipoint contact of rough surfaces. The geometry of a rough surface was defined by two main parameters of asperity height (size of roughness) and asperity wavelength (compactness of asperities distribution). Then, the dynamic behaviors of nano/microparticles with radiuses in range of 50–500 nm studied during their pushing on rough substrate with a hexagonal or square arrangement of asperities. Dynamic behavior of particles were simulated and compared by assuming multipoint and single-point contact schemes. The simulation results show that the assumption of multipoint contact has a considerable influence on determining the critical manipulation force. Additionally, the assumption of smooth surfaces or single-point contact leads to large error in the obtained results. According to the results of previous research, it anticipated that a particles with the radius less than about 550 nm start to slide on smooth substrate; but by using multipoint contact model, the predicted behavior changed, and particles with radii of smaller than 400 nm begin to slide on rough substrate for different height of asperities, at first.

  5. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Drops and bubbles in contact with solid surfaces

    CERN Document Server

    Ferrari, Michele

    2012-01-01

    The third volume in a series dedicated to colloids and interfaces, Drops and Bubbles in Contact with Solid Surfaces presents an up-to-date overview of the fundamentals and applications of drops and bubbles and their interaction with solid surfaces. The chapters cover the theoretical and experimental aspects of wetting and wettability, liquid-solid interfacial properties, and spreading dynamics on different surfaces, including a special section on polymers. The book examines issues related to interpretation of contact angle from nano to macro systems. Expert contributors discuss interesting pec

  7. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  8. Contact angle of a nanodrop on a nanorough solid surface.

    Science.gov (United States)

    Berim, Gersh O; Ruckenstein, Eli

    2015-02-21

    The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.

  9. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    Science.gov (United States)

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P lenses incubated with P. aeruginosa (P lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.

  10. VASCo: computation and visualization of annotated protein surface contacts

    Directory of Open Access Journals (Sweden)

    Thallinger Gerhard G

    2009-01-01

    Full Text Available Abstract Background Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. Results VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. Conclusion VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.

  11. Capillary surfaces in a wedge: Differing contact angles

    Science.gov (United States)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  12. Chemical identification of contaminants in paper and board food contact materials

    DEFF Research Database (Denmark)

    Bengtström, Linda

    Paper and board are used for a variety of food contact materials, such as baking paper, microwave popcorn bags and packaging for cereals as well as fast foods. Despite this extensive use, there are currently large data gaps about the chemical composition of different paper and board food contact...

  13. Contact angle measurements at the colemanite and realgar surfaces

    Science.gov (United States)

    Koca, Sabiha; Savas, Mehmet

    2004-03-01

    Colemanite is one of the most important boron minerals and covers an important part of Turkey's boron mineral deposits. The friable nature of the colemanite tends to produce a large amount of fines. Flotation appears to be a promising technique to recover colemanite from such fines. During flotation process, selectivity problem arises between colemanite and associated gangue minerals such as realgar. There is a close relationship between floatability of minerals and contact angle. Therefore, surface hydrophobicity of colemanite and realgar minerals were investigated by receding contact angle measurements in the absence and presence of flotation reagents. The water contact angle values at the colemanite surface remained almost unchanged at 32-35° in the solutions of potassium amyl xanthate (KAX), potassium ethyl xanthate (KEX) and petroleum sulphanate (R825) while another petroleum sulphanate (R840), sodium oleate and tallow amine (Armac-T) affected hydrophobicity of colemanite, and the contact angle values increased up to 47°. The contact angle values of 62, 63, 45, 46, 39, and 43° at the realgar surface were obtained in the solutions of KAX, KEX, sodium oleate, R825, R840 and Armac-T, respectively.

  14. Stability analysis of rough surfaces in adhesive normal contact

    Science.gov (United States)

    Rey, Valentine; Bleyer, Jeremy

    2018-03-01

    This paper deals with adhesive frictionless normal contact between one elastic flat solid and one stiff solid with rough surface. After computation of the equilibrium solution of the energy minimization principle and respecting the contact constraints, we aim at studying the stability of this equilibrium solution. This study of stability implies solving an eigenvalue problem with inequality constraints. To achieve this goal, we propose a proximal algorithm which enables qualifying the solution as stable or unstable and that gives the instability modes. This method has a low computational cost since no linear system inversion is required and is also suitable for parallel implementation. Illustrations are given for the Hertzian contact and for rough contact.

  15. Wear-less floating contact imaging of polymer surfaces

    International Nuclear Information System (INIS)

    Knoll, A; Rothuizen, H; Gotsmann, B; Duerig, U

    2010-01-01

    An atomic force microscopy (AFM) technique is described combining two operating modes that previously were mutually exclusive: gentle imaging of delicate surfaces requiring slow dynamic AFM techniques, and passive feedback contact mode AFM enabling ultra-fast imaging. A high-frequency force modulation is used to excite resonant modes in the MHz range of a highly compliant cantilever force sensor with a spring constant of 0.1 N m -1 . The high-order mode acts as a stiff system for modulating the tip-sample distance and a vibration amplitude of 1 nm is sufficient to overcome the adhesion interaction. The soft cantilever provides a force-controlled support for the vibrating tip, enabling high-speed intermittent contact force microscopy without feedback control of the cantilever bending. Using this technique, we were able to image delicate polymer surfaces and to completely suppress the formation of the ripple wear patterns that are commonly observed in contact AFM.

  16. Interfacial behavior of common food contact polymer additives.

    Science.gov (United States)

    Heiserman, W M; Can, S Z; Walker, R A; Begley, T H; Limm, W

    2007-07-15

    Irganox 1076 (IN1076) and Irganox 1010 (IN1010), phenol containing species often used as antioxidant additives in food packaging polymers have both hydrophilic and hydrophobic functional groups. Consequently these additives are likely to absorb to surfaces where their free energy is minimized. Experiments described in this work examine the two-dimensional phase behavior and vibrational structure of IN1076 and IN1010 films adsorbed to the air/water interface. Surface pressure isotherms show that repeated compression of these films leads to continued irreversible loss of molecules and that on a per molecule basis, this loss is more pronounced for IN1076 than for IN1010. Differences in the surface properties of these two antioxidant additives are interpreted based on differences in molecular structure. Surface specific vibrational measurements of these organic films show very little conformational order, implying that even when closely packed, both antioxidant species have little affinity for forming highly organized domains. These findings have important ramifications for mechanisms that reduce antioxidant activity in polymers as well as descriptions of antioxidant blooming on polymer surfaces.

  17. Contact Angles and Surface Tension of Germanium-Silicon Melts

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  18. Contact angle hysteresis on doubly periodic smooth rough surfaces in Wenzel's regime: The role of the contact line depinning mechanism.

    Science.gov (United States)

    Iliev, Stanimir; Pesheva, Nina; Iliev, Pavel

    2018-04-01

    We report here on the contact angle hysteresis, appearing when a liquid meniscus is in contact with doubly sinusoidal wavelike patterned surfaces in Wenzel's wetting regime. Using the full capillary model we obtain numerically the contact angle hysteresis as a function of the surface roughness factor and the equilibrium contact angle for a block case and a kink case contact line depinning mechanism. We find that the dependencies of the contact angle hysteresis on the surface roughness factor are different for the different contact line depinning mechanisms. These dependencies are different also for the two types of rough surfaces we studied. The relations between advancing, receding, and equilibrium contact angles are investigated. A comparison with the existing asymptotical, numerical, and experimental results is carried out.

  19. Characterisation and potential migration of silver nanoparticles from commercially available polymeric food contact materials.

    Science.gov (United States)

    Addo Ntim, Susana; Thomas, Treye A; Begley, Timothy H; Noonan, Gregory O

    2015-01-01

    The potential for consumer exposure to nano-components in food contact materials (FCMs) is dependent on the migration of nanomaterials into food. Therefore, characterising the physico-chemical properties and potential for migration of constituents is an important step in assessing the safety of FCMs. A number of commercially available food storage products, purchased domestically within the United States and internationally, that claim to contain nanosilver were evaluated. The products were made of polyethylene, polypropylene and polyphenylene ether sulfone and all contained silver (0.001-36 mg kg(-1) of polymer). Silver migration was measured under various conditions, including using 3% acetic acid and water as food simulants. Low concentrations (sub-ppb levels) of silver were detected in the migration studies generally following a trend characterised by a surface desorption phenomenon, where the majority of the silver migration occurred in the first of three consecutive exposures. Silver nanoparticles were not detected in food simulants, suggesting that the silver migration may be due solely to ionic silver released into solution from oxidation of the silver nanoparticle surface. The absence of detectable silver nanoparticles was consistent with expectations from a physico-chemical view point. For the products tested, current USFDA guidance for evaluating migration from FCMs was applicable.

  20. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses.

    Science.gov (United States)

    Ji, Yong Woo; Cho, Young Joo; Lee, Chul Hee; Hong, Soon Ho; Chung, Dong Yong; Kim, Eung Kweon; Lee, Hyung Keun

    2015-01-01

    To compare physical characteristics of cosmetic contact lenses (Cos-CLs) and conventional contact lenses (Con-CLs) that might affect susceptibility to bacterial adhesion on the contact lens (CL) surface. Surface characteristics of Cos-CLs and Con-CLs made from the same material by the same manufacturer were measured by atomic force microscopy (AFM) and scanning electron microscopy. To determine the extent and rate of bacterial adhesion, Cos-CL and Con-CL were immersed in serum-free Roswell Park Memorial Institute media containing Staphylococcus aureus or Pseudomonas aeruginosa. Additionally, the rate of removal of adherent bacteria was evaluated using hand rubbing or immersion in multipurpose disinfecting solutions (MPDS). The mean surface roughness (root mean square and peak-to-valley value) measured by AFM was significantly higher for Cos-CL than for Con-CL. At each time point, significantly more S. aureus and P. aeruginosa adhered to Cos-CL than to Con-CL, which correlated with the surface roughness of CL. In Cos-CL, bacteria were mainly found on the tinted surface rather than on the noncolored or convex areas. Pseudomonas aeruginosa attached earlier than S. aureus to all types of CL. However, P. aeruginosa was more easily removed from the surface of CL than S. aureus by hand rubbing or MPDS soaking. Increased surface roughness is an important physical factor for bacterial adhesion in Cos-CL, which may explain why rates of bacterial keratitis rates are higher in Cos-CL users in CL physical characteristics.

  1. Experimental Investigations on Microshock Waves and Contact Surfaces

    Science.gov (United States)

    Kai, Yun; Garen, Walter; Teubner, Ulrich

    2018-02-01

    The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.

  2. Evaluating use stage exposure to food contact materials in a LCA framework

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Fantke, Peter

    2015-01-01

    We present novel methods to incorporate exposure to chemicals within food contact materials (FCM) (e.g. packaging) into life cycle impact assessment (LCIA). Chemical migration into food is modeled as a function of contact temperature, time, and various chemical, FCM, and food properties. In order...... in a way compatible with intake fraction, iF, a metric traditionally used in LCIA. The model predicts PiF increases with temperature and for compounds with lower octanol-water partition coefficients within more permeable materials which are in contact with foods with high ethanol equivalencies (fatty foods)....

  3. Migration of fluorochemical paper additives from food-contact paper into foods and food simulants.

    Science.gov (United States)

    Begley, T H; Hsu, W; Noonan, G; Diachenko, G

    2008-03-01

    Fluorochemical-treated paper was tested to determine the amount of migration that occurs into foods and food-simulating liquids and the characteristics of the migration. Migration characteristics of fluorochemicals from paper were examined in Miglyol, butter, water, vinegar, water-ethanol solutions, emulsions and pure oil containing small amounts of emulsifiers. Additionally, microwave popcorn and chocolate spread were used to investigate migration. Results indicate that fluorochemicals paper additives do migrate to food during actual package use. For example, we found that microwave popcorn contained 3.2 fluorochemical mg kg(-1) popcorn after popping and butter contained 0.1 mg kg(-1) after 40 days at 4 degrees C. Tests also indicate that common food-simulating liquids for migration testing and package material evaluation might not provide an accurate indication of the amount of fluorochemical that actually migrates to food. Tests show that oil containing small amounts of an emulsifier can significantly enhance migration of a fluorochemical from paper.

  4. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  5. Analysis of melamine migration from melamine food contact articles.

    Science.gov (United States)

    Chik, Z; Haron, D E Mohamad; Ahmad, E D; Taha, H; Mustafa, A M

    2011-01-01

    Migration of melamine has been determined for 41 types of retail melamine-ware products in Malaysia. This study was initiated by the Ministry of Health, Malaysia, in the midst of public anxiety on the possibility of melamine leaching into foods that come into contact with the melamine-ware. Thus, the objective of this study was to investigate the level of melamine migration in melamine utensils available on the market. Samples of melamine tableware, including cups and plates, forks and spoons, tumblers, bowls, etc., were collected from various retail outlets. Following the test guidelines for melamine migration set by the European Committee for Standardisation (CEN 2004) with some modifications, the samples were exposed to two types of food simulants (3% acetic acid and distilled water) at three test conditions (25°C (room temperature), 70 and 100°C) for 30 min. Melamine analysis was carried out using LC-MS/MS with a HILIC column and mobile phase consisting of ammonium acetate/formic acid (0.05%) in water and ammonium acetate/formic acid (0.05%) in acetonitrile (95 : 5, v/v). The limit of quantification (LOQ) was 5 ng/ml. Melamine migration was detected from all samples. For the articles tested with distilled water, melamine migration were [median (interquartile range)] 22.2 (32.6), 49.3 (50.9), 84.9 (89.9) ng/ml at room temperature (25°C), 70 and 100°C, respectively. In 3% acetic acid, melamine migration was 31.5 (35.7), 81.5 (76.2), 122.0 (126.7) ng/ml at room temperature (25°C), 70 and 100°C, respectively. This study suggests that excessive heat and acidity may directly affect melamine migration from melamine-ware products. However the results showed that melamine migration in the tested items were well below the specific migration limit (SML) of 30 mg/kg (30,000 ng/ml) set out in European Commission Directive 2002/72/EC.

  6. Printed paper and board food contact materials as a potential source of food contamination.

    Science.gov (United States)

    Van Bossuyt, Melissa; Van Hoeck, Els; Vanhaecke, Tamara; Rogiers, Vera; Mertens, Birgit

    2016-11-01

    Food contact materials (FCM) are estimated to be the largest source of food contamination. Apart from plastics, the most commonly used FCM are made of printed paper and board. Unlike their plastic counterparts, these are not covered by a specific European regulation. Several contamination issues have raised concerns towards potential adverse health effects caused by exposure to substances migrating from printed paper and board FCM. In the current study, an inventory combining the substances which may be used in printed paper and board FCM, was created. More than 6000 unique compounds were identified, the majority (77%) considered non-evaluated in terms of potential toxicity. Based on a preliminary study of their physicochemical properties, it is estimated that most of the non-evaluated single substances have the potential to migrate into the food and become bioavailable after oral intake. Almost all are included in the FACET tool, indicating that their use in primary food packaging has been confirmed by industry. Importantly, 19 substances are also present in one of the lists with substances of concern compiled by the European Chemicals Agency (ECHA). To ensure consumer safety, the actual use of these substances in printed paper and board FCM should be investigated urgently. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cohesive delamination and frictional contact on joining surface via XFEM

    Directory of Open Access Journals (Sweden)

    Francesco Parrinello

    2018-02-01

    Full Text Available In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.

  8. Enforcement of the Danish Bisphenol A restriction on Food Contact Materials and Articles for infants

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Foverskov, Annie; Petersen, Jens Højslev

    In Denmark a national restriction was implemented in 2010 banning the use of bisphenol A (BPA) in any Food Contact Materials intended for children in the age 0-3 years. The ban includes BPA in baby bottles, baby cups, food cans for infant formulas and lids for glass containers with baby food...

  9. Consequences of occupational food-related hand dermatoses with a focus on protein contact dermatitis

    DEFF Research Database (Denmark)

    Vester, Lotte; Thyssen, Jacob P; Menné, Torkil

    2012-01-01

    Background. Protein contact dermatitis is a frequent disorder among hand eczema patients who have occupational food contact. Knowledge about the consequences of having protein contact dermatitis is lacking. Objectives. To investigate the consequences of having occupational skin disease on the hands...... resulting from food handling, with a focus on protein contact dermatitis. Material and methods. One hundred and seventy-eight patients who were identified as having skin disease related to occupational food exposure and who answered a questionnaire concerning the consequences of their skin disease were......%, respectively, of the patients with other occupational food-related hand dermatoses (p = 0.02). Sixty-two per cent and 43%, respectively, had to change job because of skin problems (p = 0.02). Atopic dermatitis was equally common in the two groups. Conclusion. We found that the patients with protein contact...

  10. Elastic–plastic adhesive contact of non-Gaussian rough surfaces

    Indian Academy of Sciences (India)

    Adhesion; asymmetric roughness; elastic–plastic contact; non-Gaussian rough surfaces. ... model of contact deformation that is based on accurate Finite Element Analysis (FEA) of an elastic–plastic single asperity contact. ... Sadhana | News.

  11. EB surface sterilization of food material

    International Nuclear Information System (INIS)

    Kaneko, H.; Mizutani, A.; Kato, K.; Nishikimi, T.; Taniguchi, S.

    2001-01-01

    In this paper, we introduce a food irradiation with low energetic, lower than 300keV, electrons (so-called SOFT ELECTRON) as a rather new method of food sterilization. It is also a physical sterilization method, and free from the problems mentioned above. Low energetic electrons have small penetration power (50-200micron) through raw materials, and by selecting a proper energy of electrons we can sterilize only the surfaces or skins of target materials

  12. Creation of Principally New Generation of Switching Technique Elements (Reed Switches) with Nanostructured Contact Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karabanov S M; Zeltser I A; Maizels R M; Moos E N; Arushanov K A, E-mail: zeltseria@rmcip.ru [Russia, Ryazan, 390027, Novaya Str., 51B, Ryazan Metal Ceramics Instrumentation Plant JSC (Russian Federation)

    2011-04-01

    The cycle of activities of the creation of principally new generation of reed switches with nanostructured contact surfaces was implemented. Experimental justification of the opportunity of reed switches creation with modified contact surface was given (instead of precious metals-based galvanic coating). Principally new technological process of modification of magnetically operated contacts contacting surfaces was developed, based on the usage of the ion-plasma methods of nanolayers and nanostructures forming having specified contact features.

  13. Selection Criteria and Methods for Testing Different Surface Materials for Contact Frying Processes

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya

    Inner surfaces of industrial process equipment for food are often coated to give the surfaces particular properties with respect to adhesion and cleanability. Existing coating materials (PTFE (Teflon®) or silicone based polymers) suffer from drawbacks when used in contact frying, because these co...... surface materials for contact frying processes. The surfaces selected for this purpose cover a wide spectrum of materials that range from hydrophobic to hydrophilic materials. The different surface materials investigated include stainless steel (reference), aluminium (Al Mg 5754), PTFE......, an experimental rig has been constructed which enabled a controlled fouling of different coatings on steel and aluminium substrates under realistic frying conditions. A subjective rating procedure was employed for screening different surfaces according to their non-stick properties when used for frying of a model...... defects and surface roughness play a significant role. The wear resistance of the coatings was tested by performing abrasive wear experiments. The ceramic coatings: TiAlN and ZrN were found to show the best wear resistance properties. The experiments also revealed the poor wear resistance of stainless...

  14. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  15. Surface chemistry and microscopy of food powders

    Science.gov (United States)

    Burgain, Jennifer; Petit, Jeremy; Scher, Joël; Rasch, Ron; Bhandari, Bhesh; Gaiani, Claire

    2017-12-01

    Despite high industrial and scientific interest, a comprehensive review of the surface science of food powders is still lacking. There is a real gap between scientific concerns of the field and accessible reviews on the subject. The global description of the surface of food powders by multi-scale microscopy approaches seems to be essential in order to investigate their complexity and take advantage of their high innovation potential. Links between these techniques and the interest to develop a multi-analytical approach to investigate scientific questions dealing with powder functionality are discussed in the second part of the review. Finally, some techniques used in others fields and showing promising possibilities in the food powder domain will be highlighted.

  16. Survey of the occurrence of 1,6-hexanediol diglycidyl ether in food contact materials

    DEFF Research Database (Denmark)

    producers and importers. The substance is not allowed for use in plastic materials for food contact. One Danish company reported a possible use of HDDGE in coating of drinking tanks and pipelines. This is the only use of HDDGE confirmed in relation to food contact materials in Denmark. The project...... is following up on a previous survey under the Danish EPA’s LOUS-review (Environmental Project no. 1472)....

  17. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  18. 77 FR 19670 - Agency Information Collection Activities; Proposed Collection; Comment Request; Food Contact...

    Science.gov (United States)

    2012-04-02

    ... Nutrition, Food and Drug Administration, 5100 Paint Branch Pkwy (HFS-275), College Park, MD 20740, 240-402... Nutrition using Form FDA 3480 whether it is submitted in electronic or paper format. FDA recently made minor... food contact articles. These notifications require the submission of Form FDA 3479 (``Notification for...

  19. Identification and risk assessment of unknown contaminants migrating from Food Contact Materials

    DEFF Research Database (Denmark)

    Pieke, Eelco Nicolaas

    The exposure of humans to possibly thousands of chemical compounds through food poses a health risk that is questioning our ability to ensure high standards for food safety. Food contact materials (FCM) are a major source of extraneous chemical compounds in food, yet not much knowledge is available...... interpretations. Risk prioritization is successful in classifying estimated risk based on predicted exposure and predicted hazard, and is valuable for to preliminary RA studies. The overarching strategy in this study shows that explorative techniques are valuable tools to help ensure food safety in the future...

  20. A novel method for the determination of migration of contaminants from food contact materials

    International Nuclear Information System (INIS)

    Thompson, D.; Parry, S.J.; Benzing, R.

    1996-01-01

    A neutron activation method has been developed for the analysis of high density polyethylene, low density polyethylene, polypropylene, polyethylene terephthalate and polystyrene food contact plastics. The method provides determination of over 50 elements at concentrations below 1 mg kg -1 . This technique has now been extended to study migration from food contact materials into standard food simulants (olive oil, acetic acid, ethanol and water). Samples of plastic are irradiated in a thermal neutron flux to procedure radionuclides of the elements present in the plastic. (author). 5 refs., 7 tabs

  1. Bacterial biofilm formation in different surfaces of food industries

    Directory of Open Access Journals (Sweden)

    Karine Angélica Dalla Costa

    2017-06-01

    Full Text Available The term biofilm describes the sessile microbial life form, characterized by microorganism adhesion to any surface and with the production of extracellular polymeric substances. In food industries, the formation of biofilms results in serious problems, since it can be a contamination source of the food product, compromising the final product quality and consumer health. The aim of this study was to verify the adhesion of biofilms (sessile cells of pathogenic and/or deteriorating bacteria against surfaces of the food industry. The bacterial species tested were Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, Listeria monocytogenes ATCC 19117 and Salmonella Typhimurium ATCC 14028. It was used stainless steel and polypropylene coupons as contact surfaces. The results demonstrated that P. aeruginosa and S. Typhimurium showed higher biofilm formation capacity. Statistically, there was no difference in count of P. aeruginosa and S. Typhimurium (p > 0.05 cells. The same occurred between L. monocytogenes and S. aureus. However, the counts of P. aeruginosa and S. Typhimurium cells were statistically higher than S. aureus and L. monocytogenes (p < 0.05. By means of scanning electron microscopy it was also found increased adhesion of P. aeruginosa. The results revealed that P. aeruginosa was the bacterial species with higher biofilm formation capacity among the others.

  2. [Type IV contact allergies in the food processing industry: an update].

    Science.gov (United States)

    Bauer, A; Schubert, S; Geier, J; Mahler, V

    2018-05-02

    The food sector is one of the high-risk areas for occupational irritative and allergic contact eczema. The present work provides an overview of the main allergens as well as sensitization frequencies and risk in various food industry occupations. The literature on type IV sensitization in the food sector is summarized. The relative risk of developing a work-related eczema in food processing is increased by more than 3 times. The comparison group was calculated on the basis of the proportion of documented cases in the IVDK (Informationsverbund Dermatologischer Kliniken) network per 100,000 working persons in relation to the average of the years 2005 and 2010. For this purpose, the average risk of all patients was set as reference to 1. Bakers, pastry chefs, cooks and meat and fish processors are mainly affected. In addition to irritant contact eczema, allergic contact eczema and protein contact dermatitis often occur. Leading haptens (main allergens) are rubber ingredients, but also disinfectants and compositae. Only a few contact allergens are responsible for the majority of job-relevant sensitizations in the food industry.

  3. Interaction between staining and degradation of a composite resin in contact with colored foods

    Directory of Open Access Journals (Sweden)

    Debora Soares-Geraldo

    2011-08-01

    Full Text Available Composite resins might be susceptible to degradation and staining when in contact with some foods and drinks. This study evaluated color alteration and changes in microhardness of a microhybrid composite after immersion in different colored foods and determined whether there was a correlation between these two variables. Eighty composite disks were randomly divided into 8 experimental groups (n = 10: kept dry; deionized water; orange juice; passion fruit juice; grape juice; ketchup; mustard and soy sauce. The disks were individually immersed in their respective test substance at 37 ºC, for a period of 28 days. Superficial analysis of the disk specimens was performed by taking microhardness measurements (Vickers, 50 g load for 45 seconds and color alterations were determined with a spectrophotometer (CINTRA 10- using a CIEL*a*b* system, 400-700 nm wavelength, illuminant d65 and standard observer of 2º at the following times: baseline (before immersion, 1, 7, 14, 21 and 28 days. Results were analyzed by ANOVA and Tukey's test (p < 0.05. Both variables were also submitted to Pearson's correlation test (p < 0.05. The passion fruit group underwent the greatest microhardness change, while the mustard group suffered the greatest color alteration. Significant positive correlation was found between the two variables for the groups deionized water, grape juice, soy sauce and ketchup. Not all color alteration could be associated with surface degradation.

  4. Resonance frequencies of AFM cantilevers in contact with a surface

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G.J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Rost, M.J., E-mail: Rost@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2016-12-15

    To make the forces in an Atomic Force Microscope that operates in a dynamic mode with one or multiple vibrations applied to the cantilever, quantitative, one needs to relate a change in resonance frequency of the cantilever to a specific tip–sample interaction. Due to the time dependence of the force between the tip and sample caused by the vibrations, this task is not only difficult, but in fact only possible to solve for certain limiting cases, if one follows common theoretical approaches with a Taylor expansion around the deflection point. Here, we present an analytical method for calculating the resonance frequencies of the cantilever that is valid for any tip–sample interaction. Instead of linearizing the tip–sample interaction locally, we calculate an averaged, weighted linearization taking into account all positions of the tip while vibrating. Our method bridges, therefore, the difficult gap between a free oscillating cantilever and a cantilever that is pushed infinitely hard into contact with a surface, which describes a clamped-pinned boundary condition. For a correct description of the cantilever dynamics, we take into account both the tip mass and the tip moment of inertia. Applying our model, we show that it is possible to calculate the modal response of a cantilever as a function of the tip–sample interaction strength. Based on these modal vibration characteristics, we show that the higher resonance frequencies of a cantilever are completely insensitive to the strength of the tip–sample interaction. - Highlights: • A method to calculate the resonances of AFM cantilevers under any force is proposed. • The analytical model is based on Euler-beam theory. • The shift in resonance frequency due to forces decrease with increasing mode number. • The proposed method enables quantitative ultrasound AFM experiments. • Our results explain also the applicability of the higher modes in SubSurface-AFM.

  5. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Shawn M; Harrison, Mark A [Food Science and Technology Department, University of Georgia, Athens, GA, 30602-2610 (United States); Law, S Edward, E-mail: edlaw@engr.uga.edu [Biological and Agricultural Engineering Department, Applied Electrostatics Laboratory www.ael.engr.uga.edu, University of Georgia, Athens, GA, 30602-4435 (United States)

    2011-06-23

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  6. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    International Nuclear Information System (INIS)

    Lyons, Shawn M; Harrison, Mark A; Law, S Edward

    2011-01-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  7. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  8. 77 FR 14022 - Guidance for Industry: Testing for Salmonella Species in Human Foods and Direct-Human-Contact...

    Science.gov (United States)

    2012-03-08

    ...-contact animal foods, and the interpretation of test results, when the presence of Salmonella spp. in the... eggs) and direct-human-contact animal foods, and the interpretation of test results, when the presence... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0091...

  9. In vitro biofilm forming capacity on abiotic contact surfaces by outbreak-associated Vibrio harveyi strains

    Directory of Open Access Journals (Sweden)

    Pallaval Veera Bramha Chari

    2014-02-01

    Full Text Available Objective: To evaluate the in vitro biofilm forming capacity on abiotic food contact surfaces by Vibrio harveyi (V. harveyi strains. Methods: Thirty six Gram-negative V. harveyi strains were isolated from various street vended seafood outlets in a food processing line and evaluated for their ability to produce mucoid biofilms on food contact surfaces using a microplate assay. Phenotypic characterization of mucoid biofilm producing V. harveyi strains were screened on Congo red agar, thiosulfate-citrate-bile salts-sucrose agar and tryptic soy agar, respectively. Results: Only five V. harveyi strains (14% were mucoid biofilm producers characterized by formation of black colonies, whereas the remaining 31 strains (86% were not capable of producing biofilm characterized by formation of red colonies or pinkish-red colonies with darkening at the centre. The morphological, physiological and biochemical characteristics of these isolates were studied using standard protocols. Strain identification was confirmed by polymerase chain reaction targeted to species-specific polymerase chain reaction primers VH-1 and VH-2 corresponding to variable regions of V. harveyi 16S rRNA sequence. All the biofilm-forming strains showed resistance to at least three antimicrobial compounds tested. V. harveyi strains isolated from various seafood were able to form biofilms of different capacity, and the strains VB267, VB238 and VB166 isolated from cat fish, shrimp and eel fish exhibited significantly greater biofilm forming ability compared to other isolates. Conclusions: It can be concluded from the present study that the strain VB166 was able to better attach and form subsequent biofilms on glass and stainless steel compared to high density polyethylene. These properties allow these bacteria to survive, proliferate and persist in street vended seafood outlets.

  10. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  11. A Congruence Theorem for Minimal Surfaces in $S^{5}$ with Constant Contact Angle

    OpenAIRE

    Montes, Rodrigo Ristow; Verderesi, Jose A.

    2006-01-01

    We provide a congruence theorem for minimal surfaces in $S^5$ with constant contact angle using Gauss-Codazzi-Ricci equations. More precisely, we prove that Gauss-Codazzi-Ricci equations for minimal surfaces in $S^5$ with constant contact angle satisfy an equation for the Laplacian of the holomorphic angle. Also, we will give a characterization of flat minimal surfaces in $S^5$ with constant contact angle.

  12. A Modified Approach in Modeling and Calculation of Contact Characteristics of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    J.A. Abdo

    2005-12-01

    Full Text Available A mathematical formulation for the contact of rough surfaces is presented. The derivation of the contact model is facilitated through the definition of plastic asperities that are assumed to be embedded at a critical depth within the actual surface asperities. The surface asperities are assumed to deform elastically whereas the plastic asperities experience only plastic deformation. The deformation of plastic asperities is made to obey the law of conservation of volume. It is believed that the proposed model is advantageous since (a it provides a more accurate account of elasticplastic behavior of surfaces in contact and (b it is applicable to model formulations that involve asperity shoulder-to shoulder contact. Comparison of numerical results for estimating true contact area and contact force using the proposed model and the earlier methods suggest that the proposed approach provides a more realistic prediction of elastic-plastic contact behavior.

  13. NRC Information No. 88-98: Electrical relay degradation caused by oxidation of contact surfaces

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The NRC staff was recently informed by Clinton Power Station that a reactor scram on June 24, 1988, was caused by an electrical relay failure from oxide buildup on relay contact surfaces. Other information on relay failure from contact oxidation indicates that this problem may be more prevalent than previously thought. For example, a July 17, 1988, 10 CFR Part 21 report from Palo Verde, Unit 2, reported relay failures from contact oxidation that were due to the low current application of the relays. The relay contact surfaces in both of these examples are silver-nickel alloys, and both applications were for low current (i.e., milli-ampere current). Electrical relay contacts made of silver-nickel or silver-cadmium alloys will oxidize (tarnish) when used in low current applications because of the absence of contact surface sparking from the typical relay contact ''making and breaking'' functions. The sparking in the contact surfaces promotes a self-cleaning mechanism that reduces the tarnish buildup on the silver-nickel or silver-cadmium contacts. Discussions with one relay manufacturer revealed that the normal industry practice for low current circuit applications is either to use a contact surface material that will not oxidize or to compensate for the oxidation by increased maintenance activities to ensure reliability. The applied voltage may also influence contact oxidation

  14. Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets

    Science.gov (United States)

    Zhang, Bo; Wang, Jianjun; Liu, Zhiping; Zhang, Xianren

    2014-01-01

    The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width. PMID:25059292

  15. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate?

    Directory of Open Access Journals (Sweden)

    Paternot Goedele

    2012-09-01

    Full Text Available Abstract Background Cell-cell communication and adhesion are essential for the compaction process of early stage embryos. The aim of this study was to develop a non-invasive objective calculation system of embryo compaction in order to test the hypothesis that embryos with a larger mean contact surface result in a higher live birth rate compared to embryos with a lower mean contact surface. Methods Multilevel images of 474 embryos transferred on day 3 were evaluated by the Cellify software. This software calculates the contact surfaces between the blastomeres. The primary outcome of this study was live birth. An ideal range of contact surface was determined and the positive and negative predictive value, the sensitivity, the specificity and the area under the curve for this new characteristic were calculated. Results In total, 115 (24% transferred embryos resulted in a live birth. Selection of an embryo for transfer on its mean contact surface could predict live birth with a high sensitivity (80% and high negative predicting value (83% but with a low positive predictive value (27%, a low specificity (31% and low area under the ROC curve (0.56. The mean contact surface of embryos cultured in a single medium was significantly higher compared to the mean contact surface of embryos cultured in a sequential medium (p = 0.0003. Conclusions Neither the mean contact surface nor the number of contact surfaces of a day 3 embryo had an additional value in the prediction of live birth. The type of culture medium, however, had an impact on the contact surface of an embryo. Embryos cultured in a single medium had a significant larger contact surface compared to embryos cultured in the sequential medium.

