WorldWideScience

Sample records for foliar applied zn

  1. Effect of foliar applied (Zn, Fe, Cu and Mn) in citrus production

    International Nuclear Information System (INIS)

    Khurshid, F.; Sarwar, S.; Khattak, R.A.

    2008-01-01

    A study was conducted to evaluate the impact of micronutrients (Zn, Fe, Cu and Mn) on sweet orange (Citrus Sinensis L.), blood red var., on farmer's orchard at Khanpur, district Haripur, NWFP, during 2002-03. Micronutrients were applied in foliar sprays over the canopy of each tree. The main effects and interactions of Zinc sulphate (Zn), iron sulphate (Fe), Copper Sulphate (Cu) and Manganese Sulphate (Mn) were studied in factorial combinations. A basal dose of nitrogen, phosphorus and potassium was applied at the rate 1.5, 1 and 1 kg tree/sup -1/. Zn, Fe, Cu and Mn were applied alone and in various combinations at the rate 0.115, 0.057, 0.05 and 0.13 kg in 100 liters of water. Application of micronutrients significantly increased Zn, Fe, Cu and Mn concentrations in leaves, compared with control. Zn treatments significantly increased the yield, number of fruit and total sugar. Manganese treatments significantly increased the total soluble solids and reduced the acidity of fruit juice. Other quality parameters, including fruit size, percent peel, percent pulp, sugar as well as total soluble solids, were improved with the application of Zn, Fe, Cu and Mn. (author)

  2. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Directory of Open Access Journals (Sweden)

    Shaoxia Wang

    Full Text Available Although application of Zn combined with macronutrients (K, P, and N can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn were investigated in wheat grown under different soil N rates at two sites with (Sanyuan or without (Yangling employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan and K (at Yangling, but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1 due to these interactions was much less than the average increases following Zn+K (31.3, Zn+P (18.7, and Zn+N (26.5 mg kg-1 treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three

  3. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Science.gov (United States)

    Wang, Shaoxia; Li, Meng; Liu, Ke; Tian, Xiaohong; Li, Shuo; Chen, Yanlong; Jia, Zhou

    2017-01-01

    Although application of Zn combined with macronutrients (K, P, and N) can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management) on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn) were investigated in wheat grown under different soil N rates at two sites with (Sanyuan) or without (Yangling) employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan) and K (at Yangling), but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1) due to these interactions was much less than the average increases following Zn+K (31.3), Zn+P (18.7), and Zn+N (26.5 mg kg-1) treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three soil N

  4. Rational Application of Fertilizer Nitrogen to Soil in Combination With Foliar Zn Spraying Improved Zn Nutritional Quality of Wheat Grains

    Directory of Open Access Journals (Sweden)

    Haiyong Xia

    2018-05-01

    Full Text Available To alleviate human zinc (Zn deficiency, it is worthy to develop rational agronomic managements to achieve high yielding and high resource-use efficiency wheat (Triticum aestivum L. grains biofortified with Zn. Effects of application of three rates of nitrogen (N fertilizer (75,200 and 275 kg·ha−1 to soil in combination with three foliar applications (deionized water, Zn alone, and a combination of Zn and sucrose on grain yield, yield components, grain Zn concentration, protein, phytic acid (PA, phosphorus (P, calcium (Ca, and carbon (C, as well as on Zn bioavailability, were investigated in four wheat cultivars (“Jinan 17,” “Jimai 20,” “Jimai 22,” and “Luyuan 502” under field conditions. Enhanced N increased Zn and protein concentrations as well as bioavailability; excessive N input did not result in further improvements. Zinc spraying was more effective than soil fertilizer N application, the spray of Zn (with or without sucrose increased grain Zn concentrations by 11.1–15.6 mg·kg−1 (27.1–38.1%, and increased grain Zn bioavailability, estimated using total daily absorbed Zn (TAZ and molar ratios of PA/Zn and PA × Ca/Zn, by 0.4–0.6 mg d−1 (28.6–42.9%, 23.1–27.4% and 24.0–28.0%, respectively. Remarkably, increases caused by ‘Zn + sucrose’ were higher than spraying Zn alone. Grain Zn bioavailability was more sensitive to the selection of cultivar than Zn concentrations. Among cultivars, the higher the grain yields and concentrations of antinutritional compounds, the lower the grain Zn nutritional quality would be. 200 kg N ha−1 application rate in combination with foliar spraying of “Zn + sucrose” maximized grain Zn concentrations of “Jinan 17,” “Jimai 20,” “Jimai 22,” and “Luyuan 502” to be 59.4, 56.9, 55.8, and 60.9 mg kg−1, respectively, achieving the target value for biofortification. Additionally, PA/Zn and PA × Ca/Zn of “Jinan 17,” “Jimai 20,” and “Luyuan 502” were

  5. Foliar Absorption, Translocation and Utilization of Zn-65 by Mango Seedlings

    International Nuclear Information System (INIS)

    Mohamed, F.A.; Sharaf, A.N.M.; Awad, S.M.; Abu EL Azm, S.K.

    2001-01-01

    Greenhouse experiment was designed using ZnSO 4 at rates of 0.125,0.25 and 0.50%. Solutions were adjusted to ph 6.0 and Tween-20 was added as a surfactant. The prepared solutions were labelled with carrier-free Zn-65. Six-month old mango seedlings were arranged in a complete block design to study the foliar absorption,translocation and percentage use of Zn-65 as influenced by soil application of phosphorus. The total absorption of Zn-65 by mango leaves was affected by spraying treatment of Zn-65 and soil application of phosphorus. In this respect increasing the rates of labelled Zn solution resulted in a great increment in the total absorption of in total absorption of Zn-65 by mango leaves was observed due to increasing P rates as a soil application from 0.0 up to 100 ppm. Translocation of the absorbed Zn-65 either in upward or downward direction was positively related to the absorbed amount. The percentage use of Zn-65 by mango leaves was reduced by increasing foliar Zn rates. On the contrary, it was slightly increased as a result of increasing soil application rate of P. Generally, the percentage use of Zn-65 mango leaves was ranged between 8.7 and 16.87 under the conditions of this experiment. Therefore, foliar application of ZnSO 4 could be recommended as a good source of Zn for mango nutrition in particular with addition of high rates of phosphorus as a soil application

  6. Foliar absorption and translocation of Zn-65 in balady orange plants

    International Nuclear Information System (INIS)

    Mohamed, F.A.; Sharaf, A.N.M.

    1995-01-01

    Greenhouse experiment was designed using Zn So 4 as a single element or in a mixture of 'Zn SO 4 + Fe SO 4 ' at rates of 0.5 and 1.0% of these compounds. Different solutions were adjusted at PH 6.0 and Tween-20 at 0.5% (V/V) was added. The prepared solutions were labelled with carrier-free Zn-65. In a complete randomized design with three replicates orange seedlings two-year old were arranged. Labelled solution, in small droplets, were added onto upper surface of certain leaves (middle leaves) of seedling. Retained Zn-65 in the treated leaves with Zn SO 4 alone was significantly higher than in leaves sprayed with a mixture of Zn, Mn and Fe sulphates. Upward and downward translocation of Zn-65 was highly related to its absorption through treated leaves and the translocation rate of upward direction was more pronounced than downward. Total absorption of Zn-65 was higher with Zn SO 4 than with the mixture. Utilization percent of foliar application of Zn was significantly decreased as the rate of Zn SO 4 increased from 0.5 to 1.0% either alone or in combination with Fe and Mn sulphates. Moreover, it was also reduced due to the presence of and Mn with Zn the spray solution with Zn SO 4 . In particular, 0.5% in soy solution realized the highest utilization and was efficient for supplying for orange plants with Zn. 3 tabs

  7. Evaluating Maize Yield and the Quality of Response to Vermicompost, in Thiobacillus and Foliar Application of Fe and Zn

    Directory of Open Access Journals (Sweden)

    Elnaz Davaran Hagh

    2017-08-01

    Full Text Available Introduction Half of the world's population suffers from micronutrients malnutrition. Use of bio-fertilizers in sustainable agricultural systems is important in production and enables plants to absorb more water from soil and improves plant nutrient uptake and photosynthesis. Benefits of vermicompost application in agriculture is due to its content of organic matter, plant nutrients and plant growth promotion. Vermicompost increases the absorption and transition of nutrients from soil to roots and improves plant growth (Simsek-Ersahin, 2011. Zn and Fe application is highly important; foliar application causes faster and higher absorption rate and cures deficiencies symptoms (Ghaffari et al., 2010. Thiobacillus is a chemolithotroph bacterium, receiving energy from sulfur oxidation. This bacterium acidifies microcites in the rhizosphere, increasing the availability of nutrients to plant roots (Kaya et al., 2009. Regarding the benefits of integrated nutrient management, this experiment was conducted with the aim of testing the effects of Fe and Zn foliar spraying, Thiobacillu sthiooxidans inoculation and vermicompost application on growth, yield and bio fortification of popcorn maize. Materials and methods This experiment was conducted in 2012 at the research field of Islamic Azad University, Tabriz branch, Iran. The experiment was conducted in factorial in the form of a randomized complete block design with three replications and four factors: vermicompost application in soil (0 and 2 t.ha-1, applied in strip form below the seeds before cultivation, inoculation with Thiobacillus thiooxidans, with a population of 108cfu.g-1. Sulfur was inoculated with T. thiooxidans prior to application. Fe chelate foliar application (without spraying and two times spraying of 0.002 concentration of 13% Fe chelate and Zn chelate foliar application (without spraying and two times spraying of 0.002 concentration of 15% Zn chelate. Maize seeds (Zea mays L. var

  8. Foliar absorption and translocation of Zn-65 in balady orange plants

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, F A; Sharaf, A N.M. [Agric. Dept. for Soil and Water, NRC, AEA, Cairo (Egypt)

    1995-10-01

    Greenhouse experiment was designed using Zn So{sub 4} as a single element or in a mixture of `Zn SO{sub 4} + Fe SO{sub 4}` at rates of 0.5 and 1.0% of these compounds. Different solutions were adjusted at PH 6.0 and Tween-20 at 0.5% (V/V) was added. The prepared solutions were labelled with carrier-free Zn-65. In a complete randomized design with three replicates orange seedlings two-year old were arranged. Labelled solution, in small droplets, were added onto upper surface of certain leaves (middle leaves) of seedling. Retained Zn-65 in the treated leaves with Zn SO{sub 4} alone was significantly higher than in leaves sprayed with a mixture of Zn, Mn and Fe sulphates. Upward and downward translocation of Zn-65 was highly related to its absorption through treated leaves and the translocation rate of upward direction was more pronounced than downward. Total absorption of Zn-65 was higher with Zn SO{sub 4} than with the mixture. Utilization percent of foliar application of Zn was significantly decreased as the rate of Zn SO{sub 4} increased from 0.5 to 1.0% either alone or in combination with Fe and Mn sulphates. Moreover, it was also reduced due to the presence of and Mn with Zn the spray solution with Zn SO{sub 4}. In particular, 0.5% in soy solution realized the highest utilization and was efficient for supplying for orange plants with Zn. 3 tabs.

  9. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  10. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  11. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    Science.gov (United States)

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Foliar-applied urea modulates nitric oxide synthesis metabolism and glycinebetaine accumulation in drought-stressed maize

    International Nuclear Information System (INIS)

    Zhang, L.; Tian, L.; Lai, J.; Zheng, P.; Liang, Z.; Alva, A

    2014-01-01

    Foliar urea has been proved to play a better positive role in enhancing accumulation of nitric oxide (NO) and glycinebetaine (GB) in maize (Zea mays L.) under drought stress (DS). However, it is unclear how foliar urea affects biosynthetic metabolism of NO and its relationship with GB accumulation. This study was on investigating the effect of foliar- applied urea on seedlings of maize cultivar Zhengdan 958 grown in a hydroponic medium under DS or No DS. Contents of NO and GB and nitric oxide synthase (NOS) activity increased and peaked 12 h after the treatment. Nitrate reductase activity (NRA) followed the similar pattern 6h after the treatment. Under DS foliar urea application increased NR and NOS activity and, thereby, increased NO formation. Therefore, enhancement in activities of both NRA and NOS resulted in an increase of NO accumulation. Foliar- applied urea could induce an increased NO burst by enhanced NO synthesis metabolism as a nitrogen signal, possibly resulting in GB accumulation under DS. (author)

  13. Uptake of soil-, foliar-and pod-applied nitrogen and phosphorus by rape (Brassica napus L.)

    International Nuclear Information System (INIS)

    Zhang Qinzheng; Xi Haifu; Lang Xianhua

    1992-01-01

    Uptake of soil-applied and foliar-and pod applied N, P by rape was studied by using 32 P and 15 N labelled fertilizer under pot culture condition. Application of phosphorus fertilizer to purplish clayey paddy soil which was poor in available P had influence on utilization of basal-dressed NH 4 HCO 3 by rape and subsequently on its growth and seed yield. Utilization rate of applied N in whole plant and seeds were 3.66 and 5.13 fold respectively as compared with control when 187.5 kg/ha of superphosphate were applied and increased with increasing application of superphosphate (187.5-562.5 kg/ha). Application of P fertilizer not only increased uptake of N but also promoted transportation of N from vegetative organs to seeds. Rape plant uptook 69.09% of foliar-and pod-applied N in form of 2% solution of urea after flowering and transported the N to seeds in greater proportion than that of soil-applied N. In the same period, 60% of foliar- and pod-applied P in form of 0.2% KH 2 PO 4 was absorbed by rape plant, most of which was in leaves. Uptake of N and P by rape increased 17.89% and 27.78% respectively when urea and phosphate was applied together compared with using urea and phosphate alone. Uptake of basal-dressed P by rape plant was 6% at early growing stage

  14. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    Science.gov (United States)

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  15. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    Directory of Open Access Journals (Sweden)

    Franz Walter Rieger Hippler

    Full Text Available The zinc (Zn supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  16. Uptake and Distribution of Soil Applied Zinc by Citrus Trees—Addressing Fertilizer Use Efficiency with 68Zn Labeling

    Science.gov (United States)

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays. PMID:25751056

  17. Absorption and transport of manganese of different labelled sources with 54b Mn applied via foliar in citrus

    International Nuclear Information System (INIS)

    Boaretto, Rodrigo Marcelli; Boaretto, Antonio Enedi; Muraoka, Takashi; Roque, Marcio Lucio

    2000-01-01

    Foliar fertilization is considered an efficient way to feed the plants, mainly with micronutrients. Studies on foliar absorption and transport of Mn have been necessary as well as on comparing different sources of this micronutrient solution applied on the leaves. The objective of the experiment was to study the Mn absorption from four sources by orange leaves and transport of the leaf absorbed Mn to the other parts of the plant. Orange plants were grown in greenhouse and some of their leaves received solution with a Mn concentration of 0.06% (MnSO 4 , MnCl 2 , lignin sulfonate-Mn and EDTA-Mn). The fertilizer solutions were labeled with 54 Mn. After 3, 6, 12, 24 hours and 2, 5, 15, 30, 60, 120 days from Mn application to the leaves, the plants were harvested. The leaves which received the Mn solution were separated from the other parts of the plants and washed in sequence with detergent solution (0.1%), distilled water, HCl solution (3%) and distilled water in order to remove the Mn remaining on the leaf surface. The 54 Mn activity of the samples was determined by monochannel gamma spectrometry. Chloride was the most efficient Mn source for foliar fertilization, followed by sulfate and lignin sulfonate; EDTA was the least efficient source. Only 10% of 54 Mn absorbed by the leaves was translocated to the other parts of the plant. (author)

  18. The effect of fertilizer level and foliar-applied calcium on seed production and germination of Gerbera hybrida

    DEFF Research Database (Denmark)

    Andreasen, Christian; Kemezys, Andrius Hansen; Müller, Renate

    2014-01-01

    an additional foliar calcium application influenced the same parameters. Subsequently, the effect of the various treatments on the germination of the obtained seeds was explored. Two identical experiments (A and B) were carried out with five concentrations of nutrient solutions corresponding to an electrical...... and seed number, but seed weight and plant biomass were significantly reduced at the highest fertilizer concentration. In both experiments, the seeds germinated slower and less seeds germinated when plants had received the largest amount of fertilizer (6.25 mS·cm-1). In none of the experiments did applied......Gerbera hybrida is an ornamental plant of great commercial interest, which is primarily propagated by seeds. We investigated whether increasing fertilizer concentrations during seed set enhanced plant biomass, number of flower heads, seed set, and seed weight. Furthermore, we studied whether...

  19. Response of Some Bread Wheat Cultivars to Foliar Application of Zn and Fe Different Forms in Two Locations with Different Soil Properties

    Directory of Open Access Journals (Sweden)

    E Arazmjoo

    2018-05-01

    Full Text Available Introduction Zinc (Zn and iron (Fe are essential mineral nutrients for plant and human growth, and dietary Zn and Fe deficiencies are a worldwide nutritional problem. The Recommended Dietary Allowance (RDA of Zn and Fe are 15 mg and 10 mg per day for human, respectively. However, micronutrient deficiencies affect more than half of the world’s population, especially women and preschool children. Iron is one of the most important micronutrients, and approximately two billion people suffer from iron deficiency worldwide. Zinc deficiency is also considered to be quite common and affects newborn, children, pregnant women and elderly. Micronutrient malnutrition in human in developing countries is derived from deficiencies of these elements in staple food. It is believed that increasing the micronutrient concentrations in these crops could increase the dietary intake of these elements in these regions significantly. More than 80% of arable soils in Iran are zinc-deficient with an average yield depression of around 50%. It is, therefore, highly important to develop cost-effective and quick solutions to the Zn and Fe deficiency problem. Materials and Methods In order to evaluate the effect of foliar application of zinc and iron different forms on yield components, phonological and morphological traits and grain yield of some wheat cultivars in two locations with different physico-chemical soil properties, two experiments in factorial arranged in randomized complete block design with three replications conducted during 2015-16 cropping season. Experimental treatments were included: wheat cultivars Roshan, Roshan Back cross (old cultivars, Bam and Ofogh (new cultivars, zinc application in three levels of foliar application of water (control, zinc sulfate and chelated zinc and iron application in three levels of foliar application of water (control, iron sulfate and chelated iron (equivalent to 2.5 kg ha-1. The first experiment was conducted at the

  20. Effect of gibberellin, auxin and kinetin treatments combined with foliar applied NPK on the yield of Capsicum annuum L. fruits and their capsaicin content

    Directory of Open Access Journals (Sweden)

    Tomasz J. Nowak

    2013-12-01

    Full Text Available The Wrocław version of hydroponic culture was applied. Under optimal conditions of root fertilization the plants were sprayed with growth regulators sueh as gibberellins, auxins and kinetins, and .their mixtures. Each growth regulator treatment was applied with or without NPK added. The influence of these treatments on the fresh and dry weight of the fruit, percentage of ripe fruits and content and yield of capsaicin was studied. The highest yield of fruits and capsaicin. was obtained from plants sprayed with gibberellic acid and kinetin (in concentrations of 10 and 5 mg/l, respectively together with NPK foliar application. No influence of ,growth regulators and foliar-applied NPK was noted on capsaicin content and dry weight of fruits.

  1. Effects of urea foliar application and of ammonium sulphate and urea applied to the soil on yield and N utilization by beans (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    Muraoka, T.; Victoria, R.L.; Oliveira, J.P.; Boaretto, A.E.

    1984-01-01

    The effects of nitrogen applied to the soil (as ammonium sulphate and urea) and foliar application of urea supplementing or not the soil application, on bean yield and nitrogen utilization are studied in a cerrado soil. Labelled ammonium sulphate is applied at the rate of 20Kg N/ha at seeding or 15 or 25 days after seeding and 40 Kg N/ha at seeding or in two different applications. Labelled urea is applied at the rate of 20kg N/ha at seeding and 40 Kg N/ha splitted. Foliar application is done at 15,22, 29,36 and 45 days after seeding, with 2% urea solution labelled with 10% 15 N. (M.A.C.) [pt

  2. Susceptibility of Aphelinus certus to foliar-applied insecticides currently or potentially registered for soybean aphid control.

    Science.gov (United States)

    Frewin, Andrew J; Schaafsma, Arthur W; Hallett, Rebecca H

    2012-02-01

    Soybean aphid, a serious economic pest of soybean in North America, is currently managed by applying non-selective foliar insecticides during outbreaks according to decision thresholds and crop maturity. Natural enemies, such as the parasitoid Aphelinus certus Yasnosh, potentially play an important role in suppressing soybean aphid. Using selective insecticides that preserve A. certus may enhance the biological control service they provide and thus prevent or reduce the severity of soybean aphid outbreaks. The toxicity of five insecticides (λ-cyhalothrin, dimethoate, flonicamid, mineral oil, spirotetramat) and the biopesticide Beauveria bassiana to A. certus was assessed. The LD50 values of λ-cyhalothrin and dimethoate were similar; however, the hazard quotient of dimethoate was greater than that of λ-cyhalothrin. In a screening bioassay, the descending order of toxicity for the recommended rates 48 h after application was dimethoate>λ-cyhalothrin>flonicamid>mineral oil>Beauveria bassiana>spirotetramat. Overall, λ-cyhalothrin and dimethoate were both harmful to A. certus. The other insecticides tested were harmless to A. certus and are potential candidates for inclusion in soybean aphid management programs. Copyright © 2011 Society of Chemical Industry.

  3. FOLIAR FERTILIZATION ON PINEAPPLE QUALITY AND YIELD ADUBAÇÃO FOLIAR NA QUALIDADE E PRODUTIVIDADE DE ABACAXI

    Directory of Open Access Journals (Sweden)

    Marcelo Carvalho Minhoto Teixeira Filho

    2011-04-01

    Full Text Available There are just a few studies using foliar sprays with micronutrients on pineapple crops. The objective of this study was to evaluate the B and Zn effect, as chelate, acid or salt, via foliar feeding, on fruit yield and quality. The experiment was carried out in Guaraçaí, São Paulo State, Brazil, in a loamy medium texture soil, by using Smooth Cayenne (Hawaiian pineapple seedlings. A randomized block design with four replications was adopted, with 110 g ha-1 of B and 250 g ha-1 of Zn for each application. Two foliar sprays were applied, at 7 and 9 months after planting. The B and Zn sources did not affect the total soluble solids contents, titratable acidity, average fruit diameter, fruit length without crown, and maturity index. Only the B, Zn, and K concentrations in the leaves were influenced by the application of micronutrients.

    Poucos são os estudos desenvolvidos com a aplicação via foliar de micronutrientes, na cultura do abacaxi. Este trabalho teve como objetivo avaliar os efeitos de B e Zn, em forma de quelato, ácido ou sal, via foliar, buscando-se obter respostas sobre os efeitos na produtividade e qualidade dos frutos. O experimento foi realizado em Guaraçaí (SP, em solo com textura média. Foram utilizadas mudas tipo filhote, da cultivar Smooth Cayenne (Havaiano. O delineamento experimental adotado foi o de blocos ao acaso, com quatro repetições, utilizando-se fontes para fornecer, em cada aplicação, 110 g ha-1 de B e 250 g ha-1 de Zn. Foram realizadas duas pulverizações foliares, aos 7 e 9 meses após o plantio. As fontes de B e Zn não exerceram efeito nos teores de sólidos solúveis totais, acidez titulável, diâmetro médio do fruto, comprimento do fruto sem coroa e índice de maturação. Apenas os teores de B, Zn e K, na

  4. Effects of the foliar-applied protein "Harpin(Ea)" (messenger) on tomatoes infected with Phytophthora infestans.

    Science.gov (United States)

    Fontanilla, M; Montes, M; De Prado, R

    2005-01-01

    The active ingredient in Messenger, is Harpin(Ea), a naturally occurring protein derived from Erwinia amylovora, a causal agent of fire blight. When Messenger is applied to a plant, the protein Harpin(Ea) binds foliar receptors to it. The receptors recognize the presence of Harpin(Ea), sending a signal that a pathogen is present, actually "tricking" the plant into thinking that it is under attack. This binding process triggers a cascade of responses affecting a global change of gene expressions, stimulating several distinct biochemical pathways within the plant responsible for growth and disease and insect resistance. The objective of this work is to characterize the development of an induced resistance against Phytophthora infestans. No effective treatment is currently available against this pathogenic agent, which causes the loss of complete harvests of different crops. Tomato plants with and without Messenger applications were inoculated with Phytophthora infestans in the same way. In addition, some plants with and without Messenger applications were not inoculated. Inoculated plants were symptomatologically checked for local and systemic symptoms. Evaluations of the number of tomatoes produced, with or without damage, and their growth, were also carried out. Based on the data obtained from the assays, significant changes were observed in the parameters measured due to Messenger treatment. The severe damage of this disease was reduced in the plants which received Messenger applications. These results open up new pathways in the control of diseases like Phytophthora infestans, in which effective means to combat them still do not exist, or these means are harmful to the environment.

  5. Combined effects of soil-applied and foliar-applied nitrogen on the nitrogen composition and distribution in water stressed "Vitis vinifera L." cv Sauvignon blanc grapes

    Directory of Open Access Journals (Sweden)

    Rana Jreij

    2009-12-01

    Significance and impact of study: This work helps to provide insight into the effect of N soil fertilization along with foliar fertilization on waterstressed vines. This may be useful in fertilization programs in the Mediterranean area and may help to choose the type and the rate of the N fertilization in case of severe vine water deficit. Also, we provide information of utmost importance on the distribution of summer foliarapplied N in grape tissues.

  6. Evaluation of soil and foliar fertilization on wheat yield and quality

    International Nuclear Information System (INIS)

    Ndiema, A.C.; Maina, M.P.D.; Kamundia, W.J.

    2001-01-01

    Traditionally wheat farmers in Kenya apply basal compound fertilizer like diammonium phosphate (DAP), Triple super phosphate (TSP). Plants require a considerable number of different elements for optimal growth. One way of supplying these micronutrients is through foliar fertilization. However there was an increase of 71.7% for 40kg N/ha plus bayfolan in Njoro over the control, 61.8% for bayfolan alone a foliar fertilizer, which contain a wide range of plant nutrients. In Molo the control out-yielded all the treatments indicating that planting the crop with DAP is sufficient. Foliar fertilizer was applied directly to the plant leaves to enhance crop yield due to their rapid absorption. The potential of improving yields comes as a result of increase in number of seeds. The objective of this study was to evaluate the effects of foliar fertilizer on wheat yield when used alone or in combination with soil-applied fertilizers. Byfolan is a fast acting fertilizer with nutrients rapidly becoming available to the plant. The composition of Bayfolan includes N (11%), P (8%), K (6%), Fe (0.019%), Mn (0.016%). Zn (0.0061% ), Co (0.00035%), Mo (0.00009%), sodium, sulphur, vitamin B 1 and growth hormones. The design was RCBD with nine (9) treatments and three (3) replications. The treatments included control, 20kg N/ha, 40kg N/ha, 80kg N/ha, Bayfolan foliar, 20kg N/ha + Baylon a foliar, 40kg N/ha + Bayfolan foliar, 20kg N/ha urea in solution form, 20kg N/ha urea in solution form + Bayfolan foliar. DAP was applied at the rate of 130kg/ha, as a blanket treatment at planting timeto provide N and P for initial growth. Significant difference in spike density and kernel weight at 5% level was observed at farms in Njoro but not at farms in Molo. (author)

  7. Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application.

    Science.gov (United States)

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj D; Paknikar, Kishore M; Rajwade, Jyutika M

    2017-06-01

    Cultivation of cereals in zinc deficient soils leads to declined nutritional quality of grain. Zinc deficiency in humans is a consequence of consumption of micronutrient deficient cereals as staple food. To achieve an increase in zinc density in grain, we evaluated zinc complexed chitosan nanoparticles (Zn-CNP) as a potential 'nanocarrier' suited for foliar fertilization. Zn-CNP were synthesized using tri-polyphosphate as a cross-linker. Spherical Zn-CNP (diameter 250-300nm) were positively charged (zeta potential, +42.34mV) and contained ∼20mg Zn/g (w/w). Plant growth in zinc deficient sand media, followed by foliar application of Zn-CNP (twice-a-week, for 5 weeks) after anthesis resulted in 27 and 42% increase in grain zinc content of MACS 3125 and UC1114 (durum wheat cultivars) respectively. Translocation of zinc ions from foliar applied Zn-CNP into the leaf and seed tissue was demonstrated using zinquin and dithizone stains, respectively. The study indicates the suitability of chitosan-based nanocarriers in agronomic biofortification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Assesment of economic benefits of foliarly applied osmoprotectants in alleviating the adverse effects of water stress on growth and yield of cotton (gossypium hirsutum L.)

    International Nuclear Information System (INIS)

    Zafar, Z. U.; Hussain, K.; Athar, H. U. R.

    2015-01-01

    Water stress reduces crop growth and productivity by affecting various physiological and biochemical processes. Although foliar application of osmoprotectants alleviates the detrimental effects of drought stress growth and productivity of crops, its economic benefits on large scale has not been explored yet. The studies were carried out to quantify the interactive effects of some osmoprotectantsand various watering regimes on cotton crop. The treatments consisted of water stress and osmoprotectant applications ((a) two watering regimes (well watered, 2689m /sup 3/ water; drought stressed, 2078m /sup 3/), and (b) three osmoprotectants (untreated check; water spray containing 0.1 percentage Tween-80; salicylic acid (100 mg L /sup -1/); proline (100 mg L /sup -1/); glycine betaine (100 mg L /sup -1/)) in split plot design. The crop was subjected to drought stress at day 45 after sowing, i.e. at the flowering stage. The solutions of osmoprotectants were foliarly applied after two weeks of imposition of water stress (at the peak flowering stage). The results showed that imposition of water stress caused substantial reduction in plant growth, biological yield, fruit production, and fiber characteristics as compared to fully irrigated cotton crop. However, the application of osmoprotectants was found effective in off-setting the negative impacts of drought stress. The exogenous application of salicylic acid (100 mgL /sup -1/) caused improvement by 47.9 percentage, 36.5 percentage, 17.4 percentage, 4.86 percentage and 9.9 percentage in main stem height, biological yield, fruit production, fiber length and seed cotton yield over an untreated check, respectively. The efficiency of various osmoprotectants was in order of salicylic acid > glycinebetaine > proline in alleviating the harmful effects of drought stress. The usage of osmoprotectants was also found most cost-effective and the value for money. The cost-benefit ratio was 1:9.1, 1:3.9 and 1:1.7 by spraying of salicylic

  9. Alleviation of Phytophthora capsici-induced oxidatıve stress by foliarly applied proline in Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Koç Esra

    2017-01-01

    Full Text Available Phytophthora capsici is a highly destructive pathogen of pepper. To examine whether proline modifies the levels of plant defense compounds produced in response to P. capsici-induced stress, pepper seedlings were infected with P. capsici-22 in the presence of proline (1 mM, 10 mM or in its absence. Proline was sprayed on the leaves of CM-334 and Kekova pepper cultivars prior to inoculation. CM-334 was more resistant to P. capsici-22, while the Kekova cultivar exhibited a sensitive reaction. P. capsici-22 increased the total phenolic compound and H2O2 levels, as well as phenylalanine ammonia-lyase, polyphenol oxidase and peroxidase activities in pepper seedlings. The application of exogenous proline further increased the activities of phenylalanine ammonia-lyase, polyphenol oxidase and peroxidase, as well as the total levels of phenolic compounds and the fresh and dry weights of the plants on the 5th and 7th days post treatment. After proline application, the highest catalase activity was found in both cultivars on the 5th day of the 10 mM proline + P. capsici application. On all days of the experiment, the applications caused a decrease in disease severity, necrosis length and H2O2 levels in both cultivars. In addition, proline decreased the colony growth of P. capsici and the number of zoospores. This finding indicates that enzymes and total phenolic compound levels protect the pepper seedlings against stress-related damage. Moreover, proline has the potential to directly scavenge free radicals and promote enzyme activity in pepper seedlings under P. capsici stress. These results suggest that foliar application of proline is an effective way to improve the stress tolerance of pepper to P. capsici.

  10. Concentração foliar de manganês e zinco em laranjeiras adubadas com óxidos e carbonatos via foliar Leaf concentrations of manganese and zinc in the orange fertilized via foliar application with oxides and carbonates

    Directory of Open Access Journals (Sweden)

    Leandro José Grava de Godoy

    2013-09-01

    Full Text Available Dentre os micronutrientes, o Zn e o Mn limitam a produção dos citros, no Brasil. A aplicação foliar tem sido a forma tradicional de fornecimento, contudo, a eficiência desta adubação depende de uma série de fatores, entre eles o tipo de fertilizante. Foram realizados dois experimentos em pomar com laranjeiras Pêra, enxertadas em limão cravo, com sete anos de idade, em Botucatu, SP. No primeiro experimento foram avaliadas três fontes de Mn via foliar: carbonato de manganês A, carbonato de manganês B e sulfato manganoso, em duas doses para cada fertilizante, correspondente a 250 e 500 g ha-1 de Mn, mais o controle, pulverizado somente com água. No segundo experimento foram testadas três fontes de Zn para aplicação foliar: óxido de zinco A, óxido de zinco B e sulfato de zinco, em duas doses para cada fertilizante, correspondente a 375 e 750 g ha-1 de Zn, mais o controle. As amostragens de folhas foram realizadas mensalmente, iniciando aos 30 dias após aplicação dos tratamentos. A aplicação foliar com carbonato de manganês B, na dose de 500 g ha-1 Mn, e com óxido de zinco B, na dose de 750 g ha-1, proporcionaram, respectivamente, níveis nutricionais adequados de Mn e Zn nas folhas de laranjeira. Na ausência de chuvas, os teores adequados de Mn e Zn no solo, não permitem suprir satisfatoriamente as laranjeiras Pêra enxertadas em limoeiro cravo.Among micronutrients, Zn and Mn limit the production of citrus in Brazil. Foliar application has been the traditional form of supply, however the efficiency of this type of fertilization depends on a number of factors, including the type of fertilizer used. Two experiments were conducted in an orchard of seven year old Pêra orange, grafted onto Rangpur lime, in Botucatu, São Paulo. In the first experiment three sources of Mn, applied via foliar application, were evaluated: manganese carbonate A, manganese carbonate B and manganese sulphate, at two rates per fertilizer

  11. Study on rice absorption and distribution of Cd in applying Zn fertilizer with 65Zn, 115Cdm tracing technique

    International Nuclear Information System (INIS)

    Tang Nianxin; Shen Jinxiong

    1994-01-01

    Results of study by using 65 Zn and 115 Cd m tracers show that, along with the increase of the amount of Cd in applying Zn fertilizer to soil, rice has the phenomena of growth retard and tiller delay in the earlier growing stage. The inhibiting phenomenon is lightened along with the progress of rice growth. Very small quantity of Cd might be helpful to the growth of rice. It would cause serious inhibition to rice growth when the amount of Cd reaches to a definite limitation (64 x 10 -6 ). The distribution of Cd in a rice plant follows the following order in content: root>stem and leaves>brown rice>ear stalk>rice shell. Cd is mainly accumulated in rice root, taking 90% of the total amount of Cd contained in whole rice plant. The amount of Cd absorbed by rice increases with the amount of Cd applied to soil, though the total absorption extremely low, for example, only about 0.1% of the applied amount could be absorbed by two crops of rice, most of the applied Cd still retains in soil. Less and less Zn could be absorbed and utilized by rice along with the increase of the amount of the applied Cd. Application of Mn fertilizer affects negatively the absorption of Cd by rice, especially in brown rice

  12. Effect of Different Bio-Fertilizers Applied as Supplemental Foliar Spray on the Growth and Yield ff Corn (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    Nathaniel Llamelo

    2016-11-01

    Full Text Available Different bio-fertilizers like Fermented Plant Juice (FPJ, Indigenous Micro-Organisms (IMO and Effective Microorganisms Activated Solution (EMAS was prepared and applied as foliar spray to evaluate its effects on the growth and yield of corn at Conner, Apayao condition. Initial application was at 25 days after planting (DAP and re-application after 7 days for 5 consecutive weeks. The different bio-fertilizers differed significantly in final plant height, ear height, number of leaves, ear length, ear diameter, weight of 1,000 seeds, yield per quadrant and computed yield. On the other hand, there was no significant difference on the number of rows per ear, shelling recovery and drying recovery. EMAS produced the tallest plant, highest ear height, the most number of leaves, longest ear length, biggest ear diameter, heaviest weight of 1,000 seeds, and highest weight per quadrant and computed yield. Furthermore, EMAS and IMO registered the highest ROCE while control was almost similar with the vermi tea and FPJ had the lowest.

  13. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.

    Science.gov (United States)

    Flores, Efracio Mamani; Gouvea, Rogério Almeida; Piotrowski, Maurício Jeomar; Moreira, Mário Lucio

    2018-02-14

    alignment. Bader charge analysis showed an accumulation of charges in the 6th layer of ZnO for the three ZnO/ZnX interfaces. On the basis of these results, we have proposed that ZnO/ZnS and ZnO/ZnSe core-shell structures can be applied as good candidates (with better efficiency) for photovoltaic devices.

  14. {sup 65} Zn absorption by orange leaves and their transport on the plant; Absorcao de {sup 65} Zn pelas folhas de laranjeira e sua translocacao na planta

    Energy Technology Data Exchange (ETDEWEB)

    Boaretto, Rodrigo Marcelli; Boaretto, Antonio Enedi; Muraoka, Takashi; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Nutricao Mineral de Plantas; Mourao Filho, Francisco de Assis Alves [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegetal

    2002-07-01

    Zinc deficiency is common in Brazilian citrus orchards. The objective of the experiment was to study the Zn absorption from different sources (ZnSO{sub 4}, ZnCl{sub 2}, Zn-EDTA and Zn-ligno sulfate) by orange leaves and transport of the leaf absorbed Zn to the other parts of the plant. Orange plants were grown in greenhouse and some of their leaves received solution with a Zn concentration of 0.07 %. The fertilizer solutions were labeled with 65 Zn (0,6 KBq g{sup -1}). After 3, 6, 12, 24 hours and 2, 5, 15, 30, 60, 120 days from Zn application to the leaves, the plants were harvested. The plants that received the Zn solution were separated in different parts. The {sup 65} Zn activity of the samples were determined by monochannel gamma spectrometry. The results showed that the foliar fertilization increased the leaf Zn concentration, the chloride was more efficient Zn source than sulfate, but only a small portion (less than 5 {mu}g in 30 days) of foliar applied {sup 65} Zn was translocated to other plant parts, independent of the Zn source. (author)

  15. DESEMPENHO DA APLICAÇÃO FOLIAR DE ZINCO EM FEIJOEIRO

    Directory of Open Access Journals (Sweden)

    Hugo Alexandre Coelho

    2010-06-01

    Full Text Available The nutritional requirements of crops, in general, becomes more intense with the beginning of the reproductive phase, being more critical at the time of seed formation, when considerable amounts of nutrients are they translocation, this requirement should be increased to the fact that nutrients are essential to training and development of new bodies of booking. This study aimed to evaluate the agronomic efficiency of foliar application of zinc (zinc oxide Zn 700 g L-1 in bean plant, compared to leaf application of zinc sulphate (ZnSO4 and control (without application of Zn. The experiment was installed in the Faculty of Agricultural Sciences - UNESP / Campus de Botucatu-SP. Was placed in containers with a capacity of 20L of soil and leaf applications encompassing four schemes and two of rain, with 5 replicates per treatment, a total of 40 vessels. The results for the factorial design did not show in general, significantly different answers when evaluated on the simulation of rain or the lack of simulation. The treatment (700g L-1 of ZnO has demonstrated agronomic efficiency as its foliar application, with results equal or exceed the application of ZnSO4 and control when applied at the same dose of Zn.

  16. Influence of foliar fertilization on walnut foliar zinc levels and nut production in black walnut

    Science.gov (United States)

    William R. Reid; Andrew L. Thomas

    2013-01-01

    The impact of foliar zinc fertilizer application on nut-bearing black walnut (Juglans nigra L.) trees was studied. Foliar sprays were applied three times per season on two cultivars during four growing seasons by wetting the foliage of the entire crown using a tank mix containing 500 ppm zinc, starting at leaf burst and continuing at 2 week intervals...

  17. Internal electric fields due to piezoelectric and spontaneous polarizations in CdZnO/MgZnO quantum well with various applied electric field effects

    International Nuclear Information System (INIS)

    Jeon, H.C.; Lee, S.J.; Kang, T.W.; Park, S.H.

    2012-01-01

    The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.

  18. Internal electric fields due to piezoelectric and spontaneous polarizations in CdZnO/MgZnO quantum well with various applied electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H.C. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, S.J., E-mail: leesj@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Kang, T.W. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Park, S.H. [Department of Electronics Engineering, Catholic University of Daegu, Kyeongbuk 712-702 (Korea, Republic of)

    2012-05-15

    The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.

  19. 65 Zn absorption by orange leaves and their transport on the plant

    International Nuclear Information System (INIS)

    Boaretto, Rodrigo Marcelli; Boaretto, Antonio Enedi; Muraoka, Takashi; Nascimento Filho, Virgilio Franco do; Mourao Filho, Francisco de Assis Alves

    2002-01-01

    Zinc deficiency is common in Brazilian citrus orchards. The objective of the experiment was to study the Zn absorption from different sources (ZnSO 4 , ZnCl 2 , Zn-EDTA and Zn-ligno sulfate) by orange leaves and transport of the leaf absorbed Zn to the other parts of the plant. Orange plants were grown in greenhouse and some of their leaves received solution with a Zn concentration of 0.07 %. The fertilizer solutions were labeled with 65 Zn (0,6 KBq g -1 ). After 3, 6, 12, 24 hours and 2, 5, 15, 30, 60, 120 days from Zn application to the leaves, the plants were harvested. The plants that received the Zn solution were separated in different parts. The 65 Zn activity of the samples were determined by monochannel gamma spectrometry. The results showed that the foliar fertilization increased the leaf Zn concentration, the chloride was more efficient Zn source than sulfate, but only a small portion (less than 5 μg in 30 days) of foliar applied 65 Zn was translocated to other plant parts, independent of the Zn source. (author)

  20. Effect of Foliar Application of Micro Nutrients on Physiological Growth Indices and Total Dry Matter Yield of Forage Corn

    Directory of Open Access Journals (Sweden)

    A. Soleymani

    2012-04-01

    Full Text Available In order to evaluate the effect of foliar application of micro nutrients on physiological growth indices and total dry matter yield of forage corn. Field experiment was conducted in 2006 at Bersian village Isfahan. A randomized complete block design with four replications was used. Plant treated with 8 foliar application treatments (Fe, Zn, Cu, Mn, Fe + Mn, Cu + Zn, Fe + Mn + Cu + Zn and control. The responses to foliar application in total dry weight, LAI and CGR appeared to differ between the treatments, but there is no significant difference in NAR between the treatments. Maximum leaf area index gained in foliar application of Fe but there is significant difference between this treatment and other treatments except foliar application of Zn and Fe + Mn. Foliar application of Fe and Fe + Mn result to maximum total dry weight, but there is no significant difference between these treatments and foliar application of Zn, Mn, Mn + Cu and Fe + Zn + Cu +Mn. Maximum and minimum NAR gained in foliar application of Mn and control treatments respectively. Maximum CGR gained in foliar application of Zn, there is significant difference between this treatment and others. Control treatment in comparison with others shows minimum value in all measured factors. The results indicate that foliar application of micro nutrients particularly Fe and Fe+Mn may be suitable to product maximum total dry matter yield under similar condition.

  1. Foliar uptake of zinc by vascular plants. Radiometric study

    International Nuclear Information System (INIS)

    Maresova, J.; Remenarova, L.; Hornik, M.; Pipiska, M.; Augustin, J.; Lesny, J.

    2012-01-01

    The aim of this paper was to obtain quantitative data of foliar uptake kinetics and long distance transport of zinc in tobacco (Nicotiana tabacum L.) and hop (Humulus lupulus L.) plants. Zinc was used as a model of microelement and toxic metal, tobacco and hop as a representatives of agriculturally important plants. A tip of leaf blade was immersed in the solution spiked with 65 ZnCl 2 and foliar uptake and translocation to other parts of the plant grown in nutrient solution was measured by gamma-spectrometry and autoradiography. We found that foliar zinc uptake by both plants is dependent on the initial metal concentration within the range C 0 = 10-100 μmol dm -3 ZnCl 2 . Zinc is immobilized mainly in immersed part of the contact leaf and only 0 = 0.1 mmol dm -3 ZnCl 2 concentrations >2.5 mg/g Zn and 4.8 mg/g Zn (dry wt.) in immersed part of tobacco and hop leaf plant, respectively were found after 5 days of exposure. Low mobility of zinc entering the plant via the leaf surface can be attributed to the immobilization of zinc into Zn-ligand complexes with high stability constants log K at pH 6.0-8.0, such as the reaction products of Zn 2+ ions with citric acid, histidine or phosphates. Zinc can be extracted from dried leaves by the solutions of inorganic salts, carboxylic acids, amino acids and synthetic complexing ligands such as EDTA. Anionic (SDS) and non-ionic (Tween 40) surfactants causes the decrease of the Zn foliar uptake, but not translocation of Zn from the contact leaf area. Obtained data are discussed from the point of view of possible limited efficiency of liquid formulations designed for practical applications as Zn foliar fertilizers. (author)

  2. Foliar absorption of 15N labeled urea by tea plant

    International Nuclear Information System (INIS)

    Hoshina, Tsuguo; Kozai, Shuji; Ishigaki, Kozo

    1978-01-01

    The effect of foliar application on the nitrogen nutrient status of tea shoots has been studied using 15 N labelled urea. Furthermore, the difference in nitrogen utilization by tea plant between foliar applied and top dressed nitrogen was investigated using 15 N labelled urea and ammonium sulfate. The foliar application of urea increased the amount of chlorophyll and total nitrogen in the new shoot, and the foliar application was more effective under shading condition. The urea sprayed upon old leaves prior to the opening of new leaf translocated to the new shoots. However, the foliar application after the opening of new leaf was more effective on nitrogen absorption by new shoots than one prior to that, and rather than top dressing for new shoots. It could be recognized that the foliar application of urea raises the nitrogen nutrient status of tea leaves in summer. (author)

  3. Disponibilidade dos metais pesados tóxicos cádmio, chumbo e cromo no solo e tecido foliar da soja adubada com diferentes fontes de NPK+Zn Availability of cadmium, lead and chromium toxic heavy metals in soil and soybean leaf tissue fertilized with different sources of NPK+Zn

    Directory of Open Access Journals (Sweden)

    Ivair André Nava

    2011-10-01

    Full Text Available Os fertilizantes utilizados para suprir micronutrientes podem apresentar metais pesados tóxicos em sua composição que podem proporcionar severas consequências ao meio ambiente. Plantas cultivadas na presença de determinadas concentrações de elementos tóxicos podem oferecer risco de contaminação, pois os acumulam em seus tecidos. Desse forma, neste trabalho objetivou-se avaliar a disponibilização dos metais pesados tóxicos Cd, Pb, e Cr para o solo e tecido foliar da cultura da soja, cultivada a campo e fertilizada com um formulado N:P2O5:K2O e diferentes fontes de Zn. O delineamento experimental utilizado foi o de blocos ao acaso, em esquema fatorial [(5+1x2], com três repetições. Os tratamentos foram constituídos de cinco diferentes fertilizantes NPK+Zn (quatro fontes com Zn e uma sem Zn, um tratamento sem adubação e duas doses de adubação (uma vez e o seu dobro. Com base nos resultados obtidos foi concluído que a aplicação dos tratamentos disponibilizou Cd, Pb e Cr para as plantas de soja e para o solo do experimento nas duas doses de adubação utilizadas.Fertilizers used to supply micronutrients may have toxic heavy metals in their composition, which can have severe consequences for the environment. Plants grown in the presence of certain concentrations of toxic elements may present a risk of contamination because the toxins accumulate in their tissues. This study aimed to measure the presence of the toxic heavy metals Cd, Pb and Cr in the soil and leaf tissue of field-grown soybean plants, fertilized with a formulated N:P2O5:K2O and different sources of Zn. The experimental design utilized randomized blocks in a factorial scheme [(5+1x2], with three replications. The treatments consisted of five different fertilizers NPK + Zn (four sources with Zn and one without Zn, a treatment without fertilizer and two fertilizer levels (a single and double application. Based on obtained results it was concluded that the double

  4. Uptake and Distribution of Soil Applied Zinc by Citrus Trees?Addressing Fertilizer Use Efficiency with 68Zn Labeling

    OpenAIRE

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, Jos? Ant?nio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citru...

  5. Influence of the applied potentials difference on structural and conductive properties of CoZnO nanotubes

    Science.gov (United States)

    Ibragimova, M. A.; Kozlovskiy, A. L.; Kenzhina, I. E.; Zdorovets, M. V.

    2018-04-01

    A series of CoZnO nanotubes was obtained by electrochemical deposition, with different atomic metal coefficients, due to a change in the applied potential difference. A systematic study of the morphology, structural and conductive properties of nanotubes was also carried out. It is established that the samples synthesized at the applied potentials difference of 1.5 and 1.75 V are three-component systems consisting of two oxide phases of ZnO and CoO1.92 cubic system and a phase of a solid solution of substitution Co0.65Zn0.35 of hexagonal type. The samples synthesized at a potential difference of 2.0 V represent an alloy of two oxide phases, ZnO and CoO1.92.

  6. Effect of Foliar Application of Iron, Zinc and Manganese Micronutrients on Yield and Yield Components and Seed Oil of Pot Marigold Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    E. Rezaei Chiyaneh

    2016-02-01

    Full Text Available Although micronutrients effect on growth and yield of different plants has been intensively investigated, but there is limited information on its effect on grain yield and seed oil content of pot marigold Calendula officinalis L.. In order to investigate the effects of micronutrients (Fe, Zn and Mn spraying on yield and yield components and seed oil of pot marigold, a field experiment was conducted based on randomized complete block design with three replications at the Research Farm of Payame Noor University of Nagadeh in 2010. Treatments included Fe, Zn, Mn, mixed solutions of these elements (Fe+Zn, Fe+Mn, Zn+Mn, Fe+Zn+Mn and control (water. Treatments were applied in 2 g/litter twice at stem elongation and early flowering stages. Different traits such as plant height, number of capitol per plant, number seed per capitol, thousand seed weight, biological yield, seed yield, seed oil percentage and oil Yield were recorded. The results showed that foliar application of micronutrients had significant effects on all of these traits. Yield components, seed yield, oil percentage and yield were enhanced by foliar application, compared with control (untreated plants. The maximum number seed per capitol, thousand seed weight and biological yield were relevant to Fe treatment. The highest numbers of capitol per plant and seed yield (643.33 kg.ha-1 were relevant to Zn+Fe treatment and the maximum oil yield (124.20 kg.ha-1 was produced by Zn+ Fe+ Mn treatment. Seed yield and oil yield increased by 31.27% and 44.18% yields more than control, respectively. It can be concluded that, foliar application of micronutrients had positive effects to obtain high yield and oil of pot marigold.

  7. Foliar additional nutrition in the fruit growing field

    International Nuclear Information System (INIS)

    Soare, M.; Borlan, Z.; Gavriluta, I.; Budoi, G.; Marinca, C.; Bandu, G.G.

