WorldWideScience

Sample records for foliar nitrogen concentration

  1. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela . Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  2. Importance of Foliar Nitrogen Concentration to Predict Forest Productivity in the Mid-Atlantic Region

    Science.gov (United States)

    Yude Pan; John Hom; Jennifer Jenkins; Richard Birdsey

    2004-01-01

    To assess what difference it might make to include spatially defined estimates of foliar nitrogen in the regional application of a forest ecosystem model (PnET-II), we composed model predictions of wood production from extensive ground-based forest inventory analysis data across the Mid-Atlantic region. Spatial variation in foliar N concentration was assigned based on...

  3. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    foliar phosphorus (P) concentrations. Together, these results suggest that warm, dry ecosystems have the highest N availability, while plants with high N concentrations, on average, occupy sites with higher N availability than plants with low N concentrations. Global-scale comparisons of other components...... of the N cycle are still required for better mechanistic understanding of the determinants of variation in foliar d15N and ultimately global patterns in N cycling....

  4. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  5. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning.

    Science.gov (United States)

    Ma, Ling; Rao, Xingquan; Lu, Ping; Bai, Shahla Hosseini; Xu, Zhihong; Chen, Xiaoyang; Blumfield, Timothy; Xie, Jun

    2015-07-01

    Eucalyptus spp. is a dominant tree genus in Australia and most Eucalyptus spp. are canopy dominant species. In Australian natural forests, Eucalyptus spp. commonly are associated with understorey legumes which play a crucial role for ecological restoration owing to their nitrogen (N) fixing ability for replenishing the soil N lost after frequent prescribed burning. This study aimed to explore to what extent physiological responses of these species differ 7 and 12 years after last fire. Two most common understorey Acacia spp., Acacia leiocalyx and A. disparrima, as well as one non-leguminous Eucalyptus resinifera, were studied due to their dominance in the forest. Both A. leiocalyx and A. disparrima showed higher carbon (C) assimilation capacity, maximum photosynthetic capacity, and moderate foliar C/N ratio compared with E. resinifera. A. leiocalyx showed various advantages compared to A. disparrima such as higher photosynthetic capacity, adaptation to wider light range and higher foliar total N (TNmass). A. leiocalyx also relied on N2-fixing ability for longer time compared to A. disparrima. The results suggested that the two Acacia spp. were more beneficial to C and N cycles for the post burning ecosystem than the non-N2-fixing species E. resinifera. A. leiocalyx had greater contribution to complementing soil N cycle long after burning compared to A. disparrima.

  6. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest?

    Science.gov (United States)

    Alvarez-Clare, Silvia; Mack, Michelle C

    2015-01-01

    Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation--as defined mechanistically by NPP responses to fertilization--based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9% higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community.

  7. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest?

    Directory of Open Access Journals (Sweden)

    Silvia Alvarez-Clare

    Full Text Available Understanding nutrient limitation of net primary productivity (NPP is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P] and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation--as defined mechanistically by NPP responses to fertilization--based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba had 9% higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community.

  8. Estimating foliar nitrogen in Eucalyptus using vegetation indexes

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Ramalho de Oliveira

    Full Text Available ABSTRACT Nitrogen (N has commonly been applied in Eucalyptus stands in Brazil and it has a direct relation with biomass production and chlorophyll content. Foliar N concentrations are used to diagnose soil and plant fertility levels and to develop N fertilizer application rates. Normally, foliar N is obtained using destructive methods, but indirect analyses using Vegetation Indexes (VIs may be possible. The aim of this work was to evaluate VIs to estimate foliar N concentration in three Eucalyptus clones. Lower crown leaves of three clonal Eucalyptus plantations (25 months old were classified into five color patterns using the Munsell Plant Tissue Color Chart. For each color, N concentration was determined by the Kjeldahl method and foliar reflectance was measured using a CI-710 Miniature Leaf Spectrometer. Foliar reflectance data were used to obtain the VIs and the VIs were used to estimate N concentrations. In the visible region, the relationship between N concentration and reflectance percentage was negative. The highest correlations between VIs and N concentrations were obtained by the Inflection Point Position (IPP, r = 0.97, Normalized Difference Red-Edge (reNDVI, r = 0.97 and Modified Red-Edge Normalized Difference Vegetation Index (mNDI, r = 0.97. Vegetation indexes on the red edge region provided the most accurate estimates of foliar N concentration. The reNDVI index provided the best N concentration estimates in leaves of different colors of Eucalyptus urophylla × grandis and Eucalyptus urophylla × urophylla (R2 = 0.97 and RMSE = 0.91 g kg−1.

  9. Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements.

    Science.gov (United States)

    Metali, Faizah; Abu Salim, Kamariah; Tennakoon, Kushan; Burslem, David F R P

    2015-01-01

    Foliar elemental concentrations are predictors of life-history variation and contribute to spatial patterns in biogeochemical cycling. We examined the contributions of habitat association, local soil environment, and elemental interactions to variation in foliar elemental concentrations in tropical trees using methods that account for phylogeny. We sampled top-soils and leaves of 58 tropical trees in heath forest (HF) on nutrient-poor sand and mixed dipterocarp forest (MDF) on nutrient-rich clay soils. A phylogenetic generalized least squares method was used to determine how foliar nutrient and aluminium (Al) concentrations varied in response to habitat distribution, soil chemistry and other elemental concentrations. Foliar nitrogen (N) and Al concentrations were greater for specialists of MDF than for specialists of HF, while foliar calcium (Ca) concentrations showed the opposite trend. Foliar magnesium (Mg) concentrations were lower for generalists than for MDF specialists. Foliar element concentrations were correlated with fine-scale variation in soil chemistry in phylogenetically controlled analyses across species, but there was limited within-species plasticity in foliar elemental concentrations. Among Al accumulators, foliar Al concentration was positively associated with foliar Ca and Mg concentrations, and negatively associated with foliar phosphorus (P) concentrations. The Al-accumulation trait and relationships between foliar elemental and Al concentrations may contribute to species habitat partitioning and ecosystem-level differences in biogeochemical cycles. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe

    Science.gov (United States)

    Lü, Xiao-Tao; Reed, Sasha C.; Hou, Shuang-Li; Hu, Yan-Yu; Wei, Hai-Wei; Lü, Fu-Mei; Cui, Qiang; Han, Xing Guo

    2017-01-01

    Plant nutrient concentrations and stoichiometry drive fundamental ecosystem processes, with important implications for primary production, diversity, and ecosystem sustainability. While a range of evidence exists regarding how plant nutrients vary across spatial scales, our understanding of their temporal variation remains less well understood. Nevertheless, we know nutrients regulate plant function across time, and that important temporal controls could strongly interact with environmental change. Here, we report results from a 3-year assessment of inter-annual changes of foliar nitrogen (N) and phosphorus (P) concentrations and stoichiometry in three dominant grasses in response to N deposition and prescribed fire in a temperate steppe of northern China. Foliar N and P concentrations and their ratios varied greatly among years, with this temporal variation strongly related to inter-annual variation in precipitation. Nitrogen deposition significantly increased foliar N concentrations and N:P ratios in all species, while fire significantly altered foliar N and P concentrations but had no significant impacts on N:P ratios. Generally, N addition enhanced the temporal stability of foliar N and decreased that of foliar P and of N:P ratios. Our results indicate that plant nutrient status and response to environmental change are temporally dynamic and that there are differential effects on the interactions between environmental change drivers and timing for different nutrients. These responses have important implications for consideration of global change effects on plant community structure and function, management strategies, and the modeling of biogeochemical cycles under global change scenarios.

  11. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Garde-Cerdán, Teresa; Portu, Javier; Moreno-Simunovic, Yerko; Martínez-Gil, Ana M

    2017-06-01

    Wine quality greatly depends on its chemical composition. Among the most important wine chemical compounds, flavonoids are the major contributors to wine organoleptic properties while amino acids have a huge impact on fermentation development and wine volatile profile. Likewise, nitrogen applications are known to have an impact on wine composition. Therefore, the aim of this work was to study the effects of foliar nitrogen applications on wine flavonoid and amino acid composition. The experiment involved five foliar nitrogen applications at veraison time: urea (Ur), urea plus sulphur (Ur+S), arginine (Arg), and two commercial fertilizers Nutrimyr Thiols (NT) and Basfoliar Algae (BA). The results showed that nitrogen foliar treatments decreased wine flavonoid content although the effect varied according to each treatment. This could be related to a low vine nitrogen requirement, since must yeast assimilable nitrogen (YAN) was above acceptable threshold values for all samples. With regard to wine amino acid content, all treatments except for Ur increased its values after the applications. Finally, foliar nitrogen treatments greatly influenced wine composition. Among them, urea seemed to exert the most negative effect on both phenolics and amino acids. In addition, an inverse relationship between wine amino acid content and flavonol concentration was exhibited. Copyright © 2017. Published by Elsevier Ltd.

  12. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  13. Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands.

    Science.gov (United States)

    McLauchlan, Kendra K; Ferguson, Carolyn J; Wilson, Iris E; Ocheltree, Troy W; Craine, Joseph M

    2010-09-01

    *Humans are increasing both the deposition of reactive nitrogen (N) and concentrations of atmospheric CO(2) on Earth, but the combined effects on terrestrial ecosystems are not clear. In the absence of historical records, it is difficult to know if N availability is currently increasing or decreasing on regional scales. *To determine the nature and timing of past changes in grassland ecosystem dynamics, we measured the composition of stable carbon (C) and N isotopes in leaf tissue from 545 herbarium specimens of 24 vascular plant species collected in Kansas, USA from 1876 to 2008. We also parameterized a simple model of the terrestrial N cycle coupled with a stable isotope simulator to constrain processes consistent with observed patterns. *A prolonged decline in foliar N concentrations began in 1926, while a prolonged decline in foliar delta(15)N values began in 1940. Changes in the difference between foliar and atmospheric C isotopes reveal slightly increased photosynthetic water use efficiency since 1876. *The declines in foliar N concentrations and foliar delta(15)N suggest declining N availability in these grasslands during the 20th century despite decades of anthropogenic N deposition. Our results are consistent with progressive-nitrogen-limitation-type hypotheses where declines in N availability are driven by increased ecosystem N storage as a result of increased atmospheric CO(2).

  14. Do foliar endophytic bacteria fix nitrogen?

    Science.gov (United States)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible

  15. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2

    Science.gov (United States)

    Haley F. Wicklein; Scott V. Ollinger; Mary E. Martin; David Y. Hollinger; Lucie C. Lepine; Michelle C. Day; Megan K. Bartlett; Andrew D. Richardson; Richard J. Norby

    2012-01-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen-albedo relationship have not been established, and it is unknown whether factors affecting...

  16. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages.

    Science.gov (United States)

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María

    2017-06-01

    Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Genetic and environmental variation of foliar nutrient concentrations and strobilus initiation in fertilized loblolly pine seed orchard ramets.

    Science.gov (United States)

    Schmidtling, R. C.

    1995-01-01

    Fertilizer was applied annually for eight years to individual ramets in a loblolly pine (Pinus taeda L.) seed orchard at rates ranging from 0 to 448 kg nitrogen (N) ha(-1) year(-1). Clonal effects accounted for a major source of variation in both flowering and foliar nutrient concentrations. Foliar N concentrations were generally correlated with the intensity of fertilizer application, but were only weakly correlated with flowering. There was a long-term trend for increasing concentrations of foliar manganese (Mn) and boron (B), and decreasing concentrations of magnesium (Mg) and zinc (Zn) with increasing fertilizer rates, although only the differences in Mn concentration were statistically significant. Fertilizer had little effect on the concentrations of other foliar macro- or micronutrients during the study. The optimum fertilizer rate for flowering was 224 kg N ha(-1) year(-1).

  18. Effect of Nutrient Solution Concentration, Time and Frequency of Foliar Application on Growth of Leaf and Daughter Corms of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    R Khorasani

    2015-07-01

    Full Text Available In order to investigate the effect of different levels of nutrient solution concentration and times and frequencies of foliar applications on dry weight, nitrogen, phosphorus and potassium concentrations of leaf and corm of saffron, a pot experiment was conducted as a completely randomized design with factorial arrangement and three replications under open door conditions in research garden of ferdowsi university, faculty of agriculture. The experimental treatments were included 4 levels of solution concentration (0, 4, 8 and 12 per 1000 and 7 levels of time and frequency of foliar applications (F1: foliar application on 3th February, F2: foliar application on 18th February, F3: foliar application on 5th March, F4: foliar applications on 3th and 18th February, F5: foliar applications on 3th February and 5th March, F6: foliar applications on 18th February and 5th March, F7: foliar applications on 3th and 18th February and 5th March. Results of variance analysis showed that fresh and dry weight of corm and leaf were not influenced by concentration, time and frequency of foliar applications. Also, comparison of nitrogen, phosphorus and potassium concentrations of leaf and corm showed that there was no significant difference between levels of foliar treatments and control. Therefore, it seems that due attention to pattern of leaf and low nutrient demand of saffron, foliar applications in different levels of nutrient solution concentrations and times and frequencies of foliar applications could not increase vegetative growth and consequently, could not improve the growth and nutritional properties of saffron corms.

  19. Nitrogen content and nitrogen reserves in annual leaves and offshoots of apple trees undergoing foliar nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2012-11-01

    Full Text Available Foliar applications of nitrogen (N, when needed, have been used to supplement the fertilization of fruit trees through the soil. However, information on frequency effects, N amount to be applied, and the importance of increasing N content and N reserves in the leaves and offshoots are few. This paper aimed at evaluating the effect of foliar N applications on the N content and reserves in annual leaves and offshoots of apple trees. The study was carried out in an apple trees orchard (Eva cultivar, crop 2007/2008, in the experimental area of the Polytechnic College of Universidade Federal de Santa Maria (UFSM, in the town of Santa Maria, Rio Grande do Sul, Brazil, on a hydromorphic planosol. The treatments consisted of 1 and 2 foliar applications of 0; 1.11; 2.23; 3.31; 4.41; and 5.51g of N plant-1. The results showed that foliar N applications resulted in increased N contents in the whole leaves, especially up to the 8th day after application, but they do not affect N content in the annual offshoots. Nitrogen fertilization via the leaves did not increase the total content of amino acids and proteins in the annual whole leaves and offshoots

  20. Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest.

    Science.gov (United States)

    Balzotti, Christopher S; Asner, Gregory P; Taylor, Philip G; Cleveland, Cory C; Cole, Rebecca; Martin, Roberta E; Nasto, Megan; Osborne, Brooke B; Porder, Stephen; Townsend, Alan R

    2016-12-01

    Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and partial least squares regression to quantify canopy foliar nitrogen (foliar N) across ~164 km 2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of foliar N using a gradient boosting model technique. At a local scale, where climate and substrate were constant, we explored the influence of slope position on foliar N by quantifying foliar N on remnant terraces, their adjacent slopes, and knife-edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting foliar N. Observed foliar N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting foliar N (30% and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the field collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in foliar N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function. © 2016 by the Ecological Society of America.

  1. Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L.

    Science.gov (United States)

    Cumbie, W P; Eckert, A; Wegrzyn, J; Whetten, R; Neale, D; Goldfarb, B

    2011-08-01

    Loblolly pine, Pinus taeda L., is one of the most widely planted, commercially and ecologically important tree species in North America. We took an association genetics approach, using an unimproved population of 380 clonally replicated unrelated trees, to test 3,938 single nucleotide polymorphisms (SNPs) in as many genes for association with phenotypic variation in carbon isotope discrimination, foliar nitrogen concentration and total tree height after two growing seasons. Best linear unbiased prediction (BLUP) was used with a spatial adjustment to remove environmental variation from phenotypic data derived from a common garden experiment. After correction for multiple testing, a total of 14 SNPs were associated with the traits of carbon isotope discrimination (n = 7), height (n = 1) and foliar nitrogen concentration (n = 6) using 380 clones. Tails of the population phenotypic distribution were compared for allele frequency differences, revealing 10 SNPs with allele frequency in at least one tail significantly different from the overall population. Eight associated SNPs were in sequences similar to known genes, such as an AP2 transcription factor related to carbon isotope discrimination and glutamate decarboxylase associated with foliar nitrogen concentration, and others were from unknown genes without homologs in Arabidopsis.

  2. Efeitos da água salina e da adubação azotada na composição foliar em macronutrientes e na produção do sorgo sacarino Influence of saline water and nitrogen application on leaf nutrient concentrations and yield of sweet sorghum

    Directory of Open Access Journals (Sweden)

    Mª Graça Serrão

    2011-07-01

    Full Text Available Avaliou-se o efeito das combinações de quatro níveis diferenciados de N com três níveis de NaCl, veiculados ao solo pela água de rega, nas concentrações foliares de N, P, K, Ca, Mg e Na em sorgo sacarino (Sorghum bicolor ssp. saccharatum, em dois anos consecutivos de um ensaio instalado num Fluvissolo Êutrico, em Alvalade-Sado, provido de um sistema de rega gota-a-gota ("Fonte tripla linear". Pesquisaram-se relações entre os teores foliares dos nutrientes e a produção de matéria seca (caules, folhas + panículas e total e entre níveis de N e de NaCl e teores foliares médios de nutrientes. Foi a disponibilidade do azoto no solo que, mais do que a salinidade, afetou a absorção de nutrientes, com reflexo nos teores foliares e na produção. O teor foliar de N foi o melhor indicador na previsão da produção de caules do sorgo sacarino.We evaluated the influence of the combinations of four N levels with three NaCl levels, applied through irrigation, on leaf N, P, K, Ca, Mg, and Na concentrations of sweet sorghum (Sorghum bicolor ssp. saccharatum, in two consecutive years of an experiment established on a Eutric Fluvisol in Alvalade-Sado region, equipped with a drip irrigation system ("Triple Linear Source". The relationships between leaf nutrient concentrations and dry matter production (stems, leaves, and aerial biomass, and between N and NaCl levels and the leaf nutrient concentrations were also searched. It was nitrogen availability in soil that, more than salinity, affected nutrient uptake, with reflexes on the leaf concentrations and the yields. Leaf N concentration was the best indicator for predicting the stems production of sweet sorghum.

  3. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  4. Are nitrate exports in stream water linked to nitrogen fluxes in decomposing foliar litter?

    Science.gov (United States)

    Kathryn B. Piatek; Mary Beth. Adams

    2011-01-01

    The central hardwood forest receives some of the highest rates of atmospheric nitrogen (N) deposition, which results in nitrate leaching to surface waters. Immobilization of N in foliar litter during litter decomposition represents a potential mechanism for temporal retention of atmospherically deposited N in forest ecosystems. When litter N dynamics switch to the N-...

  5. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Science.gov (United States)

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, d15N of foliage and soil also increases. We measured foliar d15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  6. Amelioration of salt stress in wheat (triticum aestivum l.) by foliar application of nitrogen and potassium

    International Nuclear Information System (INIS)

    Odusote, O.O.; Alausa, S.K.; Gyang, B.N.

    2013-01-01

    An experiment was conducted in the Department of Biological Sciences, University of Sargodha, Pakistan. Different levels, viz. 0, 250, 500 mg/L, of nitrogen (N) and 0, 200, 400 mg/L of potassium (K) were applied exogenously as a foliar spray to determine whether application of N and K could ameliorate the effect of salinity stress on wheat (Triticum aestivum L.). It was composed of three replications. Each pot was filled with 8kg of well-mixed soil. Different salinity levels were adjusted in accordance with saturation percentage of soil. Salinity reduced the growth of wheat plants. When K and N were applied as foliar spray on the wheat plant, it reduced the effect of salinity and increased the plant growth and physiological attributes of wheat plants. Similarly, grains yield is also decreased by salinity but foliar application of K and N mitigated the salinity effect on grains yield. (author)

  7. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    Science.gov (United States)

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Amino acid content in red wines obtained from grapevine nitrogen foliar treatments: consumption during the alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Javier Portu

    2014-12-01

    Full Text Available Nitrogen is an important element for grapevine and winemaking which affects the development of the plant and yeast, and therefore it is important for wine quality. The aim of this work was to study the influence of foliar application to vineyard of proline, phenylalanine and urea and two commercial nitrogen fertilizers, without and with amino acids in their formulation, on the wine amino acid content and their consumption during the alcoholic fermentation. The results showed that these treatments did not affect the amino acid composition in wines. The differences observed for certain amino acids were so small that the concentration of total amino acids was not significantly different among wines. Moreover, it was observed that the higher the content of amino acids in the medium, the greater their consumption during the alcoholic fermentation.

  9. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    Huang Wenjuan; Zhou Guoyi; Liu Juxiu; Zhang Deqiang; Xu Zhihong; Liu Shizhong

    2012-01-01

    The effects of elevated carbon dioxide (CO 2 ) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N 2 fixers and one N 2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO 2 and N addition. Foliar N:P ratios in the non-N 2 fixers showed some negative responses to elevated CO 2 , while N addition reduced foliar N:P ratios in the N 2 fixer. The results suggest that N addition would facilitate the N 2 fixer rather than the non-N 2 fixers to regulate the stoichiometric balance under elevated CO 2 . - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N 2 fixer under elevated CO 2 . - N addition could facilitate the N 2 fixer rather than the non-N 2 fixers to regulate foliar N and P stoichiometry under elevated CO 2 in subtropical forests.

  10. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    Science.gov (United States)

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  11. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    Science.gov (United States)

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.

  12. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide

    Directory of Open Access Journals (Sweden)

    Yanbo eHu

    2014-07-01

    Full Text Available While plant roots are specialized organs for the uptake and transport of water and nutrients, the absorption of gaseous or liquid mineral elements by aerial plant parts has been recognized since more than one century. Nitrogen (N is an essential macronutrient which generally absorbed either as nitrate (NO3- or ammonium (NH4+ by plant roots. Gaseous nitrogen pollutants like N dioxide (NO2 can also be absorbed by plant surfaces and assimilated via the NO3– assimilation pathway. The subsequent NO3– flux may induce or repress the expression of various NO3–-responsive genes encoding for instance, the transmembrane transporters, NO3–/NO2– (nitrite reductase, or assimilatory enzymes involved in N metabolism. Based on the existing information, the aim of this review was to theoretically analyze the potential link between foliar NO2 absorption and N transport and metabolism. For such purpose, an overview of the state of knowledge on the NO3– transporter genes identified in leaves or shoots of various species and their roles for NO3– transport across the tonoplast and plasma membrane, in addition to the process of phloem loading is briefly provided. It is assumed that a NO2-induced ac-cumulation of NO3–/NO2– may alter the expression of such genes, hence linking transmembrane NO3– transporters and foliar uptake of NO2. It is likely that NRT1/NRT2 gene expression and spe-cies-dependent apoplastic buffer capacity may be also related to the species-specific foliar NO2 uptake process. It is concluded that further work focusing on the expression of NRT1 (NRT1.1, NRT1.7, NRT1.11 and NRT1.12, NRT2 (NRT2.1, NRT2.4 and NRT2.5 and chloride channel family genes (CLCa and CLCd may help us elucidate the physiological and metabolic response of plants fumigated with NO2.

  13. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    Directory of Open Access Journals (Sweden)

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  14. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA

    Science.gov (United States)

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; William H. McDowell; Subhash C. Minocha

    2015-01-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements...

  15. Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Odindi, John; Kutywayo, Dumisani

    2018-04-01

    Nitrogen (N) is the most limiting factor to coffee development and productivity. Therefore, development of rapid, spatially explicit and temporal remote sensing-based approaches to determine spatial variability of coffee foliar N are imperative for increasing yields, reducing production costs and mitigating environmental impacts associated with excessive N applications. This study sought to assess the value of Sentinel-2 MSI spectral bands and vegetation indices in empirical estimation of coffee foliar N content at landscape level. Results showed that coffee foliar N is related to Sentinel-2 MSI B4 (R2 = 0.32), B6 (R2 = 0.49), B7 (R2 = 0.42), B8 (R2 = 0.57) and B12 (R2 = 0.24) bands. Vegetation indices were more related to coffee foliar N as shown by the Inverted Red-Edge Chlorophyll Index - IRECI (R2 = 0.66), Relative Normalized Difference Index - RNDVI (R2 = 0.48), CIRE1 (R2 = 0.28), and Normalized Difference Infrared Index - NDII (R2 = 0.37). These variables were also identified by the random forest variable optimisation as the most valuable in coffee foliar N prediction. Modelling coffee foliar N using vegetation indices produced better accuracy (R2 = 0.71 with RMSE = 0.27 for all and R2 = 0.73 with RMSE = 0.25 for optimized variables), compared to using spectral bands (R2 = 0.57 with RMSE = 0.32 for all and R2 = 0.58 with RMSE = 0.32 for optimized variables). Combining optimized bands and vegetation indices produced the best results in coffee foliar N modelling (R2 = 0.78, RMSE = 0.23). All the three best performing models (all vegetation indices, optimized vegetation indices and combining optimal bands and optimal vegetation indices) established that 15.2 ha (4.7%) of the total area under investigation had low foliar N levels (coffee foliar N at landscape scale.

  16. Effects of soil and foliar applications of nitrogen fertilizers on a 20-year-old Douglas-fir stand

    Science.gov (United States)

    Richard E. Miller; Steve. Wert

    1979-01-01

    We compared growth and cone production of Douglas-fir treated 4 years earlier with ISO pounds N per acre applied as urea prill by hand and as a 32-percent N solution applied by helicopter. Nitrogen fertilization increased growth by 3 88 ft per acre during the 4 years after treatment; this 3S-percent gain was similar for both soil (prill) and foliar (solution)...

  17. ffect of Nitrogen and Zinc Foliar Application on Quantitative Traits of Tea Rosslle (Hibiscus sabdariffa in Jiroft Zone

    Directory of Open Access Journals (Sweden)

    abdolreza raisi sarbijan

    2017-02-01

    Full Text Available Introduction: Nitrogen is an essential element forplants and in combination withelements such as carbon, oxygen, hydrogen and sulfur results ineven more valuable materials such as amino acids, nucleic acids, alkaloids. Hibiscus tea (Hibiscus sabdariffa from Malvaceaefamily is known by different names in different parts of the world. In Iran it is calledthe Maki tea, tea Meccaorred tea.As an important plant,it is decided to investigate its growth and development in Jiroft. Materials and Methods The experiment was conducted as factorial based on randomized complete block design with three replications in farm research of Islamic Azad University of Jiroft during 2010. The first factor was nitrogen foliar application in four levels (0, 1, 2 and 3 percent and second factor was foliar application of zinc at twolevels (0 and 1 percent. The measured quantitative characteristics were stem diameter, plant height, calycle fresh weight,calycle dry weight, plant fresh weight,plant dry weight, leaf fresh weight,leaf dry weight, mucilage percentage and mucilage yield. Results and Discussion:The results of ANOVA showed that nitrogen foliar application on leaf dry weight, calycle fresh and dry weight was effective. Plant fresh weight, dry weight, stem diameter, plant height, mucilage percentageandmucilage yield showedsignificanteffects. Zinc foliar application significantly affected leaf fresh weight,leafdry weight, calycle fresh weight, plant fresh weight,plant dry weight, mucilage percentage andmucilage yield.The interaction effect of nitrogen and zinc on leaf dry weight, plant freshweight and plant dry weight was also significant. The mean comparison of studied characteristics revealed that byincreasing the amount of nitrogen up to N2 level, the stem diameter, plant height, leaf dry weight, calycle dry weight, mucilage percentage and yield increased but there was no significant difference between N2 and N3 levels. Plant fresh weight and plantdry weight

  18. The response of various ecotypes of common sainfoin (Onobrychis viciifolia L. to the foliar application of nitrogen, iron and zinc in a cold climate of

    Directory of Open Access Journals (Sweden)

    ali tadayon

    2009-06-01

    Full Text Available Common sainfoin (Onobrychis viciifolia L. is a forage crop belonging to the legume family. The crop is characterized by numerous favorable criteria such as the capability to fix atmospheric nitrogen symbiotically. In order to study the response of various ecotypes of common sainfoin to the foliar application of nitrogen and micronutrients, such as iron and zinc, two separate field experiments were conducted using a spilt-plot design with completely randomized block replicated three times. In the first experiment, the main plots included five different ecotypes of common sainfoin, and the sub-plots included four rates of urea application (0, 15, 30 and 45 kg N/ha. In the second experiment, the main plots included seven different ecotypes of common sainfoin, and the sub-plots included four rates of micronutrients (0, 0.04 % Fe, 0.04 % Zn and 0.04 % Fe + 0.04 % Zn. The foliar application of urea, Fe and Zn with increasing nutrient concentrations had a statistically significant (p

  19. Residual effect of sugar cane ratoon of urea nitrogen foliar application to plant cane

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Lara Cabezas, W.A.R.; Coleti, J.T.

    1984-01-01

    The residual effect of urea - N, foliar applied to plant cane, on sugar cane ratoon is studied. Setts grown in drums containing washed sand are used. 180 days from planting, foliar fertilizer (43.5% urea solution) labelled with 3.95 atom % 15 N is applied. The first harvest is made 7 days after application and final harvest of resprouting at 123 days. (M.A.C.) [pt

  20. Foliar nitrogen and potassium applications improve photosynthetic activities and water relations in sunflower under moisture deficit condition

    International Nuclear Information System (INIS)

    Hussain, R.A.; Ahmad, R.

    2016-01-01

    This study investigated the influence of foliar supplementation of nitrogen (N) potassium (K) and their combination on photosynthetic activities, physiological indices and water relations of two sunflower (Helianthus annuus L.) hybrids Hysen-33 and LG-5551 under water deficit condition. Studies were conducted in a wire-house at Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan. Treatments were two water stress levels [100 (control) and 60% field capacity (water deficit)], six levels of foliar spray (no spray, water spray, 1% N, 1% K, 0.5% N + 0.5% K and 1% N + 1% K) and each treatment was replicated three times. Results showed that water stress reduced the photosynthetic activities: Pn (photosynthetic rate), E (rate of tanspiration) and gs (stomatal conductance) and water relations i.e., pie w (water potential), pie s (osmotic potential) and pie p (turgor potential) . Soil moisture deficit also significantly reduced the plant height, root length, fresh and dry matter which consequently affected the plant height stress tolerance index (PHSI), root length stress tolerance index (RLSI) and dry matter stress tolerance index (DMSI) in both sunflower hybrids. However, foliar supplementation with N and K or N+K improved the photosynthetic activities, water relations and physiological indices of both the sunflower hybrids. The findings of present study suggest that application of N+K is necessary to have high plant productivity. (author)

  1. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest.

    Science.gov (United States)

    See, Craig R; Yanai, Ruth D; Fisk, Melany C; Vadeboncoeur, Matthew A; Quintero, Brauuo A; Fahey, Timothy J

    2015-09-01

    Previous studies have attempted to link foliar resorption of nitrogen and phosphorus to their. respective availabilities in soil, with mixed results. Based on resource optimization theory, we hypothesized that the foliar resorption of one element could be driven by the availability of another element. We tested various measures of soil N and P as predictors of N and P resorption in six tree species in 18 plots across six stands at the Bartlett Experimental Forest, New Hampshire, USA. Phosphorus resorption efficiency (P soil N content. to 30 cm depth, suggesting that trees conserve P based on the availability of soil N. Phosphorus resorption also increased with soil P content, which is difficult to explain basdd on single-element limitation, butfollows from the correlation between soil N and soil P. The expected single-element relationships were evident only in the 0 horizon: P resorption was high where resin-available P was low in the Oe (P soil N content on foliar P resorption is the first evidence of multiple-element control on nutrient resorption to be reported from an unmanipulated ecosystem.

  2. Foliar Reflectance and Fluorescence Responses for Plants Under Nitrogen Stress Determined with Active and Passive Systems

    Science.gov (United States)

    Middleton, E. M.; McMurtrey, J. E.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; Chappelle, E. W.

    2003-01-01

    Vegetation productivity is driven by nitrogen (N) availability in soils. Both excessive and low soil N induce physiological changes in plant foliage. In 2001, we examined the use of spectral fluorescence and reflectance measurements to discriminate among plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight daily). Three types of steady state laser-induced fluorescence measurements were made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broad irradiance excitation; 2) emission spectra (5 nm resolution) produced by excitation at single wavelengths (280,380 or 360, and 532 nm); and 3) excitation spectra (2 nm resolution), with emission wavelengths fixed at wavelengths centered on selected solar Fraunhofer lines (532,607,677 and 745 nm). Two complementary sets of high resolution (less than 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces: 1) optical properties (350-2500 nm) for reflectance, transmittance, and absorptance; and 2) reflectance spectra (500-1000 nm) acquired with and without a short pass filter at 665 nm to determine the fluorescence contribution to apparent reflectance in the 650-750 spectrum, especially at the 685 and 740 nm chlorophyll fluorescence (ChIF) peaks. The strongest relationships between foliar chemistry and optical properties were demonstrated for C/N content and two optical parameters associated with the red edge inflection point. Select optical properties and ChIF parameters were highly correlated for both species. A significant contribution of ChIF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2 - 6% at 740 nm over all N treatments. Discrimination of N treatment

  3. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    Science.gov (United States)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical

  4. [Influence of mulching management on the relationships between foliar non-structural carbohydrates and N, P concentrations in Phyllostachys violascens stand].

    Science.gov (United States)

    Guo, Zi-wu; Hu, Jun-jing; Yang, Qing-ping; Li, Ying-chun; Chen, Shuang-lin; Chen, Wei-jun

    2015-04-01

    To understand the physiological adaptive mechanism of Phyllostachys violascens to intensive mulching management, the effect of mulching management (CK, 1, 3 and 6 years) on the concentrations and ratios of non-structural carbohydrates (NSC), nitrogen (N) and phosphorus (P) in bamboo foliage, and their stoichiometry was investigated. The results showed the concentrations of NSC and soluble sugar increased, while the starch content and N/P decreased markedly in bamboo stand with 1-year mulching, compared to CK stand, which suggested the N limitation to bamboo growth was strengthened. Foliar soluble sugar content decreased significantly, while the starch content increased dramatically, and the NSC content by per unit mass of N and P reached the maximum in the bamboo stand with 3-year mulching, compared to all other treatments. Foliar NSC and soluble sugar contents decreased significantly, while foliar starch content and N/P increased dramatically in the stand with 6-year mulching, which suggested the P limitation to bamboo growth was strengthened. Foliar NSC content was positively correlated with N and P concentrations in a short-term mulching management stand (≤ 3 years), while showed negative relationship with N/P. The foliar starch content in the stand with 6-year mulching was negatively correlated with N and P contents, while was positively correlated with N/P. The results indicated that short-term mulching management accelerated the accumulation of soluble sugar and decomposition of starch in foliage, thus the growth and activity of Ph. violascens was enhanced greatly. Long-term mulching management promoted the starch accumulation, which led to the transition from N limitation to P limitation for bamboo growth. In summary, long-term (6 years) mulching management caused the decrease of growth and activity of Ph. violascens dramatically, thus enhancing the bamboo stand degradation. The utilization efficiency of N and P reached the highest in the stand with 3-year

  5. Slow-cycle effects of foliar herbivory alter the nitrogen acquisition and population size of Collembola

    Science.gov (United States)

    Mark A. Bradford; Tara Gancos; Christopher J. Frost

    2008-01-01

    In terrestrial systems there is a close relationship between litter quality and the activity and abundance of decomposers. Therefore, the potential exists for aboveground, herbivore-induced changes in foliar chemistry to affect soil decomposer fauna. These herbivore-induced changes in chemistry may persist across growing seasons. While the impacts of such slow-cycle...

  6. Trends in Pinus ponderosa foliar pigment concentration due to chronic exposure of ozone and acid rain

    International Nuclear Information System (INIS)

    Neuman, L.; Houpis, J.; Anderson, P.

    1991-01-01

    To determine the effects of ozone and acid rain on mature Ponderosa pine trees, Lawrence Livermore National Lab. has collaborated with University of California Berkeley, University of California Davis, California State University Chico, and the US Forest Service at the latter's Chico Tree Improvement Center. Foliar tissue from mature grafted scions of Pinus ponderosa were exposed to two times ambient ozone for ten months and to acid rain (3.0 pH) weekly for 10 weeks using branch exposure chambers. Pigment extracts were analyzed spectrophotometrically for concentrations of chlorophylls a and b, and carotenoid pigments, at 662 nm, 644 nm, and 470 nm, respectively. Pigment concentrations were expressed on a surface area basis. Preliminary results revealed that chlorophyll a showed a downward trend due to the ozone treatment. Acid rain caused no effects on these three pigments, however, chlorophyll b showed an upward trend due to the interaction of ozone and acid rain. The carotenoid pigments showed no changes due to the treatments either singly, or in combination

  7. Fixação biológica de nitrogênio e teores foliares de nutrientes na soja em função de doses de molibdênio e gesso agrícola Biological nitrogen fixation and leaf nutrient concentration on soybean as a function of molybdenum and gypsum levels

    Directory of Open Access Journals (Sweden)

    Evandro Gelain

    2011-04-01

    Full Text Available A competitividade econômica da soja brasileira no mercado mundial se deve, em grande parte, aos benefícios da fixação biológica do nitrogênio na cultura. O trabalho foi conduzido a campo, sob sistema plantio direto, em condição de sequeiro, no Município de Maracaju-MS, com o objetivo de avaliar a nodulação, o crescimento, nutrição mineral e produtividade de grãos da soja submetida a diferentes doses de gesso agrícola e molibdênio. Foi utilizado o delineamento experimental de blocos ao acaso, com cinco repetições e esquema de parcelas subdivididas, sendo as parcelas representadas por quatro doses de gesso agrícola (0, 1.000, 2.000 e 3.000 kg ha-1 e as subparcelas, por quatro doses de molibdênio (0, 20, 40 e 60 g ha-1. Não houve efeito da interação gesso x Mo sobre a produtividade da soja. O gesso agrícola não influencia no teor foliar de N e na produtividade. O Mo proporciona incrementos na produtividade e no teor de proteínas dos grãos.The economic competitiveness of Brazilian soybeans on the world market occurs, in large part, due to the benefits of biological nitrogen fixation in this crop. The field experiment was carried out in Maracaju, Mato Grosso do Sul State, Brazil, under no-tillage system, in rainfed condition. The aim was to evaluate nodulation, growth, mineral nutrition and grain yield of soybeans under different doses of gypsum and molybdenum. The experimental design used was a randomized block with five replicates and arranged in a split-plot squeme, with the plot represented by four doses of gypsum (0, 1.000, 2.000 and 3.000 kg ha-1 and the subplots by four doses of molybdenum (0, 20, 40 and 60 g ha-1. There were no interaction effects of Mo x gypsum for grain yield. Gypsum has no influence in the N leaf content and grain yield. Mo increases grain yield and protein levels in the grain.

  8. Impacts of limestone and nitrogen top dressing application on the potassium content in the soil profile and marandu-grass leaf concentration Impactos da aplicação de calcário e nitrogênio em cobertura no teor de potássio no perfil do solo e na concentração foliar do capim-marandu

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2009-07-01

    Full Text Available The objective of this experiment was to evaluate the effects of nitrogen doses (0, 100, 200, 300, and 400 kg ha-1 year-1, with or without dolomitic lime covering application, on the potassium (K soil content at depths varying form 0 to 5, 5 to 10, and 10 to 20 cm, and the potassium concentration in the plant. The experiment was carried out in a rhodic ferralsol with a slightly rolling relief, in a 5 × 2 factorial arrangement, in a complete randomized block design, with four replications. Nitrogenated fertilization caused a linear increase in the potassium concentration in the plant and also in the mineral content in the 0-5 cm soil layer. An effect of competitive inhibition occurred between the potassium and calcium absorption, and potassium and magnesium absorption. Although a significant fraction of potassium returned to the soil surface layer through the forage residue due to the increase in dry matter production caused by nitrogenated fertilization, the increase in the potassium concentration in the plant due to the doses of nitrogen demonstrated the importance of considering the potassium supply to the plant, when the forage mass is intensified through nitrogenated fertilization.Objetivou-se avaliar os efeitos de nitrogênio (0, 100, 200, 300 e 400 kg/ha.ano, com ou sem aplicação de calcário dolomítico em cobertura, sobre o teor de potássio (K do solo nas profundidades de 0 a 5; 5 a 10; e 10 a 20 cm e a concentração de potássio na planta. O experimento foi realizado em Latossolo Vermelho distroférrico de relevo suavemente ondulado, disposto em esquema fatorial 5 × 2, em blocos casualizados, com quatro repetições. A adubação nitrogenada promoveu aumento linear na concentração de potássio na planta e no teor desse mineral na camada de 0 a 5 cm do solo. Ocorreu efeito de inibição competitiva entre a absorção de potássio e cálcio e entre potássio e magnésio. Embora uma fração significativa de potássio retorne

  9. Concentration levels of new-generation fungicides in throughfall released by foliar wash-off from vineyards.

    Science.gov (United States)

    Pérez-Rodríguez, P; Soto-Gómez, D; Paradelo, M; López-Periago, J E

    2017-12-01

    The presence of agricultural pesticides in the environment and their effects on ecosystems are major concerns addressed in a significant number of articles. However, limited information is available on the pesticide concentrations released from crops. This study reports losses of new-generation fungicides by foliar wash-off from vineyards and their potential impact on the concentrations of their main active substances (AS) in surface waters. Two experimental plots devoted to vineyards were treated with various combinations of commercial new-generation fungicide formulations. Then, up to sixteen throughfall collectors were installed under the canopy. Concentrations of sixteen different AS in throughfall were determined along nine rainfall episodes. Concentrations in throughfall far exceeded the maximum permissible levels for drinking water established by the European Union regulations. Dynamics of fungicide release indicated a first-flush effect in the wash-off founding the highest concentrations of AS in the first rain episodes after application of the fungicides. This article shows that foliar spray application of commercial formulations of new-generation fungicides does not prevent the release of their AS to soil or the runoff. Concentration data obtained in this research can be valuable in supporting the assessment of environmental effects of new-generation fungicides and modeling their environmental fate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in Northern Michigan.

    Science.gov (United States)

    Kobe, Richard K

    2006-02-01

    Interspecific differences in sapling growth responses to soil resources could influence species distributions across soil resource gradients. I calibrated models of radial growth as a function of light intensity and landscape-level variation in soil water and foliar N for saplings of four canopy tree species, which differ in adult distributions across soil resource gradients. Model formulations, characterizing different resource effects and modes of influencing growth, were compared based on relative empirical support using Akaike's Information Criterion. Contrary to expectation, the radial growth of species associated with lower fertility (Acer rubrum and Quercus rubra) was more sensitive to variation in soil resources than the high fertility species Acer saccharum. Moreover, there was no species tradeoff between growth under high foliar N versus growth under low foliar N, which would be expected if growth responses to foliar N mediated distributions. In general, there was functional consistency among species in growth responses to light, foliar N, and soil water availability, respectively. Foliar N influenced primarily high-light growth in F. grandifolia, A. rubrum, and Q. rubra (but was not significant for A. saccharum). In A. saccharum and A. rubrum, for which soil water availability was a significant predictor, soil water and light availability simultaneously limited growth (i.e., either higher light or water increased growth). Simple resource-based models explained 0.74-0.90 of growth variance, indicating a high degree of determinism. Results suggest that nitrogen effects on forest dynamics would be strongest in high-light early successional communities but that water availability influences growth in both early successional and understory environments.

  11. Effect of nitrogen (N) fertilizer and foliar-applied iron (Fe) fertilizer at ...

    African Journals Online (AJOL)

    Nutritional management is an important factor in the success of crop production. However, research on the effects of nitrogen (N) and iron (Fe) application on soybean yield is limited. In order to study the effects of N and Fe application at various reproductive stages on grain yield and quality of soybean seed, an experiment ...

  12. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests

    Science.gov (United States)

    Johnny L. Boggs; Steven G. McNulty; Michael J. Gavazzi; Jennifer Moore Myers

    2005-01-01

    The declining health of high-elevation red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh) Poir.) in the southern Appalachian region has long been linked to nitrogen (N)deposition. Recently, N deposition has also been proposed as a source of negative health impacts in lower elevation deciduous forests. In 1998 we...

  13. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop.

    Science.gov (United States)

    Teixeira, Walquíria F; Fagan, Evandro B; Soares, Luis H; Soares, Jérssica N; Reichardt, Klaus; Neto, Durval D

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V 4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V 6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%.

  14. Effects of Foliar Applications of Sulfur, Nitrogen and Phosphorus on Castor Bean (Ricinus cmmunis L. Seed Yield and its Components under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    M. Mosavi

    2015-08-01

    Full Text Available To determine the effects of foliar applications of some macroelements on castor seed yield and its components under drought stress conditions, an experiment was conducted at the Agricultural Research Center of East Azerbaijan province. A factorial experiment, based on randomized complete block design with three replications, was carried out during 2013 growing season. Treatment factors consisted of irrigations with two levels (no water deficit and water deficit during grain filling stage and of foliar applications of macroelements with four levels [control, wettable sulfur (0.2 percent, nitrogen (urea: 0.6 percent and phosphor (super phosphate triple: 0.4 percent. Traits studied were: plant height, number of inflorescence, number of lateral branches, number of leaves, leaf temperature, relative water content, number of seeds per plant, 1000-kernal weight and seed yield. All traits, except number of inflorescence, were affected significantly by drought stress. Water deficit reduced plant height, number of leaves, number of seeds per plant, 1000-kernal weight, seed yield, relative water content, while it increased leaf temperature. Number of lateral branches was affected significantly by interaction between factors. Maximum latral branches (1.86 were obtained under non-stress treatment with nitrogen foliar application. Moderate drought stress had significant effect on leaf temperature and relative water content. It seems that, these traits can be used in determination of water deficit effects on castor bean.

  15. Absorção e redistribuição do nitrogênio aplicado via foliar em videiras jovens Uptake and redistribution of nitrogen in foliar application in young grapevines

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2005-04-01

    Full Text Available A aplicação de nitrogênio via foliar antes da senescência das folhas da videira pode ser uma estratégia para aumentar as reservas deste nutriente nas partes perenes, uma vez que as mesmas são disponibilizadas no início do crescimento vegetativo dos órgãos anuais. O objetivo deste trabalho foi de estimar a absorção e a redistribuição do N adicionado via foliar em videiras jovens. O experimento foi instalado em casa de vegetação na EMBRAPA-Uva e Vinho, no município de Bento Gonçalves (RS. Foram utilizadas as variedades Chardonnay e Riesling Itálico com porta-enxerto 101-14 Mgt. Foi cultivada uma planta por vaso contendo 10kg de solo Neossolo Litólico. A aplicação do N via foliar foi parcelada em três vezes, durante três dias sucessivos. Foram aplicados 84,84mg N planta-1 na forma de (15NH42SO4 . As plantas foram colhidas em sete épocas diferentes. Após a colheita, as plantas foram fracionadas em folhas, enxerto, porta-enxerto, raízes grossas (>2mm e raízes finas (The foliar application of nitrogen before the leaves senescence may be a strategy to increase the nutrient reserves in the perennial parts, being available in the beginning of the vegetative growth of the annual parts. The objective of this work was to estimate the uptake and redistribution of N applied by foliar way in young grapevines. The experiment was carried out in a greenhouse at EMBRAPA-Grape and Wine, Bento Gonçalves Southern Brazil. The cultivars used were Chardonnay and Riesling Italic grafted on rootstock 101-14 Mgt. It was cultivated one plant by vase with 10kg of soil Udorthent. The foliar application of N was parceled in three times during three successive days. It was applied 84,84mg N plant-1 using (15NH42SO4 . The plants were collected in seven times, during vegetative growth. The plants were fractionated in leaves, graft, carry-graft, thick roots (>2mm and fine roots (<2mm, oven-dried, weighted, and analyzed N-total and 15N contents. The

  16. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces. Abaxial surfaces also produced higher reflectances, in general, in the 400-800 nm spectrum.

  17. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas

    2008-01-01

    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...... in the regression models were selected using both an enumerative branch-and-bound (B&B) and a forward search algorithm. The models estimated foliar concentrations with adjusted R2 values between 0.47 and 0.63, based on the best-sampled study site. Regression models composed of wavebands selected by the B......&B algorithm always performed better than those developed with forward search. When extrapolating nitrogen concentrations from one to another study site, regression models solely based on causal wavebands (known from literature) mostly outperformed models based on all wavebands. The study demonstrates...

  18. Nitrogen availability, leaf life span and nitrogen conservation mechanisms in leaves of tropical trees Disponibilidade de nitrogênio, longevidade foliar e mecanismos de conservação de nitrogênio em folhas de espécies arbóreas tropicais

    Directory of Open Access Journals (Sweden)

    Guilherme Nascimento Corte

    2009-12-01

    Full Text Available Evergreen species of temperate regions are dominant in low-nutrient soils. This feature is attributed to more efficient mechanisms of nutrient economy. Nevertheless, the cashew (Anacardium occidentale- Anacardiaceae, a deciduous species, is native to regions in Brazil with sandy soil, whilst the annatto (Bixa orellana- Bixaceae, classified as an evergreen species native to tropical America, grows spontaneously in regions with more humid soils. Evergreens contain robust leaves that can resist adverse conditions for longer. The physical aspects of the leaves and mechanisms of nutrient economy between the two species were compared, in order to verify whether the deciduous species had more efficient mechanisms that might explain its occurrence in regions of low soil fertility. The mechanisms of nitrogen economy were also compared for the two species at available concentrations of this nutrient. The following were analysed: (i leaf life span, (ii physical leaf characteristics (leaf mass per area, and rupture strain, (iii nitrogenous compounds (nitrogen, chlorophyll, and protein, (iv nitrogen conservation mechanisms (nitrogen resorption efficiency, resorption proficiency, and use efficiency, and (v nitrogen conservation mechanisms under different availability of this mineral. The higher values of leaf mass per area and leaf rupture strain found in A. occidentale were related to its longer leaf life span. A. occidentale showed lower concentrations of nitrogen and protein in the leaves than B. orellana. Under lower nitrogen availability, A. occidentale had higher nitrogen resorption proficiency, nitrogen use efficiency and leaf life span than B. orellana. These characteristics may contribute to the adaptation of this species to sandy soils with low nitrogen content.Perenifólias de clima temperado são dominantes em solos pouco férteis. Essa característica é atribuída a mecanismos mais eficientes de economia de nutrientes. O cajueiro (Anacardium

  19. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (< 3 nm) optical spectra (350-2500 nm) of reflectance, transmittance, and absorptance were also acquired for both adaxial and abaxial leaf surfaces. Species differences were demonstrated for several optical parameters. A 'red edge' derivative ratio determined from transmittance spectra [as the maximum first deivative, between 650-750 nm, normalized to the value at 744 nm, or Dmax/D744], was strongly associated with the C/N ratio (r(exp 2) = 0.90, P +/- 0.001). This ratio, calculated from reflectance spectra, was inversely related to chlorophyll b content (r(exp 2) = 0.91, P +/- 0.001) as was the ChlF (F685/F740) ratio obtained with 532 nm excitation (r(exp 2) = 0.76, P +/- 0.01). Discrimination of N treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces

  20. Concentração foliar de manganês e zinco em laranjeiras adubadas com óxidos e carbonatos via foliar Leaf concentrations of manganese and zinc in the orange fertilized via foliar application with oxides and carbonates

    Directory of Open Access Journals (Sweden)

    Leandro José Grava de Godoy

    2013-09-01

    Full Text Available Dentre os micronutrientes, o Zn e o Mn limitam a produção dos citros, no Brasil. A aplicação foliar tem sido a forma tradicional de fornecimento, contudo, a eficiência desta adubação depende de uma série de fatores, entre eles o tipo de fertilizante. Foram realizados dois experimentos em pomar com laranjeiras Pêra, enxertadas em limão cravo, com sete anos de idade, em Botucatu, SP. No primeiro experimento foram avaliadas três fontes de Mn via foliar: carbonato de manganês A, carbonato de manganês B e sulfato manganoso, em duas doses para cada fertilizante, correspondente a 250 e 500 g ha-1 de Mn, mais o controle, pulverizado somente com água. No segundo experimento foram testadas três fontes de Zn para aplicação foliar: óxido de zinco A, óxido de zinco B e sulfato de zinco, em duas doses para cada fertilizante, correspondente a 375 e 750 g ha-1 de Zn, mais o controle. As amostragens de folhas foram realizadas mensalmente, iniciando aos 30 dias após aplicação dos tratamentos. A aplicação foliar com carbonato de manganês B, na dose de 500 g ha-1 Mn, e com óxido de zinco B, na dose de 750 g ha-1, proporcionaram, respectivamente, níveis nutricionais adequados de Mn e Zn nas folhas de laranjeira. Na ausência de chuvas, os teores adequados de Mn e Zn no solo, não permitem suprir satisfatoriamente as laranjeiras Pêra enxertadas em limoeiro cravo.Among micronutrients, Zn and Mn limit the production of citrus in Brazil. Foliar application has been the traditional form of supply, however the efficiency of this type of fertilization depends on a number of factors, including the type of fertilizer used. Two experiments were conducted in an orchard of seven year old Pêra orange, grafted onto Rangpur lime, in Botucatu, São Paulo. In the first experiment three sources of Mn, applied via foliar application, were evaluated: manganese carbonate A, manganese carbonate B and manganese sulphate, at two rates per fertilizer

  1. Influence of nitrogen source and sucrose concentration on inulinase ...

    African Journals Online (AJOL)

    This work studied the influence of nitrogen source and sucrose concentration in the feeding medium for biomass and inulinase production by Kluyveromyces marxianus var. bulgaricus. The results show that the best nitrogen source was a combination of 5 g/L of yeast extract and 10 g/L of peptone. Both cellular growth and ...