  16. Improving the contact resistance at low force using gold coated carbon nanotube surfaces

    Science.gov (United States)

    McBride, J. W.; Yunus, E. M.; Spearing, S. M.

    2010-04-01

    Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.

  17. Evaluation of Tire/Surfacing/Base Contact Stresses and Texture Depth

    Directory of Open Access Journals (Sweden)

    W.J.vdM. Steyn

    2015-03-01

    Full Text Available Tire rolling resistance has a major impact on vehicle fuel consumption. Rolling resistance is the loss of energy due to the interaction between the tire and the pavement surface. This interaction is a complicated combination of stresses and strains which depend on both tire and pavement related factors. These include vehicle speed, vehicle weight, tire material and type, road camber, tire inflation pressure, pavement surfacing texture etc. In this paper the relationship between pavement surface texture depth and tire/surfacing contact stress and area is investigated. Texture depth and tire/surfacing contact stress were measured for a range of tire inflation pressures on five different pavement surfaces. In the analysis the relationship between texture and the generated contact stresses as well as the contact stress between the surfacing and base layer are presented and discussed, and the anticipated effect of these relationships on the rolling resistance of vehicles on the surfacings, and subsequent vehicle fuel economy discussed.

  18. Mathematical modelling of contact of ruled surfaces: theory and practical application

    Science.gov (United States)

    Panchuk, K. L.; Niteyskiy, A. S.

    2016-04-01

    In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.

  19. Effect of the cut off frequency on rough point and flat surface contacts

    International Nuclear Information System (INIS)

    Meng, Fan Ming

    2012-01-01

    In the past years, contact between two bodies has been studied from various ways that do not consider the cut off frequency effect on the contact mechanism. This paper reports the correlation between rough point contact and flat surface contact at different cut off frequencies of filter. The similarity and difference between the two types of contact mechanisms are presented for materials with linear or elastic perfectly plastic deformation. The conjugate gradient method (CGM) is used for analysing the rough point contact, while the rough flat surface contact is studied with an improved CGM in which the influence coefficient for the elastic deformation of the rough flat surface is obtained with finite element method. Numerical results show that for the above two types of contacts, their von Mises stress and maximum shear stress are greatly affected by the cut-off frequency of a high pass filter. Moreover, a decrease in the cut-off frequency leads to an increase in the contact area and a decrease in the approach for the rough flat surface contact, while the opposite variations is for the point contact between rough bodies with the small radii

  20. Control of Surface Attack by Gallium Alloys in Electrical Contacts.

    Science.gov (United States)

    1986-03-28

    and atmospheric control but does not allow visual observation of the contact brushes. This machine is a small homopolar motor built from mild steel...collectors,gallium, homopolar devices,liquid metals,~- is. ABSTRACT ICNI.. .. w 41N"w -~dv.mp.d Wrllt by Itabata" * Electrical contact between a copp’er...32 5 Test rig with felt metal brushes 32 6 Homopolar test apparatus 33 7 Rewetting of alloy track 33 8 Alloy track after running with finger 34 brushes

  1. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  2. Effet de la rugosité de surface sur les performances du contact ...

    African Journals Online (AJOL)

    Effet de la rugosité de surface sur les performances du contact segment- chemise dans un moteur à combustion interne. The effect of surface roughness on the performances of liner-piston ring contact in internal combustion engine. Amar Ayad. *. , Amar Skendraoui & Ammar Haiahem. Laboratoire de Mécanique Industrielle ...

  3. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    Science.gov (United States)

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  4. Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting

    International Nuclear Information System (INIS)

    Lorenz, B; Persson, B N J; Krick, B A; Sawyer, W G; Rodriguez, N; Mangiagalli, P

    2013-01-01

    We present experimental data for the static or breakloose friction for lubricated elastomer contacts, as a function of the time of stationary contact. Due to fluid squeeze-out from the asperity contact regions, the breakloose friction force increases continuously with the time of stationary contact. We consider three different cases: (a) PDMS rubber balls against flat smooth glass surfaces, (b) PDMS cylinder ribs against different substrates (glass, smooth and rough PMMA and an inert polymer) and (c) application to syringes. Due to differences in the surface roughness and contact pressures the three systems exhibit very different time dependences of the breakloose friction. In case (a) for rough surfaces the dry contact area A is a small fraction of the nominal contact area A 0 , and the fluid squeeze-out is fast. In case (b) the dry contact area is close to the nominal contact area, A/A 0 ≈ 1, and fluid squeeze-out is very slow due to percolation of the contact area. In this case, remarkably, different fluids with very different viscosities, ranging from 0.005 Pa s (water–glycerol mixture) to 1.48 Pa s (glycerol), give very similar breakloose friction forces as a function of the time of stationary contact. In case (c) the contact pressure and the surface roughness are larger than in case (b), and the squeeze-out is very slow so that even after a very long time the area of real contact is below the percolation threshold. For all cases (a)–(c), the increase in the breakloose friction is mainly due to the increase in the area of real contact with increasing time, because of the fluid squeeze-out and dewetting. (paper)

  5. Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting.

    Science.gov (United States)

    Lorenz, B; Krick, B A; Rodriguez, N; Sawyer, W G; Mangiagalli, P; Persson, B N J

    2013-11-06

    We present experimental data for the static or breakloose friction for lubricated elastomer contacts, as a function of the time of stationary contact. Due to fluid squeeze-out from the asperity contact regions, the breakloose friction force increases continuously with the time of stationary contact. We consider three different cases: (a) PDMS rubber balls against flat smooth glass surfaces, (b) PDMS cylinder ribs against different substrates (glass, smooth and rough PMMA and an inert polymer) and (c) application to syringes. Due to differences in the surface roughness and contact pressures the three systems exhibit very different time dependences of the breakloose friction. In case (a) for rough surfaces the dry contact area A is a small fraction of the nominal contact area A0, and the fluid squeeze-out is fast. In case (b) the dry contact area is close to the nominal contact area, A/A0 ≈ 1, and fluid squeeze-out is very slow due to percolation of the contact area. In this case, remarkably, different fluids with very different viscosities, ranging from 0.005 Pa s (water–glycerol mixture) to 1.48 Pa s (glycerol), give very similar breakloose friction forces as a function of the time of stationary contact. In case (c) the contact pressure and the surface roughness are larger than in case (b), and the squeeze-out is very slow so that even after a very long time the area of real contact is below the percolation threshold. For all cases (a)–(c), the increase in the breakloose friction is mainly due to the increase in the area of real contact with increasing time, because of the fluid squeeze-out and dewetting.

  6. Surface tension and contact angles: Molecular origins and associated microstructure

    Science.gov (United States)

    Davis, H. T.

    1982-01-01

    Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear boundary value problems for density and stress distributions in fluid interfaces, contact line regions, nuclei and microdroplets, and other fluid microstructures. The relationship between the basic patterns of fluid phase behavior and the occurrence and stability of fluid microstructures was clearly established by the theory. All the inputs of the theory have molecular expressions which are computable from simple models. On another level, the theory becomes a phenomenological framework in which the equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous fluids are the inputs and the structures, stress tensions and contact angles of menisci are the outputs. These outputs, which find applications in the science and technology of drops and bubbles, are discussed.

  7. Correlations between deformations, surface state and leak rate in metal to metal contact; Correlations entre deformations, etat de surface et debit de fuite au contact metal-metal

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G; Lapujoulade, J; Paigne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of metal to metal contact from the stand-point of the leak rate has been carried on a copper ring located between two hard-steel flanges. The analysis of the results confirms the hysteresis phenomenon already seen. Some curves (leak rate versus force and leak rate versus true deformation) in semi-logarithmic coordinates are straight lines. Likewise some curves (electrical contact resistance versus force) in bi-logarithmic coordinates are straight lines. All these results can be understood by looking at the conductance introduced by the deformations of the micro-geometry of the surfaces in contact. Some tests carried out in rising the temperature confirm these hypothesis. (authors) [French] L'etude du contact metal-metal du point de vue debit de fuite a ete poursuivie en utilisant un anneau de cuivre place entre brides d'acier dur. L'analyse des resultats confirme le phenomene d'hysteresis deja constate, montre l'influence de l'etat de surface des brides et du joint. Certaines courbes (debit de fuite/force et debit de fuite/deformation rationnelle), en coordonnees semi-logarithmiques, sont des droites. De meme, certaines courbes (resistance de contact/force) en coordonnees bi-logarithmiques, sont des droites. Ces resultats s'interpretent en considerant la conductance produite par la deformation des microgeometries des surfaces en contact. Quelques essais d'elevation de temperature confirment ces resultats. (auteurs)

  8. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  9. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  10. Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis.

    Science.gov (United States)

    Akbari, Amir; Hill, Reghan J

    2016-08-10

    We study the stability and breakup of liquid bridges with a free contact line on surfaces with contact-angle hysteresis (CAH) under zero-gravity conditions. Non-ideal surfaces exhibit CAH because of surface imperfections, by which the constraints on three-phase contact lines are influenced. Given that interfacial instabilities are constraint-sensitive, understanding how CAH affects the stability and breakup of liquid bridges is crucial for predicting the drop size in contact-drop dispensing. Unlike ideal surfaces on which contact lines are always free irrespective of surface wettability, contact lines may undergo transitions from pinned to free and vice versa during drop deposition on non-ideal surfaces. Here, we experimentally and theoretically examine how stability and breakup are affected by CAH, highlighting cases where stability is lost during a transition from a pinned-pinned (more constrained) to pinned-free (less constrained) interface-rather than a critical state. This provides a practical means of expediting or delaying stability loss. We also demonstrate how the dynamic contact angle can control the contact-line radius following stability loss.

  11. Primary aromatic amines (PAAs) in black nylon and other food-contact materials, 2004-2009

    DEFF Research Database (Denmark)

    Trier, Xenia Thorsager; Okholm, B.; Foverskov, Annie

    2010-01-01

    Primary aromatic amines (PAAs) were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in migrates from 234 samples of food-contact materials, including black nylon (polyamide) kitchen utensils (n = 136), coloured plastics (28), and clear/printed multilayer film/laminates (41......), from retailers, importers, and food producers. A further 29 utensils in use were obtained from colleagues. Very high PAA migration was found from black nylon kitchen utensils to the food simulant 3% acetic acid: the 'non-detectable' limit (20 mu g aniline equivalents kg-1 food) was exceeded by up...... migration test conditions influenced the final test results. Long-term release of PAAs was fitted by diffusion modelling experiments and long-term release was also seen as expected from used utensils. Toxicologists consider these migration levels of the suspected carcinogenic PAAs as a problem of major...

  12. Comparative exposure to DEHP from food contact materials: application of the product intake fraction

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Fantke, Peter

    Quantitative Sustainability Assessment Food contact materials (FCM), e.g. bottles and food handling gloves, can contain potentially endocrine disrupting chemicals, such as di-2-ethylhexyl phthalate(DEHP, CAS: 117-81-7). To investigate the contribution of FCM to dietary DEHP exposure we apply...... thresholds. A hypothetical average PiF for the FCM sector was calculated via production volume and oral exposure doses estimated from NHANES data. In both cases the indication was gloves may contribute more to DEHP exposure when used with certain food items than bottled water. DEHP content in gloves greater...... than 5% would cause exceedance of US EPA threshold when used with certain food items,e.g. radishes based on PiF calculated here. The PiF used in thís context has applications for regulations related to FCM and exposure assessments on a per unit kilo basis....

  13. The effect of a tribo-modified surface layer on friction in elastomer contacts

    OpenAIRE

    Mokhtari, Milad

    2015-01-01

    Friction between rubber and a counter surface has interested many researchers because of its huge practical importance. Rubber components are applied in various industrial applications such as tires, rubber seals, wiper blades, conveyor belts and syringes. The friction between a rubber surface in contact with a rigid surface is still not fully understood. The complexity lies partially in the viscoelastic nature of elastomers next to various parameters such as roughness, contact pressure and s...

  14. [Role of the EFSA in risk management system regarding food contact materials and articles].

    Science.gov (United States)

    Cwiek-Ludwicka, Kazimiera; Półtorak, Hanna; Pawlicka, Marzena

    2009-01-01

    The role of the European Food Safety Authority (EFSA) in the risk management system regarding food contact materials and articles is related with the risk assessment of the substances for the European Commission. General rules for the authorisation of substances used in materials and articles intended to contact with food is established in the Regulation (EC) no 1935/2004. For the evaluation of substances their toxicological properties and magnitude of migration into food simulants is taken into account. Toxicological studies include the mutagenicity tests, oral toxicity studies, carcinogenicity, reproduction and also studies on absorption, distribution, metabolism and excretion of the substance and other studies when needed. The set of the relevant toxicological data for substance depends on the magnitude of migration. In the case of positive opinion by EFSA the substance appears on the Community list of authorised substances. Sometimes, the earlier evaluated and authorized substances must undergo re-evaluation due to their new toxicological properties or as a result of a presence in the food of their earlier unknown decomposition products. Examples of the selected substances which underwent re-evaluation by EFSA in the light of the current toxicological knowledge and the relevant activities undertaken by the European Commission have been presented.

  15. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  16. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  17. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    International Nuclear Information System (INIS)

    Yin Shiheng; Wang Yingjun; Ren Li; Zhao Lianna; Kuang Tongchun; Chen Hao; Qu Jia

    2008-01-01

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching

  18. Antimicrobial activity of nisin adsorbed to surfaces commonly used in the food industry.

    Science.gov (United States)

    Guerra, Nelson P; Araujo, Ana Belén; Barrera, Ana M; Agrasar, Ana Torrado; Macías, Cristina López; Carballo, Julia; Pastrana, Lorenzo

    2005-05-01

    The adsorption isotherms of nisin to three food contact surfaces, stainless steel, polyethyleneterephthalate (PET), and rubber at 8, 25, 40, and 60 degrees C, were calculated. For all surfaces, the increase in temperature led to a decrease in the affinity between nisin and the surface. The rubber adsorbed a higher amount of nisin (0.697 microg/cm2) in comparison with PET (0.665 microg/cm2) and stainless steel (0.396 microg/cm2). Adsorption of nisin to the stainless steel surface described L-2 type curves for all temperatures assayed. However, for PET and rubber surfaces, the isotherms were L-2 type (at 40 and 60 degrees C) and L-4 type curves (at 8 and 25 degrees C). Nisin retained its antibacterial activity once adsorbed to the food contact surfaces and was able to inhibit the growth of Enterococcus hirae CECT 279 on Rothe agar medium. The attachment of three Listeria monocytogenes strains to the three surfaces was found to be dependent on the surface, the strain, and the initial bacterial suspension in contact with the surface. The adsorption of Nisaplin on surfaces reduced the attachment of all L. monocytogenes strains tested. The effect of PET-based bioactive packaging in food was very encouraging. When applied to a food system, nisin-adsorbed PET bottles reduced significantly (P < 0.05) the levels of the total aerobic plate counts in skim milk by approximately 1.4 log units after 24 days of refrigerated storage (4 degrees C), thus extending its shelf life.

  19. Dynamics of the contact between a ruthenium surface with a single nanoasperity and a flat ruthenium surface: Molecular dynamics simulations

    International Nuclear Information System (INIS)

    Barros de Oliveira, Alan; Fortini, Andrea; Buldyrev, Sergey V.; Srolovitz, David

    2011-01-01

    We study the dynamics of the contact between a pair of surfaces (with properties designed to mimic ruthenium) via molecular dynamics simulations. In particular, we study the contact between a ruthenium surface with a single nanoasperity and a flat ruthenium surface. The results of such simulations suggest that contact behavior is highly variable. The goal of this study is to investigate the source and degree of this variability. We find that during compression, the behavior of the contact force displacement curves is reproducible, while during contact separation, the behavior is highly variable. Examination of the contact surfaces suggests that two separation mechanisms are in operation and give rise to this variability. One mechanism corresponds to the formation of a bridge between the two surfaces that plastically stretches as the surfaces are drawn apart and eventually separate in shear. This leads to a morphology after separation in which there are opposing asperities on the two surfaces. This plastic separation/bridge formation mechanism leads to a large work of separation. The other mechanism is a more brittle-like mode in which a crack propagates across the base of the asperity (slightly below the asperity/substrate junction) leading to most of the asperity on one surface or the other after separation and a slight depression facing this asperity on the opposing surface. This failure mode corresponds to a smaller work of separation. This failure mode corresponds to a smaller work of separation. Furthermore, contacts made from materials that exhibit predominantly brittle-like behavior will tend to require lower work of separation than those made from ductile-like contact materials.

  20. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    Science.gov (United States)

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.

  1. [Determination of photoinitiators in printing inks used in food contact materials].

    Science.gov (United States)

    Han, Wei; Yu, Yanjun; Li, Ningtao; Wang, Libing

    2011-05-01

    A new analytical method based on gas chromatography-mass spectrometry (GC-MS) techniques was developed for the determination of five photoinitiators (PIs), benzophenone (BP), 4-methylbenzophenone (MBP), ethyl-4-dimethylaminobenzoate (EDAB), 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB) and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), in the printing inks used in food contact materials. The test solutions were extracted from selected food contact materials using Soxhlet extractor with ethyl acetate as the extraction solvent. By adding 50 and 200 microg/L of a standard mixture of photoinitiators into the extracts of the blank packaging materials, the recoveries obtained were in the range of 66.7%-89.4%. The repeatability of the method was assessed by determining the contents of the photoinitiators in five types of food contact materials, and the results were lower than 10%. The instrumental detection limits (IDLs) and method quantification limits (MQLs) were in the range of 2.9-6.0 microg/L and 0.0017-0.0036 mg/dm2, respectively. The method was applied in the analysis of about twenty real samples (yogurt carton, milk carton, fruit juice carton and plastic bags samples). The most significant pollutants were BP and MBP. The concentrations of Irgacure 184, EDAB and EHDAB found in three individual samples were 0.84 mg/dm2, 0.2 mg/dm2 and 1.2 mg/dm2, respectively. The work proposed a new method to analyze the migration level of initiators from the inks.

  2. Determination of Pesticide Dermal Transfer to Operators & Agricultural Workers through Contact with Sprayed Hard Surfaces.

    Science.gov (United States)

    Tsakirakis, Angelos N; Kasiotis, Konstantinos M; Anastasiadou, Pelagia; Charistou, Agathi N; Gerritsen-Ebben, Rianda; Glass, C Richard; Machera, Kyriaki

    2018-05-20

    In the present study, the dermal transfer rate of pesticides to agricultural workers occurring via contact with sprayed hard surfaces was investigated. Cotton gloves were used as dosimeters to collect residues from hard surfaces contaminated by pesticides in greenhouses. Dosimeters, either dry or moistened, were in contact with wood, metal and plastic surfaces previously sprayed. The experimental approach applied mimicked the typical hand contact. Moistened cotton gloves were used to simulate hand moisture from dew/condensation or rainfall. The effect of total duration of contact on the final hand exposure via transfer was investigated. The higher duration contact tested (50-sec) resulted in the higher transfer rates for metal and plastic surfaces; no such effect was noted in case of the wood surface. The pesticide amount transferred from the metal and plastic surfaces to wet gloves was greater than the one transferred to dry gloves. Such trend was not observed for the wood surface. Transfer rates varied from 0.46-77.62% and 0.17-16.90% for wet and dry samples, respectively. The current study has generated new data to quantify the proportion of pesticide deposits dislodged from three different non-crop surfaces when in contact with dry or wet gloves. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Drop deposition on surfaces with contact-angle hysteresis: Liquid-bridge stability and breakup

    OpenAIRE

    Akbari, Amir; Hill, Reghan J.

    2015-01-01

    We study the stability and breakup of liquid bridges with a free contact line on a surface with contact-angle hysteresis under zero-gravity conditions. Theoretical predictions of the stability limits are validated by experimental measurements. Experiments are conducted in a water-methanol-silicon oil system where the gravity force is offset by buoyancy. We highlight cases where stability is lost during the transition from a pinned-pinned to pinned-free interface when the receding contact angl...

  4. The influence of rail surface irregularities on contact forces and local stresses

    Science.gov (United States)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-01-01

    The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.

  5. Implementation and applications of a finite-element model for the contact between rough surfaces

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Klit, Peder

    2013-01-01

    Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more ...... in the examples. Among the presented results one can find the distribution of the contact pressure at the interface and diagrams of the real area of contact as a function of the nominal contact pressure. © 2013 Elsevier B.V.......Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more...... straightforward to understand and easier to extend to more complex cases like contacting bodies that demonstrate elasto-plastic behavior. This paper presents a finite-element model for studying the frictionless contact between nominally flat rough surfaces. Apart from a description of the model implementation...

  6. Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cyuan-Jhang; Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Woon, Wei-Yen [Department of Physics, National Central University, Jhongli 320, Taiwan (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2016-11-01

    Highlights: • Contact angle hysteresis(CAH) on four graphitic surfacesisinvestigated. • The hysteresis loopof water drops on the polished graphite sheetshowsparticularly small receding contact angle. • The significant CAH observed on CVD graphene and highly oriented pyrolytic graphite is attributed mainly to adhesion hysteresis. • An oil-infused surface of a graphite sheet is produced by imbibition of hexadecane into its porous structure. • The hysteresis-free property for water drops on such a surface is examined and quantitatively explained. - Abstract: Contact angle hysteresis (CAH) on graphitic surfaces, including chemical vapor deposition (CVD) graphene, reduced electrophoretic deposition (EPD) graphene, highly oriented pyrolytic graphite (HOPG), and polished graphite sheet, has been investigated. The hysteresis loops of water drops on the first three samples are similar but the receding contact angle is particularly small for the polished graphite sheet.The significant CAH observed on CVD graphene and HOPG associated with atom-scale roughness has to be attributed mainly to adhesion hysteresis (surface relaxation), instead of roughness or defects.The difference of the wetting behavior among those four graphitic samples has been further demonstrated by hexadecane drops. On the surface of HOPG or CVD graphene,the contact line expands continuously with time, indicating total wetting for which the contact angle does not exist and contact line pinning disappears. In contrast, on the surface of reduced EPD graphene, spontaneous spreading is halted by spikes on it and partial wetting with small contact angle (θ≈4°) is obtained. On the surface of polished graphite sheet, the superlipophilicity and porous structure are demonstrated by imbibition and capillary rise of hexadecane. Consequently, an oil-infused graphite surface can be fabricated and the ultralow CAH of water (∆θ≈2°) is achieved.

  7. Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.

    Science.gov (United States)

    Janeček, V; Nikolayev, V S

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  8. How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage

    NARCIS (Netherlands)

    Li, F.; Li, F.; Mugele, Friedrich Gunther

    2008-01-01

    Contact angle hysteresis caused by random pinning forces is a major obstacle in moving small quantities of liquid on solid surfaces. Here, we demonstrate that the contact angle hysteresis for sessile drops in electrowetting almost disappears with increasing alternating voltage, whereas for direct

  9. Normal Contacts of Lubricated Fractal Rough Surfaces at the Atomic Scale

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    The friction of contacting interfaces is a function of surface roughness and applied normal load. Under boundary lubrication, this frictional behavior changes as a function of lubricant wettability, viscosity, and density, by practically decreasing the possibility of dry contact. Many studies on

  10. The role of the roughness spectral breadth in elastic contact of rough surfaces

    Science.gov (United States)

    Yastrebov, Vladislav A.; Anciaux, Guillaume; Molinari, Jean-François

    2017-10-01

    We study frictionless and non-adhesive contact between elastic half-spaces with self-affine surfaces. Using a recently suggested corrective technique, we ensure an unprecedented accuracy in computation of the true contact area evolution under increasing pressure. This accuracy enables us to draw conclusions on the role of the surface's spectrum breadth (Nayak parameter) in the contact area evolution. We show that for a given normalized pressure, the contact area decreases logarithmically with the Nayak parameter. By linking the Nayak parameter with the Hurst exponent (or fractal dimension), we show the effect of the latter on the true contact area. This effect, undetectable for surfaces with poor spectral content, is quite strong for surfaces with rich spectra. Numerical results are compared with analytical models and other available numerical results. A phenomenological equation for the contact area growth is suggested with coefficients depending on the Nayak parameter. Using this equation, the pressure-dependent friction coefficient is deduced based on the adhesive theory of friction. Some observations on Persson's model of rough contact, whose prediction does not depend on Nayak parameter, are reported. Overall, the paper provides a unifying picture of rough elastic contact and clarifies discrepancies between preceding results.

  11. Physicochernical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and Wettability

    NARCIS (Netherlands)

    Vermeltfoort, PBJ; van der Mei, HC; Busscher, HJ; Hooymans, JMM; Bruinsma, GM

    2004-01-01

    The aim of this study was to determine the transfer of Pseudomonas aeruginosa No. 3 and Staphylococcus aureus 835 from contact lenses to surfaces with different hydrophobicity and roughness. Bacteria were allowed to adhere to contact lenses (Surevue, PureVision, or Focus Night & Day) by incubating

  12. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 1)].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Tonooka, Hiroyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using three food-simulating solvents (water, 4% acetic acid and 20% ethanol), based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. For evaporation, a water bath was used in the official method, and a hot plate in the modified method. In most laboratories, the test solutions were heated until just prior to evaporation to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods, regardless of the heating equipment used. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method.

  13. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food

    Directory of Open Access Journals (Sweden)

    Makoto Nakai

    2014-01-01

    Full Text Available Here, we conducted in vitro genotoxicity tests to evaluate the genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Styrene oligomers were extracted with acetone and the extract was subjected to the Ames test (OECD test guideline No. 471 and the in vitro chromosomal aberration test (OECD test guideline No. 473 under good laboratory practice conditions. The concentrations of styrene dimers and trimers in the concentrated extract were 540 and 13,431 ppm, respectively. Extraction with acetone provided markedly higher concentrations of styrene oligomers compared with extraction with 50% ethanol aqueous solution, which is the food simulant currently recommended for use in safety assessments of polystyrene by both the United States Food and Drug Administration and the European Food Safety Authority. And these high concentrations of styrene dimers and trimers were utilized for the evaluation of genotoxicity in vitro. Ames tests using five bacterial tester strains were negative both in the presence or absence of metabolic activation. The in vitro chromosomal aberration test using Chinese hamster lung cells (CHL/IU was also negative. Together, these results suggest that the risk of the genotoxicity of styrene oligomers that migrate from polystyrene food packaging into food is very low.

  14. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 2)].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Yamada, Kyohei; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using heptane as a food-simulating solvent for oily or fatty foods, based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. In the official method, heating for evaporation was done with a water bath. In the modified method, a hot plate was used for evaporation, and/or a vacuum concentration procedure was skipped. In most laboratories, the test solutions were heated until just prior to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method. Furthermore, an interlaboratory study was performed to evaluate and compare two leaching solutions (95% ethanol and isooctane) used as food-simulating solvents for oily or fatty foods in the EU. The results demonstrated that there was no significant difference between heptane and these two leaching solutions.

  15. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  16. Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    This paper presents an analysis of the effect of asperity interaction in elastic-plastic contact of rough surfaces in the presence of adhesion. The micro-contact model of asperity interactions, developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64), is integrated into the elastic-plastic contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19) to allow the asperity interaction and elastic-plastic deformation in the presence of surface forces to be considered simultaneously. The well-established elastic and plastic adhesion indices are used to consider the different conditions that arise as a result of varying load and material parameters. Results show that asperity interaction influences the loading-unloading behaviour in elastic-plastic adhesive contact of rough surfaces and in general asperity interactions reduce the effect of surface forces

  17. A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface

    KAUST Repository

    Wu, Jinbo; Zhang, Mengying; Wang, Xiang; Li, Shunbo; Wen, Weijia

    2011-01-01

    We report a simple approach for measuring the local contact angle of liquids on a heterogeneous surface consisting of intersected hydrophobic and hydrophilic patch arrays, specifically by employing confocal microscopy and the addition of a very low

  18. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    International Nuclear Information System (INIS)

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-01-01

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness

  19. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.

    Science.gov (United States)

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  20. Contact splitting and the effect of dimple depth on static friction of textured surfaces.

    Science.gov (United States)

    Greiner, Christian; Schäfer, Michael; Popp, Uwe; Gumbsch, Peter

    2014-06-11

    The morphological texturing of surfaces has demonstrated its high potential to maximize adhesion as well as to reduce friction and wear. A key to understanding such phenomena is a principle known as contact splitting. Here, we extend this concept to the static friction behavior of dimpled surfaces. Our results indicate that contact splitting does exist for such structures and that with certain dimple sizes and depths static friction values significantly exceeding those of untextured surfaces can be obtained. These results can be applied to all surfaces where friction forces are to be tuned, from nanoelectromechanical systems up to combustion engines.

  1. Structures of simple liquids in contact with nanosculptured surfaces.

    Science.gov (United States)

    Singh, Swarn Lata; Schimmele, Lothar; Dietrich, S

    2015-03-01

    We present a density functional study of Lennard-Jones liquids in contact with a nanocorrugated wall. The corresponding substrate potential is taken to exhibit a repulsive hard core and a Van der Waals attraction. The corrugation is modeled by a periodic array of square nanopits. We have used the modified Rosenfeld density functional in order to study the interfacial structure of these liquids which with respect to their thermodynamic bulk state are considered to be deep inside their liquid phase. We find that already considerably below the packing fraction of bulk freezing of these liquids, inside the nanopits a three-dimensional-like density localization sets in. If the sizes of the pits are commensurate with the packing requirements, we observe high-density spots separated from each other in all spatial directions by liquid of comparatively very low density. The number, shape, size, and density of these high-density spots depend sensitively on the depth and width of the pits. Outside the pits, only layering is observed; above the pit openings these layers are distorted with the distortion reaching up to a few molecular diameters. We discuss quantitatively how this density localization is affected by the geometrical features of the pits and how it evolves upon increasing the bulk packing fraction. Our results are transferable to colloidal systems and pit dimensions corresponding to several diameters of the colloidal particles. For such systems the predicted unfolding of these structural changes can be studied experimentally on much larger length scales and more directly (e.g., optically) than for molecular fluids which typically call for sophisticated x-ray scattering.

  2. Characterisation of silica surfaces III: Characterisation of aerosil samples through ethanol adsorption and contact angle studies

    Directory of Open Access Journals (Sweden)

    M.S. Nadiye–Tabbiruka

    2009-12-01

    Full Text Available Aerosil samples, heat treated and then silylated with various silanes at various temperatures have been characterised by adsorption of ethanol at 293 K. Adsorption isotherms were plotted and the BET specific surface areas were determined. Contact angles were measured by the captive bubble method at the three phase contact line in ethanol, on glass slides similarly modified. Silylation was found to alter the ethanol adsorptive properties on aerosil and increase the contact angles on the glass slides to extents that depend on the silane used as well as the concentration of residual silanols and that of surface silyl groups.

  3. Micro-lubrication of Directionally Oriented Contact Surfaces

    Directory of Open Access Journals (Sweden)

    O. Maršálek

    2014-12-01

    Full Text Available A description of the set of software tools for detailed computational modelling of thin lubrication layers behaviour is presented in this paper. Individual chapters outline reasons for realization of its each part, explain the functionality of each software tool and the given mathematical definition or digital implementation of all important equations or formulae. The following are examples of partial results of the analysis carried out and the resulting flow factors databases for some kinds of rough surfaces, together with an example of the analysis result of the connecting rod sliding bearing of supercharged internal combustion engine.

  4. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    Science.gov (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  6. Experimental determination of the thermal contact conductance between two solid surfaces by the energy pulse technique

    International Nuclear Information System (INIS)

    Rubin, Gerson Antonio

    1979-01-01

    An experimental procedure for the determination of the thermal contact conductance between two solid surfaces as a function of the contact pressure and the energy of the laser radiation has been developed using the laser pulse method. A rubi laser with variable energy levels was employed as a radiating pulse energy source. The laser beam was allowed to impinge perpendicularly on the front face of a electrolytic iron 73 4 . The temperature fluctuations resulting on the back surface of the sample was detected by a thermocouple, which Is coupled to a PDP-11/45 Computer 32 Kbytes of memory, through a Analog-Digital Converter. A theoretical function, derived exclusively for the problem mentioned in this work, was adjusted by a method of least square fitting of experimental results. This adjustment yielded the value of a parameter related to the contact conductance between two surfaces. The experimental error obtained for the thermal contact conductance was +- 4.9%. (author)

  7. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    International Nuclear Information System (INIS)

    Persson, B N J; Albohr, O; Tartaglino, U; Volokitin, A I; Tosatti, E

    2005-01-01

    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the atomic force microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input. (topical review)

  8. On crack growth in molar teeth from contact on the inclined occlusal surface.

    Science.gov (United States)

    Chai, Herzl

    2015-04-01

    Extracted human molar teeth are indented by hard balls laid at the central fossa, sectioned, and their interior examined for damage. Contact on the fissured enamel coat generally occurs on three distinct spots. The main forms of damage are radial cracks growing from the DEJ to the occlusal surface and median radial and cylindrical cracks growing from a contact spot to the DEJ. For large balls failure by edge chipping near a cusp apex may occur. The median cracks tend to run unstably to the DEJ upon reaching the middle part of the enamel coat. The corresponding load, PFM, and the load needed to initiate radial cracks at the DEJ, PFR, are taken to signal crown failure. The mean values of PFM and PFR are on the order of 1000N. A conical bilayer model defined by thickness d, inclination angle θ, failure stress σF and toughness KC of the enamel coat is developed to assess crown failure. The analytical predictions for PFR and PFM agree well with the tests. The results indicate that enamel thickness is so designed as to ensure that PFR and PFM just exceed the maximum bite force under normal conditions while the choice of θ seems to reflect a compromise between needs to resist crown failure and break hard food particles. Both PFR and PFM are greatly reduced with reducing d, which points to the danger posed by tooth wear. The analytical expressions for PFR and PFM may also apply to other multi-cusp mammalian or prosthetic molar crowns. Cone cracking, suppressed in the anisotropic tooth enamel, may be an important failure mode in prosthetic crowns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  10. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    International Nuclear Information System (INIS)

    Patton, Steven T; Hu Jianjun; Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A

    2008-01-01

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core (∼10 nm diameter gold nanoparticle) with smaller metallic nanoparticles (∼2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 μA) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10 6 hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts

  11. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Steven T; Hu Jianjun [University of Dayton Research Institute, Dayton, OH 45469-0168 (United States); Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433-7750 (United States)], E-mail: steve.patton@wpafb.af.mil, E-mail: rajesh.naik@wpafb.af.mil

    2008-10-08

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core ({approx}10 nm diameter gold nanoparticle) with smaller metallic nanoparticles ({approx}2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 {mu}A) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10{sup 6} hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts.