    1999-01-01

    This paper presents data concerning the influence of foliar application of some types of complex foliar fertilizers under the conditions of SCPP Caransebes (Caras-Severin district). The composition of these nutrients fulfils the nutritional needs of the fruit growing species on the fruit yield obtained in orchards. The application of different types of foliar nutrients on plants teguments resulted in some significant yield increases for the two species that were studied: apple and plum tree. The novelty of this paper is represented by the apparent degrees of productive use in yields of the macro and micronutrients from foliar fertilizers, as well as the productive use degrees of nutrients present in soil and of the nutrients applied in soil (we took into account the mean values for the studied years). The apparent degrees of productive use (in yield increases) of the nutrients from complex foliar fertilizers applied on apple-trees and plum-trees generally exceed 100 %. They determine high levels of productive use of the nutrients from soil and foliar nutrients applied. The experimental data emphasize the ecological protection effect of the supplementary foliar fertilization for the yield stimulation especially on soils with light texture and sloping soils. Refs. 6 (author)

  8. Influence Applied Potential on the Formation of Self-Organized ZnO Nanorod Film and Its Photoelectrochemical Response

    Directory of Open Access Journals (Sweden)

    Nur Azimah Abd Samad

    2016-01-01

    Full Text Available The present paper reports on the facile formation of ZnO nanorod photocatalyst electrodeposited on Zn foil in the production of hydrogen gas via water photoelectrolysis. Based on the results, ZnO nanorod films were successfully grown via electrochemical deposition in an optimum electrolyte set of 0.5 mM zinc chloride and 0.1 M potassium chloride at pH level of 5-6 and electrochemical deposition temperature of around 70°C. The study was also conducted at a very low stirring rate with different applied potentials. Applied potential was one of the crucial aspects in the formation of self-organized ZnO nanorod film via control of the field-assisted dissolution and field-assisted deposition rates during the electrochemical deposition process. Interestingly, low applied potentials of 1 V during electrochemical deposition produced a high aspect ratio and density of self-organized ZnO nanorod distribution on the Zn substrate with an average diameter and length of ~37.9 nm and ~249.5 nm, respectively. Therefore, it exhibited a high photocurrent density that reached 17.8 mA/cm2 under ultraviolet illumination and 12.94 mA/cm2 under visible illumination. This behaviour was attributed to the faster transport of photogenerated electron/hole pairs in the nanorod’s one-dimensional wall surface, which prevented backward reactions and further reduced the number of recombination centres.

  9. Applying RF Magnetron sputtering to prepare ZnO thin films and their characterization

    International Nuclear Information System (INIS)

    Saad, M.; Kassis, A.

    2009-05-01

    ZnO thin films were prepared using Rf magnetron sputtering under several preparation conditions (different values of deposition pressure, Rf power, substrate temperature). The optical properties of these films were investigated by measuring their transmission in the spectral range (300-1000 nm), and the electrical properties were investigated by measuring their electrical resistance. Results have been discussed in terms of the modified Thornton model for sputtered thin metal oxide films. Preparation conditions for depositing the highly resistive transparent i-ZnO buffer layer and the highly conducting transparent n-ZnO window layer for solar cells were proposed. (author)

  10. The Effect of Zinc Sulfate Different Amount Soil and Foliar Application on Correlated Grain Characters in Sweet Corn

    Directory of Open Access Journals (Sweden)

    J. Mahmoodi,

    2013-06-01

    Full Text Available This research was conducted to evaluate the effects different concentrations of zinc sulfate applications at different growth stages on sweet corn at the Research Station of Faculty of Agriculture in Islamic Azad University, Tabriz branch in 2012. The study was conducted in split plot experiment based on Randomized Complete Block Design with three replications. Treatments were seven levels of zinc sulfate application methods: (control, soil application, foliar application at 6-8 leaf growth stage, tasseling, grain filling stage, foliar application at three stages, soil application with foliar application at three stages as main plot, three levels of foliar and soil application of zinc sulfate: (0.003, 0.005 and 0.007 for foliar application and 15, 25 and 35 kg/ha for soil application as sub plot. Results showed that the highest grain yield correlated characters were obtained in foliar application at three stages and soil application with foliar application at three stages. In these conditions increasing of dry grain yield and ear were more than 50%. The higher values for grain production were obtained in Zn foliar application with 0.005 concentration (25 kg/ha soil application. Zinc sulfate increased Zn content of grains produced more than 100%. Thus, using Zn not only increases sweet corn grain and ear yield but also increased quality of products.

  11. Effects of soil and foliar applications of iron and zinc on flowering and essential oil of chamomile at greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Yousef NASIRI

    2015-11-01

    Full Text Available In order to study the effects of soil and foliar applications of iron (Fe and zinc (Zn on flowering, flower yield and essential oil production of German chamomile a pot experiment was conducted under greenhouse conditions at the Faculty of Agriculture, University of Tabriz, Iran in 2012. The experiment was arranged as completely randomized design with 12 treatments and three replications. Treatments were as follow: T1: control – without Fe or Zn fertilizers, T2: 30 mg FeSO4.7H2O kg-1 dry soil, T3: 22 mg ZnSO4.7H2O kg-1 dry soil, T4: 30 mg FeSO4.7H2O + 22 mg ZnSO4.7H2O kg-1 dry soil, T5: foliar spraying of FeSO4.7H2O (3.5 g L-1, T6: foliar spraying of FeSO4.7H2O (7.0 g L-1, T7: foliar spraying of ZnSO4.7H2O (2.5 g L-1, T8: foliar spraying of ZnSO4.7H2O (5.0 g L-1, T9: T5+T7, T10: T5+T8, T11: T6+T7, T12: T6+T8. The foliar spraying was done two times during the growing period. The results revealed that the flower number, flower yield, essential oil content and essential oil yield were significantly increased by soil and foliar applications of Fe + Zn, compared with the control (untreated. The highest flower number (477 plant-1, flower yield (11.6 g pot-1, essential oil content (0.88 % and essential oil yield (119 mg pot-1 were recorded for the soil application of Fe + Zn (T4 by 58, 68, 21.4 and 105 % increment compared to the control, respectively. Foliar application of Fe + Zn (T12 was placed at the next rank; however this treatment had no significant difference with the soil application of Fe + Zn (T4. Other treatments did not show significant differences with the control. Generally, the results showed that soil or foliar application of Fe + Zn can be effective on increase or improve of quantity and quality of chamomile yield. Moreover, use of foliar application as a low cost method especially in areas with alkaline or calcareous soils can be recommended.

  12. La toxicidad por exceso de Mn y Zn disminuye la producción de materia seca, los pigmentos foliares y la calidad del fruto en fresa (Fragaria sp. cv. Camarosa

    Directory of Open Access Journals (Sweden)

    Casierra-Posada Fanor

    2005-12-01

    estudiar la respuesta de plantas de fresa (Fragaria sp. cv. Camarosa a niveles elevados de Zn y Mn en el suelo. Las plantas de fresa crecieron en materas llenas con suelo en un invernadero en Tunja (Colombia. Se le adicionó gradualmente 350 mg de Zn ó 150 mg de Mn, como ZnSO4.7H2O y MnSO4. H2O, respectivamente, por kilogramo de suelo secado al aire. Las plantas se cosecharon 16 semanas luego de empezados los tratamientos. Se determinó: área foliar total; producción de materia seca; contenido de clorofila a, clorofila b y carotenos en hojas; contenido de sólidos solubles totales y diámetro longitudinal en frutos. Los resultados indicaron que altas concentraciones de Zn y Mn reducen el área foliar y la producción de materia seca. La calidad de la fruta se afectó por estos metales en el suelo: en plantas tratadas con altas concentraciones, los sólidos solubles totales de los frutos fueron menores que en los testigos, se les redujo el diámetro y disminuyó el contenido de clorofila y carotenos en las hojas. Se evidenció una mayor toxicidad del Zn para las plantas que del Mn.

  13. Malabsorption of mineral nutrients and effects of foliar fertilization on continuously cropped capsicum annuum l. var. annuum

    International Nuclear Information System (INIS)

    Ye, X.H.; Zhao, Z.L.; Zhao, Z.L.; Zhao, H.B.

    2014-01-01

    Cayenne pepper (C. annuum var. annuum) cultivar known as line No. 5 was used to establish a reference baseline for fertilization experiments under conditions of continuous cropping versus crop rotation. The effects of continuous cropping on absorption of 11 essential nutrient elements and fruit yield were studied. Concurrently, we also examined the effects of foliar application of urea + KH/sub 2/ PO/sub 4/ and Fe + B + Zn + Mn on nutrient absorption due to continuous cropping. The results showed that, compared with peppers grown in rotation soil, continuous cropping affected the uptake of eight elements (P, K, Mg, Fe, B, Zn, Mn, Cu) and transport of these elements to the aerial parts of the plant, although the element concentrations in continuous cropping soil were not lower than those in rotation soil. Continuous cropping caused a decline in fruit yield. The impact of continuous cropping on the uptake of trace elements was greater than it was for macro elements. Foliar application of urea + KH/sub 2/ PO/sub 4/ significantly improved the P, Mg, Fe, and Mo content of continuously-cropped pepper plants, but did not significantly improve the content of N and K, and there was an antagonistic effect on Zn uptake. Foliar application of Fe + B + Zn + Mn, significantly increased the Fe, B, Zn, Mn, and P content in the plants; Ca uptake in the leaves and fruits was promoted to a certain degree, but there was obvious antagonism toward Mo and Cu uptake in the stems, leaves and fruits. Pepper fruit yields were significantly increased by foliar application of urea + KH/sub 2/ PO/sub 4/ or foliar application of Fe + B + Zn + Mn. However the effects of foliar application of Fe + B + Zn + Mn on increased production were significantly better than the effects of foliar application of urea + KH/sub 2/ PO/sub 4/. (author)

  14. Effect of Foliar Application of Iron, Zinc and Manganese on Quantitative and Qualitative Characteristics of Two Varieties of Grain Millet

    Directory of Open Access Journals (Sweden)

    H. Javadi

    2016-12-01

    Full Text Available In order to study the effect of foliar application of Fe, Zn and Mn on yield, yield components and protein content of two varieties of grain millet an experiment was conducted as factorial based on randomized complete block design with three replications in research field of Birjand branch, Islamic Azad University at 2010.  In this study two millet varieties including Bastan (Setaria italica and Pishahang (Panicum miliaceum, and six levels of foliar micronutrient fertilizer including control, Fe, Zn, Mn, (Fe+Zn, (Fe+Zn+Mn were investigated. The results indicated that, panicle length, 1000 grain weight and panicle number per m2 were higher in Pishahang than Bastan, but grain yield, number of seeds per panicle, harvest index and protein yield were higher in Bastan. Characteristics such as panicle length, biological yield and harvest index and protein percentage were affected by foliar micronutrient fertilizer but grain yield remained unchanged. Foliar application with (Fe+Zn+Mn increased protein content compared to the control, but it did not affect protein yield. According to the results of this experiment, Bastan millet variety and foliar application of Zn is potent to produce the maximum grain yield, albeit it warrants further studies.

  15. Effect of Applying Chemical Fertilizers on Concentration of Cd, Pb and Zn in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Hossein Pourmoghadas

    2017-03-01

    Full Text Available Background &Objective:  Nowadays uncontrolled uses of chemical fertilizers which have many heavy metals such as Cadmium, Lead and Zinc in addition have economic problems, cause to serious damages in the environment. Therefore uncontrolled application of fertilizers can cause accumulation contaminants in soil, water sources and increasing in plants and human & animals’ food chain. The main objective of this research was to investigate the effects of chemical fertilizers application to increase heavy metals in agricultural soils at directions to prevent contamination in water sources, agricultural products and the best uses of chemical fertilizers. Methods: In this study, 20 soil samples and 5 useful chemical fertilizer samples were collected and investigated. After fertilizer and soil samples were prepared, digested and filtered, heavy metals were determined with using atomic absorption. Results: The results of this study showed that, Cd in Diammonum phosphate  fertilizer 1.25 times, Super phosphate triple 1.7 times and in Macro granular fertilizer 1.5 times were as much as maximum acceptable concentration in chemical fertilizers. Cadmium concentration in all of the Jarghoye (Isfahan agricultural soil samples 3 to 7 times and in the Mobarake village (Najaf abad agricultural soil samples 10 to 35 times were as much as maximum acceptable concentration in agricultural soils. But Pb and Zn concentration in all of the agricultural soil samples was less than the amount of maximum acceptable concentration. Conclusion: Phosphate chemical fertilizers were positive effects to increase concentration of Pb and Zn in agricultural soils. Therefore, application of the fertilizer must be more attention because of increasing heavy metals in the agriculture soils and probably increasing heavy metals in food chain.  

  16. Foliar Epidermal Studies of Plants in Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    H. A. Thakur

    2014-03-01

    Full Text Available This paper describes foliar epidermal structure in 17 species belonging to 17 genera of the family Euphoprbiaceae. Anomocytic stomata is predominant, rarely they are anisocytic, paracytic on the same foliar surface with different combinations. Leaves are hypostomatic and rarely amphistomatic. The foliar surface is smooth, rarely striated. The foliar epidermal cell walls are straight or undulate. Distribution of stomata, stomatal index, stomatal frequency, stomatal size and other cell wall contours are described in detail.

  17. Improving growth and yield of cowpea by foliar application of ...

    African Journals Online (AJOL)

    Water stress impaired cowpea plant growth and decreased ion percentage and chlorophyll and carbohydrate concentration in the shoot as well as yield and its quality. Foliar-applied chitosan, in particular 250 mg/l, increased plant growth, yield and its quality as well as physiological constituents in plant shoot under stressed ...

  18. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    The present study was conducted to assess whether exogenous applied salicylic acid (SA) as a foliar spray could ameliorate the adverse effects of virus infection in two maize cultivars (maize cv. sabaini and maize cv. Nab El-gamal). The plants were grown under normal field conditions for two weeks in sand clay soil, and ...

  19. Copper and Zinc Uptake by Pakchoi and Rice as Affected by Applying Manure Compost with Different Levels of Cu and Zn Concentrations

    Directory of Open Access Journals (Sweden)

    Huang T. H.

    2013-04-01

    Full Text Available Cu and Zn are frequently added to livestock diets as additives to increase feed efficiency and production. This practice resulted in the higher contents of Cu and Zn in excrement of livestock. The aim of this study is to evaluate the effect of Cu and Zn concentration of manure compost and its application rates on the production and quality of pakchoi and rice. The pot experiments were conducted and the six manure compost were applied at 3 rates (20, 40, and 80 ton/ha, including the control and chemical fertilizer treatments. Results showed that the yield of the crops was enhanced by the compost application, and the Cu and Zn concentration in the edible part of crops were in normal range (pakchoi: Cu 1.8-10.4 mg/kg, Zn 39-160 mg/kg; rice grain: Cu 0.6-4.0 mg/kg, Zn 58-79 mg/kg. The potential risk of long-term manure compost application on soil quality was also evaluated. The total Zn concentration in soils may reach the regulation standard after 22 years of manure compost application at the rate of 40 ton/ha/year.

  20. Estimating foliar nitrogen in Eucalyptus using vegetation indexes

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Ramalho de Oliveira

    Full Text Available ABSTRACT Nitrogen (N has commonly been applied in Eucalyptus stands in Brazil and it has a direct relation with biomass production and chlorophyll content. Foliar N concentrations are used to diagnose soil and plant fertility levels and to develop N fertilizer application rates. Normally, foliar N is obtained using destructive methods, but indirect analyses using Vegetation Indexes (VIs may be possible. The aim of this work was to evaluate VIs to estimate foliar N concentration in three Eucalyptus clones. Lower crown leaves of three clonal Eucalyptus plantations (25 months old were classified into five color patterns using the Munsell Plant Tissue Color Chart. For each color, N concentration was determined by the Kjeldahl method and foliar reflectance was measured using a CI-710 Miniature Leaf Spectrometer. Foliar reflectance data were used to obtain the VIs and the VIs were used to estimate N concentrations. In the visible region, the relationship between N concentration and reflectance percentage was negative. The highest correlations between VIs and N concentrations were obtained by the Inflection Point Position (IPP, r = 0.97, Normalized Difference Red-Edge (reNDVI, r = 0.97 and Modified Red-Edge Normalized Difference Vegetation Index (mNDI, r = 0.97. Vegetation indexes on the red edge region provided the most accurate estimates of foliar N concentration. The reNDVI index provided the best N concentration estimates in leaves of different colors of Eucalyptus urophylla × grandis and Eucalyptus urophylla × urophylla (R2 = 0.97 and RMSE = 0.91 g kg−1.

  1. The effect of soil and foliar applications of magnesium fertilisers on yields and quality of vine (Vitis vinifera, L. grapes

    Directory of Open Access Journals (Sweden)

    Andrea Zatloukalová

    2011-01-01

    Full Text Available A one-year field trial was established with the vine variety Ryzlink vlašský (Riesling italico to evaluate the effect of spring soil applications and 5x repeated foliar application of magnesium fertilisers on yields and quality of grapes. On light soil of the experimental locality Žabčice (ca 25 km south of Brno visual symptoms of Mg deficiency on vine leaves had been monitored in the past. The experiment involved 4 treatments: 1 unfertilised control; 2 spring soil application of Kieserite – 20 kg Mg.ha−1; 3 5x foliar application of a 5% solution of Epso Combitop – Mg, S, Mn, Zn; 11.8 kg Mg.ha−1; 4 5x foliar applications of a 5% solution of Epso Top – Mg, S; 14.8 kg Mg.ha−1.No significant differences among the treatments were detected in the contents of K (1.40–1.67% and Ca (1.63–1.91% in leaves sampled after the applications. After foliar applications the contents of Mg and S significantly increased in treatments 3–4 to 0.42–0.49% and 0.34–0.40 %, respectively compared to treatments 1–2 (0.29–0.30% and 0.22%, respectively. The content of Zn (173–380 mg.kg−1 and Mn (90–551 mg.kg−1 increased significantly in treatment 3 compared to the other treatments. The chlorophyll index did not differ among the treatments. Grape yields (t.ha−1 in treatments 1–4 were the following: 7.04–8.16–7.51–7.26 t.ha−1, respectively. Only the soil-applied treatment 2 differed significantly from the other treatments. The content of sugar (16.5–17.9 °NM, titratable acids (12.78–13.25 g.l−1 and the pH of must (3.02–3.11 did not differ among the treatments.

  2. Residual effect of sugar cane ratoon of urea nitrogen foliar application to plant cane

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Lara Cabezas, W.A.R.; Coleti, J.T.

    1984-01-01

    The residual effect of urea - N, foliar applied to plant cane, on sugar cane ratoon is studied. Setts grown in drums containing washed sand are used. 180 days from planting, foliar fertilizer (43.5% urea solution) labelled with 3.95 atom % 15 N is applied. The first harvest is made 7 days after application and final harvest of resprouting at 123 days. (M.A.C.) [pt

  3. Improvement of Soybean (Glycine max L. Yield with Urea Foliar Application at Growth Stages

    Directory of Open Access Journals (Sweden)

    Mahmood Tohidi

    2017-07-01

    Full Text Available To investigate the effects of nitrogen foliar application at different growth stages of soybean on the yield and yield components this experiment was performed in Shush, north of Khuzestan, Iran, during growing season of 2014. The experiment was in split plot based on randomized complete block design with three replications. Experimental treatments consisted of four levels of nitrogen fertilizer foliar applications as control (no nitrogen foliar application, 25, 50 and 75 kg/ha pure nitrogen from urea source (46% pure nitrogen assigned to the main plots and spraying times in three levels, at vegetative stage, flowering stage and podding stage to the subplots. Results showed that the effects of nitrogen foliar application on traits measured in this experiment like leaf area index, number of pod per plant, number of seeds per pod, thousand seed weight, seed yield, biologic yield, harvest index, protein percent and protein yield and also interaction of different levels of nitrogen foliar application and different growth stages, were significant. Oil percent and yield were only significant under the effect of nitrogen foliar application treatments at different growth stages while the interaction of different levels of nitrogen foliar application and different growth stages, were not significant. In this experiment nitrogen foliar application increased seed yield. The highest seed yield amounted to 2466 kg/ha when 50kg/ha of foliar nitrogen applied at vegetative growth stage and lowest seed yield amounted to 1295 kg/ha in the control treatment at the stage of podding. In general, results demonstrated that 50 kg/ha treatment could be considered as the best management option of nitrogen foliar application for soybean at vegetative growth stage.

  4. Retention and translocation of foliar applied {sup 239,240}Pu and {sup 241}Am, as compared to {sup 137}Cs and {sup 85}Sr, into bean plants (Phaseolus vulgaris)

    Energy Technology Data Exchange (ETDEWEB)

    Henner, P. [Institute for Radioprotection and Nuclear Safety, Environment and Emergency Operations Division, Department for the Study of Radionuclides Behaviour in Ecosystems, Laboratory of Radioecology and Ecotoxicology, IRSN/DPRE/SECRE/LRE, Cadarache Centre, Building 186, BP 3, 13115 Saint-Paul-lez-Durance (France)]. E-mail: pascale.henner@irsn.fr; Colle, C. [Institute for Radioprotection and Nuclear Safety, Environment and Emergency Operations Division, Department for the Study of Radionuclides Behaviour in Ecosystems, Laboratory of Radioecology and Ecotoxicology, IRSN/DPRE/SECRE/LRE, Cadarache Centre, Building 186, BP 3, 13115 Saint-Paul-lez-Durance (France); Morello, M. [Institute for Radioprotection and Nuclear Safety, Environment and Emergency Operations Division, Department for the Study of Radionuclides Behaviour in Ecosystems, Laboratory of Radioecology and Ecotoxicology, IRSN/DPRE/SECRE/LRE, Cadarache Centre, Building 186, BP 3, 13115 Saint-Paul-lez-Durance (France)

    2005-07-01

    Foliar transfer of {sup 241}Am, {sup 239,240}Pu, {sup 137}Cs and {sup 85}Sr was evaluated after contamination of bean plants (Phaseolus vulgaris) at the flowering development stage, by soaking their first two trifoliate leaves into contaminated solutions. Initial retentions of {sup 241}Am (27%) and {sup 239,240}Pu (37%) were higher than those of {sup 137}Cs and {sup 85}Sr (10-15%). Mean fraction of retained activity redistributed among bean organs was higher for {sup 137}Cs (20.3%) than for {sup 239,240}Pu (2.2%), {sup 241}Am (1%) or {sup 85}Sr (0.1%). Mean leaf-to-pod translocation factors (Bq kg{sup -1}dry weight pod/Bq kg{sup -1}dry weight contaminated leaves) were 5.0 x 10{sup -4} for {sup 241}Am, 2.7 x 10{sup -6} for {sup 239,240}Pu, 5.4 x 10{sup -2} for {sup 137}Cs and 3.6 x 10{sup -4} for {sup 85}Sr. Caesium was mainly recovered in pods (12.8%). Americium and strontium were uniformly redistributed among leaves, stems and pods. Plutonium showed preferential redistribution in oldest bean organs, leaves and stems, and very little redistribution in forming pods. Results for americium and plutonium were compared to those of strontium and caesium to evaluate the consistency of the attribution of behaviour of strontium to transuranium elements towards foliar transfer, based on translocation factors, as stated in two radioecological models, ECOSYS-87 and ASTRAL.

  5. Foliar fertilizations with boron and growth regulators on lettuce (Lactuca sativa L.) cv floresta culture

    International Nuclear Information System (INIS)

    Masunaga, S.I.; Chueire, F.B.; Teixeira, N.T.

    1989-01-01

    The experiment was realized to verify the possibility of applying Boron as foliar fertilization with growth regulators: indol acetic acid, giberellic acid, ethephon and cycocel. The other objective was to compare the foliar and soil fertilization, with Boron, on the lettuce culture. The results showed that there wasn't difference of production between the treatments. Meanwhile the application of growth regulator modified the Boron grade in the leaves. (author) [pt

  6. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat

    OpenAIRE

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Background Wheat is the staple food for most of the world’s population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Methods/Principle findings Foliar application of Zn-CNP was performed at post anthesis stages in two du...

  7. Foliar application of two silica sols reduced cadmium accumulation in rice grains

    International Nuclear Information System (INIS)

    Liu Chuanping; Li Fangbai; Luo Chunling; Liu Xinming; Wang Shihua; Liu Tongxu; Li Xiangdong

    2009-01-01

    In the present study, pot experiments were conducted to investigate the effects of foliar application of two silica (Si) sols on the alleviation of cadmium (Cd) toxicity in contaminated soil to rice. Results showed that the foliar application of Si sols significantly increased the dry weight of grains (without husk) and shoots in rice grown in Cd contaminated soil, whereas the Cd concentration in the grains and shoots decreased obviously. The total accumulation of Cd in rice grains also decreased with the application of both of the Si sols, but no significant effect was found on the Cd accumulation in the shoots. For the optimal effect, Si-sol-B should be foliar applied at the tillering-stage during rice growth. The mechanism of Si foliar application to alleviate the toxicity and accumulation of Cd in grains of rice may be related to the probable Cd sequestration in the shoot cell walls

  8. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite.

    Science.gov (United States)

    Ning, Na; Yuan, Xiang-Yang; Dong, Shu-Qi; Wen, Yin-Yuan; Gao, Zhen-Pan; Guo, Mei-Jun; Guo, Ping-Yi

    2016-03-01

    Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.

  9. A density model based on the Modified Quasichemical Model and applied to the (NaCl + KCl + ZnCl2) liquid

    International Nuclear Information System (INIS)

    Ouzilleau, Philippe; Robelin, Christian; Chartrand, Patrice

    2012-01-01

    Highlights: ► A model for the density of multicomponent inorganic liquids. ► The density model is based on the Modified Quasichemical Model. ► Application to the (NaCl + KCl + ZnCl 2 ) ternary liquid. ► A Kohler–Toop-like asymmetric interpolation method was used. - Abstract: A theoretical model for the density of multicomponent inorganic liquids based on the Modified Quasichemical Model has been presented previously. By introducing in the Gibbs free energy of the liquid phase temperature-dependent molar volume expressions for the pure components and pressure-dependent excess parameters for the binary (and sometimes higher-order) interactions, it is possible to reproduce, and eventually predict, the molar volume and the density of the multicomponent liquid phase using standard interpolation methods. In the present article, this density model is applied to the (NaCl + KCl + ZnCl 2 ) ternary liquid and a Kohler–Toop-like asymmetric interpolation method is used. All available density data for the (NaCl + KCl + ZnCl 2 ) liquid were collected and critically evaluated, and optimized pressure-dependent model parameters have been found. This new volumetric model can be used with Gibbs free energy minimization software, to calculate the molar volume and the density of (NaCl + KCl + ZnCl 2 ) ternary melts.

  10. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    Directory of Open Access Journals (Sweden)

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  11. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  12. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    Science.gov (United States)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  13. Probability of foliar injury for Acer sp. based on foliar fluoride concentrations.

    Science.gov (United States)

    McDonough, Andrew M; Dixon, Murray J; Terry, Debbie T; Todd, Aaron K; Luciani, Michael A; Williamson, Michele L; Roszak, Danuta S; Farias, Kim A

    2016-12-01

    Fluoride is considered one of the most phytotoxic elements to plants, and indicative fluoride injury has been associated over a wide range of foliar fluoride concentrations. The aim of this study was to determine the probability of indicative foliar fluoride injury based on Acer sp. foliar fluoride concentrations using a logistic regression model. Foliage from Acer nedundo, Acer saccharinum, Acer saccharum and Acer platanoides was collected along a distance gradient from three separate brick manufacturing facilities in southern Ontario as part of a long-term monitoring programme between 1995 and 2014. Hydrogen fluoride is the major emission source associated with the manufacturing facilities resulting with highly elevated foliar fluoride close to the facilities and decreasing with distance. Consistent with other studies, indicative fluoride injury was observed over a wide range of foliar concentrations (9.9-480.0 μg F -  g -1 ). The logistic regression model was statistically significant for the Acer sp. group, A. negundo and A. saccharinum; consequently, A. negundo being the most sensitive species among the group. In addition, A. saccharum and A. platanoides were not statistically significant within the model. We are unaware of published foliar fluoride values for Acer sp. within Canada, and this research provides policy maker and scientist with probabilities of indicative foliar injury for common urban Acer sp. trees that can help guide decisions about emissions controls. Further research should focus on mechanisms driving indicative fluoride injury over wide ranging foliar fluoride concentrations and help determine foliar fluoride thresholds for damage.

  14. Evaluation of Foliar Spraying of Zinc and Calcium Fertilizers on Yield and Physiological Traits of Safflower under Lead Stress

    Directory of Open Access Journals (Sweden)

    P Jamshidi

    2017-10-01

    important part of the plant, i.e. photosynthetic system and changes immune system activity (Enzyme activity and finally reduces the plant yield. Ca2+ improves plant resistance is related to maintaining a higher photosynthetic rate under stresses. Zn has a role in modulation of free radicals and their related processes through antioxidant properties and Zn applied by foliar spraying can increase the yield of crops. Therefore, this study aims to investigate how zinc and calcium fertilizers as foliar application increase safflower plant resistance to lead stress and their role on the damages caused by the stress on the activity of antioxidant defense system and photosynthetic pigments and its role in improving the plant yield in lead leaf absorption. Materials and Methods The field experiment was carried out in a factorial based on randomized complete block design with three replications in the farm of Agricultural and Natural Resources Research and Education center of Kerman. The first factor consisted of three levels of lead (Control, 0.5 and l mM lead foliar and the second factor, the foliar application of zinc sulfate in three concentrations (zero, 10 and 20 mM and the third factor was the foliar application of calcium chloride in two concentrations (zero and 10 mM. Cultivars used in this experiment were Goldasht cultivars (safflower. In this study, the activity of ascorbate peroxidase, catalases enzymes and malondialdehyde contents were measured. At harvest time, stem and leaf dry weight, seed number per head, Head weight, 1000 seed weight and seed yield was calculated. All data were analyzed with SAS software. Analysis of variance and statistical analysis was performed using SAS and Excel softwares, Mean comparison was done by least significant difference (LSD test at 5 percent. Results and Discussion The results indicated that lead stress had a significant effect on most of the studied traits. Due to lead stress seed yield, 1000 seeds weight, leaf dry weight, seed

  15. Response of French Bean (Phaseolus vulgaris L. Cultivars to Foliar Applications of Magnesium

    Directory of Open Access Journals (Sweden)

    Michele Pisante

    2011-02-01

    Full Text Available Magnesium deficiencies have been shown to be particularly dangerous to short cycled crops, both on sandy and clay soils. Such deficiencies may be corrected by foliar fertilisations, but in French bean (Phaseolus vulgaris L. no experimental data may be found to support this hypothesis. Therefore this paper was aimed at studying the effect of foliar Mg-applications (56, 112 and 224 g ha-1 in single application at flowering or splitted half dose at 4-leaf stage and half at flowering alone and with Zn (200 g ha-1 on yield and quality of two French bean genotypes (Bronco, Cadillac. Foliar Mg-applications significantly increased pod yield and, considering the highest rate with respect to the untreated, such an increase was 78% and 32% for Bronco and Cadillac, respectively. Split applications were also more effective, with yield increases of 109% and 50% for the two genotypes. Concerning quality, foliar Mg applications showed a significant effect particularly on sugars, calcium, phosphate, sulphate and Mg contents in pods. On the other hand, a significant effect on the accumulation of nitrates was noted, especially with split applications (144% increase vs. unfertilised and, in some cases, an antagonistic effect on K content (10-20% decrease on average. Foliar Mg fertilisation of French bean seemed to be a promising practice with reference to human health and nutrition, tough some care is needed to avoid the accumulation of nitrates in pods. Split applications seemed to be more effective, while the addition of Zn to the fertiliser mix did not give any relevant effect.

  16. Effect of micronutrients (zn, cu and b) on photosynthetic and fruit yield attributes of citrus reticulata blanco var. kinnow

    International Nuclear Information System (INIS)

    Ilyas, A.; Hussain, M.

    2015-01-01

    In this investigation, influence of foliar application of micronutrients (Zn, Cu and B) was studied on the improvement in photosynthetic and fruit yield attributes of citrus (Kinnow) plants. Experiments were conducted in two districts of Punjab (Sargodha and Toba Tek Singh), Pakistan varying in soil properties and agro-climatic conditions. Plants at both sites were subjected to foliar spray of three different levels (i.e. 0.1, 0.2 and 0.3%) of each Zn, Cu and B at three different fruit developmental stages while macronutrients (NPK) were applied at recommended rates as soil amendment. Micronutrients (Zn, Cu and B) application caused a significant improvement in net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), Chlorophyll a, b, total, and caroteniods in both the citrus orchards. However, effect of micronutrients i.e. Zn, Cu and B was more pronounced at the levels of 0.3, 0.1 and 0.2%, respectively. These levels of nutrients were also effective in improving fruit yield with better fruit quality. (author)

  17. Pattern of zinc-65 incorporation into soybean seeds by root absorption, stem injection, and foliar application

    International Nuclear Information System (INIS)

    Khan, A.; Weaver, C.M.

    1989-01-01

    The pattern of 65 Zn incorporation into soybean seeds of plants grown hydroponically and intrinsically labeled with 65 Zn by root absorption, stem injection, and foliar application was studied. Stem injection resulted in the greatest (64.5% of dose) accumulation of 65 Zn while incorporation of 65 Zn through root absorption was the least (23.4%) and through foliar application was intermediate (37.5%). Regardless of the labeling techniques, approximately 40-45% of the seed 65 Zn was associated with the subcellular organelles. The pattern of zinc incorporation did not change appreciably as a result of the labeling technique. The major portion of the soluble zinc was not associated with the major proteins (11S and 7S) of soybeans but either was free or was associated with very low molecular weight amino acids, peptides, or their complexes with phytic acid. Zinc in soybean seems to be ionically bound, and this association is affected by the pH of the extracting buffer

  18. Effects of magnesium sulfate on the foliar absorption of phosphates at the pumpkin

    International Nuclear Information System (INIS)

    Chamel, A.

    1962-01-01

    The foliar absorption of phosphates labelled with 32 P and applied with or without magnesium sulfate on the first leaf of pumpkin seedlings have been studied. The magnesium sulfate applied with the phosphate reduces plainly the absorption rate of 32 P. (O.M.) [fr

  19. Techniques for intrinsically labeling wheat with 65Zn

    International Nuclear Information System (INIS)

    Starks, T.L.; Johnson, P.E.

    1985-01-01

    Several techniques of intrinsically labeling wheat with 65 Zn were compared: stem injection of 65 Zn, stem injection of 65 Zn + ZnSO 4 , foliar application of 65 Zn, and the addition of 65 Zn to a hydroponic solution. Incorporation levels of 65 Zn into the grain were 62.6% stem injection, 45.2% stem-injected 65 Zn + ZnSO 4 , 57.5% foliar application, and 2.3% hydroponic solution. Four protein fractions were extracted from fat-free whole wheat flour. Distribution of 65 Zn into the protein fractions for all treatments, was 8.5-20.3% in albumins and globulins, 47.4-60.3% in glutenins, 1-2.6% in gliadins, and 9.8-28.3% in the remaining proteins. Separation of the fractions by gel chromatography showed that protein and Zn distributions were similar among the treatments and when compared to the controls. Zinc-65 distribution was similar to the natural Zn distribution. These data illustrate that stem-injected 65 Zn is incorporated in the same manner and ratios as Zn naturally utilized by wheat

  20. Effect of foliar fertilizer and fungicidal protection against leaf spot diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Agnieszka Mączyńska

    2012-12-01

    Full Text Available Field experiments were carried out in the seasons 2000/2001 and 2001/2002 in Plant Protection Institute, Sooenicowice Branch to assess the influence of foliar fertilizers such as Ekolist PK 1, Ekolist Mg, Mikrosol Z and Urea on healthiness of winter wheat. Foliar fertilizers were mixed with fungicides. The fungicides were applied at full or half recommended doses. The effect of the disease on wheat leaves was evaluated three times in each vegetation season. Remaining green leaf area (GLA of leaves was also determined. GLA of the leaves F-1 was not significantly different for each combination with different fertilization and different levels of chemical treatment. The application of foliar fertilizer only had no effect on green leaf area (GLA. The results indicate that foliar fertilization of all experimental plots improved leaf condition and therefore halted the development of wheat leaf diseases. The increases of 1000 grain mass and yield was high for each plot where a fertilizer and a full or half dose of a fungicide was applied. Foliar fertilizing with no chemical control had no proven effect on studied parameters.

  1. Manutenção da área foliar e produtividade de arroz irrigado com a aplicação de fertilizantes foliares no estádio de emborrachamento Foliar area maintenance and yield with application of foliar fertilizers on booting stage of irrigated rice

    Directory of Open Access Journals (Sweden)

    Edinalvo Rabaioli Camargo

    2008-08-01

    Full Text Available A utilização de fertilizantes foliares, aplicados ao final do ciclo da cultura do arroz irrigado, pode proporcionar complementação nutricional para a planta e proteção contra patógenos com reflexos na produtividade. O objetivo do estudo foi avaliar a utilização de fertilizantes foliares, aplicados no estádio de emborrachamento, sobre a produtividade do arroz irrigado. O experimento foi conduzido no ano agrícola 2005/2006, em área experimental de várzea do Departamento de Fitotecnia da Universidade Federal de Santa Maria. O delineamento experimental utilizado foi o de blocos ao acaso com quatro repetições. Os tratamentos foram compostos por 10 fertilizantes foliares, dois produtos aplicados via sementes, um fungicida e a testemunha. Os fertilizantes não influenciaram qualquer parâmetro avaliado. As condições climáticas e o manejo da adubação anterior à aplicação dos tratamentos foliares propiciaram condições favoráveis para o arroz expressar o seu potencial produtivo, em torno de 10.000kg ha-1. Neste nível de produtividade, os produtos utilizados não aumentaram a produtividade do arroz irrigado.The use of foliar fertilizers applied to the reproductive phase of rice can improve the plant nutrition and protect the field against foliar diseases with gains in yield. The objective of this experiment was to evaluate the use of the foliar fertilizers applied to the booting stage in order to verify the irrigated rice yield. The experiment was carried out in 2005/06 in a lowland area in Santa Maria-RS, Brazil. The treatments, arranged in a randomized block design with four replications, were constituted by 10 foliar fertilizers available in the market, two products applied to seeds, a fungicide, and a check treatment. The treatments presented no effects on any of the variables studied. The suitable climatic conditions and the fertilizer management carried out before the application of the foliar treatments led to the

  2. Foliar retention, transport and leaching of polonium-210 and lead-210

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, V V; Mistry, K B

    1972-01-01

    Polonium-210 and lead-210, the long-lived daughter radionuclides of gaseous radon-222, are deposited on plant surfaces under conditions of atmospheric washout. Foliar retention, transport and leaching of these radionuclides in Red Kidney beans were investigated in nutrient culture experiments. Under identical conditions, over 90 percent of foliar applied radiolead was retained by the plant while only about 30 percent of polonium was retained. Over a 48-hr period small quantities of polonium were translocated from the treated leaflet to other parts of the plant. By comparison, radiolead was totally immobilized at the site of retention. Leachability of root absorbed radiolead from bean leaves was 20-fold greater than that of polonium. The marked differences in the extent of foliar retention, translocation and leaching of polonium and radiolead could significantly affect the levels of these long-lived radionuclides attained in plants.

  3. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  4. Investigation of the Influence of the As-Grown ZnO Nanorods and Applied Potentials on an Electrochemical Sensor for In-Vitro Glucose Monitoring

    Directory of Open Access Journals (Sweden)

    Mohammed Marie

    2017-01-01

    Full Text Available The influence of the as-grown zinc oxide nanorods (ZnO NRs on the fabricated electrochemical sensor for in vitro glucose monitoring were investigated. A direct growth of ZnO NRs was performed on the Si/SiO2/Au electrode, using hydrothermal and sol-gel techniques at low temperatures. The structure, consisting of a Si/SiO2/Au/GOx/Nafion membrane, was considered as a baseline, and it was tested under several applied potential 0.1–0.8 V. The immobilized working electrode, with GOx and a nafion membrane, was characterized amperometrically using a source meter Keithely 2410, and an electrochemical impedance Gamry potentiostat. The sensor exhibited the following: a high sensitivity of ~0.468 mA/cm2 mM, a low detection limit in the order of 166.6 µM, and a fast and sharp response time of around 2 s. The highest sensitivity and the lowest limit of detection were obtained at 0.4 volt, after the growth of ZnO NRs. The highest net sensitivity was obtained after subtracting the sensitivity of the baseline, and it was in the order of 0.315 mA/cm2·mM. The device was tested with a range of glucose concentrations from 1–10 mM, showing a linear line from 3–8 mM, and the device was saturated after exceeding high concentrations of glucose. Such devices can be used for in vitro glucose monitoring, since glucose changes can be accurately detected.

  5. Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Karen, E-mail: karen.wuyts@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium); Adriaenssens, Sandy, E-mail: adriaenssens@irceline.be [Belgian Interregional Environment Agency (IRCEL-CELINE), Kunstlaan 10–11, B-1210 Brussels (Belgium); Staelens, Jeroen, E-mail: jeroen_staelens@yahoo.com [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000 Antwerp (Belgium); Wuytack, Tatiana, E-mail: tatiana.wuytack@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Wittenberghe, Shari, E-mail: shari.vanwittenberghe@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Boeckx, Pascal, E-mail: pascal.boeckx@ugent.be [Isotope Bioscience Laboratory (ISOFYS), Dept. Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Samson, Roeland, E-mail: roeland.samson@uantwerpen.be [Laboratory of Environmental and Urban Ecology, Research Group ENdEMIC, Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Forest and Nature Lab (ForNaLab), Dept. Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle (Belgium)

    2015-02-01

    We investigated the influence of leaf traits, rainwater chemistry, and pedospheric nitrogen (N) fertilisation on the aqueous uptake of inorganic N by physiologically active tree leaves. Leaves of juvenile silver birch and European beech trees, supplied with NH{sub 4}NO{sub 3} to the soil at rates from 0 to 200 kg N ha{sup −1} y{sup −1}, were individually exposed to 100 μl of artificial rainwater containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −} at two concentration levels for one hour. In the next vegetative period, the experiment was repeated with NH{sub 4}{sup +} at the highest concentration only. The N form and the N concentration in the applied rainwater and, to a lesser extent, the pedospheric N treatment and the leaf traits affected the aqueous foliar N uptake. The foliar uptake of NH{sub 4}{sup +} by birch increased when leaves were more wettable. High leaf N concentration and leaf mass per area enhanced the foliar N uptake, and NO{sub 3}{sup −} uptake in particular, by birch. Variation in the foliar N uptake by the beech trees could not be explained by the leaf traits considered. In the first experiment, N fertilisation stimulated the foliar N uptake in both species, which was on average 1.42–1.78 times higher at the highest soil N dose than at the zero dose. However, data variability was high and the effect was not appreciable in the second experiment. Our data suggest that next to rainwater chemistry (N form and concentration) also forest N status could play a role in the partitioning of N entering the ecosystem through the soil and the canopy. Models of canopy uptake of aqueous N at the leaf level should take account of leaf traits such as wettability and N concentration. - Highlights: • Foliar uptake of dissolved inorganic nitrogen (N) by potted trees was studied. • Leaves were individually exposed to rainwater drops containing {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup −}. • Foliar N uptake efficiency depended on

  6. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    Science.gov (United States)

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  7. Foliar and soil application of 15N-labelled fertilizers in the cultivation of common bean and soybean

    International Nuclear Information System (INIS)

    Papanicolaou, E.P.; Skarlou, V.D.; Apostolakis, C.G.; Katranis, N.

    1979-01-01

    In two field experiments (one with beans and one with soybeans) during 1977, the influence of soil application of different nitrogen fertilizers and also of foliar application of the Hanway nutrient solution (N-P-K-S) on nitrogen fixation, grain yield and fertilizer utilization was studied. The nodule data for soybeans indicated that urea applied as starter, topdress or foliar spray adversely affected nodule number and weight. Starter (NH 4 ) 2 SO 4 had an effect similar to urea, while starter NH 4 NO 3 had slight or no adverse effect. Use of (NH 4 ) 2 SO 4 or NH 4 NO 3 in the Hanway solution had a strong adverse effect. Yield data of the soybean experiment indicated that urea, applied as starter or starter plus topdress, had no essential effect while foliar spray showed a clear adverse effect on the grain yield of soybean-nod. When (NH 4 ) 2 SO 4 or NH 4 NO 3 were used in the foliar spray, the adverse effect was more evident. Non-nod soybean showed slight yield response to topdress N and significant positive response to Hanway foliar spray. In the bean experiment some evidence of positive response to topdress N plus Hanway foliar spray was observed in the non-nod crop, but it was not significant. The utilization coefficient of the applied fertilizers varied with the treatments. The highest utilization coefficient (50-70%), for both experiments, was observed when urea was applied as foliar spray. Application of urea as starter gave low utilization while topdress application gave high utilization in the soybean experiment and low in that of common bean. Under the experimental conditions starter urea was better utilized than starter ammonium sulphate or nitrate. (author)

  8. FOLIAR APPLICATION OF SILICON ON YIELD COMPONENTS OF WHEAT CROP

    Directory of Open Access Journals (Sweden)

    THOMAS NEWTON MARTIN

    2017-01-01

    Full Text Available Wheat is a major winter crop in southern Brazil. To maximize its productivity, there should be no biotic or abiotic restrictions that can affect the yield components. Thus, the objective was to evaluate the changes caused in the wheat crop yield components by silicon foliar application. The experiment was conducted in two growing seasons. In the first year, five wheat cultivars (Quartzo, Campo Real, Onix and Fundacep Lineage were assessed and in the second year four were assessed (Mirante, Campo Real, Horizonte and Quartzo. In both years the crops were subjected to three doses of silicon (0, 3 and 6 L of silicon ha -1. The silicon was applied during the tillering, booting and anthesis stages. The yield components assessed were the number of plants, number of ears, number of fertile tillers, dry matter per plant, hectoliter weight, number of spikelets, number of grains per spike, weight of hundred grains, grain yield and harvest index. Most yield components did not respond to the silicon foliar application. The harvest index (first year and the number of tillers (second year however presented a quadratic relationship with the supply of silicon. The remaining differences were attributed to variations among the wheat cultivars.

  9. Foliar K application delays leaf senescence of winter rape-seed (Brassica napus L.) under waterlogging

    Institute of Scientific and Technical Information of China (English)

    Lin Wan; Chao Hu; Chang Chen; Liyan Zhang; Ni Ma; Chunlei Zhang

    2017-01-01

    To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlog-ging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and pho-tochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA con-tent under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective in alleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.

  10. Foliar flavonoids of nine species of Bauhinia

    OpenAIRE

    SALATINO, ANTONIO; BLATT, CECÍLIA T.T.; SANTOS, DÉBORAH Y.A.C. DOS; VAZ, ANGELA M.S.F.

    1999-01-01

    Foliar flavonoids of nine species of Bauhinia were isolated and identified. All the compounds correspond to glycosides derived from kaempferol, quercetin, isorhamnetin and myricetin. Derivatives of the latter aglyconhe seem to be rare in Bauhinia. Derivatives of isorhamnetin are commonly found in species of subgenus Bauhinia and were not detected in the two species of subgenus Phanera. Flavonoid patterns of species of the former subgenus are in general more complex than those of the latter. ...

  11. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  12. Assimilação foliar de enxofre elementar pela soja Foliar elementary sulfur assimilation by soybean

    Directory of Open Access Journals (Sweden)

    Godofredo Cesar Vitti

    2007-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a assimilação de enxofre elementar (S0, aplicado nas folhas de soja, e sua eficiência comparada à adubação feita ao solo, de acordo com a dose e a natureza da fonte do nutriente. O S0 aplicado às folhas, independentemente da dose e fonte, foi assimilado pela planta, o que acarretou em aumento no teor de proteína total na folha. Todas as fontes de S aplicadas às folhas aumentaram a produção de grãos, semelhantemente à aplicação ao solo. Observou-se uma mesma produtividade com o uso de 20 kg ha-1 de S0 no solo ou de 6 kg ha-1 via foliar. A eficiência da aplicação de S via foliar, com base no conteúdo de proteína solúvel total, foi superior à da aplicação ao solo.The objective of this work was to evaluate the elementary sulfur (S0 assimilation applied on soybean leaves, and its efficiency compared to the fertilization done in the soil, according to the dose and nature of the nutrient source. The S0 applied to leaves, independently of the dose and source, was assimilated by the plant, what resulted in increase of total protein content in the leaf. All S sources applied to leaves increased the grain yield, similarly to the application to the soil. The same productivity was observed with the use of 20 kg ha-1 of S0 in the soil or 6 kg ha-1 applied to leaves. The elementary S application efficiency on leaves, based on the content of total soluble protein, was superior to application efficiency on soil.

  13. Complementary Evaluation of Iron Deficiency Root Responses to Assess the Effectiveness of Different Iron Foliar Applications for Chlorosis Remediation

    Directory of Open Access Journals (Sweden)

    Marta Fuentes

    2018-03-01

    Full Text Available Iron deficiency in plants is caused by a low availability of iron in the soil, and its main visual symptom is leaf yellowing due to a decrease in chlorophyll content, along with a reduction in plant growth and fruit quality. Foliar sprays with Fe compounds are an economic alternative to the treatment with expensive synthetic Fe-chelates applied to the soil, although the efficacy of foliar treatments is rather limited. Generally, plant response to Fe-foliar treatments is monitored by measuring chlorophyll content (or related parameters as SPAD index. However, different studies have shown that foliar Fe sprays cause a local regreening and that translocation of the applied Fe within the plant is quite low. In this context, the aim of this study was to assess the effects of foliar applications of different Fe compounds [FeSO4, Fe(III-EDTA, and Fe(III-heptagluconate] on Fe-deficient cucumber plants, by studying the main physiological plant root responses to Fe deficiency [root Fe(III chelate reductase (FCR activity; acidification of the nutrient solution; and expression of the Fe deficiency responsive genes encoding FCR, CsFRO1, Fe(II root transporter CsIRT1, and two plasma membrane H+-ATPases, CsHA1 and CsHA2], along with SPAD index, plant growth and Fe content. The results showed that the overall assessment of Fe-deficiency root responses improved the evaluation of the efficacy of the Fe-foliar treatments compared to just monitoring SPAD indexes. Thus, FCR activity and expression of Fe-deficiency response genes, especially CsFRO1 and CsHA1, preceded the trend of SPAD index and acted as indicators of whether the plant was sensing or not metabolically active Fe due to the treatments. Principal component analysis of the data also provided a graphical tool to evaluate the evolution of plant responses to foliar Fe treatments with time.

  14. Effect of some factors on foliar absorption and mobility of Fe59 in plant

    International Nuclear Information System (INIS)

    Mohamed, F.A.