  2. Effect of Naphthalene Acetic Acid (NAA and foliar fertilizer concentration on the growth of ornamental plants Anthurium ‘wave of love’ (Anthurium plowmanii

    Directory of Open Access Journals (Sweden)

    WARNITA

    2017-03-01

    Full Text Available Abstract. Warnita, Herawati N. 2017. Effect of Naphthalene Acetic Acid (NAA and foliar fertilizer concentration on the growth of ornamental plants Anthurium ‘wave of love’ (Anthurium plowmanii. Pros Sem Nas Masy Biodiv Indon 7: 50-55. One species of ornamental plants which much in demand because of the shape of its leaves that beautiful and attractive is Anthurium ‘wave of love’. Anthurium wave of love (Anthurium plowmanii has unique characteristics with the wavy leaf edge. To enhance the growth of this plant can be done with NAA and foliar fertilizer. The purpose of this study was to obtain the best concentration of NAA and foliar fertilizer for growing the ornamental plant of Anthurium wave of love. The study started from March to July 2015 in the Housing Unand, Ulu Gadut, Padang. The materials used in the form of seedlings of the ornamental plant of Anthurium wave of love, the growing media consisted of soil, sand and manure in the ratio of 1:1:1 (v/v. The experiment was a factorial with two factors which in a completely randomized design (CRD with four replications. The first factor was NAA concentration consisted of 0 and 20 ppm, while the second factor was the concentration of foliar fertilizer consisted of 0, 1, 2, and 3 g/L. The data were analyzed by analysis of variance followed by HSD test at a test level of 5%. The parameters observed included plant height, leaf number, the length of the longest leaf, the width of the widest leaf, the number of roots and the length of the longest root. The results showed NAA treatment with a concentration of 20 ppm and foliar fertilizer 1 g/L is the best for the growth of plant height, the length of the longest leaf, the width of the widest leaf, and the length of the longest root.

  3. Nitrogen concentration estimation with hyperspectral LiDAR

    Directory of Open Access Journals (Sweden)

    O. Nevalainen

    2013-10-01

    Full Text Available Agricultural lands have strong impact on global carbon dynamics and nitrogen availability. Monitoring changes in agricultural lands require more efficient and accurate methods. The first prototype of a full waveform hyperspectral Light Detection and Ranging (LiDAR instrument has been developed at the Finnish Geodetic Institute (FGI. The instrument efficiently combines the benefits of passive and active remote sensing sensors. It is able to produce 3D point clouds with spectral information included for every point which offers great potential in the field of remote sensing of environment. This study investigates the performance of the hyperspectral LiDAR instrument in nitrogen estimation. The investigation was conducted by finding vegetation indices sensitive to nitrogen concentration using hyperspectral LiDAR data and validating their performance in nitrogen estimation. The nitrogen estimation was performed by calculating 28 published vegetation indices to ten oat samples grown in different fertilization conditions. Reference data was acquired by laboratory nitrogen concentration analysis. The performance of the indices in nitrogen estimation was determined by linear regression and leave-one-out cross-validation. The results indicate that the hyperspectral LiDAR instrument holds a good capability to estimate plant biochemical parameters such as nitrogen concentration. The instrument holds much potential in various environmental applications and provides a significant improvement to the remote sensing of environment.

  4. LBA-ECO ND-07 Carbon and Nitrogen in Cerrado Plants and Soils, Brasilia: 1999-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides (1) delta 15N ratios and nitrogen concentrations for foliar samples and (2) delta 13C and delta 15N ratios as well as carbon and nitrogen...

  5. Uptake of soil-, foliar-and pod-applied nitrogen and phosphorus by rape (Brassica napus L.)

    International Nuclear Information System (INIS)

    Zhang Qinzheng; Xi Haifu; Lang Xianhua

    1992-01-01

    Uptake of soil-applied and foliar-and pod applied N, P by rape was studied by using 32 P and 15 N labelled fertilizer under pot culture condition. Application of phosphorus fertilizer to purplish clayey paddy soil which was poor in available P had influence on utilization of basal-dressed NH 4 HCO 3 by rape and subsequently on its growth and seed yield. Utilization rate of applied N in whole plant and seeds were 3.66 and 5.13 fold respectively as compared with control when 187.5 kg/ha of superphosphate were applied and increased with increasing application of superphosphate (187.5-562.5 kg/ha). Application of P fertilizer not only increased uptake of N but also promoted transportation of N from vegetative organs to seeds. Rape plant uptook 69.09% of foliar-and pod-applied N in form of 2% solution of urea after flowering and transported the N to seeds in greater proportion than that of soil-applied N. In the same period, 60% of foliar- and pod-applied P in form of 0.2% KH 2 PO 4 was absorbed by rape plant, most of which was in leaves. Uptake of N and P by rape increased 17.89% and 27.78% respectively when urea and phosphate was applied together compared with using urea and phosphate alone. Uptake of basal-dressed P by rape plant was 6% at early growing stage

  6. Adubação foliar e via solo de nitrogênio em plantas de milho em fase inicial de desenvolvimento Leaf fertilization and via soil nitrogen suplementation in maize plants at initial developmental stage

    Directory of Open Access Journals (Sweden)

    Sidnei Deuner

    2008-10-01

    Full Text Available Considerado o nutriente mais importante, tanto no incremento da produção de grãos como no teor protéico destes, o nitrogênio (N é também o elemento que mais onera a cultura do milho. Neste trabalho, objetivou-se verificar se a aplicação foliar de nitrogênio influencia o acúmulo de proteínas e parâmetros de crescimento de plantas jovens de milho em comparação com a aplicação de uréia via solo. Para tanto, plantas jovens do híbrido de milho BR 206 receberam aplicações de uréia como fonte de N via foliar e via solo nas concentrações de zero; 0,5% e 1,0%. As plantas foram cultivadas em casa-de-vegetação sendo realizadas três aplicações de N, a primeira aos seis dias após a emergência (DAE num volume de 10 mL por planta e as duas seguintes aos 10 e 14 DAE com 20 mL cada. Aos 18 DAE as plantas foram coletadas e as análises procedidas. Para altura de plantas, volume radicular, área foliar, matéria seca da parte aérea e raízes, observou-se maior eficiência da adubação foliar, principalmente ao nível de 0,5% de uréia. O fornecimento de uréia a 1,0% via solo proporcionou aumento significativo no teor de proteínas nas folhas. Tais resultados sugerem que a adubação foliar pode ser uma maneira eficiente para complementar o que é absorvido pelas raízes, no entanto não deve ser utilizada como fonte única de N inorgânico às plantas.Consider the most important nutrient in the increment of grain gield and also the proteic level, nitrogen (N, in addition of this fact, this nutrient is the component that most increases the production cost of maize crop. This study aimed to verify whether the application of leaf nitrogen influences the accumulation of proteins and parameters of growth of young plants of maize compared to the application of urea via soil. For both, young plants of the hybrid maize BR 206 received applications of urea as a source of N via leaf and soil at concentrations of zero, 0.5% and 1.0%. The

  7. Aplicação foliar de nitrogênio em videira: avaliação do teor na folha e das reservas nitrogenadas e de carboidratos nas gemas dos ramos do ano Nitrogen foliar spraying in grapevine: content in leaves and reserve of nitrogen and carboihydrates in shoots buds

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2008-12-01

    Full Text Available No Rio Grande do Sul (RS, as aplicações foliares de nitrogênio, quando necessárias, têm sido usadas para complementar a adubação via solo. Entretanto, carece-se de informações dos efeitos da freqüência e da quantidade de N aplicado sobre a sua dinâmica na folha e de reservas nitrogenadas e de carboidratos nas partes perenes da videira, que compõem o objetivo deste trabalho. O trabalho foi conduzido em um vinhedo da cultivar Chenin Blanc, safra 2004/05, na Embrapa Uva e Vinho, em Bento Gonçalves (RS, sobre um Neossolo Litólico. Os tratamentos consistiram de uma, duas e três aplicações foliares de 0 (água; 1,11; 2,23; 3,31 e 4,41g de N planta-1. Após cada aplicação de nitrogênio, foram coletadas folhas inteiras (limbo+pecíolo no terço médio dos ramos do ano, no interior e exterior dos diferentes lados da planta, secas, moídas e preparadas para a análise de N total. Na última época de coleta de folhas, foram coletados três ramos do ano em cada planta, retiradas seis gemas em cada ramo, as quais foram submetidas à análise de amido, carboidratos solúveis totais, carboidratos redutores, aminoácidos totais e proteínas totais. As aplicações foliares de N aumentaram o teor do nutriente na folha inteira, de forma destacada, nas épocas de coletas próximas às aplicações; entretanto, essas aplicações diminuíram os teores de amido e carboidratos solúveis totais nas gemas dos ramos do ano e não afetaram os teores de carboidratos redutores e os totais de aminoácidos e proteínas.Leaf nitrogen application is used in grapevines in Southern Brazil as complement to soil fertilization. On the other hand, there is no information about its affects on nitrogen content in the leaves and nitrogen and carbohydrates reserves in the perennial parts. The experiment was carried out in 2004/2005, with the objective to evaluate the effect of nitrogen foliar spraying on leaves and nitrogen and carbohydrates reserves in shoots buds

  8. NITROGEN CONCENTRATION OF STOMACH CONTENTS AS AN INDEX OF DIETARY NITROGEN FOR HISPID COTTON RATS (SIGMODON HISPIDUS)

    Science.gov (United States)

    We examined the reliability of using nitrogen concentration of stomach contents from hispid cotton rats (Sigmodon hispidus) as an index of diet nitrogen. Stomach contents of cotton rats fed diets varying in nitrogen concentration were analyzed for stomach nitrogen. Regression a...

  9. Leaf and sidedressing nitrogen application on wheat crop in savannaAplicação foliar e em cobertura de nitrogênio na cultura do trigo no cerrado

    Directory of Open Access Journals (Sweden)

    Marcelo Andreotti

    2011-08-01

    Full Text Available The nitrogen in wheat is essential for obtaining high yields, not only the dose but also the time and the way of application are critical, reducing potential leaching and the cost of production. The objective is evaluating leaf and sidedressing nitrogen application on wheat crop in years of 2006 and 2007. A randomized blocks design in a factorial scheme 5x3x2 was used. The treatments consisted of five doses of nitrogen in the solution (0; 2.5; 5.0; 7.5 and 10%, three application times (at tillering: 30 days after plant emergency (DAE, at full flowering (50 DAE + in the beginning of grain formation (70 DAE and at tillering + in the beginning of grain formation, with and without sidedressing nitrogen applied at 40 DAE, using urea as source. They were evaluated: chlorophyll and nitrogen content in leaf, number of spikelets per ear, number of grains per ear, mass of grains per ear, number of grains per spikelet, mass hectolitric, mass of 100 grains and productivity of grains. The application of nitrogen topdressing in both years, influenced the yield characteristics of wheat. The times of leaf nitrogen only affected the leaf N content. The leaf nitrogen concentrations increased linearly the number of grains per spikelets, grains per spike, chlorophyll content, grain weight per ear and grain yield, and reduced mean weight per hectoliter, only in 2007.A adubação nitrogenada na cultura do trigo é essencial para a obtenção de altas produtividades da cultura, não somente a dose, como também a época e o modo de aplicação são fundamentais no rendimento, reduzindo possíveis problemas de lixiviação e o custo de produção. O trabalho teve como objetivo avaliar os efeitos da adubação nitrogenada em cobertura e foliar em diferentes estádios sobre as características produtivas da cultura do trigo em dois agrícolas, em condições irrigadas no cerrado. Os tratamentos foram originados do fatorial 5x3x2 e consistiram de cinco concentrações de

  10. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marc Souris

    2012-06-01

    Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS(750/700 and Ratio Spectral Index (RVI based on FDS(724/700 are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior

  11. Production and levels of foliar nitrogen in rocket salad fertilized with controlled-release nitrogen fertilizers and urea Produção e teor de nitrogênio foliar em rúcula adubada com fertilizantes nitrogenados de liberação lenta e uréia

    Directory of Open Access Journals (Sweden)

    Rafael Felippe Ratke

    2011-06-01

    Full Text Available Controlled-release nitrogen fertilizers enhance crop productivity and decrease nitrogen loss through volatilization and leaching. This study aimed at determining the effect of nitrogen treatments provided by controlled-release nitrogen fertilizers and urea. The following fertilizers were tested: 1 (agricultural urea, 2 (ammonium sulfonitrate + nitrification inhibitor, dimethylpyrazole phosphate (Entec 26®,3 (urea + Kimberlit polymer (Kimcoat N® and 4 (urea + NBPT (Super N - Agrotain®. Treatments corresponded to 0, 100, 200, 400 and 800 kg ha-1 of N with rocket salad grown inside a greenhouse, assessing the production of fresh and dry leaf mass as well as levels of foliar nitrogen. Doses of different controlled-release nitrogen fertilizers showed significant polynomial regressions for the production of rocket salad fresh leaf mass and levels of foliar nitrogen, whereby Entec 26® did not show significant polynomial regression, considering the last parameter evaluated. The production of rocket salad dry leaf mass did not display significant linear regressions. The maximal production of rocket salad fresh leaf mass was reached at doses of 600, 490, 765, and 462 kg ha-1 of N with the use of urea, Entec 26®, Kimcoat N® and Super N®, respectively.Os fertilizantes nitrogenados de liberação lenta aumentam a produtividade das culturas e diminuem as perdas de nitrogênio por volatilização e lixiviação. O objetivo deste trabalho foi determinar, no cultivo de rúcula, o efeito de doses de N fornecidas por fertilizantes nitrogenados de liberação lenta e pela uréia. Testaram-se os fertilizantes: 1 (uréia agrícola, 2 (sulfonitrato de amônio + inibidor de nitrificação Dimetil Pirazol Fosfato (Entec 26®,3 (uréia + polímero Kimberlit (kimcoat N® e 4 (uréia + NBPT (Super N - Agrotain®, e as doses de 0, 100, 200, 400 e 800 kg ha-1 de N em rúcula crescidas em casa de vegetação, avaliando-se a produtividade de matéria fresca de folhas

  12. Growth, gas exchange, foliar nitrogen content, and water use of subirrigated and overhead irrigated Populus tremuloides Michx. seedlings

    Science.gov (United States)

    Anthony S. Davis; Matthew M. Aghai; Jeremiah R. Pinto; Kent G. Apostal

    2011-01-01

    Because limitations on water used by container nurseries has become commonplace, nursery growers will have to improve irrigation management. Subirrigation systems may provide an alternative to overhead irrigation systems by mitigating groundwater pollution and excessive water consumption. Seedling growth, gas exchange, leaf nitrogen (N) content, and water use were...

  13. Concentrations, deposition, and effects of nitrogenous pollutants in selected California ecosystems.

    Science.gov (United States)

    Bytnerowicz, A; Padgett, P E; Parry, S D; Fenn, M E; Arbaugh, M J

    2001-11-28

    Atmospheric deposition of nitrogen (N) in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3) and particulate ammonium (NH4+) from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx), nitric acid (HNO3), and particulate nitrate (NO3-) resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95%) of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3), drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems.

  14. Concentrations, Deposition, and Effects of Nitrogenous Pollutants in Selected California Ecosystems

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Atmospheric deposition of nitrogen (N in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3 and particulate ammonium (NH4+ from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx, nitric acid (HNO3, and particulate nitrate (NO3– resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95% of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3, drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems.

  15. Relationship between Hyperspectral Measurements and Mangrove Leaf Nitrogen Concentrations

    Directory of Open Access Journals (Sweden)

    Mark P. Wachowiak

    2013-02-01

    Full Text Available The use of spectral response curves for estimating nitrogen (N leaf concentrations generally has been found to be a challenging task for a variety of plant species. In this investigation, leaf N concentration and corresponding laboratory hyperspectral data were examined for two species of mangrove (Avicennia germinans, Rhizophora mangle representing a variety of conditions (healthy, poor condition, dwarf of a degraded mangrove forest located in the Mexican Pacific. This is the first time leaf nitrogen content has been examined using close range hyperspectral remote sensing of a degraded mangrove forest. Simple comparisons between individual wavebands and N concentrations were examined, as well as two models employed to predict N concentrations based on multiple wavebands. For one model, an Artificial Neural Network (ANN was developed based on known N absorption bands. For comparative purposes, a second model, based on the well-known Stepwise Multiple Linear Regression (SMLR approach, was employed using the entire dataset. For both models, the input data included continuum removed reflectance, band depth at the centre of the absorption feature (BNC, and log (1/BNC. Weak to moderate correlations were found between N concentration and single band spectral responses. The results also indicate that ANNs were more predictive for N concentration than was SMLR, and had consistently higher r2 values. The highest r2 value (0.91 was observed in the prediction of black mangrove (A. germinans leaf N concentration using the BNC transformation. It is thus suggested that artificial neural networks could be used in a complementary manner with other techniques to assess mangrove health, thereby improving environmental monitoring in coastal wetlands, which is of prime importance to local communities. In addition, it is recommended that the BNC transformation be used on the input for such N concentration prediction models.

  16. Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Poonsak Miphokasap

    2018-04-01

    Full Text Available This study aims to estimate the spatial variation of sugarcane Canopy Nitrogen Concentration (CNC using spectral data, which were measured from a spaceborne hyperspectral image. Stepwise Multiple Linear Regression (SMLR and Support Vector Regression (SVR were applied to calibrate and validate the CNC estimation models. The raw spectral reflectance was transformed into a First-Derivative Spectrum (FDS and absorption features to remove the spectral noise and finally used as input variables. The results indicate that the estimation models developed by non-linear SVR based Radial Basis Function (RBF kernel yield the higher correlation coefficient with CNC compared with the models computed by SMLR. The best model shows the coefficient of determination value of 0.78 and Root Mean Square Error (RMSE value of 0.035% nitrogen. The narrow sensitive spectral wavelengths for quantifying nitrogen content in the combined cultivar environments existed mainly in the electromagnetic spectrum of the visible-red, longer portion of red edge, shortwave infrared regions and far-near infrared. The most important conclusion from this experiment is that spectral signals from the space hyperspectral data contain the meaningful information for quantifying sugarcane CNC across larger geographic areas. The nutrient deficient areas could be corrected by applying suitable farm management.

  17. Spatial variations in nitrogen dioxide concentrations in urban Ljubljana, Slovenia

    Directory of Open Access Journals (Sweden)

    Vintar Mally Katja

    2015-09-01

    Full Text Available Ambient nitrogen dioxide (NO2 concentrations are regularly measured at only two monitoring stations in the city centre of Ljubljana, and such scanty data are inadequate for drawing conclusions about spatial patterns of pollution within the city, or to decide on effective measures to further improve air quality. In order to determine the spatial distribution of NO2 concentrations in different types of urban space in Ljubljana, two measuring campaigns throughout the city were carried out, during the summer of 2013 and during the winter of 2014. The main source of NO2 in Ljubljana is road transport. Accordingly, three types of urban space have been identified (urban background, open space along roads, and street canyon, and their NO2 pollution level was measured using Palmes diffusive samplers at a total of 108 measuring spots. This article analyses the results of both measuring campaigns and compares the pollution levels of different types of urban space.

  18. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane

    2014-01-01

    linearly from 0.32% to 0.71% over the range of nitrogen treatments. Cellulose and hemicellulose were not affected by the nitrogen supply while lignin peaked at medium rates of nitrogen application. The nitrogen treatments had a distinct influence on the silicon concentration, which decreased from 2.5% to 1...

  19. LBA-ECO ND-07 Carbon and Nitrogen in Cerrado Plants and Soils, Brasilia: 1999-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides (1) delta 15N ratios and nitrogen concentrations for foliar samples and (2) delta 13C and delta 15N ratios as well as carbon and...

  20. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US

    Science.gov (United States)

    Johnny L. Boggs; Steven G. McNulty; Linda H. Pardo

    2007-01-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999...

  1. In-vehicle nitrogen dioxide concentrations in road tunnels

    Science.gov (United States)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  2. Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests

    Directory of Open Access Journals (Sweden)

    K. Dana Chadwick

    2016-01-01

    Full Text Available Airborne high fidelity imaging spectroscopy (HiFIS holds great promise for bridging the gap between field studies of functional diversity, which are spatially limited, and satellite detection of ecosystem properties, which lacks resolution to understand within landscape dynamics. We use Carnegie Airborne Observatory HiFIS data combined with field collected foliar trait data to develop quantitative prediction models of foliar traits at the tree-crown level across over 1000 ha of humid tropical forest. We predicted foliar leaf mass per area (LMA as well as foliar concentrations of nitrogen, phosphorus, calcium, magnesium and potassium for canopy emergent trees (R2: 0.45–0.67, relative RMSE: 11%–14%. Correlations between remotely sensed model coefficients for these foliar traits are similar to those found in laboratory studies, suggesting that the detection of these mineral nutrients is possible through their biochemical stoichiometry. Maps derived from HiFIS provide quantitative foliar trait information across a tropical forest landscape at fine spatial resolution, and along environmental gradients. Multi-nutrient maps implemented at the fine organismic scale will subsequently provide new insight to the functional biogeography and biological diversity of tropical forest ecosystems.

  3. Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce

    Science.gov (United States)

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Paula F. Murakami; G. Richard Strimbeck; Steven G. McNulty

    2002-01-01

    We evaluated the influence of protracted low-level nitrogen (N) fertilization on foliar membrane-associated calcium (mCa), sugar and starch concentrations, membrane stability, winter cold tolerance, and freezing injury of red spruce (Picea rubens Sarg.) trees growing in six experimental plots on Mount Ascutney, Vermont. For 12 consecutive years...

  4. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Science.gov (United States)

    Jianwei Zhang; Marcus Schaub; Jonathan A. Ferdinand; John M. Skelly; Kim C. Steiner; James E. Savage

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top...

  5. Long-term trends in nitrogen isotope composition and nitrogen concentration in brazilian rainforest trees suggest changes in nitrogen cycle.

    Science.gov (United States)

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-02-15

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analyzed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in delta(15)N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood delta(15)N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, delta(15)N increased significantly during the past century even when analyzing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood delta(15)N often decreased, the delta(15)N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e., higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics.

  6. The influence of different forms and concentrations of nitrogen on ...

    African Journals Online (AJOL)

    ... mass and leaf area development were enhanced in plants supplied with nitrogen in any form. It was suggested that growth of D. eriantha was influenced by carbohydrate fluctuations.D. eriantha. Keywords: botany; carbohydrates; digitaria eriantha; dry mass; growth; leaf area; leaves; nitrogen; physiology; plant physiology; ...

  7. The influence of different forms and concentrations of nitrogen on ...

    African Journals Online (AJOL)

    Reports the results of a study conducted to compare the growth and total reduced nitrogen content of the above ground components of Digitaria eriantha and Chloris gayana plants grown in saline conditions and supplied with different levels of nitrogen in the form of nitrate and ammonia; Chloris gayana and Digitaria ...

  8. Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    in the composition range where nitrogen can be extracted by hydrogen gas at the diffusion temperature. Numerical simulation of the denitriding experiments shows that the thus determined concentration dependent diffusion coefficients are an accurate approximation of the actual diffusivity of nitrogen in expanded......The concentration dependent diffusion coefficient of nitrogen in expanded austenite was determined from of the rate of retracting nitrogen from thin initially N-saturated coupons. Nitrogen saturated homogeneous foils of expanded austenite were obtained by nitriding AISI 304 and AISI 316 in pure...... ammonia at 693 K and 718 K. Denitriding experiments were performed by equilibrating the foils with a successively lower nitrogen activity, as imposed by a gas mixture of ammonia and hydrogen. The concentration dependent diffusion coefficient of nitrogen in expanded austenite was approximated...

  9. Influence of fertilisation with foliar urea on the content of amines in wine.

    Science.gov (United States)

    Ancín-Azpilicueta, C; Nieto-Rojo, R; Gómez-Cordón, J

    2011-01-01

    Amines are substances that could cause toxic effects in the consumer. The concentration of amines in wine depends on different factors such as grape variety, vinification conditions and nitrogen fertilisation of the vines. The aim of this work was to study the influence of the application of foliar urea on the concentration of amines in wine. To carry out the study, grapevines of Tempranillo variety were used. These grapevines were treated with foliar urea at two different concentrations: 2 and 4 kg N ha(-1). Treatment with foliar urea significantly increased (p wines compared with the control sample (65% in the treatment with 2 kg N ha(-1) and 93% in the treatment with 4 kg N ha(-1)), reaching higher concentrations than the threshold level where it could provoke toxic effects in the consumer (8-20 mg l(-1)). On the other hand, treatment with foliar urea did not increase the concentrations of other amines which could be toxic such as tyramine or phenylethylamine, nor amines such as putrescine which could enhance the toxic effect of histamine. In the case of the volatile amines containing secondary amine groups, the concentration of pirrolidine increased by 37% after treatment with 2 kg N ha(-1) and 61% after treatment with 4 kg N ha(-1).

  10. Relationship between atmospheric ammonia concentration and nitrogen content in terricolous lichen (Cladonia portentosa)

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Andersen, Helle Vibeke; Strandberg, Morten Tune

    2014-01-01

    From April 2006 to April 2007, the geographical and seasonal variation in nitrogen content in terricolous lichen (Cladonia portentosa) and atmospheric ammonia concentrations were measured at five heathland sites. The seasonal variation in the nitrogen content of the lichen was small, even though...... there was a large seasonal variation in the air concentration of ammonia. A sizable local variation in the nitrogen content of the lichen was found even at the scale of a few kilometres. The nitrogen content in the lichen showed a high correlation to the yearly mean value of the measured ammonia concentration...

  11. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  12. Simulation of nitrogen concentration depth profiles in low temperature nitrided stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2006-01-01

    A numerical model is presented, which simulates nitrogen concentration-depth profiles as obtained with low temperature gaseous nitriding of stainless steel. The evolution of the calculated nitrogen concentration-depth profiles is compared with experimental nitriding kinetics. It is shown...

  13. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Xia Yao

    2015-11-01

    Full Text Available The rapid and non-destructive monitoring of the canopy leaf nitrogen concentration (LNC in crops is important for precise nitrogen (N management. Nowadays, there is an urgent need to identify next-generation bio-physical variable retrieval algorithms that can be incorporated into an operational processing chain for hyperspectral satellite missions. We assessed six retrieval algorithms for estimating LNC from canopy reflectance of winter wheat in eight field experiments. These experiments represented variations in the N application rates, planting densities, ecological sites and cultivars and yielded a total of 821 samples from various places in Jiangsu, China over nine consecutive years. Based on the reflectance spectra and their first derivatives, six methods using different numbers of wavelengths were applied to construct predictive models for estimating wheat LNC, including continuum removal (CR, vegetation indices (VIs, stepwise multiple linear regression (SMLR, partial least squares regression (PLSR, artificial neural networks (ANNs, and support vector machines (SVMs. To assess the performance of these six methods, we provided a systematic evaluation of the estimation accuracies using the six metrics that were the coefficients of determination for the calibration (R2C and validation (R2V sets, the root mean square errors of prediction (RMSEP for the calibration and validation sets, the ratio of prediction to deviation (RPD, the computational efficiency (CE and the complexity level (CL. The following results were obtained: (1 For the VIs method, SAVI(R1200, R705 produced a more accurate estimation of the LNC than other indices, with R²C, R²V, RMSEP, RPD and CE values of 0.844, 0.795, 0.384, 2.005 and 0.10 min, respectively; (2 For the SMLR, PLSR, ANNs and SVMs methods, the SVMs using the first derivative canopy spectra (SVM-FDS offered the best accuracy in terms of R²C, R²V, RMSEP, RPD, and CE, at 0.96, 0.78, 0.37, 2.02, and 21

  14. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].

    Science.gov (United States)

    Wang, Li-Wen; Wei, Ya-Xing

    2013-10-01

    Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.

  15. Influence of nitrogen source and sucrose concentration on inulinase ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... Key words: Kluyveromyces marxianus, nitrogen, sucrose, inulinase, fed-batch fermentation. INTRODUCTION. Fed-batch culture is characterized by a process in ... The sucrose was sterilized separately and later added to the medium. In order to control the foam, a silicone-based chemical anti-foaming agent ...

  16. Mapping Foliar Traits Across Biomes Using Imaging Spectroscopy: A Synthesis

    Science.gov (United States)

    Townsend, P. A.; Singh, A.; Wang, Z.

    2016-12-01

    One of the great promises of imaging spectroscopy - also known as hyperspectral remote sensing - is the ability to map the spatial variation in foliar functional traits, such as nitrogen concentration, pigments, leaf structure, photosynthetic capacity and secondary biochemistry, that drive terrestrial ecosystem processes. A remote-sensing approach enables characterization of within- and between-biome variations that may be crucial to understanding ecosystem responses to pests, pathogens and environmental change. We provide a synthesis of the foliar traits that can be mapped from imaging spectroscopy, as well as an overview of both the major applications of trait maps derived from hyperspectral imagery and current gaps in our knowledge and capacity. Specifically, we make the case that a global imaging spectroscopy mission will provide unique and urgent measurements necessary to understand the response of agricultural and natural systems to rapid global changes. Finally, we present a quantitative framework to utilize imaging spectroscopy to characterize spatial and temporal variation in foliar traits within and between biomes. From this we can infer the dynamics of vegetation function across ecosystems, especially in transition zones and environmentally sensitive systems. Eventual launch of a global imaging spectroscopy mission will enable collection of narrowband VSWIR measurements that will help close major gaps in our understanding of biogeochemical cycles and improve representation of vegetated biomes in Earth system process models.

  17. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen

    Science.gov (United States)

    Marie-Louise Smith; Scott V. Ollinger; Mary E. Martin; John D. Aber; Richard A. Hallett; Christine L. Goodale

    2002-01-01

    The concentration of nitrogen in foliage has been related to rates of net photosynthesis across a wide range of plant species and functional groups and thus represents a simple and biologically meaningful link between terrestrial cycles of carbon and nitrogen. Although foliar N is used by ecosystem models to predict rates of leaf-level photosynthesis, it has rarely...

  18. Effects of Gibberellic Acid and Nitrogen on Some Physiology Parameters and Micronutrients Concentration in Pistachio under Salt Stress

    Directory of Open Access Journals (Sweden)

    vahid mozafari

    2017-02-01

    /63, Tissue (Sandy loam, electrical conductivity (ECe (1 dS m-1, Silt (23.1%, Clay (5.5%, Organic matter (0.5%, Olsen phosphorus (P (5.35 mg kg-1, Ammonium acetate-extractable K (100 mg kg-1 were determined. Nitrogen treatments 3 weeks after planting, dissolved in irrigation water was added to pots. Salinity, after the establishment of the plant (5 weeks after planting, divided into two equal parts and one-week interval dissolved with irrigation water was added to the pot. as well acid gibberellic treatments, as spray after salt treatment was applied at three times and at intervals of one week. Results and discussion: The results showed that the salinity content of carotenoid and Chlorophyll fluorescence parameters significantly reduced but with increasing acid gibberellic and nitrogen application, mentioned parameters were significantly increased, compared to controls. The ability of photosynthesis improved and increased productivity. Mozafari et al studied the pistachio, reported that with increasing salinity from zero to 150 and 300 mM NaCl, carotenoids decreased more than 16% and 22% compared to control respectively. Carotenoids play a most important role in light, protecting plants against stress condition. Salinity application increased leaf proline, but with application of 150 mg nitrogen and 500 mg per liter foliar application of acid gibberellics, this parameter increased by 55 and 26 percent, respectively. Also, combined use of these two treatments increased proline content by 79 percent compared to control. The researchers stated that the increasing gibberellin concentration caused leaf proline increased, so spraying 100 and 200 mg per liter gibberellin significantly increased leaf proline compared with the non-application of gibberellin. The results also showed with increasing salinity increased iron, manganese and zinc concentrations shoots and roots and decreased copper concentrations, but using 150 mg of nitrogen and acid gibberellic consumption concentrations

  19. Effect of Sodium Chloride Concentrations and Its Foliar Application Time on Quantitative and Qualitative Characteristics of Pomegranate Fruit (Punica granatum L. CV. “Malas Saveh”

    Directory of Open Access Journals (Sweden)

    V. Rouhi

    2016-02-01

    Full Text Available Introduction: Pomegranate (Punica granatum L. belong to Punicaceae family is native to Iran and grown extensively in arid and semi-arid regions worldwide. Pomegranate is also important in human medicine and its components have a wide range of clinical applications. Cracking causes a major fruit loss, which is a serious commercial loss to farmers. Fruit cracking, seems to be a problem that lessens the marketability to a great extent. Fruit cracking is one of the physiological disorders wherever pomegranate trees are grown. It may be due to moisture imbalances as this fruit is very sensitive to variation in soil moisture prolonged drought causes hardening of skin and if this is followed by heavy irrigation the pulp grows then skin grows and cracks. Many factors i.e., climate, soil and irrigation, varieties, pruning, insects and nutrition statues influence the growth and production of fruit trees. Deficiencies of various nutrients are related to soil types, plants and even to various cultivars. Most nutrients are readily fixed in soil having different PH. Plant roots are unable to absorb these nutrients adequately from the dry topsoil. Foliar fertilization is particularly useful under conditions where the absorption of nutrients through the soil and this difficult situation to be present in the nutrients such as calcium. Since the calcium element is needed, so spraying them at the right time is correct way to save the plant requirements. Therefore, a research conducted on effect of sodium chloride concentrations and its foliar application time on quantitative and qualitative characteristics of pomegranate fruit (Punica granatum L. CV. “Malas Saveh”. Materials and Methods: An experiment conducted at Jarghoyeh, Esfahan, Iran in 2012. The factors were Sodium chloride (0, 5 and 10 g/L and times of spray (15, 45 and 75 days before harvest. The study was factorial experiment in the base of randomized complete blocks design with three replications

  20. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure.

    Directory of Open Access Journals (Sweden)

    Marie-Eve Monchamp

    Full Text Available The eutrophication of freshwaters is a global health concern as lakes with excess nutrients are often subject to toxic cyanobacterial blooms. Although phosphorus is considered the main element regulating cyanobacterial biomass, nitrogen (N concentration and more specifically the availability of different N forms may influence the overall toxicity of blooms. In this study of three eutrophic lakes prone to cyanobacterial blooms, we examined the effects of nitrogen species and concentrations and other environmental factors in influencing cyanobacterial community structure, microcystin (MC concentrations and MC congener composition. The identification of specific MC congeners was of particular interest as they vary widely in toxicity. Different nitrogen forms appeared to influence cyanobacterial community structure leading to corresponding effects on MC concentrations and composition. Total MC concentrations across the lakes were largely explained by a combination of abiotic factors: dissolved organic nitrogen, water temperature and ammonium, but Microcystis spp. biomass was overall the best predictor of MC concentrations. Environmental factors did not appear to affect MC congener composition directly but there were significant associations between specific MC congeners and particular species. Based on redundancy analyses (RDA, the relative biomass of Microcystis aeruginosa was associated with MC-RR, M. wesenbergii with MC-LA and Aphanizomenon flos-aquae with MC-YR. The latter two species are not generally considered capable of MC production. Total nitrogen, water temperature, ammonium and dissolved organic nitrogen influenced the cyanobacterial community structure, which in turn resulted in differences in the dominant MC congener and the overall toxicity.

  1. Analyzing nitrogen concentration using carrier illumination (CI) technology for DPN ultra-thin gate oxide

    International Nuclear Information System (INIS)

    Li, W.S.; Wu, Bill; Fan, Aki; Kuo, C.W.; Segovia, M.; Kek, H.A.

    2005-01-01

    Nitrogen concentration in the gate oxide plays a key role for 90 nm and below ULSI technology. Techniques like secondary ionization mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS) are commonly used for understanding N concentration. This paper describes the application of the carrier illuminationTM (CI) technique to measure the nitrogen concentration in ultra-thin gate oxides. A set of ultra-thin gate oxide wafers with different DPN (decoupled plasma nitridation) treatment conditions were measured using the CI technique. The CI signal has excellent correlation with the N concentration as measured by XPS

  2. Farmer driven national monitoring of nitrogen concentrations in drainage water in Denmark

    Science.gov (United States)

    Piil, Kristoffer; Lemming, Camilla; Kolind Hvid, Søren; Knudsen, Leif

    2014-05-01

    Field drains are often considered to short circuit the hydrological cycle in agricultural catchments and lead to an increased risk of nitrogen loss to the environment. Because of increased regulation of agricultural practices due to catchment management plans, resulting from the implementation of the water frame directive, Danish farmers pushed for a large scale monitoring of nitrogen loss from field drains. Therefore, the knowledge centre for agriculture, Denmark, organized a three year campaign where farmers and local agricultural advisory centres collected water samples from field drains three to five times during the winter season. Samples were analysed for nitrate and total nitrogen. Combined, more than 600 drains were monitored over the three years. During the first two years of monitoring, average winter concentrations of total nitrogen ranged from 0.1 mg N L-1 to 31.1 mg N L-1, and the fraction of total nitrogen present as nitrate ranged from 0% to 100%. This variation is much larger than what is observed in the Danish national monitoring and assessment programme, which monitors only a few drains in selected catchments. Statistical analysis revealed that drainage water nitrogen concentrations were significantly correlated to the cropping system and the landscape type (high ground/lowlands/raised seabed) in which the monitored fields were situated. The average total nitrogen concentration was more than 2 mg N L-1 lower on raised seabed than on high ground, and the average fraction of total nitrogen present as nitrate was more than 20% lower. This indicates that substantial nitrate reduction occurs at or above the drain depth on raised sea flats, in particular in the north of Denmark. This inherent nitrogen retention on raised seabed is not taken into account in the current environmental regulation, nor in the first generation catchment management plans. The monitoring program demonstrated large variation in nitrogen concentrations in drainage water, in

  3. Foliar zinc fertilization improves the zinc nutritional value of wheat ...

    African Journals Online (AJOL)

    Xiaoyan 22) grown on a potential Zn-deficient soil with different N fertilization rates. The results show that foliar Zn application increased grain Zn concentrations in both cropping seasons, but had no significant effect on grain yield. Foliar Zn application decreased the phytic acid concentration and the phytic acid to Zn molar ...

  4. Changes in Growth and Oil Yield Indices of Rapeseed (Brassica napus L., cv. Hyola 401 in Different Concentrations andTimes of Application of Supplementary Nitrogen Fertilizer

    Directory of Open Access Journals (Sweden)

    P. Tousi Kehal

    2013-03-01

    Full Text Available In order to investigate the effect of concentration and time of supplementary nitrogen fertilizer spray on growth indices of rapeseed (cv. Hyola 401, a field experiment was conducted at Rice Research Institute of Iran as a randomized complete blocks design with 16 treatments and 3 replications in 2008-2009. The treatments included concentration of nitrogen fertilizer (urea at two levels (5 and 10 ppm in seven levels of application time:1 spraying at 6-8- leaf stage, 2 beginning of stem elongation, 3 prior to flowering, 4 at 6-8- leaf stage + beginning of stem elongation, 5 at 6-8- leaf + prior to flowering, 6 beginning of stem elongation+ prior to flowering, and 7 at 6-8- leaf + beginning of stem elongation+ prior to flowering, which were compared with two control treatments (no fertilizer nitrogen and conventional soil fertilization. Results showed that significant difference was observed between spray treatments including concentration and times of nitrogen application, between controls and between controls with spray treatments, of grain and oil yield, crop growth rate (CGR, leaf area index (LAI and leaf area duration (LAD. Application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages produced maximum grain yield (4221.7 kg/ha and oil yield (1771.1 kg/ha. Spray treatments produced maximum oil yield index (15.3% compared to controls. Maximum LAI (6.9 and 5.6 respectively, CGR (15.2 and 14.3 g/m2.10 GDD, respectively and LAD (1204 and 1029 cm2/10 GDD, respectively were also obtained from spray application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages and at 6-8-leaf stage + beginning of stem elongation + prior to flowering. According to the results of the present investigation, it seems that foliar application of supplementary nitrogen fertilizer at the end growth stages (beginning of stem elongation and prior to flowering of rapeseed plants may help to enhance growth indices

  5. role of potassium and nitrogen on sugar concentration

    African Journals Online (AJOL)

    Key Words: Beta vulgaris L., root yield, sugar yield, regression. RÉSUMÉ. Le sucre est extrait des racines de la betterave (Beta vulgaris L.) en plus d'autres sources. Trois paramètres économiques importants sont souvent considérés notamment le rendement en racines, la concentration en sucre et le rendement en sucre.

  6. Past and future trends in concentrations of sulphur and nitrogen compounds in the Arctic

    DEFF Research Database (Denmark)

    Hole, Lars R.; Christensen, Jesper H.; Ruoho-Airola, Tuija

    2009-01-01

    Recent trends in nitrogen and sulphur compounds in air and precipitation from a range of Arctic monitoring stations are presented, with seasonal data from the late 70s to 2004 or 2005. Earlier findings of declining sulphur concentrations are confirmed for most stations, while the pattern is less...... clear for reduced and oxidized nitrogen. In fact there are positive trends for nitrogen compounds in air at several stations. Acidity is generally reduced at many stations while the precipitation amount is either increasing or stable. Variability of sulphate concentrations in air for the period 1991......-2000 is reasonably well reproduced at most stations using an Eulerian, hemispherical model. Results for nitrogen compounds are weaker. Scenario studies show that even if large sulphur emission reductions take place in important source regions in South-East Asia in the coming decades, only small changes in Arctic...

  7. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates

    Science.gov (United States)

    John S. Kominoski; Amy D. Rosemond; Jonathan P. Benstead; Vladislav Gulis; John C. Maerz; David Manning

    2015-01-01

    Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-...

  8. ASSESS CONCENTRATIONS OF THE FORMS OF NITROGEN IN URBANIZED CATCHMENT FOR EXAMPLE OLIWA STREAM

    Directory of Open Access Journals (Sweden)

    Karolina Matej-Łukowicz

    2017-06-01

    Full Text Available In the article the results of nitrogen compounds (NH4, NO2-, NO3- in water samples collected at six locations (sampling points at the Oliwa Stream will be presented. The study was carried out in 2016-2017, analyzing the changes caused by rainfall in the urban catchment. After the spring rain the concentration of ammonia nitrogen is considerably higher than in autumn. The results were compared with the Regulation of the Minister of the Environment, which describes two main classes of water purity. In addition, the article describes the results of the nitrogen compounds after the rainfall of 15th July 2016 will be presented.

  9. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianwei, E-mail: jianweizhang@fs.fed.u [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Schaub, Marcus; Ferdinand, Jonathan A. [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, John M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Steiner, Kim C. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Savage, James E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-15

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g{sub wv}), foliar injury, and leaf nitrogen concentration (N{sub L}) to tropospheric ozone (O{sub 3}) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g{sub wv}, foliar injury, and N{sub L} (P < 0.05) among O{sub 3} treatments. Seedlings in AA showed the highest A and g{sub wv} due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g{sub wv}, N{sub L}, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g{sub wv}, and foliar injury to O{sub 3}. Both VPD and N{sub L} had a strong influence on leaf gas exchange. Foliar O{sub 3}-induced injury appeared when cumulative O{sub 3} uptake reached 8-12 mmol m{sup -2}, depending on soil water availability. The mechanistic assessment of O{sub 3}-induced injury is a valuable approach for a biologically relevant O{sub 3} risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  10. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    International Nuclear Information System (INIS)

    Zhang Jianwei; Schaub, Marcus; Ferdinand, Jonathan A.; Skelly, John M.; Steiner, Kim C.; Savage, James E.

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g wv ), foliar injury, and leaf nitrogen concentration (N L ) to tropospheric ozone (O 3 ) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g wv , foliar injury, and N L (P 3 treatments. Seedlings in AA showed the highest A and g wv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g wv , N L , and higher foliar injury (P wv , and foliar injury to O 3 . Both VPD and N L had a strong influence on leaf gas exchange. Foliar O 3 -induced injury appeared when cumulative O 3 uptake reached 8-12 mmol m -2 , depending on soil water availability. The mechanistic assessment of O 3 -induced injury is a valuable approach for a biologically relevant O 3 risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  11. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    Science.gov (United States)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only

  12. Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production.

    Science.gov (United States)

    Torres, Cristiana A V; Marques, Rodolfo; Ferreira, Ana R V; Antunes, Sílvia; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M

    2014-11-01

    Enterobacter A47 produces a fucose-containing exopolysaccharide (EPS) by cultivation in mineral medium supplemented with glycerol. EPS synthesis by Enterobacter A47 was shown to be influenced by both the initial glycerol and nitrogen concentrations and by the nutrients' feeding rate during the fed-batch phase. Initial nitrogen concentrations above 1.05g/L were detrimental for EPS synthesis: the productivity was reduced to 0.35-0.62g/Ld (compared to 1.89-2.04g/Ld under lower nitrogen concentrations) and the polymer had lower fucose content (14-17%mol, compared to 36-38%mol under lower nitrogen concentrations). On the other hand, EPS productivity was improved to 5.66g/Ld by increasing the glycerol and nitrogen feeding rates during the fed-batch phase. However, the EPS thus obtained had lower fucose (26%mol) and higher galactose (34%mol) contents, as well as lower average molecular weight (7.2×10(5)). The ability of Enterobacter A47 to synthesize EPS with different physico-chemical characteristics may be useful for the generation of biopolymers with distinct functional properties suitable for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Physiological responses of two tropical weeds to shade: II. Leaf gas exchange and nitrogen content Respostas fisiológicas de duas plantas invasoras tropicais ao sombreamento: II. Troca gasosa e conteúdo de nitrogênio foliar

    Directory of Open Access Journals (Sweden)

    Moacyr Bernardino Dias-Filho

    1999-06-01

    Full Text Available Ipomoea asarifolia (Desr. Roem. & Schultz (Convolvulaceae and Stachytarpheta cayennensis (Rich Vahl. (Verbenaceae, two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹ and low (200-350 µmol m-² s-¹ light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.Ipomoea asarifolia (Desr. Roem. & Schultz (Convolvulaceae e Stachytarpheta cayennensis (Rich Vahl. (Verbenaceae, duas plantas invasoras encontradas em pastagens e áreas agrícolas da Amazônia brasileira, foram cultivadas durante 40 dias, em câmaras de crescimento sob alto (800-1000 µmol m-² s-¹ e baixo (200-350 µmol m-² s-¹ regime de luz. O objetivo foi estudar o efeito do sombreamento nas características fotossintéticas e no teor de nitrogênio de I. asarifolia e S. cayennensis. As folhas de I. asarifolia cultivadas sob regime de luz alta apresentaram valores de respiração no escuro e taxa m

  14. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin

    2016-01-01

    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC......Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at −18 °C and fast...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...

  15. Influence of foliar riboflavin applications to vineyard on grape amino acid content.

    Science.gov (United States)

    González-Santamaría, Rosario; Ruiz-González, Rubén; Nonell, Santi; Garde-Cerdán, Teresa; Pérez-Álvarez, Eva P

    2018-02-01

    Nitrogen is an important element for grapevine and winemaking, which affects plant development, grape juice fermentation and has a potential effect in modulating wine quality. The aim was to study the influence of foliar applications of riboflavin (vitamin B2) to vineyard on grape nitrogen composition. This vitamin has a reported capacity to protect different plant species, but its application to favor grape and grape juice quality had not previously been studied. This work reports the oenological properties and the effect on amino acid concentration of grape juices obtained from grapes treated with riboflavin at two different doses compared to control. Results showed that probable alcohol, malic acid, color intensity and hue had significant differences when the riboflavin treatments were applied. Most of the amino acids presented the highest concentrations when the lowest riboflavin dose was used. These results are promising in terms of fermentation development and grape juice nitrogen composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of mass concentration of immobilized Spirulina platensis on nitrogen removal from simulated shrimp pond water

    Directory of Open Access Journals (Sweden)

    Patama Lerksasen

    2007-11-01

    Full Text Available Spirulina platensis strain BP immobilized on fibrous polyester mat was applied for nitrogen removal from simulated shrimp pond water. Different S. platensis mass on mat was built up during immobilizing process by varying the amount of batch fed suspended S. platensis cells. During immobilization, 0.2 OD560 S. platensis was replenished to reactor and chlorophyll-a in the solution was monitored. The immobilized S. platensis mass was 63, 49 and 19 g dw-S. platensis/m2 for Sp V-1, Sp IV-1 and Sp II-1 mat reactors adding five, four and two times of 0.2 OD560 S. platensis respectively. In accordance with statistic, the results of nitrogen removal tests by applying those immobilized mats in circulated batch system reactors loaded with 1.94 gN/m2-d showed that there were significant differences on ammonia removal among the different initial S. platensis mass on mats (ANOVA; P<0.05. The Sp V-1, Sp IV-1 and Sp II-1 mats could reduce the ammonia nitrogen concentration from 1 mg-N/L to the level as low as 0.18 mg-N/L within 2 weeks. Transformation of 75-81% ammonia nitrogen to organic nitrogen in microalgal cells, of which 27-43% were detached to solution, resulted to 44-58% total nitrogen removed from the system.

  17. Nitrogen concentration profiles in oxy-nitrited high-speed steel

    International Nuclear Information System (INIS)

    Barcz, A.; Turos, A.; Wielunski, L.

    1976-01-01

    Nuclear microanalysis has been applied for the determination of in-depth concentration profiles of nitrogen in oxy-nitrided high-speed steel. The concentration profiles were deduced from measurements of the nitrogen content, determined by means of the 14 N(d,α) 12 C reaction for the set of initially identical samples after the removal of surface layers of sequentially increasing thicknesses. The 1.2 MeV deuterons were obtained from the Institute of Nuclear Research Van de Graaf accelerator LECH. The α-particles produced in the 14 N(d,α) 12 C reaction were detected by means of silicon surface barrier detector mounted at 150 deg C. Strong blocking of the nitrogen diffusion due to the presence of oxygen has been observed. The accuracy of nitrogen detection is of the order of 5% for nitrogen-rich regions and 10% for the matrix. However, the local non-uniformity of the steel may cause a spread of about 20% of the measured values. (T.G.)

  18. Use of Potato Nitrogen Concentrate in the Production of α-Amylase by Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Eric Thaller

    2007-01-01

    Full Text Available The influence of various nitrogen sources and media supplements on α-amylase (EC 3.2.1.1 formation by Aspergillus oryzae ATCC 1011 was investigated in shake flask experiments and batch fermentations. Both inorganic and organic nitrogen-containing supplements have been applied, while corn starch and ammonium sulphate were used as the major source of carbon and nitrogen, respectively. Shake flask experiments revealed that potato nitrogen concentrate (PNC is almost equivalent to corn steep liquor (CSL in supporting amylase formation. A pretreatment step consisting of clarification of the turbid material did not show any significant effect. The replacement of the inorganic nitrogen source by sodium nitrate led to lower enzyme yields. Other complex supplements may reduce the enzyme level formed, e.g. casein hydrolysate, or increase the amylase titre slightly, e.g. yeast extract or malt extract. Cultivations in instrumented bench top reactors on media supplemented with PNC led to higher cell growth rates and yields of α-amylase in comparison with the medium without any supplement. Replacement of PNC by CSL revealed a slightly increased enzyme level, which is in the range of 9–17 % after 100 h of cultivation. Only minor differences were revealed in the growth kinetics and enzyme formation when PNC was used as the sole nitrogen source, replacing a mixture of soybean meal, yeast extract, malt extract and casein hydrolysate in bioreactor cultivations with lactose as the carbon source. However, metabolic differences as seen from the course of dissolved oxygen tension (DOT, α-amino nitrogen concentration and the amount of acid needed to maintain a constant pH were observed.

  19. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence.