  12. Modelling the static contact between a fingertip and a rigid wavy surface

    NARCIS (Netherlands)

    Rodriguez Urribarri, Adriana; van der Heide, Emile; Zeng, Xiangqiong; de Rooij, Matthias B.

    2016-01-01

    Surface topography is one of the major parameters affecting friction during touch and consequently tactility. In order to understand and control friction, fine controlled surfaces with a sinusoidal topography are studied to derive an analytical contact model. The Westergaard model on a

  13. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  14. Elastic–plastic adhesive contact of non-Gaussian rough surfaces

    Indian Academy of Sciences (India)

    Grinding, milling, honing and abrasion processes produce grooved surfaces with negative ... This may be defined as λ = π2RH4σ/(18K2γ2) where H is the hardness ... The effect of surface roughness on adhesion at the contact of rough solids ...

  15. Contact angle determination procedure and detection of an invisible surface film

    Science.gov (United States)

    Meyer, G.; Grat, R.

    1990-01-01

    The contact angle value, i.e., the tangent angle of liquid resting on a planar solid surface, is a basic parameter which can be applied to a wide range of applications. The goal is to provide a basic understanding of the contact angle measurement technique and to present a simple illustration that can be applied as a quality control method; namely, detection of a surface contaminant which exists on a surface that appears clean to the unaided eye. The equipment and experimental procedures are detailed.

  16. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction

    International Nuclear Information System (INIS)

    Sahoo, Prasanta

    2006-01-01

    The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient

  17. Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching

    DEFF Research Database (Denmark)

    Neubauer, Nicole; Scifo, Lorette; Navratilova, Jana

    2017-01-01

    The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic...... pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined. Standardized protocols/methods for release sampling, detection, and characterization of release rate and form were applied......: Transformation of the bulk material was analyzed by Scanning Electron Microscopy (SEM), X-ray-tomography and Fourier-Transform Infrared spectroscopy (FTIR); releases were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), single-particle-ICP-MS (sp-ICP-MS), Transmission Electron Microscopy (TEM...

  18. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buf...... from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces...

  19. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  20. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations.

    Science.gov (United States)

    Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per

    2016-02-10

    Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A study on the contact angles of a water droplet on smooth and rough solid surfaces

    International Nuclear Information System (INIS)

    Park, Ju Young; Ha, Man Yeong; Choi, Ho Jin; Hong, Seung Do; Yoon, Hyun Sik

    2011-01-01

    We investigated the wetting characteristics such as contact angle, wetting radius and topography of water droplets on smooth and random solid surfaces. Molecular dynamic simulation is employed to analyze the wetting behavior of water droplets on smooth and rough surfaces by considering different potential energy models of bond, angle, Lennard-Jones and Coulomb to calculate the interacting forces between water molecules. The Lennard-Jones potential energy model is adopted as an interaction model between water molecules and solid surface atoms. The randomly rough surface is generated by changing the standard deviation of roughness height from 1 A to 3 A with the fixed autocorrelation length. The size of water droplet considered is in the range from 2,000 to 5,000 molecules. The contact angles increase generally with increasing number of water molecules. For a hydrophobic surface whose characteristic energy is 0.1 kcal/mol, the contact angles depend rarely on the standard deviation of the roughness height. However, when the surface energy is 0.5 and 1.0 kcal/mol, the contact angles depend on both the roughness height of surfaces and droplet size

  2. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".

    Science.gov (United States)

    Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee

    2012-10-23

    Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect

  3. Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms.

    Science.gov (United States)

    Awad, Tarek Samir; Asker, Dalal; Hatton, Benjamin D

    2018-06-11

    Biofilm formation on stainless steel (SS) surfaces of food processing plants, leading to foodborne illness outbreaks, is enabled by the attachment and confinement within microscale cavities of surface roughness (grooves, scratches). We report Foodsafe Oil-based Slippery Coatings (FOSCs) for food processing surfaces that suppress bacterial adherence and biofilm formation by trapping residual oil lubricant within these surface cavities to block microbial growth. SS surfaces were chemically functionalized with alkylphosphonic acid to preferentially wet a layer of food grade oil. FOSCs reduced the effective surface roughness, the adhesion of organic food residue, and bacteria. FOSCs significantly reduced Pseudomonas aeruginosa biofilm formation on standard roughness SS-316 by 5 log CFU cm-2, and by 3 log CFU cm-2 for mirror-finished SS. FOSCs also enhanced surface cleanability, which we measured by bacterial counts after conventional detergent cleaning. Importantly, both SS grades maintained their anti-biofilm activity after erosion of the oil layer by surface wear with glass beads, which suggests there is a residual volume of oil that remains to block surface cavity defects. These results indicate the potential of such low-cost, scalable approaches to enhance the cleanability of SS food processing surfaces and improve food safety by reducing biofilm growth.

  4. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.

    Science.gov (United States)

    Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana

    2016-09-01

    The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016

  5. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    Science.gov (United States)

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  6. Tyre-road contact using a particle-envelope surface model

    Science.gov (United States)

    Pinnington, Roger J.

    2013-12-01

    Determination of the contact forces is the central problem in all aspects of road-tyre interaction: i.e. noise, energy loss and friction. A procedure to find the contact forces under a rolling tyre is presented in four stages. First, the contact stiffness of a uniform peak array from indentations in the rubber tread, and also tyre carcass deflection, is described by some new simplified expressions. Second, a routine divides a single surface profile into equal search intervals, in which the highest peaks are identified. These are used to obtain the parameters for the interval, i.e. the mean envelope and the mean interval. The process is repeated at geometrically decreasing search intervals until the level of the data resolution, thereby describing the profile by a set of envelopes. The ‘strip profile’ ultimately used to describe the surface, is obtained by selecting the highest points across the profiles of one stone's width. The third stage is to combine the strip profile envelopes with the contact stiffness expressions, yielding the nonlinear stiffness-displacement, and force-displacement relationships for the chosen road-tyre combination. Finally the contact pressure distribution from a steady-state rolling tyre model is applied to the strip profile, via the force-displacement relationship, giving the local tyre displacements on the road texture. This displacement pattern is shown to be proportional to the time and space varying contact pressure, which then is incorporated into a wave equation for rolling contact.

  7. 21 CFR 170.103 - Withdrawal without prejudice of a premarket notification for a food contact substance (FCN).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Withdrawal without prejudice of a premarket... ADDITIVES Premarket Notifications § 170.103 Withdrawal without prejudice of a premarket notification for a food contact substance (FCN). A manufacturer or supplier may withdraw an FCN without prejudice to a...

  8. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    Science.gov (United States)

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration

  9. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  10. A contact mechanics model for ankle implants with inclusion of surface roughness effects

    International Nuclear Information System (INIS)

    Hodaei, M; Farhang, K; Maani, N

    2014-01-01

    Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load–unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient. (paper)

  11. A contact mechanics model for ankle implants with inclusion of surface roughness effects

    Science.gov (United States)

    Hodaei, M.; Farhang, K.; Maani, N.

    2014-02-01

    Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.

  12. Physicochemical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and wettability.

    Science.gov (United States)

    Vermeltfoort, Pit B J; van der Mei, Henny C; Busscher, Henk J; Hooymans, Johanna M M; Bruinsma, Gerda M

    2004-11-15

    The aim of this study was to determine the transfer of Pseudomonas aeruginosa No. 3 and Staphylococcus aureus 835 from contact lenses to surfaces with different hydrophobicity and roughness. Bacteria were allowed to adhere to contact lenses (Surevue, PureVision, or Focus Night & Day) by incubating the lenses in a bacterial suspension for 30 min. The contaminated lenses were put on a glass, poly(methylmethacrylate), or silicone rubber substratum, shaped to mimic the eye. After 2 and 16 h, lenses were separated from the substrata and bacteria were swabbed off from the respective surfaces and resuspended in saline. Appropriate serial dilutions of these suspensions were made, from which aliquots were plated on agar for enumeration. Bacterial transfer varied between 4 and 60%, depending on the combination of strain, contact time, contact lens, and substratum surface. For P. aeruginosa No. 3, transfer was significantly higher after 16 h than after 2 h, whereas less increase with time was seen for S. aureus 835. Bacterial transfer from all tested contact lenses was least to silicone rubber, the most hydrophobic and roughest substratum surface included. (c) 2004 Wiley Periodicals, Inc.

  13. Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties.

    Science.gov (United States)

    Di Mundo, Rosa; Bottiglione, Francesco; Palumbo, Fabio; Notarnicola, Michele; Carbone, Giuseppe

    2016-11-15

    Micro-scale textured Teflon surfaces, resulting from plasma etching modification, show extremely high water contact angle values and fairly good resistance to water penetration when hit by water drops at medium-high speed. This behavior is more pronounced when these surfaces present denser and smaller micrometric reliefs. Tailoring the top of these reliefs with a structure which further stabilizes the air may further increase resistance to wetting (water penetration) under static and dynamic conditions. Conditions of the oxygen fed plasma were tuned in order to explore the possibility of obtaining differently topped structures on the surface of the polymer. Scanning Electron Microscopy (SEM) was used to explore topography and X-ray Photoelectron Spectroscopy (XPS) to assess chemical similarity of the modified surfaces. Beside the usual advancing and receding water contact angle (WCA) measurements, surfaces were subjected to high speed impacting drops and immersion in water. At milder, i.e. shorter time and lower input power, plasma conditions formation of peculiar filaments is observed on the top of the sculpted reliefs. Filamentary topped surfaces result in a lower WCA than the spherical ones, appearing in this sense less superhydrophobic. However, these surfaces give rise to the formation of a more pronounced air layer when placed underwater. Further, when hit by water drops falling at medium/high speed, they show a higher resistance to water penetration and a sensitively lower surface-liquid contact time. The contact time is as low as previously observed only on heated solids. This behavior may be ascribed to the cavities formed beneath the filaments which, similarly with the salvinia leaf structures, require a surplus of pressure to be filled by water. Also, it suggests a different concept of superhydrophobicity, which cannot be expected on the basis of the conventional water contact angle characterization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Neutron activation analysis of recycled paper and board in contact with food

    International Nuclear Information System (INIS)

    Parry, S.J.

    2001-01-01

    Recycling of wastepaper has been shown to increase the concentration of metals in the product. Although it is generally assumed that there is no risk of migration of chemical contaminants from recycled paper and board into food, the UK Food Standards Agency has identified limited evidence of such migration. Therefore, it is important to carry out research to establish the concentration of metals in recycled paper and board in contact with food. A previous study at Imperial College had resulted in the development of a neutron activation analysis method to determine trace metals in plastic packaging. An initial study is described to establish whether the same methodology could be applied to paper and board and to carry out a preliminary investigation into a small range of recycled paper and board products. The study was made on 22 elements in 17 products including pizza boxes, fries boxes, kitchen towel, table napkins, greaseproof paper, tea bags and cake cases. Elevated levels of some elements including barium (69 mg/kg in pizza bases) and chromium (5 mg/kg in napkins, 50 mg/kg in greaseproof paper, 2 mg/kg in cake cases, 90 mg/kg in baking parchment, 5 mg/kg in fries boxes and 5 mg/kg in pizza bases) have been shown. (author)

  15. Correlation of Cell Surface Biomarker Expression Levels with Adhesion Contact Angle Measured by Lateral Microscopy.

    Science.gov (United States)

    Walz, Jenna A; Mace, Charles R

    2018-06-05

    Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.

  16. Effect of surface microgeometry on the physical contact formation during pressure welding

    Energy Technology Data Exchange (ETDEWEB)

    Karakozov, E S; Grigor' evskii, V I; Orlova, L M

    1976-01-01

    Methods are discussed to analyse both qualitatively and quantitatively the physical contact formation depending upon a microprotrusion height in case of pressure welding. For this purpose VT14 two-phase titanium alloy and in some cases OT4 alloy (for comparison) have been used. Those alloys are of a fine-grained polyhedral structure with a grain size of 8-10 ..mu..m for OT4 alloy and 2-3 ..mu..m for VT14 alloy. The tests have been performed with round specimens with a dia. of 16 mm and a height of 30 mm. The contact surface of one of the samples has been polished, that of the other one had triangular notched microprotrusions with a constant angle ..beta.. equalling 15 deg and a pitch varying in different samples. The specimens have been butt-welded. The surface of the contact formed has been assessed after a break-down of welded joints depending upon the imprint area of the specimen with a polished surface. An assessment of the physical contact surface as well as fractographic and metallographic studies of the break-down surface have been performed with MMI-2, MBS-2 and MIM-8 microscopes. The paper describes results of studies at a welding temperature of 850-950 deg C, with a duration of 20 min specific pressure of 0.2 kgf/sq.mm.

  17. Effect of surface microgeometry on the physical contact formation during pressure welding

    International Nuclear Information System (INIS)

    Karakozov, Eh.S.; Grigor'evskij, V.I.; Orlova, L.M.

    1976-01-01

    Methods are discussed to analyse both qualitatively and quantitatively the physical contact formation depending upon a microprotrusion height in case of pressure welding. For this purpose VT14 two-phase titanium alloy and in some cases OT4 alloy (for comparison) have been used. Those alloys are of a fine-grained polyhedral structure with a grain size of 8-10 μm for OT4 alloy and 2-3 μm for VT14 alloy. The tests have been performed with round specimens with a dia. of 16 mm and a height of 30 mm. The contact surface of one of the samples has been polished, that of the other one had triangular notched microprotrusions with a constant angle β equalling 15 deg and a pitch varying in different samples. The specimens have been butt-welded. The surface of the contact formed has been assessed after a break-down of welded joints depending upon the imprint area of the specimen with a polished surface. An assessment of the physical contact surface as well as fractographic and metallographic studies of the break-down surface have been performed with MMI-2, MBS-2 and MIM-8 microscopes. The paper describes results of studies at a welding temperature of 850-950 deg C, with a duration of 20 min specific pressure of 0.2 kgf/sq.mm

  18. Evidence of bad recycling practices: BFRs in children's toys and food-contact articles.

    Science.gov (United States)

    Guzzonato, A; Puype, F; Harrad, S J

    2017-07-19

    Brominated flame retardants (BFRs) have been used intentionally in a wide range of plastics, but are now found in an even wider range of such materials (including children's toys and food contact articles) as a result of recycling practices that mix BFR-containing waste plastics with "virgin" materials. In this study Br was quantified in toy and food contact samples on the assumption that its concentration can be used as a metric for BFR contamination. Subsequently, compound specific determination of BFRs was performed to evaluate the validity of the aforementioned assumption, crucial to render rapid, inexpensive, in situ Br determination in non-laboratory environments (such as waste handling facilities) a viable option for sorting wastes according to their BFR content. We report semi-quantitative compound specific BFR concentrations to give an overview of the distribution of individual BFRs in the analyzed samples. Finally, we evaluated the correlations between waste electrical and electronic equipment (WEEE) related substances (Ca, Sb and rare earth elements (REEs)) and Br as a proxy for identifying poor sorting practices in different waste streams. 26 samples of toys, food-contact articles and WEEE were analyzed with a suite of different techniques in order to obtain comprehensive information about their elemental and molecular composition. The information obtained from principal component analysis about WEEE-related compounds provides new insights into the influence of sorting practices on the extent of products' contamination and bringing out polymer-related trends in the pollutants' signature. 61% of all samples were Br positive: of these samples, 45% had decaBDE concentrations exceeding the concentration limits for PBDEs and their main constituent polymer was - according to the REE signature of such samples - Acrylonitrile Butadiene Styrene (ABS), uses of which include copying equipment, laptops and computers. The ability to better track chemicals of concern

  19. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    Science.gov (United States)

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.

  20. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  1. Surface topography and contact mechanics of dry and wet human skin

    Directory of Open Access Journals (Sweden)

    Alexander E. Kovalev

    2014-08-01

    Full Text Available The surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.

  2. Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Jonsson, Hannes

    1996-01-01

    and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3-5 Angstrom from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip......We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip...

  3. Studies of non-contact methods for roughness measurements on wood surfaces

    International Nuclear Information System (INIS)

    Lundberg, I.A.S.; Porankiewicz, B.

    1995-01-01

    The quality of wood surfaces after different kinds of machining processes is a property of great importance for the wood processing industries. Present work is a study, whose objective was to evaluate different non-contact methods, for measurement of the quality of the wood surfaces by correlating them with stylus tracing. A number of Scots Pine samples were prepared by different kinds of wood machining processing. Surface roughness measurements were performed, utilizing two optical noncontact methods. The results indicate that the laser scan method can measure surface roughness on sawn wood with a sufficient degree of accuracy. (author) [de

  4. Polímeros reciclados para contato com alimentos Recycled polymers for food contact

    Directory of Open Access Journals (Sweden)

    Sandra A. Cruz

    2011-01-01

    Full Text Available Os resíduos sólidos urbanos (RSUs são atualmente um dos maiores problemas ambientais, por serem gerados em grande quantidade e ocuparem extensos espaços por um longo período, resultando na diminuição do tempo de vida útil dos aterros sanitários. Os polímeros constituem um grande percentual da composição do RSUs, sendo que as embalagens plásticas contribuem com maior volume e massa. Apesar da reciclagem de polímeros estarem se consolidando no Brasil, graças ao seu mercado ascendente e promissor, existem ainda restrições quanto a sua utilização em contato com alimentos devido aos eventuais processos de migração de contaminantes que podem ocorrer da resina reciclada para o alimento. Por outro lado, dados recentes do setor indicam que a maior parte do consumo de resina virgem é destinada, justamente, para o mercado de embalagens alimentícias. Assim, o desenvolvimento e o gerenciamento de tecnologias que possibilitem o retorno destes materiais a sua aplicação original é de grande importância para sociedade contemporânea. Em um panorama geral, este trabalho aborda as exigências e limitações do uso de polímeros reciclados para contato com alimentos.Municipal solid waste has recently become one of the severest environmental problems. This is because it is generated on a large scale and occupies large spaces for long periods resulting in a decrease in the useful life of landfills. Polymers comprise a large percentage of municipal solid waste and polymer packaging is responsible for the large mass and volume amount. Despite the consolidation of polymer recycling in Brazil, due to the promising and growing market, there are still restrictions concerning to its application for food contact due to eventual migration process that might occur from the recycled resin into the food. On the other hand, recent data of the sector indicates that food packaging market is responsible for the highest consumption of the produced amount of

  5. 3D finite element model of elastoplastic contact on the double sinus rough surface

    International Nuclear Information System (INIS)

    Hagege, H; Bouvier, S; Mazeran, P-E; Bigerelle, M

    2011-01-01

    One of the objectives in the field of tribology is to solve the mechanical stress-displacement problem involved by rough contacts. In our approach, the surface chosen is a 256-256 μm 2 3D sinusoidal shape (amplitude 4.5μm, wavelength 50μm) with an elastoplastic constitutive behaviour. The constitutive law combines isotropic and kinematic hardening and is experimentally identified from 316L steel sheets. The FEM deformable surface is crushed then uncrushed by a rigid flat surface: stresses, contact pressure and plastic cumulated strain are computed. We investigate the results sensitivity with respect to the level of in-plane refinement. At last, we conclude on some guidelines for 3D finite elements modelling of rough surfaces.

  6. Effects of gamma irradiation on food contact polyethylene, polypropylene and polystyrene. Volatiles

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Sayama, Kayo; Yamada, Takashi

    2000-01-01

    The effects of gamma irradiation on the generation of volatiles from food contact polyethylene and polypropylene were investigated using head space (HS)/GC/MS. All samples generated volatiles such as acetic acid, propionic acid, butanoic acid, 2,2-dimethylpropionic acid, acetone, 2-butanone, 2-propanol, 2-methyl-2-propanol, hydrocarbons, etc., due to the gamma irradiation. Especially, acetic acid and acetone were formed in greatest amounts. Since these volatiles did not exist before irradiation and their amounts increased with increasing irradiation dose, they should be degradation products from the polymer or additives by irradiation. Polypropylene generated more kinds and larger amounts of volatiles than polyethylene, which showed that polypropylene is more sensitive to irradiation. Polystyrene contained styrene and ethylbenzene as monomers before irradiation and their amounts decreased after irradiation. Polystyrene generated few degradation products during the irradiation. (author)

  7. Toxicity testing and chemical analyses of recycled fibre-based paper for food contact

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Pedersen, Gitte Alsing; Vinggaard, Anne

    2002-01-01

    of different qualities as food-contact materials and to Perform a preliminary evaluation of their suitability from a safety point of view, and, second, to evaluate the use of different in vitro toxicity tests for screening of paper and board. Paper produced from three different categories of recycled fibres (B...... of the paper products were extracted with either 99% ethanol or water. Potential migrants in the extracts were identified and semiquantified by GC-1R-MS or GC-HRMS. In parallel to the chemical analyses, a battery of four different in vitro toxicity tests with different endpoints were applied to the same...... was less cytotoxic than the extracts prepared from paper made from recycled fibres, and extracts prepared from C was the most cytotoxic. None of the extracts showed mutagenic activity No conclusion about the oestrogenic activity could be made, because all extracts were cytotoxic to the test organism (yeast...

  8. Effects of gamma irradiation on food contact polyethylene, polypropylene and polystyrene: additives and other chemicals

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Sayama, Kayo; Yamada, Takashi

    2000-01-01

    The effects of gamma irradiation on additives, oligomers, and other chemicals in food contact polyethylene, polypropylene and polystyrene were investigated. Polyethylene and polypropylene products contained several antioxidants, lubricants and plasticizers. After gamma irradiation, the contents of all the antioxidants significantly decreased. Irgafos 168 disappeared the fastest. Lubricants and plasticizers decreased to some extent or not at all. 2,4-Di-tert-butylphenol was detected not only after irradiation but also before irradiation, and 1,3-di-tert-butylbenzene and 2,6-di-tert-butyl-1,4-benzoquinone were detected only after irradiation. They were presumed to be degradation products of the irradiation, though the former should be also a degradation product of the manufacturing process. On the other hand, the polystyrene products contained styrene dimers and trimers and their contents did not change after the gamma irradiation. (author)

  9. The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants.

    Science.gov (United States)

    Schlegelová, J; Babák, V; Holasová, M; Dendis, M

    2008-01-01

    Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).

  10. Evaluating non-stick properties of different surface materials for contact frying

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens

    2011-01-01

    to evaluate non-stick and cleaning properties of the coatings. In accordance with industry standards pancake was selected as the food model for the non-stick properties. The performance of different frying surfaces (stainless steel, aluminium, PTFE (polytetrafluoroethylene) and three ceramic coatings with two...... on their non-stick properties, so that the smoother surfaces gave a higher force of adhesion between pancake and surface....

  11. Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.

    Science.gov (United States)

    Schmitt, M; Grub, J; Heib, F

    2015-06-01

    Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    International Nuclear Information System (INIS)

    Jensen, Torben R.; Kjaer, Kristian; Oestergaard Jensen, Morten; Peters, Guenther H.; Reitzel, Niels; Balashev, Konstantin; Bjoernholm, Thomas

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 A into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 A 2 of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect

  13. Contact angle studies on PDMS surfaces fouled by bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, VT

    2010-01-01

    Full Text Available Polydimethylsiloxane (PDMS) has a hydrophobic surface, forming a contact angle of around 110º with deionised water. It is due to its hydrophobic nature that the elastomer is prone to bio-fouling, such as non-specific adsorption of biomaterials like...

  14. Experimental Investigation of Coal Dust Wettability Based on Surface Contact Angle

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-01-01

    Full Text Available Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.

  15. Free surface modeling of contacting solid metal flows employing the ALE formulation

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; Huetink, Han; Merklein, M.; Hagenah, H.

    2012-01-01

    In this paper, a numerical problem with contacting solid metal flows is presented and solved with an arbitrary Lagrangian-Eulerian (ALE) finite element method. The problem consists of two domains which mechanically interact with each other. For this simulation a new free surface boundary condition

  16. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    International Nuclear Information System (INIS)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun; Ahn, Jeong Keun

    2015-01-01

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  17. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  18. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Certification of contact probe measurement of surface wave of Li jet for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Takafumi, E-mail: okita@stu.nucl.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Hoashi, Eiji; Yoshihashi, Sachiko [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Kondo, Hiroo; Kanemura, Takuji [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki (Japan); Yamaoka, Nobuo; Horiike, Hiroshi [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan)

    2015-10-15

    Highlights: • We have conducted experiments of liquid lithium free-surface flow for IFMIF. • In the experiment using electro-contact probe apparatus, a droplet of liquid Li on the middle of measurement probe was observed. • Behavior of a droplet and false detections were observed by using HSV camera. • The error of the statistical result was roughly evaluated about 1%. • From results of numerical simulations, we obtained the detailed information about the behavior of a Li droplet. - Abstract: The international fusion material irradiation facility (IFMIF) is a neutron source for developing fusion reactor materials. A liquid lithium (Li) jet with free surface is planned as a target to generate intense neutron field. It is important to obtain information on the surface wave characteristic for safety of the facility and efficient neutron generation. Surface wave characteristics experiment using the liquid Li circulation facility is carried out at Osaka University. In our studies, measurement using an electro-contact probe apparatus is conducted and many data about surface wave height were taken. In this experiment, a liquid Li droplet was observed on the probe. To see effect due to droplets on the probe needle, images near the surface of the Li jet including the Li droplet were taken by HSV camera synchronized with probe contact signals, and correlation between the behavior of the Li droplet and signals was evaluated. From the results, when the droplet on the probe contacts of the droplet with the surface, signals obviously different from the regular signal were observed. The influence on the result of frequency was estimated and is approximately <1%. Accuracy of measurement using probe could be increased by carefully deleting false signals.

  20. The effects of electron beam irradiation on additives present in food-contact polymers

    International Nuclear Information System (INIS)

    Crowson, Andrew.

    1991-09-01

    A range of additives (Irganox 1010, Irganox 1076, Irganox 1330, Irgafos 168 and Tinuvin 622) has been incorporated into a variety of food-contact polymers including polypropylene and low density polyethylene. Samples of these stabilized polymers were subjected to electron-beam or gamma irradiation to receive doses of 1,5,10,25 and 50 kGy. The effects of electron-beam irradiation on the amount of extractable antioxidant in polymers were determined. Using hplc techniques it was found that there was a dose-related reduction in the amount of extractable antioxidant similar to that caused by gamma irradiation. The magnitude of this reduction was found to be dependent upon the nature of both the antioxidant and the polymer type. Electron-beam irradiation was also found to cause a dose-related reduction in the levels of the antioxidants Irganox 1010 and Irganox 1076 migrating from polymers into a food simulant. This effect was similar to that caused by gamma irradiation. (author)

  1. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  2. An adaptive EFG-FE coupling method for elasto-plastic contact of rough surfaces

    International Nuclear Information System (INIS)

    Liu Lan; Liu Geng; Tong Ruiting; Jin Saiying

    2010-01-01

    Differing from Finite Element Method, the meshless method does not need any mesh information and can arrange nodes freely which is perfectly suitable for adaptive analysis. In order to simulate the contact condition factually and improve computational efficiency, an adaptive procedure for Element-free Galerkin-Finite Element (EFG-FE) coupling contact model is established and developed to investigate the elastoplastic contact performance for engineering rough surfaces. The local adaptive refinement strategy combined with the strain energy gradient-based error estimation model is employed. The schemes, including principle explanation, arithmetic analysis and programming realization, are introduced and discussed. Furthermore, some related parameters on adaptive convergence criterion are researched emphatically, including adaptation-stop criterion, refinement or coarsening criterion which are guided by the relative error in total strain energy with two adjacent stages. Based on pioneering works of the EFG-FE coupling method for contact problems, an adaptive EFG-FE model for asperity contact is studied. Compared with the solutions obtained from the uniform refinement model, the adaptation results indicate that the adaptive method presented in this paper is capable of solving asperity contact problems with excellent calculation accuracy and computational efficiency.

  3. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  4. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  5. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  6. Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2003-01-01

    The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.

  7. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  8. Transfer, attachment, and formation of biofilms by Escherichia coli O157:H7 on meat-contact surface materials.

    Science.gov (United States)

    Simpson Beauchamp, Catherine; Dourou, Dimitra; Geornaras, Ifigenia; Yoon, Yohan; Scanga, John A; Belk, Keith E; Smith, Gary C; Nychas, George-John E; Sofos, John N

    2012-06-01

    Studies examined the effects of meat-contact material types, inoculation substrate, presence of air at the liquid-solid surface interface during incubation, and incubation substrate on the attachment/transfer and subsequent biofilm formation by Escherichia coli O157:H7 on beef carcass fabrication surface materials. Materials studied as 2 × 5 cm coupons included stainless steel, acetal, polypropylene, and high-density polyethylene. A 6-strain rifampicin-resistant E. coli O157:H7 composite was used to inoculate (6 log CFU/mL, g, or cm²) tryptic soy broth (TSB), beef fat/lean tissue homogenate (FLH), conveyor belt-runoff fluids, ground beef, or beef fat. Coupons of each material were submerged (4 °C, 30 min) in the inoculated fluids or ground beef, or placed between 2 pieces of inoculated beef fat with pressure (20 kg) applied. Attachment/transfer of the pathogen was surface material and substrate dependent, although beef fat appeared to negate differences among surface materials. Beef fat was the most effective (P transfer and subsequent biofilm formation by E. coli O157:H7. The results highlight the importance of thoroughly cleaning soiled surfaces to remove all remnants of beef fat or other organic material that may harbor or protect microbial contaminants during otherwise lethal antimicrobial interventions. © 2012 Institute of Food Technologists®

  9. Surface mobility and structural transitions of poly(n-alkyl methacrylates) probed by dynamic contact angle measurements

    NARCIS (Netherlands)

    van Damme, H.S.; Hogt, A.H.; Feijen, Jan

    1986-01-01

    Dynamic contact angles and contact-angle hysteresis of a series of poly(n-alkyl methacrylates) (PAMA) were investigated using the Wilhelmy plate technique. The mobility of polymer surface chains, segments, and side groups affected the measured contact angles and their hysteresis. A model is

  10. THE DYNAMIC INTERACTION OF THE MOVING CONTACTING SURFACES AT THE EXAMPLE OF THE ELECTRIC ROLLING STOCK CURRENT COLLECTOR

    Directory of Open Access Journals (Sweden)

    M. O. Babiak

    2009-07-01

    Full Text Available The process of mutual moving and contacting of surfaces of current collecting pantograph elements and contact network is considered taking into account the particularities of inf1uence of speed and acceleration parameters, determination of which will allow to forecast mathematically the wear-out degree of contacting elements.

  11. Lubrication of oral surfaces by food emulsions: the importance of surface characteristics

    NARCIS (Netherlands)

    Hoog, de E.H.A.; Prinz, J.F.; Huntjens, L.; Dresselhuis, D.M.; Aken, van G.A.

    2006-01-01

    The friction between surfaces in relative motion lubricated by food emulsions has been measured. Different types of surfaces were tested, including metal, glass, rubber, and mucosal surfaces (pig tongue and pig esophagus). We demonstrate that the load-dependent behavior of the coefficient of kinetic

  12. Lubrication of oral surfaces by food emulsions: The importance of surface characteristics

    NARCIS (Netherlands)

    Hoog, E.H.A. de; Prinz, J.F.; Huntjens, L.; Dresselhuis, D.M.; Aken, G.A. van

    2006-01-01

    The friction between surfaces in relative motion lubricated by food emulsions has been measured. Different types of surfaces were tested, including metal, glass, rubber, and mucosal surfaces (pig tongue and pig esophagus). We demonstrate that the load-dependent behavior of the coefficient of kinetic

  13. Type conversion, contacts, and surface effects in electroplated CdTe films

    International Nuclear Information System (INIS)

    Basol, B.M.; Ou, S.S.; Stafsudd, O.M.