    1990-01-01

    Three experiments were conducted under greenhouse conditions using Fe 59 and seedlings of guava and orange to study the effect of PH value (3-8), Fe SO 4 concentrations in combination with three values of PH on foliar absorption and mobility of Fe. In addition, a comparative study to evaluate some compounds of iron for foliar spray was achieved. Foliar absorption of Fe 59 by guava leaves and its mobility were considerably influenced by PH value of spray solution. Maximum absorption and translocation were observed at PH 6. However, most of the absorbed iron 'about 90%' was retained in the treated leaves and the portion 'about 10%' acropetally and basipetally translocated. Upward transport of iron was more pronounced than downward one. Total iron in plant derived from applied FeSO 4 was greatly increased, whereas utilization percent of it was reduced by increasing the rate of Fe in spray solution. Generally, FeSO 4 had a good efficiency which ranged from about 25-43%. Specific absorption of iron by orange leaves was higher than that of guava leaves. From plant nutritional point of view, efficiency of FeSo 4 , Fe-metalosate and multi mineral-metalosate as different sources of Fe through foliar application remarkably varied and FeSO 4 was highly efficient one in comparison with metalosate compounds

  15. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, Jozef, E-mail: jozkovacik@yahoo.com [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); Klejdus, Borivoj [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic); Stork, Frantisek [Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Safarik University, Manesova 23, 041 67 Kosice (Slovakia); Hedbavny, Josef [Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Impact of foliar Cd, Ni and Cd + Ni application on Tillandsia albida was studied. Black-Right-Pointing-Pointer Cd caused visible damage and enhanced stress parameters in combined treatment. Black-Right-Pointing-Pointer Nitrogenous compounds were slightly affected but phenols were up- and down-regulated. Black-Right-Pointing-Pointer Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by any of treatments. Black-Right-Pointing-Pointer Total Cd or Ni reached ca. 0.04% and Ni was more absorbed than Cd. - Abstract: The impact of 2-month foliar application of cadmium, nickel and their combination (10 {mu}M) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd + Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd + Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd + Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 {mu}g g{sup -1} DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended.

  16. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application

    International Nuclear Information System (INIS)

    Kováčik, Jozef; Klejdus, Bořivoj; Štork, František; Hedbavny, Josef

    2012-01-01

    Highlights: ► Impact of foliar Cd, Ni and Cd + Ni application on Tillandsia albida was studied. ► Cd caused visible damage and enhanced stress parameters in combined treatment. ► Nitrogenous compounds were slightly affected but phenols were up- and down-regulated. ► Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by any of treatments. ► Total Cd or Ni reached ca. 0.04% and Ni was more absorbed than Cd. - Abstract: The impact of 2-month foliar application of cadmium, nickel and their combination (10 μM) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd + Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd + Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd + Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 μg g −1 DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended.

  17. Previous study for the setting up and optimization of detection of ZnS(Ag) scintillation applied to the measure of alpha radioactivity index

    International Nuclear Information System (INIS)

    Pujol, L.; Suarez-Navarro, J.A.; Montero, M.

    1998-01-01

    The determination of radiological water quality is useful for a wide range of environmental studies. In these cases, the gross alpha activity is one of the parameters to determine. This parameter permits to decide if further radiological analyses are necessary in order to identify and quantify the presence of alpha emitters in water. The usual method for monitoring the gross alpha activity includes sample evaporation to dryness on a disk and counting using ZnS(Ag) scintillation detector. Detector electronics is provided with two components which are adjustable by the user the high-voltage applied to the photomultiplier tubes and the low level discriminator that is used to eliminate the electronic noise. The high-voltage and low level discriminator optimization are convenient in order to reach the best counting conditions. This paper is a preliminary study of the procedure followed for the setting up and optimization of the detector electronics in the laboratories of CEDEX for the measurement of gross alpha activity. (Author)

  18. Foliar fertilization of sugarcane (Saccharum spp): absorption and translocation of 15-N-labeled urea

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Carvalho, J.G. de; Silva, A.Q. da; Primavesi, A.C.P.A.; Camacho, E.; Eimori, I.E.; Guilherme, M.R.

    1988-01-01

    The absorption and translocation of foliar applied nitrogen as urea solution to sugar cane plants was evaluated. An experiment using the isotope dilution technique with 15 N labeled urea was carried out in green house condition. Seedlings of sugarcane variety IAC 53-150 were planted in pots with 5KG of top soil''latossolo vermelho amarelo, fase arenosa'' (Haplustox). (M.A.C.) [pt

  19. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon

    Science.gov (United States)

    Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.

    2016-10-01

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).

  20. Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

    DEFF Research Database (Denmark)

    Huber Gharib, Silvia; Kneubühler, Mathias; Psomas, Achilleas

    2008-01-01

    data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used...

  1. Diagnosing foliar nutrient dynamics of Eucalyptus grandis in ...

    African Journals Online (AJOL)

    Fertilisation is one of the most cost-effective methods of increasing and maintaining the productivity of Eucalyptus grandis plantations in South Africa. This silvicultural practice can be optimised by using the foliar nutrient ratios measured in plants at maximum growth as a guideline for fertiliser application. The foliar nutrient ...

  2. Use of the radioisotopes in foliar fertilizing studies

    International Nuclear Information System (INIS)

    Muraoka, T.; Boaretto, A.E.

    1987-01-01

    The utilization of the radioactive isotopes is studied to evaluate the efficiency of nitrogen in foliar fertilizers. One of the objectives was study the urea absorption via foliar in time function in sugar cane. The nitrogen 15 determination was done by mass spectrometer. (author)

  3. Effect of Gamma Irradiation and Foliar Application of Some Micro nutrients on Growth and Yield Quality of Common Bean (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    Fath El-Bab, T. Sh.; Abo Elkhier, OH.M.M.

    2013-01-01

    The experiments were carried out on common bean (Phaseoulus vulgaris L.) cv Bronco under sandy-loam soil conditions in the farm of the Research Station of the Atomic Energy Authority at Inshas, Kalubia Governorate on October 15 th in the two successive growing seasons of 2009-2010 and 2010-2011. The aim of the experiments was to investigate the effect of gamma irradiated seeds at the doses of 0, 40 and 80 Gy and foliar spray with Zn, Mn and Fe micro nutrients at the concentrations of 0, 25 and 50 ppm on vegetative growth, yield and chemical responses of common bean plants at age of 21 days. Three levels of application namely 0.0 (control), 25 and 50 ppm were sprayed twice during the growing seasons after two and four weeks of planting. Data analysis showed that all sprayed concentrations improved plant growth i.e plant height, number of branches and helped in earliness of flowering. Pod yield as well as pod quality parameters were also improved with the increase of concentration of sprayed materials. The improvement in plant growth and production were positively correlated with the doses and concentrations. The highest response recorded with the concentration 50 ppm with irradiated dose of 40 Gy after which the response started to decline but still significantly higher than control treatment. Pod yield was positively correlated with the applied concentration of the two substances with the highest effect recorded with 50 ppm of micro nutrients. The treatments resulted in higher total chlorophyll in leave content compared to control. Also treatments significantly improved chemical compositions of pod quality particularly total nitrogen and total sugar contents which responded more positively to all applied treatments. Mineral contents of Zn, Mn and Fe in un cracked seeds also showed similar trend to the applied concentrations. While the best results were in treated plants at 40 Gy and 50 ppm micro nutrient.

  4. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  5. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  6. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    International Nuclear Information System (INIS)

    Vähä-Nissi, Mika; Pitkänen, Marja; Salo, Erkki; Kenttä, Eija; Tanskanen, Anne; Sajavaara, Timo; Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana; Karppinen, Maarit; Harlin, Ali

    2014-01-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al 2 O 3 of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al 2 O 3 thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al 2 O 3 • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli

  7. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  8. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Science.gov (United States)

    Wang, Wei-Ning; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles ( d p watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  9. Morfoanatomia foliar de Palicourea longepedunculata Gardiner (Rubiaceae

    Directory of Open Access Journals (Sweden)

    Pereira Zefa Valdivina

    2003-01-01

    Full Text Available O gênero Palicourea - tribo Psychotrieae - compreende cerca de 200 espécies e destaca-se por apresentar alcalóides indólicos muitas vezes tóxicos para bovinos. O objetivo do presente trabalho foi contribuir para o conhecimento da família Rubiaceae, enfatizando os aspectos da morfoanatomia foliar de Palicourea longepedunculata. O material foi coletado na Reserva Florestal Mata do Paraíso (RFMP, município de Viçosa, Minas Gerais, e amostras-testemunha foram depositadas no herbário VIC. Folhas provenientes do quarto nó foram fixadas em FAA50 e conservadas em etanol 70%. Seções transversais e longitudinais do pecíolo e da lâmina foliar foram obtidas em micrótomo de mesa para montagem de lâminas permanentes, conforme metodologia usual. As folhas são simples, opostas, inteiras, ovais lanceoladas, dorsiventrais e hipoestomáticas. A epiderme do pecíolo e da lâmina foliar é uniestratificada, papilosa na face adaxial da folha e recoberta por cutícula delgada. Os estômatos são paracíticos e ocorrem no mesmo nível das demais células epidérmicas. O mesofilo é constituído por uma camada de parênquima paliçádico e de várias de parênquima lacunoso. Na face adaxial e abaxial da nervura mediana e no bordo da lâmina observa-se colênquima subepidérmico. Um feixe vascular do tipo colateral, em forma de "U", distribui-se ao longo do pecíolo e da nervura mediana, acompanhado, invariavelmente, por dois feixes menores localizados lateralmente. No córtex do pecíolo e da nervura mediana observa-se aerênquima. As características anatômicas seguem o padrão descrito para as Rubiaceae, e algumas delas são interpretadas como adaptações a ambientes úmidos e sombreados no qual a espécie ocorre.

  10. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    Science.gov (United States)

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  11. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn. The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment > Zn, Ni, Cr, Fe, and Mn (moderate enrichment > Cd and Ni (minimal enrichment. Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  12. Pure and Al-doped ZnO obtained by the modified Pechini method applied in ethanolic transesterification of cottonseed oil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M.F.; Silva-Neta, A.R.; Farias, A.F.F.; Souza, A.G.; Fonseca, M.G.; Pontes, L.F.B.L.; Santos, I.M.G., E-mail: ieda.garcia@pq.cnpq.br [Universidade Federal da Paraiba (LACOM/UFPB), Joao Pessoa, PB (Brazil). Dept. de Quimica

    2017-01-15

    Pure zinc oxide (ZnO) and 5% Al-doped ZnO (ZNAL) were synthesized using the modified Pechini method and characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Raman spectroscopy, infrared spectroscopy and UV-visible spectroscopy. XRF confirmed the theoretical stoichiometry, while XRD and Raman spectroscopy indicated that Al{sup 3+} was incorporated into the ZnO wurtzite lattice with no secondary phases, leading to a decrease in the band gap value and to a meaningful increase of the Lewis basic sites. Pure and doped ZnO were used as catalysts in the ethylic transesterification of cottonseed oil using a factorial design to determine the best synthesis conditions. Oil conversion into biodiesel was evaluated by viscosity measurements and {sup 1}H NMR spectroscopy. The results analyzed by factorial design indicated that the catalyst type and temperature were the determinant factors in the conversion indices. The highest basicity of the ZNAL lead to a significant increase of the catalytic potential, reaching a reduction of the oil viscosity next to 71% at 130 °C and greater than 85% at 200 °C. (author)

  13. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yusuf Munim [Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1997-12-31

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N{sub 19}, P{sub 19}, K{sub 19} fertilizers on growth characteristics and nutrient elements contents of leaves of banana

  14. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    International Nuclear Information System (INIS)

    Hassan, Yusuf Munim

    1996-01-01

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N 19 , P 19 , K 19 fertilizers on growth characteristics and nutrient elements contents of leaves of banana suckers was

  15. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  16. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-11-15

    The impact of 2-month foliar application of cadmium, nickel and their combination (10 μM) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd+Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd+Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd+Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 μg g(-1) DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Improvement of growth and productivity of cotton (Gossypium hirsutum L. through foliar applications of naphthalene acetic acid

    Directory of Open Access Journals (Sweden)

    Shazia Parveen

    2017-05-01

    Full Text Available Plant growth regulators like naphthalene acetic acid (NAA positively affect the growth and yield of crop plants. An experiment was conducted to check the foliar application of NAA on growth and yield components of cotton variety Bt.121 under field condition at research area of agriculture farm near Cholistan Institute of Desert Studies (CIDS, The Islamia University of Bahawalpur, Pakistan. The experiment was comprised of foliar application of NAA (1% viz. T0 (control, T1 (One spray of NAA, T2 (Two sprays of NAA, T3 (Three sprays of NAA, T4 (Four sprays of NAA. The first foliar spray was applied at 45 days after sowing (DAS and later on it was continued with 15 days interval with skilled labour by hand pump sprayer. The experiment was laid out in randomized complete block design and each treatment was replicated three times. Data recorded on growth, chlorophyll contents, yield and yield components showed a significant increase with the application of NAA. Furthermore, earliness index, mean maturity date and production rate index were also influenced with foliar application of NAA. On the basis of growth and yield parameters it can be concluded that four spray of NAA (1% can be applied commercially under field conditions.

  18. Effects of synthetic Zn chelates on flax response and soil Zn status

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, D.; Almendros, P.; Alvarez, J.M.

    2016-11-01

    Throughout the world, flax (Linum usitatissimum L.) is often grown in Zn-deficient soils, but appropriate fertilizer management can optimize both crop yield and micronutrient content. A greenhouse experiment was conducted on Typic Haploxeralf (pH 6.1) and Typic Calcixerept (pH 8.1) soils to study the relative efficiency of chelated Zn using two application rates of three different Zn sources [Zn-EDDHSA, ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate of Zn); Zn-HEDTA, N-2-hydroxyethyl-ethylenediaminetriacetate of Zn; and Zn-EDTA, ethylenediaminetetraacetate of Zn]. Dry matter /DM) yield, Zn concentration, chlorophyll content, crude fiber and tensile properties were monitored and the soil-Zn status (available-Zn, Zn-fractions and total-Zn) was assessed. Zinc chelate applications increased the most labile forms of Zn in soils and Zn concentrations in plants. The low rate of Zn generally had a beneficial effect on DM yield and tensile properties. The exception was Zn-EDTA in the weakly acidic soil, where the highest Zn concentrations were observed in leaves and whole shoots; this coincided with the largest concentrations of labile Zn in soil. The most efficient fertilizers were Zn-EDDHSA (in both soils) and Zn-EDTA (in the calcareous soil). The relatively large amounts of labile and available Zn present in both of the soils fertilized with Zn-EDTA points to the applying this chelate at lower rate than 5 mg Zn/kg; this should, in turn, reduce the cost of Zn fertilization and minimize environmental pollution risk. (Author)

  19. Costs and benefits of insecticide and foliar nutrient applications to huanglongbing-infected citrus trees.

    Science.gov (United States)

    Tansey, James A; Vanaclocha, Pilar; Monzo, Cesar; Jones, Moneen; Stansly, Philip A

    2017-05-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vectors Candidatus Liberibacter asiaticus, which causes huanglongbing (HLB). In Florida, HLB incidence is approaching 100% statewide. Yields have decreased and production costs have increased since 2005. Despite this, some growers are maintaining a level of production and attribute this in part to aggressive psyllid control and foliar nutrition sprays. However, the value of these practices is debated. A replicated field study was initiated in 2008 in a commercial block of 'Valencia' sweet orange trees to evaluate individual and combined effects of foliar nutrition and ACP control. Results from 2012-2016 are presented. Insecticides consistently reduced ACP populations. However, neither insecticide nor nutrition applications significantly influenced HLB incidence or PCR copy number in mature trees. In reset trees, infection continued to build and reached 100% in all treatments. Greatest yields (kg fruit ha -1 ) and production (kg solids ha -1 ) were obtained from trees receiving both insecticides and foliar nutrition. All treatments resulted in production and financial gains relative to controls. However, material and application costs associated with the nutrition component offset these gains, resulting in lesser benefits than insecticides applied alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Noise-resistant spectral features for retrieving foliar chemical parameters

    Science.gov (United States)

    Foliar chemical constituents are important indicators for understanding vegetation growing status and ecosystem functionality. Provided the noncontact and nondestructive traits, the hyperspectral analysis is a superior and efficient method for deriving these parameters. In practical implementation o...

  1. Molecular mechanisms of foliar water uptake in a desert tree

    OpenAIRE

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecul...

  2. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  4. Preparation and performance of TiO{sub 2}-ZnO/CNT hetero-nanostructures applied to photodegradation of organic dye

    Energy Technology Data Exchange (ETDEWEB)

    Da Dalt, Silvana; Alves, Annelise Kopp; Bergmann, Carlos Perez, E-mail: silvana.da.dalt@ufrgs.br [Universidade Federal do Rio Grande so Sul (UFRGS), Porto Alegre, RS (Brazil)

    2016-11-15

    Water pollution by organic compounds is one of the major challenges faced by industries that use dyeing processes. Thus, some methods were developed for degrading dyes in wastewaters, including heterogeneous photocatalysis by semiconductor oxides. However, these oxides have limited photocatalytic activity due to the fast recombination of photogenerated electron-hole pairs. The aim of this study is the use of a carbon nanotube (CNT) and TiO{sub 2} -ZnO oxide junction from modified sol-gel method to promote the degradation of organic dye through the photocatalytic activity of these nanocomposites. TiO{sub 2} -ZnO/CNT nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and photocatalytic decomposition of organic dyes. The results of photocatalysis show up to 60% the efficiency of the samples in the removal of dye. (author)

  5. Preparation and Performance of TiO2-ZnO/CNT Hetero-Nanostructures Applied to Photodegradation of Organic Dye

    OpenAIRE

    Da Dalt,Silvana; Alves,Annelise Kopp; Bergmann,Carlos Pérez

    2016-01-01

    Water pollution by organic compounds is one of the major challenges faced by industries that use dyeing processes. Thus, some methods were developed for degrading dyes in wastewaters, including heterogeneous photocatalysis by semiconductor oxides. However, these oxides have limited photocatalytic activity due to the fast recombination of photogenerated electron-hole pairs. The aim of this study is the use of a carbon nanotube (CNT) and TiO2-ZnO oxide junction from modified sol-gel method to p...

  6. Fertilização com boro e zinco no solo em complementação à aplicação via foliar em laranjeira Pêra

    Directory of Open Access Journals (Sweden)

    Quaggio José Antônio

    2003-01-01

    Full Text Available As deficiências de boro (B e zinco (Zn são as mais freqüentes na citricultura brasileira e há escassez de conhecimento sobre critérios de diagnóstico e manejo desses nutrientes nessa cultura. A aplicação foliar tem sido a forma tradicional de fornecimento desses nutrientes, a despeito da baixa redistribuição na planta cítrica. O objetivo deste trabalho foi avaliar a eficiência da aplicação complementar de B e Zn no solo em comparação com a aplicação via foliar e estabelecer curvas de calibração de análises de solo e de folhas com a produtividade da laranjeira Pêra. Os tratamentos foram arranjados em delineamento fatorial 4², com três repetições. Foram aplicadas no solo as doses anuais de 0, 2, 4 e 6 kg ha-1 de B (ácido bórico e Zn (sulfato de zinco, em complemento à adubação foliar. A produção de frutos aumentou significativamente com a aplicação de B no solo até a dose de 4 kg ha-1, enquanto a aplicação de Zn no solo mostrou-se pouco eficiente. As doses de B afetaram a qualidade dos frutos. A produtividade máxima foi obtida com teor de B no solo de 1,0 mg dm-3, e na folha de cerca de 300 mg kg-1. A aplicação foliar de B, apesar de evitar os sintomas típicos de deficiência, não otimizou a produtividade e a qualidade dos frutos, enquanto a aplicação foliar de Zn mostrou-se eficiente. Curvas de calibração de análises de solo e de folhas mostraram a necessidade de rever as classes de interpretação desses micronutrientes na citricultura.

  7. Influence of Formulation on the Cuticular Penetration and on Spray Deposit Properties of Manganese and Zinc Foliar Fertilizers

    Directory of Open Access Journals (Sweden)

    Alvin Alexander

    2016-06-01

    Full Text Available Foliar fertilization, or the application of nutrient solutions to the foliage of plants, has become a very important tool as a supplement to traditional soil fertilization. So far, knowledge about the real mechanisms of foliar nutrient uptake is still limited. In this study different manganese (Mn and zinc (Zn carriers differing in their solubility and chemical characteristics (chelated or non-chelated, with or without the presence of a surfactant-penetrant were compared with regard to their penetration characteristics through enzymatically-isolated cuticles. The experiments were explicitly conducted under high humidity conditions in order not to penalize compounds with a higher deliquescent point. The results show that Mn penetrates more rapidly through the cuticle than Zn ions for unknown reasons. The addition of a surfactant-penetrant enhances the penetration rate in the case of Mn ions. This trend is much less pronounced for zinc ions. Formulations based on insoluble carriers, such as carbonate or oxide, only poorly penetrate through the cuticle. In order to rapidly control micronutrient deficiency problems, only fully water soluble micronutrient carriers should be used.

  8. Foliar urea application affects nitric oxide burst and glycine betaine metabolism in two maize cultivars under drought

    International Nuclear Information System (INIS)

    Zhang, L.; Zhang, X.; Wang, K.; Zhao, Y.; Zhai, Y.; Gao, M.

    2011-01-01

    Foliar urea has been proved to act a better role in alleviation of the negative effects of drought stress (DS). However, the modulation mechanism of foliar urea are not conclusive in view of nitric oxide (NO) burst and glycine betaine metabolism and their relationship. Two maize ( Zea mays L.) cultivars (Zhengdan 958, JD958, Jundan 20, ZD20) were grown in hydroponic medium, which were treated with spraying of urea concentration of 15 g L/sup -1/ and two water regimes (non-stress and DS simulated by the addition of polyethylene glycol (PEG, 15% w/v, MW 6000). The ten-day DS treatment increased betaine aldehyde dehydrogenase (BADH) activity, choline content and nitric oxide (NO) content acted as the key enzyme, initial substrate and a nitrogenous signal substance respectively in GB synthesis metabolism, thus, induced to great GB accumulation. The accumulation of NO reached the summit earlier than that of GB. The more positive/less negative responses were recorded in JD958 as compared with ZD20 to DS. Addition of foliar ur ea could increase accumulation of choline and BADH activity as well as NO content, thereby, increase GB accumulation under DS. These positive effects of urea applying foliarly on all parameters measured were more pronounced in cultivar JD20 than those in ZD958 under drought. It is, therefore, concluded that increases of both BADH activity and choline content possibly resulted in enhancement of GB accumulation. Foliar urea application could provoke better GB accumulation by modulation of GB metabolism, possibly mediating by NO burst as a signal molecule during drought, especially in the drought sensitive maize cultivar. (author)

  9. Vector control and foliar nutrition to maintain economic sustainability of bearing citrus in Florida groves affected by huanglongbing.

    Science.gov (United States)

    Stansly, Philip A; Arevalo, H Alejandro; Qureshi, Jawwad A; Jones, Moneen M; Hendricks, Katherine; Roberts, Pamela D; Roka, Fritz M

    2014-03-01

    Huanglongbing (HLB) or citrus greening is a bacterial disease vectored by the Asian citrus psyllid (ACP) causing tree decline, and yield loss. Vector control and foliar nutrition are used in Florida to slow the spread of HLB and mitigate debilitating effects of the disease. A four year replicated field study was initiated February 2008 in a 5.2-ha commercial block of young 'Valencia' orange trees employing a factorial design to evaluate individual and compound effects of vector management and foliar nutrition. Insecticides were sprayed during tree dormancy and when psyllid populations exceeded a nominal threshold. A mixture consisting primarily of micro- and macro-nutrients was applied three times a year corresponding to the principal foliar flushes. Differences in ACP numbers from five- to 13-fold were maintained in insecticide treated and untreated plots. Incidence of HLB estimated by polymerase chain reaction (PCR), rose from 30% at the beginning of the study to 95% in only 18 months. Highest yields all four years were seen from trees receiving both foliar nutrition and vector control. Production for these trees in the fourth year was close to the pre-HLB regional average for 10 year old 'Valencia' on 'Swingle'. Nevertheless, at current juice prices, the extra revenue generated from the combined insecticide and nutritional treatment did not cover the added treatment costs. This experiment demonstrated that vector control, especially when combined with enhanced foliar nutrition, could significantly increase yields in a citrus orchard with high incidence of HLB. Economic thresholds for both insecticide and nutrient applications are needed under different market and environmental conditions. © 2013 Society of Chemical Industry.

  10. Influence of foliar nutrients on phenol levels in leaves of Eugenia uniflora

    Directory of Open Access Journals (Sweden)

    Rosa M. Santos

    2011-08-01

    Full Text Available Eugenia uniflora L., Myrtaceae, leaves contain high amounts of phenolic compounds which are responsible for several pharmacological activities. In order to evaluate the phenolics seasonal variation leaves were analysed on a monthly basis during the period of two years for the contents of hydrolysable tannins, total phenols, flavonoids, and nutrients (N, P, K, S, Ca, Mg, Mn, Zn, Cu, and Fe. Results were correlated with climate conditions (rainfall, humidity, and mean temperature by Principal Component and ClusterAnalysis which allowed four groups to be distinguished with respect to the age of the leaves and the content of some metals. Young leaves were characterised by high levels of Zn and nitrogen whereas old leaves contained high levels of Fe and calcium, and both groups had moderate amounts of phenolics. Adult leaves were divided in two groups and results revealed that while one group had the highest levels of all phenols and lowest amounts of Mn and Cu, the other showed opposite quantities. The Canonical Correlation Analysis confirmed a highly significant negative correlation between phenol contents and Mn and Cu. These facts suggested that flavonoids and tannins production depends of the amounts of foliar nutrients, Cu and Mn in particular, which are cofactors of enzymes involved in phenol degradation and lignin biosynthesis. This knowledge can improve this specie cultivation in order to enhance the phenolic compounds concentration.

  11. Adubação foliar com micronutrientes em arroz irrigado, em área sistematizada

    Directory of Open Access Journals (Sweden)

    Marchezan Enio

    2001-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da aplicação de micronutrientes em arroz irrigado, em área de várzea após a sistematização. Foi realizado durante três anos agrícolas em PLANOSSOLO Hidromórfico eutrófico arênico, instalado em local de onde foi retirada uma camada de solo de cerca de 30cm de profundidade. A adubação com N, P e K foi realizada de acordo com a recomendação técnica para a cultura. O delineamento experimental foi de blocos ao acaso com quatro repetições, constituído de um tratamento denominado "completo", contendo os micronutrientes boro (H3BO3, cobre (CuSO4, ferro (FeSO4, manganês (MnCl2, molibdênio (Na2MoO4 e zinco (ZnSO4 e de seis outros formados pela omissão de um micronutriente de cada vez, além de testemunha sem micronutrientes. Em 1996/97, foram aplicados 70g ha-1 Zn, 70g ha-1 Mn, 40g ha-1 Fe, 50g ha-1 B, 12,5g ha-1 Cu e 4g ha-1 Mo, via foliar, no perfilhamento e no início da formação do primórdio floral das plantas de arroz. Em 1997/98, foram utilizadas as mesmas soluções, porém com aplicação apenas no perfilhamento. Em 1998/99, as doses dos micronutrientes foram alteradas para 35g ha-1 Zn, 35g ha-1 Mn, 100g ha-1 B, 20g ha-1 Cu e 12g ha-1 Mo, aplicados no perfilhamento, não sendo utilizado o ferro no tratamento completo nem na composição dos demais tratamentos. A sistematização da área causou redução no teor de matéria orgânica, macro e micronutrientes, exceto o boro e aumento de alumínio no solo. Verificou-se que não houve efeito da aplicação foliar de micronutrientes no rendimento de grãos de arroz irrigado.

  12. Effect of Maize Hybrid and Foliar Fungicides on Yield Under Low Foliar Disease Severity Conditions.

    Science.gov (United States)

    Mallowa, Sally O; Esker, Paul D; Paul, Pierce A; Bradley, Carl A; Chapara, Venkata R; Conley, Shawn P; Robertson, Alison E

    2015-08-01

    Foliar fungicide use in the U.S. Corn Belt increased in the last decade; however, questions persist pertaining to its value and sustainability. Multistate field trials were established from 2010 to 2012 in Illinois, Iowa, Ohio, and Wisconsin to examine how hybrid and foliar fungicide influenced disease intensity and yield. The experimental design was in a split-split plot with main plots consisting of hybrids varying in resistance to gray leaf spot (caused by Cercospora zeae-maydis) and northern corn leaf blight (caused by Setosphaera turcica), subplots corresponding to four application timings of the fungicide pyraclostrobin, and sub-subplots represented by inoculations with either C. zeae-maydis, S. turcica, or both at two vegetative growth stages. Fungicide application (VT/R1) significantly reduced total disease severity relative to the control in five of eight site-years (P<0.05). Disease was reduced by approximately 30% at Wisconsin in 2011, 20% at Illinois in 2010, 29% at Iowa in 2010, and 32 and 30% at Ohio in 2010 and 2012, respectively. These disease severities ranged from 0.2 to 0.3% in Wisconsin in 2011 to 16.7 to 22.1% in Illinois in 2010. The untreated control had significantly lower yield (P<0.05) than the fungicide-treated in three site-years. Fungicide application increased the yield by approximately 6% at Ohio in 2010, 5% at Wisconsin in 2010 and 6% in 2011. Yield differences ranged from 8,403 to 8,890 kg/ha in Wisconsin 2011 to 11,362 to 11,919 kg/ha in Wisconsin 2010. Results suggest susceptibility to disease and prevailing environment are important drivers of observed differences. Yield increases as a result of the physiological benefits of plant health benefits under low disease were not consistent.

  13. Aqueous Synthesis of ZnSe/ZnS-2-R-Benzothiazole Nanocrystals with White Emission

    Directory of Open Access Journals (Sweden)

    Ying-Fan Liu

    2016-01-01

    Full Text Available We prepared water-soluble white light-emitting ZnSe/ZnS-2-R-benzothiazole nanocrystals (NCs, R = 2-hydroxy-5-(2,5-dimethyl-thienyl-phenyl. The penicillamine (Pen capped ZnSe/ZnS NCs were firstly prepared with high photoluminescence quantum yields (PL QY of 40%. Then they bond to 2-R-benzothiazole molecules, resulting in white light-emitting ZnSe/ZnS-2-R-benzothiazole NCs with QY of 75% over a 375 to 650 nm range of emission, which can be applied to white light-emitting diodes. The ZnSe/ZnS-2-R-benzothiazole NCs with two emission bands at around 451 and 557 nm were discussed and the possible mechanism of the interaction of ZnSe/ZnS NCs with 2-R-benzothiazole was also proposed.

  14. THE IMPACT OF FERTILIZATION AND FOLIAR STIMULATION PRODUCTS BOTH ON INCREASING THE RESISTANCE TO MAJOR PHYTOPATHOGENS ATTACKS, AND ON INCREASING THE QUANTITY AND QUALITY OF WINE GRAPES HARVEST

    Directory of Open Access Journals (Sweden)

    Cristina BUNESCU

    2014-12-01

    Full Text Available The paper aimed to demonstrate the impact of fertilization and foliar stimulation products both on increasing the resistance to major phytopathogens attacks, and on increasing the quantity and quality of wine grapes harvest. Applying the foliar fertilizer products Plonvit Kali (c1, Tytanit (c2 and Optysil (c3 to vines, for a period of three years (2011/2013, in phenophases of intensive growth of shoots and grapes at approved dosages, simultaneously with pesticide treatment, not only a reduction of pathogenic fungi attack was obtained, but also and an increase of harvest without diminishing the quality of the grapes.

  15. Accumulation of Cs, Sr into leaves and grain of winter wheat under act of N, Zn, Li, Na

    International Nuclear Information System (INIS)

    Grodzinsky, D.; Tkatchuk, K.; Zhmurko, N.; Bogdan, T.; Guralchuk, Zh.

    1998-01-01

    The experiments were carried out on cv Lutencens 7 winter wheat grown on grey forest soil. In order to study the influence of nitrogen on Cs and Sr accumulation, a background of P60 K60 added in autumn different doses of nitrogen (30, 60, 120 kg/ha) were applied in spring. The influence of micronutrients on Cs and Sr accumulation was studied by adding 3 kg/ha Zn and 2 kg/ha Li to the soil under ploughing on background of N60 P60 K60. Besides the foliar application with 0.05% Na 2 SO 4 was carried out. Cation content (Cs, Sn, Zn, Li, Na) in soil and plant organs was determined by atomic absorption spectrophotometry. The Cs, Sr content in control plant leaves made up 15.0 and 21.0 mg per g of dry matter at the early stages of plant development. As the plants aged, the content of those elements in the leaves decreased strongly (3-4 times). At early stages of plant development, nitrogen caused an 8.9-11% increase in the Cs content of the leaves. At the stages of heading to grain filling, the Cs content increase was only observed at a high nitrogen dose, whereas low nitrogen doses had no effected on Cs accumulation in leaves. In should be noted that nitrogen (N60 and N120) decreased the Cs content in grain by 32-33%. As for the Sr content of grain, this was 3 to 4-fold less than that of Cs. Nitrogen had no effected on the Sr content of grain. Zn and Li addition to soil as well as foliar nutrition with Na had a different effect on the Cs and Sr content of winter wheat leaves and grain. Addition of Li decreased the Cs and Sr content of old leaves by 13% and 25% respectively. Addition of Zn and Na decreased the Sr content of old leaves but had no effect on the Cs content. Zn, Na and Li reduced the Sr content in grain also, viz. by 16,11 and 7% respectively. Thus the research has demonstrated the possibility of regulating Cs and Sr accumulation in the above-ground organs of winter wheat plants

  16. A two-compartment exposure device for foliar uptake study

    International Nuclear Information System (INIS)

    Zuo, Q.; Lin, H.; Zhang, X.L.; Li, Q.L.; Liu, S.Z.; Tao, S.

    2006-01-01

    An airtight two-chamber exposure devise was designed for investigating foliar uptake of polycyclic aromatic hydrocarbons (PAHs) by plants. The upper and the bottom chambers of the device were air-tightly separated by an aluminum foil and the plant aerial tissues and roots were exposed in the two chambers, respectively. The device was tested using maize exposed to several PAH species. Positive correlations between air and aerial tissue concentrations of the exposed PAH species were revealed. PAHs spiking in the culture solution had no influence on the leaf concentrations. -- A two-compartment gastight exposure device was developed for investigation of foliar uptake of PAHs by plants

  17. Properties of the ZnSe/ZnTe heterojunction prepared by a multi-source evaporation of ZnTe:Sb on ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, N [Parma Univ. (Italy). Ist. di Fisica; First, F [Uniwersytet Mikolaja Kopernika, Torun (Poland). Inst. Fizyki; Seuret, D [Universidad de La Habana, (Cuba). Facultad de Fisica-Matematica

    1979-07-16

    A new method of preparation is described of a ZnSe/ZnTe heterojunction in which Sb-doped ZnTe is deposited by a multi-source apparatus on ZnSe monocrystals. The properties of the heterojunction was studied, esp. the I-U characteristic, the 1/C/sup 2/ plot as a function of applied voltage, the photocurrent spectrum, and the electroluminescence spectrum.

  18. Diagnose foliar em mudas de pinhão-manso (Jatropha Curcas L. produzidas com biossólido Foliar analysis of jatropha (Jatropha curcas L. seedlings grown with biosolid

    Directory of Open Access Journals (Sweden)

    Alirio C. D. Maldonado Reginaldo de Camargo

    2013-03-01

    Full Text Available O uso do biossólido na agricultura tem-se mostrado a melhor alternativa ambiental e econômica para o destino do lodo de esgoto. O objetivo deste trabalho foi avaliar o potencial nutricional do biossólido para produção de mudas de pinhão-manso em tubetes. O experimento foi realizado em casa de vegetação tendo, como substrato, esterco bovino, vermiculita e biossólido. O delineamento experimental foi o de blocos casualizados com três repetições em esquema fatorial 5 x 2, correspondendo às concentrações de biossólido no substrato (0, 10, 20, 30 e 40% e ao tratamento ou não das sementes de pinhão-manso com fungicida. Aos 60 dias foi realizada análise foliar. Relativo às concentrações de biossólido verificou-se efeito significativo para os macronutrientes N, P, Ca, Mg e S e micronutrientes B, Cu, Mn e Zn. O tratamento de sementes teve efeito significativo para o Zn. As folhas apresentaram concentração de macronutrientes com a seguinte ordem: N > K > Mg > Ca > P > S. O acúmulo de micronutrientes apresentou a seguinte ordem: Fé > Mn >Zn > B > Cu. Há grande contribuição do biossólido nos teores de nitrogênio, enxofre e micronutrientes foliares, em plantas de pinhão-manso.The use of biosolids in agriculture has proven to be the best alternative for the environmental and economic destination of sewage sludge. The objective of this study was to evaluate the nutritional potential of biosolids to produce jatropha seedlings in polytube. The experiment was conducted in a greenhouse using as substrate manure, biosolids and vermiculite. The experimental design was in randomized block with three replications in a 5 x 2 factorial, corresponding to the substrate concentrations in sewage sludge (0, 10, 20, 30 and 40%, and the treatment or not of the seeds of jatropha with fungicide. At 60 days, leaf analysis was performed. Regarding the biosolids concentrations, significant effect was verified for the macronutrients N, P, Ca, Mg and S

  19. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Science.gov (United States)

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  20. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Directory of Open Access Journals (Sweden)

    Paresh Deshpande

    Full Text Available Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear.Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene, and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase, and DMAS (2'-deoxymugineic acid synthase in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement.At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  1. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-01-01

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H 2 gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H 2 (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10 -4 Ω cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H 2 gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films

  2. Effect of the foliar enrichment and herbicides on maize and associated weeds irrigated with drainage water

    Directory of Open Access Journals (Sweden)

    Roshdy M.H. Tagour

    2017-12-01

    Full Text Available A two-year field experiment was conducted during summer seasons of 2013 and 2014, which were irrigated by drainage water which belong to salinity class (C3S1 to C4S2, to study the effect of the foliar enrichment namely (Anti-stress and weed management treatments (some pre and post-emergence herbicides and two-hand hoeing on maize growth, yield, yield components and chemical composition of maize grains and associated weeds (Portulaca oleracea, Amaranthus retroflexus and Echinochloa colonum. The results illustrated that application of the foliar enrichment enhanced the dry weight of weeds and increased maize growth characters, yield and yield components and total crude protein and total oil percentage of grain maize, as compared with untreated treatment. All weed management treatments caused a significant reduction in total dry weight of weeds at 60 and 80 days after sowing in both seasons. Two-hand hoeing treatment exerted the highest decrease in total dry weight of weeds followed by metribuzin, oxadiagyl, fluroxypyr and bentazon, respectively at 60 and 80 days after sowing compared with other weed management treatments. While, the highest values of maize growth, yield, yield components and maize grains' content of protein and oil was obtained with two-hand hoeing followed by metribuzin, oxadiagyl, fluroxypyr and bentazon, respectively. While, two hands hoeing produced the maximum values of leaf area, ear length, the weight of kernels plant−1, but applying of metribuzin treatment gave the highest values of total oil percentage of grain maize when the foliar enrichment was used.

  3. Effect of Rhizobium inoculation of seeds and foliar fertilization on productivity of Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2013-07-01

    Full Text Available Pea (Pisum sativum L. is the second most important grain legume crop in the world which has a wide array of uses for human food and fodder. One of the major factors that determines the use of field pea is the yield potential of cultivars. Presently, pre-sowing inoculation of pea seeds and foliar application of microelement fertilizers are prospective solutions and may be reasonable agrotechnical options. This research was undertaken because of the potentially high productivity of the 'afila' morphotype in good wheat complex soils. The aim of the study was to determine the effect of vaccination with Rhizobium and foliar micronutrient fertilization on yield of the afila pea variety. The research was based on a two-year (2009–2010 controlled field experiment, conducted in four replicates and carried out on the experimental field of the Bayer company located in Modzurów, Silesian region. experimental field soil was Umbrisol – slightly degraded chernozem, formed from loess. Nitragina inoculant, as a source of symbiotic bacteria, was applied before sowing seeds. Green area index (GAI of the canopy, photosynthetically active radiation (PAR, and normalized difference vegetation index (NDVI were determined at characteristic growth stages. The presented results of this study on symbiotic nitrogen fixation by leguminous plants show that the combined application of Nitragina and Photrel was the best combination for productivity. Remote measurements of the pea canopy indexes indicated the formation of the optimum leaf area which effectively used photosynthetically active radiation. The use of Nitragina as a donor of effective Rhizobium for pea plants resulted in slightly higher GAI values and the optimization of PAR and NDVI. It is not recommended to use foliar fertilizers or Nitragina separately due to the slowing of pea productivity.

  4. Imaging spectroscopy of foliar biochemistry in forestry environments ...

    African Journals Online (AJOL)

    Remote sensing estimates of leaf biochemicals provide valuable information on ecosystem functioning, vitality and state at local to global spatial scales. This paper aims to give an overview of the state of the art of foliar biochemistry assessment in general and, where possible, attention is given to: (1) Eucalyptus forest ...

  5. A preliminary survey of foliar sclerenchyma in neotropical Loranthaceae

    NARCIS (Netherlands)

    Kuijt, J.; Lye, D.

    2005-01-01

    The foliar sclerenchyma of all genera of neotropical Loranthaceae is surveyed by means of cleared leaves, using selected species. Three general categories of sclerenchyma are recognized. Fibers may form discontinuous or continuous bundles associated with veins or, more rarely, occur as individual

  6. Foliar micromorphology of Lippia javanica (Burm.F) Spreng ...

    African Journals Online (AJOL)

    Background: Lippia javanica (Burm.F.) Spreng is an aromatic indigenous South African plant with culinary and medicinal values. This study investigated the foliar morphology and elemental composition of the plant because not much data concerning the anatomical and micro-morphological features can be found in ...

  7. Foliar nutrition in apple production | Murtic | African Journal of ...

    African Journals Online (AJOL)

    The objective of this study was to provide a comprehensive review of research papers dealing with the effect of foliar feeding on development parameters in apple trees in an attempt to obtain a more thorough insight into the advantages and disadvantages of this fertilization type and facilitate the potential use of this practice ...

  8. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  9. SE-ENRICHMENT OF CARROT AND ONION VIA FOLIAR APPLICATION

    OpenAIRE

    Kapolna, Emese; Laursen, Kristian H.; Hillestrøm, Peter; Husted, Søren; Larsen, Erik H.

    2008-01-01

    The aim of this work was to study the selenium accumulation in carrot and onion plants using foliar application by sodium selenite and sodium selenate. Furthermore, we aimed at identifying the Se species biosynthesised by onion and carrot plants. The results were used to prepare for production of 77Se enriched plants for an ongoing human absorption study.

  10. Variation in foliar water content and hyperspectral reflectance of ...

    African Journals Online (AJOL)

    Sirex noctilio, the Eurasian wood wasp, is one of the major pests responsible for declining forest health in pine forests located in KwaZulu-Natal, South Africa. Researchers have shown that stress induced by S. noctilio causes a rapid decrease in foliar water content, with the foliage of the tree changing from a dark green to a ...

  11. Foliar biofilms of Burkholderia pyrrocinia FP62 on geraniums

    Science.gov (United States)

    Biofilm formation on foliar surfaces is commonly associated with plants in water-saturated environments (e.g. tropics or modified environments). On most leaf surfaces bacteria are thought to reside in aggregates with limited production of an exopolysaccharide (EPS) matrix. However, the biocontrol ag...

  12. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages.

    Science.gov (United States)

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María

    2017-06-01

    Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Estimativa da área foliar de nabo forrageiro em função de dimensões foliares

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2012-01-01

    Full Text Available O objetivo deste trabalho foi desenvolver um modelo para estimar a área foliar de nabo forrageiro (Raphanus sativus L. var. oleiferus Metzg determinada por fotos digitais, em função do comprimento, ou da largura e/ou do produto comprimento vezes largura da folha. Aos 76 dias após a semeadura, foram coletadas 557 folhas da haste principal de 92 plantas, sendo mensurados o comprimento (C e a largura (L de cada folha, e calculado o produto comprimento × largura (C×L. Após, determinou-se a área foliar (Y, por meio do método de fotos digitais. Do total de folhas, separaram-se, aleatoriamente, 450 folhas para a construção de modelos do tipo quadrático, potência e linear de Y em função de C, da L, e/ou de C×L. 107 folhas foram usadas para a validação dos modelos. O modelo do tipo potência da área foliar obtida por meio do método de fotos digitais (Ŷ=0,6843x0,9221, R²=0,9862 em função do produto comprimento × largura é adequado para estimar a área foliar de nabo forrageiro.

  14. Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris.

    Science.gov (United States)

    Ding, Yongzhen; Wang, Yongjiu; Zheng, Xiangqun; Cheng, Weimin; Shi, Rongguang; Feng, Renwei

    2017-08-01

    This study was conducted to investigate the possibility of using a combined technology to synchronously reduce As and Cd accumulation in the edible parts of Brassica campestris. The results showed that a foliar application of selenite (Se) and silicon (Si) combined with soil ameliorants (including Ca-Mg-P fertilizer, sodium silicate and red mud) showed limited effects on the growth of B. campestris. The As concentration in the leaves of B. campestris in all treatments was below the Chinese safety standard. When sodium silicate and Ca-Mg-P fertilizer were added to the soil, the additional foliar application of Se and Si could in some cases help further reduce the concentrations of As and Cd in the leaves of B. campestris. However, when red mud was applied to the soil, the foliar application of Se and Si enhanced the Cd concentration in the leaves of B. campestris. In most cases, high levels of soil ameliorants plus foliar application of Se and Si significantly enhanced the As concentrations in both the soil solution and the roots of B. campestris but reduced the soil solution Cd concentration and the leaf As concentration. Most of the treatments reduced the thiobarbituric acid reactive substances (TBARS) concentration in the leaves of B. campestris, and the foliar application of Se and Si helped the soil ameliorants alleviate the oxidative stress resulting from As and Cd exposure. In this study, several treatments significantly increased the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). However, the enzymes peroxidase (POD) and catalase (CAT) were not induced by most treatments. In summary, the combined treatment of 1gkg -1 Ca-Mg-P fertilizer plus foliar spraying 2mmolL -1 sodium selenite was most effective in reducing the Cd concentration and a rather strong ability to reduce the As concentration and trigger the activities of SOD and APX in the leaves of B. campestris. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Isotopic exchange of 65Zn with stable Zn adsorbed on reference clay minerals

    International Nuclear Information System (INIS)

    Bourg, A.C.M.; Filby, R.H.

    1976-01-01

    For reference clays of low organic content, Zn adsorbed on the clay minerals is in kinetic equilibrium with 65 Zn in solution. Thus the specific activity approach applied to the transport of 65 Zn(II) at the water-reference clay interface is intrinsically valid. (author)

  16. Effect of Nitrogen Foliar Application on Canola Yield (Brassica napus L. and Nitrogen Efficiency across Different Sowing Dates

    Directory of Open Access Journals (Sweden)

    S Doori

    2016-12-01

    of dusty application (1/3 after appearance of seedling on the soil, 1/3 in 3-4 leaves stage after thinning and 1/3 at the beginning of steam elongation and 100 kg.ha-1 super phosphate triple in all plot was applied before planting. Each plot was consist of 8 planting line with 20 cm apart from each other and 4 m length. The data were analyzed by using SAS and mean comparison of data based on LSD test in 5% probably level. Results and Discussion Late sowing date and nitrogen foliar have significant effect on the yield and efficiency and uptake index of nitrogen. With delay in sowing because the flowering and silique formation stage faced with the heat tension, the vegetative phase, production of photosynthesis matter and growth all treatment like: yield, oil yield, biological yield, oil seed percent, nitrogen harvest index, nitrogen use efficiency, nitrogen utilization of agronomy efficiency and amount of nitrogen uptake, were decrease. But it should be pointed out that with delay in sowing the percentage of nitrogen seed and nitrogen of all bushes was increased. The highest yield with mean of 3406.6 kg.ha-1 was relevant to first sowing date and least yield with mean 1803 and 1499.1 kg.ha-1 was achieved of second and third sowing date, respectively. In foliar treatment the highest yield was obtained from N foliar in budding and flowering stages and the least yield was obtained from control treatment. Foliar in budding and flowering stages by increasing the green surfaces of plant, more benefit of sun radiation, increasing in photosynthetic activity were increase and in this way the seed yield and oil yield were increase. As well nitrogen harvest index was increased with increasing of assigned nitrogen to silique in canola and the reduction in wasting of nitrogen will be increased by consume it in appropriate time. With nitrogen foliar application because of availability of nitrogen in appropriate amount and adequate utilization of plant of nitrogen, caused to increase

  17. Adubos foliares quelatizados e sais na absorção de boro, manganês e zinco em laranjeira ?Pera?

    Directory of Open Access Journals (Sweden)

    Santos Carlos Henrique dos

    1999-01-01

    Full Text Available O presente trabalho teve como objetivo comparar a eficiência de formulações de adubos foliares quelatizados na absorção dos micronutrientes boro, manganês e zinco, com a aplicação convencional de sais em plantas de laranjeira ?Pera? (Citrus sinensis (L. Osbeck. Para tanto foi conduzido experimento nas dependências do Departamento de Ciência do Solo da Faculdade de Ciências Agronômicas UNESP/Campus de Botucatu, Estado de São Paulo. Utilizaram-se plantas de laranjeira ?Pera? (Citrus sinensis (L. Osbeck enxertadas sobre limoeiro ?Cravo? (Citrus limonia Osbeck, com 2 anos de idade, plantadas em caixas de 250 litros. Os adubos foliares utilizados foram: Grex Citros na dose de 1,0 mL L-1; Copas citros 2,0 mL L-1; Plantin Citros 1,0 mL L-1; Citrolino 2,0 mL L-1; Fertamin Citros 1,75 mL L-1; Yogen Citros 2,0 mL L-1; MS-2 1,0 mL L-1; Sais, Sais + 1,0 g L-1 de KCl e Sais substituindo o ZnSO4 pelo ZnCl2. O volume de aplicação, foi de 1 litro de calda planta-1. Em todos os tratamentos adicionou-se o espalhante adesivo do grupo químico dos alquifenoletoxilados a 0,03%. A amostragem das folhas foi realizada 30 dias após a aplicação dos tratamentos, coletando-se a 3a ou 4a folha de ramos vegetativos no início do florescimento, dos 4 quadrantes, localizados na região mediana da planta, totalizando 10 folhas por planta. A aplicação foliar de micronutrientes, favoreceu a absorção e resultou no aumento do teor foliar de Mn e Zn mas não de B, sendo que a presença de cloreto aumentou os teores de Zn na folhas de laranjeira ?Pera?, proporcionando maior absorção do que o sulfato e sulfato adicionado ao cloreto de potássio. Os resultados mostram, também, que os produtos quelatizados Yogen e MS-2, para as condições deste estudo, não foram eficientes como fontes fornecedoras de Mn.

  18. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  19. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    International Nuclear Information System (INIS)

    Wang Weining; Tarafdar, Jagadish C.; Biswas, Pratim

    2013-01-01

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d p < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  20. Foliar uptake of 134Cs and 85Sr in strawberry as function by leaf age

    International Nuclear Information System (INIS)

    Fortunati, P.; Brambilla, M.; Speroni, F.; Carini, F.