    Science.gov (United States)

    Gilson, Angélique; Barthes, Laure; Delpierre, Nicolas; Dufrêne, Éric; Fresneau, Chantal; Bazot, Stéphane

    2014-07-01

    Forest productivity declines with tree age. This decline may be due to changes in metabolic functions, resource availability and/or changes in resource allocation (between growth, reproduction and storage) with tree age. Carbon and nitrogen remobilization/storage processes are key to tree growth and survival. However, studies of the effects of tree age on these processes are scarce and have not yet considered seasonal carbon and nitrogen variations in situ. This study was carried out in a chronosequence of sessile oak (Quercus petraea Liebl.) for 1 year to survey the effects of tree age on the seasonal changes of carbon and nitrogen compounds in several tree compartments, focusing on key phenological stages. Our results highlight a general pattern of carbon and nitrogen function at all tree ages, with carbon reserve remobilization at budburst for growth, followed by carbon reserve formation during the leafy season and carbon reserve use during winter for maintenance. The variation in concentrations of nitrogen compounds shows less amplitude than that of carbon compounds. Storage as proteins occurs later, and mainly depends on leaf nitrogen remobilization and root uptake in autumn. We highlight several differences between tree age groups, in particular the loss of carbon storage function of fine and medium-sized roots with tree ageing. Moreover, the pattern of carbon compound accumulation in branches supports the hypothesis of a preferential allocation of carbon towards growth until the end of wood formation in juvenile trees, at the expense of the replenishment of carbon stores, while mature trees start allocating carbon to storage right after budburst. Our results demonstrate that at key phenological stages, physiological and developmental functions differ with tree age, and together with environmental conditions, influence the carbon and nitrogen concentration variations in sessile oaks. © The Author 2014. Published by Oxford University Press. All rights

  20. Controls over foliar N:P ratios in tropical rain forests.

    Science.gov (United States)

    Townsend, Alan R; Cleveland, Cory C; Asner, Gregory P; Bustamante, Mercedes M C

    2007-01-01

    Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N

  1. Growth and nutrition response of young sweetgum plantations to repeated nitrogen fertilization on two site types

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.A.D.A. [USDA Forest Service, Pineville, LA (United States); Burger, J.A. [Virginia Polytechnic Institute and State University, Blacksburg, VA (United States). Dept. of Forestry; Kaczmarek, D.J. [Mead Westvaco Forest Science and Technology, Summerville, SC (United States); Kane, M.B. [International Paper Corp., Ridgeland, MS (United States). Silviculture Research and Technology

    2004-10-01

    Short-rotation intensive tree culture is being investigated in the southern United States as a method of producing hardwood fiber, but little is known about the early productivity and nutritional needs of these systems, especially on different site types. We studied the growth and foliar nutrition response of two sweetgum (Liquidambar styraciflua L.) plantations on a converted agricultural field and a pine cutover site to biannual applications of three nitrogen (N) fertilizer rates: 0, 5 6, and 112 kg N ha{sup -1}. The trees did not respond to treatment at any age on the agricultural field site, but the fertilized trees on the cutover site had about 60% greater biomass at ages 5 and 6. Fertilization doubled foliar biomass on the cutover site in the years fertilizer was applied. Stem biomass was directly related to foliar biomass, but the relationship was age-specific at both sites. Stem biomass was also related to the foliar N concentration. Foliar critical values of N were about 18 g N kg{sup -1}. Foliage phosphorus (P) and potassium (K) contents were diluted by the N fertilization-induced growth responses at both sites. Fertilization of young intensive-culture sweetgum plantations is necessary for optimum foliar N concentrations and foliar and stem biomass production, but is site-specific. (author)

  2. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  3. Plasma urea nitrogen and progesterone concentrations and follicular dynamics in ewes fed proteins of different degradability

    Directory of Open Access Journals (Sweden)

    Gustavo Bianchi Lazarin

    2012-07-01

    Full Text Available The effects of overfeeding with protein of different degradability on body condition, plasma urea nitrogen and progesterone concentrations, ovulation number and follicular dynamics were assessed in Santa Ines ewes. Twelve ewes were assigned to a randomized block design according to body weight and received overfeeding with soybean meal or with corn gluten meal or maintenance diet for 28 days before ovulation and during the next estrous cycle. Blood samples were taken on days 7, 14, 21, and 28 after the beginning of treatments for analysis of plasma urea nitrogen and on days 3, 6, 9, 12, and 15 into the estrous cycle for analysis of plasma urea nitrogen and progesterone. Follicular dynamics was monitored daily by ultrasound during one estrous cycle. Dry matter and crude protein intake, weight gain, plasma urea nitrogen concentration before ovulation, number of ovulations, diameter of the largest follicle of the 1st and of the 2nd waves and the growth rate of the largest follicle of the 1st wave were higher in the ewes that received overfeeding. The growth rate of the largest follicle of the 3rd wave was higher in the ewes fed maintenance diet. The back fat thickness, plasma urea nitrogen before ovulation and progesterone concentrations, diameter of the largest follicle of the 2nd wave and growth rate of the largest follicle of the 3rd wave were higher in ewes that received overfeeding with soybean meal. The growth rate of the largest follicle of the 1st wave was higher in ewes that received overfeeding with corn gluten meal. Overfeeding with protein-rich feeds may increase the ovulation number and with soybean meal, it may be effective in increasing plasma progesterone concentration in ewes.

  4. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China.

    Directory of Open Access Journals (Sweden)

    Yonggang Chi

    Full Text Available BACKGROUND: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf, An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf, responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag to Tleaf, and foliar nitrogen (N concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year and 2011 (a wet year. Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. CONCLUSIONS/SIGNIFICANCE: Warming decreased the temperature sensitivity (Q10 of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.

  5. Acclimation of Foliar Respiration and Photosynthesis in Response to Experimental Warming in a Temperate Steppe in Northern China

    Science.gov (United States)

    Chi, Yonggang; Xu, Ming; Shen, Ruichang; Yang, Qingpeng; Huang, Bingru; Wan, Shiqiang

    2013-01-01

    Background Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. Methodology/Principal Findings A field manipulative experiment was conducted to elevate foliar temperature (T leaf) by 2.07°C in a temperate steppe in northern China. R d/T leaf curves (responses of dark respiration to T leaf), A n/T leaf curves (responses of light-saturated net CO2 assimilation rates to T leaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (A g) to T leaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of R d to 6-year experimental warming was found. However, A n had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of R d was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. Conclusions/Significance Warming decreased the temperature sensitivity (Q 10) of the response of R d/A g ratio to T leaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions. PMID:23457574

  6. Impact of Tile Drainage on the Distribution of Concentration and Age of Inorganic Soil Nitrogen.

    Science.gov (United States)

    Woo, D.; Kumar, P.

    2017-12-01

    Extensive network of tile drainage network across the Midwestern United States, northern Europe and other regions of the world have enhanced agricultural productivity. Because of its impact on sub-surface flow patterns and moisture and temperature dynamics, it controls the nitrogen cycle in agricultural systems, and its influence on nitrogen dynamics plays a key role in determining the short- and long-term evolution of soil inorganic nitrogen concentration and age. The spatial mapping of nitrogen concentration and age under tile-drained fields has, therefore, the potential to open up novel solution to the vexing challenge of reducing environmental impacts while at the same time maintaining agricultural productivity. The objective of this study is to explore the impacts of tile drains on the age dynamics of nitrate, immobile ammonium, mobile ammonia/um, and non-reactive tracer (such as chloride) by implementing two mobile interacting pore domains to capture matrix and preferential flow paths in a coupled ecohydrology and biogeochemistry model, Dhara. We applied this model to an agricultural farm supporting a corn-soybean rotation in the Midwestern United States. It should be expected that the installation of tile drains decrease the age of soil nutrient due to nutrient losses through tile drainage. However, an increase in the age of mobile ammonia/um is observed in contrast to the cases for nitrate, immobile ammonium, and non-reactive tracer. These results arise because the depletion of mobile ammonia/um due to tile drainage causes a high mobility flux from immobile ammonium to mobile ammonia/um, which also carries a considerable amount of relatively old age of immobile ammonium to mobile ammonia/um. In addition, the ages of nitrate and mobile ammonia/um in tile drainage range from 1 to 3 years, and less than a year, respectively, implying that not considering age transformations between nitrogen species would result in substantial underestimation of nitrogen ages

  7. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models

    Science.gov (United States)

    Lawson, Anneka Ruth; Ghosh, Bidisha; Broderick, Brian

    2011-09-01

    Ambient air quality monitoring, modeling and compliance to the standards set by European Union (EU) directives and World Health Organization (WHO) guidelines are required to ensure the protection of human and environmental health. Congested urban areas are most susceptible to traffic-related air pollution which is the most problematic source of air pollution in Ireland. Long-term continuous real-time monitoring of ambient air quality at such urban centers is essential but often not realistic due to financial and operational constraints. Hence, the development of a resource-conservative ambient air quality monitoring technique is essential to ensure compliance with the threshold values set by the standards. As an intelligent and advanced statistical methodology, a Structural Time Series (STS) based approach has been introduced in this paper to develop a parsimonious and computationally simple air quality model. In STS methodology, the different components of a time-series dataset such as the trend, seasonal, cyclical and calendar variations can be modeled separately. To test the effectiveness of the proposed modeling strategy, average hourly concentrations of nitrogen dioxide and nitrogen oxides from a congested urban arterial in Dublin city center were modeled using STS methodology. The prediction error estimates from the developed air quality model indicate that the STS model can be a useful tool in predicting nitrogen dioxide and nitrogen oxides concentrations in urban areas and will be particularly useful in situations where the information on external variables such as meteorology or traffic volume is not available.

  9. Slope position and Soil Lithological Effects on Live Leaf Nitrogen Concentration.

    Science.gov (United States)

    Szink, I.; Adams, T. S.; Orr, A. S.; Eissenstat, D. M.

    2017-12-01

    Soil lithology has been shown to have an effect on plant physiology from the roots to the leaves. Soils at ridgetop positions are typically more shallow and drier than soils at valley floor positions. Additionally, sandy soils tend to have a much lower water holding capacity and can be much harder for plants to draw nutrients from. We hypothesized that leaves from trees in shale derived soil at ridgetop positions will have lower nitrogen concentration than those in valley floor positions, and that this difference will be more pronounced in sandstone derived soils. This is due to the movement of nitrogen through the soil in a catchment, and the holding and exchange capacities of shale and sandstone lithologies. To test this, we collected live leaves using shotgun sampling from two locations in Central Pennsylvania from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO); one location where soils are underlain by the Rose Hill Shale, and one from where soils are underlain by the Tuscarora Sandstone formation. We then measured, dried, and massed in order to determine specific leaf area (SLA). Afterwards, we powderized the leaves to determined their C:N ratio using a CE Instruments EA 1110 CHNS-O elemental Analyzer based on the "Dumas Method". We found that live leaves of the same species at higher elevations had lower nitrogen concentrations than those at lower elevations, which is consistent with our hypothesis. However, the comparison of leaves from all species in the catchment is not as strong, suggesting that there is a species specific effect on nitrogen concentration within leaves. We are currently processing additional leaves from other shale and sandstone sites. These results highlight the effect of abiotic environments on leaf nutrient concentrations, and the connection between belowground and aboveground tree physiology.

  10. Effects of nitrogen concentration and cold temperature on DSP-toxin concentrations in the dinoflagellate Prorocentrum lima (Prorocentrales, Dinophyceae).

    Science.gov (United States)

    McLachlan, J L; Marr, J C; Conlon-Kelly, A; Adamson, A

    1994-01-01

    The diarrhetic shellfish poisoning toxin-producing dinoflagellate, Prorocentrum lima, isolated from Nova Scotian waters, contained both okadaic acid (OA) and dinophysistoxin-1 (DTX-1) throughout its growth cycle in culture; maximum concentrations of toxins and highest OA/DTX-1 ratios occurred during the stationary phase. Cells of P. lima survived 0 degrees C for 5 weeks and recovered when brought to a higher temperature. During the cold period, some cell damage probably occurred with concomitant losses of toxins to the medium. Nitrogen concentration in the medium was used to limit growth or stress the cells physiologically, and when growth was limited, increases in toxin associated with the cells were recorded. The relative amounts of okadaic acid were always greater than dinophysistoxin-1, but the significance of these ratios remains to be determined.

  11. Round Robin test for the determination of nitrogen concentration in solid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    Favuzza, P., E-mail: paolo.favuzza@enea.it [ENEA Center, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Antonelli, A. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen (Germany); Hedinger, R. [F4E Research Center, Boltzmannstraße 2, 85748 Garching (Germany); Higashi, T. [University of Tokyo (Japan); Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF-EVEDA Project Team, Rokkasho (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Miccichè, G.; Nitti, F.S. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Ohira, S. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Severi, M. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho (Japan); Suzuki, A. [University of Tokyo (Japan); Traversi, R. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2016-06-15

    Highlights: • Nitrogen contained in solid Lithium is converted into Ammonium ion. • Ammonium ion is suitably quantified by ionic chromatograph or by Ammonia sensor. • Good agreement of the partner’s results has been achieved. • Maximum operative reproducibility and blank subtraction are necessary. - Abstract: Three different partners, ENEA, JAEA ed University of Tokyo, have been involved during 2014–2015 in the Round Robin experimentation for the assessment of the soundness of the analitycal procedure for the determination of the Nitrogen impurities contained inside a solid Lithium sample. Two different kinds of Lithium samples, differing by about an order of magnitude in Nitrogen concentration (∼230 wppm; ∼20–30 wppm), have been selected for this cross analysis. The agreement of the achieved results appears very good for what concerns the most concentrated Lithium and indicates each partner’s procedure is appropriate and intrinsecally able to lead to meaningful values, characterized by a relative uncertainty of just few %. The smaller agreement in the case of the less concentrated Lithium anyway points out that particular attention must be paid to reduce as much as possible any source of external contamination and highlights the importance of the proper blank subtraction.

  12. Influência da aplicação de fertilizantes, na concentração de nutrientes em folhas de pimenteira-do-reino The influence of applications of fertilizer on foliar concentrations of nutrients of black pepper

    Directory of Open Access Journals (Sweden)

    Ondino C Bataglia

    1976-07-01

    Full Text Available Procedeu-se à análise de folhas coletadas no verão, outono e inverno, num ensaio de adubação qualitativa instalado na Estação Experimental de Pariquera Açu, do Instituto Agronômico, com o objetivo de avaliar o efeito da aplicação de fertilizantes na absorção de nutrientes pela pimenteira-do-reino. A amostragem de verão revelou efeito dos tratamentos sobre os teores de fósforo, potássio e cobre, sendo por isso recomendada para fins de diagnose foliar. Apenas para potássio houve aumento de concentração nas folhas quando se compararam as médias dos tratamentos com e sem cada um dos nutrientes.A field trial was conducted since 1965 at the Pariquera Açu Experiment Station, State of São Paulo, to study the effects of the presence and absence of fertilizer on black pepper (Piper nigrum L.. In 1973, recently mature leaves were collected in summer, fall and winter in order to verify the effects of the treatments on the foliar concentration of macro and micronutrients. Summer sampling showed effect of fertilizer treatments on the concentration of phosphorus, potassium, and copper. Fall sampling showed effect only for potassium and no effect was observed in the winter. When the average contents of nutrients from fertilized and not fertilized treatments were compared, only potassium revealed differences by the Scheffé test.

  13. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping.

    Science.gov (United States)

    Ippersiel, D; Mondor, M; Lamarche, F; Tremblay, F; Dubreuil, J; Masse, L

    2012-03-01

    The practice of intensive animal production in certain areas has resulted in excessive manure production for the available regional land base. Consequently, there is a need to develop treatment technologies to recover the valuable nutrients that manure contains so that the resulting product can be transported and used as fertilizer on agricultural land. The project presented here used electrodialysis in a dilution/concentration configuration to transfer the manure ammonia in the diluate solution by electromigration to an adjacent solution separated by an ion-exchange membrane under the driving force of an electrical potential. Then, air stripping from the electrodialysis-obtained concentrate solution without pH modification was used to isolate the ammonia in an acidic solution. An optimal process operating voltage of 17.5 V was first determined on the basis of current efficiency and total energy consumption. During the process, the swine manure pH varied from 8.5 to 8.2, values favourable for NH(4)(+) electromigration. Total ammonia nitrogen reached 21,352 mg/L in the concentrate solution, representing approximately seven times the concentration in the swine manure. Further increases in concentration were limited by water transfer from the diluate solution due to electroosmosis and osmosis. Applying vacuum to the concentrate reservoir was found to be more efficient than direct concentrate solution aeration for NH(3) recuperation in the acid trap, given that the ammonia recuperated under vacuum represented 14.5% of the theoretical value of the NH(3) present in the concentrate solution as compared to 6.2% for aeration. However, an excessively low concentrate solution pH (8.6-8.3) limited NH(3)volatilization toward the acid trap. These results suggest that the concentrate solution pH needs to be raised to promote the volatile NH(3) form of total ammonia nitrogen. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Effects of Nitrogen Inputs and Watershed Characteristics on Summer Stream Nitrogen Concentrations: A National-Scale Analysis

    Science.gov (United States)

    Bellmore, R. A.; Compton, J.; Weber, M.; Hill, R. A.; Thornbrugh, D.; Brooks, J. R.

    2015-12-01

    Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutrient criteria. In this study, we combine national-scale anthropogenic N input data, including synthetic fertilizer, crop biological N fixation, manure applied to farmland, atmospheric N deposition, and point source inputs, with data from the 2008-09 National Rivers and Streams Assessment to quantify the relationship between N inputs and in-stream concentrations of total N (TN), dissolved inorganic N (DIN), and total organic N (TON) (calculated as TN - DIN). In conjunction with simple linear regression, we use multiple regression to understand how watershed and stream reach attributes modify the effect of N inputs on N concentrations. Median TN was 0.50 mg N L-1 with a maximum of 25.8 mg N L-1. Total N inputs ranged from less than 1 to 196 kg N ha-1 y-1, with a median of 14.4 kg N ha-1 y-1. Atmospheric N deposition was the single largest anthropogenic N source in the majority of sites, but agricultural sources generally dominate total N inputs in sites with elevated N concentrations. The sum of all N inputs were positively correlated with concentrations of all forms of N [r2 = 0.44, 0.43, and 0.18 for TN, DIN, and TON, respectively (all log-transformed), n = 1112], indicating that watershed N inputs are strongly related to stream N concentrations during the summer, despite this being a biologically active and N-retentive period. Additionally, model results suggest that watershed characteristics like wetland area, riparian disturbance and forest cover moderate the effects of watershed N loading on in-stream N concentrations, and different forms of N are likely to respond differently to increasing agricultural and atmospheric N inputs depending on local watershed characteristics.

  15. Effect of organic nitrogen concentration on the efficiency of trickling filters

    Science.gov (United States)

    Kopeć, Łukasz; Drewnowski, Jakub; Fernandez-Morales, F. J.

    2018-02-01

    The study was conducted in Poland at six selected wastewater treatment plants (WWTP) based on the trickling filters Bioclere® technology. The aim of the study was to find the relationship between the influent organic nitrogen concentration and the purification efficiency expressed as effluent COD concentration. In the tests performed, the COD to BOD5 relationship was close to 2 and the ratio of BOD5 to TN was lower than 4. The research indicated that this specific chemical composition of raw wastewater causes appearance of filamentous bacteria on the surface of trickling filter filling and strongly affect the effluent quality.

  16. A Nitrogen-concentrated Phase in IA Iron Meteorite Acid Residue

    Science.gov (United States)

    Hashizume, K.; Sugiura, N.

    1993-07-01

    portion of nitrogen is released at 500 degrees C and 600 degrees C temperature fractions. Total nitrogen amounts and average delta^l5N values of the two acid residues are described in Table 1. Discussion and Summary: Sample "Can-1bn" is 3-4 times concentrated in nitrogen than "Call-2b," although its delta^15N value is within terrestrial range (0 < delta^15N < +20 per mil). Presently, we cannot deny the possibility that nitrogen in "Can-1bn" is dominated by terrestrial nitrogen, which may have been acquired during the acid treatment. Nevertheless, nitrogen isotope data of "Can-2b" suggests that indigenous nitrogen is indeed concentrated in the acid residue of Canyon Diablo. Bulk nitrogen isotope data of Canyon Diablo is reported to be delta^15N= -61.8 +- 10.4 per mil, N= 38.0 +- 155 ppm [2]. Therefore, delta^15N values of "Can-2b" can be resulted by a mixing of indigenous nitrogen and contaminating nitrogen. However, distinct delta^15N values of these two samples may indicate, in turn, that nitrogen isotopes in inclusions of Canyon Diablo are truly heterogeneous because carbon isotopes of graphite inclusions in IA iron meteorites seem to be heterogeneous [7]. Acknowledgments: We thank Dr. J.-I. Matsuda of Osaka University for providing samples and information on these samples. References: [1] Scott E. R. D. and Wasson J. T. (1975) Rev. Geophys. Space Sci., 13, 527-546. [2] Prombo C. A. and Clayton R. N. (1983) Meteoritics, 18, 377-379. [3] Franchi I. A. et al. (1988) Meteoritics, 22, 379-380. [4] Hashizume K. (1993) Doctor Thesis. [5] Murty S. V. S. et al. (1983) GCA, 47, 1061-1068. [6] Ogata Y. et al. (1990) In Abstract of the 1990 Annual Meeting of the Geochemical Society of Japan, 57. [7] Deines P. and Wickman F. E. (1973) GCA, 37, 1295-1319. Table 1 appears here in the hard copy.

  17. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    Directory of Open Access Journals (Sweden)

    Marc Libault

    2014-01-01

    Full Text Available Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2. In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  18. Defect concentration in nitrogen-doped graphene grown on Cu substrate: A thickness effect

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dhananjay K., E-mail: dhananjay@ua.pt [Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Fateixa, Sara [Department of Chemistry & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Hortigüela, María J. [Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Vidyasagar, Reddithota [Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Otero-Irurueta, Gonzalo [Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Nogueira, Helena I.S. [Department of Chemistry & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Singh, Manoj Kumar [Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Kholkin, Andrei, E-mail: kholkin@ua.pt [Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2017-05-15

    Tuning the band-gap of graphene is a current need for real device applications. Copper (Cu) as a substrate plays a crucial role in graphene deposition. Here we report the fabrication of in-situ nitrogen (N) doped graphene via chemical vapor deposition (CVD) technique and the effect of Cu substrate thickness on the growth mechanism. The ratio of intensities of G and D peaks was used to evaluate the defect concentration based on local activation model associated with the distortion of the crystal lattice due to incorporation of nitrogen atoms into graphene lattice. The results suggest that Cu substrate of 20 µm in thickness exhibits higher defect density (1.86×10{sup 12} cm{sup −2}) as compared to both 10 and 25 µm thick substrates (1.23×10{sup 12} cm{sup −2} and 3.09×10{sup 11} cm{sup −2}, respectively). Furthermore, High Resolution -X-ray Photoelectron Spectroscopy (HR-XPS) precisely affirms ~0.4 at% of nitrogen intercalations in graphene. Our results show that the substitutional type of nitrogen doping dominates over the pyridinic configuration. In addition, X-ray diffraction (XRD) shows all the XRD peaks associated with carbon. However, the peak at ~24° is suppressed by the substrate peaks (Cu). These results suggest that nitrogen atoms can be efficiently incorporated into the graphene using thinner copper substrates, rather than the standard 25 µm ones. This is important for tailoring the properties by graphene required for microelectronic applications.

  19. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  20. Effects of sampling interval on spatial patterns and statistics of watershed nitrogen concentration

    Science.gov (United States)

    Wu, S.-S.D.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2009-01-01

    This study investigates how spatial patterns and statistics of a 30 m resolution, model-simulated, watershed nitrogen concentration surface change with sampling intervals from 30 m to 600 m for every 30 m increase for the Little River Watershed (Georgia, USA). The results indicate that the mean, standard deviation, and variogram sills do not have consistent trends with increasing sampling intervals, whereas the variogram ranges remain constant. A sampling interval smaller than or equal to 90 m is necessary to build a representative variogram. The interpolation accuracy, clustering level, and total hot spot areas show decreasing trends approximating a logarithmic function. The trends correspond to the nitrogen variogram and start to level at a sampling interval of 360 m, which is therefore regarded as a critical spatial scale of the Little River Watershed. Copyright ?? 2009 by Bellwether Publishing, Ltd. All right reserved.

  1. The Effects of Arbuscular Mycorrhizal Fungi on Nitrogen Concentration of Berseem Clover in Contaminated Soil with Cadmium

    Directory of Open Access Journals (Sweden)

    H. Aram

    2013-08-01

    Full Text Available The effects of Arbuscular Mycorrhizal fungi on nitrogen concentration of berseem clover were examined in contaminated soil with cadmium. Examined factors included: levels of arbuscular mycorrhizal fungi inoculation (Glomus mosseae (With and without inoculation, and different levels of soil contamination by cadmium (0, 5, 10, 20, 40 and 80 mg.kg-1. The results showed that the effects of cadmium levels and mycorrhiza fungi were significant on nitrogen concentration (P≤ 0.01.  Arbuscular mycorrhizal fungi increased nitrogen concentration in the root and aerial plant 30% and 40.3% respectively. Also cadmium in concentration of 80 mg.kg-1 reduced nitrogen concentration in root and aerial plant 28.3% and 35% respectively.

  2. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010

    International Nuclear Information System (INIS)

    Harmens, H.; Norris, D.A.; Sharps, K.; Mills, G.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Cucu-Man, S.-M.; Dam, M.; De Temmerman, L.; Ene, A.; Fernández, J.A.; Martinez-Abaigar, J.; Frontasyeva, M.; Godzik, B.; Jeran, Z.

    2015-01-01

    In recent decades, naturally growing mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals and nitrogen. Since 1990, the European moss survey has been repeated at five-yearly intervals. In 2010, the lowest concentrations of metals and nitrogen in mosses were generally found in northern Europe, whereas the highest concentrations were observed in (south-)eastern Europe for metals and the central belt for nitrogen. Averaged across Europe, since 1990, the median concentration in mosses has declined the most for lead (77%), followed by vanadium (55%), cadmium (51%), chromium (43%), zinc (34%), nickel (33%), iron (27%), arsenic (21%, since 1995), mercury (14%, since 1995) and copper (11%). Between 2005 and 2010, the decline ranged from 6% for copper to 36% for lead; for nitrogen the decline was 5%. Despite the Europe-wide decline, no changes or increases have been observed between 2005 and 2010 in some (regions of) countries. - Highlights: • In 2010, heavy metal and nitrogen concentrations in mosses were determined at up to 4400 sites across Europe. • Moss concentrations complement deposition measurements at high spatial resolution. • For most metals, concentrations in mosses have significantly declined since 1990. • Heavy metal pollution remains high in (South-)eastern Europe. • Nitrogen pollution remains high in the central European belt. - Heavy metal pollution remains high particularly in (south-)eastern Europe, whereas nitrogen pollution remains high in the central belt of Europe

  3. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.F.D. [Institute for Applied Plant Biology, Sandgrubenstr. 25/27, 4124 Schoenenbuch (Switzerland)]. E-mail: vera.thomas@iap.ch; Braun, S. [Institute for Applied Plant Biology, Sandgrubenstr. 25/27, 4124 Schoenenbuch (Switzerland); Flueckiger, W. [Institute for Applied Plant Biology, Sandgrubenstr. 25/27, 4124 Schoenenbuch (Switzerland)

    2006-09-15

    Beech seedlings were grown under different nitrogen fertilisation regimes (0, 20, 40, and 80 kg N ha{sup -1} yr{sup -1}) for three years and were fumigated with either charcoal-filtered (F) or ambient air (O{sub 3}). Nitrogen fertilisation increased leaf necroses, aphid infestations, and nutrient ratios in the leaves (N:P and N:K), as a result of decreased phosphorus and potassium concentrations. For plant growth, biomass accumulation, and starch concentrations, a positive nitrogen effect was found, but only for fertilisations of up to 40 kg N ha{sup -1} yr{sup -1}. The highest nitrogen load, however, reduced leaf area, leaf water content, growth, biomass accumulation, and starch concentrations, whereas soluble carbohydrate concentrations were enhanced. The ozone fumigation resulted in reduced leaf area, leaf water content, shoot growth, root biomass accumulation, and decreased starch, phosphorus, and potassium concentrations, increasing the N:P and N:K ratios. A combined effect of the two pollutants was detected for the leaf area and the shoot elongation, where ozone fumigation amplified the nitrogen effects. - The effects of nitrogen and ozone on growth, carbohydrate concentrations, and nutrients are mainly additive.

  4. A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes

    Science.gov (United States)

    Arnett, Heather A.; Saros, Jasmine E.; Mast, M. Alisa

    2012-01-01

    Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.

  5. Estimation of leaf nitrogen concentration on winter wheat by multispectral imaging

    Science.gov (United States)

    Leemans, Vincent; Marlier, Guillaume; Destain, Marie-France; Dumont, Benjamin; Mercatoris, Benoit

    2017-04-01

    Precision agriculture can be considered as one of the solutions to optimize agricultural practice such as nitrogen fertilization. Nitrogen deficiency is a major limitation to crop production worldwide whereas excess leads to environmental pollution. In this context, some devices were developed as reflectance spot sensors for on-the-go applications to detect leaves nitrogen concentration deduced from chlorophyll concentration. However, such measurements suffer from interferences with the crop growth stage and the water content of plants. The aim of this contribution is to evaluate the nitrogen status in winter wheat by using multispectral imaging. The proposed system is composed of a CMOS camera and a set of filters ranged from 450 nm to 950 nm and mounted on a wheel which moves due to a stepper motor. To avoid the natural irradiance variability, a white reference is used to adjust the integration time. The segmentation of Photosynthetically Active Leaves is performed by using Bayes theorem to extract their mean reflectance. In order to introduce information related to the canopy architecture, i.e. the crop growth stage, textural attributes are also extracted from raw images at different wavelength ranges. Nc was estimated by partial least squares regression (R² = 0.94). The best attribute was homogeneity extracted from the gray level co-occurrence matrix (R² = 0.91). In order to select in limited number of filters, best subset selection was performed. Nc could be estimated by four filters (450 +/- 40 nm, 500 +/- 20 nm, 650 +/- 40 nm, 800 +/- 50 nm) (R² = 0.91).

  6. Combined effects of nitrogen to phosphorus ratios and nitrogen speciation on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs.

    NARCIS (Netherlands)

    Harris, T.D.; Smith, V.H.; Graham, J.L.; Van de Waal, D.B.; Tedesco, L.P.; Clercin, N.

    2016-01-01

    Recent studies have shown that the total nitrogen to total phosphorus (TN:TP) ratio and nitrogen oxidation state may have substantial effects on secondary metabolite (e.g., microcystins) production in cyanobacteria. We investigated the relationship between the water column TN:TP ratio and the

  7. Trends in concentrations and export of nitrogen in boreal forest streams

    Energy Technology Data Exchange (ETDEWEB)

    Sarkkola, S.; Nieminen, M. [Finnish Forest Research Inst., Vantaa (Finland); Koivusalo, H. [Aalto University School of Science and Technology, Espoo (Finland), Dept. of Civil and Environmental Engineering] [and others

    2012-11-01

    Temporal trends in inorganic and organic nitrogen (N) export in the stream water between 1979 and 2006 were studied in eight forested headwater catchments in eastern Finland, where an increasing air-temperature trend and a decreasing N-deposition trend has been observed since the 1980s. The Seasonal Kendall test was conducted to study if the stream water N concentrations have changed concurrently and a mixed model regression analysis was used to study which catchment characteristics and hydrometeorological variables were related to the variation in stream water N. The annual concentrations of total organic N (TON) increased at two catchments and the concentrations of nitrate (NO{sub 3}-N) and ammonium (NH{sub 4}-N) decreased at three and four catchments, respectively. The main factor explaining variation in concentrations and export of N was percentage of peatlands in a catchment. The NH{sub 4}-N concentrations were also related to the N deposition, and the exports of NO{sub 3}, NH{sub 4}, and TON to precipitation. Quantitative changes in both the N concentrations and exports were small. The results suggested relatively small changes in the N concentrations and exports between 1979 and 2006, most probably because the effects of increased air and stream water temperatures largely have been concealed behind the concurrent decrease in N deposition. (orig.)

  8. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    International Nuclear Information System (INIS)

    Argerich, A; Greathouse, E; Johnson, S L; Sebestyen, S D; Rhoades, C C; Knoepp, J D; Adams, M B; Likens, G E; Campbell, J L; McDowell, W H; Scatena, F N; Ice, G G

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among sites across the USA. We found both increasing and decreasing trends in monthly flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments, we found that the length and period of analysis influenced whether trends were positive, negative or non-significant. Trends also differed among neighboring catchments within several Experimental Forests, suggesting the importance of catchment-specific factors in determining nutrient exports. Over the longest time periods, trends were more consistent among catchments within sites, although there are fewer long-term records for analysis. These findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring at a network of sites across the USA to elucidate patterns of change in nutrient concentrations at minimally disturbed forested sites. (letter)

  9. Remote Sensing Spatiotemporal Assessment of Nitrogen Concentrations in Tampa Bay, Florida due to a Drought

    Directory of Open Access Journals (Sweden)

    Ni-Bin Chang

    2012-01-01

    Full Text Available A long-term low nitrogen to phosphorus (N:P ratio in the Tampa Bay, Florida, estuary system suggests that nitrogen is more limiting than phosphorus. However, south Florida suffered from a drought around 2007, and the reduction in runoff flowing into the bay affected local ecosystem dynamics. This study presents a remote sensing study to retrieve spatiotemporal patterns of total nitrogen (TN concentrations in Tampa Bay under drought impacts through the integration of Moderate Resolution Imaging Spectroradiometer (MODIS images and a genetic programming (GP model. Research findings show that the drought impact on TN in Tampa Bay is both a seasonal and yearly phenomenon. Without the presence of ocean water intrusion, the whole bay would show a relatively uniform TN distribution during the drought period until the flow input from rivers returned to normal. Based on yearly comparisons, temperature could be the limiting factor on the plankton growth in Tampa Bay. To further substantiate the credibility of a nutrient estimation algorithm, a k-means clustering analysis was conducted to demonstrate sea-bay-land interactions among ebbs, tides, and river discharges. The seasonal cluster distribution in 2007 is generally consistent with the conventional segments division of Tampa Bay.

  10. The Effects of Arbuscular Mycorrhizal Fungi on Nitrogen Concentration of Berseem Clover in Contaminated Soil with Cadmium

    OpenAIRE

    H. Aram; A. Golchin

    2013-01-01

    The effects of Arbuscular Mycorrhizal fungi on nitrogen concentration of berseem clover were examined in contaminated soil with cadmium. Examined factors included: levels of arbuscular mycorrhizal fungi inoculation (Glomus mosseae) (With and without inoculation), and different levels of soil contamination by cadmium (0, 5, 10, 20, 40 and 80 mg.kg-1). The results showed that the effects of cadmium levels and mycorrhiza fungi were significant on nitrogen concentration (P≤ 0.01).  Arbuscular myc...

  11. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation.

    Science.gov (United States)

    Wang, Xiao-Xiong; Wu, Yin-Hu; Zhang, Tian-Yuan; Xu, Xue-Qiao; Dao, Guo-Hua; Hu, Hong-Ying

    2016-05-01

    While reverse osmosis (RO) is a promising technology for wastewater reclamation, RO concentrate (ROC) treatment and disposal are important issues to consider. Conventional chemical and physical treatment methods for ROC present certain limitations, such as relatively low nitrogen and phosphorus removal efficiencies as well as the requirement of an extra process for hardness removal. This study proposes a novel biological approach for simultaneous removal of nitrogen, phosphorus, and calcium (Ca(2+)) and magnesium (Mg(2+)) ions from the ROC of municipal wastewater treatment plants by microalgal cultivation and algal biomass production. Two microalgae strains, Chlorella sp. ZTY4 and Scenedesmus sp. LX1, were used for batch cultivation of 14-16 days. Both strains grew well in ROC with average biomass production of 318.7 mg/L and lipid contents up to 30.6%, and nitrogen and phosphorus could be effectively removed with efficiencies of up to 89.8% and 92.7%, respectively. Approximately 55.9%-83.7% Ca(2+) could be removed from the system using the cultured strains. Mg(2+) removal began when Ca(2+) precipitation ceased, and the removal efficiency of the ion could reach up to 56.0%. The most decisive factor influencing Ca(2+) and Mg(2+) removal was chemical precipitation with increases in pH caused by algal growth. The results of this study provide a new biological approach for removing nitrogen, phosphorous, and hardness from ROC. The results suggest that microalgal cultivation presents new opportunities for applying an algal process to ROC treatment. The proposed approach serves dual purposes of nutrient and hardness reduction and production of lipid rich micro-algal biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of nitrogen source and concentrations on wheat growth and production inside "Lunar Palace-1"

    Science.gov (United States)

    Dong, Chen; Chu, Zhengpei; Wang, Minjuan; Qin, Youcai; Yi, Zhihao; Liu, Hong; Fu, Yuming

    2018-03-01

    Minimizing nitrogen (N) consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. Plants cultivated in the controlled environments are sensitive to the low recyclable N (such as from the urine). The purpose of this study is to investigate the effects of nitrogen fertilizer (NH4+-N and NO3--N) disturbance on growth, photosynthetic efficiency, antioxidant defence systems and biomass yield and quality of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 4 controlled groups,Ⅰ: NO3--N: NH4+-N = 7:1 mmol L-1; Ⅱ: NO3--N: NH4+-N = 14:0.5 mmol L-1; Ⅲ: NO3--N: NH4+-N = 7:0.5 mmol L-1 and CK: NO3--N: NH4+-N = 14:1 mmol L-1, and other salt concentrations were the same. The results showed that heading and flowering stages in spring wheat are sensitive to low N concentration, especially NO3--N in group Ⅰ and Ⅲ. NO3- is better to root growth than to shoot growth. The plants were spindling and the output was lower 21.3% when spring wheat was in low N concentration solution. Meanwhile, photosynthetic rate of low N concentrations is worse than that of CK. The soluble sugar content of the edible part of wheat plants is influenced with NO3-: NH4+ ratio. In addition, when N concentration was lowest in group Ⅲ, the lignin content decreased to 2.58%, which was more beneficial to recycle substances in the processes of the environment regeneration.

  13. Assessing plant nitrogen concentration in winter oilseed rape using hyperspectral measurements

    Science.gov (United States)

    Li, Lu; Liu, Shishi; Wang, Shanqing; Lu, Jianwei; Li, Lantao; Ma, Yi; Ming, Jin

    2016-07-01

    This study aims to find the optimal vegetation indices (VIs) to remotely estimate plant nitrogen concentration (PNC) in winter oilseed rape across different growth stages. Since remote sensing cannot "sense" N in live leaves, remote estimation of PNC should be based on understanding the relationships between PNC and chlorophyll (Chl), carotenoid concentration (Car), Car/Chl, dry mass (DM), and leaf area index (LAI). The experiments with eight nitrogen fertilization treatments were conducted in 2014 to 2015 and 2015 to 2016, and measurements were acquired at six-leaf, eight-leaf, and ten-leaf stages. We found that at each stage, Chl, Car, DM, and LAI were all strongly related to PNC. However, across different growth stages, semipartial correlation and linear regression analysis showed that Chl and Car had consistently significant relationships with PNC, whereas LAI and DM were either weakly or barely correlated with PNC. Therefore, the most suitable VIs should be sensitive to the change in Chl and Car while insensitive to the change in DM. We found that anthocyanin reflectance index and the simple ratio of the red band to blue band fit the requirements. The validation with the 2015 to 2016 dataset showed that the selected VIs could provide accurate estimates of PNC in winter oilseed rape.

  14. Nitrogen concentration in dry matter of the fifth leaf during growth of greenhouse tomato plants

    Directory of Open Access Journals (Sweden)

    Rattin Jorge E.

    2002-01-01

    Full Text Available The nitrogen concentration in dry matter of the fifth leaf during growth of a greenhouse tomato crop was determined. Plants of hybrid Monte Carlo were grown in 4.5 L bags, using a commercial substrate, in a plant density of 3.3 plants m-2. A nutrient solution containing, in mmol L-1: KNO3, 4.0; K2SO4, 0.9; Ca(NO32, 3.75; KH2PO4, 1.5; MgSO4, 1.0; iron chelate 19. 10³, was used as reference. Microelements were added by a commercial mixture. The T3 treatment was equal to the reference nutrient solution, whereas in treatments T1, T2, T4 and T5 quantities of all nutrients from T3 were multiplied by 0.25, 0.50, 1.25 and 1.50, respectively. In each treatment, the volume of 1 L of nutrient solution was supplied to each plant once a week by fertigation. Periodically destructive measurements were made from anthesis to ripening of the first truss, to determine dry matter and N concentration in shoot and in fifth leaf tissues, counted from the apex to the bottom of the plant. Five dilution curves were fitted from data of N concentration in the fifth leaf and shoot dry matter accumulation during growth of plants. A general relationship was adjusted between actual N concentration in shoot (Nt and in the fifth leaf (Nf: Nt = 1.287 Nf (R² = 0.80. This relationship could be used to estimate the N status of plants by means of a nitrogen nutrition index (NNI, from analysis of the fifth leaf sap.

  15. Elevated CO{sub 2} concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over 9 years in FACE

    Energy Technology Data Exchange (ETDEWEB)

    Crous, K.Y. [Michigan Univ., Ann Arbor, MI (United States). School of Natural Resources and Environment; Walters, M.B. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Forestry; Ellsworth, D.S. [Western Sydney, Penrith South, NSW (Australia). Centre for Plant and Food Science

    2008-04-15

    This study examined the influence of long-term elevated carbon dioxide (CO{sub 2}) concentrations on photosynthetic enhancement and leaf nitrogen (N) with soil fertility limitations. Photosynthesis, carboxylation capacity, and area-based leaf nitrogen concentrations in pine trees in a free-air CO{sub 2} enrichment facility were examined in order to determine maximum rates of carboxylation and electron transport variations under elevated CO{sub 2} scenarios. Results showed that the slope of the relationship between leaf photosynthetic capacity and area-based leaf nitrogen concentration was reduced by 37 per cent in year-old needles and unaffected in current-year needles after up to 9 years of growth in elevated CO{sub 2}. A reduction of 15 per cent of N allocations to the carboxylating enzyme was noted. Nitrogen fertilization in the final year of the study restored the slopes of the relationships between leaf photosynthetic capacity and nitrogen concentrations. It was concluded that the relationship between photosynthesis and its component processes with area-based leaf nitrogen concentrations may be altered in aging pine needles after 5 years of exposure to elevated atmospheric CO{sub 2}. 68 refs., 1 tab., 5 figs.

  16. [Achieve single-stage autotrophic biological nitrogen removal process by controlling the concentration of free ammonia].

    Science.gov (United States)

    Ji, Li-Li; Yang, Zhao-Hui; Xu, Zheng-Yong; Li, Xiao-Jiang; Tang, Zhi-Gang; Deng, Jiu-Hu

    2011-01-01

    Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C. During the step of the enrichment of nitrite bacteria, pH was about 7.8. Changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N(56-446 mg x L(-1)), in order to inhibit and eliminate the nitrate bacteria. The activity tests of the sludge, 55d after enrichment, showed strong activity of aerobic ammonium oxidation [2.91 kg x (kg x d)(-1)] and low activity of nitrite oxidation [0.03 kg x(kg x d)(-1)]. During the inoculation of the mixture of anammox biomass, changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N and pH. As the inoculation of anammox biomass, abundant of bacteria and nutrient content were into the reactor and there kept high activity of aerobic ammonium oxidation [2.83 kg x (kg x d)(-1)] and a certain activity of nitrite oxidation, at the same time, the activity of anammox and heterotrophic denitrification reached 0.65 kg x (kg x d)(-1) and 0.11 kg x (kg x d)(-1), respectively.

  17. Volume de madeira e concentração foliar de nutrientes em parcelas experimentais de Eucalyptus grandis fertilizadas com lodos de esgoto úmido e seco Wood volume and foliar concentration of nutrients in Eucalyptus grandis after wet and dry sewage sludge application

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Muller da Silva

    2008-10-01

    over after wastewater treatment and its disposal needs to be well planned, considering sanitary, environmental, economic and social implications. Sewage sludge (biosolids is high in organic content and plant nutrient and could be applied as fertilizer in forest plantations. The aim of this research, conducted at the Experimental Station of Itatinga (University of São Paulo was to evaluate the effects of increasing doses (10, 20 and 30 tons ha-1 of wet and dry biosolids(pellets, complemented with K and B, and applied to planting rows in experimental Eucalyptus grandis plots 1.5 years after seedling plantation. Trunk volume increased significantly regarding the eucalypt trees that received wet and dry sewage sludge, compared to the control treatment (no fertilization, and a similar growth of eucalypt trees that received full mineral fertilization. Regarding mineral nutrition, a positive correlation was observed between doses of biosolids and P, Ca, and Zn concentrations in the leaves, but a negative effect for Mn and biosolid dose. The foliar concentration of all the nutrients in the biosolid-treated eucalypt trees remained within the limits observed in commercial plantations, with no signs of nutritional imbalance.

  18. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  19. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration

    International Nuclear Information System (INIS)

    Firkins, J.L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.; Mulvaney, R.L.

    1987-01-01

    Four multiple-cannulated steers (340 kg) were used in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Steers were fed a diet of 50% ground hay and 50% concentrate at two intakes (1.4 and 2.1% of BW), with urea and 15 N-enriched ammonium sulfate infused continuously into the rumen at .4 or 1.2% of diet DM. Ratios of purines and diaminopimelic acid-N to N in fluid-associated and particulate-associated bacteria and in protozoa were similar among treatments but were lower for protozoa than for bacteria. Diaminopimelic acid-N:N was higher for fluid-associated vs. particulate-associated bacteria. Enrichment of 15 N was similar between bacteria among treatments and was 30% lower for protozoa. Turnover rates of 15 N in bacteria, NH 3 N, and non-HN 3 N pools were faster for steers infused with 1.2 than those infused with .4% urea, indicating less efficient usage of ammonia with higher urea. A method is described to estimate the proportion of duodenal nitrogen comprising bacterial and protozoal nitrogen

  20. Struvite Crystallization of Anaerobic Digestive Fluid of Swine Manure Containing Highly Concentrated Nitrogen

    Directory of Open Access Journals (Sweden)

    Eun Young Lee

    2015-07-01

    Full Text Available In this study, the optimal operation factors for struvite crystallization for removing and recovering nitrogen and phosphorus from anaerobic digestive fluid of swine manure containing highly concentrated nitrogen was determined. Every experiment for the struvite crystallization reaction was conducted by placing 1,000 mL of digestion fluid in a 2,000 mL Erlenmeyer flask at various temperatures, pH, and mixing speed. Except for special circumstances, the digestion fluid was centrifuged (10,000 rpm, 10 min and then the supernatant was used for the experiment at room temperature and 100 rpm. The optimal mole ratio of PO43−:Mg2+ was 1:1.5, and the pH effect ranging from 9 to 11 was similar, when mixed for 1 hour. Under this condition, the removal efficiency of NH4+-N and PO43−-P was 40% and 88.6%, respectively. X-shaped crystal was observed by light and scanning electron microscopy. In addition, struvite crystal structure was confirmed through X-ray diffraction analysis.

  1. Estimating Rice Leaf Nitrogen Concentration: Influence of Regression Algorithms Based on Passive and Active Leaf Reflectance

    Directory of Open Access Journals (Sweden)

    Jia Sun

    2017-09-01

    Full Text Available Nitrogen (N is important for the growth of crops. Estimating leaf nitrogen concentration (LNC accurately and nondestructively is important for precision agriculture, reduces environmental pollution, and helps model global carbon and N cycles. Leaf reflectance, especially in the visible and near-infrared regions, has been identified as a useful indicator of LNC. Except reflectance passively acquired by spectrometers, the newly developed multispectral LiDAR and hyperspectral LiDAR provide possibilities for measuring leaf spectra actively. The regression relationship between leaf reflectance spectra and rice (Oryza sativa LNC relies greatly on the algorithm adopted. It would be preferable to find one algorithm that performs well with respect to passive and active leaf spectra. Thus, this study assesses the influence of six popular linear and nonlinear methods on rice LNC retrieval, namely, partial least-square regression, least squares boosting, bagging, random forest, back-propagation neural network (BPNN, and support vector regression of different types/kernels/parameter values. The R2, root mean square error and relative error in rice LNC estimation using these different methods were compared through the passive and active spectral measurements of rice leaves of different varieties at different locations and time (Yongyou 4949, Suizhou, 2014, Yangliangyou 6, Wuhan, 2015. Results demonstrate that BPNN provided generally satisfactory performance in estimating rice LNC using the three kinds of passive and active reflectance spectra.

  2. CHEMISTRY OF FOG WATERS IN CALIFORNIA'S CENTRAL VALLEY - PART 3: CONCENTRATIONS AND SPECIATION OF ORGANIC AND INORGANIC NITROGEN. (R825433)

    Science.gov (United States)

    Although organic nitrogen (ON) has been found to be a ubiquitous and significant component in wet and dry deposition, almost nothing is known about its concentration or composition in fog waters. To address this gap, we have investigated the concentration and composition of ON...

  3. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies)

    International Nuclear Information System (INIS)

    Thomas, V.F.D.; Braun, S.; Flueckiger, W.

    2005-01-01

    Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O 3 ). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone. - Simultaneous ozone fumigation and nitrogen fertilization have no synergistic impacts on carbohydrate concentrations, biomass, or growth of Picea abies saplings

  4. An empirical model for predicting urban roadside nitrogen dioxide concentrations in the UK

    International Nuclear Information System (INIS)

    Stedman, J.R.; Goodwin, J.W.L.; King, K.; Murrells, T.P.; Bush, T.J.

    2001-01-01

    An annual mean concentration of 40μgm -3 has been proposed as a limit value within the European Union Air Quality Directives and as a provisional objective within the UK National Air Quality Strategy for 2010 and 2005, respectively. Emissions reduction measures resulting from current national and international policies are likely to deliver significant reductions in emissions of oxides of nitrogen from road traffic in the near future. It is likely that there will still be exceedances of this target value in 2005 and in 2009 if national measures are considered in isolation, particularly at the roadside. It is envisaged that this 'policy gap' will be addressed by implementing local air quality management to reduce concentrations in locations that are at risk of exceeding the objective. Maps of estimated annual mean NO 2 concentrations in both urban background and roadside locations are a valuable resource for the development of UK air quality policy and for the identification of locations at which local air quality management measures may be required. Maps of annual mean NO 2 concentrations at both background and roadside locations for 1998 have been calculated using modelling methods, which make use of four mathematically straightforward, empirically derived linear relationships. Maps of projected concentrations in 2005 and 2009 have also been calculated using an illustrative emissions scenario. For this emissions scenario, annual mean urban background NO 2 concentrations in 2005 are likely to be below 40μgm -3 , in all areas except for inner London, where current national and international policies are expected to lead to concentrations in the range 40-41μgm -3 . Reductions in NO x emissions between 2005 and 2009 are expected to reduce background concentrations to the extent that our modelling results indicate that 40μgm -3 is unlikely to be exceeded in background locations by 2009. Roadside NO 2 concentrations in urban areas in 2005 and 2009 are expected to be

  5. Fecal nitrogen concentration as a nutritional quality indicator for European rabbit ecological studies.

    Directory of Open Access Journals (Sweden)

    Esperanza Gil-Jiménez

    Full Text Available Measuring the quality of the nutritional resources available to wild herbivores is critical to understanding trophic regulation processes. However, the direct assessment of dietary nutritional characteristics is usually difficult, which hampers monitoring nutritional constraints in natural populations. The feeding ecology of ruminant herbivores has been often assessed by analyzing fecal nitrogen (FN concentrations, although this method has been less evaluated in other taxa. This study analyzed the suitability of FN as an indicator of ingesta quality in the European rabbit (Oryctolagus cuniculus, which is a keystone lagomorph species in Mediterranean ecosystems and of great conservation interest. Firstly, domestic O. cuniculus were used to evaluate under experimental conditions the accuracy of total FN and the metabolic FN as diet quality indicators of forages with characteristics similar to those available under natural conditions. Secondly, the accuracy of Near-Infrared Spectroscopy (NIRS to calculate FN was tested using partial least squares regression. Thirdly, a pilot field study was conducted to monitor FN dynamics from wild O. cuniculus in three different habitats during wet and drought periods. A strong association was found between diet type and total FN and metabolic FN (Pseudo-R(2 ≥ 0.89. It was also found that NIRS calibrations were accurate for depicting nitrogen concentrations (R(2 > 0.98 between NIRS and chemical results. Finally, the seasonal FN dynamics measured in the field were consistent with current knowledge on vegetation dynamics and forage limitations in the three habitats. The results support the use of NIRS methods and FN indices as a reliable and affordable approach to monitoring the nutritional quality of rabbit habitats. Potential applications include the assessment of the mechanistic relationships between resource limitations and population abundance, e.g., in relation to natural drought cycles and to habitat

  6. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration

    Directory of Open Access Journals (Sweden)

    Cheng eXue

    2016-06-01

    Full Text Available The use of late nitrogen (N fertilization (N application at late growth stages of wheat, e.g. booting, heading or anthesis to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS, which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  7. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    Science.gov (United States)

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  8. Effect of HCO3- concentration on anammox nitrogen removal rate in a moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Vabamäe, Priit; Kroon, Kristel; Loorits, Liis; Saluste, Alar; Tenno, Taavo

    2012-01-01

    Anammox biomass enriched in a moving bed biofilm reactor (MBBR) fed by actual sewage sludge reject water and synthetically added NO2- was used to study the total nitrogen (TN) removal rate of the anammox process depending on bicarbonate (HCO3-) concentration. MBBR performance resulted in the maximum TN removal rate of 1100 g N m(-3) d(-1) when the optimum HCO3- concentration (910 mg L(-1)) was used. The average reaction ratio of NO2- removal, NO3- production and NH4+ removal were 1.18/0.20/1. When the HCO3- concentration was increased to 1760mg L(-1) the TN removal rate diminished to 270 g N m(-3) d(-1). The process recovered from bicarbonate inhibition within 1 week. The batch tests performed with biomass taken from the MBBR showed that for the HCO3- concentration of 615 mg L(-1) the TN removal rate was 3.3 mg N L(-1) h(-1), whereas for both lower (120 mg L(-1)) and higher (5750 mg L(-1)) HCO3- concentrations the TN removal rates were 2.3 (+/- 0.15) and 1.6 (+/- 0.12) mg N L(-1) d(-1), respectively. PCR and DGGE analyses resulted in the detection of uncultured Planctomycetales bacterium clone P4 and, surprisingly, low-oxygen-tolerant aerobic ammonia oxidizers. The ability of anammox bacteria for mixotrophy was established by diminished amounts of nitrate produced when comparing the experiments with an organic carbon source and an inorganic carbon source.