    1985-01-01

    Efficient electroplated CdS/CdTe solar cells can be fabricated by heat treating and type-converting the n-CdTe films deposited on CdS layers. In this paper, various mechanisms which may give rise to the conversion of electroplated CdTe films from n to p type are investigated. It is concluded that Cd-vacancy generation is the main mechanism of type conversion. Possible effects of oxygen on this mechanism are also discussed. Evaporated Au contacts to electroplated p-CdTe films were studied. It was found that the Au contacts depleted the excess Te present on the surface of Br 2 -methanol etched p-CdTe films. Oxygen was found to affect the electrical characteristics of such contacts

  14. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Lei, Hao; Jones, Rachael M; Li, Yuguo

    2017-01-18

    Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions - whole room cleaning and wipe cleaning of touched surfaces - were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted

  15. Aberration changes of the corneal anterior surface following discontinued use of rigid gas permeable contact lenses.

    Science.gov (United States)

    Yu, Qing; Wu, Jiang-Xiu; Zhang, He-Ning; Ye, Sheng; Dong, Shi-Qi; Zhang, Chen-Hao

    2013-01-01

    To record aberrations with a corneal topographic device on the anterior surface of the cornea at different time-points prior to wearing and following discontinued use of rigid gas permeable (RGP) contact lenses. The effect of wearing RGP on the anterior surface of the cornea was discussed to provide guidance for clinical refractive error correction. The study objects were 24 eyes from 24 patients. All patients underwent identical examination procedures prior to lens use, as well as afterwards, including slit-lamp examination, non-contact tonometer measurement, computer optometry and corneal curvature measurement, subjective refraction test, and corneal topography analysis. The patients wore contact lenses everyday for 1 month and then discontinued. Corneal topographies were recorded at certain time points of 30 minutes, 1 day, 3, 7 and 14 days following use. Total corneal aberration at each time point following discontinued use of RGP contact lenses was less than the time point prior to use. Detailed results were as follows: root mean square (RMS) (pre)=(1.438±0.328)µm, RMS (30 minutes)=(1.076±0.355)µm, RMS (1 day)=(1.362±0.402)µm, RMS (3 days)=(1.373±0.398)µm, RMS (7 days)=(1.387±0.415)µm, and RMS (14 days)=(1.430±0.423)µm. Results showed that at 30 minutes after discontinued use of RGP contact lenses, almost all 2(nd)- and 3(rd)-order aberrations change. Quadrafoil Z10 and spherical Z12 of the 4(th)-order were also changed. Alterations to Z5, Z6, and Z12 at 1 day after discontinued use were significant differences compared with the time period prior to RGP use: Z5 and Z6 decreased, and Z12 increased slightly. Z5 and Z6 remained decreased at 3 days after discontinued use, but Z9 and Z10 continued to increase and Z12 returned to levels prior to RGP use. At 14 days after discontinued use, all aberrations were not significantly different from the values prior to use. The use RGP contact lenses greatly reduced total aberration of the anterior surface of

  16. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    Directory of Open Access Journals (Sweden)

    D. Rus

    2013-12-01

    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  17. A Mathematical Method to Calculate Tumor Contact Surface Area: An Effective Parameter to Predict Renal Function after Partial Nephrectomy.

    Science.gov (United States)

    Hsieh, Po-Fan; Wang, Yu-De; Huang, Chi-Ping; Wu, Hsi-Chin; Yang, Che-Rei; Chen, Guang-Heng; Chang, Chao-Hsiang

    2016-07-01

    We proposed a mathematical formula to calculate contact surface area between a tumor and renal parenchyma. We examined the applicability of using contact surface area to predict renal function after partial nephrectomy. We performed this retrospective study in patients who underwent partial nephrectomy between January 2012 and December 2014. Based on abdominopelvic computerized tomography or magnetic resonance imaging, we calculated the contact surface area using the formula (2*π*radius*depth) developed by integral calculus. We then evaluated the correlation between contact surface area and perioperative parameters, and compared contact surface area and R.E.N.A.L. (Radius/Exophytic/endophytic/Nearness to collecting system/Anterior/Location) score in predicting a reduction in renal function. Overall 35, 26 and 45 patients underwent partial nephrectomy with open, laparoscopic and robotic approaches, respectively. Mean ± SD contact surface area was 30.7±26.1 cm(2) and median (IQR) R.E.N.A.L. score was 7 (2.25). Spearman correlation analysis showed that contact surface area was significantly associated with estimated blood loss (p=0.04), operative time (p=0.04) and percent change in estimated glomerular filtration rate (p contact surface area and R.E.N.A.L. score independently affected percent change in estimated glomerular filtration rate (p contact surface area was a better independent predictor of a greater than 10% change in estimated glomerular filtration rate compared to R.E.N.A.L. score (AUC 0.86 vs 0.69). Using this simple mathematical method, contact surface area was associated with surgical outcomes. Compared to R.E.N.A.L. score, contact surface area was a better predictor of functional change after partial nephrectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Pseudomonas aeruginosa Survival at Posterior Contact Lens Surfaces after Daily Wear

    Science.gov (United States)

    Wu, Yvonne T.; Zhu, Lucia S.; Tam, K. P. Connie; Evans, David J.; Fleiszig, Suzanne M. J.

    2015-01-01

    Purpose Pseudomonas aeruginosa keratitis is a sight-threatening complication of contact lens wear, yet mechanisms by which lenses predispose to infection remain unclear. Here, we tested the hypothesis that tear fluid at the posterior contact lens surface can lose antimicrobial activity over time during lens wear. Methods Daily disposable lenses were worn for 1, 2, 4, 6 or 8 h immediately after removal from their packaging, or after presoaking in sterile saline for 2 days to remove packaging solution. Unworn lenses were also tested, some coated in tears “aged” in vitro for 1 or 8 h. Lenses were placed anterior surface down into tryptic soy agar cradles containing gentamicin (100µg/ml) to kill bacteria already on the lens, and posterior surfaces inoculated with gentamicin-resistant P. aeruginosa for 3 h. Surviving bacteria were enumerated by viable counts of lens homogenates. Results Posterior surfaces of lenses worn by patients for 8 h supported more P. aeruginosa growth than lenses worn for only 1 h, if lenses were presoaked prior to wear (~ 2.4-fold, p = 0.01). This increase was offset if lenses were not presoaked to remove packaging solution (p = 0.04 at 2 h and 4 h). Irrespective of presoaking, lenses worn for 8 h showed more growth on their posterior surface than unworn lenses coated with tear fluid that was “aged” for 8 h vitro (~8.6-fold, presoaked, p = 0.003: ~ 5.4-fold from packaging solution, p = 0.004). Indeed, in vitro incubation did not impact tear antimicrobial activity. Conclusions This study shows that post lens tear fluid can lose antimicrobial activity over time during contact lens wear, supporting the idea that efficient tear exchange under a lens is critical for homeostasis. Additional studies are needed to determine applicability to other lens types, wearing modalities, and relevance to contact lens-related infections. PMID:25955639

  19. Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin.

    Science.gov (United States)

    Danion, Anne; Arsenault, Isabelle; Vermette, Patrick

    2007-09-01

    In vitro methods to evaluate antibacterial activity were used with contact lenses bearing levofloxacin-loaded liposomes developed for the prevention and treatment of bacterial ocular infections such as keratitis. Levofloxacin was incorporated into liposomes before these intact liposomes were immobilized onto the surfaces of soft contact lenses using a multilayer immobilization strategy. The release of levofloxacin from contact lenses bearing 2, 5, and 10 layers of liposomes into a saline buffer at 37 degrees C was monitored by fluorescence. The levofloxacin release, as a function of time, was described by a mechanism taking into account two independent first-order kinetic models. The total release of levofloxacin from the contact lenses was completed within 6 days. The release of levofloxacin from contact lenses bearing 10 layers of liposomes and subsequently soaked overnight in a levofloxacin solution was also studied and compare to that of dried contact lenses without any chemical modification rehydrated in a levofloxacin solution. The antibacterial activity of the liposome-coated contact lenses against Staphylococcus aureus was evaluated by measuring (i) the diameters of the inhibition zone on an agar plate and (ii) the optical density using a broth assay. The liposome-coated lenses showed an antibacterial activity both on agar and in broth following 24 h. When initial bacteria inocula were equal or below 10(6) CFU/mL, all the bacteria were inhibited within 2 h. When using initial bacteria inocula of 10(8) CFU/mL, an initial burst release provided by soaking the liposomal lenses was required for the first hours to inhibit bacteria growth. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  20. Dosimetry of skin-contact exposure to tritium gas contaminated surfaces

    International Nuclear Information System (INIS)

    Legare, M.

    1990-12-01

    The radiological hazards from tritium are usually associated with exposure to tritium oxide either by inhalation, ingestion or permeation through skin. However, exposure from skin contact with tritium gas contaminated surfaces represents a different radiological hazard in tritium removal facilities and future fusion power plants. Previous experiments on humans and more recent experiments on hairless rats at Chalk River Laboratories have shown that when a tritium gas-contaminated surface is brought into contact with intact skin, high concentrations of organically-bound tritium in urine and skin are observed which were not seen from single tritiated water (liquid or vapour form) contamination. The results of the rat experiments, which involved measurements of tritium activity in urine and skin, after contact with contaminated stainless steel, are described. These results are also compared to previous data from human experiments. The effect of various exposure conditions and different contaminated surfaces such as brass, aluminum and glass are analysed and related to the results from contaminated stainless steel exposure. Dosimetric models are being developed in order to improve the basis for dose assessment for this mode of tritium uptake. The presently studied model is explained along with the assumptions and methods involved in its derivation. The features of 'STELLA', the software program used to implement the model, are discussed. The methods used to estimate skin and whole body dose from a model are demonstrated. Finally, some experiments for improving the accuracy of the model are proposed. Briefly, this study compares the results from animal and human experiments as well as different exposure conditions, and determines the range of whole body and skin dose that may be involved from skin-contact intake. This information is essential for regulatory purposes particularly in the derivation of doses for skin-contact contamination. (15 figs., 7 tabs., 29 refs.)

  1. AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities.

    Science.gov (United States)

    Rota, A; Serpini, E; Gazzadi, G C; Valeri, S

    2016-04-06

    Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating 'really nano-' structures and detecting their tribological properties. In the present work we show how the probe-surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO2 has been observed as well. The results suggest a scenario for capillary formation on the patterns.

  2. AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities

    International Nuclear Information System (INIS)

    Rota, A; Serpini, E; Gazzadi, G C; Valeri, S

    2016-01-01

    Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating ‘really nano-’ structures and detecting their tribological properties. In the present work we show how the probe–surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO 2 has been observed as well. The results suggest a scenario for capillary formation on the patterns. (paper)

  3. An adhesive contact mechanics formulation based on atomistically induced surface traction

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Houfu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Ren, Bo [Livermore Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94551 (United States); Li, Shaofan, E-mail: shaofan@berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-12-01

    In this work, we have developed a novel multiscale computational contact formulation based on the generalized Derjuguin approximation for continua that are characterized by atomistically enriched constitutive relations in order to study macroscopic interaction between arbitrarily shaped deformable continua. The proposed adhesive contact formulation makes use of the microscopic interaction forces between individual particles in the interacting bodies. In particular, the double-layer volume integral describing the contact interaction (energy, force vector, matrix) is converted into a double-layer surface integral through a mathematically consistent approach that employs the divergence theorem and a special partitioning technique. The proposed contact model is formulated in the nonlinear continuum mechanics framework and implemented using the standard finite element method. With no large penalty constant, the stiffness matrix of the system will in general be well-conditioned, which is of great significance for quasi-static analysis. Three numerical examples are presented to illustrate the capability of the proposed method. Results indicate that with the same mesh configuration, the finite element computation based on the surface integral approach is faster and more accurate than the volume integral based approach. In addition, the proposed approach is energy preserving even in a very long dynamic simulation.

  4. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    International Nuclear Information System (INIS)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon; Lyons, Sean; Higginbotham, Clement

    2011-01-01

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  5. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    Energy Technology Data Exchange (ETDEWEB)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon [Nanolab Research Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland); Lyons, Sean; Higginbotham, Clement, E-mail: Niall.OClaonadh@DIT.ie, E-mail: Alan.Casey@DIT.ie [Materials Research Institute, Athlone Institute of Technology, Westmeath (Ireland)

    2011-07-06

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  6. Phthalates in soft PVC products used in food production equipment and in other food contact materials on the Danish and the Nordic Market 2013-2014

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Jensen, Lisbeth Krüger

    2016-01-01

    they were well-known endocrine disruptors. Results of the Danish Food Authorities control in 2008 and 2009 showed 23 % non-compliant samples. Critical FCMs turned out to be those made from plasticised PVC and sold as suitable for contact with fatty foodstuffs. Targeted follow up control campaigns were...

  7. Order of 12 August 1986 on treatment by ionizing radiation of material and objects in contact with foods and beverages

    International Nuclear Information System (INIS)

    1986-01-01

    This Order applies to packaging material and articles in contact with foods and beverages, when they are treated by cobalt 60 or caesium 137 gamma rays, accelerated electrons of the energy lower than or equal to 10 MeV and X rays of the energy lower than or equal to 10 MeV. (NEA) [fr

  8. A novel safety assessment strategy for non-intentionally added substances (NIAS) in carton food contact materials

    NARCIS (Netherlands)

    Koster, S.; Rennen, M.; Leeman, W.; Houben, G.; Muilwijk, B.; Acker, F. van; Krul, L.

    2014-01-01

    One of the main challenges in food contact materials research is to prove that the presence of non-intentionally added substances (NIAS) is not a safety issue. Migration extracts may contain many unknown substances present at low concentrations. It is difficult and time-consuming to identify all

  9. Spread of Staphylococcus aureus between medical staff and high-frequency contact surfaces in a large metropolitan hospital

    Directory of Open Access Journals (Sweden)

    Li-sha Shi

    2015-12-01

    Conclusion: Cross-contamination of S. aureus or MRSA on medical workers' hands and contact surfaces was demonstrated within and between departments of a large metropolitan hospital. Improvements are needed in medical staff hygiene habits and in the cleaning of high-frequency contact surfaces to help prevent and control nosocomial infections.

  10. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  11. Modeling of normal contact of elastic bodies with surface relief taken into account

    Science.gov (United States)

    Goryacheva, I. G.; Tsukanov, I. Yu

    2018-04-01

    An approach to account the surface relief in normal contact problems for rough bodies on the basis of an additional displacement function for asperities is considered. The method and analytic expressions for calculating the additional displacement function for one-scale and two-scale wavy relief are presented. The influence of the microrelief geometric parameters, including the number of scales and asperities density, on additional displacements of the rough layer is analyzed.

  12. Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces.

    Science.gov (United States)

    Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N

    2017-09-26

    Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the

  13. Occupationally related contact dermatitis in North American food service workers referred for patch testing, 1994 to 2010.

    Science.gov (United States)

    Warshaw, Erin M; Kwon, Gina P; Mathias, C G Toby; Maibach, Howard I; Fowler, Joseph F; Belsito, Donald V; Sasseville, Denis; Zug, Kathryn A; Taylor, James S; Fransway, Anthony F; Deleo, Vincent A; Marks, James G; Pratt, Melanie D; Storrs, Frances J; Zirwas, Matthew J; Dekoven, Joel G

    2013-01-01

    Contact dermatoses are common in food service workers (FSWs). This study aims to (1) determine the prevalence of occupationally related contact dermatitis among FSWs patch tested by the North American Contact Dermatitis Group (NACDG) and (2) characterize responsible allergens and irritants as well as sources. Cross-sectional analysis of patients patch tested by the NACDG, 1994 to 2010, was conducted. Of 35,872 patients patch tested, 1237 (3.4%) were FSWs. Occupationally related skin disease was significantly more common in FSWs when compared with employed non-FSWs. Food service workers were significantly more likely to have hand (P contact dermatitis in FSWs were 30.6% and 54.7%, respectively. Although the final diagnosis of irritant contact dermatitis was statistically higher in FSWs as compared with non-FSWs, allergic contact dermatitis was lower in FSWs as compared with non-FSWs. The most frequent currently relevant and occupationally related allergens were thiuram mix (32.5%) and carba mix (28.9%). Gloves were the most common source of responsible allergens. The NACDG standard tray missed at least 1 occupationally related allergen in 38 patients (4.3%). Among FSWs patch tested by the NACDG between 1994 and 2010, the most common allergens were thiuram mix and carba mix. Gloves were the most common source of responsible allergens.

  14. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoliang; Wang Xiu; Kong Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-15

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  15. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    International Nuclear Information System (INIS)

    Zhang Xiaoliang; Wang Xiu; Kong Wen; Yi Gewen; Jia Junhong

    2011-01-01

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  16. Preferences of lame cows for type of surface and level of social contact in hospital pens

    DEFF Research Database (Denmark)

    Jensen, Margit Bak; Herskin, Mette S; Thomsen, Peter T.

    2015-01-01

    To investigate preferences of lame cows for flooring and level of social contact, 37 lame, lactating dairy cows (diagnosed with sole ulcer or white line disease) were housed individually for 6 d in experimental hospital pens, where they could choose between 2 equally sized areas (6m × 4.5m......) with either deep-bedded sand or a rubber surface. On both surfaces, cows could choose between 2 equally sized areas either near or away from heifers in a neighboring group pen. Cows spent more time lying on the deep-bedded sand than on the rubber surface (870 vs. 71min/d), whereas they spent less time upright...... (standing or walking) on the sand than on the rubber surface (180 vs. 319min/d). In addition, cows spent less time self-grooming on the sand than on the rubber surface (2.2 vs. 4.7% of time spent upright). With regard to level of social contact, cows spent more time near the neighboring heifers than away...

  17. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    Science.gov (United States)

    Jones, W. R., Jr.

    1986-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220 C in room air. The critical surface energy of spreading (gamma /sub c/) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma /sub LV/). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma /sub c/). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  18. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells.

    Science.gov (United States)

    Ismail, F S Magdon; Rohanizadeh, R; Atwa, S; Mason, R S; Ruys, A J; Martin, P J; Bendavid, A

    2007-05-01

    The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 microm and a depth of 1.5-2 microm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 microm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 microm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

  19. Functional parameter screening for predicting durability of rolling sliding contacts with different surface finishes

    Science.gov (United States)

    Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.

    2018-06-01

    The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.

  20. An effect-directed strategy for characterizing emerging chemicals in food contact materials made from paper and board

    DEFF Research Database (Denmark)

    Rosenmai, Anna Kjerstine; Bengtström, Linda; Taxvig, Camilla

    2017-01-01

    Food contact materials (FCM) are any type of item intended to come into contact with foods and thus represent a potential source for human exposure to chemicals. Regarding FCMs made of paper and board, information pertaining to their chemical constituents and the potential impacts on human health...... FCMs exhibited activities in at least one assay. As proof-of-principle, FCM samples obtained from a sandwich wrapper and a pizza box were carried through a complete step-by-step multi-tiered approach. The pizza box exhibited ER activity, likely caused by the presence of bisphenol A, dibutyl phthalate......, and benzylbutyl phthalate. The sandwich wrapper exhibited AR antagonism, likely caused by abietic acid and dehydroabietic acid. Migration studies confirmed that the active chemicals can transfer from FCMs to food simulants. In conclusion, we report an effect-directed strategy that can identify hazards posed...

  1. Efficacy of low-pressure foam cleaning compared to conventional cleaning methods in the removal of bacteria from surfaces associated with convenience food.

    Science.gov (United States)

    Lambrechts, A A; Human, I S; Doughari, J H; Lues, J F R

    2014-09-01

    Food borne illnesses and food poisoning are cause for concern globally. The diseases are often caused by food contamination with pathogenic bacteria due largely to poor sanitary habits or storage conditions. Prevalence of some bacteria on cleaned and sanitised food contact surfaces from eight convenience food plants in Gauteng (South Africa) was investigated with the view to evaluate the efficacy of the cleaning methods used with such food contact surfaces. The microbial load of eight convenience food manufacturing plants was determined by sampling stainless steel food contact surfaces after they had been cleaned and sanitised at the end of a day's shift. Samples were analysed for Total Plate Count (TPC), Escherichia coli, Salmonella species, Staphylococcus aureus and Listeria species. Results showed that 59 % of the total areas sampled for TPC failed to comply with the legal requirements for surfaces, according to the Foodstuffs, Cosmetics and Disinfectants Act ( 0.05) in terms of Listeria species isolates obtained from both cleaning methods. The LPF method proved to be the superior cleaning option for lowering TPC counts. Regardless of cleaning method used, pathogens continued to flourish on various surfaces, including dry stainless steel, posing a contamination hazard for a considerable period depending on the contamination level and type of pathogen. Intensive training for proper chemical usage and strict procedural compliance among workers for efficient cleaning procedures is recommended.

  2. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    Science.gov (United States)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  3. Piercing the water surface with a blade: Singularities of the contact line

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Mars M. [Kazan Federal University, Kazan 420008 (Russian Federation); Kornev, Konstantin G. [Department of Materials Science & Engineering, Clemson University, Clemson, South Carolina 29634 (United States)

    2016-01-15

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.

  4. Piercing the water surface with a blade: Singularities of the contact line

    International Nuclear Information System (INIS)

    Alimov, Mars M.; Kornev, Konstantin G.

    2016-01-01

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade

  5. Soft electron processor for surface sterilization of food material

    International Nuclear Information System (INIS)

    Baba, Takashi; Kaneko, Hiromi; Taniguchi, Shuichi

    2004-01-01

    As frozen or chilled foods have become popular nowadays, it has become very important to provide raw materials with lower level microbial contamination to food processing companies. Consequently, the sterilization of food material is one of the major topics for food processing. Dried materials like grains, beans and spices, etc., are not typically deeply contaminated by microorganisms, which reside on the surfaces of materials, so it is very useful to take low energetic, lower than 300 keV, electrons with small penetration power (Soft-Electrons), as a sterilization method for such materials. Soft-Electrons is researched and named by Dr. Hayashi et al. This is a non-thermal method, so one can keep foods hygienic without serious deterioration. It is also a physical method, so is free from residues of chemicals in foods. Recently, Nissin-High Voltage Co., Ltd. have developed and manufactured equipment for commercial use of Soft-Electrons (Soft Electron Processor), which can process 500 kg/h of grains. This report introduces the Soft Electron Processor and shows the results of sterilization of wheat and brown rice by the equipment

  6. Super-mercuryphobic and hydrophobic diamond surfaces with hierarchical structures: Vanishment of the contact angle hysteresis with mercury

    International Nuclear Information System (INIS)

    Escobar, Juan V.; Garza, Cristina; Alonso, Juan Carlos; Castillo, Rolando

    2013-01-01

    Increased roughness is known to enhance the natural wetting properties of surfaces, making them either more hydrophobic or more hydrophilic. In this work we study the wetting properties of water and mercury drops in contact with boron doped diamond films with progressively increased surface roughnesses. We show how thermal oxidation of a microcrystalline film creates pyramids decorated with sub-micron protrusions that turn its naturally mercuryphobic surface into super-mercuryphobic. With this liquid, we observe the vanishment of the contact angle hysteresis that is expected for rough surfaces as the contact angle approaches 180, making small drops of mercury roll along out of the surface at an apparent zero tilt-angle. In contrast, the incorporation of nano-globules on the oxidized surface through a silanization process is necessary to increase the hydrophobic properties of the film for which the contact angle with water reaches 138°. The wetting states that dominate in each case are discussed.

  7. Super-mercuryphobic and hydrophobic diamond surfaces with hierarchical structures: Vanishment of the contact angle hysteresis with mercury

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Juan V., E-mail: escobar@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico); Garza, Cristina, E-mail: cgarza@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico); Alonso, Juan Carlos, E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, PO Box 70-360, DF, México, 04510 (Mexico); Castillo, Rolando, E-mail: rolandoc@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico)

    2013-05-15

    Increased roughness is known to enhance the natural wetting properties of surfaces, making them either more hydrophobic or more hydrophilic. In this work we study the wetting properties of water and mercury drops in contact with boron doped diamond films with progressively increased surface roughnesses. We show how thermal oxidation of a microcrystalline film creates pyramids decorated with sub-micron protrusions that turn its naturally mercuryphobic surface into super-mercuryphobic. With this liquid, we observe the vanishment of the contact angle hysteresis that is expected for rough surfaces as the contact angle approaches 180, making small drops of mercury roll along out of the surface at an apparent zero tilt-angle. In contrast, the incorporation of nano-globules on the oxidized surface through a silanization process is necessary to increase the hydrophobic properties of the film for which the contact angle with water reaches 138°. The wetting states that dominate in each case are discussed.

  8. Relation between the size of fog droplets and their contact angles with CR39 surfaces

    International Nuclear Information System (INIS)

    Grosu, G; Andrzejewski, L; Veilleux, G; Ross, G G

    2004-01-01

    The formation of fog on CR39 surfaces has been studied. Water droplets form fog coalesce with time, especially during the first 20 s at the beginning of the formation of fog. Consequently, their mean diameter increases. Formation of fog being related to the wettability of the surfaces, the latter has been increased by the implantation of Ar ions into CR39 surfaces under an oxygen partial pressure. A very wetting CR39 surface with advancing (ACA) and receding (RCA) contact angles below 5 deg. has been obtained with an implantation dose of 1.28x10 17 Ar + cm -2 . In this condition, no formation of fog was observed. Characterization using x-ray photoelectron spectroscopy has shown that the molecular structure of CR39 is strongly modified by Ar + implantation, which would be responsible for the increase in wettability. Unfortunately, both ACA and RCA increase with time, which is called ageing, and the formation of fog is again observed. The diameter and concentration of water droplets forming fog have been plotted against the contact angle. These plots show that no formation of fog occurs for ACA 15 He + cm -2 and an energy of 2 keV, sufficient to push the ions deeper than the Ar depth profile, delays the ageing effect in such a way that ACA ≅ 40 deg. is reached after ∼2000 h and no formation of fog is observed during these first ∼2000 h

  9. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    International Nuclear Information System (INIS)

    Chang, C.-W.; Liao, J.-D.

    2008-01-01

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment

  10. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-W.; Liao, J.-D. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)], E-mail: jdliao@mail.ncku.edu.tw

    2008-08-06

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment.

  11. Elastic-plastic adhesive contact of rough surfaces using n-point asperity model

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath

    2009-01-01

    This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.

  12. Investigation of the primary plasticisers present in polyvinyl chloride (PVC) products currently authorised as food contact materials.

    Science.gov (United States)

    Carlos, Katherine S; de Jager, Lowri S; Begley, Timothy H

    2018-03-15

    PVC is a common food contact material that is usually plasticised to increase its flexibility. Phthalates are one class of chemical compounds that are often used as plasticisers in PVC in a wide range of industries. They may be used in packaging materials for foods and can also be found in components of certain food processing equipment such as conveyor belts and tubing. Transfer of plasticisers from packaging to foods can occur. In recent years, there has been increased interest in understanding the health effects of phthalates, as well as the possible human exposure levels. However, there is limited information available about the routes of exposure to phthalates. In July 2014, the Chronic Hazard Advisory Panel (CHAP) produced a report for the U.S. Consumer Product Safety Commission detailing the potential health hazards of phthalates and phthalate alternatives. This report listed diet as one factor contributing greater than or equal to 10% of total phthalate exposure. As a result of this report, the U.S. Food and Drug Administration (FDA) is interested in determining the types of the primary plasticiser present in food packaging and processing materials as well as their concentrations. An investigation was conducted of 56 different samples of PVC food packaging and food processing materials available in the US market using a solvent extraction and GC-MS analysis. Nine different plasticisers including three phthalates, di(2-ethylhexyl) phthalate, diisononyl phthalate and diisodecyl phthalate, were identified in the products tested. The plasticiser concentrations ranged from 1 to 53% depending on the types of food contact materials and the type of plasticiser. Overall, it appears that manufacturers are switching away from phthalates as their primary plasticiser to alternate compounds such as ESBO, ATBC, DEHT, DINCH, DEHA and DINA.

  13. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  14. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.

    Science.gov (United States)

    Zhang, Jianguo; Müller-Plathe, Florian; Leroy, Frédéric

    2015-07-14

    The question of the effect of surface heterogeneities on the evaporation of liquid droplets from solid surfaces is addressed through nonequilibrium molecular dynamics simulations. The mechanism behind contact line pinning which is still unclear is discussed in detail on the nanoscale. Model systems with the Lennard-Jones interaction potential were employed to study the evaporation of nanometer-sized cylindrical droplets from a flat surface. The heterogeneity of the surface was modeled through alternating stripes of equal width but two chemical types. The first type leads to a contact angle of 67°, and the other leads to a contact angle of 115°. The stripe width was varied between 2 and 20 liquid-particle diameters. On the surface with the narrowest stripes, evaporation occurred at constant contact angle as if the surface was homogeneous, with a value of the contact angle as predicted by the regular Cassie-Baxter equation. When the width was increased, the contact angle oscillated during evaporation between two boundaries whose values depend on the stripe width. The evaporation behavior was thus found to be a direct signature of the typical size of the surface heterogeneity domains. The contact angle both at equilibrium and during evaporation could be predicted from a local Cassie-Baxter equation in which the surface composition within a distance of seven fluid-particle diameters around the contact line was considered, confirming the local nature of the interactions that drive the wetting behavior of droplets. More importantly, we propose a nanoscale explanation of pinning during evaporation. Pinning should be interpreted as a drastic slowdown of the contact line dynamics rather than a complete immobilization of it during a transition between two contact angle boundaries.

  15. A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface

    KAUST Repository

    Wu, Jinbo

    2011-05-17

    We report a simple approach for measuring the local contact angle of liquids on a heterogeneous surface consisting of intersected hydrophobic and hydrophilic patch arrays, specifically by employing confocal microscopy and the addition of a very low concentration of Rhodamine-B (RB) (2 × 10 -7 mol/L). Interestingly, RB at that concentration was found to be aggregated at the air-liquid and solid (hydrophobic patch only)-liquid interfaces, which helps us to distinguish the liquid and solid interfaces as well as hydrophobic and hydrophilic patches by their corresponding fluorescent intensities. From the measured local contact angles, the line tension can be easily derived and the value is found to be (-2.06-1.53) × 10-6 J/m. © 2011 American Chemical Society.

  16. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    Energy Technology Data Exchange (ETDEWEB)

    Burcza, Anna, E-mail: anna.burcza@mri.bund.de; Gräf, Volker; Walz, Elke; Greiner, Ralf [Max Rubner-Institute, Department of Food Technology and Bioprocess Engineering (Germany)

    2015-11-15

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated.

  17. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    International Nuclear Information System (INIS)

    Burcza, Anna; Gräf, Volker; Walz, Elke; Greiner, Ralf

    2015-01-01

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated

  18. Surface analysis of CdTe after various pre-contact treatments

    Energy Technology Data Exchange (ETDEWEB)

    Waters, D.M. [Univ. of California, Santa Cruz, CA (United States). Dept. of Physics; Niles, D.; Gessert, T.A.; Albin, D.; Rose, D.H.; Sheldon, P. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors present surface analysis of close-spaced sublimated (CSS) CdTe after various pre-contact treatments. Methods include Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), and grazing-incidence x-ray diffraction (GI-XRD). XPS and GI-XRD analyses of the surface residue left by the solution-based CdCl{sub 2} treatment do not indicate the presence of a significant amount of CdCl{sub 2}. In addition, the solubility properties and relatively high thermal stability of the residue suggest the presence of the oxychloride Cd{sub 3}Cl{sub 2}O{sub 2} rather than CdCl{sub 2} as the major chlorine-containing component. Of the methods tested for their effectiveness in removing the residue, only HNO{sub 3} etches removed all detectable traces of chlorine from the surface.

  19. External Validation of Contact Surface Area as a Predictor of Postoperative Renal Function in Patients Undergoing Partial Nephrectomy.

    Science.gov (United States)

    Haifler, Miki; Ristau, Benjamin T; Higgins, Andrew M; Smaldone, Marc C; Kutikov, Alexander; Zisman, Amnon; Uzzo, Robert G

    2017-09-20

    We sought to externally validate a mathematical formula for tumor contact surface area as a predictor of postoperative renal function in patients undergoing partial nephrectomy for renal cell carcinoma. We queried a prospectively maintained kidney cancer database for patients who underwent partial nephrectomy between 2014 and 2016. Contact surface area was calculated using data obtained from preoperative cross-sectional imaging. The correlation between contact surface area and perioperative variables was examined. The correlation between postoperative renal functional outcomes, contact surface area and the R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines and tumor touches main renal artery or vein) nephrometry score was also assessed. A total of 257 patients who underwent partial nephrectomy had sufficient data to enter the study. Median contact surface area was 14.5 cm 2 (IQR 6.2-36) and the median nephrometry score was 9 (IQR 7-10). Spearman correlation analysis showed that contact surface area correlated with estimated blood loss (r s = 0.42, p contact surface area and nephrometry score were independent predictors of the absolute change in the estimated glomerular filtration rate (each p contact surface area was a better predictor of a greater than 20% postoperative decline in the estimated glomerular filtration rate compared with the nephrometry score (AUC 0.94 vs 0.80). Contact surface area correlated with the change in postoperative renal function after partial nephrectomy. It can be used in conjunction with the nephrometry score to counsel patients about the risk of renal functional decline after partial nephrectomy. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

    KAUST Repository

    Wu, Congmin; Lei, Siulong; Qian, Tiezheng; Wang, Xiaoping

    2009-01-01

    Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.

  1. Adaptive local surface refinement based on LR NURBS and its application to contact

    Science.gov (United States)

    Zimmermann, Christopher; Sauer, Roger A.

    2017-12-01

    A novel adaptive local surface refinement technique based on Locally Refined Non-Uniform Rational B-Splines (LR NURBS) is presented. LR NURBS can model complex geometries exactly and are the rational extension of LR B-splines. The local representation of the parameter space overcomes the drawback of non-existent local refinement in standard NURBS-based isogeometric analysis. For a convenient embedding into general finite element codes, the Bézier extraction operator for LR NURBS is formulated. An automatic remeshing technique is presented that allows adaptive local refinement and coarsening of LR NURBS. In this work, LR NURBS are applied to contact computations of 3D solids and membranes. For solids, LR NURBS-enriched finite elements are used to discretize the contact surfaces with LR NURBS finite elements, while the rest of the body is discretized by linear Lagrange finite elements. For membranes, the entire surface is discretized by LR NURBS. Various numerical examples are shown, and they demonstrate the benefit of using LR NURBS: Compared to uniform refinement, LR NURBS can achieve high accuracy at lower computational cost.