    2004-01-01

    In this paper a study of the foliar uptake and translocation of 134 Cs and 85 Sr in a herbaceous fruit plant is presented. In particular, absorption, translocation and loss of these radionuclides in strawberry plants have been studied in relation to the age of contaminated leaves. Strawberry plants were contaminated by distributing droplets of an aqueous solution containing 134 CsCl and 85 SrCl 2 on the surface of two leaves per plant. One half of the plants was contaminated through two young leaves, a second half through two old leaves. Sets of plants were collected 1 day, 7 days and 15 days after contamination. One half of them was rinsed with double distilled water before gamma analysis. Rinsing contaminated leaves removes on average 55% of the applied 134 Cs and 45% of 85 Sr. The activity removed decreases during the 15 days of the experimental study, both for 134 Cs and for 85 Sr, suggesting an increase in foliar absorption during this period. The activity removed does not differ between old and young leaves. 'External loss' is lower for young than old contaminated leaves. 'Internal loss' through translocation occurs mainly for 134 Cs. Translocation coefficients from contaminated leaves to fruits are two orders of magnitude higher for 134 Cs (4.0%), than for 85 Sr (0.05%). Leaf to fruit translocation coefficients for 134 Cs are higher from young leaves (5.8%), than from old leaves (2.3%)

  1. Foliar copper uptake by maize plants: effects on growth and yield

    Directory of Open Access Journals (Sweden)

    Rogério Hidalgo Barbosa

    2013-09-01

    Full Text Available A slight increase in the levels of a certain nutrient can cause a significant increase in crop yield or can cause phytotoxicity symptoms. Thus, the aim of this study was to evaluate the effect of foliar application of copper (Cu on the growth and yield of DG-501 maize. The experiment was carried out between December 2009 and April 2010 in conventional tillage. When plants were with six to eight leaves, Cu (0, 100, 200, 300, 400, 500 and 600g ha-1 was applied to the leaves. Treatments were arranged in randomized complete block with five replications. When 50% of the plants were in flowering, it was evaluated the plant height, culm diameter, height of the first ear insertion, leaf area, and chlorophyll content. At harvest, it was evaluated diameter and length of the ear, yield and thousand grain weight. There was a linear reduction in the plant height and in the height of the first ear insertion with increasing Cu doses. On the other hand, chlorophyll content, leaf area, diameter and length of ear, thousand grain weight and yield increased at doses up to 100g ha-1 Cu, however, decreased at higher doses. Therefore, foliar Cu application at doses higher than 100g ha-1 has toxic effect in maize plants with losses in growth and yield.

  2. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weining [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States); Tarafdar, Jagadish C. [Central Arid Zone Research Institute (India); Biswas, Pratim, E-mail: pbiswas@wustl.edu [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering (United States)

    2013-01-15

    An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d{sub p} < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

  3. Leaf optical properties shed light on foliar trait variability at individual to global scales

    Science.gov (United States)

    Shiklomanov, A. N.; Serbin, S.; Dietze, M.

    2017-12-01

    Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary among communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a rich and widely available source of information on plant traits. Here, we apply Bayesian inversion of the PROSPECT leaf radiative transfer model to a large global database of over 60,000 field spectra and plant traits to (1) comprehensively assess the accuracy of leaf trait estimation using PROSPECT spectral inversion; (2) investigate the correlations between optical traits estimable from PROSPECT and other important foliar traits such as nitrogen and lignin concentrations; and (3) identify dominant sources of variability and characterize trade-offs in optical and non-optical foliar traits. Our work provides a key methodological contribution by validating physically-based retrieval of plant traits from remote sensing observations, and provides insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.

  4. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles.

    Science.gov (United States)

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity.

  5. Iron supply to soybean plants through the foliar application of IDHA/Fe3+: effect of plant nutritional status and adjuvants.

    Science.gov (United States)

    Rodríguez-Lucena, Patricia; Ropero, Edgar; Hernández-Apaolaza, Lourdes; Lucena, Juan J

    2010-12-01

    Synthetic Fe chelates are commonly used to overcome Fe deficiencies in crops, but most of them are scarcely biodegradable. Iminodisuccinic acid (IDHA) is a biodegradable chelating agent that is currently being evaluated as an alternative to EDTA. In this work, the efficacy of the foliar application of IDHA/Fe(3+) to soybean chlorotic plants under controlled conditions was studied, testing the influence of the adjuvant used and of the plant nutritional status. When IDHA/Fe(3+) was applied to soybean plants with severe Fe chlorosis and the foliar sprays were the sole source of Fe, this chelate behaved similarly to the EDTA/Fe(3+) and the recovery of the plants was slight in both cases. The same chelates were tested when foliar sprays were an additional source of Fe for mildly chlorotic plants, which were also being supplied with low concentrations of Fe applied to the nutrient solution. Then, plant recovery was appreciable in all cases, and the IDHA/Fe(3+) was as effective as EDTA/Fe(3+). Among the adjuvants studied, a urea-based product was the only one that did not damage the leaf surface and that could improve the efficiency of IDHA/Fe(3+) up tp the level of EDTA/Fe(3+). Thus, it was concluded the foliar application of IDHA/Fe(3+) can be an environmentally friendly alternative to the non-biodegradable chelate EDTA/Fe(3+) when the appropriate adjuvant is used. Copyright © 2010 Society of Chemical Industry.

  6. Effect of the counter anion of cesium on foliar uptake and translocation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hidenao [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)], E-mail: hhidenao@ies.or.jp; Tsukada, Hirofumi; Kawabata, Hitoshi [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan); Chikuchi, Yuki [JGC Plantech Aomori Co. Ltd., Rokkasho, Aomori 039-3212 (Japan); Takaku, Yuichi; Hisamatsu, Shun' ichi [Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)

    2009-01-15

    Direct deposition of radioactive material onto crops is one important pathway for safety assessment of radionuclides released from nuclear facilities. Foliar uptake of Cs by radish (Raphanus sativus L. cv. Redchim) was studied by applying droplets of Cs solution (CsCl or CsNO{sub 3}) on an upper leaf surface. The uptake of Cs was strongly affected by counter anions of Cs in the applied solution. Approximately 80% of Cs was absorbed for CsCl solution, while only 20% was absorbed for CsNO{sub 3}. The partition of absorbed Cs between leaf and root tuber was quite similar for both Cs compounds, which indicated that behavior of the absorbed Cs in radish was the same for both.

  7. White organic light-emitting diodes with Zn-complexes.

    Science.gov (United States)

    Kim, Dong-Eun; Shin, Hoon-Kyu; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo

    2014-02-01

    This paper reviews OLEDs fabricated using Zn-complexes. Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were synthesized as new electroluminescence materials. The electron affinity (EA) and ionization potential (IP) of Zn complexes were also determined and devices were characterized. Zn complexes such as Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were found to exhibit blue and yellow emissions with wavelengths of 455, 532, and 535 nm, respectively. On the other hand, Zn(HPB)2 and Zn(HPB)q were applied as hole-blocking materials. As a result, the OLED efficiency by using Zn(HPB)2 as a hole-blocking material was improved. In particular, the OLED property of Zn(HPB)2 was found to be better than that of Zn(HPB)q. Moreover, Zn(phen)q was used as an electron-transporting material and compared with Alq3. The performance of the device with Zn(phen)q as an electron-transporting material was improved compared with Alq3-based devices. The Zn complexes can possibly be used as hole-blocking and electron-transporting materials in OLED devices. A white emission was ultimately realized from the OLED devices using Zn-complexes as inter-layer components.

  8. Foliar Application of Potassium Fertilizer to Reduce the Effects of Salinity in Potato

    Directory of Open Access Journals (Sweden)

    H Molahoseini

    2017-06-01

    of potassium oxide, and the number of times foliar spray were included in one (start flowering, two (full emergence of flowers, and three (two weeks after full flowering stage times. Potato (CV. Ramus was planted in plots 1.5 × 6 m in February 24 and harvested in 24 May in the both years. Row and plant spacing’s were 75 and 20 cm, respectively. Irrigation (furrow was applied when the soil moisture in the root zone declined to 60-65 percent of field capacity. To determine the irrigation time tensiometers placed at 15- and 30-cm depths responded to changes in soil water. To measure the tuber yield (after eliminating the edges, the whole tuber yield was measured on each plot. Tubers with size less than 35 mm were considered as non-salable tuber yield. An irrigation water productivity index based on the formula Tanner and Sinclair (1983 was calculated. Irrigation Water Productivity = Y/WC. In this formula, Y is the product of economic performance and WC is the consumed water. During the interval between the first and last spray, pressure chamber apparatus(Arimad-2 Japan for measuring the youngest leaves water potential was used (hours 8-6 am. During the growing season, weeds were hand-weeding. The data were subjected to analysis of variance by SAS and means Fisher’s Protected LSD (5% was used for mean separation. Result and Discussions The results of this study showed that salable yield with three times K sulfate spraying (Ps×3S, and potassium oxide treatments sprayed with two and three times (Po×2S and Po×3S were significantly more than to other treatments, but did not find statistically significant differences among these three treatments. Tuber weight was the most important component that significantly affected by the interaction of potassium sprayed and its frequency. Three times foliar sprays of potassium sulfate (Ps×3S and two and three times potassium oxide foliar application (Po×2S and Po×3S, showed 19, 17 and 21% increase in compared to the control

  9. Foliar pH as a new plant trati: van it explain variation in foliar chemistry and carbon cycling processes among subarctiv plant species and types?

    NARCIS (Netherlands)

    Cornelissen, J.H.C.; Quested, H.M.; van Logtestijn, R.S.P; Perez-Harguindeguy, N.; Gwynn-Jones, D.; Diaz, S.; Callaghan, T.V.; Press, M.C.; Aerts, R.

    2006-01-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that

  10. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments.

    Science.gov (United States)

    Vandecasteele, Bart; Laing, Gijs Du; Quataert, Paul; Tack, Filip M G

    2005-04-01

    Several authors suggest that a hydrological regime aiming at wetland creation is a potential management option that favours reducing bioavailability for metal-contaminated sites. The hydrological conditions on a site constitute one of the many factors that may affect the availability of potentially toxic trace metals for uptake by plants. Bioavailability of Cd, Mn and Zn on a contaminated dredged sediment landfill (DSL) with variable duration of submersion was evaluated by measuring metal concentrations in the wetland plant species Salix cinerea in field conditions. Longer submersion periods in the field caused lower Cd and Zn concentrations in the leaves in the first weeks of the growing season. Foliar Cd and Zn concentrations at the end of the growing season were highest on the initially flooded plot that emerged early in the growing season. Foliar Zn concentrations were also high at a sandy-textured oxic plot with low soil metal concentrations. Zn uptake in the leaves was markedly slower than Cd uptake for trees growing on soils with prolonged waterlogging during the growing season, pointing at a different availability. Zn availability was lowest when soil was submerged, but metal transfer from stems and twigs to leaves may mask the lower availability of Cd in submerged soils. Especially for Cd, a transfer effect from one growing season to the next season was observed: oxic conditions at the end of the previous growing season seem to determine at least partly the foliar concentrations for S. cinerea through this metal transfer mechanism. Duration of the submersion period is a key factor for bioavailability inasmuch as initially submerged soils emerging only in the second half of the growing season resulted in elevated Cd and Zn foliar concentrations at that time.

  11. Estimativa da área foliar da berinjela em função das dimensões foliares

    Directory of Open Access Journals (Sweden)

    Fernando Dill Hinnah

    2014-09-01

    Full Text Available Este trabalho explora diferentes modelos não destrutivos de estimativa da área foliar de Solanum melongela L. através de medidas do comprimento (C e largura (L do limbo foliar. Para tanto, um cultivo de berinjela em estufa plástica foi conduzido no período de março a junho de 2007. Amostraram-se folhas de plantas em momentos aleatórios totalizando 186 folhas, sendo 98 utilizadas na estimativa dos parâmetros dos modelos e 88 para sua validação. As amostragens abrangeram amplo espectro de dimensões foliares, visando minimizar a raiz do quadrado médio do erro (RQME. Elas foram realizadas aos 71, 79, 81, 85, 92 e 99 dias após o transplante. Posteriormente obteve-se o maior número possível de discos foliares com o auxílio de um calador de 25 mm de diâmetro. Correlações foram realizadas entre a área foliar obtida pelo método dos discos com as dimensões lineares de L e C, o produto entre elas (CL e o quadrado do comprimento multiplicado pela largura (C²L. Análises de regressão para 20 modelos foram obtidas, entre quadráticos, exponenciais, lineares, logarítmicos e de potência, dos quais 12 apresentaram coeficiente de determinação (R² elevado. O modelo quadrático (Y = -5,78+0,4981CL-3,263.10-4CL² e o da potência (Y = 0,4395CL1,0055 apresentaram melhores estimativas, com R² de 0,964 para ambos e RQME de 33,2 e 34,4, respectivamente. Com a medida apenas de uma dimensão foliar, o modelo quadrático (Y = -63,5+10,492L+0,2822L²; R² = 0,937; RQME = 44,1 apresenta-se como alternativa, pouco afetando a precisão da estimativa.

  12. Efeito da aplicação foliar de boro e zinco sobre a produção e os teores de SST e ATT dos frutos da Pereira-Japonesa e da pinheira Leaf spray fertilization of boron and zinc on production, SST and ATT in fruits of pear and sugar apple

    Directory of Open Access Journals (Sweden)

    Regina Célia Faria Simão Canesin

    2007-08-01

    Full Text Available Pulverizações foliares com produtos contendo micronutrientes, dentre os quais os produtos quelatizados, são utilizadas com relativa freqüência em frutíferas, sem o embasamento científico adequado, principalmente entre os agricultores mais tecnificados. Neste contexto, o objetivo deste trabalho foi verificar o efeito da aplicação via foliar de B e Zn sobre a produção e os teores de SST e ATT dos frutos da Pereira-Japonesa e da Pinheira. O experimento foi conduzido numa área irrigada, situada no cinturão verde do município de Ilha Solteira-SP. O solo da área foi classificado como Podzólico Vermelho-Escuro. Foram utilizadas plantas de Pereira-Japonesa, cultivar Okussankichi e de Pinheira. Os tratamentos utilizados foram: T1. apenas água; T2. ácido bórico; T3. sulfato de zinco; T4. T2 + T3; T5. ácido bórico + uréia + ácido cítrico + EDTA; T6. sulfato de zinco + uréia + ácido cítrico + EDTA; T7. T5 + T6; T8. ácido bórico + uréia + ácido cítrico + EDTA + molibdato de sódio + enxofre + cloreto de cálcio; T9. sulfato de zinco + ácido cítrico + EDTA + sulfato de Fe + sulfato de Mn + sulfato de Mg, e T10. T8+T9. Foram utilizadas doses de 110 g ha-1 de B e 250 g ha-1 de Zn, em cada aplicação. O delineamento experimental adotado foi o de blocos ao acaso, com quatro repetições e, para comparação de médias, foi utilizado o teste de Tukey. Com base nos resultados obtidos, pode-se concluir que: 1 a produção e os teores de SST e ATT dos frutos da pereira-japonesa e da pinheira não foram influenciados pela aplicação foliar de B e de Zn; b a mistura de ácido bórico com quelatos foi eficiente no fornecimento de B às plantas de pereira- japonesa, o mesmo não ocorrendo para pinheira, c o sulfato de zinco + produtos quelatizantes foram eficientes no aumento dos teores foliares de Zn somente na pereira.Leaf spray using liquid products with micronutrients, among them, quelates are usual in fruit trees. However, there

  13. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  14. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil.

    Science.gov (United States)

    Shi, Pengbao; Song, Changzheng; Chen, Haiju; Duan, Bingbing; Zhang, Zhenwen; Meng, Jiangfei

    2018-07-01

    Flavonoids are important compounds for grape and wine quality. Foliar fertilization with iron compounds has been reported to have a substantial impact on grape composition in the grapevines growing in calcareous soil. However, much less is known about its real impact on flavonoid composition. In the present study, Ferric ethylenediamine di (O-hydroxyphenylacetic) acid (Fe-EDDHA) was foliar applied to Merlot (Vitis vinifera L.) grapevines growing in calcareous soil over two consecutive vintages in order to study its effect on grape flavonoid composition. Fe-EDDHA foliar supply tended to increase grape sugar, anthocyanin and flavonol content, decrease acid content and enhance the juice pH when compared to the control. Principal component analysis showed that the vintage also had influence on grape quality. The results suggested that Fe-EDDHA foliar application had an enhancement effect on grape secondary metabolism, and the effect increased the nutritional value of the consequent grapes and wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Decoupling Seasonal Changes in Water Content and Dry Matter to Predict Live Conifer Foliar Moisture Content.

    OpenAIRE

    Jolly, W. M.; Hadlow, A. M.; Huguet, K.

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples fromPinus contorta for two growing seasons and quantified their LFMC, relative water content (RWC) and dry matter chemistry. LFMC quantifies the amou...

  16. Absorção e redistribuição do nitrogênio aplicado via foliar em videiras jovens Uptake and redistribution of nitrogen in foliar application in young grapevines

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2005-04-01

    Full Text Available A aplicação de nitrogênio via foliar antes da senescência das folhas da videira pode ser uma estratégia para aumentar as reservas deste nutriente nas partes perenes, uma vez que as mesmas são disponibilizadas no início do crescimento vegetativo dos órgãos anuais. O objetivo deste trabalho foi de estimar a absorção e a redistribuição do N adicionado via foliar em videiras jovens. O experimento foi instalado em casa de vegetação na EMBRAPA-Uva e Vinho, no município de Bento Gonçalves (RS. Foram utilizadas as variedades Chardonnay e Riesling Itálico com porta-enxerto 101-14 Mgt. Foi cultivada uma planta por vaso contendo 10kg de solo Neossolo Litólico. A aplicação do N via foliar foi parcelada em três vezes, durante três dias sucessivos. Foram aplicados 84,84mg N planta-1 na forma de (15NH42SO4 . As plantas foram colhidas em sete épocas diferentes. Após a colheita, as plantas foram fracionadas em folhas, enxerto, porta-enxerto, raízes grossas (>2mm e raízes finas (The foliar application of nitrogen before the leaves senescence may be a strategy to increase the nutrient reserves in the perennial parts, being available in the beginning of the vegetative growth of the annual parts. The objective of this work was to estimate the uptake and redistribution of N applied by foliar way in young grapevines. The experiment was carried out in a greenhouse at EMBRAPA-Grape and Wine, Bento Gonçalves Southern Brazil. The cultivars used were Chardonnay and Riesling Italic grafted on rootstock 101-14 Mgt. It was cultivated one plant by vase with 10kg of soil Udorthent. The foliar application of N was parceled in three times during three successive days. It was applied 84,84mg N plant-1 using (15NH42SO4 . The plants were collected in seven times, during vegetative growth. The plants were fractionated in leaves, graft, carry-graft, thick roots (>2mm and fine roots (<2mm, oven-dried, weighted, and analyzed N-total and 15N contents. The

  17. Stomata character and chlorophyll content of tomato in response to Zn application under drought condition

    Science.gov (United States)

    Sakya, A. T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B. H.

    2018-03-01

    This experiment was performed in order to evaluate the effects of Zn application under drought condition on tomato, especially its chlorophyll content and stomata character. This experiment was arranged in factorial using randomized complete block design with three replications. The treatment consisted of the Zn application method, namely: soil and foliar, the Zn dosage, namely: 0, 40 and 60 mg ZnSO4 kg-1 soil and two cultivars of tomato, namely: ‘Tyrana’ F1 and ‘Permata’ F1. The stress condition was induced by watering every 12 days of 3 weeks after transplanting until harvesting. The results showed that the soil with a Zn application under drought conditions increased the aperture stomata, chlorophyll b and chlorophyll a/b ratio. The response of stomata character, chlorophyll a and total chlorophyll in both cultivars was similar.

  18. Foliar absorption of phosphorus by common bean

    International Nuclear Information System (INIS)

    Boaretto, A.E.; Rosa, J.P.P.

    1984-01-01

    The effet of urea and/or sucrose on P uptake from H 3 PO 4 and monoammonium phosphate by bean leaves. A solution containing 0.145% P and specific activity 10μ Ci/ml is sprayed early in the morning or late afternoon. Besides the treatment without urea and sucrose, these substances are added in two concentrations 0.66% N + sucrose, and 1.32% N + sucrose. Twenty four hous after application, 52% of the applied P is absorved by the bean trifoliate leaf. (M.A.C.) [pt

  19. Volume de madeira e concentração foliar de nutrientes em parcelas experimentais de Eucalyptus grandis fertilizadas com lodos de esgoto úmido e seco Wood volume and foliar concentration of nutrients in Eucalyptus grandis after wet and dry sewage sludge application

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Muller da Silva

    2008-10-01

    over after wastewater treatment and its disposal needs to be well planned, considering sanitary, environmental, economic and social implications. Sewage sludge (biosolids is high in organic content and plant nutrient and could be applied as fertilizer in forest plantations. The aim of this research, conducted at the Experimental Station of Itatinga (University of São Paulo was to evaluate the effects of increasing doses (10, 20 and 30 tons ha-1 of wet and dry biosolids(pellets, complemented with K and B, and applied to planting rows in experimental Eucalyptus grandis plots 1.5 years after seedling plantation. Trunk volume increased significantly regarding the eucalypt trees that received wet and dry sewage sludge, compared to the control treatment (no fertilization, and a similar growth of eucalypt trees that received full mineral fertilization. Regarding mineral nutrition, a positive correlation was observed between doses of biosolids and P, Ca, and Zn concentrations in the leaves, but a negative effect for Mn and biosolid dose. The foliar concentration of all the nutrients in the biosolid-treated eucalypt trees remained within the limits observed in commercial plantations, with no signs of nutritional imbalance.

  20. Influence of foliar riboflavin applications to vineyard on grape amino acid content.

    Science.gov (United States)

    González-Santamaría, Rosario; Ruiz-González, Rubén; Nonell, Santi; Garde-Cerdán, Teresa; Pérez-Álvarez, Eva P

    2018-02-01

    Nitrogen is an important element for grapevine and winemaking, which affects plant development, grape juice fermentation and has a potential effect in modulating wine quality. The aim was to study the influence of foliar applications of riboflavin (vitamin B2) to vineyard on grape nitrogen composition. This vitamin has a reported capacity to protect different plant species, but its application to favor grape and grape juice quality had not previously been studied. This work reports the oenological properties and the effect on amino acid concentration of grape juices obtained from grapes treated with riboflavin at two different doses compared to control. Results showed that probable alcohol, malic acid, color intensity and hue had significant differences when the riboflavin treatments were applied. Most of the amino acids presented the highest concentrations when the lowest riboflavin dose was used. These results are promising in terms of fermentation development and grape juice nitrogen composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy

    Science.gov (United States)

    Du, Yumei; Kopittke, Peter M.; Noller, Barry N.; James, Simon A.; Harris, Hugh H.; Xu, Zhi Ping; Li, Peng; Mulligan, David R.; Huang, Longbin

    2015-01-01

    Background and Aims Globally, zinc deficiency is one of the most important nutritional factors limiting crop yield and quality. Despite widespread use of foliar-applied zinc fertilizers, much remains unknown regarding the movement of zinc from the foliar surface into the vascular structure for translocation into other tissues and the key factors affecting this diffusion. Methods Using synchrotron-based X-ray fluorescence microscopy (µ-XRF), absorption of foliar-applied zinc nitrate or zinc hydroxide nitrate was examined in fresh leaves of tomato (Solanum lycopersicum) and citrus (Citrus reticulatus). Key Results The foliar absorption of zinc increased concentrations in the underlying tissues by up to 600-fold in tomato but only up to 5-fold in citrus. The magnitude of this absorption was influenced by the form of zinc applied, the zinc status of the treated leaf and the leaf surface to which it was applied (abaxial or adaxial). Once the zinc had moved through the leaf surface it appeared to bind strongly, with limited further redistribution. Regardless of this, in these underlying tissues zinc moved into the lower-order veins, with concentrations 2- to 10-fold higher than in the adjacent tissues. However, even once in higher-order veins, the movement of zinc was still comparatively limited, with concentrations decreasing to levels similar to the background within 1–10 mm. Conclusions The results advance our understanding of the factors that influence the efficacy of foliar zinc fertilizers and demonstrate the merits of an innovative methodology for studying foliar zinc translocation mechanisms. PMID:25399024

  2. Utilização de Acibenzolar-S-Methyl para controle de doenças foliares da soja Use of Acibenzolar-S-Methyl to control foliar diseases of soybean

    Directory of Open Access Journals (Sweden)

    Leandro Jose Dallagnol

    2006-09-01

    foliar area and yield. The inclusion of ASM to the chemical control program of foliar diseases increased the efficacy of the fungicides in most of the cases but with variations among cultivars. Best results were obtained with applications of Difenoconazol + ASM at R3 and R4 stages, but without efficacy when applied with Azoxystrobin at the R5.1 stages. Yield increase was affected by host tolerance to the diseases, but more evident on the cultivars 'CD 201' and 'RS 10' with application of ASM + Difenoconazol at the R4 stage.

  3. Integrated effect of nutrients from a recirculation aquaponic system and foliar nutrition on the yield of tomatoes Solanum lycopersicum L. and Solanum pimpinellifolium.

    Science.gov (United States)

    Gullian Klanian, Mariel; Delgadillo Diaz, Mariana; Aranda, Javier; Rosales Juárez, Carolina

    2018-04-20

    The objective of this study was to evaluate the potential of tomato plants to efficiently use the nitrogen (N) of a recirculation aquaponic system (RAS) and to evaluate the effects of foliar fertilization as a complement to the water nutrition on the growth of the two tomato cultivars. The significant effect of six macro- and seven micronutrients was evaluated on the plant growth and on the fruit yield. Two experiments were performed in a nutrient film aquaponic unit. The first experiment was designed to study the effects of foliar fertilization on the seedlings of two tomato cultivars Costoluto Genovese (CG) (Solanum lycopersicum L.) and Currant tomato (Ct) (Solanum pimpinellifolium) with 8% of weekly water exchange (WE8%-RAS). The foliar fertilizer was formulated with N restriction in the last 11 weeks (TF1). In the second experiment, two other foliar fertilization treatments (TF2 and TF3) were applied with a concentration of nutrients twice and triple that in TF1, but with a lower proportion of NPK ratio. These treatments were tested on the cultivar CG in a RAS with zero water exchange (WE0%-RAS). The data from the 1st experiment showed a positive effect of the foliar fertilization on the yield of both cultivars. The fertilization markedly influenced the dry matter weight of the CG; however, this effect was not observed in the Ct. The root length of both cultivars was positively influenced by the P content, whereas the plant height was affected by the excess of Co and S. According to the results from the 2nd experiment, the TF2 plants had the highest number of fruits with a high mean weight. The system was efficient in utilizing N from fish tank; the water K favored the yield of the CG fruit and the foliar K favored the growth of the TF2 plants. With a decrease in the foliar N, the CG plants were able to absorb 27.5% of the NO 3 - and 7.06% of total ammonia nitrogen from water. The absolute and relative growth rate of Nile tilapia was not affected by the rate

  4. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    Science.gov (United States)

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  5. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers.

    Science.gov (United States)

    Garde-Cerdán, T; López, R; Portu, J; González-Arenzana, L; López-Alfaro, I; Santamaría, P

    2014-11-15

    The aim of this work was to study the influence of foliar application of different nitrogen sources on grape amino acid content. The nitrogen sources applied to Tempranillo grapevines were proline, phenylalanine, urea, and two commercial nitrogen fertilisers, both without and with amino acids in their formulations. All treatments were applied at veraison and one week later. Proline treatment did not affect the must nitrogen composition. However, phenylalanine and urea foliar application enhanced the plants' synthesis of most of the amino acids, producing similar effects. In addition, the spray of commercial nitrogen fertilisers over leaves also induced a rise in grape amino acid concentrations regardless of the presence or absence of amino acids in their formulation. The most effective treatments were phenylalanine and urea followed by nitrogen fertilisers. This finding is of oenological interest for improved must nitrogen composition, ensuring better fermentation kinetics and most likely enhancing wine quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. FOLIAR NUTRIENT CONTENTS AND FRUIT YIELD IN CUSTARD APPLE PROGENIES

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2009-01-01

    Full Text Available Foliar nutrient contents are evaluated in several fruit trees with many objectives. Leaf analysis constitutes a way of evaluating the nutritional requirements of crops. Due to the positive impact that fertilizers have on crop yields, researchers frequently try to evaluate the correlations between yield and foliar nutrient contents. This work's objective was to present fruit yields from the 4th to the 6th cropping seasons, evaluate foliar nutrient contents (on the 5th cropping season, and estimate the correlations between these two groups of traits for 20 half-sibling custard apple tree progenies. The progenies were evaluated in a random block design with five replicates and four plants per plot. One hundred leaves were collected from the middle third of the canopy (in height of each of four plants in each plot. The leaves were collected haphazardly, i.e., in a random manner, but without using a drawing mechanism. In the analysis of variance, the nutrient concentrations in the leaves from plants of each plot were represented by the average of four plants in the plot. Fruit yield in the various progenies did not depend on cropping season; progeny A4 was the most productive. No Spearman correlation was found between leaf nutrient concentrations and fruit yield. Increased nutrient concentrations in the leaves were progeny-dependent, i.e., with regard to Na (progenies FE5 and JG1, Ca (progeny A4, Mg (progeny SM7, N (progeny A3, P (progeny M, and K contents (progeny JG3. Spearman's correlation was negative between Na-Mg, Na-Ca, and Mg-P contents, and positive between Mg-Ca and N-K contents.

  7. The Effect of Nitroxin Biofertilizer and Foliar Applicatin of Micronutrients Time Consumption on Yield and Yield Components of New Wheat Cultivars under Khorramabad Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Vaez

    2016-02-01

    revealed that there was a significant relationship between foliar application of micronutrients and nitroxin biofertilizer of grain yield, biological yield, harvest index, 1000- grain weight, spike number per m-2, grain number per spike and spikelet number per spike of wheat. The most positive relationship was related to grain and the applying fertilizer treatment of the grain insemination with nitroxin biofertilizer and foliar application of micronutrients at the heading stage. The cultivar factor has also a positive effect on the surveying characteristics such as grain yield, harvest index, 1000-grain weight, spike number per m-2, grain number per spike and spikelet number per spike. The most positive relationship was related to grain and the applying fertilizer treatment of the grain insemination with nitroxin biofertilizer and foliar application of micro-nutrients at the heading stage and the treatment of the Parsi cultivar with an average of 6844/3kg/ha-1. Considering the significant increase in the grain yield, the applying fertilizer treatment of the grain insemination with nitroxin biofertilizer and foliar application of micronutrients at the heading stage and the treatment of the Parsi cultivar were proposed for Khorramabad Situation. Conclusions In this study, significant differences between the various levels and stages of foliar fertilizer, bio Nitroxin micronutrients showed that appropriate use of these two factors can result in maximum performance of the wheat. The process of spraying micronutrients had a significant effect on grain yield. The highest yield of seed was obtained in inoculation with the combined application of organic fertilizer and foliar Nitroxin micronutrients in the treatment of stage and heading to the Persian superior varieties of grain yield. The results of this experiment showed that the use of micronutrients can improve agronomic characteristics and increase the grain yield. Micronutrient fertilizers sprayed on soil conservation

  8. Bioconcentraciones foliares de elementos minerales en Lippia alba (salvia morada)

    OpenAIRE

    Schroeder, María A; Burgos, Ángela M

    2013-01-01

    Introducción: la salvia morada es un subarbusto aromático, que crece de modo espontáneo en América Central y del Sur. Frecuentemente es cultivada en jardines como ornamental, por su intenso aroma y sus propiedades medicinales y culinarias. No se encontraron estudios sobre parámetros nutricionales en esta especie. Objetivos: determinar las bioconcentraciones foliares de elementos minerales en Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson que crece naturalmente en el bioambiente del nort...

  9. Movement of foliar uptake radionuclides in radish. [Raphanus sativus

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, K.; Kamada, H.

    1986-05-01

    The purpose of this investigation was to study the translocation of /sup 60/Co, /sup 54/Mn, and two representative fission products of /sup 85/Sr and /sup 137/Cs in radish (Raphanus sativus) and to provide a translocation rate for a given nuclide. The effect of air humidity on the foliar uptake-translocation was also investigated. Retention of the radionuclides was usually higher in plants grown under conditions of 100% humidity at night as opposed to conditions of a constant humidity of 70%. Results indicate that Co and Cs translocate much more than Mn and Sr in the plant.

  10. Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: Consequences on herbicide fate and risk assessment

    OpenAIRE

    Doublet, Jeremy; Mamy, Laure; Barriuso Benito, Enrique

    2009-01-01

    Following application, pesticides can be intercepted and absorbed by weeds and/or crops. Plants containing pesticides residues may then reach the soil during the crop cycle or after harvest. However, the fate in soil of pesticides residues in plants is unknown. Two commonly used foliar herbicides, glyphosate and sulcotrione, 14C-labeled, were applied on leaves of oilseed rape and/or maize, translocation was studied, and then soil incubations of aerial parts of plants containing herbicides res...

  11. Susceptibility to Phytophthora ramorum in California bay laurel, a key foliar host of sudden oak death

    Science.gov (United States)

    Brian L. Anacker; Nathan E. Rank; Daniel Hüberli; Matteo Garbelotto; Sarah Gordon; Rich Whitkus; Tami Harnik; Matthew Meshriy; Lori Miles; Ross K. Meentemeyer

    2008-01-01

    Sudden oak death, caused by the water mold Phytophthora ramorum, is a plant disease responsible for the death of hundreds of thousands of oak and tanoak trees. Some foliar hosts play a major role in the epidemiology of this disease. Upon infection by P. ramorum, these foliar hosts express non-fatal leaf lesions from which large...

  12. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  13. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior.

    Science.gov (United States)

    James K. Agee; Clinton S. Wright; Nathan Williamson; Mark H. Huff

    2002-01-01

    Fotiar moisture was monitored for five conifers and associated understory vegetation in Pacific Northwest forests. Decline in foliar moisture of new foliage occurred over the dry season, while less variation was evident in older foliage. Late season foliar moisture ranged from 130 to 170%. In riparian-upland comparisons, largest differences were found for understory...

  14. Regional assessment of N saturation using foliar and root δ15N

    Science.gov (United States)

    L.H. Pardo; P.H. Templer; C.L. Goodale; S. Duke; P.M. Groffman; M.B. Adams; P. Boeckx; J. Boggs; J. Campbell; B. Colman; J. Compton; B. Emmett; P. Gundersen; J. Kjonaas; G. Lovett; M. Mack; A. Magill; M. Mbila; M.J. Mitchell; G. McGee; S. McNulty; K. Nadelhoffer; S. Ollinger; D. Ross; H. Rueth; L. Rustad; P. Schaberg; S. Schiff; P. Schleppi; J. Spoelstra; W. Wessel

    2006-01-01

    N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar δ15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root δ

  15. Comparing algorithms for estimating foliar biomass of conifers in the Pacific Northwest

    Science.gov (United States)

    Crystal L. Raymond; Donald. McKenzie

    2013-01-01

    Accurate estimates of foliar biomass (FB) are important for quantifying carbon storage in forest ecosystems, but FB is not always reported in regional or national inventories. Foliar biomass also drives key ecological processes in ecosystem models. Published algorithms for estimating FB in conifer species of the Pacific Northwest can yield signifi cantly different...

  16. Importance of Foliar Nitrogen Concentration to Predict Forest Productivity in the Mid-Atlantic Region

    Science.gov (United States)

    Yude Pan; John Hom; Jennifer Jenkins; Richard Birdsey

    2004-01-01

    To assess what difference it might make to include spatially defined estimates of foliar nitrogen in the regional application of a forest ecosystem model (PnET-II), we composed model predictions of wood production from extensive ground-based forest inventory analysis data across the Mid-Atlantic region. Spatial variation in foliar N concentration was assigned based on...

  17. Foliar phosphite application has minor phytotoxic impacts across a diverse range of conifers and woody angiosperms.

    Science.gov (United States)

    Scott, Peter; Bader, Martin Karl-Friedrich; Williams, Nari Michelle

    2016-10-01

    Phytophthora plant pathogens cause tremendous damage in planted and natural systems worldwide. Phosphite is one of the only effective chemicals to control broad-scale Phytophthora disease. Little work has been done on the phytotoxic effects of phosphite application on plant communities especially in combination with plant physiological impacts. Here, we tested the phytotoxic impact of phosphite applied as foliar spray at 0, 12, 24 and 48 kg a.i. ha(-1) . Eighteen-month-old saplings of 13 conifer and angiosperm species native to New Zealand, and two exotic coniferous species were treated and the development of necrotic tissue and chlorophyll-a-fluorescence parameters (optimal quantum yield, Fv /Fm ; effective quantum yield of photosystem II, ΦPSII ) were assessed. In addition, stomatal conductance (gs ) was measured on a subset of six species. Significant necrosis assessed by digital image analysis occurred in only three species: in the lauraceous canopy tree Beilschmiedia tawa (8-14%) and the understory shrub Dodonaea viscosa (5-7%) across phosphite concentrations and solely at the highest concentration in the myrtaceous pioneer shrub Leptospermum scoparium (66%). In non-necrotic tissue, Fv /Fm , ΦPSII and gs remained unaffected by the phosphite treatment. Overall, our findings suggest minor phytotoxic effects resulting from foliar phosphite application across diverse taxa and regardless of concentration. This study supports the large-scale use of phosphite as a management tool to control plant diseases caused by Phytophthora pathogens in plantations and natural ecosystems. Long-term studies are required to ascertain potential ecological impacts of repeated phosphite applications. © 2016 Scandinavian Plant Physiology Society.

  18. Response of cotton, alfalfa, and cantaloupe to foliar-deposited salt in an arid environment

    International Nuclear Information System (INIS)

    Hofmann, W.C.; Karpiscak, M.M.; Bartels, P.G.

    1987-01-01

    The cooling towers at the Palo Verde Nuclear Generating Station (PVNGS), located 80 km west of Phoenix, AZ, will release as estimated 2.1 Mg/d of particulates (primarily salts) into the atmosphere when the station is in full operation. The saline drift will disperse and settle onto agricultural fields surrounding the station. Field studies were conducted in 1983 to investigate the influence of foliar-applied saline aerosol on crop growth, foliar injury, and tissue elemental concentration on cotton (Gossypium hirsutum L.), alfalfa (medicago sativa L.), and cantaloupe (Cucumis melo L.) in an arid environment. The treatment aerosol solutions simulated treated wastewater effluent and included all essential plant nutrients and other elements, including trace concentrations of heavy metals. The treatments included unsprayed plots, and plots sprayed with salt solutions at 0 (distilled water), 8, 83, and 415 kg/(ha yr). The alfalfa received an additional 829 kg/(ha yr) treatment. The species were evaluated in separate experiments on Mohave clay loam and Sonoita sandy loam soils (Typic Haplargid) near Marana, AZ. Cotton treated with 415 kg/(ha yr) had significantly less chlorosis and tended to be slightly taller than the cotton in the unsprayed plots. The alfalfa treated at a rate of 829 kg/(ha yr) showed significantly more leaf margin necrosis than did the unsprayed alfalfa. In the cantaloupe, there were no visually apparent differences among salt treatments. Hand-harvested cotton plots had a significant reduction is seed cotton yield at the 415 kg/(ha yr) treatment. A similar though nonsignificant, trend towards reduced yield with increased salt treatment was observed in machine-harvested cotton plots

  19. The weed composition in an orchard as a result of long-term foliar herbicide application

    Directory of Open Access Journals (Sweden)

    Maria Licznar-Małańczuk

    2016-09-01

    Full Text Available The weed composition and the dominance of individual species occurring in an orchard were assessed at the Research Station of the Wrocław University of Environmental and Life Sciences, Poland, during the first 10 years after orchard establishment. ‘Ligol’ apple trees were planted in the spring of 2004 (3.5 × 1.2 m. Foliar herbicides were applied in 1 m wide tree rows twice or three times per each vegetation period. In the inter-row spaces, perennial grass was maintained. Ten years of maintenance of herbicide fallow contributed to a change in the weed composition in the orchard. It changed as a result of different responses of the most important weed species to the foliar herbicides. Total suppression of Elymus repens was observed in the first year after planting the trees. Convolvulus arvensis, Cirsium arvense, and other perennial weeds, completely disappeared in the succeeding periods. The maintenance of herbicide fallow did not affect the abundance of Taraxacum officinale. The percentage of the soil surface covered by Trifolium repens and Epilobium adenocaulon, perennial weeds with considerable tolerance to post-emergence herbicides, increased during the fruit-bearing period of the trees. The abundance of these weeds was significantly reduced only in the rows with the stronger growing trees on the semi-dwarf P 2 rootstock. Stellaria media was the dominant annual weed. Senecio vulgaris, Poa annua, Capsella bursa-pastoris, and Lamium spp. were also frequently observed. A significant increase in the abundance of annual and perennial weeds was found in the tree rows as a result of improved water availability after a period of high precipitation.

  20. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages

    Directory of Open Access Journals (Sweden)

    F.M.F. Abdel-Motagally

    2018-04-01

    Full Text Available Two field experiments were conducted to determine the effect of boron foliar application and water stress on yield of wheat plant grown in calcareous soil during 2013/2014 and 2014/2015 seasons. The highest mean values obtained against boron application time were potential contributor to total grains mass by improving the plant height (99.42 and 98.32 cm, spike length (11.86 and 11.72 cm, number of spikelets m−2 (332.65 and 324.35, grain yield plant−1 (21.56 and 20.26 g, 1000-grain weight (35.2 and 37.4 g and grain yield (1.87 and 1.85 ton fed.−1, which were recorded at normal irrigation level (100% from the amount of water consumption for wheat with boron spraying at booting stage (B1 in the first and second seasons, respectively. Furthermore, boron application significantly enhanced all studied growth traits under water stress levels (50% from the amount of water consumption for wheat compared to B-untreated plants. Boron spraying at booting stage enhances also plant pigments contents recording its highest mean values under normal water level (100% from the amount of water consumption for wheat. The reduction in stress markers (proline and H2O2 and the enhancement of plant pigments content under water stress levels (50% from the amount of water consumption for wheat by B spraying suggests an alleviating effect of boron foliar application to water stress in the test plant. This alleviating effect was more pronounced when B applied at booting stage. Therefore, booting stage was found to be the best time for boron application to get higher grains production and consequently, better economic returns of wheat. Keywords: Wheat, Growth stages, Boron application time, Water stress, Crop yield, Plant pigments, Proline, H2O2

  1. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Science.gov (United States)

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  2. ffect of Nitrogen and Zinc Foliar Application on Quantitative Traits of Tea Rosslle (Hibiscus sabdariffa in Jiroft Zone

    Directory of Open Access Journals (Sweden)

    abdolreza raisi sarbijan

    2017-02-01

    Full Text Available Introduction: Nitrogen is an essential element forplants and in combination withelements such as carbon, oxygen, hydrogen and sulfur results ineven more valuable materials such as amino acids, nucleic acids, alkaloids. Hibiscus tea (Hibiscus sabdariffa from Malvaceaefamily is known by different names in different parts of the world. In Iran it is calledthe Maki tea, tea Meccaorred tea.As an important plant,it is decided to investigate its growth and development in Jiroft. Materials and Methods The experiment was conducted as factorial based on randomized complete block design with three replications in farm research of Islamic Azad University of Jiroft during 2010. The first factor was nitrogen foliar application in four levels (0, 1, 2 and 3 percent and second factor was foliar application of zinc at twolevels (0 and 1 percent. The measured quantitative characteristics were stem diameter, plant height, calycle fresh weight,calycle dry weight, plant fresh weight,plant dry weight, leaf fresh weight,leaf dry weight, mucilage percentage and mucilage yield. Results and Discussion:The results of ANOVA showed that nitrogen foliar application on leaf dry weight, calycle fresh and dry weight was effective. Plant fresh weight, dry weight, stem diameter, plant height, mucilage percentageandmucilage yield showedsignificanteffects. Zinc foliar application significantly affected leaf fresh weight,leafdry weight, calycle fresh weight, plant fresh weight,plant dry weight, mucilage percentage andmucilage yield.The interaction effect of nitrogen and zinc on leaf dry weight, plant freshweight and plant dry weight was also significant. The mean comparison of studied characteristics revealed that byincreasing the amount of nitrogen up to N2 level, the stem diameter, plant height, leaf dry weight, calycle dry weight, mucilage percentage and yield increased but there was no significant difference between N2 and N3 levels. Plant fresh weight and plantdry weight

  3. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2017-03-01

    Full Text Available Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA, salicylic acid (SA and hydrogen peroxide (H2O2 applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD, catalase (CAT and peroxidase (POD activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI, relative water contents (RWC, chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.

  4. Investigation of Zn Use Efficiency and Zn Fertilization Efficiency in Some Genotypes of Wheat

    Directory of Open Access Journals (Sweden)

    P. Keshavarz

    2016-09-01

    cultivars and Thriticosecale have higher efficiency than Alvand and C75-5 cultivars and Durum wheat. The results also suggest that to obtain higher yield in Durum wheat, soil and foliar application of Zn is more necessary in comparison with other genotypes especially Toos and Thriticosecale. Conclusion: wheat genotypes were different in their response to Zn deficiency and Zn supply. Thriticosecale and Toos were the most Zn efficient genotypes, whereas Durum and C75-5 were the most responding to Zn supply. So, without considering these differences, accurate fertilizer recommendation cannot be achieved. For organic farming and low input agriculture systems in regions similar to this experiment location (Torough Station, Thriticosecale and Toos could be suggested. However, for improvement of wheat grain yield and achieve desired quality in calcareous soil, most of the time, it is necessary to use the Zinc fertilizers.

  5. Micromorfologia Foliar de Espécies de Sida spp. (guanxumas Leaf Micromorphology of Sida spp. Species (prickly sida

    Directory of Open Access Journals (Sweden)

    L.H.B. Albert

    2002-12-01

    Full Text Available A eficácia dos herbicidas aplicados à folha é influenciada pela morfologia da superfície foliar que recebe a calda. A topografia da superfície foliar, o grau e o tipo da formação da cera epicuticular e a presença, tipo e distribuição de tricomas são características que influenciam a distribuição da calda pulverizada sobre a superfície foliar e, conseqüentemente, a eficácia do controle da planta daninha. Diante desses fatos, o presente trabalho teve como objetivo conhecer morfologicamente a superfície foliar de três espécies de guanxuma (Sida rhombifolia , Sida glaziovii e Sida cordifolia . A pesquisa foi desenvolvida no Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA, instalada na ESALQ/USP-Piracicaba/SP. As amostras biológicas foram fixadas, posteriormente desidratadas, secas ao ponto crítico e recobertas com ouro. Após a evaporação com metal, as amostras das folhas foram observadas em microscópio eletrônico de varredura Zeiss, operando entre 5 e 15 kV. Verificou-se que a superfície adaxial das espécies S. rhombifolia e S. glaziovii apresentou tricomas estelares e simples (não-ramificados, tanto curtos como longos, e também glandulares simples, tanto curtos como longos; S. glaziovii apresentou a maior quantidade destes. A espécie que apresentou maior presença de ceras epicuticulares foi S. rhombifolia, cuja aparência é estriada e a orientação aleatória. Das três espécies, S. cordifolia foi a que mostrou menor quantidade de tricomas, possuindo na superfície adaxial predominantemente tricomas simples e/ou com duas ramificações e também tricomas glandulares simples e curtos. A cutícula apresentou superfície plana e lisa, sem o aspecto estriado das outras duas espécies analisadas. Todas as espécies são anfiestomáticas, com predominância do tipo anomocítico, que é característico da família Malvaceae.The efficacy of leaf - applied herbicides is

  6. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.

    Science.gov (United States)

    Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi

    2018-01-01

    Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

  7. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

    Science.gov (United States)

    Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel

    2015-01-01

    A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

  8. Foliar application of amino acids modulates aroma components of 'FUJI' apple (malus domestica L.)

    International Nuclear Information System (INIS)

    Gou, W.; Zhang, L.; Chen, F.; Cui, Z.; Zhao, Y.; Zheng, P.; Tian, L.; Zhang, L.; Zhang, C.

    2015-01-01

    Volatile flavor compounds play a key role in determining the perception and acceptability as well as enhancing market competitiveness of apple (Malus domestica L.). In our study, we evaluated the effects of foliar-applied four different amino acids, i.e. leucine (Leu), isoleucine (Ile), valine (Val) and alanine (Ala), on aroma components and two key enzymes activities involved in aroma metabolism of Fuji apple. The total amount of aromatic components under Ala treatment was significantly higher than those under other treatments. There was a considerable increase in total aroma content, including hexanal, 2-methyl-butanol, nonanal, (E)-2-hexenal, methyleugenol, ethyl acetate, butanoic acid-pentyl ester, butanoic acid-hexyl ester, butyric acid ethyl ester, acetic acid-2-methyl-butyl ester, treated with spraying amino acids compared with the control. More specifically, hexanal, 2-methyl-butanol, methyleugenol and acetic acid-2-methyl-butyl ester exhibited a greater substantial increase of their contents than those of in other ingredients. However, butanoic acid-2-methyl-2-methyl butyl ester maintained a highest level among all aroma components regardless of different amino acids application. Furthermore, the activities of alcohol dehydrogenase (ADH) and alcohol acyltransferase (AAT) were much higher under Ala treatment than those under other treatments. We concluded that foliar-applied organic nitrogen (N), especially for Ala, can improve aroma metabolism and it could be used in production to enhance fruit quality on a commercial scale. (author)

  9. Comparison of physiological responses of linseed (Linum usitatissimum L. to drought and salt stress and salicylic acid foliar application

    Directory of Open Access Journals (Sweden)

    Mohsen Movahhedi Dehnavi

    2017-11-01

    Full Text Available In order to compare the physiological responses of linseed (Linum usitatissimum L. in drought and salinity stress conditions and salicylic acid foliar application, a greenhouse experiment was conducted based on completly randomized design with three replications in Yasouj university in 2015. Treatments including different levels of salinity and drought with similar osmotic potentials (-2, -4, -7 and -9 bar in 8 levels and a control treatment were applied in Hoagland solution. Second factor was salicylic acid foliar application in 2 levels (0 and 0.5 mM. Salinity and drought applied using sodium chloride and polyethylene glycol 6000, respectively. The results showed that leaf protein content, catalase activity, total chlorophyll and carotenoid significantly decreased compared to control by increasing salinity and drought levels, however salicylic acid could prevent this trend.  Proline soluble sugars and malodealdehide content significantly increased compared to control by increasing salinity and drought. However salicylic acid could not prevent this trend. Shoot and root dry weights significantly decreased in salinity and drought stress treatments, compared to control and salicylic acid could prevent this decrease. Generally regarded to the most of the measured traits, impact of drought was more than salinity and salicylic acid could compensate the stress impacts on linseed.