  9. Inter-comparison of interpolated background nitrogen dioxide concentrations across Greater Manchester, UK

    Science.gov (United States)

    Lindley, S. J.; Walsh, T.

    There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area

  10. Seeds inoculation with diazotrophic bacteria and nitrogen application in side-dressing and leaf in maizeInoculação de sementes com bactéria diazotrófica e aplicação de nitrogênio em cobertura e foliar em milho

    Directory of Open Access Journals (Sweden)

    Claudinei Kappes

    2013-05-01

    Full Text Available Considering the importance of nitrogen management and its biological fixation with diazotrophic bacteria, this study was carried out aiming to evaluate the agronomic performance of maize, in response to seed inoculation with Azospirillum brasilense and nitrogen application in side-dressing and leaf. The experiment was conducted in Selvíria, Mato Grosso of Sul State, Brazil, during the growing season 2010/2011, on a clayey Rhodic Haplustox (20º 20’ S and 51º 24’ W, with altitude of 340 m. Sixteen treatments were established with four replications, in randomized blocks with the combination of the factors A. brasilense (with and without inoculante, nitrogen rate (0 and 90 kg ha-1, in V5 growth stage and urea leaf application (0, 4, 8 and 12%: application in V5 and V8 growth stage. The maize hybrid used was the DKB 390 YG®, sowed in the row spacing of 0.9 m. Parameters measured were productive and morphological components of culture and crop yield. Increase in maize yield by seed inoculation with A. brasilense was observed. The application of 90 kg ha-1 of nitrogen in side-dressing provided higher chlorophyll leaf index, stalk diameter and prolificacy, however, the yield not was increased. The application of urea leaf did not agronomic efficiency and, therefore, should not be used as the unique form of supply and alternative to nitrogen addition to crop. Considerando a importância do manejo do nitrogênio e da sua fixação biológica através de bactérias diazotróficas, conduziu-se este trabalho com o objetivo de avaliar o desempenho agronômico do milho, em função da inoculação das sementes com Azospirillum brasilense e da aplicação de nitrogênio em cobertura e foliar. O experimento foi conduzido no município de Selvíria – MS, durante o ano agrícola 2010/2011, sob Latossolo Vermelho distrófico típico argiloso (20º 20’ S e 51º 24’ W, com altitude de 340 m. Foram estabelecidos dezesseis tratamentos com quatro repeti

  11. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  12. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  13. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni.

    Directory of Open Access Journals (Sweden)

    Claire Barbet-Massin

    Full Text Available The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys. The aim of this study was to investigate the relevance of nitrogen (N supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions, in greenhouse (SCC: semi-controlled conditions and in field conditions (FC on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC and location (FC had a significant effect on N content in leaves. When light was not limiting (SCC and FC N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization.

  14. Effect of Abiotic Stresses on the Nondestructive Estimation of Rice Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Stephan M. Haefele

    2010-01-01

    Full Text Available Decision support tools for non-destructive estimation of rice crop nitrogen (N status (e.g., chlorophyll meter [SPAD] or leaf color chart [LCC] are an established technology for improved N management in irrigated systems, but their value in rainfed environments with frequent abiotic stresses remains untested. Therefore, we studied the effect of drought, salinity, phosphorus (P deficiency, and sulfur (S deficiency on leaf N estimates derived from SPAD and LCC measurements in a greenhouse experiment. Linear relations between chlorophyll concentration and leaf N concentration based on dry weight (Ndw between SPAD values adjusted for leaf thickness and Ndw and between LCC scores adjusted for leaf thickness and Ndw could be confirmed for all treatments and varieties used. Leaf spectral reflectance measurements did not show a stress-dependent change in the reflectance pattern, indicating that no specific element of the photosynthetic complex was affected by the stresses and at the stress level applied. We concluded that SPAD and LCC are potentially useful tools for improved N management in moderately unfavorable rice environments. However, calibration for the most common rice varieties in the target region is recommended to increase the precision of the leaf N estimates.

  15. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni

    Science.gov (United States)

    Barbet-Massin, Claire; Giuliano, Simon; Alletto, Lionel; Daydé, Jean; Berger, Monique

    2015-01-01

    The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys). The aim of this study was to investigate the relevance of nitrogen (N) supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions), in greenhouse (SCC: semi-controlled conditions) and in field conditions (FC) on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC) and location (FC) had a significant effect on N content in leaves. When light was not limiting (SCC and FC) N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization. PMID:26192921

  16. Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gelbrecht, Jörg; Kronvang, Brian

    2012-01-01

    was successfully applied to a range of samples from waste water treatment plants to forest and agricultural streams. With 2.5 h of measurement time per sample, SEC is slower, but more accurate than the standard approach for determination of DON concentrations in freshwaters with DIN : TDN ratios >0.6. To sum up......, the direct DON measurement by SEC enables better understanding of the nitrogen cycle of urban and agricultural freshwater systems....

  17. Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions.

    Science.gov (United States)

    Gimeno, V; Díaz-López, L; Simón-Grao, S; Martínez, V; Martínez-Nicolás, J J; García-Sánchez, F

    2014-10-01

    Scarcity of water is a severe limitation in citrus tree productivity. There are few studies that consider how to manage nitrogen (N) nutrition in crops suffering water deficit. A pot experiment under controlled-environment chambers was conducted to explore if additional N supply via foliar application could improve the drought tolerance of Citrus macrophylla L. seedlings under dry conditions. Two-month-old seedlings were subjected to a completely random design with two water treatments (drought stress and 100% water/field capacity). Plants under drought stress (DS) received three different N supplies via foliar application (DS: 0, DS + NH4NO3: 2% NH4NO3, DS + KNO3: 2% KNO3). KNO3-spraying increased leaf and stem DW as compared with DS + NH4NO3 and DS treatments. Leaf water potential (Ψw) was decreased by drought stress in all the treatments. However, in plants from DS + NH4NO and DS + KNO3, this was due to a decrease in the leaf osmotic potential, whereas the decrease in those from the DS treatment was due to a decrease in the leaf turgor potential. These responses were correlated with the leaf proline and K concentrations. DS + KNO3-treated plants had a higher leaf proline and K concentration than DS-treated plants. In terms of leaf gas exchange parameters, it was observed that net assimilation of CO2 [Formula: see text] was decreased by drought stress, but this reduction was much lower in DS + KNO3-treated plants. Thus, when all results are taken into account, it can be concluded that a 2% foliar-KNO3 application can enhance the tolerance of citrus plants to water stress by increasing the osmotic adjustment process. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study

    Directory of Open Access Journals (Sweden)

    Spengler John D

    2010-11-01

    Full Text Available Abstract Background There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2 in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Methods Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008 and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Results Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32, the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p Conclusion Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  19. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study.

    Science.gov (United States)

    Adamkiewicz, Gary; Hsu, Hsiao-Hsien; Vallarino, Jose; Melly, Steven J; Spengler, John D; Levy, Jonathan I

    2010-11-17

    There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment) to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2) in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR) modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008) and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs) of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32), the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p GIS variables, and the regression model structure was robust to various model-building approaches. Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  20. Cow and herd variation in milk urea nitrogen concentrations in lactating dairy cattle.

    Science.gov (United States)

    Aguilar, M; Hanigan, M D; Tucker, H A; Jones, B L; Garbade, S K; McGilliard, M L; Stallings, C C; Knowlton, K F; James, R E

    2012-12-01

    Milk urea nitrogen (MUN) is correlated with N balance, N intake, and dietary N content, and thus is a good indicator of proper feeding management with respect to protein. It is commonly used to monitor feeding programs to achieve environmental goals; however, genetic diversity also exists among cows. It was hypothesized that phenotypic diversity among cows could bias feed management decisions when monitoring tools do not consider genetic diversity associated with MUN. The objective of the work was to evaluate the effect of cow and herd variation on MUN. Data from 2 previously published research trials and a field trial were subjected to multivariate regression analyses using a mixed model. Analyses of the research trial data showed that MUN concentrations could be predicted equally well from diet composition, milk yield, and milk components regardless of whether dry matter intake was included in the regression model. This indicated that cow and herd variation could be accurately estimated from field trial data when feed intake was not known. Milk urea N was correlated with dietary protein and neutral detergent fiber content, milk yield, milk protein content, and days in milk for both data sets. Cow was a highly significant determinant of MUN regardless of the data set used, and herd trended to significance for the field trial data. When all other variables were held constant, a percentage unit change in dietary protein concentration resulted in a 1.1mg/dL change in MUN. Least squares means estimates of MUN concentrations across herds ranged from a low of 13.6 mg/dL to a high of 17.3 mg/dL. If the observed MUN for the high herd were caused solely by high crude protein feeding, then the herd would have to reduce dietary protein to a concentration of 12.8% of dry matter to achieve a MUN concentration of 12 mg/dL, likely resulting in lost milk production. If the observed phenotypic variation is due to genetic differences among cows, genetic choices could result in

  1. AZOSPIRILLUM BRASILENSE VIA FOLIAR E DOSES DE NITROGÊNIO EM COBERTURA NA CULTURA DO TRIGO NA REGIÃO DE ITAPEVA-SP / SPRAYING WITH AZOSPIRILLUM ON WHEAT LEAF AND NITROGEN COVERAGE RATES IN ITAPEVA-SP

    Directory of Open Access Journals (Sweden)

    J. P. Ferreira

    2017-06-01

    Full Text Available A utilização de bactérias diazotróficas na agricultura, especialmente em gramíneas, tem por finalidade incrementar a produção e produtividade aliando com menor dose ou supressão das fontes nitrogenadas aplicadas para fertilização do solo. Diante disso, o trabalho objetivou avaliar a viabilidade da inoculação de Azospirillum brasilense via foliar com doses de nitrogênio em cobertura na produção e produtividade do trigo. O experimento foi implantado na Fazenda Bom Viver, Bairro dos Prestes em Itapeva-SP, na safra de 2016, sendo realizado em plantio direto (SPC em área de sucessão soja e milho safrinha. Os tratamentos foram em esquema fatorial 2x4 em blocos ao acaso (DBC sendo aplicado a formulação liquida de Azospirillum brasiliense (AbV5 com 2x108 células viáveis mL-1 na dose de 0,5 L.ha-1 via foliar e sem aplicação e posterior adubação nitrogenada com 0; 30; 60 e 90 kg.ha-1 em cobertura. Tanto a aplicação foliar de Azospirillum como a cobertura de N, foram aplicadas após 30 dias da semeadura (30 DAS. A variedade de trigo utilizada no plantio foi o Sinuelo, com manejo adotado pelo proprietário da área com aplicação de regulador de crescimento. Foram realizadas as avaliações a campo das plantas, medindo-se: a altura das plantas; espigas por metro linear; número de grãos por espiguetas; peso hectolítro; massa de mil grãos e produtividade. Pelos resultados obtidos, houve maior altura de plantas com o aumento das doses de nitrogênio em cobertura. A inoculação de Azospirillum brasiliense via foliar não mostrou interação entre as doses de nitrogênio em cobertura, não havendo estatisticamente incremento nos componentes de produtividade do trigo.

  2. Estimation of canopy nitrogen concentration across C3 and C4 grasslands using WorldView-2 multispectral data

    CSIR Research Space (South Africa)

    Adjorlolo, C

    2014-05-01

    Full Text Available This paper assesses the potential of multispectral data attained using WorldView-2 (WV2) satellite to estimate and map the variability in canopy nitrogen (N) concentration across C3 and C4 grasslands. The WV2 satellite image was acquired...

  3. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    Science.gov (United States)

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Linking nitrogen deposition to nitrate concentrations in groundwater below nature areas : modelling approach and data requirements

    NARCIS (Netherlands)

    Bonten, L.T.C.; Mol-Dijkstra, J.P.; Wieggers, H.J.J.; Vries, de W.; Pul, van W.A.J.; Hoek, van den K.W.

    2009-01-01

    This study determines the most suitable model and required model improvements to link atmospheric deposition of nitrogen and other elements in the Netherlands to measurements of nitrogen and other elements in the upper groundwater. The deterministic model SMARTml was found to be the most suitable

  5. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    DEFF Research Database (Denmark)

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria

    2015-01-01

    1. Dissolved organic nitrogen (DON) compounds dominate the nitrogen pool of many lakes, but their importance as nitrogen sources for freshwater phytoplankton is not fully understood. Previous growth experiments demonstrated the availability of urea and amino acids but often at unnaturally high...... cases matched by nitrate. 4. Urea was also utilised over a longer time period than any other compound, including nitrate. The assumed delay in availability with increasing compound complexity was not supported by this experiment. 5. The studied species differed in their temporal response...... and their compound preferences. Therefore, DON composition can influence biomass and structure of phytoplankton communities. 6. These experiments demonstrate the importance of the main DON compounds for phytoplankton growth when no inorganic nitrogen is available. DON should in future be included in nitrogen budget...

  6. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  7. Cross-site comparison of herbivore impact on nitrogen availability in grasslands : the role of plant nitrogen concentration

    NARCIS (Netherlands)

    Bakker, E. S.; Knops, J. M. H.; Milchunas, D. G.; Ritchie, M. E.; Olff, H.; Boutin, Stan

    2009-01-01

    We tested whether there is a relationship between plant N concentration and herbivore impact on soil N availability (measured with resin bags) with a study of replicate 6-8 year old exclosures (with an unfenced control) of vertebrate herbivores (> 1 kg) established at each of seven grassland sites

  8. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    Science.gov (United States)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  9. Sampling procedure for the foliar analysis of deciduous trees

    NARCIS (Netherlands)

    Luyssaert, S; Raitio, H; Vervaeke, P; Mertens, J.; Lust, N

    2002-01-01

    Sampling can be the source of the greatest errors in the overall results of foliar analysis. This paper reviews the variability in heavy metal concentrations in tree crowns, which is a feature that should be known and understood when designing a suitable leaf sampling procedure. The leaf sampling

  10. Response of barley plants to foliar application of growth regulators ...

    African Journals Online (AJOL)

    The obtained results revealed that either foliar spraying by the growth regulators mixture or Zinc concentrations had a significant promotive effect on the studied growth and yield as well as the physiological and chemical parameters of barley when compared with the control treatment. While the highest values of the previous ...

  11. Improving growth and yield of cowpea by foliar application of ...

    African Journals Online (AJOL)

    Water stress impaired cowpea plant growth and decreased ion percentage and chlorophyll and carbohydrate concentration in the shoot as well as yield and its quality. Foliar-applied chitosan, in particular 250 mg/l, increased plant growth, yield and its quality as well as physiological constituents in plant shoot under stressed ...

  12. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  13. Laser surface processing with controlled nitrogen-argon concentration levels for regulated surface life time

    Science.gov (United States)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2018-03-01

    Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.

  14. Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices Discriminação de teores de nitrogênio e clorofila foliares do feijoeiro por meio de bandas e índices de vegetação espectrais

    Directory of Open Access Journals (Sweden)

    Selma Alves Abrahão

    2013-09-01

    Full Text Available This study aimed to develop classifiers based on different combinations of spectral bands and vegetation indices from original, segmented and reflectance images in order to determine the levels of leaf nitrogen and chlorophyll in the bean, and to define the best time and best variables. A remote-sensing system was used, consisting of a helium balloon and two small-format digital cameras. Besides the individual spectral bands, four vegetation indices were tested: simple ratio, normalized difference, normalized difference in the green band, and modified-chlorophyll absorption. The classifiers proved to be efficient in determining levels of leaf nitrogen and chlorophyll. The best time for determining leaf N content was at 13 DAE (stage V4. The best classifiers for that time used as input variables two indices from segmented reflectance images, one index related to the canopy structure and the other related to chlorophyll, with a Kappa ranging from 0.26 to 0.31. The best time to discriminate leaf chlorophyll content was 21 DAE (stage V4. The best classifier used as input variables two original images, one in the red band and one in the blue with a Kappa of 0.47.Objetivou-se desenvolver classificadores com base em diferentes combinações de bandas e índices de vegetação espectrais de imagens originais, segmentadas e reflectâncias, para discriminação de teores de nitrogênio e clorofila foliares do feijoeiro, definindo a melhor época e as melhores variáveis. Foi utilizado um sistema de sensoriamento remoto constituído por um balão a gás hélio e duas câmeras digitais de pequeno formato. Além das bandas isoladamente, foram testados quatro índices de vegetação: da razão simples, da diferença normalizada, da diferença normalizada utilizando a banda do verde e o da absorção de clorofila modificado. Os classificadores demonstraram serem eficientes na discriminação de teores de nitrogênio e clorofila foliares. A melhor época para

  15. Nitrogen balance, plasma free amino acid concentrations and urinary orotic acid excretion during long-term fasting in cats.

    Science.gov (United States)

    Biourge, V; Groff, J M; Fisher, C; Bee, D; Morris, J G; Rogers, Q R

    1994-07-01

    The purpose of this study was to ascertain the changes in nitrogen balance, plasma free amino acid concentrations, urinary orotic acid excretion and body weight during long-term fasting in adult obese cats. Results from eight cats that fasted rather than eat an unpalatable diet are reported. After 5 to 6 wk of weight loss, six of the eight cats developed signs of hepatic lipidosis, and the livers of all cats were severely infiltrated with lipids. Cats lost (mean +/- SE) 33.2 +/- 1.4% of their pre-fasting body weight. Mean nitrogen balance (+/- SE) was -547 +/- 54 mg.d-1.kg-2/3 for the first week, and then the net nitrogen losses decreased to a plateau (-303 +/- 52 mg.d-1.kg-2/3) after 4 wk. Fasting was associated with a decrease in plasma concentration of essential amino acids. When plasma amino acid concentrations were considered individually, concentrations of alanine, methionine, taurine, citrulline, arginine and tryptophan decreased the most (> or = 50%), whereas concentrations of glutamine, glutamate and ornithine significantly increased. Orotic acid was not detected in the urine during the fast. After 1 wk of fasting, obese cats had reduced nitrogen excretion, but not to the same extent as has been shown in obese humans or obese rats. It is suggested that the availability of several amino acids may become limiting for liver protein synthesis during fasting and that these deficiencies may contribute to the development of hepatic lipidosis. Orotic acid was not linked to hepatic lipidosis caused by fasting in cats.

  16. Effect of nitrogen source and inorganic phosphate concentration on methanol utilization and PEX genes expression in Pichia pastoris.

    Science.gov (United States)

    Rumjantsev, A M; Bondareva, O V; Padkina, M V; Sambuk, E V

    2014-01-01

    Methylotrophic yeast Pichia pastoris has proved to be especially useful for production of various heterologous proteins. In biotechnology it is very important to maintain the balance between high levels of heterologous gene expression and cell viability. Decisive understanding of gene regulation mechanisms is essential for reaching this goal. In this study, we investigated the effect of different nitrogen sources and phosphate concentration in media on methanol utilization. It was shown that expression levels of main genes, which are involved in methanol utilization (MUT genes) and in functioning of peroxisomes (PEX genes), are maximal when ammonium sulphate is used as a nitrogen source. Expression of these genes is decreased in media with poor nitrogen sources, such as proline. Addition of rapamycin to the media completely removed repression of AOX1 promoter in media with proline, which allows proposing that Tor-kinase is involved in establishing of nitrogen regulation of this gene. It was also shown that MUT genes expression levels get higher, when the phosphate concentration in media is increased.

  17. Determination of Microbial Nitrogen Production by Using Urinary Allantoin and Blood Metabolite Concentrate in Growing Brahman Cattle Fed the Different Proportion of Roughage and Concentrate in Diets

    International Nuclear Information System (INIS)

    Suthikrai, Wanvipa; Usawang, Sungwon; Kijsamrej, Suriya; Sophon, Sunpetch; Jetana, Thongsuk

    2003-06-01

    Determination of microbial nitrogen synthesis by using urinary allantoin and blood metabolite for evaluating the efficiency of feed utilization, in this study was conducted by using four Brahman bulls (about 1 year old). Animals were fed ad libitum with 4 fixed diets of four combinations of pineapple fibre (P) and concentrate (C) in the proportions, on dry matter basis of 0.8:0.2 (P80:C20), 0.6:0.04(P60:C40), 0.4:0.6(P40:C60) and 0.2:0.8 (P20:C80). The experiment was designed as a 4x4 Latin square design The Results showed that increasing in the proportion of concentrate linearly increased the rumen microbial nitrogen production (p<0.001), the concentrations of Insulin and urea-N in plasma and the concentration of urea-N in the urine, but not affected on the concentrations of glucose and creatinine in plasma. In conclusion, the using of allantoin urinary associated with blood metabolite can evaluate the accuracy in evaluation of feed utilization in Brahman cattle

  18. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes.

    Science.gov (United States)

    Pinho, P; Barros, C; Augusto, S; Pereira, M J; Máguas, C; Branquinho, C

    2017-11-01

    Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of induced water stress on leaf trichome density and foliar nutrients of three elm (Ulmus) species: implications for resistance to the elm leaf beetle.

    Science.gov (United States)

    Bosu, Paul P; Wagner, Michael R

    2007-06-01

    Seedlings of three elm species with variable susceptibility to the elm leaf beetle (Pyrrhalta luteola Müller) (Coleoptera: Chrysomelidae) were subjected to three water stress treatments (no stress, low stress, and high stress) in a greenhouse experiment. The species tested were Ulmus pumila L. (Siberian elm = highly susceptible), U. parvifolia Jacq. (Chinese elm = resistant), and U. americana L. (American elm = intermediate). The seedlings were analyzed for changes in the levels of selected host traits (trichome density, foliar concentration of nitrogen [N], phosphorus [P], potassium [K], calcium [Ca], magnesium [Mg], iron [Fe], and manganese [Mn]), some of which had previously been implicated in resistance to the elm leaf beetle. Density of leaf abaxial surface trichomes (simple, bulbous, and total trichomes) and foliar Fe and Mg concentrations increased significantly in the highly susceptible Siberian elms under water stress. In contrast, stress reduced trichome density in the moderately susceptible American elms, but it had no effect on levels of foliar mineral nutrients. The stress treatments had no influence on host traits in the resistant Chinese elms. The results suggest that environmental stress can alter plant traits that are likely involved in determining resistance of elms to the elm leaf beetle.

  20. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  1. Morphological, biochemical and molecular characterization of twelve nitrogen-fixing bacteria and their response to various zinc concentration.

    Science.gov (United States)

    Dadook, Mohammad; Mehrabian, Sedigheh; Salehi, Mitra; Irian, Saeed

    2014-04-01

    Zinc is an essential micronutrient used in the form of zinc sulfate in fertilizers in the agriculture production system. Nitrogen-fixing microorganisms are also of considerable value in promoting soil fertility. This study aimed to investigate the degree of sensitivity to varying concentrations of zinc, in the form of ZnSO4, in different strains of Azotobacter chroococcum in a laboratory environment. To isolate A. chroococcum strains, soil samples were collected from wheat, corn and asparagus rhizospheres and cultured in media lacking nitrogen at 30˚C for 48 hours. Strains were identified based on morphological and biochemical characteristics. The presence of the nitrogenase enzyme system was confirmed by testing for the presence of the nifH gene using PCR analysis. The minimum inhibitory concentration (MIC) and optimal zinc concentration for the growth of each strain was determined. A total of 12 bacterial strains were isolated from six different soil samples. A. chroococcum strains were morphologically and biochemically characterized. The presence of the nifH gene was confirmed in all the strains. MIC and the optimal zinc concentration for bacterial growth were 50 ppm and 20 ppm, respectively. It was concluded that increasing the concentration of zinc in the agricultural soil is harmful to beneficial microorganisms and reduces the soil fertility. A 20-ppm zinc concentration in soil is suggested to be optimal.

  2. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution

    Directory of Open Access Journals (Sweden)

    Eli eCarlisle

    2012-09-01

    Full Text Available Nitrogen (N is the most limiting nutrient for plant growth and primary productivity. Inorganic N is available to plants from the soil as ammonium (NH4+ and nitrate (NO3–. We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form (NH4+ vs. NO3– and CO2 concentration (‘subambient’, ‘ambient’, and ‘elevated’ in terms of biomass, yield, and nutrient accumulation and partitioning. NH4+-grown wheat had the strongest response to CO2 concentration. Plants exposed to subambient and ambient CO2 concentrations typically had the greatest biomass and nutrient accumulation under both N forms. In general NH4+ plants had higher concentrations of total N, P, K, S, Ca, Zn, Fe, and Cu, while NO3– plants had higher concentrations of Mg, B, Mn, and NO3–-N. NH4+ plants contained amounts of phytate similar to NO3– plants but had higher bioavailable Zn, which could have ramifications for human health. NH4+ plants allocated more nutrients and biomass to aboveground tissues whereas NO3– plants allocated more nutrients to the roots. The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated separately. Moreover, plant growth and nutrient status varied in a non-linear manner with atmospheric CO2 concentration.

  3. Effect of Nitrogen and Phosphorus Sources on Soil Chemical Properties and Elements Concentration in Sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    A. i Yadav

    2016-02-01

    Full Text Available Introduction: Soil fertility management is a key factor in achieving sustainable agriculture. Use of organic fertilizers is one of the methods that without environmental harmful effects with improvement of chemical and biological conditions increases soil fertility. Nitroxin contains a collection of the best strains of nitrogen fixation bacteria of the genus Azospirillum and Azotobacter. These bacteria through atmospheric nitrogen fixation and the balance of macro and microelements needed for plant uptake, stimulate the growth and development of roots and aerial parts of the plant. Phosphate Barvar2 is another bio-fertilizer which contains set of phosphate solubilizing bacteria of different genera Bacillus and Pseudomonas that can change soil insoluble phosphorus into available forms for plants. The purpose of this study was to evaluate some chemical properties of soil and nutrient concentrations in leaves and seeds of sunflower under the influence of chemical and biological form of nitrogen and phosphorus fertilizers to reduce the use of chemical inputs and to improve quality traits in sunflower. Material and Methods :The experiment was carried out in a split factorial based on RCBD with three replications in a field in Eivanegharb (Ilam province in summer of 2011. The main plot included four levels of phosphorus and nitrogen chemical fertilizer (0, 33, 66 and 100% of nitrogen and phosphorus fertilizer requirements and subplot included factorial of Nitroxin bio-fertilizer application with two levels (inoculation and non inoculation and Phosphate Barvare2 bio fertilizer with two levels (inoculation and non inoculation. Each plot consisted of 5 rows at a distance of 60 cm and a length of 6 m and 20 cm plant spacing. At the time of flowering, leaves were harvested for measurement of nitrogen, phosphorus, potassium, zinc and manganese. After harvesting, the amount of total nitrogen, phosphorus and potassium and pH of the soil and the concentrations

  4. Determination of the nitrogen concentration in epitaxial layers of GaAs /SUB 1-x/ p /SUB x/ by the optical method

    International Nuclear Information System (INIS)

    Lupal, M.V.; Klot, B; Nikhter, K.; Pikhtin, A.N.; Trapp, M.

    1986-01-01

    This paper determines the dependence of the cross section for absorption in the A /SUB N/ line of a bound exciton on the nitrogen content in the solid solution GaAs /SUB 1-x/ P /SUB x/ by comparing the results of optical measurements with the data from secondary ionic mass spectrometry, and these results are used to study the effect of technological factors on the nitrogen concentration epitaxial layers obtained by the gas-transport method. Doping was carried out with nitrogen by injecting ammonia into the reactor zone; the partial pressure of the ammonia was varied from 1 to 25 kPa. Aside from nitrogen, the authors doped the layers with shallow donor Te. It is established that the solubility of nitrogen in the solid solution decreases as the arsenic content increases when the convenient optical method for determining the nitrogen concentration in epitaxial GaAs /SUB 1-x/ P /SUB x/ layers is used

  5. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  6. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    Science.gov (United States)

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  7. Leaf physiology, production, water use, and nitrogen dynamics of the grassland invader Acacia smallii at elevated CO(2) concentrations.

    Science.gov (United States)

    Polley, H W; Johnson, H B; Mayeux, H S

    1997-02-01

    Invasion by woody legumes can alter hydrology, nutrient accumulation and cycling, and carbon sequestration on grasslands. The rate and magnitude of these changes are likely to be sensitive to the effects of atmospheric CO(2) enrichment on growth and water and nitrogen dynamics of leguminous shrubs. To assess potential effects of increased atmospheric CO(2) concentrations on plant growth and acquisition and utilization of water and nitrogen, seedlings of Acacia smallii Isely (huisache) were grown for 13 months at CO(2) concentrations of 385 (ambient), 690, and 980 micro mol mol(-1). Seedlings grown at elevated CO(2) concentrations exhibited parallel declines in leaf N concentration and photosynthetic capacity; however, at the highest CO(2) concentration, biomass production increased more than 2.5-fold as a result of increased leaf photosynthetic rates, leaf area, and N(2) fixation. Measurements of leaf gas exchange and aboveground biomass production and soil water balance indicated that water use efficiency increased in proportion to the increase in atmospheric CO(2) concentration. The effects on transpiration of an accompanying decline in leaf conductance were offset by an increase in leaf area, and total water loss was similar across CO(2) treatments. Plants grown at elevated CO(2) fixed three to four times as much N as plants grown at ambient CO(2) concentration. The increase in N(2) fixation resulted from an increase in fixation per unit of nodule mass in the 690 micro mol mol(-1) CO(2) treatment and from a large increase in the number and mass of nodules in plants in the 980 micro mol mol(-1) CO(2) treatment. Increased symbiotic N(2) fixation by woody invaders in response to CO(2) enrichment may result in increased N deposition in litterfall, and thus increased productivity on many grasslands.

  8. Foliar uptake of zinc by vascular plants. Radiometric study

    International Nuclear Information System (INIS)

    Maresova, J.; Remenarova, L.; Hornik, M.; Pipiska, M.; Augustin, J.; Lesny, J.

    2012-01-01

    The aim of this paper was to obtain quantitative data of foliar uptake kinetics and long distance transport of zinc in tobacco (Nicotiana tabacum L.) and hop (Humulus lupulus L.) plants. Zinc was used as a model of microelement and toxic metal, tobacco and hop as a representatives of agriculturally important plants. A tip of leaf blade was immersed in the solution spiked with 65 ZnCl 2 and foliar uptake and translocation to other parts of the plant grown in nutrient solution was measured by gamma-spectrometry and autoradiography. We found that foliar zinc uptake by both plants is dependent on the initial metal concentration within the range C 0 = 10-100 μmol dm -3 ZnCl 2 . Zinc is immobilized mainly in immersed part of the contact leaf and only 0 = 0.1 mmol dm -3 ZnCl 2 concentrations >2.5 mg/g Zn and 4.8 mg/g Zn (dry wt.) in immersed part of tobacco and hop leaf plant, respectively were found after 5 days of exposure. Low mobility of zinc entering the plant via the leaf surface can be attributed to the immobilization of zinc into Zn-ligand complexes with high stability constants log K at pH 6.0-8.0, such as the reaction products of Zn 2+ ions with citric acid, histidine or phosphates. Zinc can be extracted from dried leaves by the solutions of inorganic salts, carboxylic acids, amino acids and synthetic complexing ligands such as EDTA. Anionic (SDS) and non-ionic (Tween 40) surfactants causes the decrease of the Zn foliar uptake, but not translocation of Zn from the contact leaf area. Obtained data are discussed from the point of view of possible limited efficiency of liquid formulations designed for practical applications as Zn foliar fertilizers. (author)

  9. Teores foliares de nutrientes, índice relativo de clorofila e teores de nitrato e de potássio na seiva do pecíolo na videira 'Niagara Rosada' Nutrients levels, relative chlorophyll index and concentration of nitrate and of potassium in the petiole of grapevine 'Niagara rosada'

    Directory of Open Access Journals (Sweden)

    Marco Antonio Tecchio

    2011-06-01

    Full Text Available Realizou-se um levantamento nutricional em 93 vinhedos nas regiões vitícolas de Jundiaí, São Miguel Arcanjo e Jales, no Estado de São Paulo, tendo por objetivo comparar os teores de nutrientes em amostras foliares, o teor de nitrato e de potássio na seiva do pecíolo e o índice relativo de clorofila (IRC da videira 'Niagara Rosada'. Em 20 plantas selecionadas de cada vinhedo, amostraram-se folha inteira, limbo e pecíolo no pleno florescimento da videira. Posteriormente, realizou-se a medição do IRC no limbo e dos teores de NO3- e de K+ na seiva dos pecíolos. Nas amostras foliares, foram determinados os teores de macro e micronutrientes. Os vinhedos amostrados foram agrupados em função da região de estudo, sendo que cada vinhedo representou uma repetição, totalizando 45; 24 e 24 repetições, respectivamente, nas regiões de Jundiaí, São Miguel Arcanjo e Jales. Nos vinhedos selecionados da região de Jales, as plantas apresentaram maiores teores foliares de P, K, Ca, Mg, S, Fe e Mn, além de maiores IRC e teores de nitrato e potássio no pecíolo. Estas variações nos teores foliares foram relacionadas aos porta-enxertos utilizados nas regiões de estudo, sendo o 'IAC 766', 'IAC 572' e 'Ripária do Traviú', respectivamente, nas regiões de Jundiaí, Jales e São Miguel Arcanjo. Evidenciou-se a necessidade de se adequarem as faixas de concentração de nutrientes nas análises foliares, mediante ensaios regionais, levando em consideração o porta-enxerto e a região em estudo.A nutritional survey was carried out in 93 vineyards of the wine regions of Jundiaí, São Miguel Arcanjo and Jales (state of São Paulo-Brazil, aiming to compare the nutrient concentration in leaf samples, the concentration of nitrate and potassium in the petiole sap and the relative chlorophyll index (IRC of 'Niagara Rosada' vineyard. Leaves, blade and petiole in full bloom vines were sampled in 20 plants selected from each vineyard, and evaluations of

  10. PRODUÇÃO DE MASSA SECA, NÚMERO DE PERFÍLIOS E ÁREA FOLIAR DO CAPIM MOMBAÇA CULTIVADO EM DIFERENTES NÍVEIS DE NITROGÊNIO E FÓSFORO GROUWTH OF Panicum maximum Jacq. Cv. MOMBAÇA UNDER DIFFERENT LEVELS OF NITROGEN AND PHOSPHOROUS IN A GREEN HOUSE

    Directory of Open Access Journals (Sweden)

    Beneval Rosa

    2008-10-01

    Full Text Available

    No presente trabalho avaliaram-se diferentes combinações de doses de nitrogênio e de fósforo na produção de massa seca foliar, número de perfilhos e expansão da área foliar de Panicum maximum Jacq. cv. Mombaça. Para tanto, desenvolveu-se um experimento em casa de vegetação na Escola de Agronomia e Engenharia de Alimentos da Universidade Federal de Goiás. Fez-se uso, como substrato de crescimento, de 7,0 dm3 de terra, acondicionado em vaso plástico de 9,0 dm3 proveniente de um Latossolo Vermelho-escuro distrófico coletado na Fazenda Samambaia no município de Goiânia, GO. Os tratamentos se constituíram da aplicação de quatro doses de nitrogênio na forma de uréia (0, 100, 200 e 400 mg/dm3 de N e quatro doses de fósforo na forma de superfosfato triplo (0, 250, 500 e 750 mg/dm3 de P em quatro repetições. Parcelaram-se as doses de nitrogênio em três aplicações com intervalos de dez dias para cada corte de avaliação. O delineamento experimental foi o inteiramente casualizado com os tratamentos arranjados em um fatorial completo 24 , sendo os fatores as doses de nitrogênio e fósforo. Aos 60 dias após a emergência, efetuou-se um corte de uniformização a 20 cm de altura do solo. Para fins de avaliações, realizaram-se mais três cortes (20 cm de altura a cada trinta dias. Concluiu-se que doses de nitrogênio entre 300 e 400 mg/dm3 de N combinadas com doses de fósforo entre 250 e 500 mg/dm3 de P são as mais indicadas para trabalhos em casa de vegetação com o capim-Mombaça.

    PALAVRAS-CHAVES: Área foliar, capim-Mombaça, massa seca foliar, perfilhos, planta C4.

    The aim of this study was to evaluate the effects of different combinations of nitrogen and phosphorous levels on leaf area, leaf dry matter and tillers number of Panicum maximum Jacq. Cv

  11. [Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities].

    Science.gov (United States)

    Zhao, Liang; Zhou, Guo-yi; Zhang, De-qiang; Duan, Hong-lang; Liu, Ju-xiu

    2011-08-01

    A 5-year experiment was conducted to study the effects of simulated elevated CO2 concentration, nitrogen deposition, and their combination on the biomass accumulation and allocation in five south subtropical native tree species Schima superba, Ormosia pinnata, Acmena acuminatissima, Syzygium hancei, and Castanopsis hystrix and their mixed communities. The test tree species had different responses in their biomass accumulation and allocation to the elevated CO2 concentration and nitrogen deposition. Elevated CO2 concentration and nitrogen deposition increased the biomass of legume species by 49.3% and 71.0%, respectively, and promoted the biomass accumulation in sun species. Nitrogen deposition increased the biomass of shade-preference species significantly, but elevated CO2 concentration was in adverse. Elevated CO2 concentration inhibited the biomass allocation in the belowground part of sun species but promoted the biomass allocation in the belowground part of shade-preference species. Elevated CO2 concentration, nitrogen deposition, and their interaction all promoted the biomass accumulation in mixed communities. Elevated CO2 concentration increased the biomass accumulation in the belowground part of the communities, while nitrogen deposition increased the biomass accumulation in the aboveground part. Under the background of global climate change, Ormosia pinnata and Castanopsis hystrix tended to be the appropriate species for carbon fixation in south subtropical area.

  12. Simultaneous effect of nitrate (NO3- concentration, carbon dioxide (CO2 supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Aarón Millán-Oropeza

    2015-03-01

    Full Text Available Biodiesel from microalgae is a promising technology. Nutrient limitation and the addition of CO2 are two strategies to increase lipid content in microalgae. There are two different types of nitrogen limitation, progressive and abrupt limitation. In this work, the simultaneous effect of initial nitrate concentration, addition of CO2, and nitrogen limitation on biomass, lipid, protein and carbohydrates accumulation were analyzed. An experimental design was established in which initial nitrogen concentration, culture time and CO2 aeration as independent numerical variables with three levels were considered. Nitrogen limitation was taken into account as a categorical independent variable. For the experimental design, all the experiments were performed with progressive nitrogen limitation. The dependent response variables were biomass, lipid production, carbohydrates and proteins. Subsequently, comparison of both types of limitation i.e. progressive and abrupt limitation, was performed. Nitrogen limitation in a progressive mode exerted a greater effect on lipid accumulation. Culture time, nitrogen limitation and the interaction of initial nitrate concentration with nitrogen limitation had higher influences on lipids and biomass production. The highest lipid production and productivity were at 582 mgL-1 (49.7 % lipid, dry weight basis and 41.5 mgL-1d-1, respectively; under the following conditions: 250 mgL-1 of initial nitrate concentration, CO2 supply of 4% (v/v, 12 d of culturing and 2 d in state of nitrogen starvation induced by progressive limitation. This work presents a novel way to perform simultaneous analysis of the effect of the initial concentration of nitrate, nitrogen limitation, and CO2 supply on growth and lipid production of Nannochloropsis oculata, with the aim to produce potential biofuels feedstock.

  13. Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA

    Science.gov (United States)

    Gebhart, Kristi A.; Schichtel, Bret A.; Malm, William C.; Barna, Michael G.; Rodriguez, Marco A.; Collett, Jeffrey L., Jr.

    2011-01-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS), conducted during the spring and summer of 2006, was designed to assess the sources of nitrogen and sulfur species that contribute to wet and dry deposition and visibility impairment at Rocky Mountain National Park (RMNP), Colorado. Several source apportionment methods were utilized for RoMANS, including the Trajectory Mass Balance (TrMB) Model, a receptor-based method in which the hourly measured concentrations are the dependent variables and the residence times of back trajectories in several source regions are the independent variables. The regression coefficients are estimates of the mean emissions, dispersion, chemical transformation, and deposition between the source areas and the receptors. For RoMANS, a new ensemble technique was employed in which input parameters were varied to explore the range, variability, and model sensitivity of source attribution results and statistical measures of model fit over thousands of trials for each set of concentration measurements. Results showed that carefully chosen source regions dramatically improved the ability of TrMB to reproduce temporal patterns in the measured concentrations, and source attribution results were also very sensitive to source region choices. Conversely, attributions were relatively insensitive to trajectory start height, trajectory length, minimum endpoints per source area, and maximum endpoint height, as long as the trajectories were long enough to reach contributing source areas and were not overly restricted in height or horizontal location. Source attribution results estimated that more than half the ammonia and 30-45% of sulfur dioxide and other nitrogen-containing species at the RoMANS core site were from sources within the state of Colorado. Approximately a quarter to a third of the sulfate was from within Colorado.

  14. EFFECT OF NITROGEN SOURCE AND INITIAL SUGAR CONCENTRATION ON LACTIC ACID FERMENTATION OF PINEAPPLE WASTE USING L.DELBRUECKII

    Directory of Open Access Journals (Sweden)

    Abdullah Moch Busairi

    2012-02-01

    Full Text Available The liquid pineapple waste contains mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for lactic acid fermentation. The lactic acid is utilised in food technology as pH regulator, microbial preservative, buffering agent and in the chemical industry. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were carried out in batch fermentation at anaerobic condition with stirring speed: 50 rpm, temperature: 40 oC, pH: 6.0, and inoculum size: 5%. Effect of nitrogen source and initial sugar concentration were studied. The effect of nitrogen source on lactic acid production shows that the yeast extract is highest yield , followed by urea , corn steep liquor, malt sprout and ammonium sulphates with the yield of 78.52; 26.68; 19.14; 14.10 and 5.6 %, respectively. The highest yield of initial sugar concentration on lactic acid production obtained was 78.52 % (54.97 g/l at 70 g/l, if the concentration of sugar was increased to 110 g/l , the lactic acid production or yield decrease to51.53 g/l or 54.24%.

  15. Selection of representative calibration sample sets for near-infrared reflectance spectroscopy to predict nitrogen concentration in grasses

    DEFF Research Database (Denmark)

    Shetty, Nisha; Rinnan, Åsmund; Gislum, René

    2012-01-01

    squares regression (PLSR), a chemometric method, has been applied on NIR spectroscopy data for the determination of the nitrogen (N) concentration in these grass samples. The sample selection method based on NIR spectral data proposed by Puchwein and the CADEX (computer aided design of experiments......) and interaction (cultivar × year fixed) random procedures to see the influence of different factors on sample selection. Puchwein's method performed best with lowest RMSEP followed by CADEX, interaction random, year random, cultivar random and complete random. Out of 118 samples of the complete calibration set...

  16. Trends in nitrogen concentrations and load in 48 minor streams draining intensively farmed Danish catchments, 1990-2014. How can the observed trend be explained?

    Science.gov (United States)

    Windolf, Jørgen; Børgesen, Christen; Blicher-Mathiesen, Gitte; Kronvang, Brian; Larsen, Søren E.; Tornbjerg, Henrik

    2016-04-01

    The total land-based nitrogen load to Danish coastal waters has decreased by 50% since 1990 through a reduction of the outlet of nitrogen from sewage point sources and diffuse sources. On a national scale nitrogen load from diffuse sources, has been reduced by 43% , mainly due to limitation of the amount of N input to different crops, rules for timing and application of manure, mandatory demands for catch crops and restoration of wetlands. The latter increasing the nitrogen retention capacity in surface waters. However, on a local scale huge variations exist in the reduction of the diffuse nitrogen load. Since 1990, an important part of the Danish national monitoring program on the aquatic environment (NOVANA) has been directed at quantifying the nitrogen concentrations and load in 48 minor streams draining small intensively farmed catchments. The 48 catchments have a mean size of 18 km2, farmed area constitutes more than 60% of the catchment area and the catchments have no significant outlets of sewage to the streams. The statistical trend results (based on a seasonal Mann-Kendall) from these 48 streams show a 9-65% reduction in the diffuse nitrogen load (mean: 48%). The large differences in trends in the diffuse N load are related to differences in catchment-specific variables such as nitrogen surpluses, nitrogen leaching from the root zone, hydrogeology and nitrogen retention in ground and surface waters.

  17. Changes in swainsonine, calystegine, and nitrogen concentrations on an annual basis in Ipomoea carnea.

    Science.gov (United States)

    Cook, Daniel; Oliveira, Carlos A; Gardner, Dale R; Pfister, James A; Riet-Correa, Gabriela; Riet-Correa, Franklin

    2015-03-01

    Ipomoea carnea, a swainsonine containing plant, is known to cause a neurologic disease in grazing livestock in Brazil and other parts of the world. To better understand the relative toxicity and nutritional content of I. carnea we investigated swainsonine, calystegine, and crude protein concentrations in leaves of I. carnea on a monthly basis for one year in northern and northeastern Brazil. Swainsonine concentrations were detected at concentrations that could potentially poison an animal throughout the year although there was some variation between months. At one location swainsonine concentrations were generally the highest during the rainy season or the months immediately following the rainy season. Total calystegine concentrations were similar to those reported previously while crude protein concentrations were similar to those found in other Ipomoea species and are such that they may explain why I. carnea becomes desirable to grazing livestock as forage becomes limited during the dry season. Published by Elsevier Ltd.

  18. Technological investigations of ferritic chromium steels with extra low concentrations of carbon and nitrogen

    International Nuclear Information System (INIS)

    Mueller, E.

    1976-01-01

    Ferritic chromium steels with extra low concentrations of C and N were examined by the Strauss Test and by other methods. The results show that resistance against intergranular corrosion can be reached by titanium concentrations ten times higher than the sum of C and N concentrations, whereas stability against pitting corrosion can be achieved by adding 1.3 % Mo. On grounds of the excellent corrosion resistance these steels will be of interest in nuclear technology

  19. Concentrations and nitrogen isotope compositions of free amino acids in Pinus massoniana (Lamb.) needles of different ages as indicators of atmospheric nitrogen pollution

    Science.gov (United States)

    Xu, Yu; Xiao, Huayun

    2017-09-01

    Free amino acid δ15N values and concentrations of current-year new (new), current-year mature (middle-age) and previous-year (old) Pinus massoniana (Lamb.) needles were determined for five sites with different distances from a highway in a forest in Guiyang (SW China). Needle free amino acid concentrations decreased with increasing distance from the highway, and only the free amino acid concentrations (total free amino acid, arginine, γ-aminobutyric acid, valine, alanine and proline) in the middle-aged needles demonstrated a strong correlation with distance from the highway, indicating that free amino acid concentrations in middle-aged needles may be a more suitable indicator of nitrogen (N) deposition compared to new and old needles. Needle free amino acid δ15N values were more positive near the highway compared to the more distant sites and increased with increasing needle age, indicating that N deposition in this site may be dominated by isotopically heavy NOx-N from traffic emissions. In sites beyond 400 m from the highway, the δ15N values of total free amino acids, histidine, glutamine, proline, alanine, aspartate, isoleucine, lysine, arginine and serine in each age of needle were noticeably negative compared to their respective δ15N values near the highway. This suggested that needle free amino acid δ15N values from these sites were more affected by 15N-depleted atmospheric NHx-N from soil emissions. This result was further supported by the similarity in the negative moss δ15N values at these sites to the δ15N values of soil-derived NHx-N. Needle free amino acid δ15N values therefore have the potential to provide information about atmospheric N sources. We conclude that needle free amino acid concentrations are sensitive indicators of N deposition and that the age-related free amino acid δ15N values in needles can efficiently reflect atmospheric N sources. This would probably promote the application of the combined plant tissue amino acid

  20. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  1. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  2. Elevated CO(2) concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE.

    Science.gov (United States)

    Crous, Kristine Y; Walters, Michael B; Ellsworth, David S

    2008-04-01

    To investigate whether long-term elevated carbon dioxide concentration ([CO(2)]) causes declines in photosynthetic enhancement and leaf nitrogen (N) owing to limited soil fertility, we measured photosynthesis, carboxylation capacity and area-based leaf nitrogen concentration (N(a)) in Pinus taeda L. growing in a long-term free-air CO(2) enrichment (FACE) facility at an N-limited site. We also determined how maximum rates of carboxylation (V(cmax)) and electron transport (J(max)) varied with N(a) under elevated [CO(2)]. In trees exposed to elevated [CO(2)] for 5 to 9 years, the slope of the relationship between leaf photosynthetic capacity (A(net-Ca)) and N(a) was significantly reduced by 37% in 1-year-old needles, whereas it was unaffected in current-year needles. The slope of the relationships of both V(cmax) and J(max) with N(a) decreased in 1-year-old needles after up to 9 years of growth in elevated [CO(2)], which was accompanied by a 15% reduction in N allocation to the carboxylating enzyme. Nitrogen fertilization (110 kg N ha(-1)) in the ninth year of exposure to elevated [CO(2)] restored the slopes of the relationships of V(cmax) and J(max) with N(a) to those of control trees (i.e., in ambient [CO(2)]). The J(max):V(cmax) ratio was unaffected by either [CO(2)] or N fertilization. Changes in the apparent allocation of N to photosynthetic components may be an important adjustment in pines exposed to elevated [CO(2)] on low-fertility sites. We conclude that fundamental relationships between photosynthesis or its component processes with N(a) may be altered in aging pine needles after more than 5 years of exposure to elevated atmospheric [CO(2)].

  3. Are herbarium mosses reliable indicators of historical nitrogen deposition?

    DEFF Research Database (Denmark)

    Nielsen, Tora Finderup; Larsen, Jesper Ruf; Michelsen, Anders

    2017-01-01

    . We measured tissue N and C concentrations as well as δ15N, δ13C, Pb and Mg in herbarium and present day samples of seven bryophyte species from six sites across Denmark. While an increase in nitrogen deposition during the last century is well-documented for the study site, we surprisingly found...... foliar N concentration to be higher in historical samples than in modern samples. Based on δ15N values and Pb concentration, we find nitrogen contamination of herbarium specimens during storage to be the most likely cause, possibly in combination with dilution though growth and/or decomposition during...... storage. We suggest ways to assess contamination and recommend caution to be taken when using herbarium specimens to assess historical pollution if exposure during storage cannot be ruled out. Analyses of moss tissue stored in a herbarium for a century raises serious concern about the reliability...

  4. The fitness advantage of commercial wine yeasts in relation to the nitrogen concentration, temperature, and ethanol content under microvinification conditions.

    Science.gov (United States)

    García-Ríos, Estéfani; Gutiérrez, Alicia; Salvadó, Zoel; Arroyo-López, Francisco Noé; Guillamon, José Manuel

    2014-01-01

    The effect of the main environmental factors governing wine fermentation on the fitness of industrial yeast strains has barely received attention. In this study, we used the concept of fitness advantage to measure how increasing nitrogen concentrations (0 to 200 mg N/liter), ethanol (0 to 20%), and temperature (4 to 45°C) affects competition among four commercial wine yeast strains (PDM, ARM, RVA, and TTA). We used a mathematical approach to model the hypothetical time needed for the control strain (PDM) to out-compete the other three strains in a theoretical mixed population. The theoretical values obtained were subsequently verified by competitive mixed fermentations in both synthetic and natural musts, which showed a good fit between the theoretical and experimental data. Specifically, the data show that the increase in nitrogen concentration and temperature values improved the fitness advantage of the PDM strain, whereas the presence of ethanol significantly reduced its competitiveness. However, the RVA strain proved to be the most competitive yeast for the three enological parameters assayed. The study of the fitness of these industrial strains is of paramount interest for the wine industry, which uses them as starters of their fermentations. Here, we propose a very simple method to model the fitness advantage, which allows the prediction of the competitiveness of one strain with respect to different abiotic factors.