  2. Aberration changes of the corneal anterior surface following discontinued use of rigid gas permeable contact lenses

    Directory of Open Access Journals (Sweden)

    Shi-Qi Dong

    2013-04-01

    Full Text Available AIM: To record aberrations with a corneal topographic device on the anterior surface of the cornea at different time-points prior to wearing and following discontinued use of rigid gas permeable (RGP contact lenses. The effect of wearing RGP on the anterior surface of the cornea was discussed to provide guidance for clinical refractive error correction. METHODS: The study objects were 24 eyes from 24 patients. All patients underwent identical examination procedures prior to lens use, as well as afterwards, including slit-lamp examination, non-contact tonometer measurement, computer optometry and corneal curvature measurement, subjective refraction test, and corneal topography analysis. The patients wore contact lenses everyday for 1 month and then discontinued. Corneal topographies were recorded at certain time points of 30 minutes, 1 day, 3, 7 and 14 days following use. RESULTS: Total corneal aberration at each time point following discontinued use of RGP contact lenses was less than the time point prior to use. Detailed results were as follows:root mean square (RMS (pre=(1.438±0.328μm, RMS (30 minutes=(1.076±0.355μm, RMS (1 day=(1.362±0.402μm, RMS (3 days=(1.373±0.398μm, RMS (7 days=(1.387±0.415μm, and RMS (14 days=(1.430±0.423μm. Results showed that at 30 minutes after discontinued use of RGP contact lenses, almost all 2nd- and 3rd-order aberrations change. Quadrafoil Z10 and spherical Z12 of the 4th-order were also changed. Alterations to Z5, Z6, and Z12 at 1 day after discontinued use were significant differences compared with the time period prior to RGP use:Z5 and Z6 decreased, and Z12 increased slightly. Z5 and Z6 remained decreased at 3 days after discontinued use, but Z9 and Z10 continued to increase and Z12 returned to levels prior to RGP use. At 14 days after discontinued use, all aberrations were not significantly different from the values prior to use. CONCLUSION: The use RGP contact lenses greatly reduced total

  3. A Mathematical and Numerically Integrable Modeling of 3D Object Grasping under Rolling Contacts between Smooth Surfaces

    Directory of Open Access Journals (Sweden)

    Suguru Arimoto

    2011-01-01

    Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.

  4. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    Science.gov (United States)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  5. PFAS in paper and board for food contact - options for risk management of poly- and perfluorinated substances

    DEFF Research Database (Denmark)

    Trier, Xenia; Taxvig, Camilla; Rosenmai, Anna Kjerstine

    Poly- and perfluorinated alkyl substances (PFAS) are used in paper and board food contact materials (FCMs) and they have been found to be highly persistent, bioaccumulative and toxic. The purpose of the Nordic workshop and of this report is to:* create an overview of the use of PFAS in FCMs...... for analysing and regulating the substances are available* discuss the possibility and structure of national regulations or Nordic recommendations for PFAS in FCMs of paper and board. Risk management to reduce the total content of organically bound fluorine in paper and board FCMs is supported. The given report...... is published in continuation of a Nordic workshop on January 28th -29th 2015 on poly- and perfluorinated substances (PFAS) in food contact materials. Representatives from EU MS countries, US FDA, Canada and China, as well as manufacturers, retailers, compliance testing laboratories and academia were present...

  6. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.

    Science.gov (United States)

    Yi, Jun; Cheng, Jinping

    2017-07-01

    The growing use of silver nanoparticles (AgNPs) has created concerns about its potential impacts on natural microbial communities. In this study, the physicochemical properties of AgNPs and its toxicity on natural bacteria Bacillus subtilis (B. subtilis) were investigated in aqueous conditions. The characterization data showed that AgNPs highly aggregated in aqueous conditions, and the hydrodynamic diameter of AgNPs in aqueous conditions was larger than its primary size. The studied AgNPs was less toxic to B. subtilis in estuarine water as compared to that in Milli-Q water and artificial seawater, which might be due to the observed enhanced aggregation of AgNPs in estuarine water. The toxicity of AgNPs to B. subtilis was greatly reduced when their surface contact was blocked by a dialysis membrane. Scanning electron microscope images showed that exposure contact to AgNPs resulted in damage of the microbial cell wall and enhanced formation of fibrillar structures. These results suggest that particle-cell contact is largely responsible for the observed toxicity of AgNPs in B. subtilis. This study can help to understand the potential impacts of AgNPs to natural microbes, especially in the complex aquatic environments.

  7. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    Science.gov (United States)

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  8. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  9. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  10. Numerical Study for a Large Volume Droplet on the Dual-rough Surface: Apparent Contact Angle, Contact Angle Hysteresis and Transition Barrier.

    Science.gov (United States)

    Dong, Jian; Jin, Yanli; Dong, He; Liu, Jiawei; Ye, Senbin

    2018-06-14

    The profile, apparent contact angle (ACA), contact angle hysteresis (CAH) and wetting state transmission energy barrier (WSTEB) are important static and dynamic properties of a large volume droplet on the hierarchical surface. Understanding them can provide us with important insights to functional surfaces and promote the application in corresponding areas. In this paper, we established three theoretical models (Model 1, Model 2 and Model 3) and corresponding numerical methods, which were obtained by the free energy minimization and the nonlinear optimization algorithm, to predict the profile, ACA, CAH and WSTEB of a large volume droplet on the horizontal regular dual-rough surface. In consideration of the gravity, the energy barrier on the contact circle, the dual heterogenous structures and their roughness on the surface, the models are more universal and accurate than previous models. It showed that the predictions of the models were in good agreement with the results from the experiment or literature. The models are promising to become novel design approaches of functional surfaces, which are frequently applied in microfluidic chips, water self-catchment system and dropwise condensation heat transfer system.

  11. Non-contact adhesion to self-affine surfaces: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Maxim A., E-mail: makeev@umich.edu

    2013-11-22

    Strength of adhesion between materials is known to be strongly influenced by interface irregularities. In this work, I devise a perturbative approach to describe the effect of self-affine roughness on non-contact adhesive interactions. The hierarchy of the obtained analytical solutions is the following. First, analytical formulae are deduced to describe roughness corrections to the van der Waals interaction energies between a hemi-space adherend, bounded by a self-affine surface, and a point-like adherent. Second, the problem of two hemi-spaces, one of which has a planar surface, and the other is bounded by a self-affine surface, is solved analytically. In the latter case, a numerical analysis is performed to delineate the behavior of the roughness corrections as a function of the parameters, characterizing self-affine fractal surface roughness. The problem of two hemi-spaces, both bounded by self-affine fractal surfaces, is also addressed in this work. The model's predictions are compared with previously reported theoretical results and available experimental data.

  12. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Laura Aulbach

    2017-03-01

    Full Text Available The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  13. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces

    Science.gov (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong

    2015-03-01

    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  14. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Pomatto, Valentina; Cottone, Erika; Cocci, Paolo; Mozzicafreddo, Matteo; Mosconi, Gilberto; Nelson, Erik Russel; Palermo, Francesco Alessandro; Bovolin, Patrizia

    2018-04-01

    Recent studies suggest that exposure to some plasticizers, such as Bisphenol A (BPA), play a role in endocrine/metabolic dispruption and can affect lipid accumulation in adipocytes. Here, we investigated the adipogenic activity and nuclear receptor interactions of four plasticizers approved for the manufacturing of food-contact materials (FCMs) and currently considered safer alternatives. Differentiating 3T3-L1 mouse preadipocytes were exposed to scalar concentrations (0.01-25 μM) of DiNP (Di-iso-nonyl-phthalate), DiDP (Di-iso-decyl-phthalate), DEGDB (Diethylene glycol dibenzoate), or TMCP (Tri-m-cresyl phosphate). Rosiglitazone, a well-known pro-adipogenic peroxisome proliferator activated receptor gamma (PPARγ) agonist, and the plasticizer BPA were included as reference compounds. All concentrations of plasticizers were able to enhance lipid accumulation, with TMCP being the most effective one. Accordingly, when comparing in silico the ligand binding efficiencies to the nuclear receptors PPARγ and retinoid-X-receptor-alpha (RXRα), TMPC displayed the highest affinity to both receptors. Differently from BPA, the four plasticizers were most effective in enhancing lipid accumulation when added in the mid-late phase of differentiation, thus suggesting the involvement of different intracellular signalling pathways. In line with this, TMCP, DiDP, DiNP and DEGDB were able to activate PPARγ in transient transfection assays, while previous studies demonstrated that BPA acts mainly through other nuclear receptors. qRT-PCR studies showed that all plasticizers were able to increase the expression of CCAAT/enhancer binding protein β (Cebpβ) in the early steps of adipogenesis, and the adipogenesis master gene Pparγ2 in the middle phase, with very similar efficacy to that of Rosiglitazone. In addition, TMCP was able to modulate the expression of both Fatty Acid Binding Protein 4/Adipocyte Protein 2 (Fabp4/Ap2) and Lipoprotein Lipase (Lpl) transcripts in the late phase

  15. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan; Lubineau, Gilles; Alfano, Marco Francesco; Buttner, Ulrich

    2016-01-01

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a

  16. Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching.

    Science.gov (United States)

    Neubauer, Nicole; Scifo, Lorette; Navratilova, Jana; Gondikas, Andreas; Mackevica, Aiga; Borschneck, Daniel; Chaurand, Perrine; Vidal, Vladimir; Rose, Jerome; von der Kammer, Frank; Wohlleben, Wendel

    2017-10-17

    The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined. Standardized protocols/methods for release sampling, detection, and characterization of release rate and form were applied: Transformation of the bulk material was analyzed by Scanning Electron Microscopy (SEM), X-ray-tomography and Fourier-Transform Infrared spectroscopy (FTIR); releases were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), single-particle-ICP-MS (sp-ICP-MS), Transmission Electron Microscopy (TEM), Analytical Ultracentrifugation (AUC), and UV/Vis spectroscopy. In all scenarios, the detectable particulate releases were attributed primarily to contaminations from handling and machining of the plastics, and were not identified with the pigments, although the contamination of 4 mg/kg (Fe) was dwarfed by the intentional content of 5800 mg/kg (Fe as Fe 2 O 3 pigment). We observed modulations (which were at least partially preventable by UV stabilizers) when comparing as-produced and aged nanocomposites, but no significant increase of releases. Release of pigments was negligible within the experimental error for all investigated scenarios, with upper limits of 10 mg/m 2 or 1600 particles/mL. This is the first holistic confirmation that pigment nanomaterials remain strongly contained in a plastic that has low diffusion and high persistence such as the polyolefin High Density Polyethylene (HDPE).

  17. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

    Science.gov (United States)

    Yu, Ying-Song; Xia, Xue-Lian; Zheng, Xu; Huang, Xianfu; Zhou, Jin-Zhi

    2017-09-01

    In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.

  18. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Directory of Open Access Journals (Sweden)

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  19. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    Science.gov (United States)

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  20. Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Groll, Nickolas; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Zasadzinksi, John F. [Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States)

    2015-09-15

    We describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T{sub C}) and density of states over large surface areas with size up to mm{sup 2}. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that can be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. The point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.

  1. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  2. Study on the surface of fluorosilicone acrylate RGP contact lens treated by low-temperature nitrogen plasma

    International Nuclear Information System (INIS)

    Ren Li; Yin Shiheng; Zhao Lianna; Wang Yingjun; Chen Hao; Qu Jia

    2008-01-01

    In order to improve the surface hydrophilicity of fluorosilicone acrylate rigid gas permeable (RGP) contact lens, low temperature nitrogen plasma was used to modify the lens surface. Effects of plasma conditions on the surface structures and properties were investigated. Results indicated that the surface hydrophilicity of RGP contact lens was significantly improved after treatment. X-ray photoelectron spectroscopy (XPS) results showed that the nitrogen element was successfully incorporated into the surface. Furthermore, some new bonds such as N-C=O, F - and silicate were formed on the lens surface after nitrogen plasma treatment, which could result in the improvement of the surface hydrophilicity. Scanning electronic microscope (SEM) results indicated that nitrogen plasma with moderate power could make the surface smoother in some degree, while plasma with higher power could etch the surface

  3. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  4. Methods for Recovering Microorganisms from Solid Surfaces Used in the Food Industry: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Perrine Gay-Perret

    2013-11-01

    Full Text Available Various types of surfaces are used today in the food industry, such as plastic, stainless steel, glass, and wood. These surfaces are subject to contamination by microorganisms responsible for the cross-contamination of food by contact with working surfaces. The HACCP-based processes are now widely used for the control of microbial hazards to prevent food safety issues. This preventive approach has resulted in the use of microbiological analyses of surfaces as one of the tools to control the hygiene of products. A method of recovering microorganisms from different solid surfaces is necessary as a means of health prevention. No regulation exists for surface microbial contamination, but food companies tend to establish technical specifications to add value to their products and limit contamination risks. The aim of this review is to present the most frequently used methods: swabbing, friction or scrubbing, printing, rinsing or immersion, sonication and scraping or grinding and describe their advantages and drawbacks. The choice of the recovery method has to be suitable for the type and size of the surface tested for microbiological analysis. Today, quick and cheap methods have to be standardized and especially easy to perform in the field.

  5. High-throughput dietary exposure predictions for chemical migrants from food contact substances for use in chemical prioritization.

    Science.gov (United States)

    Biryol, Derya; Nicolas, Chantel I; Wambaugh, John; Phillips, Katherine; Isaacs, Kristin

    2017-11-01

    Under the ExpoCast program, United States Environmental Protection Agency (EPA) researchers have developed a high-throughput (HT) framework for estimating aggregate exposures to chemicals from multiple pathways to support rapid prioritization of chemicals. Here, we present methods to estimate HT exposures to chemicals migrating into food from food contact substances (FCS). These methods consisted of combining an empirical model of chemical migration with estimates of daily population food intakes derived from food diaries from the National Health and Nutrition Examination Survey (NHANES). A linear regression model for migration at equilibrium was developed by fitting available migration measurements as a function of temperature, food type (i.e., fatty, aqueous, acidic, alcoholic), initial chemical concentration in the FCS (C 0 ) and chemical properties. The most predictive variables in the resulting model were C 0 , molecular weight, log K ow , and food type (R 2 =0.71, pchemicals identified via publicly-available data sources as being present in polymer FCSs were predicted for 12 food groups (combinations of 3 storage temperatures and food type). The model was parameterized with screening-level estimates of C 0 based on the functional role of chemicals in FCS. By combining these concentrations with daily intakes for food groups derived from NHANES, population ingestion exposures of chemical in mg/kg-bodyweight/day (mg/kg-BW/day) were estimated. Calibrated aggregate exposures were estimated for 1931 chemicals by fitting HT FCS and consumer product exposures to exposures inferred from NHANES biomonitoring (R 2 =0.61, pchemicals), they can provide critical refinement to aggregate exposure predictions used in risk-based chemical priority-setting. Published by Elsevier Ltd.

  6. Acrylic acid surface-modified contact lens for the culture of limbal stem cells.

    Science.gov (United States)

    Zhang, Hong; Brown, Karl David; Lowe, Sue Peng; Liu, Guei-Sheung; Steele, David; Abberton, Keren; Daniell, Mark

    2014-06-01

    Surface treatment to a biomaterial surface has been shown to modify and help cell growth. Our aim was to determine the best surface-modified system for the treatment of limbal stem cell deficiency (LSCD), which would facilitate expansion of autologous limbal epithelial cells, while maintaining cultivated epithelial cells in a less differentiated state. Commercially available contact lenses (CLs) were variously surface modified by plasma polymerization with ratios of acrylic acid to octadiene tested at 100% acrylic acid, 50:50% acrylic acid:octadiene, and 100% octadiene to produce high-, mid-, and no-acid. X-ray photoelectron spectroscopy was used to analyze the chemical composition of the plasma polymer deposited layer. Limbal explants cultured on high acid-modified CLs outgrew more cells. Immunofluorescence and RT2-PCR array results indicated that a higher acrylic acid content can also help maintain progenitor cells during ex vivo expansion of epithelial cells. This study provides the first evidence for the ability of high acid-modified CLs to preserve the stemness and to be used as substrates for the culture of limbal cells in the treatment of LSCD.

  7. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    International Nuclear Information System (INIS)

    Mendonca, Gustavo; Baccelli Silveira Mendonca, Daniela; Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto; Golin, Alexsander Luiz; Aragao, Francisco J.L.; Cooper, Lyndon F.

    2011-01-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p ≤ 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 ± 2.5, 11.3 ± 2.4, 11.1 ± 3.5, 9.7 ± 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p 2 or ZrO 2 applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: → Nanostructured surfaces using a sol-gel technique coated cpTi with TiO 2 or ZrO 2 . → Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. → Nanofeatures improved the differentiation of rat MSCs into osteoblasts. → Nanofeatures improved increased bone-to-implant contact and removal torque values. → TiO 2 or ZrO 2 nanofeatures improved the biological response of machined titanium.

  8. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Gustavo, E-mail: gustavo_mendonca@dentistry.unc.edu [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Universidade Catolica de Brasilia, Curso de Odontologia, Taguatinga/DF (Brazil); Baccelli Silveira Mendonca, Daniela [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil) and Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto [Departmento de Quimica, Universidade Federal de Sao Carlos-UFSCAR, Rod. Washington Luiz, 13565-905 Sao Carlos, SP (Brazil); Golin, Alexsander Luiz [Departmento de Engenharia Mecanica, Faculdade de Engenharia Mecanica, Pontificia Universidade Catolica de Curitiba, Curitiba, PR (Brazil); Aragao, Francisco J.L. [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Embrapa Recursos Geneticos e Biotecnologia, Laboratorio de Introducao e Expressao de Genes, PqEB W5 Norte, 70770-900, Brasilia, DF (Brazil); Cooper, Lyndon F., E-mail: lyndon_cooper@dentistry.unc.edu [Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States)

    2011-12-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p {<=} 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 {+-} 2.5, 11.3 {+-} 2.4, 11.1 {+-} 3.5, 9.7 {+-} 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p < 0.05). Nanostructured topographic features composed of TiO{sub 2} or ZrO{sub 2} applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: {yields} Nanostructured surfaces using a sol-gel technique coated cpTi with TiO{sub 2} or ZrO{sub 2}. {yields} Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. {yields} Nanofeatures improved the differentiation of rat MSCs into osteoblasts. {yields} Nanofeatures improved increased bone-to-implant contact and

  9. 21 CFR 170.39 - Threshold of regulation for substances used in food-contact articles.

    Science.gov (United States)

    2010-04-01

    ...-case (time/temperature) intended use conditions utilizing appropriate food simulating solvents; (ii... Paint Branch Pkwy., College Park, MD 20740. (e) The Food and Drug Administration will inform the... display at the Division of Dockets Management. This list will include the name of the company that made...

  10. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  11. Application of dielectric surface barrier discharge for food storage

    Directory of Open Access Journals (Sweden)

    Yassine BELLEBNA

    2015-12-01

    Full Text Available Ozone (O3 is a powerful oxidizer and has much higher disinfection potential than chlorine and other disinfectants. Ozone finds its application mainly in water treatment and air purification Dielectric barrier discharge (DBD method has proved to be the best method to produce ozone. Dried air or oxygen is forced to pass through a 1-2 mm gap. The aim of this study was to show that disinfection system using ozone generated by dielectric barrier discharge (DBD is an effective alternative to be used in food industry and ensures a safe quality of air for optimum preservation of fruits and vegetables. The DBDs are specific kind of discharges because one (or sometimes both electrodes is covered by a dielectric material, thereby preventing the discharge to move towards electrical breakdown. A succession of microdischarges occurs rapidly; their "lifetime" is in the range of a few nanoseconds. One of their most important applications is the production of ozone for air treatment, used mainly in the area of food industry, for extending the storage life of foods. After the achievement of a surface DBD reactor of cylindrical shape and its electrical characterization, it was then used as an ozone generator for air disinfection. Obtained results have shown that this reactor used as an ozone generator is effective for disinfection of air by removing viruses, bacteria and pathogens, causing the slowdown of the ripening process of fruits and vegetables.

  12. Porous Silicon Hydrogen Sensor at Room Temperature: The Effect of Surface Modification and Noble Metal Contacts

    Directory of Open Access Journals (Sweden)

    Jayita KANUNGO

    2009-04-01

    Full Text Available Porous silicon (PS was fabricated by anodization of p-type crystalline silicon of resistivity 2-5 Ω cm. After formation, the PS surface was modified by the solution containing noble metal like Pd. Pd-Ag catalytic contact electrodes were deposited on porous silicon and on p-Silicon to fabricate Pd-Ag/PS/p-Si/Pd-Ag sensor structure to carry out the hydrogen sensing experiments. The Sensor was exposed to 1% hydrogen in nitrogen as carrier gas at room temperature (270C. Pd modified sensor showed minimum fluctuations and consistent performance with 86% response, response time and recovery time of 24 sec and 264 sec respectively. The stability experiments were studied for both unmodified and Pd modified sensor structures for a period of about 24 hours and the modified sensors showed excellent durability with no drift in response behavior.

  13. Exposure to lead and cadmium released from ceramics and glassware intended to come into contact with food.

    Science.gov (United States)

    Rebeniak, Małgorzata; Wojciechowska-Mazurek, Maria; Mania, Monika; Szynal, Tomasz; Strzelecka, Agnieszka; Starska, Krystyna

    2014-01-01

    The dietary intake of harmful elements, particularly lead and cadmium constitutes a health threat and essential measures should be undertaken to reduce consumer exposure. The latest risk assessments by the European Food Safety Authority (EFSA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA) have indicated that the Provisional Tolerable Weekly Intake (PTWI) for lead and cadmium do not ensure health safety and their review had to be undertaken. Migration from ceramics and glassware intended for food contact is an important source of lead and cadmium intake. To study the release of lead and cadmium from ceramics and glassware (including decorated products) intended for food contact that are available on the Polish market and to assess the resulting health risk to the consumer. Ceramics and glassware (mainly decorated) were sampled from the Polish market during 2010- 2012 throughout the country by staff of the Sanitary-Epidemiological Stations in accordance with monitoring procedures and guidelines designed by the National Institute of Public Health-National Institute of Hygiene. Migration of lead and cadmium was measured by incubating the samples with 4% acetic acid for 24 hours at a temperature of 22±2ºC in the dark. Flame Atomic Absorption Spectrometry (FAAS) was used to measure these elements in food simulant according to a validated and accredited method (PN-EN ISO/IEC 17025). 1273 samples of ceramics and glass wares were analysed in 2010-2012. Lead and cadmium release were usually found to be below analytical detection limits. Permissible migration limits (as prescribed by the legislation) of these metals were rarely exceeded and were reported mainly in articles imported from outside the EU. Two imported and decorated ceramic flat plates released lead at 0.9 and 11.9 mg/dm2 (limit 0.8 mg/dm2) and 5 imported deep plates gave migration values of 4.7 mg/L, 4.9 mg/L, 5.6 mg/L, 6.1 mg/L, 8.6 mg/L (limit 4.0 mg/L). Lead migrations from ceramic ware rims

  14. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    Science.gov (United States)

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  15. Survey of the occurrence of 2,5-Di-tert-butylhydroquinone in food contact materials

    DEFF Research Database (Denmark)

    intended for the consumers identified in the initial survey under the Danish EPA’s LOUS-review (Environmental Project no. 1477). Based on literature search, contact to producers, importers and branches, the use of DTBHQ in these product categories evaluated to be scarce, with only one cosmetic product...

  16. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  17. Experimental Study of Static Contact-angle on Peak-like Microstructural Surfaces Produced by PIII Technology

    Science.gov (United States)

    Yang, Runhua; Yang, Lixin

    2018-06-01

    Plasma immersion ion implantation (PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases (SF6/O2). The micro/nano structures on the surfaces of the sample were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed that with increasing ratio of mixed gases (SF6/O2), the height of the micro/nano structures first increased and then decreased. Contact-angle measurements indicated that the surfaces' micro/nano structures have an obvious effect on the contact-angle, and could cause a change in surface wettability. The theoretical analysis of contact-angle showed that the Wenzel and Cassie theories cannot predict the contact-angle of a roughened surface accurately, and should be corrected for practical applications using an actual model. Moreover, the contact-angle first increased and then decreased with increasing ratio of mixed gases (SF6/O2), which is in accordance with the change of the height of micro/nano structures.

  18. Standard test method for damage to contacting solid surfaces under fretting conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  19. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.

    Science.gov (United States)

    Pawaskar, Sainath Shrikant; Fisher, John; Jin, Zhongmin

    2010-03-01

    Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.

  20. Bacteria hold their breath upon surface contact as shown in a strain of Escherichia coli, using dispersed surfaces and flow cytometry analysis.

    Directory of Open Access Journals (Sweden)

    Jing Geng

    Full Text Available Bacteria are ubiquitously distributed throughout our planet, mainly in the form of adherent communities in which cells exhibit specific traits. The mechanisms underpinning the physiological shift in surface-attached bacteria are complex, multifactorial and still partially unclear. Here we address the question of the existence of early surface sensing through implementation of a functional response to initial surface contact. For this purpose, we developed a new experimental approach enabling simultaneous monitoring of free-floating, aggregated and adherent cells via the use of dispersed surfaces as adhesive substrates and flow cytometry analysis. With this system, we analyzed, in parallel, the constitutively expressed GFP content of the cells and production of a respiration probe--a fluorescent reduced tetrazolium ion. In an Escherichia coli strain constitutively expressing curli, a major E. coli adhesin, we found that single cell surface contact induced a decrease in the cell respiration level compared to free-floating single cells present in the same sample. Moreover, we show here that cell surface contact with an artificial surface and with another cell caused reduction in respiration. We confirm the existence of a bacterial cell "sense of touch" ensuring early signalling of surface contact formation through respiration down modulation.

  1. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.

    Science.gov (United States)

    Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice

    2018-08-01

    We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Segmental equivalent temperature determined by means of a thermal manikin: A method for correcting errors due to incomplete contact of the body with a surface

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Janieas, N.R.D.J.; Silva, M.C.G.

    2004-01-01

    of the thermal manikins used at present is not as flexible as the human body and is divided into body segments with a surface area that differs from that of the human body in contact with a surface. The area of the segment in contact with a surface will depend on the shape and flexibility of the surface...

  3. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    International Nuclear Information System (INIS)

    Akbi, Mohamed; Bouchou, Aïssa; Zouache, Noureddine

    2014-01-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10 −7 mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  4. [Determination of bisphenol A from toys and food contact materials by derivatization and gas chromatography-mass spectrometry].

    Science.gov (United States)

    Gao, Yonggang; Zhang, Yanyan; Gao, Jianguo; Zhang, Huiling; Zheng, Lisha; Chen, Jing

    2012-10-01

    A method was developed for the determination of bisphenol A (BPA) in toys and food contact materials. The BPA was extracted with Soxhlet extraction method from the sample and reacted with acetic anhydride. The final product was determined by gas chromatography-mass spectrometry (GC-MS). To achieve the optimum derivatization performance, the derivatization time and dosage of derivatization reagent etc. were investigated. Under the optimized experimental conditions, the final product was stable and the peak shape was good. The linearity of the derivative was good in the range of 0.05 to 50 mg/L with the correlation coefficient (r2) above 0.999. The recoveries ranged from 80% to 93% at the spiked levels of 0.05, 1.00, 10.00 mg/kg with the relative standard deviations (RSDs) less than 3.7%. The limit of detection (S/N = 3) was 10 microg/kg. The method is accurate and has high recovery. The method is suitable for the inspection of bisphenol A in toys and food contact materials.

  5. In vitro genotoxicity assessment of MTES, GPTES and TEOS, three precursors intended for use in food contact coatings.

    Science.gov (United States)

    Lionti, Krystelle; Séverin, Isabelle; Dahbi, Laurence; Toury, Bérangère; Chagnon, Marie-Christine

    2014-03-01

    Organoalkoxysilanes are precursors that are used increasingly in the synthesis of food contact coatings. To comply with the EU regulation, their potential toxicity must be assessed, and very little information is known. The genotoxicity of three common precursors was studied, namely, tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES) and 3-glycidyloxypropyltriethoxysilane (GPTES). By the Ames test, MTES and TEOS were not mutagenic for bacteria. A significant positive response was observed with GPTES in the TA100 and TA1535 strains. The mutagenic effect was more pronounced in the presence of the exogenous metabolic activation system with an increase of the induction factor (ten-fold higher for the TA1535 strain). In the micronucleus assay performed with a human hepatoma cell line (HepG2 cells), GPTES gave negative results even in the presence of an exogenous activation system. To ascertain the possibility of using this precursor in food contact material, its migration must be monitored according to the coating formulation because migration might result in hazardous human exposure. Copyright © 2014. Published by Elsevier Ltd.

  6. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 309 (FGE.309): Sodium Diacetate

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate sodium diacetate [FL-no: 16.073] in the Flavouring Group Evaluation 309, using the Procedure in Commission Regulation (EC) No 1565/2000. However, although...

  7. Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization

    Science.gov (United States)

    Shu, Andrew Leo

    Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of

  8. Phthalates and food-contact materials: enforcing the 2008 European Union plastics legislation

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Jensen, Lisbeth Krüger

    2010-01-01

    Commission transformed the tolerable daily intakes established by the Authority into legislative limits for phthalates in both plastic and food simulants, while taking exposure from other sources into consideration. These limits have been into force since 1 July 2008. A detailed interpretation...... producers, FCM importers and importers of packed foodstuffs from third-party countries. Products containing phthalates above the current limits were found in several categories of FCM: conveyor belts (six of six), lids from packed foodstuffs in glasses (eight of 28), tubes for liquid foodstuffs (four...... of five) and gloves (five of 14). More than 20% of the samples analysed contained dibutylphthalate (DBP) or di-(2-ethylhexyl)phthalate (DEHP) above the compositional limits of 0.05% and 0.1%, respectively. Analysis of residual phthalates in metal lid gaskets instead of analysis of phthalates in the food...

  9. Harmonizing exposure metrics and methods for sustainability assessments of food contact materials

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Niero, Monia

    2016-01-01

    ) and Cradle to Cradle to support packaging design. Each assessment has distinct context and goals, but can help manage exposure to toxic chemicals and other environmental impacts. Metrics a nd methods to quantify and characterize exposure to potentially toxic chemicals specifically in food packaging are......, however, notably lacking from such assessments. Furthermore, previous case studies demonstrated that sustainable packaging design focuses, such as decreasing greenhouse gas emissions or resource consumption, can increase exposure to toxic chemicals through packaging. Thereby, developing harmonized methods...... for quantifying exposure to chemicals in food packaging is critical to ensure ‘sustainable packages’ do not increase exposure to toxic chemicals. Therefore we developed modelling methods suitable for first-tier risk screening and environmental assessments. The modelling framework was based on the new product...

  10. Investigation of Thermostressed State of Coating Formation at Electric Contact Surfacing of “Shaft” Type Parts

    Directory of Open Access Journals (Sweden)

    Olena V. Berezshnaya

    2016-01-01

    Full Text Available The forming of coating at electric contact surfacing is considered. The mathematical model of the coating formation is developed. The method of numerical recurrent solution of the finite-difference form of static equilibrium conditions of the selected elementary volume of coating is used. This model considers distribution of thermal properties and geometric parameters along the thermal deformation zone during the process of electric contact surfacing by compact material. It is found that the change of value of speed asymmetry factor leads to increasing of the friction coefficient in zone of surfacing. This provides the forming of the coating of higher quality. The limitation of the technological capabilities of equipment for electric contact surfacing is related to the size of recoverable parts and application of high electromechanical powers. The regulation of the speed asymmetry factor allows for expanding the technological capabilities of equipment for electric contact surfacing. The nomograms for determination of the stress on the roller electrode and the finite thickness of the coating as the function of the initial thickness of the compact material and the deformation degree are shown.

  11. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 76, Revision 1 (FGE.76Rev1)

    OpenAIRE

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz; Lund, Pia; Nørby, Karin Kristiane

    2013-01-01

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present opinion concerns a group of 26 sulphur-containing heterocyclic compounds evaluated by the JECFA at the 59th m...

  12. Computational Sensing of Staphylococcus aureus on Contact Lenses Using 3D Imaging of Curved Surfaces and Machine Learning.

    Science.gov (United States)

    Veli, Muhammed; Ozcan, Aydogan

    2018-03-27

    We present a cost-effective and portable platform based on contact lenses for noninvasively detecting Staphylococcus aureus, which is part of the human ocular microbiome and resides on the cornea and conjunctiva. Using S. aureus-specific antibodies and a surface chemistry protocol that is compatible with human tears, contact lenses are designed to specifically capture S. aureus. After the bacteria capture on the lens and right before its imaging, the captured bacteria are tagged with surface-functionalized polystyrene microparticles. These microbeads provide sufficient signal-to-noise ratio for the quantification of the captured bacteria on the contact lens, without any fluorescent labels, by 3D imaging of the curved surface of each lens using only one hologram taken with a lens-free on-chip microscope. After the 3D surface of the contact lens is computationally reconstructed using rotational field transformations and holographic digital focusing, a machine learning algorithm is employed to automatically count the number of beads on the lens surface, revealing the count of the captured bacteria. To demonstrate its proof-of-concept, we created a field-portable and cost-effective holographic microscope, which weighs 77 g, controlled by a laptop. Using daily contact lenses that are spiked with bacteria, we demonstrated that this computational sensing platform provides a detection limit of ∼16 bacteria/μL. This contact-lens-based wearable sensor can be broadly applicable to detect various bacteria, viruses, and analytes in tears using a cost-effective and portable computational imager that might be used even at home by consumers.

  13. Static and kinetic friction force and surface roughness of different archwire-bracket sliding contacts.

    Science.gov (United States)

    Carrion-Vilches, Francisco J; Bermudez, María-Dolores; Fructuoso, Paula

    2015-01-01

    The aim of this study was to determine the static and kinetic friction forces of the contact bracket-archwire with different dental material compositions in order to select those materials with lower resistance to sliding. We carried out sliding friction tests by means of a universal testing machine following an experimental procedure as described in ASTM D1894 standard. We determined the static and kinetic friction forces under dry and lubricating conditions using an artificial saliva solution at 36.5ºC. The bracket-archwire pairs studied were: stainless steel-stainless steel; stainless steel-glass fiber composite; stainless steel-Nitinol 60; sapphire-stainless steel; sapphire-glass fiber composite; and sapphire-Nitinol 60. The best performance is obtained for Nitinol 60 archwire sliding against a stainless steel bracket, both under dry and lubricated conditions. These results are in agreement with the low surface roughness of Nitinol 60 with respect to the glass fiber composite archwire. The results described here contribute to establishing selection criteria for materials for dental archwire-brackets.