  10. Foliar fertilization of peanuts with cobalt and molybdenum: agronomic characteristics of production and physiological potential of seeds

    Directory of Open Access Journals (Sweden)

    Rafael Marani Barbosa

    2012-06-01

    Full Text Available As a crop, the peanut is becoming increasingly important in Brazil because it is used to renew areas where sugarcane is cultivated. The peanuts are mainly used by the candy industry and their importance has also grown because of the exploitation of oil crops to produce biodiesel. This study aimed to determine the effect of applying different levels Co and Mo foliar fertilizer to two peanut cultivars. The experiment was conducted in cerrado, during the rainy season, and the treatments consisted of applying Mo and Co fertilizer at zero, 400 and 800g.ha–1 to the Runner IAC 886 and IAC Tatu ST cultivars. The study found that there were differences in the parameters of the cultivars but there were no changes when the rates of cobalt and molybdenum were increased. The foliar application of cobalt and molybdenum in doses up to 800g.ha–1, during the initial stage of seed formation, does not change the agronomic characteristics of peanuts; Runner IAC 886 is more productive than the IAC Tatu ST cultivar, and seeds with higher molybdenum content do not have more physiological potential.

  11. The effect of irrigation and foliar fertilization on the colonization of american ginseng (Panax quinquefolium l. diseased parts by different micro-organisms

    Directory of Open Access Journals (Sweden)

    Alina Pastucha

    2012-12-01

    Full Text Available Field studies on the health of American ginseng cultivated in the Lublin district on poor sandy soil were conducted in the years 2004-2006. The studies involved treatment combinations with irrigation and without irrigation as well as foliar fertilization with Alkalin PK and Resistim of American ginseng plants. Mycological analysis was made of diseased ginseng parts with the aim of determining the quantitative and qualitative composition of fungi-like organisms and fungi threatening the cultivation of this plant. Fungi from the genera of Cylindrocarpon, Fusarium and the following species Alternaria alternata, Rhizoctonia solani, Sclerotinia sclerotiorum, as well as fungi-like organisms: Pythium irregulare and Phytophthora sp., were isolated from the infected parts of ginseng. The smallest number of fungi was isolated from the plants growing on the plots without irrigation and those where foliar application with Alkalin PK was applied.

  12. Effect of foliar application of amino acid and calcium chelate on some quality and quantity of Golden Delicious and Granny Smith apples

    Directory of Open Access Journals (Sweden)

    M. Arabloo

    2017-03-01

    Full Text Available In order to investigate the effects of foliar application of amino acid and calcium chelate on „Golden Delicious‟ and „Granny smith‟ apple trees, a randomized complete block design with four repetitions was conducted. Apple trees were sprayed with (0, 2, 4 mg L-1 of amino acid and (0, 2, 4 mg L-1 calcium chelate and their combination. Fruit weight, fruit firmness, total soluble solids, titretable acidity and calcium content of fruits were determined. All the applied treatments significantly increased quality and quantity traits compared to the control trees in both cultivars. The combination of amino acid and calcium chelate increased weight of both cultivars. Thus, in this study combination of amino acid and calcium chelate foliar spray treatment could be recommended from results as they significantly increased quality and quantity traits of „Golden delicious‟ and „Granny smith‟ apple trees.

  13. Effect of Zinc and Salicylic acid Foliar Application on Quantitative and Qualititative Characteristics of Soybean under Deficit Irrigation Conditions

    Directory of Open Access Journals (Sweden)

    Z Zarei

    2017-03-01

    Full Text Available Introduction Soybean (Glycine max (L. Merrill is a leguminous annual crop belonging to the Fabaceae family, that because an important source of food containing 20 to 28 grain oil percent and high protein is the most important oilseed of worldwide interest. Recently, cultivation of this plant is considered as a valuable oil plant in crop rotation. Drought, salinity, heat and freezing are environmental conditions that cause adverse effects on the growth of plants. Water deficit more than other stresses limits the growth of crops. Yield of soybean decreased due to drought stress. The consumption of fertilizers increases the quality of crops. According to the findings of Yasari and Vahedi (2012 use of Zn in soil and foliar application has an increasing effect on the percentage and the amount of oil and protein in soybean product. The role of salicylic acid (SA is reducing the effects of environmental stresses. It appears that water stress impairs plants and zinc alleviates water stress injuries. Thus, the purpose of this study was to evaluate the effect of water stress, zinc and salicylic acid foliar application on oil and grain protein percentage and their relation with oil and protein yield of soybean. Materials and Methods This study was carried out in the agricultural garden of Lorestan-Iran, in 2013. The meteorological data of the region are representing in Table 2. The soil was clay-loam texture (Table 1. The experiment was performed using Split factorial in a randomized complete block design with four replications. In this study, main factor was two levels of irrigation regimes: after 60 (optimum irrigation and 120 mm (stress evaporation from evaporation pan class A and subplot were considered combination of zinc foliar application (Zero and 1 L/ha, in two levels and salicylic acid (0, 0.5 and 1 mM. All statistical analyses were carried out using SAS software and the correlation was done using MSTAT-C program. Results and Discussion In the

  14. Comparison between Seed and Foliar Treatment as a Tool in Integrated Pest Management.

    Science.gov (United States)

    Matyjaszczyk, Ewa

    2017-08-02

    A study into doses of seed treatments and foliar plant protection products containing an identical active substance registered to control the same pest in the same crops was carried out in the European Union. The results show that, for fungicides, the use of seed treatment is often connected with a significantly lower release of active substance per hectare when compared to foliar treatments. In 11 of 13 cases, the difference was 8-fold or higher. For insecticides, in most of the cases, the consumption of an active substance was several times higher for seed treatment, in one case for foliar application.

  15. Estimativa da área foliar de Crambe abyssinica por discos foliares e por fotos digitais Estimate leaf area of Crambe abyssinica for leaf discs and digital photos

    Directory of Open Access Journals (Sweden)

    Marcos Toebe

    2010-02-01

    Full Text Available A área foliar é importante na determinação do crescimento e desenvolvimento das culturas agrícolas. Assim, os objetivos do trabalho foram comparar os métodos de discos foliares e de fotos digitais na estimativa da área foliar de Crambe abyssinica e modelar a área foliar em função do comprimento (C, da largura (L e ou do produto comprimento vezes largura (CxL de diferentes tamanhos de folhas. Para isso, em 308 folhas, foram determinados a área foliar, o comprimento, a largura e o produto comprimento vezes largura por meio dos métodos de discos foliares e de fotos digitais. Em seguida, foram comparados os métodos por meio do coeficiente de correlação linear entre a área foliar. A seguir, em cada método, modelou-se a área foliar (Y em função do C, da L e do CxL, por meio dos modelos: linear, linear simples, quadrático, geométrico e exponencial. Os coeficientes de correlação linear de Pearson e de Spearman entre a área foliar dos métodos de discos foliares e de fotos digitais foram de 0,9917 e 0,9889, respectivamente, o que revela métodos concordantes. Em ambos os métodos, os modelos quadráticos e geométricos apresentaram os melhores coeficientes de determinação da área foliar em função do comprimento e da largura das folhas. A largura da folha é a variável que melhor estima a área foliar. O método de fotos digitais pode ser utilizado para estimar a área foliar de crambe.Leaf area is important in determining the growth and development of agricultural crops. The aim of this study was to compare the methods of leaf discs and digital photos in estimating leaf area of Crambe abyssinica, and model leaf area according to length (C, width (L and/ or the product of length width (CxL for different sizes of leaves. For this, in 308 leaves it was determined the leaf area, length, width and the product of length width using the methods of leaf discs and digital photos. Then the methods were compared using the linear

  16. The effect of foliar feeding of potassium salts and urea in spinach on gas exchange, leaf yield and quality

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-12-01

    Full Text Available In a pot experiment conducted in a phytotron, the effectiveness of foliar feeding of different potassium salts, with and without the addition of 0.5% CO(NH22, in spinach (Spinacia oleracea L. was investigated. Potassium was applied 3 times in the form of 1% solutions KCl, KNO3, K2SO4 and C6H5K3O7•H2O, compared to water as the control treatment. The obtained results show that foliar feeding of potassium salts in spinach is an efficient method of supplementing the level of K+ in plants during vegetation. Plants fed with KNO3 had the highest content of potassium in leaves, and those fertilized with K2SO4, C6H5K3O7 × H2O and KCl had an only slightly lower potassium content. The application of potassium salts resulted in more intensive gas exchange in leaves (stomatal conductance, photosynthesis, transpiration and, as a consequence of that, increased leaf yield. Potassium nitrate and citrate influenced most effectively the abovementioned processes. The treatment of spinach with potassium salts resulted in an increased content of protein, chlorophyll, carotenoids, nitrates and iron as well as a decreased content of vitamin C and calcium in leaves.

  17. Effect of N fertilizer and foliar-applied Fe fertilizer at various ...

    African Journals Online (AJOL)

    DrSohrabi

    2012-05-17

    May 17, 2012 ... yield component and chemical composition of soybean. (Glycine ... fertilizer are the main source of meeting the nitrogen (N) ... influence grain yield and protein concentration (Haq and .... The data were analyzed using the Statistical Analysis System ... application and interaction of Fe and N fertilizers had no.

  18. Method for the analysis of triadimefon and ethofumesate from dislodgeable foliar residues on turfgrass by solid-phase extraction and in-vial elution.

    Science.gov (United States)

    Runes, H B; Jenkins, J J; Field, J A

    1999-08-01

    Triadimefon, a fungicide, and ethofumesate, an herbicide, are commonly applied to turfgrass in the Pacific Northwest, resulting in foliar residues. A simple and rapid method was developed to determine triadimefon and ethofumesate concentrations from dislodgeable foliar residues on turfgrass. Turfgrass samples were washed, and wash water containing surfactant (a 0.126% solution) was collected for residue analysis. This analytical method utilizes a 25 mm C(8) Empore disk and in-vial elution to quantitatively determine triadimefon and ethofumesate in 170 mL aqueous samples. The analytes were eluted by placing the disk in a 2 mL autosampler vial with 980 microL of ethyl acetate and 20 microL of 2-chlorolepidine, the internal standard, for analysis by GC/MS. The method quantitation limits are 0.29 microg/L for ethofumesate and 0.59 microg/L for triadimefon. The method detection limits are 0.047 microg/L and 0.29 microg/L for ethofumesate and triadimefon, respectively. Concentrations of triadimefon and ethofumesate from dislodgeable foliar residues from a field study are reported.

  19. Effects of Foliar Selenite on the Nutrient Components of Turnip (Brassica rapa var. rapa Linn.

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2018-03-01

    Full Text Available We administered foliar applications of 50, 100, and 200 mg L−1 selenium (Se, selenite on turnip (Brassica rapa var. rapa Linn. and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (IV significantly increased the Se content in turnip, and Se (IV positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese, and copper. Se (IV treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (IV could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L−1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 μg person−1 day−1 and its favorable effects on the nutrient components of turnip.

  20. Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.)

    Science.gov (United States)

    Li, Xiong; Li, Boqun; Yang, Yongping

    2018-03-01

    We administered foliar applications of 50, 100 and 200 mg L‑1 selenium (Se, selenite) on turnip (Brassica rapa var. rapa Linn.) and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (Ⅳ) significantly increased the Se content in turnip, and Se (Ⅳ) positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese and copper. Se (Ⅳ) treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (Ⅳ) could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L‑1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 µg person‑1 day‑1) and its favourable effects on the nutrient components of turnip.

  1. Environmental protection foliar fertilization in areas subject to limitation of fertilizers use

    International Nuclear Information System (INIS)

    Gavriluta, I.; Alexandrescu, A; Budoi, G.; Bireescu, L.; Bireescu, G.

    1999-01-01

    Significant increases of plant productivity have been recorded in field experiments conducted between 1991 - 1994 using general purpose complex foliar fertilizers as well as aminoacid containing complex foliar fertilizers. These increases at the same time had positive environmental effects against chemical pollution, especially with nitrates. As a rule, the greater the degree of nutrient efficiency, especially of nitrate, the lower are the losses, which are subject to transfer to the environment. So in the light of environmental protection against chemical pollution using foliar fertilization is certainly beneficial for crops and for all other components of the agricultural environment giving rise to its significant improvement. Both, foliar and soil fertilization in areas with limitation of fertilizer use should be carried out under a continuous and strict analytical check of plant, soil and water. Refs. 14 (author)

  2. Foliar nutrients explain goldspotted oak borer, Agrilus auroguttatus, adult feeding preference among four California oak species

    Science.gov (United States)

    Yigen Chen; Tom. W. Coleman; Michael. I. Jones; Mary. L. Flint; Steven. J. Seybold

    2013-01-01

    Adults of the invasive goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), consumed foliar weight in no-choice feeding tests of, in descending order, California black oak Quercus kelloggii Newb., Engelmann oak, Quercus engelmannii Greene, coast live oak, Quercus...

  3. Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus spp. Efficiently Controls Foliar Diseases Caused by Alternaria spp.

    Science.gov (United States)

    Ali, Gul Shad; El-Sayed, Ashraf S A; Patel, Jaimin S; Green, Kari B; Ali, Mohammad; Brennan, Mary; Norman, David

    2016-01-15

    Bacterial biological control agents (BCAs) are largely used as live products to control plant pathogens. However, due to variable environmental and ecological factors, live BCAs usually fail to produce desirable results against foliar pathogens. In this study, we investigated the potential of cell-free culture filtrates of 12 different bacterial BCAs isolated from flower beds for controlling foliar diseases caused by Alternaria spp. In vitro studies showed that culture filtrates from two isolates belonging to Bacillus subtilis and Bacillus amyloliquefaciens displayed strong efficacy and potencies against Alternaria spp. The antimicrobial activity of the culture filtrate of these two biological control agents was effective over a wider range of pH (3.0 to 9.0) and was not affected by autoclaving or proteolysis. Comparative liquid chromatography-mass spectrometry (LC-MS) analyses showed that a complex mixture of cyclic lipopeptides, primarily of the fengycin A and fengycin B families, was significantly higher in these two BCAs than inactive Bacillus spp. Interaction studies with mixtures of culture filtrates of these two species revealed additive activity, suggesting that they produce similar products, which was confirmed by LC-tandem MS analyses. In in planta pre- and postinoculation trials, foliar application of culture filtrates of B. subtilis reduced lesion sizes and lesion frequencies caused by Alternaria alternata by 68 to 81%. Taken together, our studies suggest that instead of live bacteria, culture filtrates of B. subtilis and B. amyloliquefaciens can be applied either individually or in combination for controlling foliar diseases caused by Alternaria species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Effects of magnesium sulfate on the foliar absorption of phosphates at the pumpkin; Effets du sulfate de magnesium sur l'absorption foliaire de phosphates chez le potiron

    Energy Technology Data Exchange (ETDEWEB)

    Chamel, A

    1962-07-01

    The foliar absorption of phosphates labelled with {sup 32}P and applied with or without magnesium sulfate on the first leaf of pumpkin seedlings have been studied. The magnesium sulfate applied with the phosphate reduces plainly the absorption rate of {sup 32}P. (O.M.) [French] Nous avons etudie l'absorption foliaire de phosphates marques au {sup 32}P appliques, avec et sans sulfate de magnesium, sur la premiere feuille de jeunes plants de potirons. Le sulfate de magnesium applique avec le phosphate diminue nettement le taux d'absorption du {sup 32}P. (auteur)

  5. Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests

    Directory of Open Access Journals (Sweden)

    K. Dana Chadwick

    2016-01-01

    Full Text Available Airborne high fidelity imaging spectroscopy (HiFIS holds great promise for bridging the gap between field studies of functional diversity, which are spatially limited, and satellite detection of ecosystem properties, which lacks resolution to understand within landscape dynamics. We use Carnegie Airborne Observatory HiFIS data combined with field collected foliar trait data to develop quantitative prediction models of foliar traits at the tree-crown level across over 1000 ha of humid tropical forest. We predicted foliar leaf mass per area (LMA as well as foliar concentrations of nitrogen, phosphorus, calcium, magnesium and potassium for canopy emergent trees (R2: 0.45–0.67, relative RMSE: 11%–14%. Correlations between remotely sensed model coefficients for these foliar traits are similar to those found in laboratory studies, suggesting that the detection of these mineral nutrients is possible through their biochemical stoichiometry. Maps derived from HiFIS provide quantitative foliar trait information across a tropical forest landscape at fine spatial resolution, and along environmental gradients. Multi-nutrient maps implemented at the fine organismic scale will subsequently provide new insight to the functional biogeography and biological diversity of tropical forest ecosystems.

  6. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    Science.gov (United States)

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  7. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  8. Self-cleaning Foliar Surfaces Characterization using RIMAPS Technique and Variogram Method

    International Nuclear Information System (INIS)

    Rosi, Pablo E.

    2002-01-01

    Along the last ten years many important studies about characterization of self-cleaning foliar surfaces have been done and focused new interest on this kind of surfaces.These studies were possible due to the development of a novel preparation technique for this biological material that let us observe the delicate structures of a foliar surface under scanning electron microscope (S.E.M.).This technique consists of replacing the natural water of the specimen by glycerol. Digital S.E.M. images from both self-cleaning and non-self-cleaning foliar surfaces were obtained and analyzed using RIMAPS technique and Variograms method. Our results revealed the existence of a common and exclusive geometrical pattern that is found in species which present self-cleaning foliar surfaces.This pattern combines at least nine different directions.The results from the Variograms method showed that the stomata play a key role in the determination of foliar surface roughness. In addition, spectra from RIMAPS technique constitute a fingerprint of a foliar surface so they can be used to find evolutionary relationships among species.Further studies will provide more detailed information to fully elucidate the self-cleaning pattern, so it might be possible to reproduce it on an artificial surface and make it self-cleaning

  9. Ozone air pollution and foliar injury development on native plants of Switzerland

    International Nuclear Information System (INIS)

    Novak, Kristopher; Skelly, John M.; Schaub, Marcus; Kraeuchi, Norbert; Hug, Christian; Landolt, Werner; Bleuler, Peter

    2003-01-01

    Visible ozone-induced foliar injury on native forest species of Switzerland was identified and confirmed under ambient OTC-conditions and related to the current European AOT40 standard. - The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O 3 in the 2001 season

  10. Teores foliares de nutrientes no maracujazeiro amarelo em função de adubação nitrogenada, irrigação e epócas de amostragem

    Directory of Open Access Journals (Sweden)

    Carvalho Almy Junior Cordeiro de

    2002-01-01

    Full Text Available A realização de diagnósticos de culturas, através do conhecimento dos teores foliares dos nutrientes, em cada condição de cultivo, se justifica e tem por finalidade corrigir deficiências, inclusive com a utilização de ferramentas tais como o DRIS (Sistema Integrado de Diagnose e Recomendação, que auxiliam no manejo para a obtenção de altos rendimentos das culturas. Este trabalho teve por objetivo avaliar os efeitos da adubação nitrogenada, irrigação e época de amostragem nos teores dos nutrientes foliares na cultura do maracujazeiro amarelo (Passiflora edulis f. flavicarpa. O experimento foi conduzido em Campos-RJ, em Argissolo Amarelo distrófico, onde foram combinadas quatro doses de nitrogênio (50 a 650 g por planta por ano de N com 6 lâminas de irrigação (0 a 125% da ETo - Evapotranspiração de referência. Na maior produtividade de frutos (41,3 t ha-1, os teores de nutrientes foliares variaram de 40,8 a 58,1 g kg-1 de N, 2,58 a 3,85 g kg-1 de P, 23,2 a 38 g kg-1 de K, 6,13 a 14,4 g kg-1 de Ca, 2,23 a 4,28 g kg-1 de Mg, 3,2 a 4,64 g kg-1 de S, 13,1 a 32,4 g kg-1 de Cl, 21,1 a 36,5 mg kg-1 de Zn, 44,4 a 94,5 mg kg-1 de Mn, 82 a 246 mg kg-1 de Fe, 16,8 a 48,9 mg kg-1 de B e 3,97 a 234 mg kg-1 de Cu. A adubação nitrogenada afetou os teores foliares de N, K, S, Ca, Mg, Mn, Cl e B. A irrigação elevou os teores foliares de Cl e de Na e não influenciou nos teores foliares dos outros nutrientes.

  11. Influência do extrato pirolenhoso na calda de pulverização sobre o teor foliar de nutrientes em limoeiro 'Cravo' Effect of pyroligneous acid in the spraymg solutions on foliar nutrients content of 'Rangpur' lime

    Directory of Open Access Journals (Sweden)

    Marcelo Zanetti

    2004-12-01

    Full Text Available Com o objetivo de avaliar o efeito da presença do extrato pirolenhoso (EP na calda de pulverização sobre o teor foliar de nutrientes de limoeiro 'Cravo' (Citrus limonia Osbeck, foi desenvolvido um experimento com seis tratamentos e quatro repetições, em blocos ao acaso, em ambiente protegido. Os tratamentos constituíram da pulverização das soluções: T0 = água; T1 = solução de micronutrientes sem EP; T2 = solução de micronutrientes + EP (1cm³ dm-3; T3 = solução de micronutrientes + EP (2 cm³ dm-3; T4 = solução de micronutrientes + EP (5cm³ dm-3; T5 = solução de micronutrientes + EP (10 cm³ dm-3. A solução de micronutrientes foi preparada com sulfatos de Cu, Fe, Mn, Zn (250 mg dm-3 do elemento e ácido bórico (42,5 mg dm-3 de B. As plantas foram cultivadas em tubetes cônicos de 0,280 dm³, com substrato sem a adição de micronutrientes na formulação. As soluções foram pulverizadas uma única vez, aos 140 dias após o plantio (DAP, momento em que as plantas apresentavam aproximadamente 20 cm de altura. Ao final do experimento (160 DAP, quantificaram-se a massa seca e os teores de macro e micronutrientes da parte aérea e sistema radicular. A presença do extrato pirolenhoso na solução de micronutrientes não interferiu na concentração foliar de B, Fe e Zn em mudas de limoeiro 'Cravo'. Entretanto, na concentração de 10 cm³ dm-3, aumentou a concentração foliar de Cu e Mn. Observou-se também que as plantas pulverizadas com soluções contendo EP (1 a 10 cm³ dm-3 + micronutrientes apresentaram menor teor de Fe e maior teor de Ca no sistema radicular.This research studied the effect of pyroligneous acid (PA presence in the micronutrient solution sprayed on leaves on the foliar nutrient content of 'Rangpur lime' (Citrus limonia Osbeck0 seedlings, under screen house. An experiment in a randomized complete block design with six treatments and four replicates was set up. Treatments consisted of leaf spraying with

  12. Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2010-11-01

    Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability. Published 2010 by John Wiley & Sons, Ltd.

  13. Effect of Early Foliar Disease Control on Wheat Scab Severity (Fusarium graminearum in Argentina

    Directory of Open Access Journals (Sweden)

    Jorge David Mantecón

    2013-01-01

    Full Text Available Wheat scab is common in Argentina mainly durum wheat and some bread varieties. The epidemics occur every 5 to 7 years. During the 2007, 2008, and 2009 growing seasons, three trials were conducted at the INTA Balcarce Experimental Station. Each plot had six rows of 5 m long, spaced 0.15 m apart and was set up in a randomized complete block design with four replications. Trifloxystrobin plus cyproconazole was sprayed at Z3.1 stage. Treatments were sprayed at Z6.1 stage with tebuconazole, prochloraz, and metconazole to improve scab control. Artificial inoculations were made in Z6.1. Severity of Septoria leaf bloth and leaf rust was assessed in boot stage (Z3.9. Scab severity was rated at early dough stage (Z8.3. Yields were recorded each year. Fungicide only applied at Z3.1 stage did not reduce field scab severity but reduced the seeds infection and increased the yields. Early fungicide spray produced yield increase at about 22% and a decrease in seed infection of up to 40%. Yields increased in a 55.3% and in a 19.6% when compared with the inoculated and not inoculated check, respectively. The purpose of this study was to evaluate the effect of foliar disease control on scab, crop yield, and seed health.

  14. Cu e Zn na cultura do sorgo cultivado em três classes de solos: I. Crescimento vegetativo e produção Cu and Zn in sorghum cultivated in three soil classes: I. Vegetative growth and yield

    Directory of Open Access Journals (Sweden)

    Hemmannuella C. Santos

    2009-04-01

    Full Text Available Os micronutrientes Cu e Zn são importantes para o bom desenvolvimento vegetativo e para a formação de grãos em cereais. Com o objetivo de avaliar o efeito da aplicação de Cu e Zn nos atributos de crescimento e na produção da cultura do sorgo realizou-se um experimento em ambiente protegido, no qual o delineamento foi em blocos casualizados, com a combinação de cinco doses de cobre (0, 0,26, 0,90, 1,54 e 1,80 mg kg-1 e cinco doses de zinco (0, 0,32, 1,1, 1,88 e 2,2 mg kg-1, combinadas na matriz Composto Central de Box, perfazendo 9 tratamentos, que foram aplicados em três classes de solo (Latossolo, Luvissolo e Neossolo, com 3 repetições. Avaliaram-se, aos 96 dias após a semeadura, os atributos de crescimento e a produção da cultura. A aplicação de cobre resultou em incrementos na área foliar, diâmetro do colmo, comprimento e diâmetro da panícula, matéria seca e na produção, o mesmo não ocorrendo para o zinco. As concentrações foliares de zinco indicaram interação negativa entre as doses aplicadas, enquanto entre os solos o Luvissolo foi o mais responsivo à aplicação dos nutrientes.The micronutrients copper and zinc are important for good vegetative growth and for grain formation in cereals. An experiment was carried out aiming to evaluate the effect of copper and zinc application upon growth attributes of sorghum and upon its grain yield. A randomized block experimental design was used, with a combination of five doses of copper (0, 0.26, 0.90, 1.54 and 1.80 mg kg-1 and five doses of zinc (0, 0.32, 1.1, 1.88 and 2.2 mg kg-1 combined by Box Central Composite design, resulting in nine treatments which were applied in three soil classes (Latosol, Alfisol and Entisol, with three replications. Ninety six days after sowing, growth attributes and sorghum yield were determined. The copper application increased leaf area, stem diameter, panicle length and diameter, dry matter yield and grain yield, however the same

  15. Broccoli yield and yield quality as affected by gamma rays seeds irradiation and foliar application of some nutrients

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M R [Botany Department, Faculty of Agriculture, Moshtohor, Zagazig University (Egypt); Abdallah, A A.G.; Awad, S M; Aboel-Kheir, O H [Plant Research Department, Nuclear Research Centre, Cairo (Egypt)

    2005-07-01

    Two field experiments were carried out during 1999/2000 and 2000/2001 winter growing seasons at the Atomic Energy Authority (AEA) in Inshas, Egypt. The experiment was conducted to study the effect of pre-sowing seeds irradiation with different doses of gamma rays (0, 2, 3 and 4 Gy) and foliar application of different nutrients (Zn, B, S and S+K) on spear diameter, main spear fresh and dry weight per plant, total spear fresh weight per plant, total spear yield besides NPK in leaves at 90 days after transplanting and NPK and total protein content in spears at maturity. In general, exposing broccoli seeds to different gamma ray doses up to 4 Gy prior to sowing increased the above mentioned parameters with different magnitudes comparing with the non-irradiated control plants. There were no significant differences between 3 Gy and 4 Gy treatments during the two growing seasons. With respect to the effect of nutrient application on the studied parameters, all nutrients application significantly increased all the above mentioned parameters. The highest result was detected with B application. Regarding to the interaction of gamma ray with nutrients application, the highest value of all above mentioned parameters was detected with B application and 3 Gy of gamma ray.

  16. Broccoli yield and yield quality as affected by gamma rays seeds irradiation and foliar application of some nutrients

    International Nuclear Information System (INIS)

    Gabal, M.R.; Abdallah, A.A.G.; Awad, S.M.; Aboel-Kheir, O.H.

    2005-01-01

    Two field experiments were carried out during 1999/2000 and 2000/2001 winter growing seasons at the Atomic Energy Authority (AEA) in Inshas, Egypt. The experiment was conducted to study the effect of pre-sowing seeds irradiation with different doses of gamma rays (0, 2, 3 and 4 Gy) and foliar application of different nutrients (Zn, B, S and S+K) on spear diameter, main spear fresh and dry weight per plant, total spear fresh weight per plant, total spear yield besides NPK in leaves at 90 days after transplanting and NPK and total protein content in spears at maturity. In general, exposing broccoli seeds to different gamma ray doses up to 4 Gy prior to sowing increased the above mentioned parameters with different magnitudes comparing with the non-irradiated control plants. There were no significant differences between 3 Gy and 4 Gy treatments during the two growing seasons. With respect to the effect of nutrient application on the studied parameters, all nutrients application significantly increased all the above mentioned parameters. The highest result was detected with B application. Regarding to the interaction of gamma ray with nutrients application, the highest value of all above mentioned parameters was detected with B application and 3 Gy of gamma ray

  17. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  18. Incorporation of tritium due to foliar exposure in certain vegetation

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1981-01-01

    Tritium uptake, release and incorporation patterns through the foliage of seedlings of certain edible vegetation were investigated, for exposure periods ranging from an hour to about 20 hours. A large number of plants belonging to the family of lettuce (Lactuca sativa L.), cabbage (Brassica Oleracea L.) and capsicum (Capsicum fruitescens L.) were exposed to tritiated air under dynamic and static conditions. The half times for tissue-free-water-tritium (TFWT) were found to be about 46 and 32 minutes for capsicum and lettuce and 45 minutes for cabbage. Tissue-bound-tritium (TBT) in the seedlings and the grown plants showed different incorporation rates as a result of foliar exposure. The relative concentration factors were larger by a factor of ten for TFWT in the leaves of the grown plants than in the shoots of the seedlings. However, tissue-bound-tritium concentration values in the shoots/stems of the young and grown plants were of the same order, as related to the tissue-free-water-tritium concentrations. Thus the study indicates a larger translocation of tritium from aqueous to organic phase in the leaves of the grown plants than in the shoots of young seedlings. (auth.)

  19. Growth analisys and assimilate partitioning in physalis plants under leaf fertilization intervalsAnálise de crescimento e partição de assimilados em plantas de fisalis submetidas a intervalos de adubação foliar

    Directory of Open Access Journals (Sweden)

    Tiago Pedó

    2013-10-01

    Full Text Available The work was conducted in greenhouse and aimed to analyze the growth and partitioning of assimilates in Physalis peruviana subjected in intervals of leaf fertilization. The plants were collected at regular intervals of fourteen days after transplantation until the end of the cycle and determined the dry mass and leaf area. From the primary data analysis was applied to growth analysis and calculated the total dry matter production (Wt, rates of dry matter production (Ct, relative growth (Rw, net assimilation (Ea, leaf area index (L, relative growth of leaf area (Fa and ratios of leaf area and leaf mass (Fw, specific leaf area (Sa and dry matter partitioning between organs. Plants of Physalis peruviana subjected to leaf fertilization biweekly reached higher Wt, Ct, number of fruits and similar dry mass of fruits (Wfr of plants subjected to foliar weekly application and higher Wfr compared to plants without application leaf of fertilization. Thus, the application of leaf fertilization provided benefits of growth and the partition of assimilates in Physalis peruviana plants. O trabalho foi conduzido em casa de vegetação e objetivou analisar o crescimento e a partição de assimilados em Physalis peruviana submetida a intervalos de adubação foliar. As plantas foram coletadas a intervalos regulares de quatorze dias após o transplante até o final do ciclo e foram determinados a massa seca e a área foliar. A partir dos dados primários foi aplicada a análise de crescimento, sendo calculados a massa seca total (Wt, taxas de produção de matéria seca (Ct, crescimento relativo (Rw e assimilatória liquída (Ea, índice de área foliar (L, razões de área foliar (Fa e massa foliar (Fw, área foliar específica (Sa, partição de matéria seca entre órgãos e o número de frutos. Plantas de Physalis peruviana submetidas à adubação foliar quinzenal atingiram maior Wt, Ct, superior número de frutos e semelhante matéria seca de frutos (Wfr a

  20. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc

    Directory of Open Access Journals (Sweden)

    Florian Lacroux

    2008-09-01

    Significance and impact of the study: Vine nitrogen deficiency can negatively impact on grape aroma potential. Soil nitrogen application can increase vine nitrogen status, but it has several drawbacks: it increases vigour and enhances Botrytis susceptibility. This study shows that foliar N and foliar N + S applications can improve vine nitrogen status and enhance aroma expression in Sauvignon blanc wines without the negative impact on vigour and Botrytis susceptibility. Although this study was carried out on Sauvignon blanc vines, it is likely that foliar N or foliar N + S applications will have similar effects on other grapevine varieties containing volatile thiols (Colombard, Riesling, Petit Manseng and Sémillon.

  1. Foliar uptake of cesium from the water column by aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States); Hinton, T.G. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States)]. E-mail: thinton@srel.edu; Whicker, F.W. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)

    2006-07-01

    The probable occurrence and rate of foliar absorption of stable cesium ({sup 133}Cs) from the water column by aquatic macrophyte species was analyzed following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10{sup 3} L kg{sup -1} d{sup -1}) and a loss rate parameter k (d{sup -1}) were estimated for each species using time series of {sup 133}Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the {sup 133}Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u {>=} 0.75 x 10{sup 3} L kg{sup -1} d{sup -1}. Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for {sup 137}Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  2. Positron annihilation studies of vacancies in Ag-Zn alloys

    International Nuclear Information System (INIS)

    Chabik, S.

    1982-01-01

    The temperature dependence of annihilation rate, F(T), at the peak of angular correlation curve has been measured for Ag-29.2%at Zn and Ag-50%at Zn alloys. By applying the trapping model the vacancy formation energy for Ag-29.2%at Zn alloy has been found to be equal to 0.94+-0.06 eV. It has been found that the course of the F(T) curve for Ag-50%at Zn depends on the phase composition and thermal history of the investigated sample. For alloys containing not more than 50%at Zn, the concentration dependence of the vacancy formation energy for Ag-Zn alloys is very similar to that for Cu-Zn alloys. (Auth.)

  3. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    Science.gov (United States)

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  4. Weed infestation of a winter wheat canopy under the conditions of application of different herbicide doses and foliar fertilization

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the years 2006-2008 in the Bezek Experimental Farm (University of Life Sciences in Lublin. A two-factor field experiment was set up according to a randomized block design, in three replications. The experimental field was situated on medium heavy mixed rendzina developed from chalk rock with medium dusty loam granulometric composition. The soil was characterised by neutral pH, a very high content of P (342.1 and K (278.9 along with a very low level of magnesium (16.0 mg × kg-1 of soil and organic carbon (over 3.5%. The aim of this research was to compare the effect of three herbicide doses and two foliar fertilizers applied in a winter wheat canopy on weed infestation. The herbicides Mustang 306 SE 0.4 l × ha-1 and Attribut 70 WG 60 g × ha-1 were applied at full recommended doses as well as at doses reduced to 75% and 50%. Foliar fertilizers Insol 3 (1 1 × ha-1 and FoliCare (20 kg × ha-1 were applied at full recommended doses twice in the growing season BBCH* development stage 23-25* and 33-35*. The control was not treated with the herbicides and foliar fertilizers. The weed infestation level was determined by means of the quantitative gravimetric method at two dates: the first one 6 weeks after herbicide application and the second one - before harvest. The number of weed individuals was counted; species composition and air-dry biomass of aboveground parts were estimated from randomly selected areas of 1 m × 0.25 m at four sites on each plot. Galium aparine and Apera spica-venti plants were sampled for molecular analysis 6 weeks after herbicide application (the treatments with the full herbicide dose, a 50% dose and the control without herbicides. The density of weeds and weed air-dry weight were statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. It was found that the number of weeds and air-dry weight of weeds in the

  5. Enhancing Corn Productivity through Application of Vermi Tea as Foliar Spray

    Directory of Open Access Journals (Sweden)

    Stephen P. Bulalin

    2015-12-01

    Full Text Available One of the major commodities in the Province of Apayao is corn. In the municipality of Conner, a previous study conducted showed that corn farmers heavily rely on the use of inorganic fertilizers and still produce low yield. This study was then conducted to compare traditional farming against the use of an intervention using Vermi Tea as supplemental spray. Results of this endeavor showed that the farms applied with supplemental organic spray performed better that that of the usual farmer’s practice in various aspects of corn growth and yield. Findings show that vermi tea, when used as a foliar spray can significantly improve the growth and yield of corn . Due to the presence of plant growth regulators, and its ability to improve the condition of the soil, the corn farm sprayed with vermi tea produced taller corn crops with longer and thicker ears. As reflected in this study, corn when applied with the vermi tea can have an increased yield which can go as high as two tons/ha. More importantly, vermi tea promotes the use of organic fertilizer which does not entail high cost and can be prepared using agricultural wastes and other locally available materials. This will not only contribute to the reduction of the amount of total waste but will also help minimize the use of chemical fertilizers. The technology intervention promoted in this project complements and supports various government agency thrusts and priorities which are geared towards improving the agriculture industry, maintaining environmental quality and sustainable use of resources, climate change adaptation and mitigation; and production of excellent researches that will promote quality education and contribute to the upliftment of the country and encourage multisectoral/ multidisciplinary research along the priority areas like food safety and security among others.

  6. Herbage Production and Quality of Shrub Indigofera Treated by Different Concentration of Foliar Fertilizer

    Directory of Open Access Journals (Sweden)

    L. Abdullah

    2010-12-01

    Full Text Available A field experiment on fodder legume Indigofera sp. was conducted to investigate the effects of foliar fertilizer concentration on forage yield and quality, and to identify optimum concentrations among the fertilizer treatments on herbage yield, chemical composition (CP, NDF, ADF, minerals, and in vitro dry matter (IVDMD as wll as organic matter (IVOMD digestibility in goat’s rumen. Randomized block design was used for the six concentration of fertilizer treatments; control, 10, 20, 30, 40, and 50 g/10 l with 3 replicates. Leaves were sprayed with foliar fertilizer at 30, 34, 38, and 42 days after harvest. Samples were collected at 2 harvest times with 60 days cutting interval. Application of the foliar fertilizer up to 30 g/10 l significantly increased herbage DM yield, twig numbers, tannin, saponin, Ca and P content, as well as herbage digestibility (IVDMD and IVOMD. The lower and higher concentration of foliar fertilizer resulted in lower value of those parameters, but NDF and ADF contents had the opposite patterns. The optimum level of foliar fertilizer that resulted the highest herbage yield and quality was 30 g/10 l, and the highest in vitro digestibility and Ca concentration was 20 g/10 l.

  7. variability in foliar phenolic composition of several quercus species in northern mexico

    International Nuclear Information System (INIS)

    Salazar, J.A.A.; Antuna, E.M.; Abarca, N.A.; Alvarado, E.A.D.

    2015-01-01

    Quantitative and qualitative composition of the foliar phenolic compounds were investigated in 81 individual specimens of several white oak species (Quercus spp.). The trees were growing in twelve locations in Durango, Mexico. The phenol profiles were determined by HPLC-DAD and a Folin-Ciocateuprocedure. The results revealed that: (i) the foliar phenol profiles of all species analysed were complex and formed by 6 to 30 compounds, (ii) the flavonols mostly quercetin glycoside, isorhamnetin glycoside, kaempferol glycoside and phenolic acids were the main identified compounds, (iii) there was a high intra and inter-specific variability in the foliar phenol profiles both at the quantitative and qualitative levels, and (iv) the foliar phenol profiles indicated a slight species-specific tendency for phenols to be accumulated, although this was not clearly distinguished. Significant differences (P < 0.05) in the content and composition of the foliar flavonoids between species were observed due to the large environmental and soil conditions variability between localities. (author)

  8. Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions.

    Science.gov (United States)

    García-Gómez, Concepción; Obrador, Ana; González, Demetrio; Babín, Mar; Fernández, María Dolores

    2017-07-01

    The present study has investigated the toxicity of ZnO NPs to bean (Phaseolus vulgaris) and tomato (Solanum lycopersicon) crops grown to maturity under greenhouse conditions using an acidic (soil pH5.4) and a calcareous soil (soil pH8.3). The potentially available Zn in the soils and the Zn accumulation in the leaves from NPs applied to the soil (3, 20 and 225mgZnkg -1 ) and changes in the chlorophylls, carotenoids and oxidative stress biomarkers were measured at 15, 30, 60 and 90days and compared with those caused by bulk ZnO and ZnSO 4 . The available Zn in the soil and the leaf Zn content did not differ among the Zn chemical species, except in the acidic soil at the highest concentration of Zn applied as Zn ions, where the highest values of the two variables were found. The ZnO NPs showed comparable Zn toxicity or biostimulation to their bulk counterparts and Zn salts, irrespective of certain significant differences suggesting a higher activity of the Zn ion. The treatments altered the photosynthetic pigment concentration and induced oxidative stress in plants. ROS formation was observed at Zn plant concentrations ranging from 590 to 760mgkg -1 , but the effects on the rest of the parameters were highly dependent on the plant species, exposure time and especially soil type. In general, the effects were higher in the acidic soil than in the calcareous soil for the bean and the opposite for the tomato. The similar uptakes and toxicities of the different Zn forms suggest that the Zn ions derived from the ZnO NPs exerted a preferential toxicity in plants. However, several results obtained in soils treated with NPs at 3mgZnkg -1 soil indicated that may exist other underlying mechanisms related to the intrinsic nanoparticle properties, especially at low NP concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Coping with gravity: the foliar water relations of giant sequoia.

    Science.gov (United States)

    Williams, Cameron B; Reese Næsborg, Rikke; Dawson, Todd E

    2017-10-01

    In tall trees, the mechanisms by which foliage maintains sufficient turgor pressure and water content against height-related constraints remain poorly understood. Pressure-volume curves generated from leafy shoots collected crown-wide from 12 large Sequoiadendron giganteum (Lindley) J. Buchholz (giant sequoia) trees provided mechanistic insights into how the components of water potential vary with height in tree and over time. The turgor loss point (TLP) decreased with height at a rate indistinguishable from the gravitational potential gradient and was controlled by changes in tissue osmotica. For all measured shoots, total relative water content at the TLP remained above 75%. This high value has been suggested to help leaves avoid precipitous declines in leaf-level physiological function, and in giant sequoia was controlled by both tissue elasticity and the balance of water between apoplasm and symplasm. Hydraulic capacitance decreased only slightly with height, but importantly this parameter was nearly double in value to that reported for other tree species. Total water storage capacity also decreased with height, but this trend essentially disappeared when considering only water available within the typical range of water potentials experienced by giant sequoia. From summer to fall measurement periods we did not observe osmotic adjustment that would depress the TLP. Instead we observed a proportional shift of water into less mobile apoplastic compartments leading to a reduction in hydraulic capacitance. This collection of foliar traits allows giant sequoia to routinely, but safely, operate close to its TLP, and suggests that gravity plays a major role in the water relations of Earth's largest tree species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Release of Zn from maternal tissues in pregnant rats deficient in Zn or Zn and Ca

    International Nuclear Information System (INIS)

    Hurley, L.S.; Masters, D.G.; Lonnerdal, B.; Keen, C.L.

    1986-01-01

    Earlier studies have shown that diets that increase tissue catabolism reduce the teratogenic effects of Zn deficiency. The hypothesis that Zn may be released from body tissues when the metabolic state is altered was further tested. Nonpregnant Sprague Dawley females were injected with Zn-65; after equilibration, the two major pools of Zn, bone and muscle, had different specific activities (SA), muscle being much higher. Females were mated and fed diets adequate in Zn and Ca (C) or deficient in Zn (ZnD) or deficient in both Zn and Ca (ZnCaD). Calculations using weight loss in ZnD and ZnCaD rats, Zn content of maternal bone and muscle, and total fetal Zn at term indicated that in ZnCaD rats a relatively small amount of Zn from bone early in pregnancy was sufficient to prevent abnormal organogenesis, but most fetal Zn came from breakdown of maternal muscle in the last 3 days of pregnancy. Isotope data supported this conclusion. SA of Zn in ZnD fetuses was equal and high, indicating that most Zn came from the same maternal tissue. High muscle SA prior to mating, and increased SA in tibia and liver during pregnancy suggest that muscle provided Zn for other maternal tissues as well as fetuses. In contrast, SA in C fetuses was less than 30% of that of the D groups, consistent with the earlier hypothesis that most fetal Zn in C rats is accrued directly from the diet

  11. The Effects of Foliar Application of Methanol on Morphological Characteristics of Bean (Phaseolus vulgaris L. under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    N. Armand

    2016-02-01

    , each experimental unit was a pot of 1 kg and 5 seeds were planted in each pot and after emergence decreased to 3 seedlings per pot. They were placed in a growth chamber with day and night temperatures as 25 °C and 15°C, respectively. Drought stress treatment based on soil moisture percentage was adjusted by measuring the weight percent of soil moisture and adding water consumed daily by each pot. Foliar application was done 3 times during the growing season and at intervals of 10 days. The first foliar application was performed during the seedling stage within 4 weeks after planting and other foliar application, respectively in early flowering and early podding. The foliar application was performed in such a way that solution droplets were present at all parts of the bean. Trait measurement was carried out 35 days after planting. Results and Discussion Results showed that there was significant difference (P 0.01 between methanol and drought stress regarding the plant height, number of branches, leaf number per pod, root and shoot dry weight, tap root length, root area, root diameter, root volume, and number of pod (P 0.05. All of the morphological traits were mainly affected by severe drought stress. The results of the comparing mean data in the interactions of methanol and drought stress showed that 20% methanol level in non-drought stress significantly increased in plant height, number of branches, root dry weight, root diameter and number of pod compared with control. 20% methanol level in temperate drought stress condition significantly increased the number of pod compared with non-applied methanol foliar application. Severe drought conditions in other traits except plant height difference between the levels of methanol and the methanol was observed. Conclusions Present study showed that the use of methanol at 20% by volume of methanol without the stress could be effective but failed to reduce the negative effects of drought stress on bean (Phaseolus vulgaris L

  12. Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.)

    International Nuclear Information System (INIS)

    Reig-Arminana, J.; Calatayud, V.; Cervero, J.; Garcia-Breijo, F.J.; Ibars, A.; Sanz, M.J.

    2004-01-01

    An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O 3 ) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O 3 levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O 3 were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O 3 related field observations and subtle foliar injury are also given

  13. Purple Phototrophic Bacterium Enhances Stevioside Yield by Stevia rebaudiana Bertoni via Foliar Spray and Rhizosphere Irrigation

    Science.gov (United States)

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant -1 by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  14. Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Reig-Arminana, J.; Calatayud, V.; Cervero, J.; Garcia-Breijo, F.J.; Ibars, A.; Sanz, M.J

    2004-11-01

    An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O{sub 3}) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O{sub 3} levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O{sub 3} were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O{sub 3} related field observations and subtle foliar injury are also given.

  15. A study of the wet deposit and foliar uptake of iodine and strontium on rye-grass and clover

    International Nuclear Information System (INIS)

    Angeletti, Livio; Levi, Emilio; Commission of the European Communities, Ispra

    1977-12-01

    Foliar uptake of iodine and strontium by rye-grass and clover was studied as a function of aspersion intensities. At the same time, the contribution of root sorption to foliar uptake was measured. The effective half-lives of radionuclides of standing and harvested grass were also determined together with their uptake under the action of demineralized water aspersion [fr

  16. Using Perls Staining to Trace the Iron Uptake Pathway in Leaves of a Prunus Rootstock Treated with Iron Foliar Fertilizers.

    Science.gov (United States)

    Rios, Juan J; Carrasco-Gil, Sandra; Abadía, Anunciación; Abadía, Javier

    2016-01-01

    The aim of this study was to trace the Fe uptake pathway in leaves of Prunus rootstock (GF 677; Prunus dulcis × Prunus persica) plants treated with foliar Fe compounds using the Perls blue method, which detects labile Fe pools. Young expanded leaves of Fe-deficient plants grown in nutrient solution were treated with Fe-compounds using a brush. Iron compounds used were the ferrous salt FeSO4, the ferric salts Fe2(SO4)3 and FeCl3, and the chelate Fe(III)-EDTA, all of them at concentrations of 9 mM Fe. Leaf Fe concentration increases were measured at 30, 60, 90 min, and 24 h, and 70 μm-thick leaf transversal sections were obtained with a vibrating microtome and stained with Perls blue. In vitro results show that the Perls blue method is a good tool to trace the Fe uptake pathway in leaves when using Fe salts, but is not sensitive enough when using synthetic Fe(III)-chelates such as Fe(III)-EDTA and Fe(III)-IDHA. Foliar Fe fertilization increased leaf Fe concentrations with all Fe compounds used, with inorganic Fe salts causing larger leaf Fe concentration increases than Fe(III)-EDTA. Results show that Perls blue stain appeared within 30 min in the stomatal areas, indicating that Fe applied as inorganic salts was taken up rapidly via stomata. In the case of using FeSO4 a progression of the stain was seen with time toward vascular areas in the leaf blade and the central vein, whereas in the case of Fe(III) salts the stain mainly remained in the stomatal areas. Perls stain was never observed in the mesophyll areas, possibly due to the low concentration of labile Fe pools.

  17. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  18. Patrones de arquitectura foliar en la subtribu Conceveibinae (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Murillo Aldana José Carmelo

    2001-07-01

    Full Text Available The leaf architecture of the species ofthe subtribe Conceveibinae is of great taxonomic value. The pattern of the secondary venation, the number of tertiary veins and the development, arrangement and forms of the areolations are the most useful characters to separate species or groups of species. The areolation is important to separate the sections; in the sect. Gavarretia has imperfect development, while the sect. Conceveiba is incomplete or developed. Venation in Conceveiba is pinnate craspedodromous or pinnate semicraspedodromous, except for C. martiana, C. ptariana, C. maynasensis, and C. pleiostemona where it is actinodromous. The number of pairs of secondary veins is usually less than 10. The tertiary venation is percurrent and frequently oblique. The marginal venation is looped and there are not  intersecondary veins. The largest venation order is between 5° and 7°; in general the veins of 4° and 5° orders are orthogonal. The results ofthis study support as well as inc1usion of Gavarretia and Polyandra in Conceveiba, and the separation of the sections Conceveiba and Gavarretia.La arquitectura foliar de las especies de la subtribu Conceveibinae es de gran valor taxonómico. El patrón de la venación secundaria, el número de venas terciarias y el desarrollo, el arreglo y la forma de las aréolas están entre los caracteres más útiles para separar especies o grupos de especies. Las aréolas tienen importancia para separar las secciones; en la sección Gavarretia tienen desarrollo imperfecto, en tanto que en la sección Conceveiba son incompletas o bien desarrolladas. La venación de las especies de Conceveiba es pinnada craspedódroma b pinnada semicraspedódroma, con excepción de C. martiana, C. maynasensis, C. ptariana y C. pleiostemona en las que es actinódroma. El número de pares de venas secundarias usualmente es menor de 10. La venación terciaria es percurrente y frecuentemente oblicua. La venación marginal es areolada y

  19. Control of Powdery Mildew by Foliar Application of a Suspension of Cheonggukjang

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kim

    2015-06-01

    Full Text Available This study was conducted to evaluate control efficacy of a fermented food ’Cheonggukjang’ against cucumber powdery mildew caused by Sphaerotheca fuliginea in greenhouse. Sterilized Daepung beans were inoculated with the rice straw as natural inoculum and then incubated for 72 hrs at 42"C in the household cheonggkjang maker. After 72 hrs of cheonggukjang fermentation, white zymogens were grown on the surface of a sterile Daepung beans. The pH of the 72 hrs fermented soybean was not significantly changed and electrical conductivity was found to increase by about 2 times than before fermentation. The population density of soybean zymogen showed a peak of growth at 60 hrs after fermentation and the concentration of zymogen was 8.2×107 cfu/ml. Soybean zymogen form of the colony was divided into three kinds of bacteria and a white and a large colony (WL was predominant bacteria among those up to 60 hrs of fermentation. To control the cucumber powdery mildew, diluted solutions of cheonggukjang was applied from 6.0% to 30.0% on cucumber leaves and they showed injury symptoms on cucumber leaves in more than 15% of them. However, more than 6.0% diluted cheonggukjang solutions showed more than 77.8% control effect of cucumber powdery mildew at 15 days after treatment. The fermented bacteria of Chenggukjang were well established in the cucumber leaf area at 15 days after treatment. The antifungal activity of 10% diluted cheonggukjang solutions was excellent for four species of plant fungal pathogens, Colletotrichum gloeosporioides, Sclerotinia cepivorum, Rhizoctonia sloani and Phytophthora capsici in the dual culture test. Results indicated that foliar application of Cheonggukjang solution could be used for the control of powdery mildews occurring on organically cultivated cucumber.