  5. Potential Pasture Nitrogen Concentrations and Uptake from Autumn or Spring Applied Cow Urine and DCD under Field Conditions

    Science.gov (United States)

    Moir, Jim; Cameron, Keith; Di, Hong

    2016-01-01

    Nitrogen (N) cycling and losses in grazed grassland are strongly driven by urine N deposition by grazing ruminants. The objective of this study was to quantify pasture N concentrations, yield and N uptake following autumn and spring deposition of cow urine and the effects of fine particle suspension (FPS) dicyandiamide (DCD). A field plot study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand from May 2003 to May 2005. FPS DCD was applied to grazed pasture plots at 10 kg·ha−1 in autumn and spring in addition to applied cow urine at a N loading rate of 1000 kg·N·ha−1, with non-urine control plots. Pasture N ranged between 1.9 and 4.8% with higher concentrations from urine. Results indicated that urine consistently increased N concentrations for around 220 days post deposition (mid December/early summer) at which point concentrations dropped to background levels. In urine patches, pasture yield and annual N uptake were dramatically increased on average by 51% for autumn and 28% for spring applied urine, in both years, when DCD was applied. This field experiment provides strong evidence that annual pasture N uptake is more strongly influenced by high urine N deposition than pasture N concentrations. FPS DCD has the potential to result in very high N uptake in urine patches, even when they are autumn deposited. PMID:27304974

  6. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests

    DEFF Research Database (Denmark)

    Liu, Chunjiang; Berg, Bjørn; Kutsch, Werner

    2006-01-01

    for all groups except evergreens. The impact of temperature was particularly strong for Pinus. Conclusions: The relationship between leaf litter N concentration and temperature and precipitation can be well described with simple or multiple linear regression equations for forests over Eurasia...... variables in multiple regression equations, the adjusted coefficient of determination (R²adj) was evidently higher than in simple regressions with either Temp or Precip as independent variable. Standardized regression coefficients showed that Temp had a larger impact than Precip on litter N concentration...... concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2-fixing species were excluded from the analysis. Results: Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous...

  7. Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization.

    Directory of Open Access Journals (Sweden)

    Yanyan Wei

    Full Text Available BACKGROUND: Zinc (Zn biofortification through foliar Zn application is an attractive strategy to reduce human Zn deficiency. However, little is known about the biofortification efficiency and bioavailability of rice grain from different forms of foliar Zn fertilizers. METHODOLOGY/PRINCIPAL FINDINGS: Four different Zn forms were applied as a foliar treatment among three rice cultivars under field trial. Zinc bioavailability was assessed by in vitro digestion/Caco-2 cell model. Foliar Zn fertilization was an effective agronomic practice to promote grain Zn concentration and Zn bioavailability among three rice cultivars, especially, in case of Zn-amino acid and ZnSO(4. On average, Zn-amino acid and ZnSO(4 increased Zn concentration in polished rice up to 24.04% and 22.47%, respectively. On average, Zn-amino acid and ZnSO(4 increased Zn bioavailability in polished rice up to 68.37% and 64.43%, respectively. The effectiveness of foliar applied Zn-amino acid and ZnSO(4 were higher than Zn-EDTA and Zn-Citrate on improvement of Zn concentration, and reduction of phytic acid, as a results higher accumulation of bioavailable Zn in polished rice. Moreover, foliar Zn application could maintain grain yield, the protein and minerals (Fe and Ca quality of the polished rice. CONCLUSIONS: Foliar application of Zn in rice offers a practical and useful approach to improve bioavailable Zn in polished rice. According to current study, Zn-amino acid and ZnSO(4 are recommended as excellent foliar Zn forms to ongoing agronomic biofortification.

  8. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis

    Directory of Open Access Journals (Sweden)

    Tania MENEGOL

    Full Text Available Abstract The interest in microalga as a food supplement has grown due their high contents of carotenoids, polyunsaturated fatty acids and proteins. This study evaluated the effect of different temperatures (22, 27 or 32 °C and sodium nitrate concentrations (12, 24, 36, 48 or 60 mg L-1 of N-NO3 in culture medium on Heterochlorella luteoviridis biomass production and composition. The highest biomass concentration (3.35 g L-1 was observed at the highest N-NO3 concentration. The N-NO3 concentration positively affected protein, carbohydrate and carotenoids contents of biomass. On the other hand, cells cultured at the lowest N-NO3 concentration showed a slight increment in lipid content. The major carotenoid was lutein (30.7 ± 1.4% of total carotenoids, and the polyunsaturated fatty acids were 37 ± 2% of total fatty acids. Low temperature improved the biosynthesis of ω3 type fatty acids by lowering the ω6:ω3 ratio. Overall, our results indicate H. luteoviridis can yield high biomass concentration under autotrophic growth, resulting in a biomass rich in carotenoids, mainly lutein, and ω3 polyunsaturated fatty acids.

  9. The Effect of Zinc Sulfate Different Amount Soil and Foliar Application on Correlated Grain Characters in Sweet Corn

    Directory of Open Access Journals (Sweden)

    J. Mahmoodi,

    2013-06-01

    Full Text Available This research was conducted to evaluate the effects different concentrations of zinc sulfate applications at different growth stages on sweet corn at the Research Station of Faculty of Agriculture in Islamic Azad University, Tabriz branch in 2012. The study was conducted in split plot experiment based on Randomized Complete Block Design with three replications. Treatments were seven levels of zinc sulfate application methods: (control, soil application, foliar application at 6-8 leaf growth stage, tasseling, grain filling stage, foliar application at three stages, soil application with foliar application at three stages as main plot, three levels of foliar and soil application of zinc sulfate: (0.003, 0.005 and 0.007 for foliar application and 15, 25 and 35 kg/ha for soil application as sub plot. Results showed that the highest grain yield correlated characters were obtained in foliar application at three stages and soil application with foliar application at three stages. In these conditions increasing of dry grain yield and ear were more than 50%. The higher values for grain production were obtained in Zn foliar application with 0.005 concentration (25 kg/ha soil application. Zinc sulfate increased Zn content of grains produced more than 100%. Thus, using Zn not only increases sweet corn grain and ear yield but also increased quality of products.

  10. On the Complementary Relationship Between Nitrogen and Water Use Efficiencies Among Pinus taeda L. Leaves Grown Under Ambient and Enriched CO2 Environments

    Science.gov (United States)

    Palmroth, S.; Katul, G. G.; Maier, C.; Ward, E.; Manzoni, S.; Vico, G.; Oren, R.

    2009-12-01

    Understanding leaf water and nitrogen use strategies is important for predicting vegetation response to climate change. To address this issue from a modeling perspective, two specific hypotheses on the complementary relationship between marginal nitrogen use efficiency (η) and marginal water use efficiency (λ) are formulated based on optimality principles. When a time scale separation exists between variations in stomatal conductance (less than hourly) and in foliar nitrogen (exceeding daily), optimal resource use implies that η and λ1/2 are complementary (hypothesis 1), and that increasing atmospheric CO2 concentration increases both η and λ (hypothesis 2). These two hypotheses are explored at the leaf scale using an extensive gas exchange dataset for Pinus taeda L. collected as part of the Duke Forest Free Air CO2 Enrichment (FACE) experiment. At Duke FACE, trees are growing under elevated atmospheric CO2, soil nitrogen fertilization, or their combination. The observed light-saturated net photosynthesis (Asat) and foliar N in P. taeda at various canopy positions span a significant proportion of the entire range of values observed globally across species and functional types. This wide spread in Asat and foliar N for an individual species allows examining linkages between η and λ. When leaf temperature effects on the physiological parameters are accounted for, the gas exchange data are consistent with the two theory-based hypotheses. Thus, the linkages quantified between η and λ can be used to constrain models of the coupled carbon-nitrogen-water cycles in terrestrial ecosystems.

  11. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    International Nuclear Information System (INIS)

    Jauhiainen, J.

    1998-01-01

    The main objective of this work was to study the effects of different CO 2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO 2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO 2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO 2 and N treatments, and (iv) species dependent differences in potential NH 4 + and NO 3 - uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO 2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO 2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO 2 . The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO 2 concentration. The

  12. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  13. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Science.gov (United States)

    Serret, María D.; Yousfi, Salima; Vicente, Rubén; Piñero, María C.; Otálora-Alcón, Ginés; del Amor, Francisco M.; Araus, José L.

    2018-01-01

    Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N) in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct relationship with N

  14. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Directory of Open Access Journals (Sweden)

    María D. Serret

    2018-01-01

    Full Text Available Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1, three water regimes (control and mild and moderate water stress and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct

  15. Nitrogen concentrations in a small Mediterranean stream: 1. Nitrate 2. Ammonium

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available The importance of storm frequency as well as the groundwater and hyporheic inputs on nitrate (NO3-N and ammonium (NH4-N levels in stream water were studied in a small perennial Mediterranean catchment, Riera Major, in northeast Spain. NO3-N concentrations ranged from 0.15 to 1.9 mg l-1. Discharge explained 47% of the annual NO3-N concentration variance, but this percentage increased to 97% when single floods were analysed. The rate of change in nitrate concentration with respect to flow, ΔNO3-N/ΔQ, ranged widely from 0 to 20 μg NO3-N s l-2. The ΔNO3-N/ΔQ values fitted to a non linear model with respect to the storm flow magnitude (ΔQ (r2=0.48, d.f.=22, P3-N/ΔQ occurred at intermediate ΔQ values, whereas low ΔNO3-N/ΔQ values occurred during severe storms (ΔQ > 400 l s-1. N3-N concentrations exhibit anticlockwise hysteresis patterns with changing flow and the patterns observed for autumnal and winter storms indicated that groundwater was the main N3-N source for stream and hyporheic water. At baseflow, NO3-N concentration in groundwater was higher (t=4.75, d.f.=29, P>0.001 and co-varied with concentrations in the stream (r=0.91, d.f.=28, P3-N concentration in hyporheic water was identical to that in stream water. The role of the hyporheic zone as source or sink for ammonium was studied hyporheic was studied comparing its concentrations in stream and hyporheic zone before and after a major storm occurred in October 1994 that removed particulate organic matter stored in sediments. Results showed high ammonium concentrations (75±28 s.d. μg NH4-N l-1 before the storm flow in the hyporheic zone. After the storm, the ammonium concentration in the hyporheic dropped by 80% (13.6±8 μg N4-N l-1 and approached to the level found in stream water (11±8 μg NH4-N l-1 indicating that indisturbed hyporheic sediments act as a source for ammonium. After the storm, the ammonium concentrations in the stream, hyporheic and groundwater zones were very

  16. Combined Effects of Nitrogen Concentration and Seasonal Changes on the Production of Lipids in Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    2014-03-01

    Full Text Available Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio. N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20 at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1 compared to N-sufficiency (0.11 g L−1 day−1. Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%. Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.

  17. Combined Effects of Nitrogen Concentration and Seasonal Changes on the Production of Lipids in Nannochloropsis oculata

    Science.gov (United States)

    Olofsson, Martin; Lamela, Teresa; Nilsson, Emmelie; Bergé, Jean-Pascal; del Pino, Victória; Uronen, Pauliina; Legrand, Catherine

    2014-01-01

    Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material. PMID:24691025

  18. Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata.

    Science.gov (United States)

    Olofsson, Martin; Lamela, Teresa; Nilsson, Emmelie; Bergé, Jean-Pascal; del Pino, Victória; Uronen, Pauliina; Legrand, Catherine

    2014-03-31

    Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L⁻¹ day⁻¹) compared to N-sufficiency (0.11 g L⁻¹ day⁻¹). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.

  19. Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient.

    Science.gov (United States)

    Grassi, G; Bagnaresi, U

    2001-08-01

    The role of morphological versus physiological foliar plasticity in the capacity for, and mechanisms of, photosynthetic acclimation was assessed in Picea abies (L.) Karst. and Abies alba Mill. saplings in a forest gap-understory light gradient (relative irradiance, RI, ranging from 0.02 to 0.32). The species investigated showed a similar foliar morphological plasticity along the light gradient, at both the needle level (through alteration in leaf dry mass per area) and the shoot level (through alteration in the silhouette area ratio, e.g., shoot silhouette to projected needle area ratio). In both species chlorophyll (Chl) concentration on a mass basis decreased at increasing RI, but was independent of RI when expressed on an area basis. In contrast, leaf N concentration on a mass basis was independent of RI, but was positively influenced by RI when expressed on an area basis. The parameters describing photosynthetic performance at low light (dark respiration rate, apparent quantum yield and light compensation point) suggest that Abies alba was better suited to maintain a positive carbon balance in shaded conditions. By contrast, parameters describing biochemical capacity at high light (maximum electron transport rate, Jmax and maximum ribulose-1,5-biphosphate carboxylation capacity, Vcmax) indicate that only Picea abies was capable of acclimating physiologically to high photosynthetic photon flux densities (PPFDs) by increasing nitrogen partitioning to Rubisco and Vcmax/mass by increasing RI. These results support the hypothesis that interspecific differences in nitrogen partitioning within the photosynthetic apparatus may provide a mechanistic basis for species separation along a light gradient. The differences in photosynthetic plasticity observed are likely to influence regeneration patterns and habitat breadth of the species investigated. The limited ability of Abies alba saplings to exploit high-light conditions may be a competitive disadvantage in large

  20. Role of potassium and nitrogen on sugar concentration of sugar beet

    African Journals Online (AJOL)

    Key Words: Beta vulgaris L., root yield, sugar yield, regression. RÉSUMÉ Le sucre est extrait des racines de la betterave (Beta vulgaris L.) en plus d'autres sources. Trois paramètres économiques importants sont souvent considérés notamment le rendement en racines, la concentration en sucre et le rendement en sucre.

  1. Role of potassium and nitrogen on sugar concentration of sugar beet

    African Journals Online (AJOL)

    Sugar is obtained from root of sugar beet (Beta vulgaris L.) in addition to other sources. Three important economic parameters are often considered and these are root yield, sugar concentration in root juice and total sugar yield. All the three are affected by cropping period and use of fertilisers. Existing literature suggests the ...

  2. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    Science.gov (United States)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.

  3. Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes

    Science.gov (United States)

    A.J. Burton; K.S. Pregitzer; R.W. Ruess; R.L. Hendrick; Mike F. Allen

    2002-01-01

    Root respiration rates have been shown to be correlated with temperature and root N concentration in studies of individual forest types or species, but it is not known how universal these relationships are across forest species adapted to widely different climatic and edaphic conditions. In order to test for broad, cross-species relationships, we measured fine root...

  4. Atmospheric reactive nitrogen concentrations at ten sites with contrasting land use in an arid region of central Asia

    Directory of Open Access Journals (Sweden)

    K. H. Li

    2012-10-01

    Full Text Available Atmospheric concentrations of reactive nitrogen (Nr species from 2009 to 2011 are reported for ten sites in Xinjiang, China, an arid region of central Asia. Concentrations of NH3, NO2, particulate ammonium and nitrate (pNH4+ and pNO3 showed large spatial and seasonal variation and averaged 7.71, 9.68, 1.81 and 1.13 μg N m−3, and PM10 concentrations averaged 249.2 μg m−3 across all sites. Lower NH3 concentrations and higher NO2, pNH4+ and pNO3 concentrations were found in winter, reflecting serious air pollution due to domestic heating in winter and other anthropogenic sources such as increased emissions from motor traffic and industry. The increasing order of total concentrations of Nr species was alpine grassland; desert, desert-oasis ecotone; desert in an oasis; farmland; suburban and urban ecosystems. Lower ratios of secondary particles (NH4+ and NO3 were found in the desert and desert-oasis ecotone, while urban and suburban areas had higher ratios, which implied that anthropogenic activities have greatly influenced local air quality and must be controlled.

  5. Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium

    Science.gov (United States)

    Rakesh Minocha; Jae Soon Lee; Stephanie Long; Pratiksha Bhatnagar; Subhash C. Minocha

    2004-01-01

    We determined: (a) the physiological consequences of overproduction of putrescine in transgenic poplar (Populus nigra x mnrimoviczir) cells expressing an omithine decarboxylase transgene; and (b) effects of variation in nitrogen (N) concentration of the medium on cellular polyamine concentration in transgenic and non-transgenic cells. Cells grown in...

  6. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor

    Science.gov (United States)

    Marie-Louise Smith; Mary E. Martin; Lucie Plourde; Scott V. Ollinger

    2003-01-01

    Field studies among diverse biomes demonstrate that mass-based nitrogen concentration at leaf and canopy scales is strongly related to carbon uptake and cycling. Combined field and airborne imaging spectrometry studies demonstrate the capacity for accurate empirical estimation of forest canopy N concentration and other biochemical constituents at scales from forest...

  7. [Effects of elevated O3 concentration on nitrogen in greening tree species in southern China].

    Science.gov (United States)

    Yang, Tian-Tian; Zhang, Wei-Wei; Hu, En-Zhu; Wang, Xiao-Ke; Tian, Yuan; Feng, Zhao-Zhong

    2014-10-01

    Numerous studies have indicated that rising ozone (O3) in the troposphere significantly decreased the photosynthesis and the activity of Rubisco enzyme. So it can be inferred that the N uptake and distribution within the plants could be affected by elevated O3. In this study, ten greening woody species, widely distributed in subtropical China, were exposed to charcoal-filtered air (CF, less than 20 nL · L(-1)) and elevated O3 (E-O3, mean concentration of 150 nL · L(-1)) in open top chambers. The results showed that E-O3 significantly reduced the leaves biomass in Liquidamba formosana by 20.9%, the stem biomass in Liriodendron chinense by 21.4%, the root biomass in L. formosana and L. chinense by 24.2% and 32.5%, respectively. E-O3 significantly affected the N concentration in the stem but not those in leaves and root. The N uptakes in the whole tree (Nlu), the leaves and the root were significantly affected by E-O3. Compared to CF, E-O3 significantly reduced the Nlu in L. chinense by 28.4% and Schima superba by 22.7% but significantly increased the Nlu in Neolitsea sericea by 15.5%. Elevated O3 concentration had no significant influence on N distribution within the plants across the selected 10 tree species.

  8. Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration.

    Science.gov (United States)

    Safdar, Waseem; Shamoon, Muhammad; Zan, Xinyi; Haider, Junaid; Sharif, Hafiz Rizwan; Shoaib, Muhammad; Song, Yuanda

    2017-12-01

    The effect of varying concentrations of the nitrogen source on the growth kinetics, lipid accumulation, lipid and DHA productivity, and fatty acid composition of C. cohnii was elucidated. Growth of C. cohnii was in three distinct growth stages: cell growth, lipid accumulation and a final lipid turnover stage. Most of lipids were accumulated in lipid accumulation stage (48-120 h) though, slow growth rate was observed during this stage. NaNO 3 supported significantly higher lipid content (26.9% of DCW), DHA content (0.99 g/L) and DHA yield (44.2 mg/g glucose) which were 2.5 to 3.3-folds higher than other N-sources. The maximum level of C16-C18 content (% TFA) was calculated as 43, 54 and 43% in lipid accumulation stage under low nitrogen (LN, 0.2 g/L), medium nitrogen (MN, 0.8 g/L) and high nitrogen (HN, 1.6 g/L) treatments, respectively. Cultures with LN, by down-regulating cell metabolism, trigger onset of lipogenic enzymes. Conversely, NAD + /NADP + -dependent isocitrate dehydrogenase (NAD + /NADP + -ICDH) were less active in LN than HN treatments which resulted in retardation of Kreb's Cycle and thereby divert citrate into cytoplasm as substrate for ATP-citrate lyase (ACL). Thereby, ACL and fatty acid synthase (FAS) were most active in lipid accumulation stage at LN treatments. Glucose-6-phosphate dehydrogenase (G6PDH) was more active than malic enzyme (ME) in lipid accumulation stage and showed higher activities in NaNO 3 than other N-sources. This represents that G6PDH contributes more NADPH than ME in C. cohnii. However, G6PDH and ME together seems to play a dual role in offering NADPH for lipid biosynthesis. This concept of ME together with G6PD in offering NADPH for lipogenesis might be novel in this alga and needed to be explored.

  9. Increasing CO[sub 2] from glacial to present concentrations alters nitrogen and water requirements of C[sub 3] plants

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, P.H.; Johnson, H.B.; Mayeux, H.S. (USDA-ARS, Temple, TX (United States))

    1994-06-01

    Nitrogen and water use efficiencies were measured for three C[sub 3] species, annual grasses Bromus tectorum (cheatgrass) and Triticum aestivum (wheat; two cultivars) and a woody perennial Prosopis glandulosa (mesquite), grown at daytime CO[sub 2] concentrations that spanned glacial to present atmospheric levels. Changes in nitrogen and water use efficiencies were used to investigate effects of increasing [CO[sub 2

  10. Determination of isoflavone (genistein and daidzein) concentration of soybean seed as affected by environment and management inputs.

    Science.gov (United States)

    Laurenz, Randy; Tumbalam, Pavani; Naeve, Seth; Thelen, Kurt D

    2017-08-01

    Isoflavones, such as genistein and daidzein, are produced in soybean seed [Glycine max (L.) Merr.] and may be associated with health benefits in the human diet. More research is required to determine the effect of agronomic soybean treatments on isoflavone concentration. In this study from 2012 to 2014 at Michigan State University and Breckenridge locations, we have evaluated agronomic input management systems which are marketed to increase or protect potential soybean grain yield, including: nitrogen fertilization, herbicide-defoliant, foliar applied fertilizer, a biological-based foliar application, foliar applied fungicide, foliar applied insecticide, a seed applied fungicide, and a maximized seed treatment that included fungicide and insecticide as well as an inoculant and lipo-chitooligosaccharide nodulation promoter, for their effect on soybean seed genistein and daidzein concentrations. Paired comparisons were made between treatments receiving a designated management input and those without the input. Year and location had a significant effect on isoflavone concentrations. Agronomic management inputs impacted soybean seed daidzein concentrations in 15 of 48 field observations and genistein concentrations in 11 of 48 observations. The research supports findings that soybean seed isoflavone levels exhibit a location specific response, and the temporal variability experienced between years appears to influence changes in soybean isoflavone levels more than location. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Directory of Open Access Journals (Sweden)

    Zhenhua Yang

    2017-01-01

    Full Text Available Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  12. Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution.

    Science.gov (United States)

    Li, Lianfa; Lurmann, Fred; Habre, Rima; Urman, Robert; Rappaport, Edward; Ritz, Beate; Chen, Jiu-Chiuan; Gilliland, Frank D; Wu, Jun

    2017-09-05

    Spatiotemporal models to estimate ambient exposures at high spatiotemporal resolutions are crucial in large-scale air pollution epidemiological studies that follow participants over extended periods. Previous models typically rely on central-site monitoring data and/or covered short periods, limiting their applications to long-term cohort studies. Here we developed a spatiotemporal model that can reliably predict nitrogen oxide concentrations with a high spatiotemporal resolution over a long time span (>20 years). Leveraging the spatially extensive highly clustered exposure data from short-term measurement campaigns across 1-2 years and long-term central site monitoring in 1992-2013, we developed an integrated mixed-effect model with uncertainty estimates. Our statistical model incorporated nonlinear and spatial effects to reduce bias. Identified important predictors included temporal basis predictors, traffic indicators, population density, and subcounty-level mean pollutant concentrations. Substantial spatial autocorrelation (11-13%) was observed between neighboring communities. Ensemble learning and constrained optimization were used to enhance reliability of estimation over a large metropolitan area and a long period. The ensemble predictions of biweekly concentrations resulted in an R 2 of 0.85 (RMSE: 4.7 ppb) for NO 2 and 0.86 (RMSE: 13.4 ppb) for NO x . Ensemble learning and constrained optimization generated stable time series, which notably improved the results compared with those from initial mixed-effects models.

  13. Chemistry of fog waters in California's Central Valley - Pt. 3: concentrations and speciation of organic and inorganic nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhang; Anastasio, C. [University of California, Davis, CA (United States). Atmospheric Science Program, Department of Land, Air and Water Resources

    2001-07-01

    Although organic nitrogen (ON) has been found to be a ubiquitous and significant component in wet and dry deposition, almost nothing is known about its concentration or composition in fog waters. To address this gap, we have investigated the concentration and composition of ON in fog waters collected in Davis, in California's Central Valley. Significant quantities of dissolved organic nitrogen (DON) were found in these samples, with a median concentration of 303{mu}M N (range=120-1630{mu}M N). DON typically represented approximately 16% of the total dissolved nitrogen (inorganic+organic) in Davis fog waters. The median concentration of nitrogen in free amino acids and alkyl amines was 16{mu}M N (range=3.8-120{mu}M N), which accounted for 3.4% of the DON in Davis fogs. Thus, although the absolute concentrations of free amino compounds were significant, they were only a minor component of the DON pool. Combined amino nitrogen (e.g., proteins and peptides) was present at higher concentrations and accounted for 6.1-29 per cent (median=16%) of DON. Overall, free and combined amino compounds typically accounted for a median value of 22% of DON in the fog waters. The high concentrations of DON found, and the fact that amino and other N-containing organic compounds can serve as nitrogen sources for microorganisms and plants, indicate that atmospheric ON compounds likely play an important role in nitrogen cycling in the Central Valley. In addition, due to the basicity of some N functional groups, ON compounds likely contribute to the previously observed acid buffering capacity of Central Valley fog waters. Finally, a comparison of fog waters with fine particles (PM{sub 2.5}) collected from the same site during the same period of time indicated that the median concentrations (mol Nm{sup -3}-air) of total water-soluble ON, free amino nitrogen and total amino nitrogen were very similar in the fog water and PM{sub 2.5}. Given the high water solubility of many organic N

  14. Influence of foliar application of pesticides on leaf extracts and phylloplane microflora of corn.

    Science.gov (United States)

    Annapurna, Y; Rao, P R

    1982-01-01

    The effect of foliar application of captan, dithane, carbaryl and atrataf on the quantity of total carbohydrates, total amino acids and total nitrogen leached from corn leaves and on the phylloplane counts of fungi, bacteria and actinomycetes was studied. Leaf extracts were analyzed for amino acids, carbohydrates and nitrogen and were correlated with microbial counts. Generally the microbial counts were less than the control in treated samples and a significant change in Gram-negative bacteria in all treatments was recorded. All treated leaf extracts showed less total amino acids and total nitrogen though they were rich in carbohydrates as compared with the control.

  15. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source, root-zone pH, and aerial CO2 concentration on growth and productivity of soybeans

    Science.gov (United States)

    Raper, C. D.; Tolley-Henry, L.

    1989-01-01

    An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.

  16. Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2010-05-01

    Full Text Available Total ammonium (tot-NH4+ and total nitrate (tot-NO3 provide chemically conservative quantities in the measurement of surface exchange of reactive nitrogen compounds ammonia (NH3, particulate ammonium (NH4+, nitric acid (HNO3, and particulate nitrate (NO3, using the aerodynamic gradient method. Total fluxes were derived from concentration differences of total ammonium (NH3 and NH4+ and total nitrate (HNO3 and NO3 measured at two levels. Gaseous species and related particulate compounds were measured selectively, simultaneously and continuously above a spruce forest canopy in south-eastern Germany in summer 2007. Measurements were performed using a wet-chemical two-point gradient instrument, the GRAEGOR. Median concentrations of NH3, HNO3, NH4+, and NO3 were 0.57, 0.12, 0.76, and 0.48 μg m−3, respectively. Total ammonium and total nitrate fluxes showed large variations depending on meteorological conditions, with concentrations close to zero under humid and cool conditions and higher concentrations under dry conditions. Mean fluxes of total ammonium and total nitrate in September 2007 were directed towards the forest canopy and were −65.77 ng m−2 s−1 and −41.02 ng m−2 s−1 (in terms of nitrogen, respectively. Their deposition was controlled by aerodynamic resistances only, with very little influence of surface resistances. Including measurements of wet deposition and findings of former studies on occult deposition (fog water interception at the study site, the total N deposition in September 2007 was estimated to 5.86 kg ha−1.

  17. Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology.

    Science.gov (United States)

    Kryza, Maciej; Dore, Anthony J; Błaś, Marek; Sobik, Mieczysław

    2011-04-01

    The relative contribution of reduced nitrogen to acid and eutrophic deposition in Europe has increased recently as a result of European policies which have been successful in reducing SO(2) and NO(x) emissions but have had smaller impacts on ammonia (NH(3)) emissions. In this paper the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model was used to calculate the spatial patterns of annual average ammonia and ammonium (NH(4)(+)) air concentrations and reduced nitrogen (NH(x)) dry and wet deposition with a 5 km × 5 km grid for years 2002-2005. The modelled air concentrations of NH(3) and dry deposition of NH(x) show similar spatial patterns for all years considered. The largest year to year changes were found for wet deposition, which vary considerably with precipitation amount. The FRAME modelled air concentrations and wet deposition are in reasonable agreement with available measurements (Pearson's correlation coefficients above 0.6 for years 2002-2005), and with spatial patterns of concentrations and deposition of NH(x) reported with the EMEP results, but show larger spatial gradients. The error statistics show that the FRAME model results are in better agreement with measurements if compared with EMEP estimates. The differences in deposition budgets calculated with FRAME and EMEP do not exceed 17% for wet and 6% for dry deposition, with FRAME estimates higher than for EMEP wet deposition for modelled period and lower or equal for dry deposition. The FRAME estimates of wet deposition budget are lower than the measurement-based values reported by the Chief Inspectorate of Environmental Protection of Poland, with the differences by approximately 3%. Up to 93% of dry and 53% of wet deposition of NH(x) in Poland originates from national sources. Over the western part of Poland and mountainous areas in the south, transboundary transport can contribute over 80% of total (dry + wet) NH(x) deposition. The spatial pattern of the relative contribution of

  18. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  19. Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China.

    Science.gov (United States)

    Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang

    2018-01-01

    Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N 2 , respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem.

  20. EFFECTS OF PROTEIN-XANTHOPHYLL (PX CONCENTRATE OF ALFALFA ADDITIVE TO CRUDE PROTEIN-REDUCED DIETS ON NITROGEN EXCRETION, GROWTH PERFORMANCE AND MEAT QUALITY OF PIGS

    Directory of Open Access Journals (Sweden)

    Eugeniusz GRELA

    2009-06-01

    Full Text Available The infl uence of protein-xanthophyll (PX concentrate of alfalfa supplement to crude protein-reduced diets was examined in relation to nitrogen excretion, performance parameters and pig meat quality. The investigations included 60 growers (PL x PLW x Duroc crossbreeds assigned to 3 groups. The conclusion is that there is a large potential to decrease nitrogen emission to the environment by 10% lowering of dietary crude protein intake along with reduced animal growth rate and elevated mixture utilization. Inclusion of a protein-xanthophyll concentrate (PX of alfalfa to the diet is likely to diminish disadvantageous productive parameters arising from limiting of total crude protein level in relation to the requirements of pigs feeding norms [1993]. At the same time, it improves feed nitrogen utilization and reduces noxious odour emissions from a piggery. The components of a protein-xanthophyll concentrate (PX contribute to increased liver and kidney weight.

  1. FOLIAR FERTILIZATION ON PINEAPPLE QUALITY AND YIELD ADUBAÇÃO FOLIAR NA QUALIDADE E PRODUTIVIDADE DE ABACAXI

    Directory of Open Access Journals (Sweden)

    Marcelo Carvalho Minhoto Teixeira Filho

    2011-04-01

    Full Text Available There are just a few studies using foliar sprays with micronutrients on pineapple crops. The objective of this study was to evaluate the B and Zn effect, as chelate, acid or salt, via foliar feeding, on fruit yield and quality. The experiment was carried out in Guaraçaí, São Paulo State, Brazil, in a loamy medium texture soil, by using Smooth Cayenne (Hawaiian pineapple seedlings. A randomized block design with four replications was adopted, with 110 g ha-1 of B and 250 g ha-1 of Zn for each application. Two foliar sprays were applied, at 7 and 9 months after planting. The B and Zn sources did not affect the total soluble solids contents, titratable acidity, average fruit diameter, fruit length without crown, and maturity index. Only the B, Zn, and K concentrations in the leaves were influenced by the application of micronutrients.

    Poucos são os estudos desenvolvidos com a aplicação via foliar de micronutrientes, na cultura do abacaxi. Este trabalho teve como objetivo avaliar os efeitos de B e Zn, em forma de quelato, ácido ou sal, via foliar, buscando-se obter respostas sobre os efeitos na produtividade e qualidade dos frutos. O experimento foi realizado em Guaraçaí (SP, em solo com textura média. Foram utilizadas mudas tipo filhote, da cultivar Smooth Cayenne (Havaiano. O delineamento experimental adotado foi o de blocos ao acaso, com quatro repetições, utilizando-se fontes para fornecer, em cada aplicação, 110 g ha-1 de B e 250 g ha-1 de Zn. Foram realizadas duas pulverizações foliares, aos 7 e 9 meses após o plantio. As fontes de B e Zn não exerceram efeito nos teores de sólidos solúveis totais, acidez titulável, diâmetro médio do fruto, comprimento do fruto sem coroa e índice de maturação. Apenas os teores de B, Zn e K, na

  2. Effects of land use on the concentration and emission of nitrous oxide in nitrogen-enriched rivers.

    Science.gov (United States)

    Yang, Libiao; Lei, Kun

    2018-03-22

    Nitrous oxide (N 2 O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Nitrogen-enriched rivers are significant sources of atmospheric N 2 O. This study conducted a one-year field campaign in seven N-enriched rivers draining urban, rural, and agricultural land to determine the link between the production, concentrations, and emissions of N 2 O and land use. Estimated N 2 O fluxes varied between 1.30 and 1164.38 μg N 2 O-N m -2 h -1 with a mean value of 154.90 μg N 2 O-N m -2 h -1 , indicating that rivers were the net sources of atmospheric N 2 O. Concentrations of N 2 O ranged between 0.23 and 29.21 μg N 2 O-N L -1 with an overall mean value of 3.81 μg N 2 O-N L -1 . Concentrations of ammonium and nitrate in urban and rural rivers were high in the cold season. The concentrations were also high in agricultural rivers in the wet season. N 2 O concentrations and emissions in rural and urban rivers followed a similar pattern to ammonium and a similar pattern to nitrate in agricultural rivers. A strong link between the concentrations and emissions of N 2 O and land use was observed. N 2 O concentrations in and emissions from the rivers draining the urban and rural areas were significantly higher than the rivers draining the agricultural areas (P urban rivers was primarily predicted by temperature and reflected the integrated impact of sewage input and river hydrology. Nitrate-N and NO 3- -O isotope data and linear regression of N 2 O and river water variables strongly indicated that dissolved N 2 O was mainly derived from nitrification in agricultural rivers and denitrification in rural and urban rivers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Aplicação foliar de manganês em soja transgênica tolerante ao glyphosate Foliar application of manganese in transgenic soybean tolerant to glyphosate

    Directory of Open Access Journals (Sweden)

    Claudir José Basso

    2011-10-01

    do suficiente a aplicação do herbicida glifosato não requer a suplementação foliar de manganês em soja geneticamente modificada tolerante a esse herbicida.The yellowing of Roundup Ready soybean after glyphosate application, can be associated to a momentary manganese deficiency. Because of that, with the hypothesis that glyphosate tolerant soybean would need supplementary addition of manganese, the objective of this research was to evaluate different managements in the foliar application of manganese in some soybean parameters. It was developed two experiments, one at Taquaruçú do Sul and other at Boa Vista das Missões, RS in the year of 2009/2010. It was tested the following treatments: 1 without glyphosate application with manual weed control and without manganese foliar application (untreated check; 2 without glyphosate application with manual weed control and one manganese foliar application at 7 days after this manual weed control; 3 with glyphosate application and without manganese foliar application; 4 glyphosate application in mixture with manganese; 5 glyphosate application added of one manganese foliar application at 7 days after glyphosate application; 6 glyphosate application added of manganese foliar application split in two times, at 7 and 14 days after glyphosate application; 7 glyphosate application and one of manganese foliar application at 14 days after glyphosate application. The glyphosate application was realized in the V5 soybean stage, using 720g L-1 i.e, while the used dose of Mn was 2.0L ha-1 of a formulation with 14% (m/v of Mn. There were no significant difference among the treatments to plant height and height insertion of the first legume. The glyphosate application did not affect the absorption and the foliar amount of manganese and nitrogen in soybean crop. Even with the increase in foliar manganese amount, there was no increasing in soybean productivity. This shows that in soils with Mn levels above of the sufficient, it is not

  4. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  5. Estimation of daily protein intake based on spot urine urea nitrogen concentration in chronic kidney disease patients.

    Science.gov (United States)

    Kanno, Hiroko; Kanda, Eiichiro; Sato, Asako; Sakamoto, Kaori; Kanno, Yoshihiko

    2016-04-01

    Determination of daily protein intake in the management of chronic kidney disease (CKD) requires precision. Inaccuracies in recording dietary intake occur, and estimation from total urea excretion presents hurdles owing to the difficulty of collecting whole urine for 24 h. Spot urine has been used for measuring daily sodium intake and urinary protein excretion. In this cross-sectional study, we investigated whether urea nitrogen (UN) concentration in spot urine can be used to predict daily protein intake instead of the 24-h urine collection in 193 Japanese CKD patients (Stages G1-G5). After patient randomization into 2 datasets for the development and validation of models, bootstrapping was used to develop protein intake estimation models. The parameters for the candidate multivariate regression models were male gender, age, body mass index (BMI), diabetes mellitus, dyslipidemia, proteinuria, estimated glomerular filtration rate, serum albumin level, spot urinary UN and creatinine level, and spot urinary UN/creatinine levels. The final model contained BMI and spot urinary UN level. The final model was selected because of the higher correlation between the predicted and measured protein intakes r = 0.558 (95 % confidence interval 0.400, 0.683), and the smaller distribution of the difference between the measured and predicted protein intakes than those of the other models. The results suggest that UN concentration in spot urine may be used to estimate daily protein intake and that a prediction formula would be useful for nutritional control in CKD patients.

  6. New and conventional evaporative systems in concentrating nitrogen samples prior to isotope-ratio analysis

    International Nuclear Information System (INIS)

    Lober, R.W.; Reeder, J.D.; Porter, L.K.

    1987-01-01

    Studies were conducted to quantify and compare the efficiencies of various evaporative systems used in evaporating 15 N samples prior to mass spectrometric analysis. Two new forced-air systems were designed and compared with a conventional forced-air system and with an open-air dry bath technique for effectiveness in preventing atmospheric contamination of evaporating samples. The forced-air evaporative systems significantly reduced the time needed to evaporate samples as compared to the open-air dry bath technique; samples were evaporated to dryness in 2.5 h with the forced-air systems as compared to 8 to 10 h on the open-air dry bath. The effectiveness of a given forced-air system to prevent atmospheric contamination of evaporating samples was significantly affected by the flow rate of the air stream flowing over the samples. The average atmospheric contaminant N found in samples evaporated on the open-air dry bath was 0.3 μ N, indicating very low concentrations of atmospheric NH 3 during this study. However, in previous studies the authors have experienced significant contamination of 15 N samples evaporated on an open-air dry bath because the level of contaminant N in the laboratory atmosphere varied and could not be adequately controlled. Average cross-contaminant levels of 0.28, 0.20, and 1.01 μ of N were measured between samples evaporated on the open-air dry bath, the newly-designed forced-air system, and the conventional forced-air system, respectively. The cross-contamination level is significantly higher on the conventional forced-air system than on the other two systems, and could significantly alter the atom % 15 N of high-enriched, low [N] evaporating samples

  7. Erythroneura lawsoni abundance and feeding injury levels are influenced by foliar nutrient status in intensively managed American sycamore.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, Robert: Aubrey, Doug, Patric; Bentz, Jo-Ann

    2010-01-01

    Abstract 1 Abundance and feeding injury of the leafhopper Erythroneura lawsoni Robinson was measured in an intensively-managed American sycamore Platanus occidentalis L. plantation. Trees were planted in spring 2000 in a randomized complete block design, and received one of three annual treatments: (i) fertilization (120 kg N/ha/year); (ii) irrigation (3.0 cm/week); (iii) fertilization + irrigation; or (iv) control (no treatment). 2 Foliar nutrient concentrations were significantly influenced by the treatments because only sulphur and manganese levels were not statistically greater in trees receiving fertilization. 3 Over 116 000 E. lawsoni were captured on sticky traps during the study. Leafhopper abundance was highest on nonfertilized trees for the majority of the season, and was positively correlated with foliar nutrient concentrations. Significant temporal variation in E. lawsoni abundance occurred, suggesting five discrete generations in South Carolina. 4 Significant temporal variation occurred in E. lawsoni foliar injury levels, with the highest injury ratings occurring in late June and August. Foliar injury was negatively correlated with foliar nutrient content, and higher levels of injury occurred more frequently on nonfertilized trees. 5 The results obtained in the present study indicated that increased E. lawsoni abundance occurred on trees that did not receive fertilization. Nonfertilized trees experienced greater foliar injury, suggesting that lower foliar nutrient status may have led to increased levels of compensatory feeding.

  8. Crescimento, desenvolvimento e retardamento da senescência foliar em girassol de vaso (Helianthus annuus L.: fontes e doses de nitrogênio Growth, development and delay of leaf senescence in pot-grown sunflower (Helianthus annuus L.: sources and rates of nitrogen

    Directory of Open Access Journals (Sweden)

    Joelma Dutra Fagundes

    2007-08-01

    Full Text Available O girassol é a quarta oleaginosa em produção de grãos no mundo e alguns genótipos são usados com finalidade ornamental para flor de corte e de vaso (girassol de vaso. O objetivo do trabalho foi avaliar o efeito de diferentes fontes e doses de nitrogênio sobre alguns parâmetros de crescimento, desenvolvimento e no retardamento da senescência das folhas basais em girassol de vaso. Um experimento foi conduzido em casa de vegetação, em Santa Maria, RS. Os tratamentos foram: uréia, nitrato de amônio e nitrato de cálcio nas doses de 0, 50, 100 e 150mg L-1 de N na solução de fertirrigação, com duas aplicações semanais. O experimento foi um bi-fatorial (fontes e doses de N no delineamento inteiramente casualizado, com seis repetições. Cada repetição foi um vaso no 15 (1,3L, 15cm de altura com uma planta por vaso. As variáveis analisadas foram: número final de folhas, altura final de plantas, porcentagem de folhas senescentes no ponto de venda, porcentagem de folhas senescentes no final de vida de vaso, área foliar total da planta, filocrono e a soma térmica acumulada da emergência ao botão visível e da emergência ao ponto de venda. A fonte de N tem influência sobre a área foliar do girassol de vaso, sendo a uréia recomendável para o maior crescimento das folhas. A dose de N em torno de 100mg L-1 aplicada duas vezes por semana via fertirrigação favorece características desejáveis para a comercialização, como precocidade e retardamento da senescência das folhas.Sunflower is the fourth oil grain crop grown worldwide and some genotypes are used with ornamental purpose as cut and pot-grown flower. The objective of this study was to evaluate the effect of different sources and rates of nitrogen on some growth and developmental parameters, and on the delay of leaf senescence in pot-grown sunflower. An experiment was carried out inside a greenhouse in Santa Maria, RS, Brazil. Treatments were: urea, ammonium nitrate and

  9. Effect of potassium and potting-bag size on foliar biomass and ...

    African Journals Online (AJOL)

    Foliar fresh mass was significantly increased by the interaction between K concentration and potting-bag size. Growers may use a 5.3 mmol L−1 K concentration and a 5 L potting bag for optimum production of rose geranium under soil-less cultivation. Keywords: C:G ratio, enzyme activation, oil quality, potassium, rose ...

  10. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Associação micorrízica e teores de nutrientes nas folhas de cupuaçuzeiro (Theobroma grandiflorum e guaranazeiro (Paullinia cupana de um sistema agroflorestal em Manaus, Amazonas Arbuscular mycorrhizal association and foliar nutrient concentrations of cupuassu (Theobroma grandiflorum and guaraná (Paullinia cupana plants in an agroforestry system in Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    A. N. Oliveira

    2004-12-01

    Full Text Available As micorrizas arbusculares podem ser importantes na nutrição das plantas em solos ácidos e de baixa fertilidade, como são os da Amazônia de modo geral. Avaliaram-se a colonização radicular por fungos micorrízicos arbusculares (FMAs nativos e os teores de nutrientes em cupuaçuzeiro e guaranazeiro em um sistema agroflorestal no município de Manaus, Amazonas. Dez plantas de cada espécie foram selecionadas, das quais foram coletadas amostras de raiz, folha e solo durante o período seco e chuvoso da região de Manaus. Os guaranazeiros e os cupuaçuzeiros apresentaram maior colonização radicular por FMAs na época chuvosa. Os teores foliares de Ca, Mg, K, P, Zn, Cu e Mn nas duas espécies não foram influenciados pelas épocas de amostragem. O teor de Fe nas folhas dos cupuaçuzeiros foi maior na época chuvosa, enquanto o dos guaranazeiros, na época seca. A colonização micorrízica correlacionou-se com a concentração foliar de Ca, Mg, P e Cu nos cupuaçuzeiros e com a de Ca, Fe, Zn e Cu nos guaranazeiros.Arbuscular mycorrhiza can be important for plant nutrition in acid and low fertility soils such as those of the Amazon. The present study evaluated the mycorrhizal colonization by native arbuscular mycorrhizal fungi (AMF and nutrient concentrations of cupuassu and guarana leaves in an agroforestry system in Manaus, Amazonas State, Brazil. Ten plants of each species were selected, of which the roots, soil and leaves were sampled during the rainy and dry seasons. Guarana and cupuassu trees presented higher levels of AMF colonization during the rainy season. Ca, Mg, K, P, Zn, Cu, and Mn concentrations in both species were not affected by the season. Fe concentration was higher during the rainy season in the cupuassu leaves, but higher in the dry season in the guarana leaves. Mycorrhizal colonization correlated with Ca, Mg, P, and Cu concentrations in cupuassu plants and with Ca, Fe, Zn, and Cu in guarana plants.

  12. Characterization of tomato growth and fruit quality under foliar ammonium sprays

    OpenAIRE

    Souri Mohammad Kazem; Dehnavard Sara

    2017-01-01

    This study was done to evaluate the effects of foliar application of ammonium sulfate on growth and fruit quality of tomato plants under hydroponic culture system. Over four months of tomato plant growth, plants were sprayed once per week with different concentrations of ammonium sulfate (0, 50, 100 and 200 mM), as well as with 50 mM every second day. Foliar application of ammonium sulfate led to reductions in many growth and quality parameters, and higher ammonium concentrations exerted grea...

  13. Foliar fertilization of sugarcane (Saccharum spp): absorption and translocation of 15-N-labeled urea

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Carvalho, J.G. de; Silva, A.Q. da; Primavesi, A.C.P.A.; Camacho, E.; Eimori, I.E.; Guilherme, M.R.

    1988-01-01

    The absorption and translocation of foliar applied nitrogen as urea solution to sugar cane plants was evaluated. An experiment using the isotope dilution technique with 15 N labeled urea was carried out in green house condition. Seedlings of sugarcane variety IAC 53-150 were planted in pots with 5KG of top soil''latossolo vermelho amarelo, fase arenosa'' (Haplustox). (M.A.C.) [pt

  14. Influence of foliar fertilization on walnut foliar zinc levels and nut production in black walnut

    Science.gov (United States)

    William R. Reid; Andrew L. Thomas

    2013-01-01

    The impact of foliar zinc fertilizer application on nut-bearing black walnut (Juglans nigra L.) trees was studied. Foliar sprays were applied three times per season on two cultivars during four growing seasons by wetting the foliage of the entire crown using a tank mix containing 500 ppm zinc, starting at leaf burst and continuing at 2 week intervals...

  15. Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum

    NARCIS (Netherlands)

    Van der Heijden, E; Jauhiainen, J; Silvola, J; Vasander, H; Kuiper, PJC

    2000-01-01

    The ombrotrophic Sphagnum balticum (Russ.) C. Jens. and the oligo-mesotrophic Sphagnum papillosum Lindb. were grown at ambient (360 mu l l(-1)) and at elevated (720 mu l l(-1)) atmospheric CO2 concentrations and at different nitrogen deposition rates, varying between 0 and 30kg N ha(-1) yr(-1), The

  16. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen

    Science.gov (United States)

    Mark E. Kubiske; Donald R. Zak; Kurt S. Pregitzer; Yu Takeuchi

    2002-01-01

    We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic...

  17. Responses of secondary chemicals in sugar maple (Acer saccharum) seedlings to UV-B, springtime warming and nitrogen additions

    Energy Technology Data Exchange (ETDEWEB)

    Sager, E.P.S.; Hutchinson, T.C. [Trent Univ., Peterborough, ON (Canada). Environmental Studies

    2006-10-15

    Elevated UV-B radiation due to climatic change and ozone depletion may represent a significant springtime environmental stressor to germinating seedlings in temperate forest regions. This study aimed to determine the effects of UV-B, nitrogen (N) fertilization and climate warming on the concentrations of base cations and secondary metabolites in the foliage of sugar maple seedlings growing in acid or alkaline soils. The influence of measured flavonoids and phenolics on herbivore activity was examined, as well as the relationship between foliar concentrations of calcium (Ca); manganese (Mn); and N and the production of phenolic and flavonoid compounds. Experimental plots were established in mature hardwood forests in alkaline and acid soil locations in Bobcaygeon and Haliburton, Ontario. Pentagonal open-top chambers were used to lengthen the growing season and simulate an earlier spring. Ammonium nitrate was applied at a rate comparable with an additional deposition of 5 g N per m per year. Fertilizer was applied on 3 separate occasions. Ambient UV-B radiation was screened out with Mylar D polyester film. Sites, treatments and time of sampling had complex effects on foliar elemental chemistry, production of secondary compounds and herbivory. Foliar concentrations of individual phenols were higher in seedlings in the UV-B exclusion treatments. At both sites, removal of ambient UV-B led to increases in flavonoids and chlorogenic acid, and reduced herbivore activity. At Haliburton, ammonium nitrate fertilization led to further increases in foliar Mn. Nitrogen additions led to decreases in the concentrations of some flavonoids at both sites. It was concluded that the composition of the forest soil governs the response of seedlings when they are exposed to abiotic stressors. 63 refs., 5 tabs., 8 figs.

  18. Foliar and soil application of 15N-labelled fertilizers in the cultivation of common bean and soybean

    International Nuclear Information System (INIS)

    Papanicolaou, E.P.; Skarlou, V.D.; Apostolakis, C.G.; Katranis, N.

    1979-01-01

    In two field experiments (one with beans and one with soybeans) during 1977, the influence of soil application of different nitrogen fertilizers and also of foliar application of the Hanway nutrient solution (N-P-K-S) on nitrogen fixation, grain yield and fertilizer utilization was studied. The nodule data for soybeans indicated that urea applied as starter, topdress or foliar spray adversely affected nodule number and weight. Starter (NH 4 ) 2 SO 4 had an effect similar to urea, while starter NH 4 NO 3 had slight or no adverse effect. Use of (NH 4 ) 2 SO 4 or NH 4 NO 3 in the Hanway solution had a strong adverse effect. Yield data of the soybean experiment indicated that urea, applied as starter or starter plus topdress, had no essential effect while foliar spray showed a clear adverse effect on the grain yield of soybean-nod. When (NH 4 ) 2 SO 4 or NH 4 NO 3 were used in the foliar spray, the adverse effect was more evident. Non-nod soybean showed slight yield response to topdress N and significant positive response to Hanway foliar spray. In the bean experiment some evidence of positive response to topdress N plus Hanway foliar spray was observed in the non-nod crop, but it was not significant. The utilization coefficient of the applied fertilizers varied with the treatments. The highest utilization coefficient (50-70%), for both experiments, was observed when urea was applied as foliar spray. Application of urea as starter gave low utilization while topdress application gave high utilization in the soybean experiment and low in that of common bean. Under the experimental conditions starter urea was better utilized than starter ammonium sulphate or nitrate. (author)

  19. The impact of foliar boron sprays on reproductive biology and seed quality of black gram.

    Science.gov (United States)

    Pandey, Nalini; Gupta, Bhavana

    2013-01-01

    An experiment was conducted under glass house condition to study the effect of foliar application of boron (B) on reproductive biology and seed quality of black gram (Vigna mungo). Black gram (V. mungo L. var. DPU-88-31) was grown under controlled sand culture condition at deficient and sufficient B levels. After 32 days of sowing B deficient plants were sprayed with three concentrations of B (0.05%, 0.1% and 0.2% borax) at three different stages of reproductive development, i.e. prior to flowering, initiation of bud formation and after bud formation. Deficient B supply decreased the anther and pollen size, pollen tube growth, pollen viability as well as stigmatic receptivity which were increased by foliar B application. Foliar spray at all the three concentrations and at all stages increased the yield parameters like number of pods, pod size and number of seeds formed per plant. Foliar B application also improved the seed yield and seed quality in terms of storage seed proteins (albumin, globulin, glutenin and prolamin) and carbohydrates (sugars and starch) in black gram. The foliar application of B in appropriate doses (particularly 0.1%) after bud formation made quantitative and qualitative improvement in seed yield of black gram by supplementing additional/critical B requirements for reproductive development. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Plant phenology, growth and nutritive quality of Briza maxima: Responses induced by enhanced ozone atmospheric levels and nitrogen enrichment

    International Nuclear Information System (INIS)

    Sanz, J.; Bermejo, V.; Muntifering, R.; Gonzalez-Fernandez, I.; Gimeno, B.S.; Elvira, S.; Alonso, R.