  14. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Wang, Zhenxing, E-mail: zxwang@xjtu.edu.cn; Zhou, Zhipeng; Jiang, Yanjun; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-07

    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E{sup −3}, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.

  15. External ocular surface and lens microbiota in contact lens wearers with corneal infiltrates during extended wear of hydrogel lenses.

    Science.gov (United States)

    Willcox, Mark; Sharma, Savitri; Naduvilath, Thomas J; Sankaridurg, Padmaja R; Gopinathan, Usha; Holden, Brien A

    2011-03-01

    To determine whether carriage of microbes on the contact lens or ocular surfaces during extended wear (EW) with soft hydroxyethyl methacrylate (HEMA)-based contact lenses predisposes the wearer to adverse events. Participants (non-contact lens wearers) were enrolled in a clinical study involving wear of HEMA-based hydrogel lenses on a six night EW basis with weekly replacement. Type and number of bacteria colonizing the lower lid margins, upper bulbar conjunctiva, and contact lenses during EW after one night, 1 week, 1 month, and thereafter every 3 months for 3.5 years were determined. The association of bacteria with adverse responses was compared between carriers (defined as having significant microbes cultured from two or more samples with 1 year) and noncarriers, and the strength of the association was estimated using multivariate logistic regression. Carriers of gram-positive bacteria on lenses (particularly coagulase negative staphylococci or Corynebacterium spp.) were approximately three and eight times more likely to develop contact lens-induced peripheral ulcers (CLPUs) and asymptomatic infiltrates (AIs), respectively. Staphylococcus aureus was most frequently isolated from lenses during CLPU. Carriers of gram-negative bacteria on lenses were five times more likely to develop contact lens-induced acute red eye (CLARE). Haemophilus influenzae was isolated most frequently from lenses during CLARE and AI events. Bacterial carriage on contact lenses during EW predisposes the wearer to the development of corneal inflammatory events including CLARE, CLPU, and AI.

  16. Effect of Spreading Time on Contact Angle of Nanofluid on the Surface of Stainless Steel AISI 316 and Zircalloy 4

    Science.gov (United States)

    Prajitno, D. H.; Trisnawan, V.; Syarif, D. G.

    2017-05-01

    The solid surface tension plays an important role in the heat and mass transfer system for heat exchanger equipment. In the nuclear power plant industry, the stainless steel AISI 316 and Zircalloy 4 have been used for long time as structure materials. The purpose of the experimental is to study solid state surface tension behavior by measure contact angle Nano fluid contain nano particle alumina on metal surface of stainless steel AISI 316 and Zircalloy 4 by sessile drop method. The experiment is to measure the static contact angle and drop nano fluid contains nano particle alumina on stainless steel 316 and zircalloy 4 with different spreading time from 1 to 30 minute. It was observed that stainless steel 316 and zircalloy 4 lose their hydrophobic properties with increasing elapsed time during drop of nano fluid on the surface of alloy. As a result the contact angle of nano fluid on surface of metal is decrease with increasing elapsed time. While the magnitude diameter of drop nano fluid and wetting surface is increase with increasing elapsed time on the surface of the stainless steel SS 316 and Zircalloy 4.

  17. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    Science.gov (United States)

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-06-01

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma. © 2017 The Authors.

  18. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  20. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    International Nuclear Information System (INIS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-01-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests. (paper)

  1. Use of nanotechnology in food processing, packaging and safety ...

    African Journals Online (AJOL)

    Use of nanotechnology in food processing, packaging and safety – review. ... application of nanotechnology in food packaging and food contact materials, ... developing active antimicrobial and antifungal surfaces, and sensing as well as ...

  2. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.

    Science.gov (United States)

    Bottiglione, F; Carbone, G

    2015-01-14

    The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.

  3. Influence of wear and overwear on surface properties of etafilcon A contact lenses and adhesion of Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Bruinsma, Gerda M; Rustema-Abbing, Minie; de Vries, Joop; Stegenga, Boudewijn; van der Mei, Henny C.; van der Linden, Matthijs L; Hooymans, Johanna MM; Busscher, Henk J.

    2002-01-01

    PURPOSE. To determine changes in physicochemical surface properties of contact tenses (CLs) during daily wear and effects of lens wear on adhesion of a Pseudomonas aeruginosa strain from a patient with CL-related keratitis. METHODS. Ten new CL wearers used ionic, etafilcon A lenses with 58% water on

  4. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface

    DEFF Research Database (Denmark)

    Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan

    2014-01-01

    Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively...

  5. Contact area calculation between elastic solids bounded by mound rough surfaces

    NARCIS (Netherlands)

    Palasantzas, G

    In this work, we investigate the influence of mound roughness on the contact area between elastic bodies. The mound roughness is described by the r.m.s. roughness amplitude w, the average mound separation Lambda, and the system correlation length xi. In general, the real contact area has a complex

  6. Transfer and Decontamination of S. aureus in Transmission Routes Regarding Hands and Contact Surfaces.

    Directory of Open Access Journals (Sweden)

    Pernilla Arinder

    Full Text Available Hand hygiene, cleaning and disinfection are pre-requirements for hygiene management in hospital settings and the food industry. In order to facilitate risk management, different contamination scenarios and interventions need to be evaluated. In the present study data on transfer rates and reductions of Staphylococcus aureus were provided in an experimental set-up using artificial skin. Using this methodology, test persons were not exposed with pathogenic bacteria. An exposure assessment model was developed and applied to evaluate different contamination routes and hygiene interventions. The transfer rates of S. aureus from inoculated VITRO-SKIN® to fomites were calculated from blotting series. The VITRO-SKIN® was more prone to spread bacteria than fomites. When different surfaces were cleaned, the reduction of S. aureus varied between <1 and 7 log CFU. It could not be concluded that a certain coupon material, cleaning agent, cleaning wipe, soiling or humidity consistently resulted in a high or low reduction of S. aureus. The reduction of S. aureus and E. coli during hand washing was evaluated on artificial skin, VITRO-SKIN®. The reduction of E. coli on VITRO-SKIN® was similar to the log reduction obtained when washing human hands. The S. aureus count on a human hand was both calculated in different scenarios describing different contamination routes starting from a contaminated hand using the exposure assessment model, and measured on an experimental setup using VITRO-SKIN® for validation. A linear relationship was obtained between the analysed level of S. aureus and the calculated level. However, the calculated levels of S. aureus on the VITRO-SKIN® in the scenarios were 1-1.5 log lower than the analysed level. One of the scenarios was used to study the effect of interventions like hand washing and cleaning of surfaces.

  7. Pinus sylvestris L. needle surface wettability parameters as indicators of atmospheric environment pollution impacts: Novel contact angle hysteresis methodology

    Science.gov (United States)

    Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz

    2014-02-01

    An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p biological systems.

  8. Genotoxicity testing approaches for the safety assessment of substances used in food contact materials prior to their authorization in the European Union.

    Science.gov (United States)

    Bolognesi, Claudia; Castoldi, Anna F; Crebelli, Riccardo; Barthélémy, Eric; Maurici, Daniela; Wölfle, Detlef; Volk, Katharina; Castle, Laurence

    2017-06-01

    Food contact materials are all materials and articles intended to come directly or indirectly into contact with food. Before being included in the positive European "Union list" of authorized substances (monomers, other starting substances and additives) for plastic food contact materials, the European Food Safety Authority (EFSA) must assess their safety "in use". If relevant for risk, the safety of the main impurities, reaction and degradation products originating from the manufacturing process is also evaluated. Information on genotoxicity is always required irrespective of the extent of migration and the resulting human exposure, in view of the theoretical lack of threshold for genotoxic events. The 2008 EFSA approach, requiring the testing of food contact materials in three in vitro mutagenicity tests, though still acceptable, is now superseded by the 2011 EFSA Scientific Committee's recommendation for only two complementary tests including a bacterial gene mutation test and an in vitro micronucleus test, to detect two main genetic endpoints (i.e., gene mutations and chromosome aberrations). Follow-up of in vitro positive results depends on the type of genetic effect and on the substance's systemic availability. In this study, we provide an analysis of the data on genotoxicity testing gathered by EFSA on food contact materials for the period 1992-2015. We also illustrate practical examples of the approaches that EFSA took when evaluating "non standard" food contact chemicals (e.g., polymeric additives, oligomer or other reaction mixtures, and nanosubstances). Additionally, EFSA's experience gained from using non testing methods and/or future possibilities in this area are discussed. Environ. Mol. Mutagen. 58:361-374, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Exploring the chemistry of complex samples by tentative identification and semi-quantification: a food contact material case

    DEFF Research Database (Denmark)

    Pieke, Eelco Nicolaas; Smedsgaard, Jørn; Granby, Kit

    2017-01-01

    to retrieve the most likely chemical match from a structure database. In addition, TOF-only data is used to estimate analyte concentration via semi-quantification. The method is demonstrated in recycled paper food contact material (FCM). Here, 585 chromatographic peaks were discovered, of which 117 were...... data. Overall, the described method is a valuable chemical exploration tool for non-identified substances, but also may be used as a preliminary prioritization tool for substances expected to have the highest health impact, for example in FCMs....... elucidation of a vast number of unknowns, of which only a fraction may be relevant. Here, we present an exploration and prioritization approach based on high resolution mass spectrometry. The method uses algorithm-based precursor/product-ion correlations on Quadrupole-Time of Flight (Q-TOF) MS/MS data...

  10. Inspection Method for Contact Condition of Soil on the Surface of Underground Pipe Utilizing Resonance of Transverse Lamb Wave

    Science.gov (United States)

    Tanigawa, Hiroshi; Seno, Hiroaki; Watanabe, Yoshiaki; Nakajima, Koshiro

    1998-05-01

    A nondestructive inspection method to estimate the contact condition of soil on the surface of an underground pipe, utilizing the resonance of a transverse Lamb wave circulating along the pipe wall is proposed.The Q factor of the resonance is considered and measured under some contact conditions by sweeping the vibrating frequency in a 150-mm-inner diameter Fiberglass Reinforced Plastic Mortar (FRPM) pipe. It is confirmed that the Q factor shows a clear response to the change in the contact conditions. For example, the Q factor is 8.4 when the pipe is in ideal contact with the soil plane and goes up to 19.2 when a 100-mm-diameter void is located at the contact surface of the soil.The spatial resolution of the proposed inspection method is also measured by moving the sensing point along the direction of laying the length of the pipe into a 85-mm-diameter void. The resolution of the proposed method is estimated at about 50 mm.

  11. EFSA Panel on Biological Hazards (BIOHAZ) and Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on the evaluation of the safety and efficacy of Cecure® for the removal of microbial surface contamination of raw poultry products

    DEFF Research Database (Denmark)

    Hald, Tine

    into account the estimated margins of safety and the conservative exposure estimates used to assess CPC exposure from consumption of poultry carcasses, there are no safety concerns for humans from the proposed use of Cecure®. Based on the information provided by the applicant, both Cecure® and CPC were found......, rate of carcass processing, and time of exposure. The data about the potential emergence and selection of isolates with reduced susceptibility to biocides and/or resistance to therapeutic antimicrobials linked to the use of CPC under the conditions of application, in the recycled solution...... and in the wastewater, were not provided or not considered sufficient for the assessment. Based on the available limited data, the intended use of CPC in poultry slaughterhouses would pose risks for the environmental compartments surface water, sediment and soil. No risks for the function of sewage treatment plants...

  12. Tribological Behavior of Oil-Lubricated Laser Textured Steel Surfaces in Conformal Flat and Non-Conformal Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchenko, A. M. [Inst. for Problems of Materials Science, Dept. 7, 3 Krzhizhanovsky Street, Kyiv 03142, UA (Corresponding author), e-mail: andrii.kovalchenko@gatech.edu; Erdemir, A. [Argonne National Lab., Energy Systems Division, 9700 South Cass Avenue, Argonne, IL 60439 US; Ajayi, O. O. [Argonne National Lab., Energy Systems Division, 9700 South Cass Avenue, Argonne, IL 60439 US; Etsion, I. [Technion-Israel Inst. of Technology, Dept. of Mechanical Engineering, Haifa 32000, IL

    2017-01-30

    Changing the surface texture of sliding surfaces is an effective way to manipulate friction and wear of lubricated surfaces. Having realized its potential, we have done very extensive studies on the effects of laser surface texturing (LST, which involves the creation of an array of microdimples on a surface) on friction and wear behavior of oil-lubricated steel surfaces in the early 2000s. In this paper, we reviewed some of our research accomplishments and assessed future directions of the laser texturing field in many diverse industrial applications. Our studies specifically addressed the impact of laser texturing on friction and wear of both the flat conformal and initial non-conformal point contact configurations using a pin-on-disk test rig under fully-flooded synthetic oil lubricants with different viscosities. Electrical resistance measurement between pin and LST disks was also used to determine the operating lubrication regimes in relation to friction. In conformal contact, we confirmed that LST could significantly expand the operating conditions for hydrodynamic lubrication to significantly much higher loads and slower speeds. In particular, with LST and higher viscosity oils, the low-friction full hydrodynamic regime was shifted to the far left in the Stribeck diagram. Overall, the beneficial effects of laser surface texturing were more pronounced at higher speeds and loads and with higher viscosity oil. LST was also observed to reduce the magnitude of friction coefficients in the boundary regime. For the non-conformal contact configuration, we determined that LST would produce more abrasive wear on the rubbing counterface compared to the untreated surfaces due to a reduction in lubricant fluid film thickness, as well as the highly uneven and rough nature of the textured surfaces. However, this higher initial wear rate has led to faster generation of a conformal contact, and thus transition from the high-friction boundary to lower friction mixed

  13. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  14. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development.

    Science.gov (United States)

    Radke, Daniel; Jia, Wenkai; Sharma, Dhavan; Fena, Kemin; Wang, Guifang; Goldman, Jeremy; Zhao, Feng

    2018-05-07

    Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. On a free-surface problem with moving contact line: From variational principles to stable numerical approximations

    Science.gov (United States)

    Fumagalli, Ivan; Parolini, Nicola; Verani, Marco

    2018-02-01

    We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.

  16. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 305 (FGE.305): L - Methionylglycine of chemical group 34

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    use in foods that are not heated or intended to be heated. Besides the safety assessment of the flavouring substance, the specifications for the material of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the material of commerce have......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, the dipeptide L-methionylglycine [FL-no: 17.037], in the Flavouring Group Evaluation 305, using the Procedure in Commission...... been provided for the candidate substance. © European Food Safety Authority, 2013...

  17. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components.

    Science.gov (United States)

    Burgain, J; Scher, J; Francius, G; Borges, F; Corgneau, M; Revol-Junelles, A M; Cailliez-Grimal, C; Gaiani, C

    2014-11-01

    This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Risk assessment derived from migrants identified in several adhesives commonly used in food contact materials.

    Science.gov (United States)

    Canellas, E; Vera, P; Nerín, C

    2015-01-01

    Adhesives are used to manufacture multilayer materials, where their components pass through the layers and migrate to the food. Nine different adhesives (acrylic, vinyl and hotmelt) and their migration in 21 laminates for future use as market samples have been evaluated and risk assessment has been carried out. A total of 75 volatiles and non volatile compounds were identified by gas chromatography-mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Most of the compounds migrated below their specific migration limit (SML), lowest observed adverse effect level (LOAEL), no observed adverse effect level (NOAEL) and values recommended by Cramer. Six compounds classified as high toxicity class III according to Cramer classification, migrated over their SML and exposure values recommended by Cramer, when they were applied in the full area of the packaging. Nevertheless, these adhesives fulfill the threshold in the real application as they are applied in a small area of the packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. CONTACT SURFACES OF BIG JOINTS – SITES OF THE DEVELOPMENT OF LIMIT STATES AND OTHER CONSIDERATIONS

    Czech Academy of Sciences Publication Activity Database

    Fuis, Vladimír; Janíček, P.; Hlavoň, Pavel

    2008-01-01

    Roč. 15, č. 5 (2008), s. 381-388 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics * big joints * contact pressure * pathological joints * system approach Subject RIV: BO - Biophysics

  20. (Q)SAR tools for priority setting: A case study with printed paper and board food contact material substances.

    Science.gov (United States)

    Van Bossuyt, Melissa; Van Hoeck, Els; Raitano, Giuseppa; Manganelli, Serena; Braeken, Els; Ates, Gamze; Vanhaecke, Tamara; Van Miert, Sabine; Benfenati, Emilio; Mertens, Birgit; Rogiers, Vera

    2017-04-01

    Over the last years, more stringent safety requirements for an increasing number of chemicals across many regulatory fields (e.g. industrial chemicals, pharmaceuticals, food, cosmetics, …) have triggered the need for an efficient screening strategy to prioritize the substances of highest concern. In this context, alternative methods such as in silico (i.e. computational) techniques gain more and more importance. In the current study, a new prioritization strategy for identifying potentially mutagenic substances was developed based on the combination of multiple (quantitative) structure-activity relationship ((Q)SAR) tools. Non-evaluated substances used in printed paper and board food contact materials (FCM) were selected for a case study. By applying our strategy, 106 out of the 1723 substances were assigned 'high priority' as they were predicted mutagenic by 4 different (Q)SAR models. Information provided within the models allowed to identify 53 substances for which Ames mutagenicity prediction already has in vitro Ames test results. For further prioritization, additional support could be obtained by applying local i.e. specific models, as demonstrated here for aromatic azo compounds, typically found in printed paper and board FCM. The strategy developed here can easily be applied to other groups of chemicals facing the same need for priority ranking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Numerical study on the stick-slip motion of contact line moving on heterogeneous surfaces

    Science.gov (United States)

    Liu, Ming; Chen, Xiao-Peng

    2017-08-01

    We present a numerical study of a moving contact line (CL) crossing the intersecting region of hydrophilic and hydrophobic patterns on a solid wall using lattice Boltzmann methods (LBMs). To capture the interface between the two phases properly, we applied a phase field model coupled with the LBM. The evolutions of the CL velocity, dynamic contact angle, and apparent contact angle are analyzed for the so-called "stick" and "slip" processes. In the two processes, the evolution of the quantities follows different rules shortly after the initial quick transition, which is probably caused by finite interfacial thickness or non-equilibrium effects. For the stick process, the CL is almost fixed and energy is extracted from the main flow to rebuild the meniscus' profile. The evolution of the meniscus is mainly governed by mass conservation. The CL is depinned after the apparent contact angle surpasses the dynamic one, which implies that the interfacial segment in the vicinity of contact line is bended. For the slip process, the quantities evolve with features of relaxation. In the microscopic scale, the velocity of the CL depends on the balance between unbalanced Young's capillary force and viscous drag. To predict the apparent contact angle evolution, a model following the dynamics of an overdamped spring-mass system is proposed. Our results also show that the capillary flows in a channel with heterogeneous wall can be described generally with the Poiseuille flow superimposed by the above transient one.

  2. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  3. The effects of gamma-irradiation on additives in food-contact polymers

    Science.gov (United States)

    Smith, Christine

    A range of antioxidants (BHT, Irganox 1010, 1076, 1330 and Irgafos 168) were incorporated into polymers (polyethylene, polypropylene, polystyrene and polyvinyl chloride) and subjected to increasing doses of gamma-irradiation (1,5,10,20,25,35 and 50 kGy) from a cobalt-60 source.The amount of extractable antioxidant from the stabilised polymers was determined chromatographically and a gradual diminution in the total extractable levels of each antioxidant was observed as irradiation progressed, the extent depending on the nature of both the antioxidant and the polymer 2,6-Di-t-butyl-1,4-benzoquinone was shown to be an extractable degradation product, arising from the effects of gamma-irradiation on the phenolic antioxidants. The extractable degradation product arising from the phosphite antioxidant, Irgafos 168, was identified as tris(2,4-di-t-butylphenyl)phosphate. It was demonstrated using 14C-labelled Irganox 1076 that degradation products formed during gamma-irradiation are becoming covalently bound to the polymer, as a result of radical coupling processes. There is a pronounced increase in the extent of covalent binding from 0.4% before irradiation to a minimum of 12.4% after an exposure to 50 kGy. Evidence has also been presented of covalent binding of the degradation product of Irgafos 168 to the polypropylene matrix, via polymeric radicals formed during irradiation. Finally, the effects of gamma-irradiation on the extent of migration of antioxidants from polyolefins into food simulants was studied. It was found that irradiation leads to a decrease in the extent to which hindered phenolic antioxidants migrate from polyolefins into fatty media, consistent with the reduction in extractable antioxidant levels and the increase in the extent of antioxidant-polymer binding.

  4. Integrating bioassays and analytical chemistry as an improved approach to support safety assessment of food contact materials.

    Science.gov (United States)

    Veyrand, Julien; Marin-Kuan, Maricel; Bezencon, Claudine; Frank, Nancy; Guérin, Violaine; Koster, Sander; Latado, Hélia; Mollergues, Julie; Patin, Amaury; Piguet, Dominique; Serrant, Patrick; Varela, Jesus; Schilter, Benoît

    2017-10-01

    Food contact materials (FCM) contain chemicals which can migrate into food and result in human exposure. Although it is mandatory to ensure that migration does not endanger human health, there is still no consensus on how to pragmatically assess the safety of FCM since traditional approaches would require extensive toxicological and analytical testing which are expensive and time consuming. Recently, the combination of bioassays, analytical chemistry and risk assessment has been promoted as a new paradigm to identify toxicologically relevant molecules and address safety issues. However, there has been debate on the actual value of bioassays in that framework. In the present work, a FCM anticipated to release the endocrine active chemical 4-nonyphenol (4NP) was used as a model. In a migration study, the leaching of 4NP was confirmed by LC-MS/MS and GC-MS. This was correlated with an increase in both estrogenic and anti-androgenic activities as measured with bioassays. A standard risk assessment indicated that according to the food intake scenario applied, the level of 4NP measured was lower, close or slightly above the acceptable daily intake. Altogether these results show that bioassays could reveal the presence of an endocrine active chemical in a real-case FCM migration study. The levels reported were relevant for safety assessment. In addition, this work also highlighted that bioactivity measured in migrate does not necessarily represent a safety issue. In conclusion, together with analytics, bioassays contribute to identify toxicologically relevant molecules leaching from FCM and enable improved safety assessment.

  5. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    Science.gov (United States)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  6. Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V

    Science.gov (United States)

    Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu

    2018-02-01

    Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.

  7. Toward High Carrier Mobility and Low Contact Resistance:Laser Cleaning of PMMA Residues on Graphene Surfaces

    Institute of Scientific and Technical Information of China (English)

    Yuehui Jia; Xin Gong; Pei Peng; Zidong Wang; Zhongzheng Tian; Liming Ren; Yunyi Fu; Han Zhang

    2016-01-01

    Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.

  8. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 41 candidate substances...

  9. A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.

    Science.gov (United States)

    Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai

    2017-07-12

    A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.

  10. Influence of the Interaction Between Graphite and Polar Surfaces of ZnO on the Formation of Schottky Contact

    Science.gov (United States)

    Yatskiv, R.; Grym, J.

    2018-03-01

    We show that the interaction between graphite and polar surfaces of ZnO affects electrical properties of graphite/ZnO Schottky junctions. A strong interaction of the Zn-face with the graphite contact causes interface imperfections and results in the formation of laterally inhomogeneous Schottky contacts. On the contrary, high quality Schottky junctions form on the O-face, where the interaction is significantly weaker. Charge transport through the O-face ZnO/graphite junctions is well described by the thermionic emission model in both forward and reverse directions. We further demonstrate that the parameters of the graphite/ZnO Schottky diodes can be significantly improved when a thin layer of ZnO2 forms at the interface between graphite and ZnO after hydrogen peroxide surface treatment.

  11. CFD simulation of direct contact condensation with ANSYS CFX using surface renewal theory based heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2013-07-01

    Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)

  12. A smart surface from natural rubber: the mechanism of entropic control at the surface monitored by contact angle measurement

    Directory of Open Access Journals (Sweden)

    Sureurg Khongtong

    2006-03-01

    Full Text Available Surface oxidation of crosslinked natural rubber provided a hydrophilic substrate (sticky surface that became more hydrophobic (less sticky when equilibrated against hot water. This unusual temperaturedependent surface reconstruction is interpreted as the result of recoiling of entropic unfavorable uncoiled chains induced when rubber surface was oxidized. Subsequent equilibration of these annealed samples against water at room temperature returned their original hydrophilicity. The degree of this surface reconstruction and its kinetics are also dependent on the amounts of crosslinking of the samples.

  13. Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion.

    Science.gov (United States)

    Vermeltfoort, Pit B J; Rustema-Abbing, Minie; de Vries, Joop; Bruinsma, Gerda M; Busscher, Henk J; van der Linden, Matthijs L; Hooymans, Johanna M M; van der Mei, Henny C

    2006-06-01

    The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H contact lenses. The first pair was worn continuously for a week and the second pair for 4 weeks. One lens of each pair was used for surface characterization and the other one for bacterial adhesion experiments. Lens surfaces were characterized by examination of their wettability, roughness, elemental composition, and proteins attached to their surfaces. Adhesion of Staphylococcus aureus 835 and Pseudomonas aeruginosa #3 to a lens was studied using a parallel plate flow chamber. Before use, the lotrafilcon A lens was rougher than the balafilcon A lens and had a lower water contact angle and a higher affinity for S. aureus 835. After wear, both lens types had similar water contact angles, whereas the differences in elemental surface composition decreased as well. S. aureus 835 adhered in higher numbers to worn balafilcon A lenses, whereas the opposite was seen for P. aeruginosa #3. The initial deposition rates of both bacterial strains to lotrafilcon A lenses decreased by wearing and were found to correlate significant (P lenses. In this study, the differences in surface properties between 2 types of S-H lenses were found to change after 1 week of continuous wear. Generally, bacteria adhered in lower numbers and less tenaciously to worn lenses, except S. aureus 835, adhering in higher numbers to worn balafilcon A lenses.

  14. The effect of surface treatment of silicone hydrogel contact lenses on the attachment of Acanthamoeba castellanii trophozoites.

    Science.gov (United States)

    Beattie, Tara K; Tomlinson, Alan

    2009-11-01

    To determine if plasma surface treatment of Focus Night & Day silicone hydrogel contact lenses affects the attachment of Acanthamoeba. Unworn lotrafilcon A contact lenses with (Focus Night & Day) and without surface treatment and Acuvue, conventional hydrogel lenses, were quartered before 90-min incubation with Acanthamoeba castellanii trophozoites. After incubation and rinsing, the trophozoites attached to one surface of each quarter were counted by direct light microscopy. Sixteen replicates were observed for each lens type. Logarithmic transformation of data allowed the use of parametric analysis of variance. No significant difference in attachment was established between the untreated lotrafilcon A and the conventional hydrogel lenses (Ptreatment of the native Focus Night & Day material produced a significant increase in attachment (Ptreatment to reduce lens hydrophobicity; however, this procedure results in an enhanced acanthamoebal attachment. It is possible that the silicone hydrogel lens could be at a greater risk of promoting Acanthamoeba infection if exposed to the organism because of the enhanced attachment characteristic of this material. Eye care professionals should be aware of the enhanced affinity that Acanthamoeba show for this lens and accordingly emphasise to patients the significance of appropriate lens hygiene. This is particularly important where lenses are worn in a regime that could increase the chance of exposure to the organism, i.e., 6 nights/7 days extended wear or daily wear, where lenses will be stored in a lens case, or where lenses are worn when in contact with potentially contaminated water sources, i.e., swimming or showering.

  15. Time-related contact angle measurements with human plasma on biomaterial surfaces

    NARCIS (Netherlands)

    Rakhorst, G; Van der Mei, HC; van Oeveren, W; Spijker, HT; Busscher, HJ

    Axisymmetric drop shape analysis by profile (ADSA-P) was used to assess in time contact angle changes of human plasma drops placed on four different biomaterials. Results were related with conventional blood compatibility measurements: albumin adsorption, fibrinogen adsorption and platelet adhesion.

  16. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  17. Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus

    Science.gov (United States)

    The objective of this study was to determine the growth and survival of Salmonella enterica in the presence of high and low concentrations (375 µg/ml and 15 µg/ml) of catfish mucus extract at 10 °C and 22 °C for 63 days. The second objective of this study was to investigate the biofilm formation of ...

  18. Functional adhesive surfaces with “gecko” effect: the concept of contact splitting

    NARCIS (Netherlands)

    Kamperman, M.M.G.; Kroner, E.; Campo, del A.; McMeeking, R.M.; Arzt, E.

    2010-01-01

    Nature has developed reversibly adhesive surfaces whose stickiness has attracted much research attention over the last decade. The central lesson from nature is that “patterned” or “fibrillar” surfaces can produce higher adhesion forces to flat and rough substrates than smooth surfaces. This paper

  19. Parameters Studies on Surface Initiated Rolling Contact Fatigue of Turnout Rails by Three-Level Unreplicated Saturated Factorial Design

    Directory of Open Access Journals (Sweden)

    Xiaochuan Ma

    2018-03-01

    Full Text Available Surface initiated rolling contact fatigue (RCF, mainly characterized by cracks and material stripping, is a common type of damage to turnout rails, which can not only shorten service life of turnout but also lead to poor running safety of vehicle. The rail surface initiated RCF of turnouts is caused by a long-term accumulation, the size and distribution of which are related to the dynamic parameters of the complicated vehicle-turnout system. In order to simulate the accumulation of rail damage, some random samples of dynamic parameters significantly influencing it should be input. Based on the three-level unreplicated saturated factorial design, according to the evaluation methods of H, P and B statistic values, six dynamic parameters that influence the rail surface initiated RCF in turnouts, namely running speed of vehicle, axle load, wheel-rail profiles, integral vertical track stiffness and wheel-rail friction coefficient, are obtained by selecting 13 dynamic parameters significantly influencing the dynamic vehicle-turnout interaction as the analysis factors, considering four dynamic response results, i.e., the normal wheel-rail contact force, longitudinal creep force, lateral creep force and wheel-rail contact patch area as the observed parameters. In addition, the rail surface initiated RCF behavior in turnouts under different wheel-rail creep conditions is analyzed, considering the relative motion of stock/switch rails. The results show that the rail surface initiated RCF is mainly caused by the tangential stress being high under small creep conditions, the normal and tangential stresses being high under large creep conditions, and the normal stress being high under pure spin creep conditions.

  20. Impact of recess etching and surface treatments on ohmic contacts regrown by molecular-beam epitaxy for AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joglekar, S.; Azize, M.; Palacios, T. [Microsystems Technology Laboratories, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Beeler, M.; Monroy, E. [Université Grenoble-Alpes, 38000 Grenoble (France); CEA Grenoble, INAC-PHELIQS, 38000 Grenoble (France)

    2016-07-25

    Ohmic contacts fabricated by regrowth of n{sup +} GaN are favorable alternatives to metal-stack-based alloyed contacts in GaN-based high electron mobility transistors. In this paper, the influence of reactive ion dry etching prior to regrowth on the contact resistance in AlGaN/GaN devices is discussed. We demonstrate that the dry etch conditions modify the surface band bending, dangling bond density, and the sidewall depletion width, which influences the contact resistance of regrown contacts. The impact of chemical surface treatments performed prior to regrowth is also investigated. The sensitivity of the contact resistance to the surface treatments is found to depend upon the dangling bond density of the sidewall facets exposed after dry etching. A theoretical model has been developed in order to explain the observed trends.

  1. The Long-Term Effects of Silicone Hydrogel Contact Lenses on the Ocular Surface and Tear Function Tests

    Directory of Open Access Journals (Sweden)

    Yelda Yıldız Taşcı

    2014-05-01

    Full Text Available Objectives: To evaluate the effects of three different silicone hydrogel contact lenses, i.e. Balafilcon A (Pure Vision, Bausch & Lomb, Senofilcon A (Acuvue Oasys, Johnson & Johnson, and Confilcon A (Biofinity, CooperVision, on ocular surface after one, three, and sıx months of wear. Materials and Methods: Silicone hydrogel contact lenses (SHCL were fitted to 58 patients (Balafilcon A to 40 eyes: Group 1, Senofilcon A to 42 eyes: Group 2, and Confilcon A to 34 eyes: Group 3 who have not used any contact lenses before. All groups were graded according to the Cornea and Contact Lens Research Unit’s grading score, and were performed ocular surface disease index scoring (OSDI, tear break-up time (BUT, and Schirmer 1 test. Results: The mean age was 22.45±5.96, 20.76±3.70, 21.00±3.84 years in Groups 1,2, and 3, respectively (p>0.05. While the increase in papillary hypertrophy as well as palpebral and bulbar hyperemia at 1st month in Group 1 and at 6th month at Group 2 were significant, there were no change in Group 3 with the use of SHCL (p0.05. In Group 3, the Schirmer test was lower than in Groups 1 and 2, which was statistically significant (p=0.048, p=0.003. Conclusion: Factors like lens material, modulus, the presence of an internal wetting agent, and water content play an important role in the effects of SHCL on the ocular surface. In this study, it is demonstrated that SHCL does not cause clinically significant dry eye. (Turk J Ophthalmol 2014; 44: 201-6

  2. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  3. Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide

    International Nuclear Information System (INIS)

    Chen, Ningning; Zhang, Cuiling; Zhao, Kai; Xian, Yuezhong; Cheng, Yuxiao; Li, Chen

    2015-01-01

    We describe an electrochemical sensor for melamine based on a glassy carbon electrode (GCE) modified with reduced graphene oxide that was decorated with gold nanoparticles (AuNP/rGO). The AuNPs/rGO nanocomposite was synthesized by co-reduction of Au(III) and graphene oxide and characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The response of the modified GCE to melamine was investigated by using hexacyanoferrate as an electrochemical reporter. It is found that the electrochemical response to hexacyanoferrate is increasingly suppressed by increasing concentration of melamine. This is attributed to competitive adsorption of melamine at the AuNP/rGO composite through the interaction between the amino groups of melamine and the AuNPs. The presence of rGO, in turn, provides a platform for a more uniform distribution of the AuNPs and enhances the electron transfer rate of the redox reaction. The findings were used to develop a sensitive method for the determination of melamine. Under optimized conditions, the redox peak current of hexacyanoferrate at a working voltage of 171 mV (vs. SCE) is linearly related to the concentration of melamine in 5.0 to 50 nM range. The method was successfully applied to the determination of melamine in food contact materials. (author)

  4. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2012-03-01

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

  5. Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials.