  20. Aplicação foliar de tratamentos para o controle do míldio e da podridão-de-escamas de bulbos de cebola Foliar spray of treatments in the control of downy mildew and bulb rot in onion

    Directory of Open Access Journals (Sweden)

    João Américo Wordell Filho

    2007-12-01

    Full Text Available Em experimento de campo, avaliou-se o efeito da aplicação foliar de tratamentos para o controle do míldio (Peronospora destructor e da podridão de bulbos (Burkholderia cepacia de cebola: testemunha, clorotalonil/metalaxyl + clorotalonil, fosfito de potássio, fertilizante foliar (03-00-16, N-P-K, calda bordalesa, calda bordalesa/fosfito de potássio, acibenzolar-S-methyl, pulverizados semanalmente; extrato de alga (Ulva fasciata e ulvana, aplicados a cada 7, 14 e 21 dias. Somente a pulverização semanal com fungicidas sintéticos ou com o fertilizante (03-00-16; 400 mL de p.c./100 L foi capaz de reduzir significativamente a severidade do míldio, em 60 ou 23%, respectivamente, em relação à testemunha não pulverizada, sem aumentar o rendimento de bulbos. O tratamento com fertilizantes ricos em potássio resultou em maior incidência da podridão de bulbos armazenados por cinco meses. O conteúdo de açúcares solúveis e incidência da podridão de bulbos de cebola foram correlacionados significativamente (-0,629, p A field experiment was carried out to evaluate the effect of foliar sprays with the following treatments on the downy mildew (Peronospora destructor and bulb rot (Burkholderia cepacia in onions: non-treated control, fungicide chlorotalonil/metalaxyl + chlorotalonil, potassium phosphite, foliar fertilizer (03-00-16, N-P-K, bordeaux mixture, bordeaux mixture/potassium phosphite, acibenzolar-S-methyl weekly applied; extract of alga Ulva fasciata and ulvan sprayed every 7, 14 and 21 days. Only the weekly spraying of fungicides and fertilizer (03-00-16, 400 mL/100 L significantly reduced the mildew severity by 60 and 23%, respectively, but did not increase the bulb yield. The foliar application of potassium rich fertilizers resulted in a higher incidence of rotten bulbs after 5 months in storage. Soluble sugar content and rot incidence of onion bulbs were significantly correlated (-0,629, p < 0,05.

  1. Fabrication and characterization of Zn O:Zn(n{sup +})/porous-silicon/Si(p) heterojunctions for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez A, M. A. [INAOE, Department of Electronics, 72840 Puebla, Pue. (Mexico); Romero P, G.; Pena S, R. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Ingenieria Electrica, SEES, Av. Intituto Politecnico Nacional No. 2508, Col. San Pedro Zacatenco, 07360 Ciudad de Mexico (Mexico); Andraca A, J. A. [IPN, Centro de Nanociencias y Micro y Nanotecnologias, Av. Luis Enrique Erro s/n, Col. San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-11-01

    The fabrication and characterization of electro luminescent Zn O:Zn(n{sup +})/porous silicon/Si(p) heterojunctions is presented. Highly conductive Zn O films (Zn O:Zn(n{sup +})) were produced by applying a temperature annealing at 400 degrees Celsius by 5 min to the Zn O/Zn/Zn O arrange formed by DC sputtering, and the porous silicon (PS) films were prepared on p-type (100) Si wafers by anodic etching. The Zn O: Zn(n{sup +})/PS/Si(p) heterojunction is accomplished by applying a brief temperature annealing stage to the entire Zn O/Zn/Zn O/PS/Si structure to preserve the PS luminescent characteristics. The Zn O:Zn(n{sup +}) films were characterized by X-ray diffraction and Hall-van der Pauw measurements. The PS and Zn O:Zn(n{sup +}) films were also studied by photoluminescence (Pl) measurements. The current-voltage characteristics of the heterojunctions showed well defined rectifying behavior with a turn-on voltage of 1.5 V and ideality factor of 5.4. The high ideality factor is explained by the presence of electron tunneling transport aided by energy levels related to the defects at the heterojunction interface and into the PS film. The saturation current and the series resistance of the heterostructure were 4 x 10{sup -7} A/cm{sup 2} and 16 Ω-cm{sup 2}, respectively. White color electroluminescence is easily observed at the naked eye when excited with square wave pulses of 8 V and 1 Khz. (Author)

  2. Nanostructured porous ZnO film with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang Lina; Zheng Yingying; Li Xiaoyun; Dong Wenjun; Tang Weihua; Chen Benyong; Li Chaorong; Li Xiao; Zhang Tierui

    2011-01-01

    Well-defined ZnO nanostructured films have been fabricated directly on Zn foil via hydrothermal synthesis. During the fabrication of the ZnO nanostructured films, the Zn foil serves as the Zn source and also the substrate. Porous nanosheet-based, nanotube-based and nanoflower-based ZnO films can all be easily prepared by adjusting the alkali type, reaction time and reaction temperature. The composition, morphology and structure of ZnO films are characterized by X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscope. The porous ZnO nanosheet-based film exhibits enhanced photocatalytic activity in the degradation of Rhodamine B under UV light irradiation. This can be attributed to the high surface area of the ZnO nanosheet and the large percentage of the exposed [001] facet. Moreover, the self-supporting, recyclable and stable ZnO photocatalytic film can be readily recovered and potentially applied for pollution disposal.

  3. ZnO/SnO{sub 2} nanoflower based ZnO template synthesized by thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sin, N. D. Md., E-mail: diyana0366@johor.uitm.edu.my; Amalina, M. N., E-mail: amalina0942@johor.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Fakulti Kejuruteraan Elektrik, Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, 81750 Masai, Johor (Malaysia); Ismail, Ahmad Syakirin, E-mail: kyrin-samaxi@yahoo.com; Shafura, A. K., E-mail: shafura@ymail.com; Ahmad, Samsiah, E-mail: samsiah.ahmad@johor.uitm.edu.my; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    The ZnO/SnO{sub 2} nanoflower like structures was grown on a glass substrate deposited with seed layer using thermal chemical vapor deposition (CVD) with combining two source materials. The ZnO/SnO{sub 2} nanoflower like structures had diameter in the range 70 to 100 nm. The atomic percentage of ZnO nanoparticle , SnO{sub 2} nanorods and ZnO/SnO{sub 2} nanoflower was taken using EDS. Based on the FESEM observations, the growth mechanism is applied to describe the growth for the synthesized nanostructures.

  4. Effect of trace elements (ZnSO/sub 4/, MnSO/sub 4//sub /and Al/sub 2/(SO/sub 4/)/sub 3/) on soil Ph, Zinc and manganese concentrations in case of mature teat bushes

    International Nuclear Information System (INIS)

    Nosheen, M.; Riaz, A.K.

    2005-01-01

    A field experiment was conducted to study the effect of trace elements on growth and yield of mature tea bushes, at National Tea Research Inst., Shinkiari, Mansehra, Pakistan, during 2003. The treatments included control (no fertilizer), recommended dose of NPK (432:111:74 kg ha/sup -1/ alone and NPK in combination with either two doses of (5.5 and 11 kg ha/sup -1/) ZnSO/sub 4/ or (2.0 and 4.0 kg ha/sup -1/)MnSO/sub 4/ or (0.225 and 0.45 kg ha/sup -1/) Al/sub 2/(SO/sub 4/)/sub 3/ to soil and one dose of each (11 kg ha/sup -1/) ZnSO/sub 4/, (4.0 kg ha/sup -1) MnSO/sub 4/ and (0.45 kg ha/sup -1/) Al/sub 2/(SO/sub 4/)/sub 3/ applied as spray solution. Treatments including soil application of NPK alone and NPK + either ZnSO/sub 4/, MnSO/sub 4/ or Al/sub 2/(SO/sub 4/)/sub 3/ significantly (P < 0.001) increased tea yield (fresh weight of three leaves + bud), shoot height and tissue Zn and Mn concentrations with significant interactions (T x t) on tissue Zn and Mn levels. As compared to control the yield increased by 7.0,30,.37,42,37 and 34% with NPK alone, NPK + 5.5, + 11.0 ZnSO/sub 4/, + 2.0, + 4.0 MnSO/sub 4/, + 0.225, + 0.45 kg ha/sup -1/ Al/sub 2/(SO/sub 4/)/sub 3/, respectively during fist three months while the yield of six months plucking showed similar response to treatments but was significantly lower than the first three months. Soil pH, Zn and Mn concentrations were significantly affected by treatments, time of sampling, and depth of sampling. Except ZnSO/sub 4/, lower doses of MnSO/sub 4/ (2.0 kg ha-l) and Al/sub 2/(SO/sub 4/)/sub 3/ (0.225 kg ha/sup -1/), were more effective as compared to their higher doses when applied to soil, regarding tea yield and shoot height. Foliar application of 11 kg ha-l ZnSO/sub 4/ significantly increased yield as compared to its both levels when applied to soil. It is concluded that MnSO/sub 4/ and Al/sub 2/(SO/sub 4/)/sub 3/ should be applied at the rate of 2.0 and 0.225 kg ha/sup -l/. (author)

  5. High spin levels in 62Zn, 64Zn, 66Zn, and 68Zn

    International Nuclear Information System (INIS)

    Bruandet, J.-F.

    1976-01-01

    Investigation by in-beam gamma spectroscopy of high-spin states in the even zinc isotopes has been made using the Ni(α,2nγ)Zn reactions at Esub(α) approximately equal to 30MeV for 62 Zn, 64 Zn and 66 Zn, and the 65 Cu(α,pγ) reaction at Esub(α) approximately equal to 18MeV for 68 Zn. The high-spin states feeding by varying the incident particles: p, 3 He,α, 12 C is discussed. It is pointed out that the gsub(9/2) orbital plays an important role in the structure of the high-spin states. The variation of the inertia momentum throughout the yrast line shows a backbending behavior and a shape transition associated to the occurence, for J>6, of rotational states is speculated [fr

  6. The Relationship Between Soils and Foliar Nutrition For Planted Royal Paulownia

    Science.gov (United States)

    James E. Johnson; David O. Mitchem; Richard E. Kreh

    2002-01-01

    Royal paulownia is becoming an important hardwood plantation species in the southern U.S. A study was done to investigate two novel site preparation techniques for aiding the establishment of royal paulownia seedlings in the Virginia Piedmont. The effects of these treatments on the foliar nutrition of first year seedlings was determined, as was the relationship...

  7. Are nitrate exports in stream water linked to nitrogen fluxes in decomposing foliar litter?

    Science.gov (United States)

    Kathryn B. Piatek; Mary Beth. Adams

    2011-01-01

    The central hardwood forest receives some of the highest rates of atmospheric nitrogen (N) deposition, which results in nitrate leaching to surface waters. Immobilization of N in foliar litter during litter decomposition represents a potential mechanism for temporal retention of atmospherically deposited N in forest ecosystems. When litter N dynamics switch to the N-...

  8. CORRELATION BETWEEN OZONE EXPOSURE AND VISIBLE FOLIAR INJURY IN PONDEROSA AND JEFFREY PINES. (R825433)

    Science.gov (United States)

    Ozone exposure was related to ozone-induced visible foliar injury in ponderosa and Jeffrey pines growing on the western slopes of the Sierra Nevada Mountains of California. Measurements of ozone exposure, chlorotic mottle and fascicle retention were collected during the years ...

  9. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Garde-Cerdán, Teresa; Portu, Javier; Moreno-Simunovic, Yerko; Martínez-Gil, Ana M

    2017-06-01

    Wine quality greatly depends on its chemical composition. Among the most important wine chemical compounds, flavonoids are the major contributors to wine organoleptic properties while amino acids have a huge impact on fermentation development and wine volatile profile. Likewise, nitrogen applications are known to have an impact on wine composition. Therefore, the aim of this work was to study the effects of foliar nitrogen applications on wine flavonoid and amino acid composition. The experiment involved five foliar nitrogen applications at veraison time: urea (Ur), urea plus sulphur (Ur+S), arginine (Arg), and two commercial fertilizers Nutrimyr Thiols (NT) and Basfoliar Algae (BA). The results showed that nitrogen foliar treatments decreased wine flavonoid content although the effect varied according to each treatment. This could be related to a low vine nitrogen requirement, since must yeast assimilable nitrogen (YAN) was above acceptable threshold values for all samples. With regard to wine amino acid content, all treatments except for Ur increased its values after the applications. Finally, foliar nitrogen treatments greatly influenced wine composition. Among them, urea seemed to exert the most negative effect on both phenolics and amino acids. In addition, an inverse relationship between wine amino acid content and flavonol concentration was exhibited. Copyright © 2017. Published by Elsevier Ltd.

  10. Contribution of foliar leaching and dry deposition to sulfate in net throughfall below deciduous trees

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Bondietti, E.A.; Lomax, R.D.

    1988-01-01

    Experiments were conducted at Walker Branch Watershed, Tennessee in 1986 with radioactive 35 S to quantify the contribution of foliar leaching and dry deposition to sulfate (SO 4 2- ) in net throughfall (NTF). Two red maple (Acer rubrum) and two yellow poplar (Liriodendron tulipifera) trees (12-15 m tall) were radiolabeled by stem well injection. Total S and 35 S were measured in leaves; 35 S and SO 4 2- were measured in throughfall (THF). The contribution of foliar leaching to SO 4 2- in NTF, THF minus incident precipitation, was estimated by isotope dilution of 35 S in NTF arising from nonradioactive S in dry deposition. The per cent contribution of foliar leaching to SO 4 2- in NTF was greatest during the week following isotope labeling and during the period of autumn leaf fall. During the growing season, foliar leaching accounted for 80% of the SO 4 2- in NTF beneath the study trees. Dry deposition of S to these tree species can be reasonably approximated during summer from the measurement of SO 4 2- flux in NTF. (author)

  11. Foliar application effects of beet vinasse on rice yield and chemical composition

    International Nuclear Information System (INIS)

    Tejada, M.; Garcia-Martinez, A. M.; Benitez, C.; Gonzalez, J. L.; Bautista, J.; Parrado, J.

    2009-01-01

    This study presents an account of rice (oriza sativa cv. Puntal) yield quality parameters as influenced by the foliar application of an industrial byproduct (beet vinasse). Beet (Beta vulgaris L. Subsp.vurgaris) vinasse is a product of great agricultural interest, because of its organic matter content, N and K concentrations. (Author)

  12. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Science.gov (United States)

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, d15N of foliage and soil also increases. We measured foliar d15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  13. Genetics and physiology of the nuclearly inherited yellow foliar mutants in soybean

    Science.gov (United States)

    Plant photosynthetic pigments are important in harvesting the light energy and transfer of energy during photosynthesis. There are several yellow foliar mutants discovered in soybean and chromosomal locations for about half of them have been deduced. Viable-yellow mutants are capable of surviving wi...

  14. Foliar absorption and translocation of 137cs in egyptian olive plants

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Maly, A.I.

    1999-01-01

    Foliar absorption and translocation of 137Cs by olive leaves were studied. Olive seedlings were transferred to the greenhouse in pots containing fine Nile silt.. Two seriies of pot experiments were conducted at the Nuclear Research Center site at Inshas. The treatments were conducted on leaves at the two middle nodes of the selected shoots. The lower surface of the olive leaf absorbed more 137Cs at the studied pH values as compared with the upper surface. The results show that changing the pH from 2 to 3 had no have any effect on the foliar absorption of 137Cs. Further increase of pH value caused the 137Cs foliar absorption to show a minimum at pH 5 then a maximum at pH 7. At pH 8 the foliar absorption of 137Cs started to decrease again. The concentration of translocated 137Cs was found to decrease gradually in the leaves above and below the treated ones. Absorption of 137Cs increased with time in the first 24 hours followed by lower absorption rates till the end of the experiment after 148 hours

  15. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  16. A comparison of two methods for estimating conifer live foliar moisture content

    Science.gov (United States)

    W. Matt Jolly; Ann M. Hadlow

    2012-01-01

    Foliar moisture content is an important factor regulating how wildland fires ignite in and spread through live fuels but moisture content determination methods are rarely standardised between studies. One such difference lies between the uses of rapid moisture analysers or drying ovens. Both of these methods are commonly used in live fuel research but they have never...

  17. Foliar and soil chemistry at red spruce sites in the Monongahela National Forest

    Science.gov (United States)

    Stephanie J. Connolly

    2010-01-01

    In 2005, soil and foliar chemistry were sampled from 10 sites in the Monongahela National Forest which support red spruce. Soils were sampled from hand-dug pits, by horizon, from the O-horizon to bedrock or 152 cm, and each pit was described fully. Replicate, archived samples also were collected.

  18. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2

    Science.gov (United States)

    Haley F. Wicklein; Scott V. Ollinger; Mary E. Martin; David Y. Hollinger; Lucie C. Lepine; Michelle C. Day; Megan K. Bartlett; Andrew D. Richardson; Richard J. Norby

    2012-01-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen-albedo relationship have not been established, and it is unknown whether factors affecting...

  19. Foliar application of calcium chloride and borax affects the fruit skin ...

    African Journals Online (AJOL)

    The influence of foliar application of calcium chloride and borax calcium on fruit skin strength and cracking incidence in litchi (Litchi chinensis Sonn.) fruit was investigated at 25 days interval and also the evaluation of fruit skin calcium and boron contents, skin strength, ion leakage from skin discs and fruit cracking in four ...

  20. Slow-cycle effects of foliar herbivory alter the nitrogen acquisition and population size of Collembola

    Science.gov (United States)

    Mark A. Bradford; Tara Gancos; Christopher J. Frost

    2008-01-01

    In terrestrial systems there is a close relationship between litter quality and the activity and abundance of decomposers. Therefore, the potential exists for aboveground, herbivore-induced changes in foliar chemistry to affect soil decomposer fauna. These herbivore-induced changes in chemistry may persist across growing seasons. While the impacts of such slow-cycle...

  1. Effect of polybag size and foliar application of urea on cocoa ...

    African Journals Online (AJOL)

    The effects of different polybag sizes and foliar application of urea on the growth of cocoa seedlings in the nursery were studied at the Cocoa Research Institute of Ghana substation at Afosu in the Eastern Region of Ghana between June 2004 and May 2005. Hybrid cocoa seeds were sown in polybags measuring 17.5 cm ...

  2. Effect of potassium and potting-bag size on foliar biomass and ...

    African Journals Online (AJOL)

    Foliar fresh mass was significantly increased by the interaction between K concentration and potting-bag size. Growers may use a 5.3 mmol L−1 K concentration and a 5 L potting bag for optimum production of rose geranium under soil-less cultivation. Keywords: C:G ratio, enzyme activation, oil quality, potassium, rose ...

  3. Shrimp pond effluent dominates foliar nitrogen in disturbed mangroves as mapped using hyperspectral imagery

    NARCIS (Netherlands)

    Fauzi, A.; Skidmore, A.K.; van Gils, H.A.M.J.; Schlerf, M.; Heitkonig, I.M.A.

    2013-01-01

    Conversion of mangroves to shrimp ponds creates fragmentation and eutrophication. Detection of the spatial variation of foliar nitrogen is essential for understanding the effect of eutrophication on mangroves. We aim (i) to estimate nitrogen variability across mangrove landscapes of the Mahakam

  4. Statistical analysis of grapevine mortality associated with esca or Eutypa dieback foliar expression

    Directory of Open Access Journals (Sweden)

    Lucia GUERIN-DUBRANA

    2013-09-01

    Full Text Available Esca and Eutypa dieback are two major wood diseases of grapevine in France. Their widespread distribution in vineyards leads to vine decline and to a loss in productivity. However, little is known either about the temporal dynamics of these diseases at plant level, and equally, the relationships between foliar expression of the diseases and vine death is relatively unknown too.  To investigate this last question, the vines of six vineyards cv. Cabernet Sauvignon in the Bordeaux region were surveyed, by recording foliar symptoms, dead arms and dead plants from 2004 to 2010. In 2008, 2009 and 2010, approximately five percent of the asymptomatic vines died but the percentage of dead vines which had previously expressed esca foliar symptoms was higher, and varied between vineyards. A logistic regression model was used to determine the previous years of symptomatic expression associated with vine mortality. The mortality of esca is always associated with the foliar symptom expression of the year preceding vine death. One or two other earlier years of expression frequently represented additional risk factors. The Eutypa dieback symptom was also a risk factor of death, superior or equal to that of esca. The study of the internal necroses of vines expressing esca or Eutypa dieback is discussed in the light of these statistical results.

  5. influence of foliar applications of calcium chloride and borax on fruit

    African Journals Online (AJOL)

    Dr. A Rab

    2011-12-16

    Dec 16, 2011 ... The influence of foliar application of calcium chloride and borax calcium on fruit skin strength and cracking incidence in litchi (Litchi chinensis Sonn.) fruit was investigated at 25 days interval and also the evaluation of fruit skin calcium and boron contents, skin strength, ion leakage from skin discs and.

  6. Adubação foliar: I. Épocas de aplicação de fósforo na cultura da soja Leaf fertilization: I. Epochs of phosphorus application on soybeans

    Directory of Open Access Journals (Sweden)

    Pedro Milanez de Rezende

    2005-12-01

    Full Text Available A busca de novas alternativas para o aumento da produtividade da soja tem sido constante objetivo de pesquisadores e produtores. As respostas da cultura à aplicação do fósforo via solo são bem definidas, sendo esse nutriente de grande importância no desenvolvimento da mesma, implicando seu uso em aumento do rendimento. A adubação foliar nessa cultura vem sendo muito difundida por empresas deste ramo, surgindo como uma opção viável de fornecimento suplementar de nutrientes, principalmente quando constatados níveis baixos na planta em caso de deficiências. Visando dar maiores subsídios aos produtores, objetivou-se com este trabalho estudar o efeito da adubação foliar de fósforo aplicado em diferentes estádios da planta compreendendo: V5, R1, R4, V5+R1, V5+R4, R1+R4, V5+R1+R4, V5+R1+R4+R6 e tratamento testemunha. O ensaio foi implantado em uma lavoura de soja, cultivar Monarca, na Fazenda Palmital em Ijaci-MG, utilizando delineamento de blocos casualizados com 9 tratamentos e três repetições. Foi utilizado como fonte de fósforo o produto Quimifol P30 quelatizado na forma líquidacom 30 % do nutriente solúvel em CNA + água na dose de 2,0 l.ha-1sendo as aplicações realizadas com pulverizador costal de gás carbônico, bico leque, à pressão constante de 2,8 kgf/cm². As diferentes épocas de aplicação de fósforo alteraram significativamente o rendimento de grãos, proporcionando aumentos significativos de até 16% para as épocas V5, V5 + R1, V5 + R4, V5 + R1 + R4, V5 + R1 + R4 + R6, quando comparados a testemunha, expressando claramente o efeito positivo dessas aplicações na época V5. As características altura da planta, inserção do 1º legume e índice de acamamento não foram alteradas significativamente pelas diferentes épocas avaliadas. Observou-se resposta significativa para os teores foliares de nutrientes somente para os índices de K e Zn, exclusivamente no tratamento V5+R4, e nas épocas V5, V5 + R1 e V5

  7. Controls over foliar N:P ratios in tropical rain forests.

    Science.gov (United States)

    Townsend, Alan R; Cleveland, Cory C; Asner, Gregory P; Bustamante, Mercedes M C

    2007-01-01

    Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N

  8. Taxonomic value of foliar characters in Dahlstedtia Malme: Leguminosae, Papilionoideae, Millettieae Valor taxonômico de caracteres foliares em Dahlstedtia Malme: Leguminosae, Papilionoideae, Millettieae

    Directory of Open Access Journals (Sweden)

    Simone de Pádua Teixeira

    2006-06-01

    Full Text Available Dahlstedtia Malme (Leguminosae is a neotropical genus, native to the Brazilian Atlantic Forest, and comprises two species, D. pinnata (Benth. Malme and D. pentaphylla (Taub. Burk., although it has been considered a monotypic genus by some authors. Leaf anatomy was compared to verify the presence of anatomical characters to help delimit species. Foliar primordium, leaflet, petiolule, petiole and pulvinus were collected from cultivated plants (Campinas, SP, Brazil and from natural populations (Picinguaba, Ubatuba and Caraguatatuba, SP, Brazil - D. pinnata; Antonina, PR, Brazil - D. pentaphylla. Studies on leaflet surface assessment (Scanning Electron Microscopy, as well as histology and venation analyses were carried out of dehydrated, fresh and fixed material from two species. Leaflet material was macerated for stomatal counts. Histological sections, obtained by free-hand cut or microtome, were stained with Toluidine Blue, Safranin/Alcian Blue, Ferric Chloride, Acid Phloroglucin. Secretory cavities are present in the lamina, petiolule, petiole, pulvinus and leaf primordium in D. pentaphylla, but not in D. pinnata, and can be considered an important character for species diagnosis. Other leaf characters were uninformative in delimiting Dahlstedtia species. There is cambial activity in the petiolule, petiole and pulvinus. This study, associated with other available data, supports the recognition of two species in Dahlstedtia.Dahlstedtia Malme (Leguminosae é um gênero neotropical, com duas espécies reconhecidas, D. pinnata (Benth. Malme e D. pentaphylla (Taub. Burk., embora tenha sido considerado monotípico por alguns autores. Seus representantes ocorrem na Floresta Atlântica, nos Estados do Sul e Sudeste do Brasil. Neste trabalho, realizamos um estudo comparativo da anatomia foliar, para verificar a presença de caracteres que possam auxiliar a identificação das espécies. Primórdio foliar, lâmina foliar, peciólulo, pecíolo e pulvino

  9. Erythroneura lawsoni abundance and feeding injury levels are influenced by foliar nutrient status in intensively managed American sycamore.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, Robert: Aubrey, Doug, Patric; Bentz, Jo-Ann

    2010-01-01

    Abstract 1 Abundance and feeding injury of the leafhopper Erythroneura lawsoni Robinson was measured in an intensively-managed American sycamore Platanus occidentalis L. plantation. Trees were planted in spring 2000 in a randomized complete block design, and received one of three annual treatments: (i) fertilization (120 kg N/ha/year); (ii) irrigation (3.0 cm/week); (iii) fertilization + irrigation; or (iv) control (no treatment). 2 Foliar nutrient concentrations were significantly influenced by the treatments because only sulphur and manganese levels were not statistically greater in trees receiving fertilization. 3 Over 116 000 E. lawsoni were captured on sticky traps during the study. Leafhopper abundance was highest on nonfertilized trees for the majority of the season, and was positively correlated with foliar nutrient concentrations. Significant temporal variation in E. lawsoni abundance occurred, suggesting five discrete generations in South Carolina. 4 Significant temporal variation occurred in E. lawsoni foliar injury levels, with the highest injury ratings occurring in late June and August. Foliar injury was negatively correlated with foliar nutrient content, and higher levels of injury occurred more frequently on nonfertilized trees. 5 The results obtained in the present study indicated that increased E. lawsoni abundance occurred on trees that did not receive fertilization. Nonfertilized trees experienced greater foliar injury, suggesting that lower foliar nutrient status may have led to increased levels of compensatory feeding.

  10. Climatic limits on foliar growth during major droughts in the southwestern USA

    Science.gov (United States)

    Weiss, Jeremy L.; Betancourt, Julio L.; Overpeck, Jonathan T.

    2012-09-01

    Pronounced droughts during the 1950s and 2000s in the American Southwest provide an opportunity to compare mesoscale ecosystem responses to anomalously dry conditions before and during the regional warming that started in the late 1970s. This year-round warming has produced fewer cool season freezes, losses in regional snowpack, an 8-10 day advance in spring onset, and hotter summers, all of which should affect vegetation differently across seasons and elevations. Here, we examine indices that represent climatic limits on foliar growth for both drought periods and evaluate these indices for areas that experienced tree mortality during the 2000s drought. Relative to the 1950s drought, warmer conditions during the 2000s drought decreased the occurrence of temperatures too low for foliar growth at lower elevations in winter and higher elevations in summer. Higher vapor pressure deficits (VPDs), largely driven by warmer temperatures in the more recent drought, were more limiting to foliar growth from spring through summer at lower and middle elevations. At many locations where tree mortality occurred during the 2000s drought, low-temperature constraints on foliar growth were extremely unlimiting, whereas VPD constraints were extremely limiting from early spring through late autumn. Our analysis shows that in physiographically complex regions such as the Southwest, seasonality and elevational gradients are important for understanding vegetative responses to warming. It also suggests that continued warming will both increase the degree to which VPD limits foliar growth during future droughts and expand its reach to higher elevations and other seasons.

  11. Shifting Foliar N:P Ratios with Experimental Soil Warming in Tussock Tundra

    Science.gov (United States)

    Jasinski, B.; Mack, M. C.; Schuur, E.; Mauritz, M.; Walker, X. J.

    2017-12-01

    Warming temperatures in the Arctic and boreal ecosystems are currently driving widespread permafrost thaw. Thermokarst is one form of thaw, in which a deepening active soil layer and associated hydrologic changes can lead to increased nutrient availability and shifts in plant community composition. Individual plant species often differ in their ability to access nutrients and adapt to new environmental conditions. While nitrogen (N) is often the nutrient most limiting to Arctic plant communities, the extent to which plant available phosphorus (P) from previously frozen mineral soil may increase as the active layer deepens is still uncertain. To understand the changing relationship between species' uptake of N and P in a thermokarst environment, we assessed foliar N:P ratios from 2015 in two species, a tussock sedge (Eriophorum vaginatum) and a dwarf shrub (Rubus chamaemorus), at a moist acidic tussock tundra experimental passive soil warming site. The passive soil warming treatment increased active layer depth in warmed plots by 35.4 cm (+/- 1.1 cm), an 80% increase over the control plots. E.vaginatum demonstrated a 16.9% decrease (p=0.012, 95% CI [-27.99%, -5.94%]) in foliar N:P ratios in warmed plots, driven mostly by an increase in foliar phosphorus. Foliar N:P ratios of R.chamaemorus showed no significant change. However, foliar samples of R.chamaemorus were significantly enriched in the isotope 15N in soil warming plots (9.9% increase (p=0.002, 95% CI [4.45%, 15.39%])), while the sedge E.vaginatum was slightly depleted. These results suggest that (1) in environments with thawing mineral soil plant available phosphorus may increase more quickly than nitrogen, and (2) that species' uptake strategies and responses to increasing N and P will vary, which has implications for future ecological shifts in thawing ecosystems.

  12. PESO DE HOJAS COMO HERRAMIENTA PARA ESTIMAR EL ÁREA FOLIAR EN SOYA

    Directory of Open Access Journals (Sweden)

    Felipe Rafael Garcés Fiallos

    2011-07-01

    Full Text Available Cuantificaciones del área foliar en plantas son importantes en estudios de daños ocasionados por enfermedades, por lo tanto su determinación requiere el uso de equipamientos que no siempre se encuentran disponibles para todos. La utilización de determinaciones indirectas, como el peso de materia fresca o seca podría ayudar en este proceso. En este trabajo, se evaluó la relación entre el peso de hojas y área foliar, a partir de plantas recolectadas en el estadío R7.1, en 64 parcelas de campo con el cultivar de soja Nidera 5909 RG. El peso fresco fue medido luego de la colecta, el peso seco después de 48 horas de incubación a 65° C y el área foliar a través de un integralizador digital Licor. Fueron obtenidas ecuaciones significativas (p < 0.0001 e R2 de 0.74 a 0.97 para cada estrato y para la planta entera. Para la media de la planta, la relación de área foliar fue de y = 45.53 x + 19.03 para peso fresco e y = 176.17 x – 75.30 para peso seco. Esta herramienta se presenta potencialmente viable para estimar el área foliar de la planta. La utilización del peso seco es mas trabajosa, más no requiere pesaje de las hojas inmediatamente después de su colecta. La utilización futura de esta herramienta requiere estudios adicionales con otros cultivares a fin de verificarse si el comportamiento es similar.

  13. [Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].

    Science.gov (United States)

    Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min

    2017-07-18

    The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.

  14. ZnSe/ZnSeTe Superlattice Nanotips

    Directory of Open Access Journals (Sweden)

    Young SJ

    2010-01-01

    Full Text Available Abstract The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100 substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively.

  15. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013

    International Nuclear Information System (INIS)

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Tsuzaki, Masaharu; Wakamatsu, Takashi; Kobayashi, Takuya; Hashida, Shin-nosuke; Nagaoka, Toru; Goto, Fumiyuki

    2014-01-01

    Yearly changes in radiocesium ( 137 Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%–220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms. - Highlights: • 137 Cs concentrations of foliar parts expanded in 2013 was 14–42% of those in 2011. • The rates of decrease varied with the species, sampling part, and position. • Newly expanded foliar parts contain higher 137 Cs concentrations than older parts. • 137 Cs translocation

  16. Effect of Grafting Method, Graft Cover and Foliar Spray of some Mineral Elements on Persian Walnut Graft-take and Winter Survival Rate

    Directory of Open Access Journals (Sweden)

    Reza Rezaee

    2017-09-01

    Full Text Available Introduction: Persian walnut (Juglans regia L. is an important nut crop in Iran and many parts of the world. One of the major challenges of growing walnut is planting of non-grafted walnut trees in orchards, which leads to the reduction of yield, quality and productivity of walnut orchards. Compared to the other fruit trees, walnut grafting is difficult and even newly grafted walnut seedlings are vulnerable to fall or winter frost chilling, so that most of the seedlings are lost after subjecting to the cold winter. There are a few studies reporting successful grafting in outdoor conditions, however, final grafting take after winter has been usually ignored. Hence, increased walnut grafting success and improved tree growth after grafting through foliar nutrient application may lead to increased tolerance of chilling. Therefore, main goals of this research were to investigate the effect of some graft covers and role of foliar spray of calcium, boron and zinc on the reduction of frost damage in newly grafted seedlings under outdoor conditions. Materials and methods: This research was conducted at agricultural research station, Khoy city, west Azerbaijan province, during 2012-2014. In the first experiment, three methods of grafting including cleft, bark and V-shaped, and two kinds of graft covers including moist sawdust and superabsorbent plus cotton wool were investigated in terms of grafting success and quality of seedlings. In the second experiment, effect of the three above-mentioned grafting methods and two levels of foliar spray including sequential spray of Ca (4 ppm, B and Zn (2% (3 times during growth season and control (no spray were studied in terms of frost damage. The experiments conducted in factorial based on randomized complete block design with 10 trees in each plot. Data were collected 45 days after grafting take, final grafting take after one winter, subsequent scion growth length and diameter and concentration of Ca, B and Zn in

  17. The Effects of Foliar Application of Urea, Calcium Nitrate and Boric Acid on Growth and Yield of Greenhouse Cucumber (cv. Khassib

    Directory of Open Access Journals (Sweden)

    Naser Nasrolahzadehasl

    2017-10-01

    Full Text Available Introduction: Cucumis sativus L. is one of the most eminent and consuming vegetables which is widely cultivated in the Middle East. Using the controlled and greenhouse cultivation is one of the most appropriate methods to increase production per unit area. In this method, controlling the effective factors of production such as plant nutrition is the important factor to achieve high performance. Besides the accuracy applied in nutritional regulation of plant roots (both in soil and hypothermic environments, in many cases, foliar nutrition is considered by breeder of greenhouse productions. Foliar nutrition is more effective on young leaves, and deficiency of macro and micro nutrients can be removed by this factor. Khassib is one of the most important cultivar of greenhouse cucumber which is widely cultivated in Iran. The present study was conducted to evaluate the effect of foliar application on greenhouse cucumber. Materials and Methods: The experiment was performed on greenhouse cucumber (cv. Khassib for five months (from March 2007 to July 2008 in Ziba Dasht Technical Instruction Center which is located near Karaj, Iran. For this reason the experiment was conducted based on split-split-plot design with three replications. Eight experimental treatments were applied for foliar application including U1C1B1: urea + calcium nitrate +boric acid, U1C1B0: urea + calcium nitrate, U1C0B1: urea + boric acid, U1C0B0: urea, U0C1B1: calcium nitrate + boric acid, U0C1B0: calcium nitrate, U0C0B1: boric acid, U0C0B0: control. The effects of urea, calcium nitrate and boric acid in concentrations 3, 10 and 0.5 (gL-1 respectively on qualitative and quantitative characteristics of greenhouse cucumber, including fruit yield, yield of first class fruit, number of fruits, percentage of first class fruit, fruits T.S.S, plant length, percentage of leaf dry matter, and leaf weight ratio were studied. Results and Discussion: The results showed that calcium nitrate had a

  18. THz induced nonlinear absorption in ZnTe

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2015-01-01

    Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied.......Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied....

  19. Foliar antitranspirant and soil superabsorbent hydrogel affects photosynthetic gas exchange and water use efficiency of maize grown under low rainfall conditions.

    Science.gov (United States)

    Yang, Wei; Guo, Shi-Wen; Li, Pin-Fang; Song, Ri-Quan; Yu, Jian

    2018-06-08

    Two lysimeter experiments with maize plants were conducted to inquiry the effect of combined superabsorbent polymer (SAP) and fulvic acid (FA) application on photosynthetic gas exchange and water use efficiency (WUE) under deficit irrigation conditions. Soil SAP (45 kg ha -1 ) was applied while sowing, and FA solution (2 g L -1 ) was sprayed onto crop canopy three times at later plant growth periods. Combining SAP and FA application significantly improved plant photosynthesis, chlorophyll contents, and instantaneous WUE, while maintaining the optimal leaf stomatal transpiration. The effect of combined two chemicals use on photosynthesis and leaf instantaneous WUE was superior compared with the effects of their individual applications. As compared with plots not treated with chemicals, soil SAP significantly improved the yield by 12% and grain WUE by 10% when averaged across the two experiments, whereas foliar FA application did not affect yield and grain WUE. In contrast, the combined use of two chemicals significantly increased the yield by 20% and grain WUE by 26%, largely attributed to the increase in grain number. Soil SAP and foliar FA use, under low rainfall conditions, had little influence on crop water consumption but improved plant WUE by enhancing photosynthesis and increasing kernel number. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Aplicação foliar de fertilizantes organominerais em cultura de alface Foliar application of organic mineral fertilizer in lettuce

    Directory of Open Access Journals (Sweden)

    José Magno Q Luz

    2010-09-01

    Full Text Available A aplicação de fertilizantes organominerais tem permitido respostas positivas em diversas olerícolas. No presente trabalho avaliou-se a produção de mudas e produção comercial de alface, cultivar Vera, em função da aplicação foliar de fertilizantes organominerais líquidos, de outubro de 2005 a janeiro de 2006. A etapa de produção de mudas foi realizada em viveiro especializado na produção de mudas de hortaliças em Uberlândia e a condução da fase de campo foi realizada em área da Universidade Federal de Uberlândia. Analisou-se altura e número de folhas, massa fresca da parte aérea e diâmetro de raízes das mudas, massas fresca da parte aérea e de raízes das plantas na fase de campo. Foram empregados os fertilizantes organominerais Aminoagro Raiz, Aminoagro Folha Top, Aminoagro Mol, Nobrico Star, Aminolom Foliar e Lombrico Mol 75. O primeiro experimento utilizando mudas foi instalado em delineamento inteiramente casualizado com 15 repetições. O segundo experimento instalado a campo, foi feito em blocos ao acaso com 4 repetições. O uso exclusivo dos produtos organominerais líquidos, via aplicação foliar foi superior à testemunha para a maioria das variáveis avaliadas nas fases de muda e campo na alface, cultivar Vera.Biofertilizer application provides positive responses of several vegetable crops. The effect of foliar application of liquid biofertilizers on seedling and on commercial production of lettuce cultivar Vera were evaluated from October 2005 to January 2006. Seedling production was carried out in a nursery specialized in the production of vegetable seedlings, in Uberlandia, Minas Gerais State, Brazil, and the crop growing was carried out at a field of the Universidade Federal de Uberlandia. Plant height, number of leaves, aboveground part fresh weight and root diameter were evaluated on seedlings and fresh weight of the aboveground part and roots were evaluated on plants in the field. Aminoagro Raiz

  1. Effects of AMF- and PGPR-root inoculation and a foliar chitosan spray in single and combined treatments on powdery mildew disease in strawberry

    Directory of Open Access Journals (Sweden)

    Aiofe Lowe

    2012-03-01

    Full Text Available Trials were carried out using, as a root inoculants, mixed Glomus spp. (G. mossae, G. caledonium, and G. fasiculatum and Bacillus subtilis FZB24, and the plant activator N, O-carboxymethyl chitosan applied as a foliar spray. The treatments were applied singly and in combinations, on strawberry plants grown out of season in a greenhouse.  Both fruit yield and runner production were reduced due to disease.  Several of the treatments were found to have significant effects, increasing fruit number and yield, and runner production.  Disease symptom severity was lowest in the B. subtilis FZB24 plus chitosan treatment. The treatments giving significantly higher fruit yield/number and runner production werea inoculation with B. subtilis FZB24, and with B. subtilis FZB24 or AMF combined with chitosan spray. These treatments and a fungicide treatment, gave the same level of disease control.

  2. Modelos para a estimação da área foliar de feijão de porco por dimensões foliares

    Directory of Open Access Journals (Sweden)

    Marcos Toebe

    2012-01-01

    Full Text Available O objetivo deste trabalho foi modelar a área foliar de feijão de porco determinada por fotos digitais em função do comprimento ou da largura e/ou do produto comprimento vezes largura do limbo do folíolo central da folha. Em seis períodos de desenvolvimento da cultura (29, 43, 57, 73, 87 e 101 dias após a emergência foram coletadas, aleatoriamente, 745 folhas. Cada folha é composta pelos folíolos esquerdo, central e direito. Nas 745 folhas foi mensurado o comprimento (CFC e a largura (LFC e calculado o produto do comprimento pela largura (CFC×LFC do limbo do folíolo central. A seguir, determinou-se a área foliar (soma da área dos folíolos esquerdo, central e direito por meio do método de fotos digitais (Y. Do total de folhas, foram separadas, aleatoriamente, 605 folhas para a construção de modelos do tipo quadrático, potência e linear de Y em função do CFC, da LFC, e/ou do CFC×LFC e 140 folhas para a validação dos modelos. Em feijão de porco, o modelo tipo potência (Ŷ=3,7046x1,8747, R²=0,9757 da largura do limbo do folíolo central é adequado para estimar a área foliar obtida por fotos digitais.

  3. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    Science.gov (United States)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only

  4. Atomic absorption photometry of excess Zn in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lott, K.; Shinkarenko, S.; Tuern, L. [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Kirsanova, T.; Grebennik, A.; Vishnjakov, A. [Department of Physical Chemistry, D. Mendelejev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow (Russian Federation)

    2005-02-01

    Zn excess in ZnO is built up automatically at high temperatures. Excess Zn in hydrothermally grown ZnO single crystals were investigated by the atomic absorption photometry (AAP) method. To determine the excess zinc in ZnO samples, the AAP of zinc vapour was used in the conditions of solid-vapour equilibrium. Zn AAP allowed to eliminate excess Zn connected differentially in ZnO samples. To fix Zn non-stoichiometry, all the ZnO samples tested were previously heat treated at temperature interval from 850 to 900 C and at fixed Zn vapour pressures from 0.1 to 0.9 of saturated zinc vapour pressure at given treatment temperature. The analysis of temperature dependence of zinc vapour pressure indicated that the impurity metals take active role in the determination of non-stoichiometric zinc. The impurities Mn, Fe, Co, Ni and Cu form oxides which will reduce during annealing in Zn vapor up to metals form. During AAP measurement in optical cuvette, these metals react with ZnO and give additional Zn vapor pressure. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Identification, evolution and functional characterization of two Zn CDF-family transporters of the ectomycorrhizal fungus Suillus luteus.

    Science.gov (United States)

    Ruytinx, Joske; Coninx, Laura; Nguyen, Hoai; Smisdom, Nick; Morin, Emmanuelle; Kohler, Annegret; Cuypers, Ann; Colpaert, Jan V

    2017-08-01

    Two genes, SlZnT1 and SlZnT2, encoding Cation Diffusion Facilitator (CDF) family transporters were isolated from Suillus luteus mycelium by genome walking. Both gene models are very similar and phylogenetic analysis indicates that they are most likely the result of a recent gene duplication event. Comparative sequence analysis of the deduced proteins predicts them to be Zn transporters. This function was confirmed by functional analysis in yeast for SlZnT1. SlZnT1 was able to restore growth of the highly Zn sensitive yeast mutant Δzrc1 and localized to the vacuolar membrane. Transformation of Δzrc1 yeast cells with SlZnT1 resulted in an increased accumulation of Zn compared to empty vector transformed Δzrc1 yeast cells and equals Zn accumulation in wild type yeast cells. We were not able to express functional SlZnT2 in yeast. In S. luteus, both SlZnT genes are constitutively expressed whatever the external Zn concentrations. A labile Zn pool was detected in the vacuoles of S. luteus free-living mycelium. Therefore we conclude that SlZnT1 is indispensable for maintenance of Zn homeostasis by transporting excess Zn into the vacuole. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. [Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation.

    Science.gov (United States)

    Zhang, Ming Jin; Chen, Liang Hua; Zhang, Jian; Yang, Wan Qin; Liu, Hua; Li, Xun; Zhang, Yan

    2016-03-01

    Nowadays large areas of plantations have caused serious ecological problems such as soil degradation and biodiversity decline. Artificial tending thinning and construction of mixed forest are frequently used ways when we manage plantations. To understand the effect of this operation mode on nutrient cycle of plantation ecosystem, we detected the dynamics of microbial bio-mass carbon and nitrogen during foliar litter decomposition of Pinus massoniana and Toona ciliate in seven types of gap in different sizes (G 1 : 100 m 2 , G 2 : 225 m 2 , G 3 : 400 m 2 , G 4 : 625 m 2 , G 5 : 900 m 2 , G 6 : 1225 m 2 , G 7 : 1600 m 2 ) of 42-year-old P. massoniana plantations in a hilly area of the upper Yang-tze River. The results showed that small and medium-sized forest gaps(G 1 -G 5 ) were more advantageous for the increment of microbial biomass carbon and nitrogen in the process of foliar litter decomposition. Along with the foliar litter decomposition during the experiment (360 d), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) in P. massoniana foliar litter and MBN in T. ciliata foliar litter first increased and then decreased, and respectively reached the maxima 9.87, 0.22 and 0.80 g·kg -1 on the 180 th d. But the peak (44.40 g·kg -1 ) of MBC in T. ciliata foliar litter appeared on the 90 th d. Microbial biomass carbon and nitrogen in T. ciliate was significantly higher than that of P. massoniana during foliar litter decomposition. Microbial biomass carbon and nitrogen in foliar litter was not only significantly associated with average daily temperature and the water content of foliar litter, but also closely related to the change of the quality of litter. Therefore, in the thinning, forest gap size could be controlled in the range of from 100 to 900 m 2 to facilitate the increase of microbial biomass carbon and nitrogen in the process of foliar litter decomposition, accelerate the decomposition of foliar litter and improve soil fertility of plantations.

  7. Effects of magnesium sulfate on the foliar absorption of phosphates at the pumpkin; Effets du sulfate de magnesium sur l'absorption foliaire de phosphates chez le potiron

    Energy Technology Data Exchange (ETDEWEB)

    Chamel, A

    1962-07-01

    The foliar absorption of phosphates labelled with {sup 32}P and applied with or without magnesium sulfate on the first leaf of pumpkin seedlings have been studied. The magnesium sulfate applied with the phosphate reduces plainly the absorption rate of {sup 32}P. (O.M.) [French] Nous avons etudie l'absorption foliaire de phosphates marques au {sup 32}P appliques, avec et sans sulfate de magnesium, sur la premiere feuille de jeunes plants de potirons. Le sulfate de magnesium applique avec le phosphate diminue nettement le taux d'absorption du {sup 32}P. (auteur)

  8. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    Huang Wenjuan; Zhou Guoyi; Liu Juxiu; Zhang Deqiang; Xu Zhihong; Liu Shizhong

    2012-01-01

    The effects of elevated carbon dioxide (CO 2 ) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N 2 fixers and one N 2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO 2 and N addition. Foliar N:P ratios in the non-N 2 fixers showed some negative responses to elevated CO 2 , while N addition reduced foliar N:P ratios in the N 2 fixer. The results suggest that N addition would facilitate the N 2 fixer rather than the non-N 2 fixers to regulate the stoichiometric balance under elevated CO 2 . - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N 2 fixer under elevated CO 2 . - N addition could facilitate the N 2 fixer rather than the non-N 2 fixers to regulate foliar N and P stoichiometry under elevated CO 2 in subtropical forests.

  9. Effect of Nutrient Solution Concentration, Time and Frequency of Foliar Application on Growth of Leaf and Daughter Corms of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    R Khorasani

    2015-07-01

    Full Text Available In order to investigate the effect of different levels of nutrient solution concentration and times and frequencies of foliar applications on dry weight, nitrogen, phosphorus and potassium concentrations of leaf and corm of saffron, a pot experiment was conducted as a completely randomized design with factorial arrangement and three replications under open door conditions in research garden of ferdowsi university, faculty of agriculture. The experimental treatments were included 4 levels of solution concentration (0, 4, 8 and 12 per 1000 and 7 levels of time and frequency of foliar applications (F1: foliar application on 3th February, F2: foliar application on 18th February, F3: foliar application on 5th March, F4: foliar applications on 3th and 18th February, F5: foliar applications on 3th February and 5th March, F6: foliar applications on 18th February and 5th March, F7: foliar applications on 3th and 18th February and 5th March. Results of variance analysis showed that fresh and dry weight of corm and leaf were not influenced by concentration, time and frequency of foliar applications. Also, comparison of nitrogen, phosphorus and potassium concentrations of leaf and corm showed that there was no significant difference between levels of foliar treatments and control. Therefore, it seems that due attention to pattern of leaf and low nutrient demand of saffron, foliar applications in different levels of nutrient solution concentrations and times and frequencies of foliar applications could not increase vegetative growth and consequently, could not improve the growth and nutritional properties of saffron corms.