    2011-01-01

    An assessment of the effects of tropospheric ozone (O 3 ) levels and substrate nitrogen (N) supplementation, singly and in combination, on phenology, growth and nutritive quality of Briza maxima was carried out. Two serial experiments were developed in Open-Top Chambers (OTC) using three O 3 and three N levels. Increased O 3 exposure did not affect the biomass-related parameters, but enhanced senescence, increased fiber foliar content (especially lignin concentration) and reduced plant life span; these effects were related to senescence acceleration induced by the pollutant. Added N increased plant biomass production and improved nutritive quality by decreasing foliar fiber concentration. Interestingly, the effects of N supplementation depended on meteorological conditions and plant physiological activity. N supplementation counteracted the O 3 -induced senescence but did not modifiy the effects on nutritive quality. Nutritive quality and phenology should be considered in new definitions of the O 3 limits for the protection of herbaceous vegetation. - Research highlights: → Forage quality (foliar protein and fiber content) and phenology are more O 3 -sensitive than growth parameters in the Mediterranean annual grass Briza maxima. → The effects of N supplementation depended on meteorological conditions and plant physiological activity. → Increase in nitrogen supplementation counterbalanced the O 3 -induced increase in senescence biomass. → Nutritive quality and phenology should be considered in new definitions of the O 3 limits for the protection of natural herbaceous vegetation. - Forage quality and phenology are more O 3 -sensitive than growth parameters in the Mediterranean annual grass Briza maxima.

  1. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Science.gov (United States)

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. FOLIAR NUTRIENT CONTENTS AND FRUIT YIELD IN CUSTARD APPLE PROGENIES

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2009-01-01

    Full Text Available Foliar nutrient contents are evaluated in several fruit trees with many objectives. Leaf analysis constitutes a way of evaluating the nutritional requirements of crops. Due to the positive impact that fertilizers have on crop yields, researchers frequently try to evaluate the correlations between yield and foliar nutrient contents. This work's objective was to present fruit yields from the 4th to the 6th cropping seasons, evaluate foliar nutrient contents (on the 5th cropping season, and estimate the correlations between these two groups of traits for 20 half-sibling custard apple tree progenies. The progenies were evaluated in a random block design with five replicates and four plants per plot. One hundred leaves were collected from the middle third of the canopy (in height of each of four plants in each plot. The leaves were collected haphazardly, i.e., in a random manner, but without using a drawing mechanism. In the analysis of variance, the nutrient concentrations in the leaves from plants of each plot were represented by the average of four plants in the plot. Fruit yield in the various progenies did not depend on cropping season; progeny A4 was the most productive. No Spearman correlation was found between leaf nutrient concentrations and fruit yield. Increased nutrient concentrations in the leaves were progeny-dependent, i.e., with regard to Na (progenies FE5 and JG1, Ca (progeny A4, Mg (progeny SM7, N (progeny A3, P (progeny M, and K contents (progeny JG3. Spearman's correlation was negative between Na-Mg, Na-Ca, and Mg-P contents, and positive between Mg-Ca and N-K contents.

  3. Interactions between elevated CO2 concentration, nitrogen and water : effects on growth and water use of six perennial plant species

    NARCIS (Netherlands)

    Arp, W.J.; Mierlo, J.E.M.; Berendse, F.; Snijders, W.

    1998-01-01

    Two experiments are described in which plants of six species were grown for one full season in greenhouse compartments with 350 or 560 mol mol1 CO2. In the first experiment two levels of nitrogen supply were applied to study the interaction between CO2 and nitrogen. In the second experiment two

  4. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen

    Directory of Open Access Journals (Sweden)

    D. Obrist

    2009-05-01

    Full Text Available This study presents data on mercury (Hg concentrations, stochiometric relations to carbon (C and nitrogen (N, and Hg pool sizes in four Sierra Nevada forest sites of similar exposure and precipitation regimes, and hence similar atmospheric deposition, to evaluate how ecosystem parameters control Hg retention in ecosystems. In all four sites, the largest amounts of Hg reside in soils which account for 94–98% of ecosystem pools. Hg concentrations and Hg/C ratios increase in the following order: Green Needles/Leavesr2=0.58 and N and C (r2=0.64 in decomposing litter, but a positive correlation between litter Hg and N (r2=0.70. These inverse relations may reflect preferential retention of N and Hg over C during decomposition, or may be due to older age of decomposed litter layers which are exposed to longer-term atmospheric Hg deposition in the field. The results indicate that litter Hg levels depend on decomposition stage and may not follow generally observed positive relationships between Hg and organic C.

    Mineral soil layers show strong positive correlations of Hg to C across all sites and soil horizons (r2=0.83, but Hg concentrations are even more closely related to N with a similar slope to that observed in litter (r2=0.92. Soil N levels alone explain over 90% of Hg pool sizes across the four Sierra Nevada forest sites. This suggests that soil organic N and C groups provide sorption sites for Hg to retain atmospheric deposition. However, the patterns could be due to indirect relationships where high soil N and C levels reflect high ecosystem productivity which leads to corresponding high atmospheric Hg deposition inputs via leaf litterfall and plant senescence. Our results also show that two of the sites previously affected by

  5. Foliar treatment of esca-proper affected vines with nutrients and bioactivators

    Directory of Open Access Journals (Sweden)

    F. Calzarano

    2007-08-01

    Full Text Available Foliar treatment with nutrients and bioactivators was carried out in two vineyards affected with esca proper in 2004 and 2005. Changes in the foliar symptoms and in the quality of berries without lesions from treated symptomatic vines were assessed. Treated vines unexpectedly had a higher incidence and a greater severity of symptomatic leaves than untreated plants, most likely because physiological processes were stimulated by the treatments, possibly also because treatments facilitated the movement of toxins produced by the wood fungi of esca. However it cannot be excluded that the increase in foliar symptoms was due to the forced nutrition causing an imbalance between the various elements, and altering the mechanisms that vines use for the remission of foliar symptoms. This supposition seemed corroborated by the observation that treated vines diseased with esca proper had a weaker defense response than untreated diseased vines, and that treated diseased vines had lower levels of nitrogen and microelements, which are respectively involved in osmoregulation and as cofactors of enzymes involved in the defense response of the plant. The main quality parameters of berries without lesions from treated and untreated symptomatic vines were very similar.

  6. Relative importance of macrophyte leaves for nitrogen uptake from flood water in tidal salt marshes

    NARCIS (Netherlands)

    Bouma, T.J.; Stapel, J.; Van der Heiden, J.; Koutstaal, B.P.; Van Soelen, J.; Van IJzerloo, L.P.

    2002-01-01

    Nitrogen limits plant growth in most salt marshes. As foliar N-uptake makes a significant contribution to the overall N-requirements of submerged plant species such as (e.g.) seagrasses, we tested if foliar N-uptake was also significant in Spartina anglica Hubbard, a species that dominates the

  7. The interactive impact of root branch order and soil genetic horizon on root respiration and nitrogen concentration.

    Science.gov (United States)

    Trocha, Lidia K; Bulaj, Bartosz; Kutczynska, Paulina; Mucha, Joanna; Rutkowski, Pawel; Zadworny, Marcin

    2017-08-01

    In general, respiration (RS) is highly correlated with nitrogen concentration (N) in plant organs, including roots, which exhibit a positive N-RS relationship. Less is known, however, about the relationship between N and RS in roots of different branch orders within an individual tree along a vertical soil profile; this is especially true in trees with contrasting life strategies, such as pioneer Scots pine (Pinus sylvestris L.) vs mid-successional sessile oak (Quercus petraea Liebl.). In the present research, the impact of root branch order, as represented by those with absorptive vs transporting ability, and soil genetic horizon on root N, RS and the N-RS relationship was examined. Mean RS and total N concentration differed significantly among root branch orders and was significantly higher in absorptive roots than in transporting roots. The soil genetic horizon differentially affected root RS in Scots pine vs sessile oak. The genetic horizon mostly affected RS in absorptive roots of Scots pine and transporting roots in sessile oak. Root N was the highest in absorptive roots and most affected by soil genetic horizon in both tree species. Root N was not correlated with soil N, although N levels were higher in roots growing in fertile soil genetic horizons. Overall, RS in different root branch orders was positively correlated with N in both species. The N-RS relationship in roots, pooled by soil genetic horizon, was significant in both species, but was only significant in sessile oak when roots were pooled by root branch order. In both tree species, a significant interaction was found between the soil genetic horizon and root branch order with root function; however, species-specific responses were found. Both root N, which was unaffected by soil N, and the positive N-RS relationship consistently observed in different genetic horizons suggest that root function prevails over environmental factors, such as soil genetic horizon. © The Author 2017. Published by

  8. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  9. The Form in Which Nitrogen Is Supplied Affects the Polyamines, Amino Acids, and Mineral Composition of Sweet Pepper Fruit under an Elevated CO2 Concentration.

    Science.gov (United States)

    Piñero, Maria C; Otálora, Ginés; Porras, Manuel E; Sánchez-Guerrero, Mari C; Lorenzo, Pilar; Medrano, Evangelina; Del Amor, Francisco M

    2017-02-01

    We investigated the effect of supplying nitrogen, as NO 3 - or as NO 3 - /NH 4 + , on the composition of fruits of sweet pepper (Capsicum annuum L. cv. Melchor) plants grown with different CO 2 concentrations ([CO 2 ]): ambient or elevated (800 μmol mol -1 ). The results show that the application of NH 4 + and high [CO 2 ] affected the chroma related to the concentrations of chlorophylls. The concentrations of Ca, Cu, Mg, P, and Zn were significantly reduced in the fruits of plants nourished with NH 4 + , the loss of Fe being more dramatic at increased [CO 2 ], which was also the case with the protein concentration. The concentration of total phenolics was increased by NH 4 + , being unaffected by [CO 2 ]. Globally, the NH 4 + was the main factor that affected fruit free amino acid concentrations. Polyamines were affected differently: putrescine was increased by elevated [CO 2 ], while the response of cadaverine depended on the form of N supplied.

  10. Influence of domestic pets on soil concentrations of dissolved organic carbon, nitrogen, and phosphorus under turfgrass in apartment complexes of Central Texas, USA

    Science.gov (United States)

    Steele, M.; Aitkenhead-Peterson, J. A.

    2009-12-01

    High nitrogen (N) and phosphorus (P) watershed loading rates increases the concentration and loads present in urban streams and rivers, resulting in eutrophication and degradation of surface water quality. Domestic pet animal feed may represent a significant proportion of nitrogen loading in urban watersheds, and because it is deposited directly on the watershed surface may have a large effect on N loads in urban surface waters (Baker et al. 2001). Animal manure has long been used to increase soil N and phosphorus concentrations for the purpose of growing agricultural crops; however, little is known about unintentional urban manuring resulting from a high density of domesticated pets. The purpose of this study is to determine if the presence of domesticated animals in high density urban developments results in increased concentrations of soil dissolved organic carbon (DOC), N, and P and the potential to contribute to loading of urban streams. Composite soil samples from the 0 to 5 cm and 5 to 10 cm soil depth were collected from apartment complexes in Bryan/College Station (BCS) and San Antonio, Texas during August, 2009. Apartment complexes were randomly located around the city and were chosen based on their rules regarding pet ownership. Four apartment complexes that allowed all domestic pets were compared to four that did not allow any domestic pets on the property. A 10:1 water extraction of field moist soil was conducted immediately after sampling. Soil water extracts were analyzed for DOC, total dissolved nitrogen (TDN), nitrate-N, ammonium-N, dissolved organic N, and orthophosphate-P. Results indicated significantly increased concentrations of DOC and N species at both depths in BCS apartments that allowed pets compared to those that did not; however, opposite trends were found in San Antonio. There is a trend for increased concentrations of orthophosphate-P at both locations. Baker, L.A., D. Hope, Y. Xu, et al. 2001. Nitrogen balance for the central Arizona

  11. Determine the Optimal Levels of Bio-fertilizers and Foliar Application of Iron on Yield and Quality Indices of Roselle (Hibiscus sabdariffa L.

    Directory of Open Access Journals (Sweden)

    zahra mir

    2018-02-01

    Full Text Available Introduction In conventional agricultural systems to obtain the highest performance continuous use of chemical fertilizers is inevitable. The health of the plant, soil and living matter depends on the rotation of food elements in the ecosystem. This cycle is disrupted as a result of the loss of soil fertility, its food imbalance and inappropriate cultivation practices. Bio-fertilizers are composed of beneficial microorganisms, each for a specific purpose, such as nitrogen fixation, release of phosphate ions, potassium, iron. It should be noted that most studies in the field for sour Roselle (Hibiscus sabdariffa are based on the use of various chemical fertilizers, but the reaction of this plant to bio-fertilizers and iron solubilization has not been considered. Therefore, this study aimed to investigate the effect of bio fertilizers and iron on yield and quality traits of Roselle in hot and dry weather conditions. Materials and Methods In order to investigate the effects of bio-fertilizers and foliar application iron on yield and quality indicators Roselle (Hibiscus sabdariffa experiment in Research field of Zabol University Agriculture Institute in 2015-2016 years was performed with split-plot based on completely randomized design and three replications. Treatments consisted of four levels of bio-fertilizers: control (without fertilizer, vermicompost, cow manure, seaweed and iron foliar applications include: lack of iron, foliar application at a rate of 3cc per thousand, 6cc per thousand was considered. As a source of bio-fertilizer treatments and foliar application iron levels were considered as sub plots. Before sowing Roselle seeds, vermicompost and manure were added to the soil and inoculation operation . Measurements were: economic yield, biological yield, harvest index, chlorophyll a, b and carotenoids, anthocyanins, carbohydrates and protein. Statistical analysis of data was done with SAS software version 9.1 and mean comparison with

  12. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Science.gov (United States)

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted. PMID:22629161

  13. Effects of foliar boron application on seed composition, cell wall boron, and seed δ(15)N and δ(13)C isotopes in water-stressed soybean plants.

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A; Abel, Craig A

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha(-1). The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS-B); water stressed plants with FB (WS+B); watered plants without FB (W-B), and watered plants with FB (W+B). The treatment W-B was used as a control. Comparing with WS-B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W-B. However, seed stachyose concentrations increased by 43% in WS-B plants seed compared with W-B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS-B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ(15)N and δ(13)C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids.

  14. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  15. Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Muhammad Wasim Haider, Chaudhary Muhammad Ayyub, Muhammad Aslam Pervez, Habat Ullah Asad, Abdul Manan, Syed Ali Raza and Irfan Ashraf

    2012-11-01

    Full Text Available A field trial was carried out in 2010 to investigate the effect of foliar application of seaweed extract “Primo” as an organic biostimulant on potato cv. ‘Sante’. Foliar application of seaweed extract was carried out at different growth stages of the crop (i.e. 30 days; 45 days; 60 days; 30 and 45 days; 30 and 60 days; 45 and 60 days; 30, 45 and 60 days after sowing. Control plants were sprayed with water without seaweed extract. A significant improvement in growth, yield and tuber quality of potato was observed where treatment was applied. The highest tuber yield was recorded with applications of seaweed extract at 30 + 60 days interval after planting. The treatment also improved nitrogen, total soluble solids and protein contents of the potato tubers. The results of the study concluded a positive response of potato plant growth and yield to the foliar application of seaweed extract.

  16. Plasma uric acid, creatinine, and urea nitrogen concentrations after whole blood administration via the gastrointestinal tract in domestic pigeons (Columba livia).

    Science.gov (United States)

    Sheldon, Julie; Hoover, John P; Payton, Mark E

    2007-06-01

    To determine if blood administered to pigeons by gavage tube would simulate gastrointestinal hemorrhage in a noncarnivorous avian model, be digested in the gastrointestinal tract, and subsequently alter concentrations of plasma urea nitrogen, creatinine, or uric acid, blood from common peacocks (Pavo cristatus) was administered by gavage tube to 5 healthy domestic pigeons (Columba livia) at doses of 0.5, 1.0, 2.0, 4.0, and 8.0 ml/kg. No significant difference in plasma concentrations of urea nitrogen, creatinine, or uric acid was seen 4-6 hours after gavage. The findings did not support or rule out the presence of gastrointestinal blood in pigeons as a model for hemorrhage in noncarnivorous avian species.

  17. Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juxiu; Zhou, Guoyi; Duan, Honglang; Li, Yuelin; Zhang, Deqiang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong [Griffith Univ., Nathan, Brisbane (Australia). Centre for Forestry and Horticultural Research

    2011-10-15

    Up to date, most studies about the plant photosynthetic acclimation responses to elevated carbon dioxide (CO{sub 2}) concentration have been performed in temperate areas, which are often N limited under natural conditions and with low ambient N deposition. It is unclear whether photosynthetic downregulation is alleviated with increased N availability, for example, from increased N deposition due to fossil fuel combustion in the tropics and subtropics. Awareness of plant photosynthetic responses to elevated CO{sub 2} concentration will contribute to the better understanding and prediction of future forest productivity under global change. Four tree species, Schima superba Gardn. et Champ., Ormosia pinnata (Lour.) Merr, Castanopsis hystrix AC. DC., and Acmena acuminatissima (Blume) Merr. et Perry were exposed to a factorial combination of atmospheric CO{sub 2} concentration (ambient and elevated CO{sub 2} concentration at ca. 700 {mu}mol CO{sub 2} mol{sup -1}) and N deposition (ambient and ambient + 100 kg N ha{sup -1} year{sup -1}) in open-top chambers in southern China for 3 years since March 2005. Light-saturated net photosynthetic rate, leaf N concentration, and tree growth of all species were measured. The CO{sub 2} treatments did not affect light-saturated net photosynthetic rate of all species grown with the high N treatment. However, S. superba grown with the low N treatment (ambient) had 23% and 47% greater net photosynthesis in the ambient CO{sub 2} concentration than those in the elevated CO{sub 2} concentration for December 2006 and November 2007 (20 and 31 months after the treatments were applied), respectively, and A. acuminatissima grown with the low N treatment had 173%, 26%, and 121% greater net photosynthesis in trees grown in the ambient CO{sub 2} concentration than those in the elevated CO{sub 2} concentration for July 2006 (16 months after the treatments), December 2006 (20 months), and November 2007 (31 months), respectively, whereas

  18. The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole

    Science.gov (United States)

    Neff, William; Crawford, Jim; Buhr, Marty; Nicovich, John; Chen, Gao; Davis, Douglas

    2018-03-01

    Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole (SP) during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2005, 2006-2007). Together, analyses of the data collected from these studies provide insight into the large- to small-scale meteorology that sets the stage for extremes in NO and the significant variability that occurs day to day, within seasons, and year to year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: initially in early spring (Days 280-310) the transport of warm air and clouds over West Antarctica dominates the environment over the SP; in late spring (Days 310-340), the winds at 300 hPa exhibit a bimodal behavior alternating between northwest and southeast quadrants, which is of significance to NO; in early summer (Days 340-375), the flow aloft is dominated by winds from the Weddell Sea; and finally, during late spring, winds aloft from the southeast are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east - it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly, although the last twenty years have seen an increasing trend in easterly surface winds at the SP. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for

  19. Behavior of Foliares Applications of Humus Mixed with the NPK in Rice Cultivation (Oryza Sativa L..

    Directory of Open Access Journals (Sweden)

    Rolando Saborit Reyes

    2013-12-01

    Full Text Available Taking into consideration the observation of one green yellowsh clorosis in the plantations of rice, after the cold campaings and the disminishing of the agricultural efficiency of the cerial in areas of Saint Elena Land belonging to the fortified cooperatove of credits and service (FCCS Camilo Cienfuegos in Las Nuevas, La Sierpe, Province of Sancti – Spiritus, were done foliars aplications with mineral fertilizing as, N.P.K to different doses and moments of applications, in order to obtain alternative of nutrition for the cultivation, the work was done on a green yellowish ferralitic ground since 2009 to 2011, using LP-5 cultivation doing the sowing by the method of transplantation, fertilization. It was done mixing 49L. ha-¹ of liquid warm humus with 0.35 Kg. ha-¹ of nitrogen, phosphorus and potassium. The results shown that the use of the foliar fertilization with liquid worm humus mixed with the N.P.K minerals, increased the efficiency, obtaining 5.3t. ha-¹ as an average in different variants used. The economic analysis showed that the treatment with 40% of nitrogen was reduced with seven foliars applications, it was highest to the witness N.P.K in 1.5t . ha-¹ of the grain obtaining a relative benefit of 4264.55 pesos by hectarea.

  20. Are herbarium mosses reliable indicators of historical nitrogen deposition?

    Science.gov (United States)

    Nielsen, Tora Finderup; Larsen, Jesper Ruf; Michelsen, Anders; Bruun, Hans Henrik

    2017-12-01

    Mosses collected decades ago and stored in herbaria are often used to assess historical nitrogen deposition. This method is effectively based on the assumption that tissue N concentration remains constant during storage. The present study raises serious doubt about the generality of that assumption. We measured tissue N and C concentrations as well as δ 15 N, δ 13 C, Pb and Mg in herbarium and present day samples of seven bryophyte species from six sites across Denmark. While an increase in nitrogen deposition during the last century is well-documented for the study site, we surprisingly found foliar N concentration to be higher in historical samples than in modern samples. Based on δ 15 N values and Pb concentration, we find nitrogen contamination of herbarium specimens during storage to be the most likely cause, possibly in combination with dilution though growth and/or decomposition during storage. We suggest ways to assess contamination and recommend caution to be taken when using herbarium specimens to assess historical pollution if exposure during storage cannot be ruled out. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Foliar fungal pathogens and grassland biodiversity

    NARCIS (Netherlands)

    Allan, E.; Ruijven, van J.; Crawley, M.J.

    2010-01-01

    By attacking plants, herbivorous mammals, insects, and belowground pathogens are known to play an important role in maintaining biodiversity in grasslands. Foliar fungal pathogens are ubiquitous in grassland ecosystems, but little is known about their role as drivers of community composition and

  2. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    Science.gov (United States)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  3. Efeito da adubação nitrogenada e irrigação sobre a composição químico-bromatológica das lâminas foliares e da planta inteira de capim-elefante sob pastejo Effect of nitrogen fertilization and irrigation on the chemical composition of the leaf blade and whole plant of elephantgrass under grazing

    Directory of Open Access Journals (Sweden)

    Claudio Mistura

    2007-12-01

    Full Text Available Esta pesquisa foi desenvolvida com o objetivo de avaliar o efeito da adubação nitrogenada (100, 200, 300, 400 kg/ha/ano de N e da irrigação (área irrigada - AI e não-irrigada - ANI sobre a composição quimico-bromatológica da planta inteira (PI (colmo+folha e das lâminas foliares dos perfilhos basais não-decapitados (LF-PBNd e decapitados (LF-PBd do capim-elefante cv. Napier. Adotou-se delineamento experimental em blocos casualizados com três repetições, em que a unidade experimental consistiu de parcelas (piquetes de 300 m², nas quais foram aplicados os tratamentos. Os teores de PB apresentaram valores proporcionais às doses de nitrogênio, observando-se os maiores valores, no período das águas, nas LF-PBNd e LF-PBd. Os resíduos das doses N aplicados no período chuvoso tanto na AI como ANI elevaram os teores de PB nas lâminas foliares das duas categorias de perfilhos, mas não sobre os teores de FDN e FDA. A irrigação proporcionou teores de FDN e FDA mais elevados nas LF-PBNd e LF-PBd e menores na planta inteira, porém, não se observou efeito sobre os teores de PB.This research was carried out to evaluate the chemical composition of elephantgrass cv. Napier in the whole plant (WP (stem+leaf and in the leaf blade of non-decapitated basal tillers (SF-NDBT and leaf blade of decapitated basal tillers (SF-DBT, fertilized with different N doses (100, 200, 300, and 400 kg/ha/year of N in an irrigated area (IA and in a non-irrigated area (NIA. Treatments were analyzed in a randomized block design with three replicates. The CP concentrations were proportional to the N doses with greater CP concentration in the rainy season in fractions SF-NDBT and SF-DBT. Fertilizer residues of N doses applied in the rainy season, both in IA and NIA, increased CP concentration in the leaf blade of the two tiller categories, but did not affect NDF and ADF concentration. Irrigation increased concentration of NDF and ADF in SF-NDBT and SF-DBT and

  4. Reabsorción de nitrógeno y fósforo foliar en árboles de bosques montanos en los Andes centrales de Colombia

    Directory of Open Access Journals (Sweden)

    Miguel Vera

    1999-06-01

    Full Text Available Se determinaron las concentraciones y los porcentajes de reabsorción de nitrógeno y fósforo foliar en cinco especies de árboles de un bosque montano bajo (BMB a 1850 m.s.n.m. y en cinco de un bosque montano alto (BMA a 2800 m.s.n.m en la Cordillera Central colombiana, asi como la disponibilidad de nitrógeno y fósforo del suelo. Los porcentajes de reabsorción de N y P no fueron significativamente diferentes entre las especies de estos dos bosques. A pesar de esto, se observó que la reabsorción de P foliar tendió a ser mayor en las especies del BMB donde la concentración de P en el suelo fue significativamente más baja (3.2 ppm vs. 9.0 ppm. Cuando la reabsorción de P foliar se expresó como función de la concentración en hojas maduras en 12 tipos de bosques montanos tropicales, se encontró una correlación negativa y estadísticamente significativa. Estos resultados sugieren que los porcentajes de reabsorción de P foliar en bosques montanos estarían controlados parcialmente por la disponibilidad del elemento.Mature leaves and litterfall were collected between November 1992 and February 1993 from one to three individuals of five canopy tree species of a lower montane rain forest (LMRF at 1850 m. and five canopy tree species of an upper montane rain forest (UMRF at 2800 m. in the Central Andes of Colombia, to determine the concentrations and percentage retranslocation of nitrogen and phosphorus. The availability of these two nutrients was measured in the soils, by means of extracts of NH3-NH4, NO2-NO3 and PO4, and incubations of surface soil samples (0-10 cm to measure the rates of nitrogen mineralization and nitrification. In the species of the LMRF the average concentration of N in mature leaves (1.19 % dry weight and litterfall (0.87 % was significantly higher than in mature leaves (0.90 % and litterfall (0.59 % of the tree species of the UMRF. Percentage retranslocation of N and P were not significantly different between the

  5. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    Science.gov (United States)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for

  6. Changes in nitrogen mineralization, tissue nutrient concentrations and biomass compartmentation after cessation of fertilizer application to mown grassland

    NARCIS (Netherlands)

    Olff, Han; Berendse, Frank; de Visser, Willem

    1 Nitrogen mineralization was studied in four grasslands (fields A-D), which had not been fertilized for 2, 6, 19 and 45 years, respectively, thereby forming a chronosequence. Fertilizer application was stopped in these fields in order to restore former species-rich communities characteristic of

  7. Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen

    Science.gov (United States)

    Evan S. Kane; Merritt R. Turetsky; Jennifer W. Harden; A. David McGuire; James M. Waddington

    2010-01-01

    Boreal wetland carbon cycling is vulnerable to climate change in part because hydrology and the extent of frozen ground have strong influences on plant and microbial functions. We examined the response of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation of water table position (both raised and lowered water table...

  8. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    Science.gov (United States)

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  9. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species.

    Science.gov (United States)

    Cai, Jiangping; Weiner, Jacob; Wang, Ruzhen; Luo, Wentao; Zhang, Yongyong; Liu, Heyong; Xu, Zhuwen; Li, Hui; Zhang, Yuge; Jiang, Yong

    2017-07-01

    A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition partly counteracted the positive effects of N addition on available trace element concentrations in the soil. Foliar Mn, Cu and Zn concentrations increased but Fe concentration decreased with N addition, resulting in foliar elemental imbalances among Fe and other selected trace elements. Water addition alleviated the effect of N addition. Forbs are more likely to suffer from Mn toxicity and Fe deficiency than grass species, indicating more sensitivity to changing elemental bioavailability in soil. Our results suggested that soil acidification due to N deposition may accelerate trace element cycling and lead to elemental imbalance in soil-plant systems of semi-arid grasslands and these impacts of N deposition on semi-arid grasslands were affected by water addition. These findings indicate an important role for soil trace elements in maintaining ecosystem functions associated with atmospheric N deposition and changing precipitation regimes in the future.

  10. ACCELERATION ON THE GROWTH OF RUBBER PLANTING MATERIALS BY USING FOLIAR APPLICATION OF HUMIC ACID

    Directory of Open Access Journals (Sweden)

    Andi Nur Cahyo

    2014-06-01

    Full Text Available The best rubber planting materials are needed to build the best rubber plantation. Humic acids could be used to improve the growth of rubber planting materials. Humic acid plays a role as a hormone-like substance. This research was aimed to determine the optimal concentration of foliar application of humic acid in order to enhance the growth of rubber tree planting materials. This research was arranged in a completely randomized block design with five treatments and four replicates. The treatments were the concentrations of humic acids, i. e. 0; 250; 500; 750; and 1,000 ppm. Observations were made on rubber tree diameter, plant height, shoot and root biomass, and nutrient content of leaves and the stem. The results showed that foliar application of 1,000 ppm of humic acids could enhance the growth of rubber tree planting materials. Foliar application of 500 – 1,000 ppm of humic acids could increase K content of the stem. The effects of foliar application of humic acids were more apparent in the root part than in the shoot part.

  11. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    International Nuclear Information System (INIS)

    Anderson, P.D.; Houpis, J.L.J.

    1991-01-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution

  12. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

    Science.gov (United States)

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  13. Modelling the mitigation of hydrogen deflagrations in a nuclear waste silo ullage by depleting the oxygen concentration with nitrogen

    International Nuclear Information System (INIS)

    Holborn, P.G.; Battersby, P.; Ingram, J.M.; Averill, A.F.; Nolan, P.F.

    2013-01-01

    Highlights: • Examine the effect of reduced O 2 on H 2 burning velocity. • Model the effect of reduced oxygen level on overpressure for a transient H 2 release. • Low O 2 levels significantly reduce H 2 burning velocity and explosion overpressure. -- Abstract: It is expected that significant transient releases of hydrogen could occur during the decommissioning of a nuclear waste storage plant that would result in a transient flammable atmosphere. Interest has been expressed in the use of nitrogen dilution in a vented silo ullage space in order to reduce the oxygen level and thereby mitigate the overpressure rise should a hydrogen–air deflagration occur. In the work presented here the data characterising the influence of oxygen depletion via nitrogen dilution upon the burning velocity of hydrogen–air mixtures have been obtained using the COSILAB code (and also compared with experimental test data). These data have then been used with the FLACS-HYDROGEN CFD-tool to try to predict the potential explosion overpressure reduction that might be achieved using oxygen depletion (via nitrogen dilution), for a transient hydrogen bubble sudden gaseous release (SGR) scenario occurring in a silo ullage type geometry. The simulation results suggest that using nitrogen dilution to deplete the oxygen levels to 12.5% or 9.9% would produce only a relatively modest reduction in the predicted peak overpressure. However, with an oxygen depletion level of 7%, the rate of pressure rise is more substantially slowed and the predicted maximum pressure rise is significantly reduced

  14. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment.

    Science.gov (United States)

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A

    2015-10-01

    Reverse osmosis (RO) concentrate (ROC) streams generated from RO-based municipal wastewater reclamation processes pose potential health and environmental risks on their disposal to confined water bodies such as bays. A UV/H2O2 advanced oxidation process followed by a biological activated carbon (BAC) treatment was evaluated at lab-scale for the removal of organic and nutrient content from a highly saline ROC (TDS 16 g L(-1), EC 23.5 mS cm(-1)) for its safe disposal to the receiving environment. Over the 230-day operation of the UV/H2O2-BAC process, the colour and UV absorbance (254 nm) of the ROC were reduced to well below those of the influent to the reclamation process. The concentrations of DOC and total nitrogen (TN) were reduced by approximately 60% at an empty bed contact time (EBCT) of 60 min. The reduction in ammonia nitrogen by the BAC remained high under all conditions tested (>90%). Further investigation confirmed that the presence of residual peroxide in the UV/H2O2 treated ROC was beneficial for DOC removal, but markedly inhibited the activities of the nitrifying bacteria (i.e., nitrite oxidising bacteria) in the BAC system and hence compromised total nitrogen removal. This work demonstrated that the BAC treatment could be acclimated to the very high salinity environment, and could be used as a robust method for the removal of organic matter and nitrogen from the pre-oxidised ROC under optimised conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Effects Foliar Application of Methanol at Different Growth Stages on Kernel Related Traits in Chickpea var. ILC 482

    Directory of Open Access Journals (Sweden)

    N. Naeimi,

    2013-12-01

    Full Text Available This research was conducted to evaluate the effects of foliar application of methanol on certain kernel related traits at different growth stages of pea var. ILC482 at the Research Station of Faculty of Agriculture in Islamic Azad University, Tabriz Branch in 2011. The study was conducted in split plot experiment based on Randomized Complete Block Design with three replications. Treatments were three levels methanol foliar application at different growth stages (vegetative, reproductive and foliar application at both two stages which considered as main factor, six levels of foliar application of methanol concentrations: (0 [control], 5, 10, 15, 20, 25, 30% as sub factor. Results showed that the interactions of methanol applications growth stages and its concentrations on grain number per plant, 100 kernel weight, grain yield, grain filing rate and harvest index were significantly different. Foliar application of methanol at reproductive stage decrease kernel related traits, but this application at both growth stages had positive effect on grain production and kernel related traits. This positive effect on number and 100 kernel weight were significant. The highest grain yield (2460 kg/ha was obtained by 20% concentration of methanol at both growth stages that increased grain yield above 13.5% compared to the control condition.

  16. Remote sensing of sagebrush canopy nitrogen

    Science.gov (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  17. Leaf anatomy of orchids micropropagated with different silicon concentrations=Anatomia foliar de orquídea micropropagada com diferentes concentrações de silício

    Directory of Open Access Journals (Sweden)

    Fabricio José Pereira

    2012-10-01

    Full Text Available Research on anatomical modifications under in vitro culture is essential to the definition and understanding of the development of micropropagated plants. Likewise, such research is essential to improve the steps of the acclimatization process. Accordingly, the objective of the present study is to verify the differences in the leaves anatomical traits of micropropagated orchids under calcium silicate concentrations. Seedlings of in vitro-germinated seeds, measuring 0.5 cm in length, were inoculated in 250 cm3 pots with 60 mL MS culture medium and different silicon concentrations (0, 0.5, 1.0 and 2.0 mg L-1 in different culture environments (natural environment, in a greenhouse and an artificial environment in a growth chamber and in all statistical combinations. The pH of the culture medium was fixed at 5.8 ± 0.1 and gelified with 5.5 g L-1 of agar before autoclaving at 121ºC and 1 atm for 20 min. After 150 days, an anatomical analysis was performed on cross-sections of the plant leaves. A complete randomized design was used. Modifications occurred on the plants of those treatments containing silicon compared to those without silicon, and between environment fo artificial and natural light. Plants showed larger growth at the artificial light treatment with 0.5 and 2.0 mg L-1 of calcium silicate respectively for the native and hybrid plants Treatments without silicate application induced chlorenchyma and epidermis deformation compared to silicon containing treatments, this effect can affect directly or indirectly plant growth at no silicon conditions.A realização de pesquisas a respeito das modificações anatômicas decorrentes do cultivo in vitro são fundamentais para o melhor entendimento e elucidação do desenvolvimento das plantas micropropagadas. Dessa forma, tal pesquisa é essencial para melhorar as etapas do processo de aclimatização. Sendo assim, o objetivo deste trabalho foi identificar diferenças nas características anat

  18. Nitrogen concentrations and loads for the Connecticut River at Middle Haddam, Connecticut, computed with the use of autosampling and continuous measurements of water quality for water years 2009 to 2014

    Science.gov (United States)

    Mullaney, John R.; Martin, Joseph W.; Morrison, Jonathan

    2018-03-20

    The daily and annual loads of nitrate plus nitrite and total nitrogen for the Connecticut River at Middle Haddam, Connecticut, were determined for water years 2009 to 2014. The analysis was done with a combination of methods, which included a predefined rating curve method for nitrate plus nitrite and total nitrogen for water years 2009 to 2011 and a custom rating curve method that included sensor measurements of nitrate plus nitrite nitrogen concentration and turbidity along with mean daily flow to determine total nitrogen loads for water years 2011 to 2014. Instantaneous concentrations of total nitrogen were estimated through the use of a regression model based on sensor measurements at 15-minute intervals of nitrate plus nitrite nitrogen and turbidity for water years 2011 to 2014.Annual total nitrogen loads at the Connecticut River at Middle Haddam ranged from 12,900 to 19,200 metric tons, of which about 42 to 49 percent was in the form of nitrate plus nitrite. The mean 95-percent prediction intervals on daily total nitrogen load estimates were smaller from the custom model, which used sensor data, than those calculated by the predefined model.Annual total nitrogen load estimates at the Connecticut River at Middle Haddam were compared with the upstream load estimates at the Connecticut River at Thompsonville, Conn. Annual gains in total nitrogen loads between the two stations ranged from 3,430 to 6,660 metric tons. These increases between the two stations were attributed to the effects of increased urbanization and to combined annual discharges of 1,540 to 2,090 metric tons of nitrogen from 24 wastewater treatment facilities in the drainage area between the two stations. The contribution of total nitrogen from wastewater discharge between the two stations had declined substantially before the beginning of this study and accounted for from 31 to 52 percent of the gain in nitrogen load between the Thompsonville and Middle Haddam sites.

  19. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  20. Soil warming opens the nitrogen cycle at the alpine treeline.

    Science.gov (United States)

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  1. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-08-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  2. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil.

    Science.gov (United States)

    Zhang, Ran-Ran; Liu, Yue; Xue, Wan-Lei; Chen, Rong-Xin; Du, Shao-Ting; Jin, Chong-Wei

    2016-12-01

    Cadmium (Cd) pollution in vegetable crops has become a serious problem in recent years. Owing to the limited availability of arable land resources, large areas of Cd-contaminated lands are inevitably being used for the production of vegetables, posing great risks to human health via the food chain. However, strategies to improve yield and reduce Cd concentration in crops grown in contaminated soils are being developed. In the present study, using pot experiments, we investigated the effects of two slow-release nitrogen fertilizers (SRNFs), resin-coated ammonium nitrate (Osmocote 313s ), and resin-coated urea (urea 620 ), on the growth and Cd concentration of the Cd-contaminated pakchoi. The results showed that pakchoi grown in soil containing 5 mg kg -1 of Cd-induced oxidative stress (indicated by malondialdehyde (MDA), H 2 O 2 , and O 2 ·- ) and photosynthesis inhibition, which in turn was restored with the application of SRNFs. However, pakchoi grown in Cd-contaminated soil supplied with Osmocote 313s and urea 620 showed 103 and 203 % increase in fresh weight and 51-55 % and 44-56 % decrease in Cd concentration, respectively, as compared with their controls (pakchoi treated with instant soluble nitrogen fertilizers). On the basis of an increase in their tolerance index (47-238 %) and a decrease in their translocation factor (7.5-21.6 %), we inferred that the plants treated with SRNFs have a stronger tolerance to Cd and a lower efficiency of Cd translocation to edible parts than those treated with instant soluble nitrogen fertilizers. Therefore, in terms of both crop production and food safety, application of SRNFs could be an effective strategy for improving both biomass production and quality in pakchoi grown under Cd stress.

  3. Effect of some factors on foliar absorption and mobility of Fe59 in plant

    International Nuclear Information System (INIS)

    Mohamed, F.A.

    1990-01-01

    Three experiments were conducted under greenhouse conditions using Fe 59 and seedlings of guava and orange to study the effect of PH value (3-8), Fe SO 4 concentrations in combination with three values of PH on foliar absorption and mobility of Fe. In addition, a comparative study to evaluate some compounds of iron for foliar spray was achieved. Foliar absorption of Fe 59 by guava leaves and its mobility were considerably influenced by PH value of spray solution. Maximum absorption and translocation were observed at PH 6. However, most of the absorbed iron 'about 90%' was retained in the treated leaves and the portion 'about 10%' acropetally and basipetally translocated. Upward transport of iron was more pronounced than downward one. Total iron in plant derived from applied FeSO 4 was greatly increased, whereas utilization percent of it was reduced by increasing the rate of Fe in spray solution. Generally, FeSO 4 had a good efficiency which ranged from about 25-43%. Specific absorption of iron by orange leaves was higher than that of guava leaves. From plant nutritional point of view, efficiency of FeSo 4 , Fe-metalosate and multi mineral-metalosate as different sources of Fe through foliar application remarkably varied and FeSO 4 was highly efficient one in comparison with metalosate compounds

  4. Diagnose foliar em mudas de pinhão-manso (Jatropha Curcas L. produzidas com biossólido Foliar analysis of jatropha (Jatropha curcas L. seedlings grown with biosolid

    Directory of Open Access Journals (Sweden)

    Alirio C. D. Maldonado Reginaldo de Camargo

    2013-03-01

    Full Text Available O uso do biossólido na agricultura tem-se mostrado a melhor alternativa ambiental e econômica para o destino do lodo de esgoto. O objetivo deste trabalho foi avaliar o potencial nutricional do biossólido para produção de mudas de pinhão-manso em tubetes. O experimento foi realizado em casa de vegetação tendo, como substrato, esterco bovino, vermiculita e biossólido. O delineamento experimental foi o de blocos casualizados com três repetições em esquema fatorial 5 x 2, correspondendo às concentrações de biossólido no substrato (0, 10, 20, 30 e 40% e ao tratamento ou não das sementes de pinhão-manso com fungicida. Aos 60 dias foi realizada análise foliar. Relativo às concentrações de biossólido verificou-se efeito significativo para os macronutrientes N, P, Ca, Mg e S e micronutrientes B, Cu, Mn e Zn. O tratamento de sementes teve efeito significativo para o Zn. As folhas apresentaram concentração de macronutrientes com a seguinte ordem: N > K > Mg > Ca > P > S. O acúmulo de micronutrientes apresentou a seguinte ordem: Fé > Mn >Zn > B > Cu. Há grande contribuição do biossólido nos teores de nitrogênio, enxofre e micronutrientes foliares, em plantas de pinhão-manso.The use of biosolids in agriculture has proven to be the best alternative for the environmental and economic destination of sewage sludge. The objective of this study was to evaluate the nutritional potential of biosolids to produce jatropha seedlings in polytube. The experiment was conducted in a greenhouse using as substrate manure, biosolids and vermiculite. The experimental design was in randomized block with three replications in a 5 x 2 factorial, corresponding to the substrate concentrations in sewage sludge (0, 10, 20, 30 and 40%, and the treatment or not of the seeds of jatropha with fungicide. At 60 days, leaf analysis was performed. Regarding the biosolids concentrations, significant effect was verified for the macronutrients N, P, Ca, Mg and S

  5. AVIRIS spectra correlated with the chlorophyll concentration of a forest canopy

    Science.gov (United States)

    Kupiec, John; Smith, Geoffrey M.; Curran, Paul J.

    1993-01-01

    Imaging spectrometers have many potential applications in the environmental sciences. One of the more promising applications is that of estimating the biochemical concentrations of key foliar biochemicals in forest canopies. These estimates are based on spectroscopic theory developed in agriculture and could be used to provide the spatial inputs necessary for the modeling of forest ecosystem dynamics and productivity. Several foliar biochemicals are currently under investigation ranging from those with primary absorption features in visible to middle infrared wavelengths (e.g., water, chlorophyll) to those with secondary to tertiary absorption features in this part of the spectrum (e.g., nitrogen, lignin). The foliar chemical of interest in this paper is chlorophyll; this is a photoreceptor and catalyst for the conversion of sunlight into chemical energy and as such plays a vital role in the photochemical synthesis of carbohydrates in plants. The aim of the research reported here was to determine if the chlorophyll concentration of a forest canopy could be correlated with the reflectance spectra recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

  6. Linking foliar chemistry to forest floor solid and solution phase organic C and N in Picea ahies [L.) Karst stands in northern Bohemia

    Czech Academy of Sciences Publication Activity Database

    Aitkenhead-Peterson, J. A.; Alexander, J.E.; Albrechtová, J.; Krám, P.; Rock, B.; Cudlín, Pavel; Hruška, J.; Lhotáková, Z.; Huntley, R.; Oulehle, F.; Polák, T.; McDowel, W.H.

    2006-01-01

    Roč. 283, 1-2 (2006), s. 187-201 ISSN 0032-079X R&D Projects: GA MŠk ME 658 Institutional research plan: CEZ:AV0Z60870520 Keywords : cellulose and nitrogen * dissolved organic carbon * dissolved organic nitrogen * forest floor C:N * foliar Iignin, * Picea abies [L.] Karst Subject RIV: GK - Forestry Impact factor: 1.495, year: 2006

  7. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  8. Mercury concentrations in Southern Beaufort Sea polar bears: variation based on stable isotopes of carbon and nitrogen.

    Science.gov (United States)

    Cardona-Marek, Tamara; Knott, Katrina K; Meyer, Benjamin E; O'Hara, Todd M

    2009-07-01

    Total Hg concentration was measured in hair and whole blood of 52 adult Southern Beaufort Sea polar bears (Ursus maritimus) captured in the spring of 2005. Stable isotopic signatures (i.e., 13C/12C, delta13C; 15N/14N, delta15N) in hair and two blood compartments (packed blood cells/clot and serum) were determined to assess the variation of Hg concentrations among polar bears in relation to their feeding ecology and other biological factors. Concentrations of Hg in hair and blood (2.2-23.9 microg/g dry wt and 0.007-0.213 microg/g wet wt, respectively) were within the range of values previously reported for polar bears in Canada and East Greenland. Mercury concentration in hair from females was higher than that in hair from males, and concentration was related to interactions between delta13C, delta15N, and longitude of capture location. Mercury concentrations in hair were inversely correlated to delta13C in hair and blood, suggesting that polar bears with greater total Hg concentrations fed more on pelagic prey, such as ringed seals or beluga whale, than on benthic prey. Variability in Hg concentrations in polar bear hair and blood may be the result of intraspecific or regional variation in prey selection rather than strictly trophic level interactions.

  9. Mixing effects on nitrogen and oxygen concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool sequence

    Science.gov (United States)

    Naranjo, Ramon C.; Niswonger, Richard G.; Clinton Davis,

    2015-01-01

    Flow paths and residence times in the hyporheic zone are known to influence biogeochemical processes such as nitrification and denitrification. The exchange across the sediment-water interface may involve mixing of surface water and groundwater through complex hyporheic flow paths that contribute to highly variable biogeochemically active zones. Despite the recognition of these patterns in the literature, conceptualization and analysis of flow paths and nitrogen transformations beneath riffle-pool sequences often neglect to consider bed form driven exchange along the entire reach. In this study, the spatial and temporal distribution of dissolved oxygen (DO), nitrate (NO3-) and ammonium (NH4+) were monitored in the hyporheic zone beneath a riffle-pool sequence on a losing section of the Truckee River, NV. Spatially-varying hyporheic exchange and the occurrence of multi-scale hyporheic mixing cells are shown to influence concentrations of DO and NO3- and the mean residence time (MRT) of riffle and pool areas. Distinct patterns observed in piezometers are shown to be influenced by the first large flow event following a steady 8 month period of low flow conditions. Increases in surface water discharge resulted in reversed hydraulic gradients and production of nitrate through nitrification at small vertical spatial scales (0.10 to 0.25 m) beneath the sediment-water interface. In areas with high downward flow rates and low MRT, denitrification may be limited. The use of a longitudinal two-dimensional flow model helped identify important mechanisms such as multi-scale hyporheic mixing cells and spatially varying MRT, an important driver for nitrogen transformation in the riverbed. Our observations of DO and NO3- concentrations and model simulations highlight the role of multi-scale hyporheic mixing cells on MRT and nitrogen transformations in the hyporheic zone of riffle-pool sequences. This article is protected by copyright. All rights reserved.

  10. Effect of CLA supplementation to low-protein diets on the growth performance, carcass characteristics, plasma urea nitrogen concentration, and fatty acid profile in the meat of pigs

    Directory of Open Access Journals (Sweden)

    Manuel Martínez-Aispuro

    2014-10-01

    Full Text Available To analyze the effect of conjugated linoleic acid (CLA on the meat of pigs (0,1% and three crude protein (CP levels (nursery: 20.5, 16.0, 14.5%; growing: 16, 14.5, 11.5%; and finishing: 14.0, 12.5, 11% CP, studies were conducted with 36 hybrid (Yorkshire×Landrace×Duroc barrows (17.3-83.5 kg, which were individually penned and allotted in a completely randomized design in a factorial (2×3 arrangement for 84 d. The analysis by phases indicated that CP level affected some variables. Average daily gain, average daily feed intake, fat free lean gain, backfat thickness, longissimus muscle area and final body weight were reduced (P≤0.05 feeding the lowest CP diet in nursery and growing pigs. Plasma urea nitrogen concentration was also lower (P≤0.05 in the growing and finishing phases when fed the lowest CP level. The global analysis showed that all the analyzed variables (except feed gain ratio, lean meat percentage and plasma urea nitrogen concentration were reduced (P≤0.05 in the pigs fed low-protein diets; plasma urea nitrogen concentration tended to be lower (P=0.07 when CP was reduced. The fatty acid profile of the meat (semimembranosus and longissimus muscles indicated that CLA addition increased CLA isomers and total saturated fatty acids, and reduced the total monounsaturated fatty acids (P≤0.05. α-Linolenic acid was lowered in longissimus muscle of pigs fed LPD (P=0.08. These results indicated that reducing the crude protein concentration in the diet of fattening pigs from 20.5 to 16.0% in nursery phase; from 16.0 to 14.5% in growing stage; and from 14.0 to 12.5% in finishing pigs, did not negatively affect the growth performance, nor carcass characteristics. The results also showed that the addition of CLA did not improve pig response and the concentration of unsaturated fatty acids and total lipids altered the feeding LPD.

  11. Biochemical studies on the production of biofuel (bioethanol) from potato peels wastes by Saccharomyces cerevisiae: effects of fermentation periods and nitrogen source concentration

    International Nuclear Information System (INIS)

    Sheikh, Ryan A.; Al-Bar, Omar A.; Soliman, Youssri M. Ahmed

    2016-01-01

    Saccharomyces cerevisiae is an interesting micro-organism with good prospects in the future of yeast bioethanol production. In this study, both commercial and genetically modified S. cerevisiae were obtained from the local shops in Jeddah - Saudi Arabia and the Microbial Biotechnology Department - National Research Center (Dokki - Egypt) respectively, and incubated at 25 °C before being acclimatized for the conditions of this research. In this work, the impact of two different biochemical conditions (fermentation periods and nitrogen source concentration) on the growth, carbohydrates yields, and mainly bioethanol productivity from potato peels wastes (PPW) were studied in both species. PPW were used as a solo carbon source in this study with HCl acidic pre-treatment method. When studying the impact of fermentation periods, the best fermentation periods were found to be between the third and the fourth day. Additionally, the optimal nitrogen source concentration added to the fermentation medium was 2 g/L. This study concludes with some suggestions for future work in an attempt to reach commercial production of bioethanol at the lowest possible costs

  12. Study the concentration of macroelements in forage mays (Zea mays L. (SC 704 as effected by inoculation with mycorrhizal fungi and Azotobacter chroococcum under different levels of nitrogen

    Directory of Open Access Journals (Sweden)

    M. Amirabadi

    2016-05-01

    Full Text Available Nitrogen and phosphorus are two necessary macronutrients for plant growth and yield. These two elements now will be added to soil by chemical fertilizers. This research has been carried out based on randomized completely block design with three replications at Markazi Provience Agricultural Research Station, Iran, during growing season of 2004-2005 to evaluate the effects of Azotobacter chroococcum and Mycorrhiza (Glomus intraradices as biofertilizers and urea as chemical fertilizers on concentrations of N, P, K, Na, Ca and crude protein (% in corn (Zea mays L. shoot tissues and dry matter of corn. Azotobacter chroococcum used as two levels (inoculated and uninoculated, mycorrhiza (Glomus intraradices in two levels (inoculated and uninoculated and urea in four levels (0, 75, 150 and 300 kg.ha-1. Results showed that Azotobacter chroococcum affected significantly all studied criteria except of K shoot concentration, but mycorrhizan (Glomus intraradices only had a increasing significantly effect on N, K, Na and Crude protein. The interaction between Azotobacter chroococcum and Mycorrhiza (Glomus intraradices had the most increasing effect on dry matter, N, Na and Crude protein. Therefore, based on our results it can be concluded that in order to prevent polluting the agricultural soil, environmental and other water supplies from nitrogen chemical fertilizers, application of Azotobacter chroococcum or combined with mycorrhizal fungi with 150 kg.ha-1 Urea is recommended.

  13. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows.

    Science.gov (United States)

    Mutsvangwa, T; Davies, K L; McKinnon, J J; Christensen, D A

    2016-08-01

    The objective of this study was to determine how interactions between dietary crude protein (CP) and rumen-degradable protein (RDP) concentrations alter urea-nitrogen recycling, nitrogen (N) balance, omasal nutrient flow, and milk production in lactating Holstein cows. Eight multiparous Holstein cows (711±21kg of body weight; 91±17d in milk at the start of the experiment) were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of dietary treatments and 29-d experimental periods. Four cows in one Latin square were fitted with ruminal cannulas to allow ruminal and omasal sampling. The dietary treatment factors were CP (14.9 vs. 17.5%; dry matter basis) and RDP (63 vs. 69% of CP) contents. Dietary RDP concentration was manipulated by including unprocessed or micronized canola meal. Diet adaptation (d 1-20) was followed by 8d (d 21-29) of sample and data collection. Continuous intrajugular infusions of [(15)N(15)N]-urea (220mg/d) were conducted for 4d (d 25-29) with concurrent total collections of urine and feces to estimate N balance and whole-body urea kinetics. Proportions of [(15)N(15)N]- and [(14)N(15)N]-urea in urinary urea, and (15)N enrichment in feces were used to calculate urea kinetics. For the low-CP diets, cows fed the high-RDP diet had a greater DM intake compared with those fed the low-RDP diet, but the opposite trend was observed for cows fed the high-CP diets. Dietary treatment had no effect on milk yield. Milk composition and milk component yields were largely unaffected by dietary treatment; however, on the low-CP diets, milk fat yield was greater for cows fed the low-RDP diet compared with those fed the high-RDP diet, but it was unaffected by RDP concentration on the high-CP diets. On the high-CP diets, milk urea nitrogen concentration was greater in cows fed the high-RDP diet compared with those fed the low-RDP diet, but it was unaffected by RDP concentration on the low-CP diets. Ruminal NH3-N concentration tended to

  14. Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil.