    Science.gov (United States)

    Jin, Yuanyuan; Li, Zhongyue; Yang, Lei; Xu, Jun; Zhao, Le; Li, Zhonghao; Niu, Jiajia

    2017-01-17

    A novel solid-phase microextraction (SPME) fiber was fabricated by a porous aromatic framework 48 (PAF-48)/gel hybrid material through a sol-gel process. PAF-48 is a porous organic framework (POF) material that was polymerized from 1,3,5-triphenylbenzene. The uniform pore structure, high surface area, continuous conjugate network, and hydrophobicity make PAF-48 expected to have special abilities to absorb and extract styrene as well as some other harmful volatile aromatic compounds (VACs). The PAF-48/gel-coated fiber was explored for the extraction of styrene and six VACs (benzene, toluene, ethylbenzene, and xylenes) from aqueous food simulants followed by gas chromatography (GC) separation. The fiber was found to be very sensitive for the determination of the target molecules with wide linear ranges (0.1-200 or 500 μg·kg -1 ), low limits of detection (LODs, 0.003-0.060 μg·kg -1 ), acceptable precisions (intraday relative standard deviation, RSD 200 times). Particularly for styrene, the PAF-48/gel-coated fiber exhibited a much lower LOD (0.006 μg·kg -1 ) compared with most of the reported fibers. Moreover, the PAF-48/gel-coated fiber had a high extraction selectivity for styrene and VACs over alcohols, phenols, aromatic amines, and alkanes and show a molecular sieving effect for the different molecule sizes. Finally, the PAF-48/gel-coated SPME fiber was successfully applied in GC for the determination of the specific migrations of styrene and VACs from polystyrene (PS) plastic food contact materials (FCMs).

  6. Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.

    Science.gov (United States)

    Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young

    2010-03-10

    We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.

  7. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chaio-Ru [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China); Lin, Cheng-Wei [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); Chou, Chia-Man, E-mail: cmchou@vghtc.gov.tw [Department of Surgery, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung City 40705, Taiwan (China); Department of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 11221, Taiwan (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China)

    2015-08-15

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF{sub 4}) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF{sub 4} (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF{sub 4} (f{sub H}) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO{sub x} nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF{sub 2} bonding, and SiO{sub x} were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply

  8. Assessment of a handheld fluorescence imaging device as a visual-aid for detection of food residues on processing surfaces

    Science.gov (United States)

    Contamination of food with pathogenic bacteria can lead to foodborne illnesses. Food processing surfaces can serve as a medium for cross-contamination if sanitization procedures are inadequate. Ensuring that food processing surfaces are correctly cleaned and sanitized is important in the food indust...

  9. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  10. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Ashley D.; Blanch, Adam J.; Quinton, Jamie S.; Gibson, Christopher T., E-mail: christopher.gibson@flinders.edu.au

    2013-08-15

    Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to

  11. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  12. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y.  C.; Thoroddsen, Sigurdur T

    2015-01-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  13. Comparison of contact skidded and skidless techniques which are used for surface roughness characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, Mite; Kuzinovski, Mikolaj [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of); Cichosz, Piotr [Institute of Production Engineering and Automation of the Wroclaw University of Technology, Wroclw, (Poland)

    2014-07-01

    In this study included several dilemmas arising from the recommendations in the international standards referring to surface roughness measurement with using skidded and skidless measurement instruments. Also, this paper explained the role and the impact of the skid as mechanical reference in the construction of the surface roughness measuring instruments. In order to determine the impact from the different constructive performances of the measurement instruments on the surface roughness value, are measured more periodic and non-periodic etalon surfaces representative of various machining process (turning, milling, grinding and lapping). Comparative analysis of the values and differences for the roughness parameters and primary profile parameters are displayed. (Author)

  14. Exploring the sensitivity of the zone of inhibition test for leachable biocides from paper and board food contact materials, and improvements thereof.

    Science.gov (United States)

    Castle, L; Kelly, J; Jickells, S M; Johns, S M; Mountfort, K A

    2012-01-01

    The zone of inhibition method to test the release of biocides from paper and board food contact materials was evaluated. The method tests the paper by placing a small specimen directly onto culture plates of Bacillus subtilis and Aspergillus niger. The principle is that any extractable biocide will diffuse from the paper into the surrounding nutrient medium and so inhibit growth of the microorganism in the vicinity. The test was found to have insufficient sensitivity for assuring food safety, where detection limits for migration at or below the mg l(-1) (parts per million) level are needed. Also, the test does not mimic the actual or foreseeable conditions of use since most paper/board materials are not intended for direct contact with an aqueous medium for up to 3 days at 30°C (B. subtilis) or 25°C (A. niger), which are the incubation conditions used. The sensitivity of the test was increased approximately 100-fold by preparing a concentrated extract of the paper to be tested and applying this extract to the assay via a blank paper carrier. This was done using methanol as a good solvent for most biocides, as a proof of principle. Other solvents or food simulants could be used to mimic the conditions of use intended for the particular paper/board samples under examination, e.g. contact with dry, fatty, aqueous or acidic foods, hot or cold. Twenty-four plain (unconverted) paper and board samples and 100 food packaging samples were evaluated using the modified procedure. The results revealed that the method has been developed to the stage where background cytotoxic action of normal paper constituents gives a weak response. Unlike the original method, therefore, the modified method with its improved sensitivity and the facility to link with the intended food contact conditions may be considered a suitable bioassay screening test to complement chemical analysis of paper/board for composition and migration.

  15. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  16. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    Science.gov (United States)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  17. A non-contact 3D method to characterize the surface roughness of castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    2013-01-01

    that the surface quality of the standard comparators was successfully evaluated and it was established that the areal parameters are the most informative for cast components. The results from the surface comparators were compared with the results from a stylus instrument. Sand cast components were also evaluated...

  18. Comparison of the Friction-Loss Coefficient for the Gap of Two Contact Surfaces and a Crack

    International Nuclear Information System (INIS)

    Nam, Ho Yun; Choi, Byoung Hae; Kim, Jong Bum; Lee, Young Bum

    2011-01-01

    A leak-detection method has been developed by measuring the pressure variation between the inner and outer heat transfer tubes of a double-wall tube steam generator. An experiment was carried out to measure the leak rate in the gap between two surfaces pressed with a hydraulic press in order to simulate the phenomena, and a correlation was determined for the leak rate in a micro gap. However, in the correlation, the gap width and friction coefficient were coupled with the surface roughness, which affects the two parameters. The two parameters were separated using a surface-contact model to develop a correlation for the friction coefficient. The correlation was compared with the existing correlations used for crack analysis. Although the applied ranges of Reynolds numbers were different, the developed correlation for Reynolds numbers of 0.1.0.35 showed similar tendencies to existing correlations used for higher Reynolds numbers

  19. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    Science.gov (United States)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  20. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition

    Science.gov (United States)

    Kang, Huang; Xiong, Yangshou; Wang, Tao; Chen, Qi

    2017-01-01

    Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.

  1. Clostridium difficile from food and surface samples in a Belgian nursing home: an unlikely source of contamination.

    Science.gov (United States)

    Rodriguez, C; Korsak, N; Taminiau, B; Avesani, V; Van Broeck, J; Brach, P; Delmée, M; Daube, G

    2015-04-01

    This study investigates the contamination of foods and surfaces with Clostridium difficile in a single nursing home. C. difficile PCR-ribotype 078 was found in one food sample and in none of the tested surfaces. These results indicate that food and surfaces are an unlikely source of C. difficile infection in this setting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering ... Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at ...

  3. Controlled lecithin release from a hierarchical architecture on blood-contacting surface to reduce hemolysis of stored red blood cells.

    Science.gov (United States)

    Shi, Qiang; Fan, Qunfu; Ye, Wei; Hou, Jianwen; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2014-06-25

    Hemolysis of red blood cells (RBCs) caused by implant devices in vivo and nonpolyvinyl chloride containers for RBC preservation in vitro has recently gained much attention. To develop blood-contacting biomaterials with long-term antihemolysis capability, we present a facile method to construct a hydrophilic, 3D hierarchical architecture on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene oxide) (PEO)/lecithin nano/microfibers. The strategy is based on electrospinning of PEO/lecithin fibers onto the surface of poly [poly(ethylene glycol) methyl ether methacrylate] [P(PEGMEMA)]-modified SEBS, which renders SEBS suitable for RBC storage in vitro. We demonstrate that the constructed 3D architecture is composed of hydrophilic micro- and nanofibers, which transforms to hydrogel networks immediately in blood; the controlled release of lecithin is achieved by gradual dissolution of PEO/lecithin hydrogels, and the interaction of lecithin with RBCs maintains the membrane flexibility and normal RBC shape. Thus, the blood-contacting surface reduces both mechanical and oxidative damage to RBC membranes, resulting in low hemolysis of preserved RBCs. This work not only paves new way to fabricate high hemocompatible biomaterials for RBC storage in vitro, but provides basic principles to design and develop antihemolysis biomaterials for implantation in vivo.

  4. [Analysis of aberration changes of the corneal anterior surface following discontinued use of rigid gas permeable contact lenses].

    Science.gov (United States)

    Yu, Qing; Wu, Jiang-xiu; Zhang, He-ning; Ye, Sheng; Dong, Shi-qi; Zhang, Chen-hao

    2011-04-01

    The present study used a corneal topographic device to record aberrations on the anterior surface of the cornea at different time-points prior to wearing and following discontinued use of rigid gas permeable (RGP) contact lenses. The effect of wearing RGPCL on the anterior surface of the cornea was discussed to provide guidance for clinical refractive error correction. The study objects were 60 eyes from 30 patients. All patients underwent identical examination procedures prior to lens use, as well as afterwards, including slit-lamp examination, non-contact tonometer measurement, computer optometry & corneal curvature measurement, subjective refraction test, and corneal topography analysis. The patients wore contact lenses every day for 1 month and then discontinued. Corneal topographies were recorded at certain time points of 30 min, 1 day, 3 days, 1 week, and 2 weeks following use. Total corneal aberration at each time point following discontinued use of RGP contact lenses was less than the time point prior to use. Detailed results are as follows; root mean square (RMS) (pre) = (1.438 ± 0.328), RMS (30 min) = (1.076 ± 0.355), RMS (1 day) = (1.362 ± 0.402), RMS (3 day) = (1.373 ± 0.398), RMS (7 day) = (1.387 ± 0.415), and RMS (14 day) = (1.448 ± 0.423). Results showed that at 30 minutes after discontinued use of RGP contact lenses, almost all 2(nd)- and 3(rd)-order aberrations were altered. Quadrafoil Z10 and spherical Z12 of the 4(th)-order were also changed. Alterations to Z5, Z6, and Z12 at 1 day after discontinued use were significant compared with the time period prior to RGP use: Z5 and Z6 decreased, and Z12 increased slightly (F = 2.869 ∼ 5.549, P = 0.001 ∼ 0.042). Z5 and Z6 remained decreased at 3 days after discontinued use, but Z9 and Z10 continued to increase and Z12 returned to levels prior to RGP use (P > 0.05). At 2 weeks after discontinued use, all aberrations were not significantly different from the values prior to use (P > 0.05). The

  5. Role of Ag-alloy in the thermal stability of Ag-based ohmic contact to GaN(0 0 0 1) surface

    International Nuclear Information System (INIS)

    Xiong, Zhihua; Qin, Zhenzhen; Zhao, Qian; Chen, Lanli

    2015-01-01

    First-principles calculations are performed to study Ag and Ag-alloy adsorption stability on GaN(0 0 0 1) surface. We find Ag only contact to GaN surface is unstable under high temperature. While Ag-alloy adsorption exhibits better adsorption stability and electronic properties than that of the Ag only contact,due to the enhanced interaction between Ag-alloy and GaN(0 0 0 1) surface. The Ag-alloy, particularly AgNi, is proposed to be used as very promising ohmic contact to GaN for practical applications

  6. A Multi-Agent System for Tracking the Intent of Surface Contacts in Ports and Waterways

    National Research Council Canada - National Science Library

    Tan, Kok S

    2005-01-01

    ...) and employ them to identify asymmetric maritime threats in port and waterways. Each surface track is monitored by a compound multi-agent system that comprise of the several intent models, each containing a nested multi-agent system...

  7. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.

    Science.gov (United States)

    Trevethan, Thomas; Shluger, Alexander

    2009-07-01

    We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.

  8. Tritium activity balance in hairless rats following skin-contact exposure to tritium-gas-contaminated stainless-steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1994-06-01

    Studies using animals and human volunteers have demonstrated that the dosimetry for skin-contact exposure to contaminated metal surfaces differs from that for the intake of tritiated water or tritium gas. However, despite the availability of some information on the dosimetry for skin-contact with tritium-gas-contaminated metal surfaces, uncertainties in estimating skin doses remain, because of poor accounting for the applied tritium activity in the body (Eakins et al., 1975; Trivedi, 1993). Experiments on hairless rats were performed to account for the tritium activity applied onto the skin. Hairless rats were contaminated through skin-contact exposure to tritium-gas-contaminated stainless-steel planchets. The activity in the first smear was about 35% of the total removable activity (measured by summing ten consecutive swipes). The amount of tritium applied onto the skin can be approximated by estimating the tritium activity in the first smear removed form the contaminated surfaces. 87 {+-} 9% of the transferred tritium was retained in the exposed skin 30 min post-exposure. 30 min post exposure, the unexposed skin and the carcass retained 8 {+-} 6% and 3 {+-} 2% of the total applied tritium activity, respectively. The percentage of tritium evolved from the body or breathed out was estimated to be 2 {+-} 1% of the total applied activity 30 min post-exposure. It is recommended that to evaluate accurately the amount of tritium transferred to the skin, alternative measurement approaches are required that can directly account for the transferred activity onto the skin. 15 refs., 13 tabs., 7 figs.

  9. Physical-mechanical image of the cell surface on the base of AFM data in contact mode

    Science.gov (United States)

    Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.

    2017-10-01

    Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.

  10. EXPERIMENTAL INVESTIGATION OF THE ADHESIVE CONTACT WITH ELASTOMERS: EFFECT OF SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Lars Voll

    2015-04-01

    Full Text Available Adhesion between an elastomer and a steel indenter was studied experimentally and described with an analytical model. Cylindrical indenters having different roughness were brought into contact with an elastomer with various normal forces. After a “holding time”, the indenter was pulled with a constant velocity, which was the same in all experiments. We have studied the regime of relatively small initial normal loadings, large holding times and relatively large pulling velocities, so that the adhesive force did not depend on the holding time but did depend on the initially applied normal force and was approximately proportional to the pulling velocity. Under these conditions, we found that the adhesive force is inversely proportional to the roughness and proportional to the normal force. For the theoretical analysis, we used a previously published MDR-based model.

  11. Investigation of reciprocating conformal contact of piston skirt-to-surface modified cylinder liner in high performance engines

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, S.; Rahnejat, H. [Loughborough University (United Kingdom). Wolfson School of Mechanical and Manufacturing Engineering; Howell-Smith, S. [Perfect Bore Motorsport Ltd., Andover (United Kingdom)

    2005-11-15

    The article presents detailed analysis of the conforming contact between a piston and cylinder liner in a high-speed racing engine under extreme operating conditions owing to high loads and operating speeds in excess of 19 000 r/min, resulting in a high sliding velocity of 42 m/s. The analysis indicates contact forces generated in the order of 2.5 kN. The contribution due to fluid film lubrication is found to reside in iso-viscous rigid or elastic regimes of lubrication, which is insufficient to form a coherent lubricant film during some parts of the cycle, such as at top-dead-centre (TDC). The article shows that at combustion, 95 per cent of the contact can remain in boundary or mixed regimes of lubrication. Piston skirt surface modification features are used in conjunction with an electrolytically applied composite coating, Ni[SiC]p to produce advanced cylinder liners to remedy the situation. Detailed numerical analysis shows that significant improvement is achieved in the regime of lubrication condition. (author)

  12. Insilico study of the A(2A)R-D (2)R kinetics and interfacial contact surface for heteromerization.

    Science.gov (United States)

    Prakash, Amresh; Luthra, Pratibha Mehta

    2012-10-01

    G-protein-coupled receptors (GPCRs) are cell surface receptors. The dynamic property of receptor-receptor interactions in GPCRs modulates the kinetics of G-protein signaling and stability. In the present work, the structural and dynamic study of A(2A)R-D(2)R interactions was carried to acquire the understanding of the A(2A)R-D(2)R receptor activation and deactivation process, facilitating the design of novel drugs and therapeutic target for Parkinson's disease. The structure-based features (Alpha, Beta, SurfAlpha, and SurfBeta; GapIndex, Leakiness and Gap Volume) and slow mode model (ENM) facilitated the prediction of kinetics (K (off), K (on), and K (d)) of A(2A)R-D(2)R interactions. The results demonstrated the correlation coefficient 0.294 for K (d) and K (on) and the correlation coefficient 0.635 for K (d) and K (off), and indicated stable interfacial contacts in the formation of heterodimer. The coulombic interaction involving the C-terminal tails of the A(2A)R and intracellular loops (ICLs) of D(2)R led to the formation of interfacial contacts between A(2A)R-D(2)R. The properties of structural dynamics, ENM and KFC server-based hot-spot analysis illustrated the stoichiometry of A(2A)R-D(2)R contact interfaces as dimer. The propensity of amino acid residues involved in A(2A)R-D(2)R interaction revealed the presence of positively (R, H and K) and negatively (E and D) charged structural motif of TMs and ICL3 of A(2A)R and D(2)R at interface of dimer contact. Essentially, in silico structural and dynamic study of A(2A)R-D(2)R interactions will provide the basic understanding of the A(2A)R-D(2)R interfacial contact surface for activation and deactivation processes, and could be used as constructive model to recognize the protein-protein interactions in receptor assimilations.

  13. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    International Nuclear Information System (INIS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-01-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%. (paper)

  14. A new theory for the static contact between rough, unmated surfaces in non-elastically deforming rock and its implications for rock friction

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    The closure behavior of fractures in marble and alabaster is markedly different from that in quartzite. The aperture decreases considerably more under normal stress and remains permanently reduced, for the same ratio of normal stress to unconfined compressive strength. Also, a larger permanent relative contact area develops between the surfaces of marble and alabaster than it does between surfaces of quartzite. The permanent contact area increases at an increasing rate with normal stress in marble and alabaster, unlike the nearly linear increase in quartzite. The failure of surface asperities of calcite and gypsum during closure accounts for these differences. We modeled this process by considering the surfaces to consist of paraboloids lying on a flat plane and having a range of initial heights. Closure occurs by pressing a plane rigid surface against the 'hills', flattening their peaks, keeping the base area of the hills constant. To allow for a changing resistance to deformation, the contact stress is assumed to vary linearly with the shortening strain, to a first approximation. This model was tested against measurements of fracture closure and contact area of rough surfaces of calcite marble with a known initial height distribution of surface peaks. The fit to the data is quite good. In all cases, the model shows that closure is accompanied by a decrease in contact strength of deforming asperities, suggested also by the cataclastic deformation observed petrographically. The number of contact spots and the total length of contact seen in profile are also reasonably well modeled. These results have important implications for our understanding of frictional strength of fractures. The overall resistance to shear along rough surfaces depends upon the product of the shear strength and true area of the contacts, both of which are affected by normal stress. Application of this model approach shows that the initial frictional resistance of some fractures in ductile

  15. Resonance frequency analysis, insertion torque, and bone to implant contact of 4 implant surfaces: comparison and correlation study in sheep.

    Science.gov (United States)

    Dagher, Maroun; Mokbel, Nadim; Jabbour, Gabriel; Naaman, Nada

    2014-12-01

    Primary stability is evaluated using resonance frequency analysis (RFA) and insertion torque (IT). Although there is a strong correlation between RFA and IT, studies failed to find a correlation between RFA and bone to implant contact (BIC) or IT and BIC. To compare RFA, IT, and BIC of SLA, SLActive, Euroteknika, and TiUnite implant surfaces and evaluate the correlation between them. Thirty-two implants were placed in 8 sheep. RFA and IT were recorded. Animals were killed at 1 and 2 months. A significant difference was found in RFA between the 4 surfaces. No significant difference was found for IT. Mean BIC was different between all 4 surfaces. A significant positive correlation was found between RFA and IT with SLA. No significant correlation was found between RFA and BIC and between IT and BIC at 1 and 2 months. Implants with 4 different surfaces have similar IT values but different RFA and BIC. Additionally irrespective of the implant surface, there is no correlation between IT and BIC and between RFA and BIC.

  16. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.

    2016-03-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  17. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, Chao; Margalith, T.; Ng, Tien Khee; Denbaars, S. P.; Ooi, Boon S.; Speck, J. S.; Nakamura, S.

    2016-01-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  18. EFSA EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 304 (FGE.304): Five carboxamides from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate five flavouring substances in the Flavouring Group Evaluation 304, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the substances...... data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all five candidate substances....

  19. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 24, Revision 2 (FGE.24Rev2)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 24 flavouring substances in the Flavouring Group Evaluation 24, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 24 candidate substances....

  20. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4)

    OpenAIRE

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz; Lund, Pia; Nørby, Karin Kristiane

    2013-01-01

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision is made due to the inclusion of the assessment of new toxicity data on one supporting substance 5,6-dihydro-2,4,6-tris(2-methylpropyl)-4H-1,3,5-dithiazine [FL-no: 15.113], which is considered to be str...

  1. Simulated non-contact atomic force microscopy for GaAs surfaces based on real-space pseudopotentials

    International Nuclear Information System (INIS)

    Kim, Minjung; Chelikowsky, James R.

    2014-01-01

    We simulate non-contact atomic force microscopy (AFM) with a GaAs(1 1 0) surface using a real-space ab initio pseudopotential method. While most ab initio simulations include an explicit model for the AFM tip, our method does not introduce the tip modeling step. This approach results in a considerable reduction of computational work, and also provides complete AFM images, which can be directly compared to experiment. By analyzing tip-surface interaction forces in both our results and previous ab initio simulations, we find that our method provides very similar force profile to the pure Si tip results. We conclude that our method works well for systems in which the tip is not chemically active.

  2. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    DEFF Research Database (Denmark)

    Jensen, Torben René; Jensen, Morten Østergaard; Reitzel, Niels

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 Angstrom into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 Angstrom(2...

  3. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...

  4. An approach to determine a critical size for rolling contact fatigue initiating from rail surface defects

    NARCIS (Netherlands)

    Li, Z.; Zhao, X.; Dollevoet, R.P.B.J.

    2016-01-01

    A methodology for the determination of a critical size of surface defects, above which RCF can initiate, has been developed and demonstrated with its application to the passive type of squats under typical Dutch railway loading conditions. Such a methodology is based on stress evaluation of

  5. WEAR OF THE FRICTION SURFACES PARTS IN THE PRESENSE OF SOLID PARTICLES CONTACTING ZONE

    Directory of Open Access Journals (Sweden)

    B. M. Musaibov

    2015-01-01

    Full Text Available The problems of intensity of wear of details of the cars working in the oil polluted by abrasive particles, depending on mechanical properties of material of details and abrasive particles, their sizes, a form and concentration, loading, temperature of a surface of friction, speed of sliding, quality of lubricant are considered. 

  6. Spontaneous Structuration of Hydrophobic Polymer Surfaces in Contact with Salt Solutions

    NARCIS (Netherlands)

    Sîretanu, Igor; Saadaoui, Hassan; Chapel, Jean Paul; Drummond, Carlos; Rodriguez-Hernandez, Juan; Drummond, Carlos

    2015-01-01

    It has been described in previous chapters how spontaneous instabilities related to interfacial phenomena can be used to produce controlled patterns on polymer surfaces. Strategies of polymer patterning assisted by dewetting or water drop condensation were described. In this chapter we present a

  7. Relationship between healthcare worker surface contacts, care type and hand hygiene: an observational study in a single-bed hospital ward.

    Science.gov (United States)

    King, M-F; Noakes, C J; Sleigh, P A; Bale, S; Waters, L

    2016-09-01

    This study quantifies the relationship between hand hygiene and the frequency with which healthcare workers (HCWs) touch surfaces in patient rooms. Surface contacts and hand hygiene were recorded in a single-bed UK hospital ward for six care types. Surface contacts often formed non-random patterns, but hygiene before or after patient contact depends significantly on care type (P=0.001). The likelihood of hygiene correlated with the number of surface contacts (95% confidence interval 1.1-5.8, P=0.002), but not with time spent in the room. This highlights that a potential subconscious need for hand hygiene may have developed in HCWs, which may support and help focus future hygiene education programmes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Study of structure and surface morphology of two-layer contact Ti/Al metallization

    Directory of Open Access Journals (Sweden)

    Kirill D. Vanyukhin

    2016-06-01

    Full Text Available Ti/Al/Ni/Au metallization widely used in the technology of GaN base devices have a very important imperfection i.e. rough surface. There are different opinions about the causes of this imperfection: balling-up of molten aluminum or the appearance of intermetallic melt phases in the Au–Al system. To check the effect of the former cause, we have studied the formation of rough surface after annealing of Ti/Al metallization which is used as a basis of many metallization systems for GaN. The substrates were made from silicon wafers covered with Si3N4 films (0.15 μm. On these substrates we deposited the Ti(12 nm/Al(135 nm metallization system. After the deposition the substrates were annealed in nitrogen for 30 s at 850 °С. The as-annealed specimens were tested for metallization sheet resistivity, appearance and surface morphology. We have shown that during annealing of the Ti/Al metallization system, mutual diffusion of the metals and their active interaction with the formation of intermetallic phases occur. This makes the metallization system more resistant to subsequent annealing, oxidation and chemical etching. After annealing the surface of the Ti/Al metallization system becomes gently matted. However, large hemispherical convex areas (as in the Ti/Al/Ni/Au metallization system do not form. Thus, the hypothesis on the balling-up of molten aluminum on the surface of the Ti/Al metallization system has not been confirmed.

  9. Measurement of Near-Surface Salinity, Temperature and Directional Wave Spectra using a Novel Wave-Following, Lagrangian Surface Contact Buoy

    Science.gov (United States)

    Boyle, J. P.

    2016-02-01

    Results from a surface contact drifter buoy which measures near-surface conductivity ( 10 cm depth), sea state characteristics and near-surface water temperature ( 2 cm depth) are described. This light (righting. It has a small above-surface profile and low windage, resulting in near-Lagrangian drift characteristics. It is autonomous, with low power requirements and solar panel battery recharging. Onboard sensors include an inductive toroidal conductivity probe for salinity measurement, a nine-degrees-of-freedom motion package for derivation of directional wave spectra and a thermocouple for water temperature measurement. Data retrieval for expendable, ocean-going operation uses an onboard Argos transmitter. Scientific results as well as data processing algorithms are presented from laboratory and field experiments which support qualification of buoy platform measurements. These include sensor calibration experiments, longer-term dock-side biofouling experiments during 2013-2014 and a series of short-duration ocean deployments in the Gulf Stream in 2014. In addition, a treatment method will be described which appears to minimize the effects of biofouling on the inductive conductivity probe when in coastal surface waters. Due to its low cost and ease of deployment, scores, perhaps hundreds of these novel instruments could be deployed from ships or aircraft during process studies or to provide surface validation for satellite-based measurements, particularly in high precipitation regions.

  10. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    Science.gov (United States)

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  11. Laser lock-in thermography for thermal contact characterisation of surface layer

    International Nuclear Information System (INIS)

    Semerok, A.; Jaubert, F.; Fomichev, S.V.; Thro, P.-Y.; Courtois, X.; Grisolia, C.

    2012-01-01

    Lock-in thermography was applied to determine the thermal contact conductance of a W-layer (140 μm) on a CFC-substrate. A lock-in thermography system together with a pulse repetition rate Nd:YAG laser (1064 nm, 1–500 Hz pulse repetition rate) for layer heating was applied for phase shift measurements on the W-layer. A numerical model for direct phase shift calculations was developed and applied to rapid determination of the Fourier amplitudes and phases of the temperature. Thermal conductance coefficients were obtained by comparing the experimental and simulation phase shifts. -- Highlights: ► Lock-in thermography determines a layer/substrate thermal conductance. ► Thermal conductance coefficient of W-layer on a CFC-substrate. ► Model for direct phase shift calculations was developed and applied. ► Rapid determination of the Fourier amplitudes and phases of the temperature. ► Comparing the experimental and simulation phase shifts.

  12. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

    Science.gov (United States)

    2011-01-01

    Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules. PMID:22192175

  13. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

    Directory of Open Access Journals (Sweden)

    Siglioccolo Alessandro

    2011-12-01

    Full Text Available Abstract Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy. Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.

  14. Surface-micromachined rotatable member having a low-contact-area hub

    Science.gov (United States)

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Krygowski, Thomas W.

    2003-11-18

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  15. Surface--micromachined rotatable member having a low-contact-area hub

    Science.gov (United States)

    Rodgers, M. Steven; Sniegowski, Jeffry J.

    2002-01-01

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  16. Modelling of the bending behaviour of double floor systems for different contact surfaces

    Directory of Open Access Journals (Sweden)

    Attila PUSKAS

    2014-07-01

    Full Text Available In the practice of prefabricated concrete structures considerable surfaces of intermediate floors are constructed using double floor systems with prefabricated bottom layer and upper layer. This second layer is cast on site. The quality of the prefabricated concrete is often of superior class with respect to the monolithic layer. In the service state of the double floor system, important compressive stresses appear in the upper concrete layer. On the other hand, the bond quality between the concrete layers cast in successive stages raises questions especially in the case of hollow core floor units with no connecting reinforcement in-between. The paper presents results of the numerical models prepared for double floor elements having different thicknesses for the top and bottom layers, subjected to bending. Three situations have been studied: stepped top surface of the prefabricated slab with no connecting reinforcement, broom swept tracks on the prefabricated slab with no connecting reinforcement and broom swept tracks on the prefabricated slab with stirrups connecting the concrete layers. For each situation two different ratios of the thicknesses of the layers have been considered. The results are emphasizing the critical regions of the elements, the differences in crack development and in the behaviour resulting from surface preparation and use of connecting reinforcements.

  17. Optimization of mass spectrometry acquisition parameters for determination of polycarbonate additives, degradation products, and colorants migrating from food contact materials to chocolate.

    Science.gov (United States)

    Bignardi, Chiara; Cavazza, Antonella; Laganà, Carmen; Salvadeo, Paola; Corradini, Claudio

    2018-01-01

    The interest towards "substances of emerging concerns" referred to objects intended to come into contact with food is recently growing. Such substances can be found in traces in simulants and in food products put in contact with plastic materials. In this context, it is important to set up analytical systems characterized by high sensitivity and to improve detection parameters to enhance signals. This work was aimed at optimizing a method based on UHPLC coupled to high resolution mass spectrometry to quantify the most common plastic additives, and able to detect the presence of polymers degradation products and coloring agents migrating from plastic re-usable containers. The optimization of mass spectrometric parameter settings for quantitative analysis of additives has been achieved by a chemometric approach, using a full factorial and d-optimal experimental designs, allowing to evaluate possible interactions between the investigated parameters. Results showed that the optimized method was characterized by improved features in terms of sensitivity respect to existing methods and was successfully applied to the analysis of a complex model food system such as chocolate put in contact with 14 polycarbonate tableware samples. A new procedure for sample pre-treatment was carried out and validated, showing high reliability. Results reported, for the first time, the presence of several molecules migrating to chocolate, in particular belonging to plastic additives, such Cyasorb UV5411, Tinuvin 234, Uvitex OB, and oligomers, whose amount was found to be correlated to age and degree of damage of the containers. Copyright © 2017 John Wiley & Sons, Ltd.

  18. A novel surface protein of Trichomonas vaginalis is regulated independently by low iron and contact with vaginal epithelial cells

    Directory of Open Access Journals (Sweden)

    Chang T-H

    2006-01-01

    Full Text Available Abstract Background Trichomonosis caused by Trichomonas vaginalis is the number one, non-viral sexually transmitted disease (STD that affects more than 250 million people worldwide. Immunoglobulin A (IgA has been implicated in resistance to mucosal infections by pathogens. No reports are available of IgA-reactive proteins and the role, if any, of this class of antibody in the control of this STD. The availability of an IgA monoclonal antibody (mAb immunoreactive to trichomonads by whole cell (WC-ELISA prompted us to characterize the IgA-reactive protein of T. vaginalis. Results An IgA mAb called 6B8 was isolated from a library of mAbs reactive to surface proteins of T. vaginalis. The 6B8 mAb recognized a 44-kDa protein (TV44 by immunoblot analysis, and a full-length cDNA clone encoded a protein of 438 amino acids. Southern analysis revealed the gene (tv44 of T. vaginalis to be single copy. The tv44 gene was down-regulated at both the transcriptional and translational levels in iron-depleted trichomonads as well as in parasites after contact with immortalized MS-74 vaginal epithelial cells (VECs. Immunofluorescence on non-permeabilized organisms confirmed surface localization of TV44, and the intensity of fluorescence was reduced after parasite adherence to VECs. Lastly, an identical protein and gene were present in Tritrichomonas foetus and Trichomonas tenax. Conclusion This is the first report of a T. vaginalis gene (tv44 encoding a surface protein (TV44 reactive with an IgA mAb, and both gene and protein were conserved in human and bovine trichomonads. Further, TV44 is independently down-regulated in expression and surface placement by iron and contact with VECs. TV44 is another member of T. vaginalis genes that are regulated by at least two independent signaling mechanisms involving iron and contact with VECs.