  10. Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Odindi, John; Kutywayo, Dumisani

    2018-04-01

    Nitrogen (N) is the most limiting factor to coffee development and productivity. Therefore, development of rapid, spatially explicit and temporal remote sensing-based approaches to determine spatial variability of coffee foliar N are imperative for increasing yields, reducing production costs and mitigating environmental impacts associated with excessive N applications. This study sought to assess the value of Sentinel-2 MSI spectral bands and vegetation indices in empirical estimation of coffee foliar N content at landscape level. Results showed that coffee foliar N is related to Sentinel-2 MSI B4 (R2 = 0.32), B6 (R2 = 0.49), B7 (R2 = 0.42), B8 (R2 = 0.57) and B12 (R2 = 0.24) bands. Vegetation indices were more related to coffee foliar N as shown by the Inverted Red-Edge Chlorophyll Index - IRECI (R2 = 0.66), Relative Normalized Difference Index - RNDVI (R2 = 0.48), CIRE1 (R2 = 0.28), and Normalized Difference Infrared Index - NDII (R2 = 0.37). These variables were also identified by the random forest variable optimisation as the most valuable in coffee foliar N prediction. Modelling coffee foliar N using vegetation indices produced better accuracy (R2 = 0.71 with RMSE = 0.27 for all and R2 = 0.73 with RMSE = 0.25 for optimized variables), compared to using spectral bands (R2 = 0.57 with RMSE = 0.32 for all and R2 = 0.58 with RMSE = 0.32 for optimized variables). Combining optimized bands and vegetation indices produced the best results in coffee foliar N modelling (R2 = 0.78, RMSE = 0.23). All the three best performing models (all vegetation indices, optimized vegetation indices and combining optimal bands and optimal vegetation indices) established that 15.2 ha (4.7%) of the total area under investigation had low foliar N levels (landscape scale.

  11. Fluoride-induced foliar injury in Solanum pseudo-capsicum: its induction in the dark and activation in the light

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, D.C.; Schneider, R.C.; Weinstein, L.H.

    1982-09-01

    The differential responses of plants exposed to hydrogen fluoride (HF) in continuous light or darkness were investigated in Jerusalem cherry Solanum pseudo-capsicum L. Plants exposed to HF in the dark develop few, if any, foliar symptoms by the end of the exposure period, but severe foliar injury develops rapidly upon transfer to the light after exposure. The results suggest that light is required for the expression of responses induced by exposure to HF in the dark.

  12. Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, D T; Reinert, R A; Dunning, J A; Heck, W W

    1973-01-01

    Eleven plant species were exposed to ozone and/or sulfur dioxide to determine if a mixture of the two gases enhanced foliar injury. Tobacco, radish, and alfalfa developed more injury that the additive injury of the single gases. In other species, such as cabbage, broccoli, and tomato, the foliar injury from mixed-gas exposures was additive or less than additive. Leaf injury from the ozone/sulfur dioxide mixture appeared as upper surface flecking, stipple, bifacial necrosis, and lower surface glazing and, in general, appeared similar to injury from oxidant or ozone. The concentrations of ozone and sulfur dioxide that caused plant injury were similar to those found in urban areas. These concentrations may result in yield losses to plants grown under field conditions.

  13. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  14. Effects of Elevated Carbon Dioxide on the Growth and Foliar Chemistry of Transgenic Bt Cotton

    Institute of Scientific and Technical Information of China (English)

    Gang Wu; Fa-Jun Chen; Feng Ge; Yu-Cheng Sun

    2007-01-01

    A field study was carried out to quantify plant growth and the foliar chemistry of transgenic Bacillus thuringiensis (Bt)cotton (cv. GK-12) exposed to ambient CO2 and elevated (double-ambient) CO2 for different lengths of time (1, 2 and 3 months) in 2004 and 2005. The results indicated that CO2 levels significantly affected plant height, leaf area per plant and leaf chemistry of transgenic Bt cotton. Significantly, higher plant height and leaf area per plant were observed after cotton plants that were grown in elevated CO2 were compared with plants grown in ambient CO2 for 1, 2 and 3 months in the investigation. Simultaneously, significant interaction between CO2 level x investigating year was observed in leaf area per plant. Moreover, foliar total amino acids were increased by 14%, 13%, 11% and 12%, 14%, 10% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 in 2004 and 2005, respectively. Condensed tannin occurrence increased by 17%, 11%, 9% in 2004 and 12%, 11%, 9% in 2005 in transgenic Bt cotton after being exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 for the same time. However, Bt toxin decreased by 3.0%,2.9%, 3.1% and 2.4%, 2.5%, 2.9% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3months compared with ambient CO2 for same time in 2004 and 2005, respectively. Furthermore, there was prominent interaction on the foliar total amino acids between the CO2 level and the time of cotton plant being exposed to elevated CO2. It is presumed that elevated CO2 can alter the plant growth and hence ultimately the phenotype allocation to foliar chemistical components of transgenic Bt cotton, which may in turn, affect the plant-herbivore interactions.

  15. Morfo-anatomia foliar de Ocotea gardneri (Meisn. Mez (Lauraceae-Lauroideae

    Directory of Open Access Journals (Sweden)

    Denise F. Coutinho

    Full Text Available Ocotea gardneri (Meisn. Mez é uma espécie arbórea, encontrada no nordeste brasileiro, principalmente nos estados da Paraíba e Pernambuco, conhecida por "louro-branco" e "louro-babão". Neste trabalho realizou-se morfodiagnoses (macroscópica e microscópica de folhas de O. gardneri, com o objetivo de fornecer subsídios à sua caracterização e identificação. Para a morfologia externa, analisaram-se amostras frescas e conservadas em álcool (70º, com auxílio de estereomicroscópio, e observações de campo. Realizaram-se secções transversais em lâminas foliares e pecíolos, e seções paradérmicas nas duas faces de lâminas foliares. Ocotea gardneri possui folhas elípticas a oval-elípticas, margem inteira, levemente ondeada, ápice agudo e base arredondada. A lâmina foliar é hipoestomática com estômatos do tipo paracítico; a epiderme é uniestratificada, com células de paredes retas e espessadas; o mesofilo é isobilateral, aqui referido pela primeira vez para uma espécie de Lauraceae, com células e ductos secretores evidentes e feixes vasculares colaterais envolvidos pela bainha esclerenquimática. Este conjunto de caracteres aliado à morfologia foliar, permitiram o estabelecimento de parâmetros que possibilitarão a caracterização de folhas de Ocotea gardneri em testes de autenticidade, bem como auxiliarão em estudos da taxonomia da espécie estudada.

  16. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species

    OpenAIRE

    Hidaka, Amane; Kitayama, Kanehiro

    2013-01-01

    How plants develop adaptive strategies to efficiently use nutrients on infertile soils is an important topic in plant ecology. It has been suggested that, with decreasing phosphorus (P) availability, plants increase photosynthetic P-use efficiency (PPUE) (i.e., the ratio of instantaneous photosynthetic carbon assimilation rate per unit foliar P). However, the mechanism to increase PPUE remains unclear. In this study, we tested whether high PPUE is explained by an optimized allocation of P in ...

  17. Intercomparison of Remotely Sensed Vegetation Indices, Ground Spectroscopy, and Foliar Chemistry Data from NEON

    Science.gov (United States)

    Hulslander, D.; Warren, J. N.; Weintraub, S. R.

    2017-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of

  18. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    OpenAIRE

    Albano, Francisca G.; Cavalcante, Ítalo H. L.; Machado, Jailson S.; Lacerda, Claudivan F. de; Silva, Esdras R. da; Sousa, Humberto G. de

    2017-01-01

    ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five materials used as...

  19. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    OpenAIRE

    Albano,Francisca G.; Cavalcante,Ítalo H. L.; Machado,Jailson S.; Lacerda,Claudivan F. de; Silva,Esdras R. da; Sousa,Humberto G. de

    2017-01-01

    ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five mater...

  20. Physiological characteristics of Plantago major under SO2 exposure as affected by foliar iron spray.

    Science.gov (United States)

    Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein

    2017-08-01

    Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.

  1. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

    Science.gov (United States)

    Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.

  2. Modelo para estimar a área foliar de Combretum leprosum Mart.

    Directory of Open Access Journals (Sweden)

    Willame dos Santos Candido

    2013-01-01

    Full Text Available Combretum leprosum Mart. -Combretaceae es un arbusto utilizado en la medicina popular del noreste de Brasil como antiulceroso, antihemorrágica y antinociceptiva. En este estudio se desarrolló un modelo para el cálculo de área foliar de Combretum leprosum usando mediciones lineales de longitud (C y ancho máximo (L de la hoja. Se recolectaron 200 láminas de hojas de una población de C. leprosum nativo en un área de conservación de la Caatinga en el campus de la Universidad Federal Rural de la Semi árido en Mossoro, Rio Grande do Norte. Las hojas se obtuvieron de árboles adultos y el área foliar se midió utilizando un integrador (LI-3100, LI-COR. El análisis de regresión se hizo con el programa SAEG. Para estimar el área foliar de C. leprosum se puede utilizar la ecuación lineal simple de regresión A = 0.7103 x (C x L, que es equivalente a tomar 71.03% de los productos de la longitud a lo largo de la nervadura central y el ancho máximo, con un coeficiente de determinación de 0.952617.

  3. PHYSIOLOGICAL MATURATION IN SEEDS OF SWEET SOGHUM FOR FOLIAR FERTILISATION WITH SILICATE

    Directory of Open Access Journals (Sweden)

    BRUNO FRANÇA DA TRINDADE LESSA

    2017-01-01

    Full Text Available The aim of this study was to evaluate physiological quality in seeds of sweet sorghum grown under semi-arid conditions, and to determine the age of physiological maturity of the seeds as a function of the foliar application of potassium silicate. The experiment was carried out at the Curu Valley Experimental Farm, in Pentecoste in the state of Ceará, during the rainy seasons of 2014 and 2015. The BRS 506 and BRS 511 varieties were used, under foliar fertilisation with potassium silicate at doses of 500, 1000 and 1500 mL.ha -1, in addition to the control lots (with no application; harvesting was at four periods, 30, 37, 44 and 51 days after full bloom (DAB. The percentage and speed of germination were evaluated, together with the accelerated ageing test and seedling growth. The seeds presented greater than 90% germination from 37 DAB, reaching high seedling vigour at 51 DAB. Foliar fertilisation with potassium silicate under the conditions of the experiment resulted in an increase in the physiological quality of the seeds. The BRS 506 and BRS 511 cultivars displayed the highest physiological quality between 49 and 53 DAF.

  4. Behavior of Foliares Applications of Humus Mixed with the NPK in Rice Cultivation (Oryza Sativa L..

    Directory of Open Access Journals (Sweden)

    Rolando Saborit Reyes

    2013-12-01

    Full Text Available Taking into consideration the observation of one green yellowsh clorosis in the plantations of rice, after the cold campaings and the disminishing of the agricultural efficiency of the cerial in areas of Saint Elena Land belonging to the fortified cooperatove of credits and service (FCCS Camilo Cienfuegos in Las Nuevas, La Sierpe, Province of Sancti – Spiritus, were done foliars aplications with mineral fertilizing as, N.P.K to different doses and moments of applications, in order to obtain alternative of nutrition for the cultivation, the work was done on a green yellowish ferralitic ground since 2009 to 2011, using LP-5 cultivation doing the sowing by the method of transplantation, fertilization. It was done mixing 49L. ha-¹ of liquid warm humus with 0.35 Kg. ha-¹ of nitrogen, phosphorus and potassium. The results shown that the use of the foliar fertilization with liquid worm humus mixed with the N.P.K minerals, increased the efficiency, obtaining 5.3t. ha-¹ as an average in different variants used. The economic analysis showed that the treatment with 40% of nitrogen was reduced with seven foliars applications, it was highest to the witness N.P.K in 1.5t . ha-¹ of the grain obtaining a relative benefit of 4264.55 pesos by hectarea.

  5. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    International Nuclear Information System (INIS)

    Anderson, P.D.; Houpis, J.L.J.

    1991-01-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution

  6. Induction of drought tolerance in zea mays l. by foliar application of triacontanol

    International Nuclear Information System (INIS)

    Perveen, S.; Iqbal, M.; Nawaz, A.

    2016-01-01

    In the present study, we assessed the effect of foliar application of triacontanol (TRIA) on various growth and physiochemical parameters of two maize (Zea mays L.) cultivars (cv. MMRI-Yellow and cv. Hybrid S-515) under different irrigation levels i.e., normal watering (control) and watering at 60% of the field capacity (drought). Seeds of the two maize cultivars were sown in plastic pots filled with sandy loam soil (2 kg in each). Foliar application of TRIA (0, 2 and 5 micro M) was performed after two weeks of drought stress to 28-day-old plants. Data of 58-day-old maize plants was collected for analysis of various growth and physiochemical attributes. Drought stress significantly decreased growth and superoxide dismutase (SOD) activity while increased the activities of catalase (CAT) and peroxidase (POD) and the contents of total phenolics, total soluble proteins, glycinebetaine (GB) and free proline. Foliar treatment with TRIA further increased CAT and POD activities whereas decreased the contents of hydrogen peroxide (H/sub 2/O/sub 2/), malondialdehyde (MDA), total phenolics and GB in the maize plants when under drought stress. Of the two maize cultivars, cv. MMRI-Yellow excelled the growth under both normal and drought stress (60% of the field capacity). Overall, TRIA (5 micro M) was much more effective in modulating various growth and physiochemical attributes, and thus improving drought tolerance in maize plants. (author)

  7. Efeitos do sombreamento na anatomia foliar de Gallesia integrifolia (Spreng Harms e Schinnus terebinthifolius Raddi

    Directory of Open Access Journals (Sweden)

    M.S. Santos

    2014-03-01

    Full Text Available Realizou-se estudo com o objetivo de analisar as alterações na anatomia foliar de Gallesia integrifolia (Spreng Harms e Schinnus terebinthifolius Raddi quando cultivadas em ambientes de sombra moderada ou densa, simulando as condições naturais encontradas em sistemas agroflorestais tradicionais do sul da Bahia, Brasil. Plantas das duas espécies, com aproximadamente um ano de idade, foram cultivadas em casa de vegetação sob quatro níveis de sombreamento (25%, 17%, 10% e 5%. Estudos anatômicos do limbo foliar foram realizados a partir de material incluído em parafina e seccionado em micrótomo rotativo. Os diferentes níveis de sombreamento ocasionaram alterações na estrutura do mesofilo de ambas as espécies, com diferenças significativas na espessura do parênquima paliçádico, limbo foliar, e densidade estomática. Nas condições em que o experimento foi realizado os resultados obtidos indicaram que G. integrifolia apresenta maior capacidade de aclimatação a ambientes de sombra moderada e densa do que S. terebinthifolius, sendo mais indicada para o cultivo em sistemas agroflorestais pré-estabelecidos.

  8. Effect of foliar fertilization on Ananas comosus L. Merr. cv. `Cayena lisa' acclimatization

    Directory of Open Access Journals (Sweden)

    Ortelio Hurtado

    2015-07-01

    Full Text Available The low survival and slow growth of in vitro pineapple plants (Ananas comosus L. Merr. in acclimatization stage limit the use of biotechnological techniques for it propagation. The aim of this study was to determine the effect of foliar fertilization in the acclimatization of pineapple plants cv. `Smooth Cayenne'. Two variants of foliar fertilization were compared. The first, plants were fertilized daily after the last irrigation with a minimum dose increased until three months of culture. The second included the same fertilizer at maximum dose with daily dose foliar applications after the last irrigation 10 days from planting to three months of cultivation. As a control, unfertilized plants were included. Every 20 days to three months of culture height (cm of plants was measured, the number of leaves per plant was quantified and the length and width of the leaves was measured. It was observed that fertilization had effect under the experimental conditions tested on the plants variables. After 90 days of culture plants obtained in the treatment with daily fertilization at maximun dose (option 2, met the requirements of height, length and width of the leaf for transplantation to field conditions. Key words: pineapple, propagation, zeolite

  9. Foliar Nutritional Quality Explains Patchy Browsing Damage Caused by an Invasive Mammal.

    Directory of Open Access Journals (Sweden)

    Hannah R Windley

    Full Text Available Introduced herbivores frequently inflict significant, yet patchy damage on native ecosystems through selective browsing. However, there are few instances where the underlying cause of this patchy damage has been revealed. We aimed to determine if the nutritional quality of foliage could predict the browsing preferences of an invasive mammalian herbivore, the common brushtail possum (Trichosurus vulpecula, in a temperate forest in New Zealand. We quantified the spatial and temporal variation in four key aspects of the foliar chemistry (total nitrogen, available nitrogen, in vitro dry matter digestibility and tannin effect of 275 trees representing five native tree species. Simultaneously, we assessed the severity of browsing damage caused by possums on those trees in order to relate selective browsing to foliar nutritional quality. We found significant spatial and temporal variation in nutritional quality among individuals of each tree species examined, as well as among tree species. There was a positive relationship between the available nitrogen concentration of foliage (a measure of in vitro digestible protein and the severity of damage caused by browsing by possums. This study highlights the importance of nutritional quality, specifically, the foliar available nitrogen concentration of individual trees, in predicting the impact of an invasive mammal. Revealing the underlying cause of patchy browsing by an invasive mammal provides new insights for conservation of native forests and targeted control of invasive herbivores in forest ecosystems.

  10. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    Directory of Open Access Journals (Sweden)

    Francisca G. Albano

    Full Text Available ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five materials used as substrates, in the presence and absence of foliar fertilization. The materials used were: earthworm humus, carnauba residue + fresh rice husk; carnauba residue in powder; carnauba residue semi-decomposed and mixture of carnauba residues: carnauba residue + fresh rice husk + carnauba residue semi-decomposed + carnauba residue in powder, at the proportion 1:1:1. The agroindustrial residue of carnauba wax semi-decomposed can be used as substrates in the production of ‘Formosa’ papaya seedlings. The foliar fertilization increases the quality of papaya seedlings, leading to increment in leaf area, root volume and sulfur content in the leaves, thus becoming a necessary practice.

  11. Effect of simulated sulfuric acid rain on yield, growth and foliar injury of several crops

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J J; Neely, G E; Perrigan, S C; Grothaus, L C

    1981-01-01

    This study was designed to reveal patterns of response of major United States crops to sulfuric acid rain. Potted plants were grown in field chambers and exposed to simulated sulfuric acid rain (pH 3.0, 3.5 or 4.0) or to a control rain (pH 5.6). At harvest, the weights of the marketable portion, total aboveground portion and roots were determined for 28 crops. Of these, marketable yield production was inhibited for 5 crops (radish, beet, carrot, mustard greens, broccoli), stimulated for 6 crops (tomato, green pepper, strawberry, alfalfa, orchardgrass, timothy), and ambiguously affected for 1 crop (potato). In addition, stem and leaf production of sweet corn was stimulated. Visible injury of tomatoes might have decreased their marketabiity. No statistically significant effects on yield were observed for the other 15 crops. The results suggest that the likelihood of yield being affected by acid depends on the part of the plant utilized, as well as on species. Effects on the aboveground portion of crops and on roots are also presented. Plants were regularly examined for foliar injury associated with acid rain. Of the 35 cultivars examined, the foliage of 31 was injured at pH 3.0, 28 at pH 3.5, and 5 at pH 4.0. Foliar injury was not generally related to effects on yield. However, foliar injury of Swiss chard, mustard greens and spinach was severe enough to adversely affect marketability.

  12. Review of cleaning techniques and their effects on the chemical composition of foliar samples

    Energy Technology Data Exchange (ETDEWEB)

    Rossini Oliva, S.; Raitio, H.

    2003-07-01

    Chemical foliar analysis is a tool widely used to study tree nutrition and to monitor the impact and extent of air pollutants. This paper reviews a number of cleaning methods, and the effects of cleaning on foliar chemistry. Cleaning may include mechanical techniques such as the use of dry or moistened tissues, shaking, blowing, and brushing, or use various washing techniques with water or other solvents. Owing to the diversity of plant species, tissue differences, etc., there is no standard procedure for all kinds of samples. Analysis of uncleaned leaves is considered a good method for assessing the degree of air contamination because it provides an estimate of the element content of the deposits on leaf surfaces or when the analysis is aimed at the investigation of transfer of elements along the food chain. Sample cleaning is recommended in order (1) to investigate the transfer rate of chemical elements from soil to plants, (2) to qualify the washoff of dry deposition from foliage and (3) to separate superficially absorbed and biomass-incorporated elements. Since there is not a standard cleaning procedure for all kinds of samples and aims, it is advised to conduct a pilot study in order to be able to establish a cleaning procedure to provide reliable foliar data. (orig.)

  13. An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests

    Directory of Open Access Journals (Sweden)

    Roberta E. Martin

    2018-01-01

    Full Text Available Spatial information on forest functional composition is needed to inform management and conservation efforts, yet this information is lacking, particularly in tropical regions. Canopy foliar traits underpin the functional biodiversity of forests, and have been shown to be remotely measurable using airborne 350–2510 nm imaging spectrometers. We used newly acquired imaging spectroscopy data constrained with concurrent light detection and ranging (LiDAR measurements from the Carnegie Airborne Observatory (CAO, and field measurements, to test the performance of the Spectranomics approach for foliar trait retrieval. The method was previously developed in Neotropical forests, and was tested here in the humid tropical forests of Malaysian Borneo. Multiple foliar chemical traits, as well as leaf mass per area (LMA, were estimated with demonstrable precision and accuracy. The results were similar to those observed for Neotropical forests, suggesting a more general use of the Spectranomics approach for mapping canopy traits in tropical forests. Future mapping studies using this approach can advance scientific investigations and applications based on imaging spectroscopy.

  14. Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335).

    Science.gov (United States)

    Joshi, Juhie; Sharma, Sonika; Guruprasad, K N

    2014-09-01

    A field study was conducted to investigate the impact of the fungicide pyraclostrobin (F500 - Headline®; a.i. 20%) on the activity of nitrogenase in soybean (var. JS-335). Pyraclostrobin (F500) was applied on the leaves of soybean plants at 10 and 20 days after emergence (DAE) of seedlings at concentrations ranging from 0.05% to 1%. Leghemoglobin (Lb) content and nitrogenase activity in root nodules were analyzed at 45(th)day after emergence of seedlings indicated a remarkable increase in Lb content and enhanced activity of nitrogenase in the root nodules of pyraclostrobin treated plants. The fungicide also enhanced the number of nodules along with weight of nodules, root biomass and growth of shoot and leaves. Enhanced nitrogen fixation in the root nodules by pyraclostrobin improves the growth of the plant in soybean before flowering and pod formation which ultimately resulted in yield and yield attributes. These results suggest that pyraclostrobin (F500) can be successfully employed as a foliar spray under field conditions to enhance the growth, nitrogen assimilation and hence yield of soybean. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  16. Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering

    Science.gov (United States)

    Singh, Rohit; Arif Khan, Md; Sharma, Pankaj; Than Htay, Myo; Kranti, Abhinav; Mukherjee, Shaibal

    2018-04-01

    This work reports on the formation of high-density (~1013-1014 cm-2) two-dimensional electron gas (2DEG) in ZnO-based heterostructures, grown by a dual ion beam sputtering system. We probe 2DEG in bilayer MgZnO/ZnO and capped ZnO/MgZnO/ZnO heterostructures utilizing MgZnO barrier layers with varying thickness and Mg content. The effect of the ZnO cap layer thickness on the ZnO/MgZnO/ZnO heterostructure is also studied. Hall measurements demonstrate that the addition of a 5 nm ZnO cap layer results in an enhancement of the 2DEG density by about 1.5 times compared to 1.11 × 1014 cm-2 for the uncapped bilayer heterostructure with the same 30 nm barrier thickness and 30 at.% Mg composition in the barrier layer. From the low-temperature Hall measurement, the sheet carrier concentration and mobility are both found to be independent of the temperature. The capacitance-voltage measurement suggests a carrier density of ~1020 cm-3, confined in 2DEG at the MgZnO/ZnO heterointerface. The results presented are significant for the optimization of 2DEG for the eventual realization of cost-effective and large-area MgZnO/ZnO-based high-electron-mobility transistors.

  17. Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO

    International Nuclear Information System (INIS)

    Chen, Yanli; Tao, Qiang; Fu, Wuyou; Yang, Haibin; Zhou, Xiaoming; Zhang, Yanyan; Su, Shi; Wang, Peng; Li, Minghui

    2014-01-01

    Highlights: • The synthetic of ZnS/CdS QDs/AHC-ZnO photoanode with a simple method. • The power conversion efficiency of the ZnS/CdS QDs/AHC-ZnO is 1.81%. • The effects of photovoltaic performances caused by CdS and ZnS amounts were studied. • ZnS passivation layer enhanced electron lifetime significantly. - Abstract: We report the photoanodes consisting of CdS quantum-dots (QDs) sensitized actinomorphic hexagonal columnar ZnO (CdS QDs/AHC-ZnO) with ZnS passivation layer are applied for solar cells. Simple chemical solution synthesized AHC-ZnO films on transparent conducting glass substrates, and then, AHC-ZnO is functionalized with uniform CdS and ZnS QDs via successive ionic layer adsorption and reaction (SILAR) method. The as-prepared materials were characterized by XRD, SEM, TEM, UV–vis diffused reflectance absorption spectra and photovoltaic performances analysis. Photovoltaic performances results indicate the quantity of CdS QDs as well as the visible light absorption threshold can be effectively controlled by varying the coating cycles during the SILAR process, and the photocurrent density (Jsc) is greatly improved by increasing the amount of ZnS. By optimizing the AHC-ZnO with the amount of CdS and ZnS, the best efficiency of 1.81% was achieved for solar cell under AM 1.5 G illumination with Jsc = 7.44 mA/cm 2 , Voc = 0.57 V and FF = 43%

  18. Quantifying the non-fungicidal effects of foliar applications of fluxapyroxad (Xemium) on stomatal conductance, water use efficiency and yield in winter wheat.

    Science.gov (United States)

    Smith, J; Grimmer, M; Waterhouse, S; Paveley, N

    2013-01-01

    The active ingredient fluxapyroxad belongs to the chemical group of carboxamides and is a new generation succinate dehydrogenase inhibitor (SDHI) in complex II of the mitochondrial respiratory chain. It has strong efficacy against the key foliar diseases of winter wheat in the UK: Septoria leaf blotch, yellow stripe rust and brown rust. Fluxapyroxad is marketed under the brand name of Xemium, was launched in 2012 and is available in the UK as a solo product (Imtrex) for co-application with triazoles, in co-formulation with epoxiconazole (Adexar), or in a three way formulation with epoxiconazole and pyraclostrobin (Ceriax). The objective of the study was to quantify the direct effects of Xemium on stomatal conductance and yield, mediated through stimulation of host physiology. Three field experiments and two controlled environment (CE) experiments were conducted across three cropping seasons (2010-2012) in Herefordshire and Cambridge, in the UK. Xemium was evaluated against boscalid, pyraclostrobin (F500), epoxiconazole and an untreated control. Across site-seasons, disease severity was significantly reduced when Xemium was applied as a foliar spray. Healthy canopy size and duration was increased by Xemium and canopy greening effects were seen shortly after application. Stomatal conductance was found to be consistently lower in Xemium treated plants but reduced stomatal opening was not found to be detrimental to yield in these experiments. Large, beneficial effects of Xemium on water use efficiency were found at the canopy level and this finding was supported by measurements of instantaneous water use efficiency at the leaf level. Effects on season long water use efficiency were largely driven by improvements in yield for a given amount of water uptake. Foliar applications of Xemium reduced the water required to produce 1.0 t grain per hectare by 82,330 L(82 t) when compared with an untreated crop. Yield was significantly higher in Xemium treatments and this was

  19. Determination of the Optimum Concentration and Time of Salicylic Acid Foliar Application for Improving Barley Growth under Non-Saline and Saline Conditions

    Directory of Open Access Journals (Sweden)

    GH. Ranjbar

    2017-02-01

    Full Text Available In a 2yrs field study the effect of concentration and time of salicylic acid (SA foliar application on growth of barley under non-saline and saline (2 and 12 dS m-1 of NaCl, respectively conditions was evaluated in National Salinity Research Center of Iran, Yazd, central Iran during 2012-2014 growing seasons. The treatments of SA (11 treatments included without SA and SA foliar application at 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM applied at tillering + stem elongation + ear emergence or stem elongation + ear emergence. Salt stress led to significant decreases in seed yield and yield components; however, grain yield of barley plants were considerably increased when subjected to SA. This positive impact of SA was due probably to its effect on grain number. Average of grain yield in 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM SA concentrations were 496.1, 539.7, 538.5, 553.8, 517.4 and 501.3 g m-2 under non-saline and 189.2, 212.5, 219.1, 206.9, 200.3 and 182.3 g m-2 under saline conditions, respectively. Considering the negative correlation between sodium concentration in shoot and grain yield, modulating role of exogenous SA on adverse effect of salinity might be related to a SA-induced lowered Na+ concentration in such organs. The appropriate treatment seems to be SA foliar application at 1.05 mM for non-saline and 0.70 mM for saline conditions applied at stem elongation + ear emergence, as they increased grain yield by 16.6% and 18.6%, respectively. The result of this study revealed that higher concentration or frequency of SA application could be associated with negative impacts on barley.

  20. Mechanisms of electrical isolation in O+ -irradiated ZnO

    Science.gov (United States)

    Zubiaga, A.; Tuomisto, F.; Coleman, V. A.; Tan, H. H.; Jagadish, C.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2008-07-01

    We have applied positron annihilation spectroscopy combined with sheet resistance measurements to study the electrical isolation of thin ZnO layers irradiated with 2 MeV O+ ions at various fluences. Our results indicate that Zn vacancies, the dominant defects detected by positrons, are produced in the irradiation at a relatively low rate of about 2000cm-1 when the ion fluence is at most 1015cm-2 and that vacancy clusters are created at higher fluences. The Zn vacancies introduced in the irradiation act as dominant compensating centers and cause the electrical isolation, while the results suggest that the vacancy clusters are electrically inactive.

  1. Applied physics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Physics Division research program that is dedicated primarily to applied research goals involves the interaction of energetic particles with solids. This applied research is carried out in conjunction with the basic research studies from which it evolved

  2. Effect of Foliar Application of Phosphorus and Water Deficit on Yield and Yield Components of Winter Wheat (Cultivar Alvand

    Directory of Open Access Journals (Sweden)

    M. Vafapour

    2011-04-01

    Full Text Available In order to study the effects of foliar application of phosphorus (P and water deficit on yield and yield components of winter wheat (Triticum aestivum L., cv. Alvand, a split-plot experiment, with completely randomized blocks design and three replications, was carried out at the Research Farm of Boyer Ahmad Agricultural and Natural Resources Research Station, 13 km west of Yasouj, in 2008-2009. The main plots were irrigation at three levels (1- full irrigation (control, 2- deficit irrigation from the stem elongation to booting stage, and 3- deficit irrigation from booting stage to the end of growth period and the subplots were five levels of foliar application of P fertilizer (0, 3, 6, 9 and 12 kg/ha KH2PO4. The results showed that the effects of different irrigation regimes and foliar application of P were significant on all traits, and their interaction was significant on plant height, number of grain per spike, grain yield and biological yield. Full irrigation and foliar application of 6 kg/ha P produced the highest grain and biological yield (6000 and 14170 kg/ha, respectively and deficit irrigation from the stem elongation to booting stage without foliar application of P produced the lowest grain and biological yield (2920 and 8219 kg/ha, respectively. Foliar application of P affects significantly the evaluated traits only in drought-stress treatments and its effect was not significant in full irrigation treatment. In general, foliar application of 9 kg/ha P compensated the losses in wheat due to drought stress.

  3. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013.

    Science.gov (United States)

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Tsuzaki, Masaharu; Wakamatsu, Takashi; Kobayashi, Takuya; Hashida, Shin-Nosuke; Nagaoka, Toru; Goto, Fumiyuki

    2014-12-01

    Yearly changes in radiocesium ((137)Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%-220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Soil and Foliar Arthropod Abundance and Diversity in Five Cropping Systems in the Coastal Plains of North Carolina.

    Science.gov (United States)

    Adams, Paul R; Orr, David B; Arellano, Consuelo; Cardoza, Yasmin J

    2017-08-01

    Soil and foliar arthropod populations in agricultural settings respond to environmental disturbance and degradation, impacting functional biodiversity in agroecosystems. The objective of this study was to evaluate system level management effects on soil and foliar arthropod abundance and diversity in corn and soybean. Our field experiment was a completely randomized block design with three replicates for five farming systems which included: Conventional clean till, conventional long rotation, conventional no-till, organic clean till, and organic reduced till. Soil arthropod sampling was accomplished by pitfall trapping. Foliar arthropod sampling was accomplished by scouting corn and sweep netting soybean. Overall soil arthropod abundance was significantly impacted by cropping in corn and for foliar arthropods in soybeans. Conventional long rotation and organic clean till systems were highest in overall soil arthropod abundance for corn while organic reduced till systems exceeded all other systems for overall foliar arthropod abundance in soybeans. Foliar arthropod abundance over sampling weeks was significantly impacted by cropping system and is suspected to be the result of in-field weed and cover crop cultivation practices. This suggests that the sum of management practices within production systems impact soil and foliar arthropod abundance and diversity and that the effects of these systems are dynamic over the cropping season. Changes in diversity may be explained by weed management practices as sources of disturbance and reduced arthropod refuges via weed reduction. Furthermore, our results suggest agricultural systems lower in management intensity, whether due to organic practices or reduced levels of disturbance, foster greater arthropod diversity. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. ACUMULAÇÃO DE NUTRIENTES NO LIMBO FOLIAR DE GUANDU E ESTILOSANTES NUTRIENT ACCUMULATION IN PIGEON PEA AND STYLO LEAF BLADE

    Directory of Open Access Journals (Sweden)

    Huberto José Kliemann

    2007-09-01

    Full Text Available

    Guandu (Cajanus cajan e estilosantes (Stylosanthes guianensis var. vulgaris cv. Mineirão são duas leguminosas cultivadas em solos dos cerrados da região Centro-Oeste, utilizadas para adubação verde, produção de sementes e pastoreio. O objetivo deste trabalho foi avaliar a acumulação dos nutrientes N, P, K, Ca, Mg, Zn, Cu, Mn e Fe no limbo foliar dessas leguminosas, em função dos dias após emergência (DAE da planta. O experimento foi conduzido em Latossolo Vermelho distrófico, na Embrapa Arroz e Feijão, em Santo Antônio de Goiás, GO. Os tratamentos foram distribuídos em blocos ao acaso, com quatro repetições. As parcelas tiveram 6,0 m de largura e 20,0 m de comprimento. A adubação de plantio foi de 400 kg ha-1 da fórmula comercial 5-30-15. O plantio foi realizado em dezembro de 2001. Durante o ciclo das culturas, foram tomadas nove amostras aleatórias de limbos foliares para análise foliar. De posse da massa da matéria seca e da concentração dos nutrientes, calcularam-se as suas acumulações no limbo foliar das duas leguminosas. Fez-se o ajuste dos dados de acumulação do nutriente (Y em função dos dias após a emergência (X por um modelo exponencial quadrático Y = a exp(bx + cx2. O guandu produziu mais matéria seca e, de modo geral, teve maior acumulação de nutrientes que o estilosantes, até 98 dias de idade. Dentre os macronutrientes, as maiores acumulações foram de N e as menores de P. O micronutriente de maior acumulação no limbo foliar das duas leguminosas foi Fe, e o de menor acumulação, Cu.

    PALAVRAS-CHAVE: Leguminosas; conteúdo de nutrientes; nutrição mineral; Cajanus cajan; Stylosanthes guyanensis.

  6. Anatomía foliar y del pecíolo de cuatro especies de Lupinus (Fabaceae Foliar and petiole anatomy of four species of Lupinus (Fabaceae

    Directory of Open Access Journals (Sweden)

    Juan Francisco Zamora-Natera

    2012-09-01

    Full Text Available Se describe y compara la anatomía foliar y del pecíolo de 4 especies del género Lupinus (L. aschenbornii S.Schauer, L. exaltatus Zucc., L. montanus Kunth y L. reflexus Rose que se distribuyen en un gradiente altitudinal en el Parque Nacional Nevado de Colima. Las hojas se fijaron en campo y se procesaron mediante la técnica de inclusión en parafina. Parte de las láminas se deshidrataron para caracterizar la superficie foliar por medio del microscopio electrónico de barrido. Las especies comparten la epidermis papilosa de paredes anticlinales con diferentes grados de ondulación, estomas anomocíticos, tricomas simples lineares y mesofilo bifacial. Los folíolos de L. montanus son glabros en la superficie abaxial, las estrías cuticulares sobre las células localizadas en la base de los tricomas es un rasgo característico de L. montanus y de L. reflexus. Las diferencias encontradas en espesor de la lámina y del mesofilo así como la abundancia de ceras epicuticulares pueden estar influenciadas por el ambiente. Distintivamente, el número y distribución de haces vasculares en los pecíolos difieren entre las 4 especies y podrían ser de utilidad para diferenciarlas si estos resultados se confirman al estudiar un mayor número de especies de Lupinus.The aims of this study were to describe and compare the foliar and petiole anatomy of 4 species of Lupinus (L. aschenbornii S.Schauer, L. exaltatus Zucc., L. montanus Kunth, and L. reflexus Rose distributed in an elevation gradient at Parque Nacional Nevado de Colima. Leaves were fixed in the field and prepared using the paraffin embedding technique. In addition, part of the blades was dehydrated to describe leaf surface through the scanning electron microscope. The 4 species shared a papillose epidermis with undulated anticlinal walls in different degrees, stomata anomocytic, simple unicellular trichomes, and bifacial mesophyll. Leaflets of L. montanus are glabrous on the abaxial surface

  7. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    Science.gov (United States)

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Magnetocapacitance effects in MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Y. M. Xu

    2015-11-01

    Full Text Available The magnetocapacitance effects of MnZn ferrites with different initial permeabilities have been studied systematically. Both intrinsic effect associated with magnetoelectric coupling and extrinsic effect, which means the combined contribution of magnetoresistance and the Maxwell-Wagner effect, have been observed simultaneously. Analysis shows that the relationship between the origins of both is in competitive equilibrium. Either of both mechanisms plays a dominant role in magnetocapacitance effects under different conditions, respectively, such as permeability and frequency of applied signals.

  9. Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites

    CSIR Research Space (South Africa)

    Raleaooa, PV

    2017-02-01

    Full Text Available The structure, particle morphology, optical and magnetic properties of ZnO, ZnS and ZnO-ZnS nanoparticles prepared by the sol-gel method are reported. ZnO and ZnS were combined at room temperature by an ex situ synthetic route to prepare Zn...

  10. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp.

    Science.gov (United States)

    Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang

    2013-04-07

    Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.

  11. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Wang Xiaohua

    2009-01-01

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  12. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Wang Xiaohua, E-mail: dxzhao2000@yahoo.com.c [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, 7089 WeiXing Road, ChangChun 130022 (China)

    2009-12-09

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  13. Impact of Potassium Foliar Application in Alleviating the Harmful Effects of Salinity in Spinach

    Directory of Open Access Journals (Sweden)

    Amirhooshang jalali

    2017-02-01

    Full Text Available Introduction: Spinach is an important leafy vegetable in the cold season, and despite the fact that is considered as low-calorie food source contains significant amount of minerals such as iron, and vitamin A and C. According to the University of Utah 3.8 dS m-1 is salinity tolerance threshold for the spinach and yield decrease that have been reported by 10%, 25% and 50% at 5.5, 7 and 8 dS m-1 salinity. The necessity to supply adequate potassium has been demonstrated in salinity conditions. In salt stress conditions, foliar application of K in spinach, reduces the harmful effects of salt and increase the ratio of potassium to sodium (1.61 to 2.72. Foliar application of K with prevent of potassium transfer from root to shoot is causing continuation of photosynthesis and reduce the effects of salinity. Absorption of potassium from the leaves depends on the type of used compound. In this context, characteristics of plant (leaves with a waxy composition, duration of growth and leaf area are important. 100 kg ha-1 of potassium in salt stress conditions by reducing the absorption of sodium, increased salt tolerance on the sunflower. Materials and Methods: In order to evaluate the foliar application of K on the yield and yield components of spinach in salt stress condition, a study was conducted in 2012 by using split plot randomized based on complete block design with four replications at Isfahan Agricultural and Natural Resources Research Station. Three levels of irrigation water salinity consisted of a control (2 dS m-1, well water with salinity (4 dS m-1 and well water with salinity (8dS m-1 arranged in main plots and two levels of control and foliar applications of potassium fertilizer containing potassium oxide solubility in water (2.5 ml per liter arranged in subplots. Statistical analysis was conducted by using SAS software and statistical tests were compared with Duncan at 5 percent. Result and Discussions: The results showed that the yield of

  14. Adição de Zn e absorção, translocação e utilização de Zn e P por cultivares de cafeeiro

    Directory of Open Access Journals (Sweden)

    Reis Jr. Roberto dos Anjos

    2002-01-01

    Full Text Available A crescente exigência de nutrientes, especialmente micronutrientes, pelos cultivares de café vem exigindo uma melhor compreensão da dinâmica desses nutrientes no sistema solo-planta. Com o objetivo de avaliar o efeito de concentrações de Zn (0,4 ; 1,3 e 2,3 mimol Zn L-1 na solução nutritiva sobre o crescimento, produção de matéria seca, eficiência de absorção, translocação e utilização de Zn e P em dois cultivares de café (Coffea arabica cv. Catuaí e Coffea canephora cv. Conilon, foi realizado um experimento sob delineamento inteiramente casualizado com esquema fatorial 3 × 2 (três doses de Zn e dois cultivares com três repetições. Plantas de café dos dois cultivares estudados foram cultivadas em casa de vegetação, com solução nutritiva completa por 50 dias, após os quais receberam solução nutritiva modificada com três doses de Zn. Aos 114 dias após a transferência para a solução nutritiva modificada, as plantas foram coletadas e separadas em folhas superiores, inferiores, caule e raízes. Foram avaliadas altura do caule, número de ramificações laterais, área foliar, produção de matéria seca e conteúdos de P e Zn nas diversas partes da planta, além das eficiências de absorção, translocação e utilização de P e Zn. A dose 2,3 mimol Zn L-1 proporcionou os maiores valores para as características de crescimento avaliadas, tanto para o cultivar Catuaí, quanto para Conilon. Os maiores conteúdos de Zn observados no Catuaí indicam que este é mais exigente em Zn que o Conilon na fase de mudas. O Conilon apresentou menores eficiências de absorção e translocação e maior eficiência de utilização de Zn, refletindo sua menor demanda por este nutriente. As concentrações de Zn empregadas neste experimento não promoveram interação Zn-P.

  15. Anatomía foliar y caulinar en especies de Stemodia (Scrophulariaceae Foliar and caulinar anatomy in species of Stemodia (Scrophulariaceae

    Directory of Open Access Journals (Sweden)

    Maria De Las Mercedes Sosa

    2005-07-01

    Full Text Available Se describe la estructura anatómica foliar y caulinar en el género Stemodia. Son consideradas siete especies: S. ericifolia (Kuntze K. Schum., S. hyptoides Cham. & Schltdl., S. lanceolata Benth., S. lobelioides Lehm., S. palustris A. St.-Hil., S. stricta Cham. & Schltdl. y S. verticillata (Mill. Hassl. Se hallaron diferencias en la epidermis foliar, donde hay variación en el tipo de estomas y de tricomas, y en la forma de las papilas epidérmicas; también en la estructura del mesofilo. Se describen e ilustran cuatro tipos de tricomas considerando si son o no glandulares y el número de células que lo conforman. El estudio de la anatomía caulinar mostró diferencias en cuanto a la presencia de aerénquima cortical y de laguna medular, y el porcentaje de espacios en el aerénquima cortical.Comparative anatomical studies of the leaves and stems on the genus Stemodia are presented. Seven species are considered: S. ericifolia (Kuntze K. Schum., S. hyptoides Cham. & Schltdl., S. lanceolata Benth., S. lobelioides Lehm., S. palustris A. St.-Hil., S. stricta Cham. & Schltdl. and S. verticillata (Mill. Hassl. There are variation in the stomatal and trichome types, form of the papillae and mesophyll structure. Four trichome types are described and illustrated considering if they are glandular or non-glandular and the number of cells. The stems present a quite homogeneous anatomical structure. Some differences in the amount and distribution of the aerenchyma and the size of the intercellular spaces are observed.

  16. Study of cation diffusion in Zn O using 65Zn as radioactive tracer

    International Nuclear Information System (INIS)

    Ferraz, Wilmar B.; Correa, Ricardo F.; Nogueira, Maria A.N.; Ramos, Marcelo; Sabioni, Antonio C.S.

    2000-01-01

    Zinc self-diffusion coefficient were measured in polycrystalline Zn O of high purity (99,999%) prepared by conventional sintering at 1393 deg C, 4 h, in oxygen atmosphere. The Zn O samples had high density (>99% of the theoretical density) and grain size of 20 μm. These samples were resintered for 72 h at 1400 deg C in order to increase the grain-size higher than 50 μ m. Samples of 15 x 15 x 2 mm 3 were polished with diamond paste, and pre-annealed under the same conditions of temperature and atmosphere of the diffusion annealing. A thin film of 65 Zn - radioactive tracer - applied to the polished surface was oxidized in oxygen atmosphere for a short time before diffusion annealing. The diffusion experiments were performed between 1002 and 1201 deg C in oxygen atmosphere. The 65 Zn diffusion profiles were measured by sectioning in conjunction with residual-activity measurements. The results of the determination of the zinc in Zn O diffusion coefficients in function of temperature are presented and a comparison of these results obtained by the two radioactive method is showed. (author)

  17. The Effects Foliar Application of Methanol at Different Growth Stages on Kernel Related Traits in Chickpea var. ILC 482

    Directory of Open Access Journals (Sweden)

    N. Naeimi,

    2013-12-01

    Full Text Available This research was conducted to evaluate the effects of foliar application of methanol on certain kernel related traits at different growth stages of pea var. ILC482 at the Research Station of Faculty of Agriculture in Islamic Azad University, Tabriz Branch in 2011. The study was conducted in split plot experiment based on Randomized Complete Block Design with three replications. Treatments were three levels methanol foliar application at different growth stages (vegetative, reproductive and foliar application at both two stages which considered as main factor, six levels of foliar application of methanol concentrations: (0 [control], 5, 10, 15, 20, 25, 30% as sub factor. Results showed that the interactions of methanol applications growth stages and its concentrations on grain number per plant, 100 kernel weight, grain yield, grain filing rate and harvest index were significantly different. Foliar application of methanol at reproductive stage decrease kernel related traits, but this application at both growth stages had positive effect on grain production and kernel related traits. This positive effect on number and 100 kernel weight were significant. The highest grain yield (2460 kg/ha was obtained by 20% concentration of methanol at both growth stages that increased grain yield above 13.5% compared to the control condition.

  18. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    International Nuclear Information System (INIS)

    Zhang Jianwei; Schaub, Marcus; Ferdinand, Jonathan A.; Skelly, John M.; Steiner, Kim C.; Savage, James E.

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g wv ), foliar injury, and leaf nitrogen concentration (N L ) to tropospheric ozone (O 3 ) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g wv , foliar injury, and N L (P 3 treatments. Seedlings in AA showed the highest A and g wv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g wv , N L , and higher foliar injury (P wv , and foliar injury to O 3 . Both VPD and N L had a strong influence on leaf gas exchange. Foliar O 3 -induced injury appeared when cumulative O 3 uptake reached 8-12 mmol m -2 , depending on soil water availability. The mechanistic assessment of O 3 -induced injury is a valuable approach for a biologically relevant O 3 risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  19. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianwei, E-mail: jianweizhang@fs.fed.u [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Schaub, Marcus; Ferdinand, Jonathan A. [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, John M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Steiner, Kim C. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Savage, James E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-15

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g{sub wv}), foliar injury, and leaf nitrogen concentration (N{sub L}) to tropospheric ozone (O{sub 3}) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g{sub wv}, foliar injury, and N{sub L} (P < 0.05) among O{sub 3} treatments. Seedlings in AA showed the highest A and g{sub wv} due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g{sub wv}, N{sub L}, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g{sub wv}, and foliar injury to O{sub 3}. Both VPD and N{sub L} had a strong influence on leaf gas exchange. Foliar O{sub 3}-induced injury appeared when cumulative O{sub 3} uptake reached 8-12 mmol m{sup -2}, depending on soil water availability. The mechanistic assessment of O{sub 3}-induced injury is a valuable approach for a biologically relevant O{sub 3} risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  20. Antecipação do período de diagnose foliar em laranjeira 'Pêra' no Amazonas

    Directory of Open Access Journals (Sweden)

    Jairo Rafael Machado Dias

    2013-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a possibilidade de se antecipar o período de realização da diagnose foliar em laranjeira 'Pêra'. Vinte e sete pomares representativos da região produtora de laranja do Estado do Amazonas foram monitorados durante o ano agrícola de 2011/2012. Foram realizadas diagnoses da composição nutricional (CND em amostras foliares retiradas durante a floração e quando a árvore apresentava frutos com três e seis meses de idade (época tradicional para o monitoramento nutricional. Pomares com produtividade superior a 25 Mg ha‑1 foram selecionados para o estabelecimento dos padrões de referência. O estado nutricional da laranja variou com o estádio fenológico no qual se realizou a amostragem foliar, o que fez com que fosse necessário estabelecer normas CND para cada período. Com a antecipação da diagnose para o período de floração, observou-se aumento nas concentrações foliares de N, P, K e Cu diminuição e nas de Ca. A antecipação da diagnose foliar em laranja 'Pêra' depende da geração de padrões nutricionais CND específicos para cada época de amostragem.

  1. Mapping Loci That Control Tuber and Foliar Symptoms Caused by PVY in Autotetraploid Potato (Solanum tuberosum L.).

    Science.gov (United States)

    da Silva, Washington L; Ingram, Jason; Hackett, Christine A; Coombs, Joseph J; Douches, David; Bryan, Glenn J; De Jong, Walter; Gray, Stewart

    2017-11-06

    Potato tuber necrotic ringspot disease (PTNRD) is a tuber deformity associated with infection by the tuber necrotic strain of Potato virus Y (PVY NTN ). PTNRD negatively impacts tuber quality and marketability, and poses a serious threat to seed and commercial potato production worldwide. PVY NTN symptoms differ in the cultivars Waneta and Pike: Waneta expresses severe PTNRD and foliar mosaic with vein and leaf necrosis, whereas Pike does not express PTNRD and mosaic is the only foliar symptom. To map loci that influence tuber and foliar symptoms, 236 F 1 progeny of a cross between Waneta and Pike were inoculated with PVY NTN isolate NY090029 and genotyped using 12,808 potato SNPs. Foliar symptom type and severity were monitored for 10 wk, while tubers were evaluated for PTNRD expression at harvest and again after 60 d in storage. Pairwise correlation analyses indicate a strong association between PTNRD and vein necrosis (τ = 0.4195). QTL analyses revealed major-effect QTL on chromosomes 4 and 5 for mosaic, 4 for PTNRD, and 5 for foliar necrosis symptoms. Locating QTL associated with PVY-related symptoms provides a foundation for breeders to develop markers that can be used to eliminate potato clones with undesirable phenotypes, e.g. , those likely to develop PTNRD or to be symptomless carriers of PVY. Copyright © 2017 Silva et al.