    Directory of Open Access Journals (Sweden)

    Maria J Poblaciones

    Full Text Available Zinc (Zn is an important micronutrient that can alleviate cadmium (Cd toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L. and clover (Trifolium subterraneum L. grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v ZnSO4·7H2O and soil Cd concentrations (0, 2.5 and 5 mg Cd kg-1 were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum.

  15. Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil.

    Science.gov (United States)

    Poblaciones, Maria J; Damon, Paul; Rengel, Zed

    2017-01-01

    Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.) grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v) ZnSO4·7H2O) and soil Cd concentrations (0, 2.5 and 5 mg Cd kg-1) were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v) Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum.

  16. Intercomparison of Remotely Sensed Vegetation Indices, Ground Spectroscopy, and Foliar Chemistry Data from NEON

    Science.gov (United States)

    Hulslander, D.; Warren, J. N.; Weintraub, S. R.

    2017-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of

  17. Concentrations of dissolved methane (CH4) and nitrogen (N2) in groundwaters from the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Early, T.O.

    1986-01-01

    This document reports all available dissolved gas concentration data for groundwaters from the Hanford Site as of June 1985. Details of the computational procedures required to reduce data obtained from the field measurements made by the Basalt Waste Isolation Project are provided in the appendix. Most measured values for methane concentration from reference repository boreholes are in the range of from 350 to 700 mg/L for the Cohassett flow top. Because of the uncertainties associated with these measurements, it is currently recommended that a conservative methane concentration of 1200 mg/L (methane saturated) in groundwater be considered the most reasonable upper-bounding value. 16 refs., 2 figs., 2 tabs

  18. The Effects of Foliar Feeding of Compatible Organic Solutes on Agronomic Traits of Safflower

    Directory of Open Access Journals (Sweden)

    Janmohammadi Mohsen

    2017-12-01

    Full Text Available Safflower is originated from Iran and is tolerant against water deficit stress. However, in semi-arid Mediterranean climate terminal drought and heat stress adversely affect the safflower production. In order to investigate the influence of foliar application of proline (Pr (10 and 20 mM and glycinebetaine (GB (2 and 4 mM under well and deficit irrigation (37.23° N,46.16° E. Foliar spray of compatible organic solutes started from middle vegetative growth and continued till seed filling stage. Comparison of well irrigated and stress conditions revealed that severity of water deficit stress (SI was 0.25. Evaluation of growth-related morphological characteristics such as plant height, leaf area, canopy spread and percent ground cover showed that they considerably reduced by water deficit stress. However, foliar application of compatible solutes could somewhat increase growth related parameters. Results showed that water deficit stress noticeably reduced the chlorophyll content, while foliar spray could alleviate the water deficit stress effects when compared with intact plant (non-sprayed plants. The beneficial effect of GB was more prominent than Pr, especially under deficit irrigation condition. Principal component analysis (PCA indicated that the best performance under well irrigated condition was obtained by application of 4 mM GB while under deficit irrigation condition the best performance was recorded for plants treated with 2 and 4 mM GB and 20 mM Pr. Overall, results of current experiments showed that foliar spray with high concentration of GB may can significantly alleviate the adverse effects of water deficit stress.

  19. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in marine zooplankton

    International Nuclear Information System (INIS)

    Pomerleau, Corinne; Stern, Gary A.; Pućko, Monika; Foster, Karen L.; Macdonald, Robie W.; Fortier, Louis

    2016-01-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as “keystone” species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ 13 C) and nitrogen (δ 15 N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ 15 N and lower δ 13 C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. - Highlights: • Assessment of Pan-Arctic variability in zooplankton Hg concentrations • Increased exposure to Hg in the marine food chain of the southern Beaufort Sea • Zooplankton plays a central role in the Hg pathway within Arctic marine food webs.

  20. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Science.gov (United States)

    Wang, Wei-Ning; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles ( d p watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  1. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Gratieri

    2013-01-01

    Full Text Available With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1 and four K concentrations (4, 6, 8, and 10 mmol L−1. The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1 and K (10 mmol L−1 resulted in higher masses for the first (968 g and the second (951 g fruits and crop yield (4,425 gm−2.

  2. Nitrogen and potassium concentrations in the nutrients solution for melon plants growing in coconut fiber without drainage.

    Science.gov (United States)

    Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos; Pavani, Luiz Carlos

    2013-01-01

    With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The "Bonus no. 2" was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L(-1)) and four K concentrations (4, 6, 8, and 10 mmol L(-1)). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO₃ and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L(-1)) and K (10 mmol L(-1)) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm(-2)).

  3. The Effects of Arbuscular Mycorrhiza Fungi on Dry Matter and Concentrations of Nitrogen, Phosphorus and Potassium in Berseem Clover, by Cadmium stress

    Directory of Open Access Journals (Sweden)

    hashem aram

    2016-02-01

    Zanjan, after the complete analysis of soil and obtaining the chemical and physical properties in the laboratory. 6 kg of soil was weighed for each pot and then the soil was contaminated. Cadmium sulfate was used in this experiment. The mycorrhizal fungi weighed 150 grams and was mixed with the soil. After mixing the soil with mycorrhizal fungi, the soil was put in pots and then it was cultivated with clover. In this study, clover seeds weighed 0/5 grams and were disinfected with 10% hydrogen peroxide solution and were added to each pot. Distilled water was used for irrigation. After the completion of growth of plants (about 70 day, plant aerial parts and roots were harvested and before measuring, they were washed with distilled water and then were dried in the oven for 72 hours. Plant aerial parts were harvested. Data were analyzed by SAS (version 9 and MSTATC (version 2.10 software, and obtained variance analysis tables. Mean comparison of different treatments was conducted by Duncan test. Charts were obtained by excel software. Results and Discussion: The results showed that the effects of arbuscular mycorrhizal fungi were significant on all traits measured (P< 0.01. With increasing cadmium concentration in soil, dry matter of 37% and 39%, nitrogen concentration of 35% and 28%, Potassium 9/27% and 37%, and phosphorus concentration of 37% and 39%, reduced in root and aerial, respectively. Also the results showed that arbuscular mycorrhizal fungi increased dry matter amount by 42% and 26%, nitrogen concentration by 40.3% and 30%, phosphorus concentration by 6% and 15.4%, potassium concentrations by 54% and 91.2% in root and aerial, respectively. Interaction between cadmium levels and mycorrhizal fungi in statistics was significant on dry matter aerial, nitrogen concentration in aerial and root, and potassium concentrations in plant root (P< 0.01. Conclusion: The results showed that mycorrhizal fungi were significant on all traits measured in one percent level. Cadmium

  4. Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago's natural soil fertility gradient.

    Science.gov (United States)

    DiManno, Nicole M; Ostertag, Rebecca

    2016-01-01

    Nitrogen (N) and phosphorus (P) are the most important nutrients involved in plant reproduction and typically the most limiting in terrestrial ecosystems. The natural soil fertility gradient of the Hawaiian archipelago, in which younger islands are N limited and older islands are P limited, provides a model system to examine questions regarding allocation of nutrients. Using fertilized plots (+N or +P) at the extreme sites of the Hawaiian archipelago, vegetative productivity (e.g., net primary productivity, growth, and litterfall) and foliar nutrient responses have previously been studied for the dominant canopy tree, Metrosideros polymorpha. Here, we investigated whether the reproductive response of M. polymorpha mirrors the previously found vegetative productivity and foliar nutrient responses, by quantifying: (1) inflorescence and seed productivity, and (2) nutrient concentration of reproductive structures. Fertilization with N and P did not significantly affect the productivity of inflorescences or seeds, or seed viability at either site. However, nutrient concentrations increased after fertilization; %P increased in inflorescences in the +P treatment at the P-limited site. Seeds and inflorescences generally contained higher nutrient concentrations than leaves at both sites. Unlike foliar data, reproductive strategies of M. polymorpha differed depending on soil nutrient limitation with emphasis on quality (higher seed viability/greater nutrient concentrations) at the P-limited site. We suggest that in response to P additions M. polymorpha employs a nutrient conservation strategy for its inflorescences and an investment strategy for its seeds. Examining N and P simultaneously challenges a basic assumption that reproductive allocation follows a similar pattern to the often measured aboveground productivity.

  5. Acceleration on the Growth of Rubber Planting Materials by Using Foliar Application of Humic Acid

    OpenAIRE

    Cahyo, Andi Nur; Ardika, Risal; Saputra, Jamin; Wijaya, Thomas

    2014-01-01

    The best rubber planting materials are needed to build the best rubber plantation. Humic acids could be used to improve the growth of rubber planting materials. Humic acid plays a role as a hormone-like substance. This research was aimed to determine the optimal concentration of foliar application of humic acid in order to enhance the growth of rubber tree planting materials. This research was arranged in a completely randomized block design with five treatments and four replicates. The treat...

  6. Effect of foliar application of Zn and Fe on wheat yield and quality ...

    African Journals Online (AJOL)

    The treatments were control (no Zn and Fe Application), 150 g Zn.ha-1 as ZnSO4, 150 g Fe.ha-1 as Fe2O3, and a combination of both Zn and Fe. In this study, parameters such as wheat grain yield, seed-Zn and Fe concentration were evaluated. Results showed that foliar application of Zn and Fe increased seed yield and ...

  7. Efficiency of foliar dressing of winter wheat

    Directory of Open Access Journals (Sweden)

    Л. В. Худолій

    2017-06-01

    Full Text Available Purpose. To elaborate winter wheat cultivation technologies based on balanced fertilizer system that combines application of mineral fertilizers and the increase of their efficiency by the use of preparations with microelements. Methods. Field and laboratory studies, mathematical and statistical analysis. Results. During 2011–2013, the effect of cultivation technologies on the formation of yield and quality of winter wheat varie­ty ‘Benefis’ (pea is a predecessor was studied. In case of alternative technologies that provided adding only by-products of the predecessor, the yield of winter wheat was 3.73 t/ha when using integrated protection system, and it was increased to 4.22 t/ha with grain quality of the 4th–5th class of the group B when foliar dressing was applied. Resource saving technologies of cultivation with restricted use of fertilizers (Р45К45N30(II+30(IV provided productivity at the level of 5.19–5.61 t/ha with grain quality of the 2nd–3rd class of the group A. Grain yield of 6.27 t/ha of the 2nd class quality was obtained by the use of intensive cultivation technology, which included application of mineral fertilizers (Р90К90N30(II+60(IV+30(VIII in addition to the use of predecessor’s by-products and foliar dressing. The highest yield of grain (6.71 t/ha on average during all years of the study with the 1st class of the group A quality was provided by energy-intensive technology, which included application of P135K135N60(II+75(IV+45(VIII with embedding of predecessor’s by-products into the soil and foliar dressing. Conclusions. It was established that in the northern part of the Forest-Steppe zone of Ukraine the highest productivity of winter wheat was obtained in dark gray podzolic soils using the energy-intensive technology with application of P135K135N60(II+75(IV+45(VIII against the background of predecessor’s by-products embedded into the soil in case of integrated plant protection, and foliar dres

  8. Hydraulic limitation not declining nitrogen availability causes the age-related photosynthetic decline in loblolly pine (Pinus taeda L.).

    Science.gov (United States)

    Drake, J E; Raetz, L M; Davis, S C; DeLucia, E H

    2010-10-01

    Declining net primary production (NPP) with forest age is often attributed to a corresponding decline in gross primary production (GPP). We tested two hypotheses explaining the decline of GPP in ageing stands (14-115 years old) of Pinus taeda L.: (1) increasing N limitation limits photosynthetic capacity and thus decreases GPP with increasing age; and (2) hydraulic limitations increasingly induce stomatal closure, reducing GPP with increasing age. We tested these hypotheses using measurements of foliar nitrogen, photosynthesis, sap-flow and dendroclimatological techniques. Hypothesis (1) was not supported; foliar N retranslocation did not increase and declines were not observed in foliar N, leaf area per tree or photosynthetic capacity. Hypothesis (2) was supported; declines were observed in light-saturated photosynthesis, leaf- and canopy-level stomatal conductance, concentration of CO(2) inside leaf air-spaces (corroborated by an increase in wood δ(13) C) and specific leaf area (SLA), while stomatal limitation and the ratio of sapwood area (SA) to leaf area increased. The sensitivity of radial growth to inter-annual variation in temperature and drought decreased with age, suggesting that tree water use becomes increasingly conservative with age. We conclude that hydraulic limitation increasingly limits the photosynthetic rates of ageing loblolly pine trees, possibly explaining the observed reduction of NPP. © 2010 Blackwell Publishing Ltd.

  9. Combined effects of drought stress and npk foliar spray on growth, physiological processes and nutrient uptake in wheat

    International Nuclear Information System (INIS)

    Shabir, R.N.; Waraocj, E.A.

    2015-01-01

    The present study investigated the effects of supplemental foliar nitrogen (N), phosphorous (P) and potassium (K) spray, alone or in various combinations, on physiological processes and nutrients uptake in wheat under water deficit conditions. The study comprised of two phases; during the first phase, ten local wheat (Triticum aestivum L.) genotypes were evaluated for their response to PEG-6000 induced osmotic stress. One drought tolerant (Bhakkar-2002) and sensitive (Shafaq-2006) genotype selected from screening experiments were used in the second phase to determine the individual and combined effects of N, P and K foliar spray on physiological mechanisms in wheat under drought stress. The results revealed that limited water supply significantly reduced germination, growth and uptake of N, P and K. Supplemental foliar fertilisation of these macronutrients alone or in different combinations significantly improved the water relations, gas exchange characteristics and nutrient contents in both the genotypes. Bhakkar-2002 maintained higher turgor, net CO/sub 2/ assimilation rate (Pn), transpiration rate (E), stomatal conductance (gs) and accumulated more N, P and K in shoot than Shafaq-2006. The foliar spray of NPK in combination was effective in improving wheat growth under both well-watered and water-deficit conditions. (author)

  10. Diagnosing foliar nutrient dynamics of Eucalyptus grandis in ...

    African Journals Online (AJOL)

    Fertilisation is one of the most cost-effective methods of increasing and maintaining the productivity of Eucalyptus grandis plantations in South Africa. This silvicultural practice can be optimised by using the foliar nutrient ratios measured in plants at maximum growth as a guideline for fertiliser application. The foliar nutrient ...

  11. Control of powdery mildew ( Leveillula taurica ) on tomato by foliar ...

    African Journals Online (AJOL)

    A foliar application of soluble silicon (liquid potassium silicate) was tested for the control of powdery mildew of tomato for 2 years in the field conditions on susceptible cultivar Alida F1. Powdery mildew in field-grown staked tomato, caused by Leveillula taurica was significantly controlled by a foliar spray of either K2SiO3 or ...

  12. Foliar application of macro- and micronutrients on the yield and ...

    African Journals Online (AJOL)

    The quality and flower yield of roses are directly dependent on the balanced application of macro and micronutrients. In the present study, foliar application of macro- and micronutrients was done after every 15 days when new emerging leaves had sprouted after pruning. The results reveal that plants treated with foliar ...

  13. Cryopreserving turkey semen in straws and nitrogen vapour using DMSO or DMA: effects of cryoprotectant concentration, freezing rate and thawing rate on post-thaw semen quality.

    Science.gov (United States)

    Iaffaldano, N; Di Iorio, M; Miranda, M; Zaniboni, L; Manchisi, A; Cerolini, S

    2016-04-01

    1. This study was designed to identify a suitable protocol for freezing turkey semen in straws exposed to nitrogen vapour by examining the effects of dimethylacetamide (DMA) or dimethylsulfoxide (DMSO) as cryoprotectant (CPA), CPA concentration, freezing rate and thawing rate on in vitro post-thaw semen quality. 2. Pooled semen samples were diluted 1:1 (v:v) with a freezing extender composed of Tselutin diluent containing DMA or DMSO to give final concentrations of 8% or 18% DMA and 4% or 10% DMSO. The semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen (LN2) surface (1, 5 and 10 cm) for 10 min. Semen samples were thawed at 4°C for 5 min or at 50°C for 10 s. After thawing, sperm motility, viability and osmotic tolerance were determined. 3. Cryosurvival of turkey sperm was affected by DMSO concentration. Freezing rate affected the motility of sperm cryopreserved using both CPAs, while thawing rates showed an effect on the motility of sperm cryopreserved using DMA and on the viability of sperm cryopreserved using DMSO. Significant interactions between freezing rate × thawing rate on sperm viability in the DMA protocol were found. 4. The most effective freezing protocol was the use of 18% DMA or 10% DMSO with freezing 10 cm above the LN2 surface and a thawing temperature of 50°C. An efficient protocol for turkey semen would improve prospects for sperm cryobanks and the commercial use of frozen turkey semen.

  14. Radioprotective properties of some heterocyclic nitrogenous compounds against changes in hemoglobin concentration and hematocrit value in x-irradiated mice

    International Nuclear Information System (INIS)

    Rousdhy, H.; Pierotti, T.; Polverelli, M.

    1969-01-01

    Radioprotective properties of imidazole and benzimidazole have been proved in previous works. In this study, authors try to demonstrate radioprotective action of these compounds in comparison with cysteamine upon the hematopoietic system after lethal X-irradiation. Results show: no drastic variations of hematologic constants (hemoglobin concentration and hematocrit value) after intraperitoneal injection of radioprotective compounds apart certain apparent reactions with the heterocyclic compounds; the better radioprotective action of benzimidazole. Twenty five days after irradiation, hemoglobin concentration and hematocrit of radio protected mice return to normal values. (author) [fr

  15. Summertime state-level source-receptor relationships between nitrogen oxides emissions and surface ozone concentrations over the continental United States.

    Science.gov (United States)

    Tong, Daniel Q; Mauzerall, Denise L

    2008-11-01

    Interstate transport of ozone (O3) and its precursors can contribute substantially to state-level surface o3 concentrations, making it difficult for some states to meet the National Ambient Air Quality Standards (NAAQS) for O3 by limiting only their own emissions. We analyze the effect of interstate transport on surface O3 in each continental U.S. state in July 1996 using the community multiscale air quality (CMAQ) model. By examining the difference between a baseline simulation and perturbation simulations in which each state's nitrogen oxides (NOx) emissions are removed, we establish for the first time a summertime source-receptor matrix for all 48 continental states. We find that for 16 (20) states at least one neighboring state's NOx emissions are responsible for a larger increase in monthly mean peak 8 h (all-hour) O3 concentrations than the state's own emissions. For over 80% of the contiguous states, interstate transport is more importantthan local emissions for summertime peak O3 concentrations. Our source-receptor matrices indicate that the geographic range of the clean air interstate rule (CAIR) was sufficient to address interstate transport of O3 in most of the states included in the program. However, the exclusion of Texas, which has particularly large NOx emissions, from the CAIR O3 program left emission sources uncontrolled that contribute more than 1 ppbv to the July mean of peak 8 h O3 concentrations in over a dozen states.

  16. Impact of salinity on organic matter and nitrogen removal from a municipal wastewater RO concentrate using biologically activated carbon coupled with UV/H2O2.

    Science.gov (United States)

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A; Shahsavari, Esmaeil; Ball, Andrew S

    2016-05-01

    The concentrate streams generated from reverse osmosis (RO)-based municipal wastewater reclamation processes contain organic substances and nutrients at elevated concentrations, posing environmental and health risks on their disposal to confined receiving environments such as bays. The impact of salinity (TDS at 7, 10 and 16 g/L) of a RO concentrate (ROC) on the treatment efficiency of a biological activated carbon (BAC) system after pre-oxidation with UV/H2O2 was characterised in terms of removal of organic matter and nitrogen species, and the bacterial communities. Organic matter removal was comparable for the ROC over the tested salinity range, with 45-49% of DOC and 70-74% of UVA254 removed by the combined treatment. However, removal in total nitrogen (TN) was considerably higher for the ROC at the high salinity (TDS ∼ 16 mg/L) compared with the low (∼7 g/L) and medium salinity (∼10 g/L). Effective nitrification with high ammonium removal (>90%) was achieved at all salinity levels, whereas greater denitrification (39%) was obtained at high salinity than low (23%) and medium salinity (27%) which might suggest that the bacterial communities contributing to the greater denitrification were more halotolerant. Microbiological characterisation using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and culture based techniques showed that diversified bacterial communities were present in the BAC system as evident from different 16S rDNA. The major bacterial groups residing on the BAC media belonged to Bacillus (Firmicutes), Pseudomonas (γ-Proteobacteria), and Rhodococcus (Actinobacteria) for all salinity levels, confirming that these microbial communities could be responsible for carbon and nitrogen removal at the different salinity levels. This has implications in understanding the effectiveness and robustness of the BAC system over the salinity range of the ROC and so would be useful for optimising the treatment efficiency of

  17. Nitrogen dioxide reducing ascorbic acid technologies in the ventilator circuit leads to uniform NO concentration during inspiration.

    Science.gov (United States)

    Pezone, Matthew J; Wakim, Matthew G; Denton, Ryan J; Gamero, Lucas G; Roscigno, Robert F; Gilbert, Richard J; Lovich, Mark A

    2016-08-31

    Conventional inhaled NO systems deliver NO by synchronized injection or continuous NO flow in the ventilator circuitry. Such methods can lead to variable concentrations during inspiration that may differ from desired dosing. NO concentrations in these systems are generally monitored through electrochemical methods that are too slow to capture this nuance and potential dosing error. A novel technology that reduces NO2 into NO via low-resistance ascorbic-acid cartridges just prior to inhalation has recently been described. The gas volume of these cartridges may enhance gas mixing and reduce dosing inconsistency throughout inhalation. The impact of the ascorbic-acid cartridge technology on NO concentration during inspiration was characterized through rapid chemiluminescence detection during volume control ventilation, pressure control ventilation, synchronized intermittent mandatory ventilation and continuous positive airway pressure using an in vitro lung model configured to simulate the complete uptake of NO. Two ascorbic acid cartridges in series provided uniform and consistent dosing during inspiration during all modes of ventilation. The use of one cartridge showed variable inspiratory concentration of NO at the largest tidal volumes, whereas the use of no ascorbic acid cartridge led to highly inconsistent NO inspiratory waveforms. The use of ascorbic acid cartridges also decreased breath-to-breath variation in SIMV and CPAP ventilation. The ascorbic-acid cartridges, which are designed to convert NO2 (either as substrate or resulting from NO oxidation during injection) into NO, also provide the benefit of minimizing the variation of inhaled NO concentration during inspiration. It is expected that the implementation of this method will lead to more consistent and predictable dosing. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Guirao, Lazaro [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)], E-mail: lamarin@um.es; Lloret, Javier; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)

    2008-04-01

    Two food webs from the Mar Menor coastal lagoon, differing in the distance from the desert-stream through which mining wastes were discharged, were examined by reference to essential (Zn and Cu) and non-essential (Pb and Cd) metal concentrations and stable isotopes content (C and N). The partial extraction technique applied, which reflects the availability of metals to organisms after sediment ingestion, showed higher bioavailable metal concentrations in sediments from the station influenced by the mining discharges, in agreement with the higher metal concentrations observed in organisms, which in many cases exceeded the regulatory limits established in Spanish legislation concerning seafood. Spatial differences in essential metal concentrations in the fauna suggest that several organisms are exposed to metal levels above their regulation capacity. Differences in isotopic composition were found between both food webs, the wadi-influenced station showing higher {delta}{sup 15}N values and lower {delta}{sup 13}C levels, due to the discharge of urban waste waters and by the entrance of freshwater and allochthonous marsh plants. The linear-regressions between trophic levels (as indicated by {delta}{sup 15}N) and the metal content indicated that biomagnification does not occur. In the case of invertebrates, since the 'handle strategy' of the species and the physiological requirements of the organisms, among other factors, determine the final concentration of a specific element, no clear relationships between trophic level and the metal content are to be expected. For their part, fish communities did not show clear patterns in the case of any of the analyzed metals, probably because most fish species have similar metal requirements, and because biological factors also intervened. Finally, since the study deals with metals, assumptions concerning trophic transfer factors calculation may not be suitable since the metal burden originates not only from the prey but

  19. FUSION OF OPTICAL DATA AND SAR DATA FOR THE ESTIMATION OF NITROGEN CONCENTRATION IN PEARL RIVER ESTUARY HONG KONG SEAS, CHINA

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-08-01

    Full Text Available The knowledge of nitrogen concentration in the ocean is fundamental for the study of oceanic biogeochemical processes. The objective of this research is to estimate total inorganic nitrogen (TIN by integrating optical parameters from HJ-1 CCD image and polarization parameters from RADARSAT-2 quad-polarization image. The situ data and HJ-1 CCD, RADARSAT-2 image were acquired from Pearl River Estuary Hong Kong Seas, China in August, 2010. The four sensitive parameters, reflectance of Band 4, NDSI (Normalized Difference Spectral Index, the backscattering coefficient of HV and VH were derived as input variables to assess the TIN. A multiple regression model was established between four input variables and TIN. The result showed that the fusion of optical data and SAR data was proved to be successful in estimating TIN in sea surface, with the correlation coefficient (R2 between measured TIN and predicated TIN of 0.774, and the root mean square error (RMSE of 0.063. The optical data in combination with SAR data is promising for detecting biochemical component in sea surface.

  20. Effects of elevated CO2 concentration and nitrogen supply on biomass and active carbon of freshwater marsh after two growing seasons in Sanjiang Plain, Northeast China.

    Science.gov (United States)

    Zhao, Guangying; Liu, Jingshuang; Wang, Yang; Dou, Jingxin; Dong, Xiaoyong

    2009-01-01

    An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m2) and CO2 levels (350 and 700 micromol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) > dissolved organic carbon (7.5%) > labile oxidable carbon (6.6%) > carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.

  1. Interactions between crop biomass and development of foliar diseases in winter wheat and the potential to graduate the fungicide dose according to crop biomass

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger; Jørgensen, Lise Nistrup

    2016-01-01

    Foliar pathogens such as Zymoseptoria tritici and Puccinia striiformis causing septoria leaf blotch and yellow rust respectively can cause serious yield reduction in winter wheat production, and control of the diseases often requires several fungicide applications during the growing season. Control...... and other foliar diseases in winter wheat was dependent on crop development and biomass level. If such a biomass dependent dose response was found it was further the purpose to evaluate the potential to optimize fungicide inputs in winter wheat crops applying a site-specific crop density dependent fungicide...... dose. The study was carried out investigating fungicide dose response controlling foliar diseases in winter wheat at three biomass densities obtained growing the crop at three nitrogen levels and using variable seed rates. Further the field experiments included three fungicide dose rates at each...

  2. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    Directory of Open Access Journals (Sweden)

    Elodie Nivelle

    Full Text Available The use of nitrogen (N fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+ or did not (N0 receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day, the highest dose of glyphosate (100FR negatively affected the alkaline phosphatase (AlP activity in soils without N fertilization history and decreased the cation exchange capacity (CEC in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3- and available phosphorus (PO43- regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH and AlP activities, respectively, while urease (URE activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD. By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates

  3. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-01-01

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275

  4. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  5. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  6. The mechanism of ion exchange and adsorption coexist on medium-low concentration ammonium-nitrogen removal by ion-exchange resin.

    Science.gov (United States)

    Yunnen, Chen; Xiaoyan, Luo; Changshi, Xiong; Liming, Liang

    2015-01-01

    In this study, the removal of medium-low concentration ammonium-nitrogen ([Formula: see text]) from waters and wastewaters on D113 resin was investigated with respect to pH, initial [Formula: see text] concentration, temperature and contact time. The equilibrium of [Formula: see text] on D113 resin reached in 20-30 min. The process of [Formula: see text] removal by D113 resin fitted Langmuir isotherm well. The pseudo second-order kinetic and intra-particle diffusion models were used to investigate the kinetic data of [Formula: see text] on D113 resin. The desorption solution can be returned to production after pretreatment. The mechanism of removal of [Formula: see text] by D113 resin was coexistence of adsorption and cation exchange. When the dosage of D113 resin was 5 g L(-1), pH 6, contact 30 min at room temperature, initial [Formula: see text] concentration being 116 mg L(-1) in rare earth metallurgical wastewater was reduced to 13 mg L(-1) after adsorption treatment.

  7. Comparison of atmospheric concentrations of sulphur and nitrogen compounds, chloride and base cations at Ahtari and Hyytiala, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T. [Finnish Meteorological Institute, Helsinki (Finland)

    2012-11-01

    Seven-year (2003-2009) time series of atmospheric SO{sub 2}, SO{sub 4}{sup 2-}, NO{sub 3}-, NH{sub 4}{sup +} and Cl{sup -} concentrations as well as four-year time series of atmospheric Na{sup +}, K{sup +}, Ca{sup 2+} and Mg{sup 2+} concentrations from Ahtari and Hyytiala background stations in southern Finland, located within 85 km of each other were compared. At Ahtari the air sampler was located in a clearing within a young forest, while at Hyytiala it was within dense forest stands. Pearson's correlations between the time series were very strong (r{sub P} {>=} 0.9) for SO{sub 2}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +}, Cl{sup -} and Ca{sup 2+}, strong (r{sub P} > 0.8) for Na{sup +} and Mg{sup 2+} and week (r{sub P} = 0.65) for K{sup +}. The concentrations recorded at Hyytiala were on average 0.8-1.0 times those at Ahtari, although for K{sup +} and Ca{sup 2+} the ratios were higher. The GLS-ARMA method used takes into account the seasonal behaviour and serial correlation in the air quality time series, which revealed similar seasonal and temporal behaviour for S and N compounds and Cl- at both stations. As a result of the dense seasonalization of the time series, the part of the data heavily influenced by local agricultural sources could be identified. This enables elimination of the minimal part of the data affected and the use of the remaining data for further studies on a more regional level. (orig.)

  8. Concentration verification of ethanol/nitrogen compressed gas cylinders prior to use for periodic determinations of accuracy in California.

    Science.gov (United States)

    Matthias, D J; Harvey, D C; DeFraga, D E

    2001-04-01

    A method that uses compressed gas ethanol breath standard (EBS) cylinders to perform periodic determinations of accuracy on evidential breath alcohol instruments in California was developed. To use EBS cylinders, the California State Department of Health Services required verification of the ethanol content of the EBS cylinders using an infrared method. The infrared method developed employs a modified Alcotest 7110 MK III-C manufactured by National Draeger, Inc. that functions at the 9.5-mm wavelength of the infrared spectrum. Criteria and methodology for verifying EBS cylinder ethanol concentrations are described.

  9. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea.

    Science.gov (United States)

    Kim, Sun-Young; Song, Insang

    2017-07-01

    The limited spatial coverage of the air pollution data available from regulatory air quality monitoring networks hampers national-scale epidemiological studies of air pollution. The present study aimed to develop a national-scale exposure prediction model for estimating annual average concentrations of PM 10 and NO 2 at residences in South Korea using regulatory monitoring data for 2010. Using hourly measurements of PM 10 and NO 2 at 277 regulatory monitoring sites, we calculated the annual average concentrations at each site. We also computed 322 geographic variables in order to represent plausible local and regional pollution sources. Using these data, we developed universal kriging models, including three summary predictors estimated by partial least squares (PLS). The model performance was evaluated with fivefold cross-validation. In sensitivity analyses, we compared our approach with two alternative approaches, which added regional interactions and replaced the PLS predictors with up to ten selected variables. Finally, we predicted the annual average concentrations of PM 10 and NO 2 at 83,463 centroids of residential census output areas in South Korea to investigate the population exposure to these pollutants and to compare the exposure levels between monitored and unmonitored areas. The means of the annual average concentrations of PM 10 and NO 2 for 2010, across regulatory monitoring sites in South Korea, were 51.63 μg/m3 (SD = 8.58) and 25.64 ppb (11.05), respectively. The universal kriging exposure prediction models yielded cross-validated R 2 s of 0.45 and 0.82 for PM 10 and NO 2 , respectively. Compared to our model, the two alternative approaches gave consistent or worse performances. Population exposure levels in unmonitored areas were lower than in monitored areas. This is the first study that focused on developing a national-scale point wise exposure prediction approach in South Korea, which will allow national exposure assessments and

  10. Plant phenology, growth and nutritive quality of Briza maxima: Responses induced by enhanced ozone atmospheric levels and nitrogen enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, J., E-mail: j.sanz@ciemat.e [Ecotoxicity of Atmospheric Pollutants, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Bermejo, V., E-mail: victoria.bermejo@ciemat.e [Ecotoxicity of Atmospheric Pollutants, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Muntifering, R., E-mail: muntirb@auburn.ed [Department of Animal Sciences, Auburn University, Auburn, AL 36849 (United States); Gonzalez-Fernandez, I., E-mail: ignacio.gonzalez@ciemat.e [Ecotoxicity of Atmospheric Pollutants, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Gimeno, B.S., E-mail: benjamin.gimeno@ciemat.e [Ecotoxicity of Atmospheric Pollutants, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Elvira, S., E-mail: susana.elvira@ciemat.e [Ecotoxicity of Atmospheric Pollutants, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Alonso, R., E-mail: rocio.alonso@ciemat.e [Ecotoxicity of Atmospheric Pollutants, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain)

    2011-02-15

    An assessment of the effects of tropospheric ozone (O{sub 3}) levels and substrate nitrogen (N) supplementation, singly and in combination, on phenology, growth and nutritive quality of Briza maxima was carried out. Two serial experiments were developed in Open-Top Chambers (OTC) using three O{sub 3} and three N levels. Increased O{sub 3} exposure did not affect the biomass-related parameters, but enhanced senescence, increased fiber foliar content (especially lignin concentration) and reduced plant life span; these effects were related to senescence acceleration induced by the pollutant. Added N increased plant biomass production and improved nutritive quality by decreasing foliar fiber concentration. Interestingly, the effects of N supplementation depended on meteorological conditions and plant physiological activity. N supplementation counteracted the O{sub 3}-induced senescence but did not modifiy the effects on nutritive quality. Nutritive quality and phenology should be considered in new definitions of the O{sub 3} limits for the protection of herbaceous vegetation. - Research highlights: Forage quality (foliar protein and fiber content) and phenology are more O{sub 3}-sensitive than growth parameters in the Mediterranean annual grass Briza maxima. The effects of N supplementation depended on meteorological conditions and plant physiological activity. Increase in nitrogen supplementation counterbalanced the O{sub 3}-induced increase in senescence biomass. Nutritive quality and phenology should be considered in new definitions of the O{sub 3} limits for the protection of natural herbaceous vegetation. - Forage quality and phenology are more O{sub 3}-sensitive than growth parameters in the Mediterranean annual grass Briza maxima.

  11. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in marine zooplankton

    Energy Technology Data Exchange (ETDEWEB)

    Pomerleau, Corinne, E-mail: corinne.pomerleau@umanitoba.ca [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Greenland Institute of Natural Resources, Kivioq 2, Nuuk 3900, Greenland (Denmark); Stern, Gary A.; Pućko, Monika [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Foster, Karen L. [Foster Environmental, Peterborough, ON K9J 8L2 (Canada); Macdonald, Robie W. [Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2 (Canada); Fortier, Louis [Québec-Océan, Département de Biologie, Université Laval, Québec, QC G1V 0A6 (Canada)

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as “keystone” species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ{sup 15}N and lower δ{sup 13}C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. - Highlights: • Assessment of Pan-Arctic variability in zooplankton Hg concentrations • Increased exposure to Hg in the marine food chain of the southern Beaufort Sea • Zooplankton plays a central role in the Hg pathway within Arctic marine food webs.

  12. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    Science.gov (United States)

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  13. Morfoanatomia foliar de Palicourea longepedunculata Gardiner (Rubiaceae

    Directory of Open Access Journals (Sweden)

    Pereira Zefa Valdivina

    2003-01-01

    Full Text Available O gênero Palicourea - tribo Psychotrieae - compreende cerca de 200 espécies e destaca-se por apresentar alcalóides indólicos muitas vezes tóxicos para bovinos. O objetivo do presente trabalho foi contribuir para o conhecimento da família Rubiaceae, enfatizando os aspectos da morfoanatomia foliar de Palicourea longepedunculata. O material foi coletado na Reserva Florestal Mata do Paraíso (RFMP, município de Viçosa, Minas Gerais, e amostras-testemunha foram depositadas no herbário VIC. Folhas provenientes do quarto nó foram fixadas em FAA50 e conservadas em etanol 70%. Seções transversais e longitudinais do pecíolo e da lâmina foliar foram obtidas em micrótomo de mesa para montagem de lâminas permanentes, conforme metodologia usual. As folhas são simples, opostas, inteiras, ovais lanceoladas, dorsiventrais e hipoestomáticas. A epiderme do pecíolo e da lâmina foliar é uniestratificada, papilosa na face adaxial da folha e recoberta por cutícula delgada. Os estômatos são paracíticos e ocorrem no mesmo nível das demais células epidérmicas. O mesofilo é constituído por uma camada de parênquima paliçádico e de várias de parênquima lacunoso. Na face adaxial e abaxial da nervura mediana e no bordo da lâmina observa-se colênquima subepidérmico. Um feixe vascular do tipo colateral, em forma de "U", distribui-se ao longo do pecíolo e da nervura mediana, acompanhado, invariavelmente, por dois feixes menores localizados lateralmente. No córtex do pecíolo e da nervura mediana observa-se aerênquima. As características anatômicas seguem o padrão descrito para as Rubiaceae, e algumas delas são interpretadas como adaptações a ambientes úmidos e sombreados no qual a espécie ocorre.

  14. Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris.

    Science.gov (United States)

    Ding, Yongzhen; Wang, Yongjiu; Zheng, Xiangqun; Cheng, Weimin; Shi, Rongguang; Feng, Renwei

    2017-08-01

    This study was conducted to investigate the possibility of using a combined technology to synchronously reduce As and Cd accumulation in the edible parts of Brassica campestris. The results showed that a foliar application of selenite (Se) and silicon (Si) combined with soil ameliorants (including Ca-Mg-P fertilizer, sodium silicate and red mud) showed limited effects on the growth of B. campestris. The As concentration in the leaves of B. campestris in all treatments was below the Chinese safety standard. When sodium silicate and Ca-Mg-P fertilizer were added to the soil, the additional foliar application of Se and Si could in some cases help further reduce the concentrations of As and Cd in the leaves of B. campestris. However, when red mud was applied to the soil, the foliar application of Se and Si enhanced the Cd concentration in the leaves of B. campestris. In most cases, high levels of soil ameliorants plus foliar application of Se and Si significantly enhanced the As concentrations in both the soil solution and the roots of B. campestris but reduced the soil solution Cd concentration and the leaf As concentration. Most of the treatments reduced the thiobarbituric acid reactive substances (TBARS) concentration in the leaves of B. campestris, and the foliar application of Se and Si helped the soil ameliorants alleviate the oxidative stress resulting from As and Cd exposure. In this study, several treatments significantly increased the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). However, the enzymes peroxidase (POD) and catalase (CAT) were not induced by most treatments. In summary, the combined treatment of 1gkg -1 Ca-Mg-P fertilizer plus foliar spraying 2mmolL -1 sodium selenite was most effective in reducing the Cd concentration and a rather strong ability to reduce the As concentration and trigger the activities of SOD and APX in the leaves of B. campestris. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Physiological characteristics of Plantago major under SO2exposure as affected by foliar iron spray.

    Science.gov (United States)

    Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein

    2017-08-01

    Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.

  16. Effects of different levels of Farmax® nano fertilizer and foliar spraying time on growth and effective substance of German chamomile (Matricaria recutita

    Directory of Open Access Journals (Sweden)

    S. Mohammadi

    2015-05-01

    Full Text Available In this research, the effect of foliar spraying times and different levels of Farmax® nano fertilizer on morphological characteristic and dry and fresh flower yield, essential oil and chamazulene percentage of chamomile (Matricaria recutita L. CV. Bodegold was studied. The experiment was factorial in the bacic of randomized complete blocked design (RCBD with eight treatment and four replications. The treatments included four amounts of nano fertilizer (0, 1, 3 and 5ml\\l as first factor and two foliar spraying times (tiller stage and 2 after weeks as second factor. The results indicated that foliar spraying time had a significant effect on plant height, numbers of tiller, total fresh weight plant and dry flower yield. Different of levels Farmax® nano fertilizer had significant effect on majority characteristic. The interaction effect had significant effect on height plant and root and dry flower yield. So, maximum height plant (103.5cm and dry flower yield (174.38g/m2 were obtained at 2 foliar spraying times and 3ml/l nano fertilizer concentration and maximum height root was obtained at one foliar spraying times and 5 ml/l nano fertilizer concentration, but 2 foliar spraying times and 3ml/l nano fertilizer concentration treatment to be increased on the most of the characteristic especially essential oil percent (0.753 weight percent but do not have effect significant. The total results showed that 2 foliar sparing times and 3 ml/l nano fertilizer concentration was the best of treatment.

  17. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows.

    Science.gov (United States)

    Lee, C; Hristov, A N; Heyler, K S; Cassidy, T W; Long, M; Corl, B A; Karnati, S K R

    2011-11-01

    The objective of this study was to investigate the effect of metabolizable protein (MP) deficiency and coconut oil supplementation on N utilization and production in lactating dairy cows. The hypothesis of the study was that a decrease in ruminal protozoal counts with coconut oil would increase microbial protein synthesis in the rumen, thus compensating for potential MP deficiency. The experiment was conducted for 10 wk with 36 cows (13 primiparous and 23 multiparous), including 6 ruminally cannulated cows. The experimental period, 6 wk, was preceded by 2-wk adaptation and 2-wk covariate periods. Cows were blocked by parity, days in milk, milk yield, and rumen cannulation and randomly assigned to one of the following diets: a diet with a positive MP balance (+44 g/d) and 16.7% dietary crude protein (CP) concentration (AMP); a diet deficient in MP (-156 g/d) and 14.8% CP concentration (DMP); or DMP supplemented with approximately 500 g of coconut oil/head per day (DMPCO). Ruminal ammonia tended to be greater and plasma urea N (20.1, 12.8, and 13.1 mg/dL, for AMP, DMP, and DMPCO diets, respectively) and milk urea N (12.5, 8.3, and 9.5mg/dL, respectively) were greater for AMP compared with DMP and DMPCO. The DMPCO diet decreased total protozoa counts (by 60%) compared with DMP, but had no effect on the methanogens profile in the rumen. Total tract apparent digestibility of dry matter and CP was decreased by DMP compared with AMP. Fiber digestibility was lower for both DMP and DMPCO compared with AMP. Urinary N excretion was decreased (by 37%) by both DMP and DMPCO compared with AMP. The DMP and DMPCO diets resulted in greater milk N efficiency compared with AMP (32.0 and 35.1 vs. 27.6%, respectively). Milk yield was decreased by both DMP and DMPCO compared with AMP (36.2, 34.4, and 39.3 kg/d, respectively) and coconut oil supplementation suppressed feed intake and caused milk fat depression. Coconut oil supplementation decreased short-chain fatty acid (C4:0, C6:0, and

  18. Climate control on sulphate and nitrate concentrations in alpine streams of Northern Italy along a nitrogen saturation gradient

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2008-03-01

    Full Text Available The role of meteorology, hydrology and atmospheric deposition on the temporal pattern of SO4 and NO3 concentrations was investigated for three streams draining alpine catchments in Northern Italy.

    The study sites lie on a gradient of atmospheric fluxes of SO4 and NO3 (from about 50 to 80 meq m−2 y−1, and from 40 to 90 meq m−2 y−1, respectively. As a consequence of the increasing N input, the three catchments are also representative of aggrading levels of N saturation. Different methods of statistical analysis were applied to monthly data for the period 1997–2005 to identify which variables (temperature, precipitation, hydrology, SO4 and NO3 deposition were the main predictors of water chemistry and its change in time. Hydrological changes and snow cover proved to be the main confounding factors in the response to atmospheric deposition in the River Masino catchment. Its particular characteristics (small catchment area, rapid flushing during runoff and thin soil cover meant that this site responded without a significant delay to SO4 deposition decrease. It also showed a clear seasonal pattern of NO3 concentration, in response to hydrology and biological uptake in the growing season.

    The selected driving variables failed to model the water chemistry at the other study sites. Nevertheless, temperature, especially extreme values, turned out to be important in both SO4 and NO3 export from the catchments. This result might be largely explained by the effect of warm periods on temperature-dependent processes such as mineralization, nitrification and S desorption.

    Our findings suggest that surface waters in the alpine area will be extremely sensitive to a climate warming scenario: higher temperatures and increasing frequency of drought could exacerbate the effects

  19. Relationships between El Niño-Southern Oscillation and nitrogen concentrations in a Western Mediterranean river

    Science.gov (United States)

    Sigro, J.; Vegas-Vilarrúbia, T.; Giralt, S.; Brunet, M.

    2010-05-01

    El Niño-Southern Oscillation (ENSO) is the dominating mode of interannual climate variability at global scale (Brönnimann, 2007). ENSO extreme negative and positive phases can significantly influence on climatic conditions in Europe, affecting precipitation mainly in spring and autumn (Mariotti et al., 2002; Moron and Ward 1998), but also during winter (Brönnimann et al., 2007; Pozo-Vázquez et al., 2005). Over the Iberian Peninsula (IP), ENSO teleconnections can modulate the frequency and intensity of precipitation (Brunet and López, 1991; Rodó et al., 1997; Rodríguez-Puebla et al., 1998), with a time-lag between the ENSO and its effect on precipitation ranging from 3 to 21 months (Rodó et al., 1997). Large areas of the IP are also affected by severe droughts during the final months of La Niña years and the initial months of the following year, while other areas are affected by dry conditions during the first months of El Niño years, as well as during the summers and autumns of the following year (Muñoz-Diaz and Rodrigo, 2005; Vicente-Serrano, 2005). Here we explore the possibility that nitrate concentration in the Llobregat River (North-eastern Spain) is influenced by ENSO events, which are modulating precipitation variability over the Western Mediterranean basin. The Southern Oscillation Index during La Niña years, the self-calibrating Palmer Hydrological Drought Index (van der Schrier et al., 2006; Wells et al., 2004), and nitrate concentrations were significantly correlated on a seasonal basis in the Llobregat River, with both drought and nitrate concentrations increasing during positive ENSO phases. Our hypothesis is that initially unusual within-stream nitrate increases would take place, owing to higher-than-normal evaporation from the river. During drought periods, the hydrological deficit favours nitrate accumulation in the catchment's soils and, thus, a decline in allochthonous inputs to the river water would be expectable. Besides, on the late

  20. Cottonwood Response to Nitrogen Related To Plantation Age and Site

    Science.gov (United States)

    B.G. Blackmon

    1977-01-01

    When applied at plantation age 4,336 kg N/ha increased diameter growth of cottonwood on Sharkey clay by 33 percent over unfertilized controls. Fertilizing at ages 2 and 3 resulted in no response, nor was there any benefit from applying nitrogen fertilizer to cottonwood on Commerce silt loam. On both sites, foliar N levels were increased by fertilization regardless of...

  1. Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO2 concentrations in a northern bog

    Directory of Open Access Journals (Sweden)

    C. Blodau

    2011-03-01

    Full Text Available Ombrotrophic peatlands depend on airborne nitrogen (N, whose deposition has increased in the past and lead to disappearance of mosses and increased shrub biomass in fertilization experiments. The response of soil water content, temperature, and carbon gas concentrations to increased nutrient loading is poorly known and we thus determined these data at the long-term N fertilization site Mer Bleue bog, Ontario, during a two month period in summer. Soil temperatures decreased with NPK addition in shallow peat soil primarily during the daytime (t-test, p p RMANOVA, which also suggested an influence of volumetric water contents as co-variable on soil temperature and vice versa (p RMANOVA (p 2 concentrations in the near-surface peat (t-test, p < 0.05 were lower with increasing N load, suggesting more rapid soil gas exchange. The results thus suggest that changes in bog ecosystem structure with N deposition have significant ramifications for physical parameters that in turn control biogeochemical processes.

  2. Canopy tree species drive local heterogeneity in soil nitrogen availability in a lowland tropical forest

    Science.gov (United States)

    Osborne, B. B.; Nasto, M.; Asner, G. P.; Balzotti, C.; Cleveland, C. C.; Taylor, P.; Townsend, A. R.; Porder, S.

    2016-12-01

    The high phylogenetic and functional diversity of tree species in lowland tropical forests make field-based investigations of organismal influences on soil nutrient cycling challenging. Here, we used remotely-detected canopy nitrogen (N) data from the Carnegie Airborne Observatory to identify and characterize ¼ ha plots of a mature forest with either high or low canopy N on the Osa Peninsula in Costa Rica. Specifically we were interested in mechanisms by which foliar N might influence soil N, or the reverse. A non-dimensional scaling analysis suggested that high and low canopy N plots differ in their emergent (≥40 cm DBH) tree communities, though there were few putative N fixers in any of the plots. We found litterfall mass was similar beneath all canopies. However, mean DOC solubility of litter was 0.40% of dry biomass in low canopy N plots compared to 0.26% in high N plots. Additionally, litter leachate C:N was twice as high in litter from the low canopy N plots (61±1.4) compared with litter from the high N plots (30±1.4). We found strong positive correlations between canopy N and concentrations of soil KCl-extractable soil NO3- and net nitrification and net N mineralization rates (N=5; P<0.0001 in all cases). Under high canopy N, mean NO3-N concentrations were roughly an order of magnitude higher than beneath low N canopies (2.7±0.39 and 0.19±0.05, respectively). We hypothesize that differences in litter chemistry lead to differences in leachate quality that promote high soil N under canopies with high foliar N. Our findings suggest that remote sensing of foliar characteristics may offer an effective way to study spatial patterns in soil biogeochemistry in diverse tropical forests.

  3. Effect of Foliar Application of Chitosan on Growth and Biochemical Characteristics of Safflower (Carthamus tinctorius L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    batool mahdavi

    2014-09-01

    Full Text Available In order to study the effects of water deficit stress and foliar application of chitosan in safflower (Carthamus tinctorius L., a pot experiment was conducted in 2009. Experimental design was a randomized complete block in factorial arrangement with three replications. Experimental factors were water deficit levels (unstressed (control and 70% available water depletion from soil (water deficit stress, chitosan concentrations (0, 0.05, 0.1%, all dissolved in 1% acetic acid along with an additional treatment of distilled water and foliar application times (before and during stem elongation. The results showed that water deficit stress reduced plant height, leaf area, shoot and root dry weight, root height and volume. Whereas, foliar application of chitosan increased mentioned traits. In addition, water deficit stress decreased chlorophyll fluorescence, chlorophyll concentration and relative water content. Carotenoid, proline and malondialdehyde (MDA content were increased in response to stress. Foliar application of chitosan increased chlorophyll fluorescence, relative water content (68.77% and chlorophyll b in the water deficit stressed plants, whereas decreased MDA content. The results of the present study indicate that application of chitosan can reduce the harmful effects of water deficit and improve plant growth.

  4. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    Energy Technology Data Exchange (ETDEWEB)

    Norby, Richard J [ORNL; Warren, Jeffrey [ORNL; Iversen, Colleen M [ORNL; Medlyn, Belinda [Macquarie University; McMurtrie, Ross [University of New South Wales; Hoffman, Forrest M [ORNL

    2008-01-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  5. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    Science.gov (United States)

    Norby, R. J.; Warren, J. M.; Iversen, C. M.; Medlyn, B. E.; McMurtrie, R. E.; Hoffman, F. M.

    2008-12-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  6. Nitrogen oxides emission of mobile equipment in the port of Rotterdam. Consequences for nitrogen dioxide concentration, nitrogen deposition and a deduction of emission factors for container and bulk businesses; Stikstofoxidenemissies van mobiele werktuigen in de Rotterdamse haven. Gevolgen voor stikstofdioxide concentratie, stikstofdepositie, en een afleiding van emissiefactoren voor container- en droge bulk bedrijven

    Energy Technology Data Exchange (ETDEWEB)

    Okkerse, W.J.H.; De Gier, C.W.