  19. Electrical characterization and nanoscale surface morphology of optimized Ti/Al/Ta/Au ohmic contact for AlGaN/GaN HEMT.

    Science.gov (United States)

    Wang, Cong; Kim, Nam-Young

    2012-02-07

    Good ohmic contacts with low contact resistance, smooth surface morphology, and a well-defined edge profile are essential to ensure optimal device performances for the AlGaN/GaN high electron mobility transistors [HEMTs]. A tantalum [Ta] metal layer and an SiNx thin film were used for the first time as an effective diffusion barrier and encapsulation layer in the standard Ti/Al/metal/Au ohmic metallization scheme in order to obtain high quality ohmic contacts with a focus on the thickness of Ta and SiNx. It is found that the Ta thickness is the dominant factor affecting the contact resistance, while the SiNx thickness affects the surface morphology significantly. An optimized Ti/Al/Ta/Au ohmic contact including a 40-nm thick Ta barrier layer and a 50-nm thick SiNx encapsulation layer is preferred when compared with the other conventional ohmic contact stacks as it produces a low contact resistance of around 7.27 × 10-7 Ω·cm2 and an ultra-low nanoscale surface morphology with a root mean square deviation of around 10 nm. Results from the proposed study play an important role in obtaining excellent ohmic contact formation in the fabrication of AlGaN/GaN HEMTs.

  20. The contact binary VW Cephei revisited: surface activity and period variation

    Science.gov (United States)

    Mitnyan, T.; Bódi, A.; Szalai, T.; Vinkó, J.; Szatmáry, K.; Borkovits, T.; Bíró, B. I.; Hegedüs, T.; Vida, K.; Pál, A.

    2018-05-01

    Context. Despite the fact that VW Cephei is one of the most well-studied contact binaries in the literature, there is no fully consistent model available that can explain every observed property of this system. Aims: Our aims are to obtain new spectra along with photometric measurements, to analyze what kind of changes may have happened in the system in the past two decades, and to propose new ideas for explaining them. Methods: For the period analysis we determined ten new times of minima from our light curves, and constructed a new O-C diagram of the system. Radial velocities of the components were determined using the cross-correlation technique. The light curves and radial velocities were modeled simultaneously with the PHOEBE code. All observed spectra were compared to synthetic spectra and equivalent widths (EWs) of the Hα line were measured on their differences. Results: We re-determine the physical parameters of the system according to our new light curve and spectral models. We confirm that the primary component is more active than the secondary, and there is a correlation between spottedness and the chromospheric activity. We propose that the flip-flop phenomenon occurring on the primary component could be a possible explanation of the observed nature of the activity. To explain the period variation of VW Cep, we test two previously suggested scenarios: the presence of a fourth body in the system, and the Applegate-mechanism caused by periodic magnetic activity. We conclude that although none of these mechanisms can be ruled out entirely, the available data suggest that mass transfer with a slowly decreasing rate provides the most likely explanation for the period variation of VW Cep.

  1. Surface potential measurement on contact resistance of amorphous-InGaZnO thin film transistors by Kelvin probe force microscopy

    Science.gov (United States)

    Han, Zhiheng; Xu, Guangwei; Wang, Wei; Lu, Congyan; Lu, Nianduan; Ji, Zhuoyu; Li, Ling; Liu, Ming

    2016-07-01

    Contact resistance plays an important role in amorphous InGaZnO (a-IGZO) thin film transistors (TFTs). In this paper, the surface potential distributions along the channel have been measured by using Kelvin probe force microscopy (KPFM) on operating a-IGZO TFTs, and sharp potential drops at the edges of source and drain were observed. The source and drain contact resistances can be extracted by dividing sharp potential drops with the corresponding drain to source current. It is found that the contact resistances could not be neglected compared with the whole channel resistances in the a-IGZO TFT, and the contact resistances decrease remarkably with increasing gate biased voltage. Our results suggest that the contact resistances can be controlled by tuning the gate biased voltage. Moreover, a transition from gradual channel approximation to space charge region was observed through the surface potential map directly when TFT operating from linear regime to saturation regime.

  2. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-01-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  3. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  4. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 96 (FGE.96): Consideration of 88 flavouring substances considered by EFSA for which EU production volumes / anticipated production volumes have been submitted

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...

  5. The Unfolding MD Simulations of Cyclophilin: Analyzed by Surface Contact Networks and Their Associated Metrics

    Science.gov (United States)

    Roy, Sourav; Basu, Sankar; Dasgupta, Dipak; Bhattacharyya, Dhananjay; Banerjee, Rahul

    2015-01-01

    Currently, considerable interest exists with regard to the dissociation of close packed aminoacids within proteins, in the course of unfolding, which could result in either wet or dry moltenglobules. The progressive disjuncture of residues constituting the hydrophobic core ofcyclophilin from L. donovani (LdCyp) has been studied during the thermal unfolding of the molecule, by molecular dynamics simulations. LdCyp has been represented as a surface contactnetwork (SCN) based on the surface complementarity (Sm) of interacting residues within themolecular interior. The application of Sm to side chain packing within proteins make it a very sensitive indicator of subtle perturbations in packing, in the thermal unfolding of the protein. Network based metrics have been defined to track the sequential changes in the disintegration ofthe SCN spanning the hydrophobic core of LdCyp and these metrics prove to be highly sensitive compared to traditional metrics in indicating the increased conformational (and dynamical) flexibility in the network. These metrics have been applied to suggest criteria distinguishing DMG, WMG and transition state ensembles and to identify key residues involved in crucial conformational/topological events during the unfolding process. PMID:26545107

  6. Influence of semiconductor surface preparation on photoelectric properties of Al-Zn{sub 3}P{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mirowska, Nella [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)]. E-mail: nella.mirowska@pwr.wroc.pl; Misiewicz, Jan [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2006-06-15

    The Schottky barriers formed by Al on Zn{sub 3}P{sub 2} p-type crystals have been studied. Three types of crystals (monocrystal, large-grain crystal and polycrystal) were used for device fabrication. The samples were separated in two groups according to the type of structure and the methods of surface preparation. The samples from the first group were different in structure (monocrystal, large-grain crystal and polycrystals) but prepared in the same way. Three polycrystals with differently prepared surfaces were collected in the second group. Two samples from this group were also annealed in open air at 523 K for 24 h. Measurements of photovoltaic effect at room temperature were carried out to test the impact of surface preparation on photoelectric properties of Al-Zn{sub 3}P{sub 2} contacts. Substantial differences in shape and intensity of PV signal were observed depending on whether the surface of semiconductor was mechanically polished, chemically etched or/and heat treated. The height of potential barrier, {phi} {sub B}, and optical transitions in semiconductor were determined. The value of {phi} {sub B} changed from 0.747 to 0.767 eV for unheated samples and from 0.724 to 0.755 eV for the heated ones. The quality of semiconductor surface seems to have an essential influence on spectral characteristics of Al-Zn{sub 3}P{sub 2} junctions, especially in the case of polycrystals. It appeared that thorough preliminary mechanical polishing of crystals surface provides quite good photoelectric properties of Al-Zn{sub 3}P{sub 2} junctions.

  7. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 93, Revision 1 (FGE.93Rev1)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The two substances 5-ethyl-4-methyl-2-(2-methylpropyl)-thiazoline [FL-no: 15.130] and 5-ethyl-4-methyl-2...... and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances” based on the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all five substances...

  8. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 76, Revision 1 (FGE.76Rev1)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further...... by Industry for use as a flavouring substance in Europe and will therefore not be considered any further. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data...... as flavouring substances, as these substances could not be evaluated because of concern with respect to genotoxicity. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all 26 substances, the information is adequate....

  9. Is floral divergence sufficient to maintain species boundaries upon secondary contact in Mediterranean food-deceptive orchids?

    OpenAIRE

    Zitari, A; Scopece, G; Helal, A N; Widmer, A; Cozzolino, S

    2011-01-01

    Analyzing the processes that determine whether species boundaries are maintained on secondary contact may shed light on the early phase of speciation. In Anacamptis morio and Anacamptis longicornu, two Mediterranean orchid sister-species, we used molecular and morphological analyses, together with estimates of pollination success and experimental crosses, to assess whether floral isolation can shelter the species' genomes from genetic admixture on secondary contact. We found substantial genet...

  10. Importance of the Direct Contact of Amorphous Solid Particles with the Surface of Monolayers for the Transepithelial Permeation of Curcumin.

    Science.gov (United States)

    Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-01

    The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.

  11. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  12. Development of a cost effective surface-patterned transparent conductive coating as top-contact of light emitting diodes

    International Nuclear Information System (INIS)

    Haldar, Arpita; Bera, Susanta; Jana, Sunirmal; Bhattacharya, Kallol; Chakraborty, Rajib

    2014-01-01

    Sol-gel process has been used to form indium zinc oxide films using an optimized combination of zinc to indium concentration in the precursor solutions. Different structures, like one (1D) and two-dimensional (2D) gratings and diffractive optical elements (DOEs) in the form of Fresnel lens are fabricated on the film surface of proposed top metal contact of LED by imprint soft lithography technique. These structures can enhance the LED's light extraction efficiency (LEE) or can shape the output beam pattern, respectively. Several characterizations are done to analyze the material and structural properties of the films. The presence of 1D and 2D gratings as well as DOEs is confirmed from field emission scanning electron and atomic force microscopes analyses. Although, X-ray diffraction shows amorphous nature of the film, but transmission electron microscopy study shows that it is nano crystalline in nature having fine particles (∼8 nm) of hexagonal ZnO. Shrinkage behaviour of gratings as a function of curing temperature is explained by Fourier transform infra-red spectra and thermo gravimetric-differential thermal analysis. The visible transmission and sheet resistance of the sample are found comparable to tin doped indium oxide (ITO). Therefore, the film can compete as low cost substitute of ITO as top metal contact of LEDs

  13. Surface Functionalization of Polyethersulfone Membrane with Quaternary Ammonium Salts for Contact-Active Antibacterial and Anti-Biofouling Properties

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2016-05-01

    Full Text Available Biofilm is a significant cause for membrane fouling. Antibacterial-coated surfaces can inhibit biofilm formation by killing bacteria. In this study, polyethersulfone (PES microfiltration membrane was photografted by four antibiotic quaternary ammonium compounds (QACs separately, which were synthesized from dimethylaminoethyl methacrylate (DMAEMA by quaternization with butyl bromide (BB, octyl bromide (OB, dodecyl bromide (DB, or hexadecyl bromide (HB. XPS, ATR-FTIR, and SEM were used to confirm the surfaces’ composition and morphology. After modification, the pores on PES-g-DMAEMA-BB and PES-g-DMAEMA-OB were blocked, while PES-g-DMAEMA-DB and PES-g-DMAEMA-HB were retained. We supposed that DMAEMA-BB and DMAEMA-OB aggregated on the membrane surface due to the activities of intermolecular or intramolecular hydrogen bonds. Bacteria testing found the antibacterial activities of the membranes increased with the length of the substituted alkyl chain. Correspondingly, little bacteria were observed on PES-g-DMAEMA-DB and PES-g-DMAEMA-HB by SEM. The antifouling properties were investigated by filtration of a solution of Escherichia coli. Compared with the initial membrane, PES-g-DMAEMA-DB and PES-g-DMAEMA-HB showed excellent anti-biofouling performance with higher relative flux recovery (RFR of 88.3% and 92.7%, respectively. Thus, surface functionalization of the PES membrane with QACs can prevent bacteria adhesion and improve the anti-biofouling activity by the contact-active antibacterial property.

  14. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    Science.gov (United States)

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  15. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface

    Directory of Open Access Journals (Sweden)

    Andreas Hütten

    2013-09-01

    Full Text Available Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

  16. High fidelity nanopatterning of proteins onto well-defined surfaces through subtractive contact printing.

    Science.gov (United States)

    García, José R; Singh, Ankur; García, Andrés J

    2014-01-01

    In the pursuit to develop enhanced technologies for cellular bioassays as well as understand single cell interactions with its underlying substrate, the field of biotechnology has extensively utilized lithographic techniques to spatially pattern proteins onto surfaces in user-defined geometries. Microcontact printing (μCP) remains an incredibly useful patterning method due to its inexpensive nature, scalability, and the lack of considerable use of specialized clean room equipment. However, as new technologies emerge that necessitate various nano-sized areas of deposited proteins, traditional μCP methods may not be able to supply users with the needed resolution size. Recently, our group developed a modified "subtractive μCP" method which still retains many of the benefits offered by conventional μCP. Using this technique, we have been able to reach resolution sizes of fibronectin as small as 250 nm in largely spaced arrays for cell culture. In this communication, we present a detailed description of our subtractive μCP procedure that expands on many of the little tips and tricks that together make this procedure an easy and effective method for controlling protein patterning. © 2014 Elsevier Inc. All rights reserved.

  17. Identification of Control Parameters for Brass Player’s Embouchure by Measuring Contact Pressure on the Teeth Buccal Surface

    Science.gov (United States)

    Kourakata, Itaru; Moriyama, Kozo; Hara, Toshiaki

    For the technical improvement for brass instrument players it is important to obtain the detailed control parameters for embouchure building. While many investigators have reported the preliminary data on the muscle behavior, the precise aspects are unrevealed so far. The purpose of the present paper is to study dynamic perioral muscle behavior of French horn players and to investigate their lip valve function by measuring the contact pressure on teeth buccal surface during playing. It was shown from the experimental results that the advanced players contracted depressor angulioris and levator angulioris especially for high tone playing. It is considered that the combined contraction by these muscles contributes to forming smaller lip aperture being suitable to produce higher tones. Inversely a strong contraction of m. buccinator, which is widely believed to work to give hard tension to player’s lip, was observed insignificantly in the advanced players.

  18. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  19. Smart structure with elastomeric contact surface for prosthetic fingertip sensitivity development

    Science.gov (United States)

    Gu, Chunxin; Liu, Weiting; Yu, Ping; Cheng, Xiaoying; Fu, Xin

    2017-09-01

    Current flexible/compliant tactile sensors suffer from low sensitivity and high hysteresis introduced by the essential viscosity characteristic of soft material, either used as compliant sensing element or as flexible coverage. To overcome these disadvantages, this paper focuses on developing a tactile sensor with a smart hybrid structure to obtain comprehensive properties in terms of size, compliance, robustness and pressure sensing ability so as to meet the requirements of limited space applications such as prosthetic fingertips. Employing micro-fabricated tiny silicon-based pressure die as the sensing element, it is easy to have both small size and good mechanical performance. To protect it from potential damage and maintain the compliant surface, a rigid base and a soft layer form a sealed chamber and encapsulate the fixed die together with fluid. The fluid serves as highly efficient pressure propagation media of mechanical stimulus from the compliant skin to the pressure die without any hazard impacting the vulnerable connecting wires. To understand the pressure transmission mechanism, a simplified and concise analytic model of a spring system is proposed. Using easy fabrication technologies, a prototype of a 3 × 3 sensor array with total dimensions of 14 mm × 14 mm × 6.5 mm was developed. Based on the quasi-linear relationship between fluid volume and pressure, finite element modeling was developed to analyze the chamber deformation and pressure output of the sensor cell. Experimental tests of the sensor prototype were implemented. The results showed that the sensor cell had good sensing performance with sensitivity of 19.9 mV N-1, linearity of 0.998, repeatability error of 3.41%, and hysteresis error of 3.34%. The force sensing range was from 5 mN to 1.6 N.

  20. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    Science.gov (United States)

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2018-04-05

    Besides the Wenzel state, liquid droplets on micro/nanostructured surfaces can stay in the Cassie state and consequently exhibit intriguing characteristics such as a large contact angle, small contact angle hysteresis and exceptional mobility. Here we report molecular dynamics (MD) simulations of the wetting dynamics of Cassie-state water droplets on nanostructured ultrahydrophobic surfaces with an emphasis on the genesis of the contact line friction (CLF). From an ab initio perspective, CLF can be ascribed to the collective effect of solid-liquid retarding and viscous damping. Solid-liquid retarding is related to the work of adhesion, whereas viscous damping arises from the viscous force exerted on the liquid molecules within the three-phase (liquid/vapor/solid) contact zone. In this work, a universal scaling law is derived to generalize the CLF on nanostructured ultrahydrophobic surfaces. With the decreasing fraction of solid-liquid contact (i.e., the solid fraction), CLF for a Cassie-state droplet gets enhanced due to the fact that viscous damping is counter-intuitively intensified while solid-liquid retarding remains unchanged. Nevertheless, the overall friction between a Cassie-state droplet and the structured surface is indeed reduced since the air cushion formed in the interstices of the surface roughness underneath the Cassie-state droplet applies negligible resistance to the contact line. Our results have revealed the genesis of CLF from an ab initio perspective, demonstrated the effects of surface structures on a moving contact line and justified the critical role of CLF in the analysis of wetting-related situations.

  2. In vitro toxicity assessment of extracts derived from sol-gel coatings on polycarbonate intended to be used in food contact applications.

    Science.gov (United States)

    Séverin, Isabelle; Lionti, Krystelle; Dahbi, Laurence; Loriot, Catherine; Toury, Bérangère; Chagnon, Marie-Christine

    2016-07-01

    Polycarbonate is a widely used polymer in food contact applications all around the world. However, due to the potential release of Bisphenol A (BPA) during repeated washing cycles, its use becomes compromised as BPA is known for being an endocrine disruptor for rodents. In order to tackle this issue, sol-gel coatings based on organoalkoxysiloxane were developed on PC, to act as a physical barrier. To this end, two sol-gel systems based on tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES) and 3-glycidyloxypropyltriethoxysilane (GPTES), three common sol-gel precursors, were prepared. The coatings derived from the latter two systems were then studied with regards to their potential toxicity in vitro. Migration tests were performed in food simulants, and the maximal migration was obtained in ethanol 10% (v/v) for one system and in isooctane for the other one. In vitro genotoxicity was assessed with the Ames test (OECD 471) and the micronucleus assay (OECD 487), and no genotoxic effect was observed. Moreover, the estrogenic activity of the extracts was studied with a transcriptional activation assay using transient transfection in human cells; none of the extracts was found estrogenic. These negative in vitro results are highly promising for the future use of these new barrier coating formulations onto food contact materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A method to evaluate the effect of contact with excipients on the surface crystallization of amorphous drugs.

    Science.gov (United States)

    Zhang, Si-Wei; Yu, Lian; Huang, Jun; Hussain, Munir A; Derdour, Lotfi; Qian, Feng; de Villiers, Melgardt M

    2014-12-01

    Amorphous drugs are used to improve the solubility, dissolution, and bioavailability of drugs. However, these metastable forms of drugs can transform into more stable, less soluble, crystalline counterparts. This study reports a method for evaluating the effect of commonly used excipients on the surface crystallization of amorphous drugs and its application to two model amorphous compounds, nifedipine and indomethacin. In this method, amorphous samples of the drugs were covered by excipients and stored in controlled environments. An inverted light microscope was used to measure in real time the rates of surface crystal nucleation and growth. For nifedipine, vacuum-dried microcrystalline cellulose and lactose monohydrate increased the nucleation rate of the β polymorph from two to five times when samples were stored in a desiccator, while D-mannitol and magnesium stearate increased the nucleation rate 50 times. At 50% relative humidity, the nucleation rates were further increased, suggesting that moisture played an important role in the crystallization caused by the excipients. The effect of excipients on the crystal growth rate was not significant, suggesting that contact with excipients influences the physical stability of amorphous nifedipine mainly through the effect on crystal nucleation. This effect seems to be drug specific because for two polymorphs of indomethacin, no significant change in the nucleation rate was observed under the excipients.

  4. Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment.

    Science.gov (United States)

    Muncke, Jane

    2011-10-01

    Food contact materials (FCM) are an underestimated source of chemical food contaminants and a potentially relevant route of human exposure to endocrine disrupting chemicals (EDCs). Quantifying the exposure of the general population to substances from FCM relies on estimates of food consumption and leaching into food. Recent studies using polycarbonate plastics show that food simulants do not always predict worst-case leaching of bisphenol A, a common FCM substance. Also, exposure of children to FCM substances is not always realistically predicted using the common conventions and thus possibly misjudged. Further, the exposure of the whole population to substances leaching into dry foods is underestimated. Consumers are exposed to low levels of substances from FCM across their entire lives. Effects of these compounds currently are assessed with a focus on mutagenicity and genotoxicity. This approach however neglects integrating recent new toxicological findings, like endocrine disruption, mixture toxicity, and developmental toxicity. According to these new toxicology paradigms women of childbearing age and during pregnancy are a new sensitive population group requiring more attention. Furthermore, in overweight and obese persons a change in the metabolism of xenobiotics is observed, possibly implying that this group of consumers is insufficiently protected by current risk assessment practice. Innovations in FCM risk assessment should therefore include routine testing for EDCs and an assessment of the whole migrate toxicity of a food packaging, taking into account all sensitive population groups. In this article I focus on recent issues of interest concerning either exposure to or effects of FCM-related substances. Further, I review the use of benzophenones and organotins, two groups of known or suspected EDCs, in FCM authorized in the US and EU. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Influence of different sanitizers on food contaminant bacteria: effect of exposure temperature, contact time, and product concentration

    Directory of Open Access Journals (Sweden)

    Cezar Augusto Beltrame

    2012-06-01

    Full Text Available The efficiency of four Sanitizers - peracetic acid, chlorhexidine, quaternary ammonium, and organic acids - was tested in this work using different bacteria recognized as a problem to meat industry, Salmonella sp., S. aureus, E. coli and L. monocytogenes. The effects of sanitizer concentration (0.2, 0.5, 0.6, 1.0, 1.1 and 1.4%, at different temperatures (10 and 45 °C and contact time (2, 10, 15, 18 and 25 minutes were evaluated. Tests in an industrial plant were also carried out considering previously obtained results. In a general way, peracetic acid presented higher efficiencies using low concentration (0.2% and contact time (2 minutes at 10 °C. The tests performed in industrial scale showed that peracetic acid presented a good performance in concentration and contact time lower than that suggested by the suppliers. The use of chlorhexidine and quaternary ammonium led to reasonable results at the indicated conditions, and organic acids were ineffective under concentration and contact time higher than those indicated by the suppliers in relation to Staphylococcus aureus. The results, in general, show that the choice for the most adequate sanitizer depends on the microorganism contaminant, the time available for sanitizer application, and also on the process cost.

  6. Receding and advancing (CO_2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity

    International Nuclear Information System (INIS)

    Al-Yaseri, Ahmed Z.; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2016-01-01

    Highlights: • (Water + CO_2) contact angle on quartz increases substantially with pressure and salinity. • (Water + CO_2) contact angle on quartz increases slightly with temperature. • Surface roughness has only a minor influence on (water + CO_2 + quartz) contact angles. - Abstract: The wetting characteristics of CO_2 in rock are of vital importance in carbon geo-storage as they determine fluid dynamics and storage capacities. However, the current literature data has a high uncertainty, which translates into uncertain predictions in terms of containment security and economic project feasibility. We thus measured contact angles for the CO_2/water/quartz system at relevant reservoir conditions, and analysed the effects of pressure (0.1 to 20) MPa, temperature (296 to 343) K, surface roughness (56 to 1300) nm, salt type (NaCl, CaCl_2, and MgCl_2) and brine salinities (0 to 35) wt%. Water contact angles decreased with surface roughness, but increased with pressure, temperature, and brine salinity. Overall the contact angles were significantly increased at storage conditions (∼50°) when compared to ambient conditions (always 0°). Consequently quartz is weakly water-wet (not completely water-wet) at storage conditions, and structural and residual trapping capacities are reduced accordingly.

  7. Detection of microbial biofilms on food processing surfaces: Hyperspectral fluorescence imaging study

    Science.gov (United States)

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this inve...

  8. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  9. 21 CFR 186.1 - Substances added indirectly to human food affirmed as generally recognized as safe (GRAS).

    Science.gov (United States)

    2010-04-01

    ... ingredient, one or more of these limited conditions of use, which may include the category of food-contact...(s), it shall be used in food-contact surfaces only within such limitation(s), including the category... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Substances added indirectly to human food affirmed...

  10. Assessment of interplay between UV wavelengths, material surfaces and food residues in open surface hygiene validation

    DEFF Research Database (Denmark)

    Abban, Stephen; Jakobsen, Mogens; Jespersen, Lene

    2014-01-01

    The use of UV-visible radiation for detecting invisible residue on different surfaces as a means of validating cleanliness was investigated. Wavelengths at 365, 395, 435, 445, 470 and 490 nm from a monochromator were used to detect residues of beef, chicken, apple, mango and skim milk. These were....... It is important when UV-systems are used as real-time tools for assessing cleanliness of surfaces that the surface materials being illuminated are taken into account in the choice of lamp wavelength, in addition to expected residue. This will ensure higher confidence in results during the use of UV-light for real...

  11. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. © 2014 Institute of Food Technologists®

  12. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  13. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 310 (FGE.310): Rebaudioside A from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate rebaudioside A [FL-no: 16.113], a steviol glycoside. The substance was not considered to have genotoxic potential. Since a comprehensive and adequate...... toxicological database, including human studies, is available for steviol glycosides, the Panel based its evaluation of rebaudioside A on a comparison of the ADI of 4 mg/kg bw, expressed as steviol, established by EFSA, with the estimated dietary exposure figures based on the MSDI and mTAMDI approaches....... The Panel concluded that rebaudioside A [FL-no: 16.113] would not give rise to safety concerns at the estimated level of intake arising from its use as flavouring substance....

  14. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 303 (FGE.303): Spilanthol from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Scientific Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) was asked to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs in the Member States. In particular...... of the flavouring substances in Europe. However, when the Panel examined the information provided by the European Flavouring Industry on the use levels in various foods, it appeared obvious that the MSDI approach in a number of cases would grossly underestimate the intake by regular consumers of products flavoured...... whether the conclusion for the candidate substance can be applied to the material of commerce, it is necessary to consider the available specifications. Adequate specifications including complete purity criteria and identity for the material of commerce have been provided for the flavouring substance...

  15. Barrier function and natural moisturizing factor levels after cumulative exposure to a fruit-derived organic acid and a detergent: different outcomes in atopic and healthy skin and relevance for occupational contact dermatitis in the food industry

    NARCIS (Netherlands)

    Angelova-Fischer, Irena; Hoek, Anne-Karin; Dapic, Irena; Jakasa, Ivone; Kezic, Sanja; Fischer, Tobias W.; Zillikens, Detlef

    2015-01-01

    Fruit-derived organic compounds and detergents are relevant exposure factors for occupational contact dermatitis in the food industry. Although individuals with atopic dermatitis (AD) are at risk for development of occupational contact dermatitis, there have been no controlled studies on the effects

  16. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets.

    Science.gov (United States)

    McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios

    2017-09-20

    The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.

  17. Suppression of material transfer at contacting surfaces: the effect of adsorbates on Al/TiN and Cu/diamond interfaces from first-principles calculations

    Science.gov (United States)

    Feldbauer, Gregor; Wolloch, Michael; Bedolla, Pedro O.; Redinger, Josef; Vernes, András; Mohn, Peter

    2018-03-01

    The effect of monolayers of oxygen (O) and hydrogen (H) on the possibility of material transfer at aluminium/titanium nitride (Al/TiN) and copper/diamond (Cu/Cdia) interfaces, respectively, were investigated within the framework of density functional theory (DFT). To this end the approach, contact, and subsequent separation of two atomically flat surfaces consisting of the aforementioned pairs of materials were simulated. These calculations were performed for the clean as well as oxygenated and hydrogenated Al and Cdia surfaces, respectively. Various contact configurations were considered by studying several lateral arrangements of the involved surfaces at the interface. Material transfer is typically possible at interfaces between the investigated clean surfaces; however, the addition of O to the Al and H to the Cdia surfaces was found to hinder material transfer. This passivation occurs because of a significant reduction of the adhesion energy at the examined interfaces, which can be explained by the distinct bonding situations.

  18. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study.

    Science.gov (United States)

    Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng

    2011-09-27

    We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society

  19. Is floral divergence sufficient to maintain species boundaries upon secondary contact in Mediterranean food-deceptive orchids?

    Science.gov (United States)

    Zitari, A; Scopece, G; Helal, A N; Widmer, A; Cozzolino, S

    2012-01-01

    Analyzing the processes that determine whether species boundaries are maintained on secondary contact may shed light on the early phase of speciation. In Anacamptis morio and Anacamptis longicornu, two Mediterranean orchid sister-species, we used molecular and morphological analyses, together with estimates of pollination success and experimental crosses, to assess whether floral isolation can shelter the species' genomes from genetic admixture on secondary contact. We found substantial genetic and morphological homogenization in sympatric populations in combination with an apparent lack of postmating isolation. We further detected asymmetric introgression in the sympatric populations and an imbalance in cytotype representation, which may be due either to a difference in flowering phenology or else be a consequence of cytonuclear incompatibilities. Estimates of genetic clines for markers across sympatric zones revealed markers that significantly deviated from neutral expectations. We observed a significant correlation between spur length and reproductive success in sympatric populations, which may suggest that directional selection is the main cause of morphological differentiation in this species pair. Our results suggest that allopatric divergence has not led to the evolution of sufficient reproductive isolation to prevent genomic admixture on secondary contact in this orchid species pair. PMID:21792224

  20. Contact pin-printing of albumin-fungicide conjugate for silicon nitride-based sensors biofunctionalization: Multi-technique surface analysis for optimum immunoassay performance

    Energy Technology Data Exchange (ETDEWEB)

    Gajos, Katarzyna, E-mail: katarzyna.gajos@doctoral.uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Budkowski, Andrzej [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Tsialla, Zoi; Petrou, Panagiota [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St., Aghia Paraksevi 15310, Athens (Greece); Awsiuk, Kamil; Dąbczyński, Paweł [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Rysz, Jakub [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza, 11, 30-348 Kraków (Poland); Misiakos, Konstantinos; Raptis, Ioannis [Department of Microelectronics, Institute of Nanoscience and Nanotechnology, NCSR Demokritos, P. Grigoriou & Neapoleos St., Aghia Paraksevi 15310, Athens (Greece); Kakabakos, Sotirios [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St., Aghia Paraksevi 15310, Athens (Greece)

    2017-07-15

    Highlights: • Contact pin-printing of overlapping probe spots and spotting by hand are compared. • Contact pin-printing favors probe immobilization with two-fold higher surface density. • Incomplete monolayer develops to bilayer as printing solution concentration increases. • Blocking molecules complete probe monolayer but reduce probe bilayer. • Surface immunoreaction increases with probe concentration in printing solution. - Abstract: Mass fabrication of integrated biosensors on silicon chips is facilitated by contact pin-printing, applied for biofunctionalization of individual Si{sub 3}N{sub 4}-based transducers at wafer-scale. To optimize the biofunctionalization for immunochemical (competitive) detection of fungicide thiabendazole (TBZ), Si{sub 3}N{sub 4} surfaces are modified with (3-aminopropyl)triethoxysilane and examined after: immobilization of BSA-TBZ conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin (BSA), and immunoreaction with a mouse monoclonal antibody against TBZ. Nanostructure, surface density, probe composition and coverage uniformity of protein layers are evaluated with Atomic Force Microscopy, Spectroscopic Ellipsometry, Time-of-Flight Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Contact pin-printing of overlapping probe spots is compared with hand spotted areas. Contact pin-printing resulted in two-fold increase of immobilized probe surface density as compared to hand spotting. Regarding BSA-TBZ immobilization, an incomplete monolayer develops into a bilayer as the concentration of BSA-TBZ molecules in the printing solution increases from 25 to 100 μg/mL. Upon blocking, however, a complete protein monolayer is formed for all the BSA-TBZ concentrations used. Free surface sites are filled with BSA for low surface coverage with BSA-TBZ, whereas loosely bound BSA-TBZ molecules are removed from the BSA-TBZ bilayer. As a consequence immunoreaction efficiency

  1. Simultaneous determination of 11 fluorescent whitening agents in food-contact paper and board by ion-pairing high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Jiang, Dingguo; Chen, Lisong; Fu, Wusheng; Qiu, Hanquan

    2015-02-01

    4,4'-Diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents (DSD-FWAs) are prohibited in food-contact paper and board in many countries. In this work, a reliable high-performance liquid chromatography method was developed for the simultaneous determination of 11 common DSD-FWAs in paper material. Sample preparation and extraction as well as chromatographic separation of multicomponent DSD-FWAs were successfully optimized. DSD-FWAs in prepared samples were ultrasonically extracted with acetonitrile/water/triethylamine (40:60:1, v/v/v), separated on the C(18) column with the mobile phase containing tetrabutylammonium bromide, and then detected by a fluorescence detector. The limits of detection were 0.12-0.24 mg/kg, and the calibration curves showed the linear correlation (R(2) ≥ 0.9994) within the range of 8.0-100 ng/mL, which was equivalent to the range of 0.80-10 mg/kg in the sample. The average recoveries and the RSDs were 81-106% and 2-9% at two fortification levels (1.0 and 5.0 mg/kg) in paper bowls, respectively. The successful determination of 11 DSD-FWAs in food-contact paper and board obtained from local markets indicated that the newly developed method was rapid, accurate, and highly selective. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Probing chiral superconductivity in Sr_2RuO_4 underneath the surface by point contact measurements

    International Nuclear Information System (INIS)

    Wang, He; Luo, Jiawei; Lou, Weijian

    2017-01-01

    Sr2RuO4 (SRO) is the prime candidate for a chiral p-wave superconductor with critical temperature T_c(SRO)∼1.5 K. Chiral domains with opposite chiralities p_x±ip_y have been proposed, but are yet to be confirmed. We measure the field dependence of the point contact (PC) resistance between a tungsten