    2011-08-15

    In container terminals, dry bulk businesses and construction sites in the port of Rotterdam, the Netherlands, large masses of goods are transported by means of diesel-fuelled equipment every year. The combustion of diesel in this equipment results in emissions of nitrogen oxides (NOx) and particulate matter. This study has calculated the amounts of NOx emissions of the involved businesses based on detailed data on the composition of the equipment fleet of six representative storage and transshipment businesses. The resulting contribution to nitrogen oxide concentration at ground level and the nitrogen deposition have been calculated with the OPS model (Operational Priority Substances) [Dutch] Bij containerterminals, droge bulk bedrijven en bouwplaatsen in de Rotterdamse haven wordt jaarlijks een grote massa aan goederen getransporteerd met behulp van dieselaangedreven apparatuur. De verbranding van diesel in deze apparatuur zorgt voor de emissie van stikstofoxiden (NOx) en stof. In dit onderzoek zijn de NOx emissies van de betrokken bedrijven berekend op basis van gedetailleerde gegevens over de samenstelling van het werktuigenpark van zes representatieve op- en overslagbedrijven. De resulterende bijdrage aan de stikstofdioxide (NO2) concentratie op leefniveau en de stikstofdepositie is berekend met het OPS-model (Operationele Prioritaire Stoffen)

  7. The Relative Concentrations of Nutrients and Toxins Dictate Feeding by a Vertebrate Browser, the Greater Glider Petauroides volans.

    Directory of Open Access Journals (Sweden)

    Lora M Jensen

    Full Text Available Although ecologists believe that vertebrate herbivores must select a diet that allows them to meet their nutritional requirements, while avoiding intoxication by plant secondary metabolites, this is remarkably difficult to show. A long series of field and laboratory experiments means that we have a good understanding of the factors that affect feeding by leaf-eating marsupials. This knowledge and the natural intraspecific variation in Eucalyptus chemistry allowed us to test the hypothesis that the feeding decisions of greater gliders (Petauroides volans depend on the concentrations of available nitrogen (incorporating total nitrogen, dry matter digestibility and tannins and of formylated phloroglucinol compounds (FPCs, potent antifeedants unique to Eucalyptus. We offered captive greater gliders foliage from two species of Eucalyptus, E. viminalis and E. melliodora, which vary naturally in their concentrations of available nitrogen and FPCs. We then measured the amount of foliage eaten by each glider and compared this with our laboratory analyses of foliar total nitrogen, available nitrogen and FPCs for each tree offered. The concentration of FPCs was the main factor that determined how much gliders ate of E. viminalis and E. melliodora, but in gliders fed E. viminalis the concentration of available nitrogen was also a significant influence. In other words, greater gliders ate E. viminalis leaves with a particular combination of FPCs and available nitrogen that maximised the nutritional gain but minimised their ingestion of toxins. In contrast, the concentration of total nitrogen was not correlated with feeding. This study is among the first to empirically show that browsing herbivores select a diet that balances the potential gain (available nutrients and the potential costs (plant secondary chemicals of eating leaves. The major implication of the study is that it is essential to identify the limiting nutrients and relevant toxins in a system in

  8. Noise-resistant spectral features for retrieving foliar chemical parameters

    Science.gov (United States)

    Foliar chemical constituents are important indicators for understanding vegetation growing status and ecosystem functionality. Provided the noncontact and nondestructive traits, the hyperspectral analysis is a superior and efficient method for deriving these parameters. In practical implementation o...

  9. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, Jozef, E-mail: jozkovacik@yahoo.com [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); Klejdus, Borivoj [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); Stork, Frantisek [Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, Manesova 23, 041 67 Kosice (Slovakia); Hedbavny, Josef [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Impact of foliar Cd, Ni and Cd + Ni application on Tillandsia albida was studied. Black-Right-Pointing-Pointer Cd caused visible damage and enhanced stress parameters in combined treatment. Black-Right-Pointing-Pointer Nitrogenous compounds were slightly affected but phenols were up- and down-regulated. Black-Right-Pointing-Pointer Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by any of treatments. Black-Right-Pointing-Pointer Total Cd or Ni reached ca. 0.04% and Ni was more absorbed than Cd. - Abstract: The impact of 2-month foliar application of cadmium, nickel and their combination (10 {mu}M) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd + Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd + Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd + Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 {mu}g g{sup -1} DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended.

  10. Effect of Rhizobium inoculation of seeds and foliar fertilization on productivity of Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2013-07-01

    Full Text Available Pea (Pisum sativum L. is the second most important grain legume crop in the world which has a wide array of uses for human food and fodder. One of the major factors that determines the use of field pea is the yield potential of cultivars. Presently, pre-sowing inoculation of pea seeds and foliar application of microelement fertilizers are prospective solutions and may be reasonable agrotechnical options. This research was undertaken because of the potentially high productivity of the 'afila' morphotype in good wheat complex soils. The aim of the study was to determine the effect of vaccination with Rhizobium and foliar micronutrient fertilization on yield of the afila pea variety. The research was based on a two-year (2009–2010 controlled field experiment, conducted in four replicates and carried out on the experimental field of the Bayer company located in Modzurów, Silesian region. experimental field soil was Umbrisol – slightly degraded chernozem, formed from loess. Nitragina inoculant, as a source of symbiotic bacteria, was applied before sowing seeds. Green area index (GAI of the canopy, photosynthetically active radiation (PAR, and normalized difference vegetation index (NDVI were determined at characteristic growth stages. The presented results of this study on symbiotic nitrogen fixation by leguminous plants show that the combined application of Nitragina and Photrel was the best combination for productivity. Remote measurements of the pea canopy indexes indicated the formation of the optimum leaf area which effectively used photosynthetically active radiation. The use of Nitragina as a donor of effective Rhizobium for pea plants resulted in slightly higher GAI values and the optimization of PAR and NDVI. It is not recommended to use foliar fertilizers or Nitragina separately due to the slowing of pea productivity.

  11. Temporal changes in nitrogen and phosphorus concentrations with comparisons to conservation practices and agricultural activities in the Lower Grand River, Missouri and Iowa, and selected watersheds, 1969–2015

    Science.gov (United States)

    Krempa, Heather M.; Flickinger, Allison K.

    2017-08-01

    This report presents the results of a cooperative study by the U.S. Geological Survey and Missouri Department of Natural Resources to estimate total nitrogen (TN) and total phosphorus (TP) concentrations at monitoring sites within and near the Lower Grand River hydrological unit. The primary objectives of the study were to quantify temporal changes in TN and TP concentrations and compare those concentrations to conservation practices and agricultural activities. Despite increases in funding during 2011–15 for conservation practices in the Lower Grand River from the Mississippi River Basin Healthy Watersheds Initiative, decreases in flow-normalized TN and TP concentrations during this time at the long-term Grand River site were less than at other long-term sites, which did not receive funding from the Mississippi River Basin Healthy Watersheds Initiative. The relative differences in the magnitude of flow-normalized TN and TP concentrations among long-term sites are directly related to the amount of agricultural land use within the watershed. Significant relations were determined between nitrogen from cattle manure and flow-normalized TN concentrations at selected long-term sites, indicating livestock manure may be a substantial source of nitrogen within the selected long-term site watersheds. Relations between flow-normalized TN and TP concentrations with Conservation Reserve Program acres and with nitrogen and phosphorus from commercial fertilizer indicate that changes in these factors alone did not have a substantial effect on stream TN and TP concentrations; other landscape activities, runoff, within-bank nutrients that are suspended during higher streamflows, or a combination of these have had a greater effect on stream TN and TP concentrations; or there is a lag time that is obscuring relations. Temporal changes in flow-adjusted TN and TP concentrations were not substantial at Lower Grand River Mississippi River Basin Healthy Watersheds Initiative sites

  12. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  13. Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries.

    Science.gov (United States)

    Canoura, Carolina; Kelly, Mary T; Ojeda, Hernan

    2018-02-15

    This study reports the effect of different doses of nitrogen applied to soil and/or leaves of Syrah and Chardonnay grapevines in the Languedoc-Roussillon (France) over two years. In 2011, nitrogen treatment involved both foliar urea sprayings and soil application at two different levels, with two controls - irrigated without nitrogen and no irrigation nor nitrogen. In 2012, the same grapevines received either soil or foliar nitrogen using the same controls. Results showed that foliar application increased the amino acid content to a greater extent than soil application, but that a combination of both was the most effective. For the first time, significantly elevated proline levels in response to drought were demonstrated for the grapevine. Increased contents of aromatic compounds and glycosylated precursors closely mirrored the applied nitrogen dose. Wines produced from N-fertilized Syrah grapes in 2011 showed a statistically significant effect of irrigation and fertilization on positive sensorial perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of urea foliar application and of ammonium sulphate and urea applied to the soil on yield and N utilization by beans (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    Muraoka, T.; Victoria, R.L.; Oliveira, J.P.; Boaretto, A.E.

    1984-01-01

    The effects of nitrogen applied to the soil (as ammonium sulphate and urea) and foliar application of urea supplementing or not the soil application, on bean yield and nitrogen utilization are studied in a cerrado soil. Labelled ammonium sulphate is applied at the rate of 20Kg N/ha at seeding or 15 or 25 days after seeding and 40 Kg N/ha at seeding or in two different applications. Labelled urea is applied at the rate of 20kg N/ha at seeding and 40 Kg N/ha splitted. Foliar application is done at 15,22, 29,36 and 45 days after seeding, with 2% urea solution labelled with 10% 15 N. (M.A.C.) [pt

  15. Assimilation of 15N-labelled urea nitrogen and ammonium nitrate nitrogen by plants in case of root and non-root fertilization

    International Nuclear Information System (INIS)

    Muravin, Eh.A.; Kozhemyachko, V.A.; Vernichenko, I.V.

    1974-01-01

    Assimilation of 15 N labeled urea and ammonium nitrate in root and foliar application by spring wheat and barley has been studied during 1970-1973 period in a series of vegetative experiments at the Department of Agrochemistry, Timiryazev Agricultural Academy, and at D.N. Pryanishnikov Experimental Agrochemical Station. Additional fertilizer nitrogen applied at later ontogenesis stages (flowering and milky ripeness) is utilized mostly for protein synthesis in developing grains, thus leading to a significant increase in the relative grain protein content. A transfer of a part of nitrogen from the main ortion of fertilizer at later stages of nitrition results, at the same time, in a lower yield. Nitrogen utilization degree of urea and ammonium nitrate, when introduced before sowing or at the flowering stage is similar but in the latter case, however, additional assimilation of soil nitrogen is lower. The assimilation rate of nitrogen in root application is the lower the later the fertilizer is applied. When ammonium nitrate is additionally applied as nutrition to barley at the milky ripeness stage, ammonia and nitrate nitrogen are assimilated at the same rate and to the same extent but ammonia nitrogen is more rapidly used for protein synthesis and the rate of its transfer to the developing grains is higher. The rate of nitrogen assimilation at plant is much higher in foliar than in root application. Wheat utilizes more urea nitrogen at the flowering stage when root application is used but at the milky ripeness stage foliar application is more effective

  16. Effect of crude protein concentration and sugar-beet pulp on nutrient digestibility, nitrogen excretion, intestinal fermentation and manure ammonia and odour emissions from finisher pigs.

    Science.gov (United States)

    Lynch, M B; O'Shea, C J; Sweeney, T; Callan, J J; O'Doherty, J V

    2008-03-01

    A 2 × 2 factorial experiment was conducted to investigate the interaction between high and low dietary crude protein (CP) (200 v. 150 g/kg) and sugar-beet pulp (SBP) (200 v. 0 g/kg) on nutrient digestibility, nitrogen (N) excretion, intestinal fermentation and manure ammonia and odour emissions from 24 boars (n = 6, 74.0 kg live weight). The diets were formulated to contain similar concentrations of digestible energy (13.6 MJ/kg) and lysine (10.0 g/kg). Pigs offered SBP-containing diets had a reduced (P excretion and the urine : faeces N ratio. Pigs offered the 200 g/kg CP SBP-based diet had reduced urine : faeces N ratio (P excretion (P 150 g/kg CP diets. Manure ammonia emissions were reduced by 33% from 0 to 240 h (P 150 g/kg reduced total N excretion (P 150 g/kg CP diet. In conclusion, pigs offered SBP-containing diets had a reduced manure ammonia emissions and increased odour emissions compared with diets containing no SBP. Pigs offered the 200 g/kg CP SBP-containing diet had a reduced urine : faeces N ratio and urinary N excretion compared with those offered the 200 g/kg CP diet containing no SBP.

  17. Evaluation of Artificial Neural Networks for Electrical Conductivity and Flow Rate-based Prediction of the Nitrate Nitrogen Concentration in the U-Tapao Canal, Hatyai, Thailand

    Directory of Open Access Journals (Sweden)

    Suvalee Chuvanich

    2017-07-01

    Full Text Available The aim of this study was to identify suitable artificial neural network (ANN models for the EC-based and flow rate-based prediction of the nitrate nitrogen (NO3-N concentration in the U-Tapao canal, located in the southern part of Thailand. Two types of four layer ANNs of the feed-forward back propagation (FFBP and cascade-forward back propagation (CFBP types were evaluated for this prediction. The selected inputs of the ANNs were EC and flow rate, which were collected daily from December 2014 to March 2015. Overall, the study found that the four layer FFBP with 2 neurons in the input layer, 20 neurons in the first hidden layer, 30 neurons in the second hidden layer, and a single neuron in the output layer with a tan-sigmoid transfer function was the optimal model. The FFBP model produced slightly more accurate results than the CFBP model. Linear regression analysis was used to predict NO3-N, which was compared with the results of the ANNs and the performance of the ANNs was better than that of the linear regression analysis. Therefore, the ANN approach proved to be suitable as an alternative to laboratory-based analysis for the prediction of NO3-N values in the U-Tapao canal.

  18. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  19. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  20. Foliar feeding of rootstocks of various cultivars of hazelnuts (Corylus maxima Mill. in the mother plantation for horizontal vegetative propagation

    Directory of Open Access Journals (Sweden)

    Н. О. Яремко

    2015-12-01

    Full Text Available Purpose. Determination of optimum dozes of foliar fee­ding for each cultivar that will provide the highest output of standard rootstocks. Methods. Field, analytical and statistical ones. Results. The author presents the results of study of the hazelnut plant foliar feeding in the mother plantation for vegetative propagation with applying different carba­mide concentration combined with 0.1% potassium sulfate (1.50.4 m in case of horizontal method of growing. Biometric indices of hazelnut layers were analyzed; the influence of each factor on their height and diameter was determined. The rootstocks output per 1 linear meter for each cultivar as well as optimum foliar feeding doze was defined (0.5% carbamide with 0.1% potassium sulfate. Conclusions. The highest output of standard rootstocks in the mother plantation for horizontal vegetative propagation was achieved when applying the foliar feeding with 0.5% carbamide combined with 0.1% potassium sulfate, particularly (thousand rootstocks per 1 ha for the cultivars: ‘Sviatkovyi’ – 66.7, ‘Dolynskyi’ – 62.1 and ‘Darunok Yunnatam’ – 50.7. For ‘Koronchatyi’ cultivar, the use of 3% carbamide was the most efficient.

  1. Nitrogen trading tool

    Science.gov (United States)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  2. Feeding oscillating dietary crude protein concentrations increases nitrogen utilization in growing lambs and this response is partly attributable to increased urea transfer to the rumen.

    Science.gov (United States)

    Doranalli, Kiran; Penner, Gregory B; Mutsvangwa, Timothy

    2011-04-01

    Our objective was to determine the effects of feeding oscillating compared with static dietary crude protein (CP) concentrations on nitrogen (N) retention and urea flux across ruminal epithelia. Twenty-seven Suffolk wether lambs (n = 9) were assigned to a medium-CP diet [MEDIUM; 127 g CP⋅kg dry matter (DM)(-1)] or to diets with oscillating CP content (OSC) fed in 2 different sequences, i.e. 2 d of low CP (103 g CP⋅kg DM(-1)) followed by 2 d of high CP (161 g CP⋅kg DM(-1); OSC-HIGH) or vice versa (OSC-LOW). Diet adaptation was for 24 d, followed by 8 d of total urine and feces collection. On d 33, lambs were slaughtered 4 h after the morning feeding, such that those receiving OSC-LOW and OSC-HIGH diets were slaughtered on d 3 of receiving the low- or high-CP diets, respectively. Ruminal epithelia were collected and mounted in Ussing chambers and the serosal-to-mucosal urea flux (J(sm-urea)) was measured using (14)C-urea. Ruminal NH(3)-N concentration was lower (P = 0.001) in lambs fed OSC-LOW compared with those fed OSC-HIGH. Although N intake was similar, retained N (P = 0.001) and microbial N supply (P = 0.001) were greater in lambs fed OSC compared with those fed MEDIUM. The total J(sm-urea) was higher (P = 0.001) in lambs fed OSC-LOW compared with those fed OSC-HIGH. Across diets, the addition of phloretin [a known specific inhibitor of facilitative urea transporter (UT)-B] reduced J(sm-urea) by 19.5-22.3% (P = 0.001); however, phloretin-insensitive J(sm-urea) was the predominant route for transepithelial urea transfer. Taken together, these data indicate that feeding oscillating dietary CP concentrations improves N retention partly by increasing urea recycling to the rumen when animals are fed low-CP diets, but the greater rates of urea transfer cannot be attributable to upregulation of UT-B.

  3. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  4. (Phaseolus vulgaris L.) cultivars to foliar and soil applied boron in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... protein content, 100-seed weight and B concentration in leaf were studied. Yield was obtained ... Seeds of beans are the most important protein and ..... 20.5. Soil. 23.9. 18.4. 24.9. 22.3. 22.3. 22.3. 22.3. Foliar. 19.4. 20.3. 31.0. 19.4. 21.1. 25.1. 22.7. Mean. Mean. 21.0 bc. 18.9 c. 24.8 a. 21.5 abc. 20.7 bc.

  5. Manejo da adubação nitrogenada de tensões hídricas sobre a produção de matéria seca e índice de área foliar de Tifton 85 cultivado no Cerrado Management of nitrogen fertilization and of water tension on the production of dry matter and leaf area index of Tifton 85 cultivated in the Cerrado region

    Directory of Open Access Journals (Sweden)

    Kênia Régia Anasenko Marcelino

    2003-04-01

    Full Text Available Este trabalho foi conduzido na Embrapa Cerrados, Planaltina (DF, objetivando avaliar a influência de tensões hídricas (35, 60, 100 e 500 kPa e doses de nitrogênio (0 - Testemunha, 45, 90, 180, 360 kg/ha sobre a produção de matéria seca (MS, a taxa de produção de matéria seca (TPMS e o índice de área foliar (IAF do capim Cynodon spp. cv. Tifton 85. Empregou-se delineamento em blocos ao acaso, com parcelas subdivididas em três repetições; nas parcelas foram distribuídas as tensões e nas subparcelas, as doses de nitrogênio (N. As doses de nitrogênio influenciaram a produção de matéria seca em todas as tensões, onde a maior produtividade (41,8 t/ha foi obtida na tensão de 35 kPa e na dose de 360 kg/ha de N e menor produtividade (17,3 t/ha, na tensão de 100 kPa sem adição de N. Nas tensões de 60, 100 e 500 kPa, a eficiência na utilização do N foi maior nas doses mais elevadas. As maiores TPMS foram observadas no período com temperaturas elevadas, enquanto as menores foram no período com temperaturas reduzidas. Durante o período de 16/03 a 09/08, não se observou efeito das doses de N. Nos demais períodos, a TPMS aumentou com o incremento das doses de N. Não foram observados efeitos das tensões hídricas sobre a TPMS. O IAF elevou-se com o aumento nas doses de N, principalmente no período de 21/09 a 10/01. Entretanto nos períodos de baixa temperatura não houve respostas do IAF às doses crescentes de N. As tensões hídricas não afetaram o IAF em nenhum dos períodos avaliados.This work was carried out to evaluate the influence of water tensions (35, 60, 100 and 500 kPa and nitrogen levels (0 - Control, 45, 90, 180, 360 kg/ha on the dry matter (DM yield, the dry matter yield rate (DMYR and the leaf area index (LAI of Cynodon spp. cv. Tifton 85 bermudagrass. A randomized blocks design in a split splot scheme with three replications was used, split plots were represented by the water tensions were and the plots

  6. VISIBE AND INFRARED SPECTRAL CHARACTERISATION OF CHINESE CABBAGE (BRASSICA RAPA L. SUBSPECIES CHINENSIS, GROWN UNDER DIFFERENT NITROGEN, POTASSIUM AND PHOSPHORUS CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    B. B. Mokoatsi

    2017-11-01

    Full Text Available There is a need to intensify research efforts on improving productivity of indigenous vegetables in South Africa. One research avenue is operationalizing remote sensing techniques to monitor crop health status. This study aimed at characterising the spectral properties of Chinese cabbage (Brassica Rapa L. subspecies Chinensis grown under varying fertilizer treatments: nitrogen (0 kg/ha, 75 kg/ha, 125 kg/ha, 175 kg/ha and 225 kg/ha, phosphorus (0 kg/ha, 9.4 kg/ha, 15.6, 21.9 kg/ha and 28.1 kg/ha and potassium (0 kg/ha, 9.4  kg/ha, 15.6 kg/ha, 21.9 kg/ha and 28.1 kg/ha. Visible and infrared spectral measurements were taken from a total of 60 samples inside the laboratory. Contiguous spectral regions were plotted to show spectral profiles of the different fertilizer treatments and then classified using gradient boosting and random forest classifiers. ANOVA revealed the potential of spectral reflectance data in discriminating different fertiliser treatments from crops. There was also a significant difference between the capabilities of the two classifiers. Gradient boost model (GBM yielded higher classification accuracies than random forest (RF. The important variables identified by each model improved the classification accuracy. Overall, the results indicate a potential for the use of spectroscopy in monitoring food quality parameters, thereby reducing the cost of traditional methods. Further research into advanced statistical analysis techniques is needed to improve the accuracy with which fertiliser concentrations in crops could be quantified. The random forest model particularly requires improvements.

  7. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    Science.gov (United States)

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  8. Effects of excess arginine with and without supplemental lysine on performance, plasma amino acid concentrations and nitrogen balance of young swine.

    Science.gov (United States)

    Anderson, L C; Lewis, A J; Peo, E R; Crenshaw, J D

    1984-02-01

    Three experiments were conducted to determine the effects of excess arginine on performance, plasma amino acid levels and N balance of young pigs (initial weights 6.9, 7.0 and 10.3 kg, respectively). In a 28-d growth trial, various amounts of arginine (0 to 1.6%) were added to a conventional starter diet. Addition of arginine decreased (P less than .01) average daily feed intake (ADFI) and gain (ADG), but had no effect on feed efficiency (G/F). Plasma urea, arginine and ornithine concentrations were elevated (P less than .001) by the increasing dietary arginine levels at d 14 and 28. Plasma histidine levels were reduced (P less than .01) at d 28. Plasma lysine levels exhibited a cubic response (P less than .05) at d 14, but were not affected by excess arginine at d 28. In a second growth trial ADFI and ADG were decreased (P less than .05), but G/F was not affected by the addition of 1.6% dietary arginine. Lysine supplementation (0, .15 or .30%) increased performance in the absence of excess arginine, but the main effect of lysine was not significant for any performance criteria. As in the first experiment, plasma concentrations of urea, arginine and ornithine were increased (P less than .001) by the addition of arginine. Plasma histidine was not affected by either arginine or lysine. Plasma lysine levels were reduced (P less than .001) by dietary arginine and increased (P less than .001) by lysine. In a N balance experiment, addition of 1.6% dietary arginine increased N digestibility, but decreased apparent biological value. Nitrogen balance was not affected by added arginine. Lysine addition did not improve any of these three indices of N utilization. The inability of lysine supplementation to alleviate any of the adverse effects of excess arginine in young swine indicates that the reduced performance is caused by a generalized amino acid imbalance, and not by a specific interference with lysine utilization in the manner of a classical arginine-lysine antagonism.

  9. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1990-01-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by 35 S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of 35 S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO 4 2- -S) concentrations in net throughfall (throughfall SO 4 2- -S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO 2 dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, 35 S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 μg/g dry needles. Translocation of 35 S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment

  10. Effects of salicylic acid foliar application on germination, growth and antioxidant potential of basil (Ocimum basilicum L.)

    OpenAIRE

    Karalija, Erna; Parić, Adisa

    2018-01-01

    Salicylic acid is one of endogenous plant growth regulators that plays a key role in many physiological processes. The present study analysed the effect of different concentrations (0, 0.01, 0.1, ad 1.0 mM) of salicylic acid on morphological parameters, photosynthetic pigments, protein, proline, total carbohydrates, and secondary metabolites content as well as peroxidase activity. One month after sowing seedlings were replanted in new pots, and salicylic acid was applied in form of a foliar s...

  11. Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon

    Science.gov (United States)

    Broadbent, Eben N.; Almeyda Zambrano, Angélica M.; Asner, Gregory P.; Soriano, Marlene; Field, Christopher B.; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I.; Dirzo, Rodolfo; Giles, Larry

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession. PMID:24516525

  12. Changes in the dynamics of foliar N metabolites in oak saplings by drought and air warming depend on species and soil type.

    Directory of Open Access Journals (Sweden)

    Bin Hu

    Full Text Available Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur, Q. petraea, Q. pubescens were tested on two different soil types (i.e. acidic and calcareous. Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat (Q. pubescens compared to Q. robur and Q. petraea. Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity.

  13. A hybrid model for mapping relative differences in belowground biomass and root: Shoot ratios using spectral reflectance, foliar N and plant biophysical data within coastal marsh

    Science.gov (United States)

    Jessica L. O'Connell,; Byrd, Kristin B.; Maggi Kelly,

    2015-01-01

    Broad-scale estimates of belowground biomass are needed to understand wetland resiliency and C and N cycling, but these estimates are difficult to obtain because root:shoot ratios vary considerably both within and between species. We used remotely-sensed estimates of two aboveground plant characteristics, aboveground biomass and % foliar N to explore biomass allocation in low diversity freshwater impounded peatlands (Sacramento-San Joaquin River Delta, CA, USA). We developed a hybrid modeling approach to relate remotely-sensed estimates of % foliar N (a surrogate for environmental N and plant available nutrients) and aboveground biomass to field-measured belowground biomass for species specific and mixed species models. We estimated up to 90% of variation in foliar N concentration using partial least squares (PLS) regression of full-spectrum field spectrometer reflectance data. Landsat 7 reflectance data explained up to 70% of % foliar N and 67% of aboveground biomass. Spectrally estimated foliar N or aboveground biomass had negative relationships with belowground biomass and root:shoot ratio in both Schoenoplectus acutus and Typha, consistent with a balanced growth model, which suggests plants only allocate growth belowground when additional nutrients are necessary to support shoot development. Hybrid models explained up to 76% of variation in belowground biomass and 86% of variation in root:shoot ratio. Our modeling approach provides a method for developing maps of spatial variation in wetland belowground biomass.

  14. A Hybrid Model for Mapping Relative Differences in Belowground Biomass and Root:Shoot Ratios Using Spectral Reflectance, Foliar N and Plant Biophysical Data within Coastal Marsh

    Directory of Open Access Journals (Sweden)

    Jessica L. O’Connell

    2015-12-01

    Full Text Available Broad-scale estimates of belowground biomass are needed to understand wetland resiliency and C and N cycling, but these estimates are difficult to obtain because root:shoot ratios vary considerably both within and between species. We used remotely-sensed estimates of two aboveground plant characteristics, aboveground biomass and % foliar N to explore biomass allocation in low diversity freshwater impounded peatlands (Sacramento-San Joaquin River Delta, CA, USA. We developed a hybrid modeling approach to relate remotely-sensed estimates of % foliar N (a surrogate for environmental N and plant available nutrients and aboveground biomass to field-measured belowground biomass for species specific and mixed species models. We estimated up to 90% of variation in foliar N concentration using partial least squares (PLS regression of full-spectrum field spectrometer reflectance data. Landsat 7 reflectance data explained up to 70% of % foliar N and 67% of aboveground biomass. Spectrally estimated foliar N or aboveground biomass had negative relationships with belowground biomass and root:shoot ratio in both Schoenoplectus acutus and Typha, consistent with a balanced growth model, which suggests plants only allocate growth belowground when additional nutrients are necessary to support shoot development. Hybrid models explained up to 76% of variation in belowground biomass and 86% of variation in root:shoot ratio. Our modeling approach provides a method for developing maps of spatial variation in wetland belowground biomass.

  15. Effect of Maize Hybrid and Foliar Fungicides on Yield Under Low Foliar Disease Severity Conditions.

    Science.gov (United States)

    Mallowa, Sally O; Esker, Paul D; Paul, Pierce A; Bradley, Carl A; Chapara, Venkata R; Conley, Shawn P; Robertson, Alison E

    2015-08-01

    Foliar fungicide use in the U.S. Corn Belt increased in the last decade; however, questions persist pertaining to its value and sustainability. Multistate field trials were established from 2010 to 2012 in Illinois, Iowa, Ohio, and Wisconsin to examine how hybrid and foliar fungicide influenced disease intensity and yield. The experimental design was in a split-split plot with main plots consisting of hybrids varying in resistance to gray leaf spot (caused by Cercospora zeae-maydis) and northern corn leaf blight (caused by Setosphaera turcica), subplots corresponding to four application timings of the fungicide pyraclostrobin, and sub-subplots represented by inoculations with either C. zeae-maydis, S. turcica, or both at two vegetative growth stages. Fungicide application (VT/R1) significantly reduced total disease severity relative to the control in five of eight site-years (P<0.05). Disease was reduced by approximately 30% at Wisconsin in 2011, 20% at Illinois in 2010, 29% at Iowa in 2010, and 32 and 30% at Ohio in 2010 and 2012, respectively. These disease severities ranged from 0.2 to 0.3% in Wisconsin in 2011 to 16.7 to 22.1% in Illinois in 2010. The untreated control had significantly lower yield (P<0.05) than the fungicide-treated in three site-years. Fungicide application increased the yield by approximately 6% at Ohio in 2010, 5% at Wisconsin in 2010 and 6% in 2011. Yield differences ranged from 8,403 to 8,890 kg/ha in Wisconsin 2011 to 11,362 to 11,919 kg/ha in Wisconsin 2010. Results suggest susceptibility to disease and prevailing environment are important drivers of observed differences. Yield increases as a result of the physiological benefits of plant health benefits under low disease were not consistent.

  16. Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons

    Science.gov (United States)

    Felix Ponder Jr.; Robert L. Fleming; Shannon Berch; Matt D. Busse; John D. Elioff; Paul W. Hazlett; Richard D. Kabzems; J. Marty Kranabetter; David M. Morris; Deborah Page-Dumroese; Brian J. Palik; Robert F. Powers; Felipe G. Sanchez; D. Andrew Scott; Richard H. Stagg; Douglas M. Stone; David H. Young; Jianwei Zhang; Kim H. Ludovici; Daniel W. McKenney; Debbie S Mossa; Paul T. Sanborn; Richard A. Voldseth

    2012-01-01

    We examined 10th year above-ground planted tree and total stand biomass, and planted tree foliar N and P concentrations across gradients in soil disturbance at 45 North American Long-Term Soil Productivity (LTSP) installations. While ranging across several climate regions, these installations all share a common experimental design with similar measurement protocols....

  17. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for 'new' Mn hyperaccumulators and potential applications in taxonomy.

    Science.gov (United States)

    Fernando, Denise R; Guymer, Gordon; Reeves, Roger D; Woodrow, Ian E; Baker, Alan J; Batianoff, George N

    2009-04-01

    The analysis of herbarium specimens has previously been used to prospect for 'new' hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). The resulting data demonstrated (a) up to seven 'new' Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these 'new' Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as 'new' Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible 'new' Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible 'new' subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be followed up by field studies.

  18. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy

    Science.gov (United States)

    Fernando, Denise R.; Guymer, Gordon; Reeves, Roger D.; Woodrow, Ian E.; Baker, Alan J.; Batianoff, George N.

    2009-01-01

    Background and Aims The analysis of herbarium specimens has previously been used to prospect for ‘new’ hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. Methods ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). Key Results The resulting data demonstrated (a) up to seven ‘new’ Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these ‘new’ Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Conclusions Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as ‘new’ Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible ‘new’ Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible ‘new’ subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be

  19. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    International Nuclear Information System (INIS)

    Wang Weining; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d p < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  20. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weining [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States); Tarafdar, Jagadish C. [Central Arid Zone Research Institute (India); Biswas, Pratim, E-mail: pbiswas@wustl.edu [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States)

    2013-01-15

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d{sub p} < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  1. Differential nitrogen cycling in semiarid sub-shrubs with contrasting leaf habit.

    Directory of Open Access Journals (Sweden)

    Sara Palacio

    Full Text Available Nitrogen (N is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental (15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.

  2. EFFECT OF THE FOLIAR BORON FERTILIZATION ON SUGAR BEET ROOT YIELD AND QUALITY

    Directory of Open Access Journals (Sweden)

    A. Kristek

    2006-06-01

    Full Text Available Effect of foliar fertilization with Fertina B element on sugar beet root yield and quality was investigated on two soil types (marsh gleyish hydro-meliorated and loess pseudo-gley poor in boron supply. The research was conducted in the growing season period of 2004th and 2005th. The research aimed to determine both needed boron amount in a foliar fertilization and necessary number of treatments. Increased level of top dressing boron led to increased sugar beet root yield and quality, only by 1 kg B/ha. Further progress followed was not significant. The most efficient fertilization appeared to be when conducted twice: first prior sugar beet leaf formation (end of May, beginning of June and second, 10-14 days later. Root yield of 85.45 t/ha, sugar content of 14.92% and sugar yield of 11.12 t/ha was obtained by the most efficient variant (1 kg B/ha twice, for two localities and two years on the average. Compared to the control variant, root yield is higher by 13.86 t/ha (19.4%, sugar concentration higher by 1.46% (relative 10.8% and sugar yield higher by 3.15 t/ha (39.5%. Based upon these results, foliar fertilization with 1.0 kg B/ha is suggested for soils characterized by insufficient boron supply. It should be added through two top dressings, first prior leaves formation and second 10 -14 days later.

  3. THE INFLUENCE OF SOME FERTILIZERS AND BIOSTIMULANTS UPON THE ANATOMY OF THE FOLIAR LIMB OF CHRYSANTHEMUM INDICUM L. (IInd NOTE

    Directory of Open Access Journals (Sweden)

    TANASESCU (FLORIA VIOLETA

    2010-12-01

    Full Text Available The results presented in this paper belong to the project “Elaborarea de solutii si tehnici de cultura neconventionale si nepoluante la plantele ornamentale, în contextul dezvoltarii durabile – The elaboration of unconventional and unpollutant solutions and culture techniques, in stable usage context” and presents the testing of three fertilizers and biostimulants (Maxiroot, Dacmarinur Maxi N, Aurora upon the foliar limb of Chrysanthemum indicum L.; they were applied in 3 variants of concentrations (0.2%, 0.4%, 0.6%. The identification of the impact of the fertilizers has been analyzed by identifying the modifications of the foliar limb and middle vein, a comparative analysis of the number of epidermic cells and stomata which belong to both upper and lower epidermis, as well as measuring the dimension of stomata. In all applied products, a few differences appeared in comparison with the blank sample.

  4. Impact of Potassium Foliar Application in Alleviating the Harmful Effects of Salinity in Spinach

    Directory of Open Access Journals (Sweden)

    Amirhooshang jalali

    2017-02-01

    spinach with foliar application of K and 4 dS m-1 salinity was equaled 35300 kg ha-1 which had not significantly different from control treatment. Foliar application of K and 8 dS m-1 salinity, and also 8 dS m-1 salinity and without foliar potassium, had 20.2 and 38% yield reduction, respectively. In salinity 2.1, 4 and 8 dS m-1 plants m-2 were 40, 38.1 and 29.1, respectively. Leaf dry matter percent was improved with foliar application of K in 8 dS m-1 salinity. Effect of potassium, as modulators of salt in spinach, by researches of Shannon and Greve (24 and Kaya et al (14 have also been emphasized. Spinach leaves number was from 11.4 to 16.7 in different treatments. Foliar application of K in 4 and 8 dS m-1 salt treatment was increase in the number of leaves. This increased in treatment of 4 and 8 dS m-1 was 15.3 and 28.9 percent, respectively. In both saline treatments of 4 and 8 dS m-1, leaf length was positively affected by the application of potassium but in salinity 4 dS m-1 (unlike the eight salinity dS m-1 leaf width was not affected by the potassium spraying. The ability of plants to maintain intracellular potassium to sodium ratio leaves in certain extent is necessary for a salt tolerance. In fact, the application of potassium in salinity conditions by increasing the concentration of the K in organs is a kind of acclimation to the salt stress and activates repair mechanisms of the damage against of stress agent. The length of tail leaves in 4 dS m-1 salt was not significantly affected by the spraying of potassium while in 8 dS m-1 salinity, spraying potassium led to an increase of 28 percent in length of leaf tail. The effect of K application on the dry matter content in the 8 dS m-1 salinity was statistically significant. Potassium is the most abundant cation-forming in many plants (typically more than 10% of dry weight and less than 10 grams per kg-1 of dry weight appear deficiency symptoms in most plants. Conclusion: According to the results, in salinity

  5. Variation in foliar water content and hyperspectral reflectance of ...

    African Journals Online (AJOL)

    Sirex noctilio, the Eurasian wood wasp, is one of the major pests responsible for declining forest health in pine forests located in KwaZulu-Natal, South Africa. Researchers have shown that stress induced by S. noctilio causes a rapid decrease in foliar water content, with the foliage of the tree changing from a dark green to a ...

  6. Foliar micromorphology of Lippia javanica (Burm.F) Spreng ...

    African Journals Online (AJOL)

    Background: Lippia javanica (Burm.F.) Spreng is an aromatic indigenous South African plant with culinary and medicinal values. This study investigated the foliar morphology and elemental composition of the plant because not much data concerning the anatomical and micro-morphological features can be found in ...

  7. Foliar nutrition in apple production | Murtic | African Journal of ...

    African Journals Online (AJOL)

    The objective of this study was to provide a comprehensive review of research papers dealing with the effect of foliar feeding on development parameters in apple trees in an attempt to obtain a more thorough insight into the advantages and disadvantages of this fertilization type and facilitate the potential use of this practice ...

  8. Foliar epidermal anatomy and its systematic implication within the ...

    African Journals Online (AJOL)

    Micro morphological investigations of the foliar epidermal anatomy, particularly the diversity and distribution of glandular and eglandular trichomes on leaves of Sida alba L., S. alii S. Abedin var. alii, S. cordata (Burm. F.) Brss, S. mysorensis Wight and Arn, S. ovata Forssk. S. spinosa L and S.yunnanensis S.Y.Hu have been ...

  9. Imaging spectroscopy of foliar biochemistry in forestry environments ...

    African Journals Online (AJOL)

    This paper aims to give an overview of the state of the art of foliar biochemistry assessment in general and, where possible, attention is given to: (1) Eucalyptus forest environments, (2) use of hyperspectral remote sensing or imaging spectroscopy, and (3) the challenges towards operational application of such assessments.

  10. to combined application of organic and inorganic (soil and foliar ...

    African Journals Online (AJOL)

    This was also similar to the combined application of pm at 2.5t ha-1 mixed with NPK 30 kgN ha-1 and foliar fertilizer. The results of the study indicated that combined application of pm, NPK and ff enhanced the growth and yield of maize. This integrated application will be a good soil management practice for tropical soils.

  11. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  12. Evaluation of Organic–PLUS Foliar Fertilizer in Combination with ...

    African Journals Online (AJOL)

    Five rates of application of Organic – PLUS foliar fertilizer (0,1200, 1400, 1600 and 1800 mls ha-1) combined with 100kg ha-1 of 15-15-15 fertilizer, respectively were set up in the field using Randonmized Complete Block Design and replicated four times. The statistical results of the study indicated that the different Organic- ...

  13. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    The present study was conducted to assess whether exogenous applied salicylic acid (SA) as a foliar spray could ameliorate the adverse effects of virus infection in two maize cultivars (maize cv. sabaini and maize cv. Nab El-gamal). The plants were grown under normal field conditions for two weeks in sand clay soil, and ...

  14. Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis.

    Science.gov (United States)

    Fernando, D R; Woodrow, I E; Jaffré, T; Dumontet, V; Marshall, A T; Baker, A J M

    2008-01-01

    Hyperaccumulation by plants is a rare phenomenon that has potential practical benefits. The majority of manganese (Mn) hyperaccumulators discovered to date occur in New Caledonia, and little is known about their ecophysiology. This study reports on natural populations of one such species, the endemic shrub Maytenus founieri. Mean foliar Mn concentrations of two populations growing on ultramafic substrates with varying soil pHs were obtained. Leaf anatomies were examined by light microscopy, while the spatial distributions of foliar Mn in both populations were examined by qualitative scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). Plants growing on two different substrates were found to have very different mean dry weight (DW) foliar Mn concentrations. Light microscopy showed that the leaves had very distinct thick dermal structures, consisting of multiple layers of large cells in the hypodermis. In vivo X-ray microprobe analyses revealed that, in both populations, Mn sequestration occurred primarily in these dermal tissues. The finding here that foliar Mn is most highly localized in the nonphotosynthetic tissues of M. founieri contrasts with results from similar studies on other woody species that accumulate high Mn concentrations in their shoots.

  15. Foliar penetration of two herbicids (propyzamide C14 and chlorprophame C14) in barley

    International Nuclear Information System (INIS)

    Bennaceur, M.; Bastide, J.; Zebbadji, H.

    1990-06-01

    The aim of this work is to summarize the knowledge of the pesticides structure-penetration relationship and to propose mathematical kinetic model of foliar penetration. The assays have been realized on plantules of barley which foliar surfaces were treated by two herbicids: propyzamid 14 C and chlorpropham 14 C. The extraction of products was made on the different parts of the plant, in respect to relatively variable times. The foliar penetration was obvious and function of the structure of the pesticide. Important volatilization of the production was noticed. On the other hand, a mathematical kinetic model of foliar penetration is proposed for the foliar penetration of these two products

  16. Atmospheric ammonia measurements at low concentration sites in the northeastern USA: implications for total nitrogen deposition and comparison with CMAQ estimates

    Science.gov (United States)

    We evaluated the relative importance of dry deposition of ammonia (NH3) gas at several headwater areas of the Susquehanna River, the largest single source of nitrogen pollution to Chesapeake Bay, including three that are remote from major sources of NH3 emissions (CTH, ARN, and K...

  17. Autotrophic Nitrogen Removal from Low Concentrated Effluents : Study of system configurations and operational features for post-treatment of anaerobic effluents

    NARCIS (Netherlands)

    Sanchez Guilen, J.A.

    2016-01-01

    On a global scale, sewage represents the main point-source of water pollution and is also the predominant source of nitrogen contamination in urban regions. The present research is focused on the study of the main challenges that need to be addressed in order to achieve a successful inorganic

  18. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Eva [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); Dappe, Vincent [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Sarret, Géraldine [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Sobanska, Sophie [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna [Department of Chemistry, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Magnin, Valérie [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Ranieri, Vincent [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dumat, Camille, E-mail: camille.dumat@ensat.fr [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France)

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO{sub 4}, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO{sub 3}. In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to

  19. Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions

    International Nuclear Information System (INIS)

    Catarina Galinha; Pacheco, A.M.G.; Maria do Carmo Freitas; Jose Coutinho; Benvindo Macas; Ana Sofia Almeida

    2013-01-01

    Selenium (Se) is a trace element essential to the well-being and health quality of humankind. Plant-derived foodstuffs, namely cereals, are the major dietary sources of Se in most countries throughout the world, even if Se contents are strongly dependent upon the corresponding levels in cereal-growing soils. Therefore, wheat is one of the staple crops that appears as an obvious candidate for Se biofortification, considering its gross-tonnage production and nutritional relevance worldwide. The present paper focuses on the ability of bread and durum wheat-Triticum aestivum L. and Triticum durum Desf., respectively-to accumulate Se after supplementation via a foliar-addition procedure. Two of the most representative wheat cultivars in Portugal - Jordao (bread) and Marialva (durum) - have been selected for supplementation trials, following the same agronomic practices and field schedules as the regular (non-supplemented) crops of those varieties (sowing: November 2010; harvesting: July 2011). Foliar additions were performed at the booting and grain-filling stages, using sodium selenate and sodium selenite solutions at three different Se concentrations-equivalent to field supplementation rates of 4, 20 and 100 g of Se per ha-with and without potassium iodide. Selenium contents in wheat grains obtained under foliar application are compared to data from regular wheat samples (field blanks) grown at the same soil/season, yet devoid of any Se supplementation. Total Se in all field samples was determined by cyclic neutron activation analysis (CNAA), via the short-lived nuclide 77m Se (half-life time: 17.5 s), in the Portuguese Research Reactor (RPI; CTN-IST, Sacavem). Quality control of the analytical procedure was asserted through concurrent analyses of NIST-SRM R 1567a (Wheat Flour). Results show that foliar additions can increase Se contents in mature grains up to 15 and 40 times for Marialva and Jordao, respectively, when compared to non-supplemented crops. Jordao and

  20. Estimativa da área foliar de nabo forrageiro em função de dimensões foliares

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2012-01-01

    Full Text Available O objetivo deste trabalho foi desenvolver um modelo para estimar a área foliar de nabo forrageiro (Raphanus sativus L. var. oleiferus Metzg determinada por fotos digitais, em função do comprimento, ou da largura e/ou do produto comprimento vezes largura da folha. Aos 76 dias após a semeadura, foram coletadas 557 folhas da haste principal de 92 plantas, sendo mensurados o comprimento (C e a largura (L de cada folha, e calculado o produto comprimento × largura (C×L. Após, determinou-se a área foliar (Y, por meio do método de fotos digitais. Do total de folhas, separaram-se, aleatoriamente, 450 folhas para a construção de modelos do tipo quadrático, potência e linear de Y em função de C, da L, e/ou de C×L. 107 folhas foram usadas para a validação dos modelos. O modelo do tipo potência da área foliar obtida por meio do método de fotos digitais (Ŷ=0,6843x0,9221, R²=0,9862 em função do produto comprimento × largura é adequado para estimar a área foliar de nabo forrageiro.

  1. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.

  2. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2015-01-01

    Full Text Available Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG cultivars. Plants were well-watered with no foliar B (W − B, well-watered with foliar B (W + B, water-stressed with no foliar B (WS − B, and water-stressed with foliar B (WS + B. Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean.

  3. Effect of salicylic acid on Concentration of nutrients, protein and antioxidant enzymes of basil under lead stress

    Directory of Open Access Journals (Sweden)

    Ali Padash

    2016-03-01

    Full Text Available Today, phenolic compounds and plant growth regulator has been proposed, to reduce the negative effects of stress. Salicylic acid is a substance that causes plant resistance to biotic and abiotic stresses. This experiment was conducted in Zabol University during 2013 as factorial randomized complete block design with 3 replications. Factors included 4 levels of lead nitrate; 0 (control, 100, 200 and 300 mg per kg of soil and foliar application of salicylic acid at 3 levels of 0, 50 and 100 ppm. Addition of lead significantly reduced concentrations of potassium, magnesium, calcium, phosphorous and nitrogen and increased concentrations of sodium, polyphenol oxidase, ascorbate peroxidase, superoxide dismutase and peroxidase. In addition, salicylic acid spraying had a significant influence on all traits, and salicylic acid spraying at 100 mL/L increased concentrations of potassium, magnesium, calcium, phosphorus, nitrogen and decreased concentrations of polyphenol oxidase, ascorbate peroxidase, superoxide dismutase and peroxidase. In this study the interaction between salicylic acid and lead on potassium, magnesium, calcium, phosphorus, nitrogen, sodium and catalase, guaiacol peroxidase and polyphenol oxidase were significant, and salicylic acid play moderating role and reducing the negative effects of lead toxicity. The results suggested salicylic acid application in basil can increase uptake of macro and micro nutrients required for plant growth and reduce the negative effects of stress lead-induced oxidative damage.

  4. Foliar response and growth of apple trees following exposure to ozone and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Shertz, R.D.; Kender, W.J.; Musselman, R.C.

    1980-01-01

    Three cultivars of greenhouse-grown apple trees (Malus domestica, Borkh.) were fumigated for single, 4-hour exposures with ozone (O/sub 3/) and/or sulfur dioxide (SO/sub 2/) at 0.40 and 0.80 ppm. Fumigations were performed in a plexiglass chamber situated within a controlled environment walk-in growth chamber. All 3 cultivars responded to treatments in a similar manner. When applied separately both gases induced characteristic foliar injury. In general, apple trees were more sensitive to 0.40 ppm O/sub 3/ than to 0.40 ppm SO/sub 2/; but they responded similarly to 0.80 ppm O/sub 3/ or SO/sub 2/. Foliar injury, leaf abscission, and shoot growth reduction were greatest when 0.80 ppm O/sub 3/ and 0.80 ppm SO/sub 2/ were combined. The data showed a less-than additive response when the 2 pollutants were combined; a response due, in part, to the high amount of injury induced by single pollutants at these concentrations. All O/sub 3/ and/or SO/sub 2/ fumigations resulted in stomatal closure.

  5. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    Science.gov (United States)

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity. PMID:27832171

  6. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  7. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture.

    Science.gov (United States)

    Xiong, TianTian; Dumat, Camille; Dappe, Vincent; Vezin, Hervé; Schreck, Eva; Shahid, Muhammad; Pierart, Antoine; Sobanska, Sophie

    2017-05-02

    Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight) -1 ] and cabbage [4448 mg (kg of dry weight) -1 ], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 μg day -1 ), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.

  8. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles.

    Science.gov (United States)

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity.

  9. DETERMINACIÓN DEL NIVEL DE NUTRICIÓN FOLIAR EN BANANO POR ESPECTROMETRÍA DE REFLECTANCIA FOLIAR NUTRITION DETERMINATION LEVEL ON BANANAS BY REFLECTANCE SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Juan Manuel Botero Herrera

    2009-12-01

    Full Text Available Con el objetivo de generar conocimiento básico para el desarrollo de la agricultura de precisión y para mejorar la respuesta a las necesidades de disponer de más información a nivel espacial y temporal, se utilizó el espectro de reflectancia de muestras foliares de banano molidas y tamizadas. Se realizó calibración quimiométrica mediante PLSR (Partial Least Square Regresion, con diferentes pre-tratamientos espectrales (espectro crudo, transformaciones MSC (Multiplicative Scatter Correction, SNV (Standard Normal Variate, Savitzky y Golay con primera y segunda derivada, transformación Log 1/R, y DOSC (Direct Orthogonal Signal Correction. Para la calibración se empleó la concentración en tejido foliar de 11 nutrientes contrastada con la reflectancia de la misma muestra, encontrando que para todos los casos el mejor pre tratamiento fue DOSC, que permitió construir modelos de calibración con errores similares a los de los métodos de referencia, con un número bajo de variables latentes y ajustes superiores al 80%, lo cual es suficiente para sugerir esta metodología como una alternativa práctica, económicamente viable, precisa y rápida, a los análisis químicos tradicionales de tejido foliar.In order to generate basic knowledge for development of precision agriculture and to improve response to the needs of generate more information spatial and temporal level, was used the reflectance spectrum of banana leaf samples ground and sieved. The chemometric calibration was performed by PLSR (Partial Least Square Regression, with different pre-treatments spectrum (spectrum crude transformations MSC (Multiplicative Scatter Correction, SNV (Standard Normal Variate, Savitzky and Golay with first and second derivative transformation Log 1 / R, and DOSC (Direct Orthogonal Signal Correction. The calibration was between the leaf tissue concentration of 11 nutrients and the reflectance of the same sample, finding that in all cases the best DOSC

  10. The Role of Salicylic Acid and Chitosan Foliar Applications ‎under Drought Stress Condition on Some Physiological Traits ‎and Oil Yield of Safflower (Carthamus tinctorius L.‎

    Directory of Open Access Journals (Sweden)

    Ayoub Amiri

    2017-05-01

    Full Text Available To study the effects of drought and foliar applications of salicylic acid and chitosan on some physiological traits and oil yield of safflower under drought a split plot experiment with three replications based on a randomized complete block design was conducted at the University of Zabol, Iran. Treatments were three levels irrigations at 25, 50 and 75% of soil available water assigned to main plots, and four levels of foliar applications of salicylic acid and chitosan (control, 0.424 g/liter of salicylic acid, 5 g/liter of chitosan and mixed application of salicylic acid and chitosan to sub-plots. Water stress reduced oil yield and phosphorus, potassium and calcium contents of shoot. Oil yield was decreased with increasing drought stress by 11% as compared to that of control. Severe water stress also increased the amount of sodium in seed, but its effects on nitrogen and iron control of shoot, membrane stability index and relative humidity were not significant. Foliar application of salicylic acid and chitosan increased macronutrients (nitrogen, phosphorus and potassium and micronutrients (calcium and iron. Seed oil yield was not affected by foliar spray. In general, combined application chitosan and salicylic acid on traits under study was effective. It can be suggested that combined application of chitosan and salicylic acid could be effective in growing safflower at this region.

  11. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    OpenAIRE

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-01-01

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive ...

  12. Teor de nitrogênio em Ischaemum rugosum sob três níveis de sombreamento Nitrogen concentration in Ischaemum rugosum under three levels of shading

    Directory of Open Access Journals (Sweden)

    M.R.M. Silva

    2001-04-01

    Full Text Available Ishaemum rugosum é uma das invasoras