  2. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Glied, Stephan; Crocoll, Christoph

    2017-01-01

    BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors...

  3. ZnO processing for integrated optic sensors

    NARCIS (Netherlands)

    Horsthuis, Winfried H.G.

    1986-01-01

    ZnO thin films were sputter deposited onto oxidized silicon wafers. The film quality increased with increasing applied r.f. power. Characterization of the films was performed by measurements of the attenuation of the transverse electric TE0 optical guided mode. For an applied r.f. power of 2000 W,

  4. [Effects of different soil types on the foliar δ13C values of common local plant species in karst rocky desertification area in central Guizhou Province].

    Science.gov (United States)

    Du, Xue-lian; Wang, Shi-jie; Luo, Xu-qiang

    2014-09-01

    By measuring the foliar δ13C values of common local plant species grown in different soil types in Wangjiazhai catchments, a typical karst desertification area in Qingzhen City, Central Guizhou, we studied the impact of soil type and rocky desertification grade on the foliar δ13C values. The results showed that the foliar δ13C values were more negative in yellow soil area than those in black calcareous area and there was no obvious difference in foliar δ13C values between these two soil types. The distribution interval of foliar δ13C values in yellow soil area was narrower than those in black calcareous area and the variation coefficient of foliar δ13C values in yellow soil area were smaller than those in black calcareous area. With increasing degree of karst rocky desertification, the foliar δ13C values of plant community in black calcareous area increased, whereas those in yellow soil area first increased and then decreased. The result of multiple comparison showed that the difference in foliar δ13C values of plant community among rocky desertification grade was not obvious in yellow soil area, but it was obvious in black calcareous area. Correlation analysis between the foliar δ13C values of plant species and the main environmental factors indicated that slope and soil thickness were the main factors which affected the foliar δ13C values of plants in yellow soil area and soil water contant was the main factor in black calcareous area. The impact of soil on the foliar δ13C values was realized by adjusting the soil moisture in study area.

  5. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment.

    Science.gov (United States)

    Visioli, Giovanna; Bonas, Urbana; Dal Cortivo, Cristian; Pasini, Gabriella; Marmiroli, Nelson; Mosca, Giuliano; Vamerali, Teofilo

    2018-04-01

    With the increasing demand for high-quality foodstuffs and concern for environmental sustainability, late-season nitrogen (N) foliar fertilization of common wheat is now an important and widespread practice. This study investigated the effects of late-season foliar versus soil N fertilization on yield and protein content of four varieties of durum wheat, Aureo, Ariosto, Biensur and Liberdur, in a three-year field trial in northern Italy. Variations in low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that N applied to the canopy did not improve protein rate compared with N application to the soil (general mean 138 mg g -1 ), but moderately increased productivity in the high-yielding varieties Liberdur and Biensur (three-year means 7.23 vs 7.13 and 7.53 vs 7.09 t ha -1 respectively). Technological quality was mainly related to variety choice, Aureo and Ariosto having higher protein rates and glutenin/gliadin ratios. Also found was a strong 'variety × N application method' interaction in the proportions of protein subunits within each class, particularly LMW-GS and gliadins. A promising result was the higher N uptake efficiency, although as apparent balance, combined with higher HMW/LMW-GS ratio in var. Biensur. Late-season foliar N fertilization allows N fertilizer saving, potentially providing environmental benefits in the rainy climate of the northern Mediterranean area, and also leads to variety-dependent up-regulation of essential LMW-GS and gliadins. Variety choice is a key factor in obtaining high technological quality, although it is currently associated with modest grain yield. This study provides evidence of high quality in the specific high-yielding variety Biensur, suggesting its potential as a mono-varietal semolina for pasta production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Corn silage from corn treated with foliar fungicide and performance of Holstein cows.

    Science.gov (United States)

    Haerr, K J; Lopes, N M; Pereira, M N; Fellows, G M; Cardoso, F C

    2015-12-01

    Foliar fungicide application to corn plants is used in corn aimed for corn silage in the dairy industry, but questions regarding frequency of application and its effect on corn silage quality and feed conversion when fed to dairy cows remain prevalent. The objective of this study was to evaluate the effects of various foliar fungicide applications to corn on dry matter intake (DMI), milk production, and milk composition when fed to dairy cows. Sixty-four Holstein cows with parity 2.5±1.5, 653±80kg of body weight, and 161±51d in milk were blocked and randomly assigned to 1 of 4 corn silage treatments (total mixed ration with 35% of the dry matter as corn silage). Treatments were as follows: control (CON), corn silage with no applications of foliar fungicide; treatment 1 (1X), corn silage from corn that received 1 application of pyraclostrobin (PYR) foliar fungicide (Headline; BASF Corp.) at corn vegetative stage 5; treatment 2 (2X), corn silage from corn that received the same application as 1X plus another application of a mixture of PYR and metconazole (Headline AMP; BASF Corp.) at corn reproductive stage 1 ("silking"); and treatment 3 (3X), corn silage from corn that received the same applications as 2X as well as a third application of PYR and metconazole at reproductive stage 3 ("milky kernel"). Corn was harvested at about 32% dry matter and 3/4 milk line stage of kernel development and ensiled for 200d. Treatments were fed to cows for 5wk, with the last week being used for statistical inferences. Week -1 was used as a covariate in the statistical analysis. Dry matter intake tended to be lower for cows fed corn silage treated with fungicide than CON (23.8, 23.0, 19.5, and 21.3kg for CON, 1X, 2X, and 3X, respectively). A linear treatment effect for DMI was observed, with DMI decreasing as foliar fungicide applications increased. Treatments CON, 1X, 2X, and 3X did not differ for milk yield (34.5, 34.5, 34.2, and 34.4kg/d, respectively); however, a trend for

  7. Study of coordinated system Zn(II)- isoleucine-isoleuciante ion; Estudio del sistema coordinado Zn(II)-Isoleucina neutra-ion isolencionato

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Morales, J.C.; Cuesta Gonzalez, M. de la; Cuesta Sanchez, M.; Rodriguez-Placeres, J.C. [Departamento de Quimica Fisica, Universidad de la Laguna, Tenerife (Spain)

    1996-11-01

    The polarographic method has been applied to the study of the coordinated system Zn(II)-isoleucine-isoleucinate ion, in aqueous medium, l=1.0M(NaClO{sub 4}) and T=25+- 0.05 degree centigree. The stabilization of the coordinated species [Zn(HI)]``2+ (Beta{sub 1}0=1.7), [Zn(I)]``+ (Beta{sub 0}1=5.6.10``4) and [Zn(HI)(I)]``+ (Beta{sub 1}1=1.1.10``5) has been stablished. (Author) 12 refs.

  8. Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions.

    Science.gov (United States)

    Gimeno, V; Díaz-López, L; Simón-Grao, S; Martínez, V; Martínez-Nicolás, J J; García-Sánchez, F

    2014-10-01

    Scarcity of water is a severe limitation in citrus tree productivity. There are few studies that consider how to manage nitrogen (N) nutrition in crops suffering water deficit. A pot experiment under controlled-environment chambers was conducted to explore if additional N supply via foliar application could improve the drought tolerance of Citrus macrophylla L. seedlings under dry conditions. Two-month-old seedlings were subjected to a completely random design with two water treatments (drought stress and 100% water/field capacity). Plants under drought stress (DS) received three different N supplies via foliar application (DS: 0, DS + NH4NO3: 2% NH4NO3, DS + KNO3: 2% KNO3). KNO3-spraying increased leaf and stem DW as compared with DS + NH4NO3 and DS treatments. Leaf water potential (Ψw) was decreased by drought stress in all the treatments. However, in plants from DS + NH4NO and DS + KNO3, this was due to a decrease in the leaf osmotic potential, whereas the decrease in those from the DS treatment was due to a decrease in the leaf turgor potential. These responses were correlated with the leaf proline and K concentrations. DS + KNO3-treated plants had a higher leaf proline and K concentration than DS-treated plants. In terms of leaf gas exchange parameters, it was observed that net assimilation of CO2 [Formula: see text] was decreased by drought stress, but this reduction was much lower in DS + KNO3-treated plants. Thus, when all results are taken into account, it can be concluded that a 2% foliar-KNO3 application can enhance the tolerance of citrus plants to water stress by increasing the osmotic adjustment process. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Selective antibacterial effects of mixed ZnMgO nanoparticles

    International Nuclear Information System (INIS)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-01-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size ∼50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  10. Selective antibacterial effects of mixed ZnMgO nanoparticles

    Science.gov (United States)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-05-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive ( B. subtilis) and Gram-negative ( E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size 50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  11. Selective antibacterial effects of mixed ZnMgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Jasmina, E-mail: jasmina.vidic@jouy.inra.fr [VIM, Institut de la Recherche Agronomique (France); Stankic, Slavica, E-mail: slavica.stankic@insp.jussieu.fr; Haque, Francia [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore [VIM, Institut de la Recherche Agronomique (France); Jupille, Jacques [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Delmas, Bernard [VIM, Institut de la Recherche Agronomique (France)

    2013-05-15

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals-with the length of tetrapod legs about 100 nm and the diameter about 10 nm-were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size {approx}50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  12. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    International Nuclear Information System (INIS)

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-01-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO 4 , chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO 3 . In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better

  13. Gaseous release of radioactive iodine from decaying plants. I. Release following foliar and root uptake

    International Nuclear Information System (INIS)

    Saas, Arsene; Grauby, Andre

    1975-12-01

    Iodine uptake by plants is a significant link in the contamination of the food chain. Long half-live iodine was studied considering foliar and root uptake, loss by rain scavenging, residue decay or outgassing in order to assess two aspects of the problem: the importance of outgassing and the effect of the route of transfer on iodine losses. It appeared that iodine release was a function of the vegetal type, there were differences according to the pattern of absorption (via leaf or root) and the processes of iodine release were usually related to biochemical mechanisms [fr

  14. Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions

    International Nuclear Information System (INIS)

    Catarina Galinha; Pacheco, A.M.G.; Maria do Carmo Freitas; Jose Coutinho; Benvindo Macas; Ana Sofia Almeida

    2013-01-01

    Selenium (Se) is a trace element essential to the well-being and health quality of humankind. Plant-derived foodstuffs, namely cereals, are the major dietary sources of Se in most countries throughout the world, even if Se contents are strongly dependent upon the corresponding levels in cereal-growing soils. Therefore, wheat is one of the staple crops that appears as an obvious candidate for Se biofortification, considering its gross-tonnage production and nutritional relevance worldwide. The present paper focuses on the ability of bread and durum wheat-Triticum aestivum L. and Triticum durum Desf., respectively-to accumulate Se after supplementation via a foliar-addition procedure. Two of the most representative wheat cultivars in Portugal - Jordao (bread) and Marialva (durum) - have been selected for supplementation trials, following the same agronomic practices and field schedules as the regular (non-supplemented) crops of those varieties (sowing: November 2010; harvesting: July 2011). Foliar additions were performed at the booting and grain-filling stages, using sodium selenate and sodium selenite solutions at three different Se concentrations-equivalent to field supplementation rates of 4, 20 and 100 g of Se per ha-with and without potassium iodide. Selenium contents in wheat grains obtained under foliar application are compared to data from regular wheat samples (field blanks) grown at the same soil/season, yet devoid of any Se supplementation. Total Se in all field samples was determined by cyclic neutron activation analysis (CNAA), via the short-lived nuclide 77m Se (half-life time: 17.5 s), in the Portuguese Research Reactor (RPI; CTN-IST, Sacavem). Quality control of the analytical procedure was asserted through concurrent analyses of NIST-SRM R 1567a (Wheat Flour). Results show that foliar additions can increase Se contents in mature grains up to 15 and 40 times for Marialva and Jordao, respectively, when compared to non-supplemented crops. Jordao and

  15. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Eva [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); Dappe, Vincent [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Sarret, Géraldine [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Sobanska, Sophie [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna [Department of Chemistry, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Magnin, Valérie [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Ranieri, Vincent [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dumat, Camille, E-mail: camille.dumat@ensat.fr [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France)

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO{sub 4}, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO{sub 3}. In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to

  16. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  17. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  18. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application.

    Science.gov (United States)

    Hu, Jing; Guo, Huiyuan; Li, Junli; Wang, Yunqiang; Xiao, Lian; Xing, Baoshan

    2017-07-11

    Nutrient-containing nanomaterials have been developed as fertilizers to foster plant growth and agricultural yield through root applications. However, if applied through leaves, how these nanomaterials, e.g. γ-Fe 2 O 3 nanoparticles (NPs), influence the plant growth and health are largely unknown. This study is aimed to assess the effects of foliar-applied γ-Fe 2 O 3 NPs and their ionic counterparts on plant physiology of Citrus maxima and the associated mechanisms. No significant changes of chlorophyll content and root activity were observed upon the exposure of 20-100 mg/L γ-Fe 2 O 3 NPs and Fe 3+ . In C. maxima roots, no oxidative stress occurred under all Fe treatments. In the shoots, 20 and 50 mg/L γ-Fe 2 O 3 NPs did not induce oxidative stress while 100 mg/L γ-Fe 2 O 3 NPs did. Furthermore, there was a positive correlation between the dosages of γ-Fe 2 O 3 NPs and Fe 3+ and iron accumulation in shoots. However, the accumulated iron in shoots was not translocated down to roots. We observed down-regulation of ferric-chelate reductase (FRO2) gene expression exposed to γ-Fe 2 O 3 NPs and Fe 3+ treatments. The gene expression of a Fe 2+ transporter, Nramp3, was down regulated as well under γ-Fe 2 O 3 NPs exposure. Although 100 mg/L γ-Fe 2 O 3 NPs and 20-100 mg/L Fe 3+ led to higher wax content, genes associated with wax formation (WIN1) and transport (ABCG12) were downregulated or unchanged compared to the control. Our results showed that both γ-Fe 2 O 3 NPs and Fe 3+ exposure via foliar spray had an inconsequential effect on plant growth, but γ-Fe 2 O 3 NPs can reduce nutrient loss due to their the strong adsorption ability. C. maxima plants exposed to γ-Fe 2 O 3 NPs and Fe 3+ were in iron-replete status. Moreover, the biosynthesis and transport of wax is a collaborative and multigene controlled process. This study compared the various effects of γ-Fe 2 O 3 NPs, Fe 3+ and Fe chelate and exhibited the advantages of NPs as a foliar fertilizer

  19. Effect of Irrigation CutOff on Flowering Stage and Foliar Application of Spermidine on Some Quantitative and Qualitative Characteristics of Various Ecotypes of Cumin

    Directory of Open Access Journals (Sweden)

    Sarah Bakhtari

    2017-02-01

    Full Text Available Introduction: Medicinal plants play major roles in human health. . Cumin (Cuminum cyminum L. is an annual plant that commonly cultivated in arid and semiarid regions of Iran. The crop has a wide range of uses including medicinal, cosmetic and food industry. Cumin occupies about 26% of the total area devoted to medicinal plants in Iran. However, cumin is seriously affected by the Fusarium wilt and blight diseases. The diseases usually increase under warm and wet conditions. It was demonstrated that the peak of the disease incidence is occurring at the flowering stage and irrigation cutoff at this time may be reduced the diseases density. Materials and methods: In order to evaluate the effects of irrigation cutoff in flowering stage and foliar application of spermidine on some characteristics of various ecotype of cumin, an experiment was conducted in a split-split-plot arrangement in randomized complete block design with three replications at the research farm of Shahid Bahonar University of Kerman at 2014. The experimental treatments were irrigation in two levels (complete irrigation and cutoff the irrigation in flowering stage assigned to main plots, foliar application of spermidine in three levels (0, 1 and 2 Mm as a subplot and cumin ecotypes in three levels (Kerman, Khorasan and Esfahan that was randomized in sub-subplot. Plots size under the trial was 4 m × 3 m so as to get 50 cm inter row spacing in six rows. The ideal density of the crops was considered as 120 plant m-2. As soon as the seeds were sown, irrigation was applied every 10 days. Foliar application of spermidine was done at three stages (after thinning, before flowering stage and in the middle of flowering stage. No herbicides and chemical fertilizers were applied during the expriments. Results and discussion: In this study the number of branches, umbels per plant, 1000-seed weight, seed yield per plant and hectare, harvest index, essential oil percentage and yield, infected

  20. Evaluación de fertilizantes foliares sobre la producción en café (Coffea arabica L.)

    OpenAIRE

    Omar A. Sosa-M.; Alveiro Salamanca-J.

    2011-01-01

    En  la subestación experimental Paraguaicito de Cenicafé, ubicada en el municipio de Buenavista, departamento del Quindío,  se  realizó un ensayo con  fertilizantes  foliares, en café variedad Colombia de 24 meses de edad, con una distancia de siembra de 2 x 1 m. Las aplicaciones foliares se realizaron 58 ý 88 días después del pico de floración principal, con el fin de evaluar su efecto sobre la producción, el factor de conversión y el rendimiento en  trilla. Los  fertilizantes  foliares util...

  1. Impact of elevated CO2 and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation

    International Nuclear Information System (INIS)

    Marinari, Sara; Calfapietra, Carlo; De Angelis, Paolo; Mugnozza, Giuseppe Scarascia; Grego, Stefano

    2007-01-01

    The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO 2 and fertilization (two CO 2 treatments, elevated CO 2 and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO 2 enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO 2 and N fertilization amplified some element unbalances such as the K/N-ratio. - CO 2 enrichment reduced foliar nitrogen and increased the magnesium concentration in poplar

  2. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  3. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    Directory of Open Access Journals (Sweden)

    Li C

    2010-01-01

    Full Text Available Abstract In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs is achieved using atomic layer deposition (ALD. Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials.

  4. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency

    Science.gov (United States)

    Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.

    2018-01-01

    We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734

  5. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations

    International Nuclear Information System (INIS)

    Lashgari, Hamed; Boochani, Arash; Shekaari, Ashkan; Solaymani, Shahram; Sartipi, Elmira; Mendi, Rohollah Taghavi

    2016-01-01

    Graphical abstract: - Highlights: • DFT has been applied to investigate the optical properties of 2D-ZnS and 3D-ZnS. • The electronic and the optical properties of 3D-ZnS and 2D-ZnS are compared. • At visible range of energies the transparency of 2D-ZnS is more than the 3D. - Abstract: Density-functional theory has been applied to investigate the electronic and optical properties of graphene-like two-dimensional ZnS in the (0001) direction of its Wurtzite phase. A comparison with 3D-ZnS has been carried out within the PBE- and EV-GGA. The electronic properties of 2D- and 3D-ZnS have been derived by the examination of the electronic band structures and density of states. The optical properties have been determined through the study of the dielectric function, reflectivity, electron loss function, refractive and extinction indices, the absorption index and optical conductivity. It is found that the transparency of 2D-ZnS is greater than the 3D over the visible range. A thorough study of the dielectric function has been performed so that the peaks and the transition bands have been specified. The electron loss function demonstrates that the plasmonic frequency for 2D- and 3D-ZnS is accrued at 11.22 and 19.93 eV within the PBE-GGA, respectively.

  6. ZnO and ZnTiO{sub 3} nanopowders for antimicrobial stone coating

    Energy Technology Data Exchange (ETDEWEB)

    Ruffolo, S.A.; La Russa, M.F.; Malagodi, M.; Crisci, G.M. [Calabria University, Earth Science Department, Arcavacata di Rende, Cosenza (Italy); Oliviero Rossi, C. [Calabria University, Department of Chemistry, Arcavacata di Rende, Cosenza (Italy); Palermo, A.M. [Calabria University, Department of Ecology, Arcavacata di Rende, Cosenza (Italy)

    2010-09-15

    In the past a great variety of biocidal compounds and persistent organic pesticides were applied on a large scale for preventive measures aimed at the long-term preservation of our cultural heritage. Only recently, public and expert attention has started to focus increasingly on the risks resulting from these treatments on human health, works of art and environment in general. The work done in this field demonstrated that the most effective way for inactivation can be achieved by using highly efficient photocatalysts with the illumination of UV radiation. Following this direction our group focused its attention on well-known photocatalysts, ZnO and ZnTiO{sub 3}, in the degradation and complete mineralisation of environmental pollutants. This explorative work deals with an experimental investigation on biocidal efficient of ZnO and ZnTiO{sub 3}. In particular micro-quantities of the two nanopowdered photocatalysts were spread on plated dishes. They were filled by the MEA (Malt Extract Agar) medium containing given quantities of Aspergillus Niger (a chromogen filamentous fungus involved in biodeterioration). At the same time the two oxides were dispersed in different polymeric matrices, acrylic and fluorinated, in order to obtain a new coating technology, with hydrophobic, consolidant and biocidal properties for the restoration of building stone material. The mixtures obtained were applied on marble samples and capillary water absorption, simulated solar ageing, colourimetric measurements and contact angle measurements have been performed to evaluate its properties. (orig.)

  7. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating

    Science.gov (United States)

    Ruffolo, S. A.; La Russa, M. F.; Malagodi, M.; Oliviero Rossi, C.; Palermo, A. M.; Crisci, G. M.

    2010-09-01

    In the past a great variety of biocidal compounds and persistent organic pesticides were applied on a large scale for preventive measures aimed at the long-term preservation of our cultural heritage. Only recently, public and expert attention has started to focus increasingly on the risks resulting from these treatments on human health, works of art and environment in general. The work done in this field demonstrated that the most effective way for inactivation can be achieved by using highly efficient photocatalysts with the illumination of UV radiation. Following this direction our group focused its attention on well-known photocatalysts, ZnO and ZnTiO3, in the degradation and complete mineralisation of environmental pollutants. This explorative work deals with an experimental investigation on biocidal efficient of ZnO and ZnTiO3. In particular micro-quantities of the two nanopowdered photocatalysts were spread on plated dishes. They were filled by the MEA (Malt Extract Agar) medium containing given quantities of Aspergillus Niger (a chromogen filamentous fungus involved in biodeterioration). At the same time the two oxides were dispersed in different polymeric matrices, acrylic and fluorinated, in order to obtain a new coating technology, with hydrophobic, consolidant and biocidal properties for the restoration of building stone material. The mixtures obtained were applied on marble samples and capillary water absorption, simulated solar ageing, colourimetric measurements and contact angle measurements have been performed to evaluate its properties.

  8. Rain-Induced Wash-Off of Chemical Warfare Agent (VX) from Foliar Surfaces of Living Plants Maintained in a Surety Hood

    Science.gov (United States)

    2016-09-01

    RAIN-INDUCED WASH-OFF OF CHEMICAL WARFARE AGENT (VX) FROM FOLIAR SURFACES OF LIVING PLANTS MAINTAINED IN A...Final 3. DATES COVERED (From - To) May 2014 – Sep 2015 4. TITLE AND SUBTITLE Rain-Induced Wash-Off of Chemical Warfare Agent (VX) from Foliar...galli Foliage Chemical warfare agent (CWA) O-ethyl-S-(2

  9. Changing vacancy balance in ZnO by tuning synthesis between zinc/oxygen lean conditions

    Science.gov (United States)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Zubiaga, Asier; Tuomisto, Filip; Kuznetsov, Andrej Yu.

    2010-08-01

    The nature of intrinsic defects in ZnO films grown by metal organic vapor phase epitaxy was studied by positron annihilation and photoluminescence spectroscopy techniques. The supply of Zn and O during the film synthesis was varied by applying different growth temperatures (325-485 °C), affecting decomposition of the metal organic precursors. The microscopic identification of vacancy complexes was derived from a systematic variation in the defect balance in accordance with Zn/O supply trends.

  10. Comportamento da área foliar da videira “Isabel” submetida a diferentes tipos e doses de biofertilizantes

    Directory of Open Access Journals (Sweden)

    Olivânia dos Santos Nascimento

    2014-06-01

    Full Text Available Objetivou-se verificar o efeito da aplicação de diferentes tipos e doses de biofertilizante, na área foliar da videira ‘Isabel’ em cultivo orgânico nas condições edafoclimáticas de Catolé do Rocha-PB. Estudou-se os efeitos de 5 tipos de biofertilizante biofertilizante e 8 doses na área foliar da videira ‘Isabel’ após a primeira poda de produção. O experimento foi conduzido sob condições de campo, em área pertencente à Universidade Estadual da Paraíba, Campus IV. O delineamento adotado foi o de blocos casualizados, com 40 tratamentos, no esquema fatorial 5 x 8, com 4  repetições, totalizando 160 parcelas experimentais, os tratamentos consistiram em aplicações crescentes de diferentes biofertilizante, aplicados de forma independente. O valor da área foliar unitária da videira Isabel aumentou com o incremento da dose do biofertilizante B1 até um limite ótimo de 0,93 L/planta/aplicação; o valor da área foliar unitária diminuiu com o aumento da dose do biofertilizante B1 acima do limite ótimo de 0,93 L/planta/aplicação; a utilização de biofertilizante enriquecido com farinha de rocha e leguminosa (B3 proporcionou maior área foliar unitária e área foliar da planta da videira Isabel.

  11. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    Science.gov (United States)

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake

    International Nuclear Information System (INIS)

    Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo; Pancrazi, Marica; Ballarin-Denti, Antonio

    2003-01-01

    The difference in ozone sensitivity between Fagus sylvatica and Fraxinus exclesior is explained by their different stomatal ozone uptake and by their different foliar structure. - During the summer of 2001, 2-year-old Fraxinus excelsior and Fagus sylvatica plants were subjected to ozone-rich environmental conditions at the Regional Forest Nursery at Curno (Northern Italy). Atmospheric ozone concentrations and stomatal conductance were measured, in order to calculate the foliar fluxes by means of a one-dimensional model. The foliar structure of both species was examined (thickness of the lamina and of the individual tissues, leaf mass per area, leaf density) and chlorophyll a fluorescence was determined as a response parameter. Stomatal conductance was always greater in Fraxinus excelsior, as was ozone uptake, although the highest absorption peaks did not match the peaks of ozone concentration in the atmosphere. The foliar structure can help explain this phenomenon: Fraxinus excelsior has a thicker mesophyll than Fagus sylvatica (indicating a greater photosynthesis potential) and a reduced foliar density. This last parameter, related to the apoplastic fraction, suggests a greater ability to disseminate the gases within the leaf as well as a greater potential detoxifying capacity. As foliar symptoms spread, the parameters relating to chlorophyll a fluorescence also change. PI (Performance Index, Strasser, A., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P., (Eds.) Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis, London, UK, pp. 445-483.) has proved to be a more suitable index than Fv/Fm (Quantum Yield Efficiency) to record the onset of stress conditions

  13. Interpretation of transport measurements in ZnO-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas [Technical University of Braunschweig, Institute of High Frequency Technology, Braunschweig (Germany)

    2011-01-15

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers. (orig.)

  14. Interpretation of transport measurements in ZnO-thin films

    Science.gov (United States)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas

    2011-01-01

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers.

  15. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials

    Science.gov (United States)

    Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran

    2017-03-01

    The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.

  16. Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Raleaooa, Pule V. [Department of Physics, University of the Free State, ZA 9300 Bloemfontein (South Africa); Department of Chemistry, University of the Free State, ZA 9300 (South Africa); Roodt, Andreas [Department of Chemistry, University of the Free State, ZA 9300 (South Africa); Mhlongo, Gugu G.; Motaung, David E. [DST/CSIR Nanotechnology Innovation Center, National Center for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395, ZA 0001 Pretoria (South Africa); Kroon, Robin E. [Department of Physics, University of the Free State, ZA 9300 Bloemfontein (South Africa); Ntwaeaborwa, Odireleng M., E-mail: ntwaeab@gmail.com [School of Physics, University of the Witwatersrand, Private Bag 3, Wits, ZA 2050 (South Africa)

    2017-02-15

    The structure, particle morphology, optical and magnetic properties of ZnO, ZnS and ZnO-ZnS nanoparticles prepared by the sol-gel method are reported. ZnO and ZnS were combined at room temperature by an ex situ synthetic route to prepare ZnO-ZnS nanocomposites. The nanocomposites exhibited particle morphology different from that of ZnO and ZnS nanoparticles. The ZnO and ZnS nanoparticles exhibited quantum confinement as inferred from the widening of their respective bandgap energies. The electron paramagnetic resonance data provided evidence for the existence of magnetic clusters near the surface, electron to nuclei interactions and defect states. The ZnO-ZnS nanocomposites exhibited tunable emission that was dependent on the ratio of ZnO to ZnS. These composites were evaluated for application in different types of light emitting devices.

  17. Absorption and distribution of Zn by spring wheat in high zinc soil and effect of rhizosphere soil

    International Nuclear Information System (INIS)

    Bai Lingyu; Wei Dongpu; Hua Luo; Chen Shibao

    1999-01-01

    The isotope tracer technique was used to study the absorption and distribution of 65 Zn by spring wheat in high zinc soil. The results showed that the distribution of 65 Zn in the organs of spring wheat was in the order as stem leaf>grain>root>wheat husk; the specific activity of 65 Zn and the transfer factor of 65 Zn in the organs of spring wheat were in the order as root>grain>wheat husk>stem leaf. With added 65 Zn increased, the absorption amount of 65 Zn by spring wheat and the distribution of 65 Zn in root increased. The 65 Zn applied was enriched by rhizosphere soil of spring wheat

  18. Fabrication of White Organic Light Emitting Diode Using Two Types of Zn-Complexes as an Emitting Layer.

    Science.gov (United States)

    Kim, Dong-Eun; Kwon, Young-Soo; Shin, Hoon-Kyu

    2015-01-01

    We have studied white OLED using two types of Zn-complexes as an emitting layer. We synthesized brand new two emissive materials, Zn(HPQ)2 as a yellow emitting material and Zn(HPB)2 as a blue emitting material. The Zn-complexes are low-molecular compounds and stable thermally. The fundamental structures of the fabricated OLED was ITO/NPB (40 nm)/Zn(HPB)2 (30 nm)/Zn(HPQ)2/LiF/Al. We varied the thickness of the Zn(HPQ)2 layer by 20, 30, and 40 nm. When the thickness of the Zn(HPQ)2 layer was 20 nm, the white emission was achieved. The maximum luminance was 12,000 cd/m2 at a current density of 800 mA/cm2. The CIE coordinates of the white emission were (0.319, 0.338) at an applied voltage of 10 V.

  19. The relative contribution of natural zinc complexing agents and ZnSO4 to growth and zinc nutrition of maize

    International Nuclear Information System (INIS)

    Kumar, M.; Prasad, B.

    1989-01-01

    Relative evaluation of different natural zinc-complexes indicated that application of Zn-FA 2 (PM), Zn-FA 3 (Comp), Zn-FA 1 (BGS), Zn-FA 5 (PR), Zn-FA 4 (SS) and ZnSO 4 significantly enhanced the drymatter yield and zinc uptake by maize. The natural zinc-complexes in particular increased, to a greater extent, the uptake of both native and applied sources than that observed with ZnSO 4 as zinc carrier. Significant positive relationship between self-diffusion coefficient of Zn and drymatter yield and uptake of zinc by maize suggested that diffusion is responsible for the supply of zinc from ambient soil matrix to plant roots. (author). 12 refs., 5 tabs

  20. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  1. Influence of foliar fertilization with manganese on germination, vigor and storage time of RR soybean seeds

    Directory of Open Access Journals (Sweden)

    Vanessa Leonardo Ignácio

    2015-10-01

    Full Text Available ABSTRACTThis study aimed to evaluate the influence of foliar fertilizer doses containing Mn of phenological stages of suggested application in RR soybeans, to recover management damages with glyphosate at postemergence application on seed vigor in post-harvest and post six months storage. The seeds originated from a field experiment conducted , which included two applications of glyphosate, concomitant with foliar fertilizer in growth stages V4 and V6, with 0.00, 113.50 and 227.00 mg ha-1doses of Mn2+. Germination, GSI (Germination Speed Index, electrical conductivity tests and the first count of seeds were conducted. The application of Mn did not affect the physiological quality of RR soy in postharvest. However, in post-storage, higher doses of Mn had a negative effect on tests of abnormal seedlings, GSI and electrical conductivity. The applications of Mn, regardless of the developmental stage, did not interfere in the germination and first count tests, with and without storage. The electrical conductivity test showed a higher correlation with the seed germination test in the post-harvest treatment.

  2. PERFORMANCE DE FERTILIZANTES FOLIARES E CORRELAÇÕES LINEARES EM COMPONENTES DO RENDIMENTO DA SOJA

    Directory of Open Access Journals (Sweden)

    Vinícius Jardel Szareski

    2017-01-01

    Full Text Available O objetivo foi avaliar a resposta de diferentes fertilizantes foliares aplicados na cultura da soja e as associações lineares entre os componentes do rendimento de grãos, nas condições edafoclimáticas da Região do Alto Uruguai, RS. O experimento foi conduzido em delineamento de blocos casualizados, com três repetições. Os tratamentos testados foram: T1: sem aplicação de bioestimulantes; T2: aplicação de NITAMIN®; T3: aplicação de BIOZIME®; T4: aplicação de Bioamino Extra®; T5: Aplicação de NIPHOKAN®, onde avaliou-se os componentes do rendimento de grãos da soja. A aplicação de micronutrientes e bioestimulantes via foliar não acarreta em aumento no rendimento de grãos da soja, para as condições edafoclimáticas da Região do Alto Uruguai. O rendimento de grãos apresenta correlação positiva com o número de ramificações, número de legumes nas ramificações, número total de legumes, número de grãos por planta e massa de mil grãos.

  3. 110mAg root and foliar uptake in vegetables and its migration in soil

    International Nuclear Information System (INIS)

    Shang, Z.R.; Leung, J.K.C.

    2003-01-01

    110m Ag, as a radionuclide of corrosion products in water-cooled nuclear reactors, was detected in the liquid effluents of Guangdong Daya Bay Nuclear Power Station (GNPS) of Daya Bay under normal operation conditions. Experiments on a simulated terrestrial agricultural ecosystem were carried out using the pot experiment approach. The most common plants in Hong Kong and the South China vegetable gardens such as lettuce, Chinese spinach, kale, carrot, pepper, eggplant, bean, flowering cabbage, celery, European onion and cucumber were selected for 110m Ag root and foliar uptake tests. The results show that carrot, kale and flowering cabbage have the greatest values of soil to plant transfer factor among the vegetables, while 110m Ag can be transferred to Chinese spinach via foliar uptake. Flowering cabbage, the most popular leafy vegetable locally, could be used as a biomonitor for the radioisotope contamination in vegetables. Soil column and adsorption tests were also carried out to study the leaching ability and distributio coefficient (K d ) of 110m Ag in the soil. The results show that most of the radionuclide was adsorbed in the top 1 cm of soil regardless of the pH value. The K d was also determined

  4. Influência da época seca na qualidade do aporte foliar em floresta semidecidual

    Directory of Open Access Journals (Sweden)

    Rafael Nogueira Scoriza

    2014-09-01

    Full Text Available A serrapilheira apresenta uma importante função na ciclagem de nutrientes florestais, sendo as folhas as principais transportadoras desses nutrientes. Como a dinâmica da Floresta Estacional Semidecidual é fortemente demarcada pelos fatores climáticos, o objetivo deste trabalho é avaliar a influência temporal da temperatura e precipitação no aporte de carbono (C e nitrogênio (N foliares em fragmentos florestais. O estudo foi desenvolvido em cinco fragmentos florestais em Sorocaba, SP, onde foram demarcadas dez parcelas de 100m2, sendo instalados três coletores cônicos de 0,25m2 em cada. A coleta da serrapilheira foi feita de março a julho de 2008, onde o material foliar foi separado do restante da serrapilheira. Para a avaliação do teor de C e N foram sorteadas cinco amostras por mês, sendo estas moídas e analisadas. O teor e a quantidade de C e N apresentaram diferenças entre os meses. O carbono esteve diretamente relacionado com a quantidade de folhas aportadas enquanto que o nitrogênio esteve relacionado diretamente com a temperatura e a precipitação.

  5. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    Directory of Open Access Journals (Sweden)

    Rebecca eOstertag

    2016-03-01

    Full Text Available Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP after addition of fertilizer of nitrogen (N, phosphorus (P, or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow conventional wisdom that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  6. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture.

    Science.gov (United States)

    Xiong, TianTian; Dumat, Camille; Dappe, Vincent; Vezin, Hervé; Schreck, Eva; Shahid, Muhammad; Pierart, Antoine; Sobanska, Sophie

    2017-05-02

    Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight) -1 ] and cabbage [4448 mg (kg of dry weight) -1 ], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 μg day -1 ), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.

  7. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1990-01-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by 35 S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of 35 S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO 4 2- -S) concentrations in net throughfall (throughfall SO 4 2- -S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO 2 dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, 35 S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 μg/g dry needles. Translocation of 35 S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment

  8. Foliar uptake of radioisotopes and its consequences for the contamination of agricultural products

    International Nuclear Information System (INIS)

    Proehl, G.

    1982-07-01

    The contamination of nutritional parts of plants via radionuclides taken up through the leaves depends on the mobility of the radionuclides in the plant. The alkaline metals, iodine and technetium for example, are considered as mobile; due to the migration in the interior of the plant, these nuclides cause the highest food contamination after foliar uptake of radionuclides. The alkaline earth metals, cerium, ruthenium and plutonium are considered as immobile; the contamination by these elements is almost exclusively induced by direct nuclide deposition on the nutritional parts of the plants. Cobalt, zinc, manganese and iron have a certain middle position with regard to radionuclide migration. Gaseous iodine is taken up through slit-like apertures. The uptake may be very effective; under humid conditions the uptake is higher than under arid conditions. Due to the short half-time period only the meadow-cow-milk-path is relevant for the exposure to iodine 131, for other paths however, the longeval iodine 129 is important. The development of the specific activity of meadow grass after one single deposition can be described with a massdependent interceptory factor and two subsequent meteorologic half-times of 14 and 28 d. Model estimations show that after nuclear disorders in the middle of the year for some radionuclides and important nutritients the human activity supply via foliar uptake will exceed the activity supply via soil - root migration by up to 2 magnitudes during the next 50 years. (orig./MG) [de

  9. {sup 110m}Ag root and foliar uptake in vegetables and its migration in soil

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Z.R.; Leung, J.K.C. E-mail: jkcleung@hku.hk

    2003-07-01

    {sup 110m}Ag, as a radionuclide of corrosion products in water-cooled nuclear reactors, was detected in the liquid effluents of Guangdong Daya Bay Nuclear Power Station (GNPS) of Daya Bay under normal operation conditions. Experiments on a simulated terrestrial agricultural ecosystem were carried out using the pot experiment approach. The most common plants in Hong Kong and the South China vegetable gardens such as lettuce, Chinese spinach, kale, carrot, pepper, eggplant, bean, flowering cabbage, celery, European onion and cucumber were selected for {sup 110m}Ag root and foliar uptake tests. The results show that carrot, kale and flowering cabbage have the greatest values of soil to plant transfer factor among the vegetables, while{sup 110m}Ag can be transferred to Chinese spinach via foliar uptake. Flowering cabbage, the most popular leafy vegetable locally, could be used as a biomonitor for the radioisotope contamination in vegetables. Soil column and adsorption tests were also carried out to study the leaching ability and distributio coefficient (K{sub d}) of {sup 110m}Ag in the soil. The results show that most of the radionuclide was adsorbed in the top 1 cm of soil regardless of the pH value. The K{sub d} was also determined.

  10. Foliar uptake of 137Cs from the water column by aquatic macrophytes

    International Nuclear Information System (INIS)

    Kelly, M.S.; Pinder, J.E. III

    1996-01-01

    A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137 Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137 Cs g -1 dry mass) or uncontaminated sediments (i.e. -1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137 Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter -1 . The plants is uncontaminated sediments rapidly accumulated 137 Cs from the water column and after 35 days of immersion had 137 Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137 Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B. (author)

  11. Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (solanum melongena l.)

    International Nuclear Information System (INIS)

    Jan, S.; Hamayun, M.

    2016-01-01

    The current work was designed to test the effect of sodium chloride on germination, seedling establishment, vegetative growth, yield, chemical contents and ionic composition of eggplant. The consequences of foliar application of ascorbic acid (AA) on mitigation of adverse effects of sodium chloride were also tested. The seeds of Solanum melongena were germinated using NaCl (60 mM, 100 mM) and ascorbic acid (100 and 200 mM). High levels of salinity significantly affected the seed germination and seedling fresh and dry weights. Plants grown under salinity stress with foliar application of ascorbic acid showed significant increase in germination percentage and seedlings growth as compare to control plants. Sodium chloride stress showed adverse effects on plant height, root length, number of leaves, leaf area, fresh and dry biomass, total chlorophyll, carbohydrates and proteins as compared to untreated plants. The relative water content, electrolyte leakage were increased and Na+ and K+ ions balance was disturbed in different plant parts. Ascorbic acid (100 and 200ppm) enhanced all the growth parameters affected adversely by sodium chloride stress. (author)

  12. A novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis.

    Directory of Open Access Journals (Sweden)

    Robert T Grant-Downton

    Full Text Available Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids showing the symptoms of a newly emergent foliar disease known as 'spring sickness' were investigated for associated fungi. The cause(s of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of 'spring sickness' symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants.

  13. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  14. Spatial estimation of foliar phosphorus in different species of the genus Coffea based on soil properties

    Directory of Open Access Journals (Sweden)

    Samuel de Assis Silva

    2014-10-01

    Full Text Available Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich, remaining phosphorus (P-rem and particle size, and of the plant tissue, phosphorus levels (foliar P. The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.

  15. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning.

    Science.gov (United States)

    Ma, Ling; Rao, Xingquan; Lu, Ping; Bai, Shahla Hosseini; Xu, Zhihong; Chen, Xiaoyang; Blumfield, Timothy; Xie, Jun

    2015-07-01

    Eucalyptus spp. is a dominant tree genus in Australia and most Eucalyptus spp. are canopy dominant species. In Australian natural forests, Eucalyptus spp. commonly are associated with understorey legumes which play a crucial role for ecological restoration owing to their nitrogen (N) fixing ability for replenishing the soil N lost after frequent prescribed burning. This study aimed to explore to what extent physiological responses of these species differ 7 and 12 years after last fire. Two most common understorey Acacia spp., Acacia leiocalyx and A. disparrima, as well as one non-leguminous Eucalyptus resinifera, were studied due to their dominance in the forest. Both A. leiocalyx and A. disparrima showed higher carbon (C) assimilation capacity, maximum photosynthetic capacity, and moderate foliar C/N ratio compared with E. resinifera. A. leiocalyx showed various advantages compared to A. disparrima such as higher photosynthetic capacity, adaptation to wider light range and higher foliar total N (TNmass). A. leiocalyx also relied on N2-fixing ability for longer time compared to A. disparrima. The results suggested that the two Acacia spp. were more beneficial to C and N cycles for the post burning ecosystem than the non-N2-fixing species E. resinifera. A. leiocalyx had greater contribution to complementing soil N cycle long after burning compared to A. disparrima.

  16. Efeito do sombreamento na anatomia foliar de plantas jovens de andiroba (Carapa guianensis Aubl.

    Directory of Open Access Journals (Sweden)

    Dayse de Souza Aragão

    2014-08-01

    Full Text Available A capacidade de utilização da luz varia entre as espécies, e o sucesso de cada indivíduo depende de suas respostas morfoanatômicas. Este estudo avaliou a influência de diferentes intensidades luminosas sobre a anatomia foliar de mudas de Carapa guianensis Aubl. Folhas sadias do segundo e terceiro nós foram coletadas de plantas jovens desenvolvidas em quatro níveis de sombreamento: 30%, 50%, 70% e 0% (pleno sol, durante oito meses de experimento. Análises anatômicas foram feitas sob Microscopia Óptica (MO, a partir de lâminas temporárias e permanentes e sob Microscopia Eletrônica de Varredura (MEV. A densidade estomática não apresentou diferenças significativas. As dimensões estomáticas e a espessura dos tecidos da lâmina foliar foram maiores com o aumento da intensidade luminosa. C. guianensis apresenta plasticidade anatômica, possibilitando a sobrevivência na floresta sob distintas condições luminosas.

  17. Transfer of 65Zn in maize -mycorrhizal systems: a potential mechanism to alleviate Zn deficiency in maize

    International Nuclear Information System (INIS)

    Subramanian, K.S.; Tenshia, Virgin

    2017-01-01

    Mycorrhizas are root associated fungi and obligate symbionts known to improve the nutritional status of the host plant as a direct consequence of transfer of slowly diffusing nutrients such as zinc. The Zn use efficiency by crops hardly exceeds 2-5 per cent and major portion of the Zn gets accumulated in soil in various pools which are not available to plants. Further, mycorrhizal symbiosis alters the chemical and biochemical properties of rhizosphere that affect the isotopic parameters such as A value, E value and L value. These parameters were measured for both mycorrhizal and non-mycorrhizal maize plants. A pot culture experiment was conducted to determine the availability of Zn using isotopic dilution techniques. Maize plants were grown in pots inoculated with (M+) or without (M-) mycorrhizal fungus Glomus intraradices. Tagged 65 ZnSO 4 was applied to soil at the time of sowing

  18. Foliar anatomy and histochemistry in seven species of Eucalyptus Anatomia e histoquímica foliar de sete espécies de Eucalyptus

    Directory of Open Access Journals (Sweden)

    Leonardo David Tuffi Santos

    2008-08-01

    Full Text Available This work aimed to describe the foliar anatomy of seven species of Eucalyptus, emphasizing the characterization of secretory structures and the chemical nature of the compounds secreted and /or present in the leaves. Anatomical characterization and histochemical evaluation to determine the nature and localization of the secondary compounds were carried out in fully expanded leaves, according to standard methodology. Anatomical differences were verified among the species studied, especially in E. pyrocarpa. Sub-epidermal cavities were the only secretory structures found in the seven species studied, with higher density in E. pellita and lower in E. pilularis. The following compounds were histochemically detected: lipophilic compounds, specifically lipids of the essential or resin-oil type and sesquiterpene lactones found in the lumen of the cavities of the seven species; and hydrophilic compounds, of the phenolic compound type found in the mesophyll of all the species studied and on the epidermis of some of them. The results confirmed the complexity of the product secreted by the cavities, stressing the homogeneous histochemistry nature of these compounds among the species. However, the phenolic compounds results may be an indication of important variations in adaptations and ecological relations, since they show differences among the species.Objetivou-se com o presente trabalho descrever a anatomia foliar de sete espécies de Eucalyptus, com ênfase na caracterização de estruturas secretoras e da natureza química dos compostos secretados e/ou presentes no limbo foliar. A caracterização anatômica e a avaliação histoquímica para determinação da natureza e localização dos compostos secundários foram realizadas em folhas totalmente expandidas segundo metodologia usual. Houve diferenças anatômicas entre as espécies estudadas, especialmente em E. pyrocarpo. Cavidades subepidérmicas foram as únicas estruturas secretoras encontradas

  19. EFECTIVIDAD DE UN BIOFERTILIZANTE FOLIAR SOBRE EL CULTIVO DE FRIJOL COMÚN (PHASEOLUS VULGARIS, BLUEFIELDS, R.A.A.S.

    Directory of Open Access Journals (Sweden)

    Yader Mejía Bermúdez

    2012-01-01

    , biofertilizer was applied dissolved in 10 liters of water. Three measurements were made (21, 36 and 51 days after planting.The results indicate no significant differences between treatments in the height of the plants, but it does in the percentage of affectation by herbivores, as well as in the number of pods per plant and grains per pod. The T4 treatment had the lowest attack by herbivores, the highest production by the number of pods per plant, grains per pod and weight of grains of beans; while the baton registered the lowest production on all these variables. The use of the foliar biofertilizer increased the production of bean crop in all dosages.

  20. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria

    International Nuclear Information System (INIS)

    Akhavan, O.; Azimirad, R.; Safa, S.

    2011-01-01

    Highlights: → Unfunctionalized and functionalized MWCNT/ZnO thin films were synthesized by sol-gel method. → Zn-O-C carbonaceous bonds formed in the functionalized MWCNT/ZnO thin films. → The functionalized MWCNT/ZnO had stronger photoinactivation of the bacteria than the unfunctionalize type. → 10 wt% functionalized MWCNT content had the optimum antibacterial property. - Abstract: Two types of unfunctionalized and functionalized multi-wall carbon nanotubes (MWCNTs) were prepared to be applied in fabrication of MWCNT-ZnO nanocomposite thin films with various MWCNT contents. X-ray photoelectron spectroscopy indicated formation of functional groups on surface of the functionalized MWCNTs in the MWCNT-ZnO nanocomposite. Formation of the effective carbonaceous bonds between the ZnO and the MWCNTs was also investigated through photoinactivation of Escherichia coli bacteria on surface of the both unfunctionalized and functionalized MWCNT-ZnO nanocomposites. The functionalized MWCNT-ZnO nanocomposites showed significantly stronger photoinactivation of the bacteria than the unfunctionalized ones, for all of the various MWCNT contents (from 2 to 30 wt%). While the functionalized MWCNT-ZnO nanocomposites with the optimum MWCNT content of 10 wt% inactivated whole of the bacteria after 10 min UV-visible light irradiation, the unfunctionalized ones could inactivate only 63% of the bacteria under the same conditions. The significant enhancement of the photoinactivation of the bacteria onto the surface of the functionalized MWCNT-ZnO nanocomposites was assigned to charge transfer through Zn-O-C bands formed between the Zn atoms of the ZnO film and oxygen atoms of the carboxylic functional groups of the functionalized MWCNTs.

  1. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.

    Science.gov (United States)

    Andrade, S A L; Silveira, A P D; Mazzafera, P

    2010-10-15

    Studies on mycorrhizal symbiosis effects on metal accumulation and plant tolerance are not common in perennial crops under metal stress. The objective of this study was to evaluate the influence of mycorrhization on coffee seedlings under Cu and Zn stress. Copper (Cu) and zinc (Zn) uptake and some biochemical and physiological traits were studied in thirty-week old Coffea arabica seedlings, in response to the inoculation with arbuscular mycorrhizal fungi (AMF) and to increasing concentrations of Cu or Zn in soil. The experiments were conducted under greenhouse conditions in a 2×4 factorial design (inoculation or not with AMF and 0, 50, 150 and 450mgkg(-1) Cu or 0, 100, 300 and 900mgkg(-1) Zn). Non-mycorrhizal plants maintained a hampered and slow growth even in a soil with appropriate phosphorus (P) levels for this crop. As metal levels increased in soil, a greater proportion of the total absorbed metals were retained by roots. Foliar Cu concentrations increased only in non-mycorrhizal plants, reaching a maximum concentration of 30mgkg(-1) at the highest Cu in soil. Mycorrhization prevented the accumulation of Cu in leaves, and mycorrhizal plants showed higher Cu contents in stems, which indicated a differential Cu distribution in AMF-associated or non-associated plants. Zn distribution and concentrations in different plant organs followed a similar pattern independently of mycorrhization. In mycorrhizal plants, only the highest metal concentrations caused a reduction in biomass, leading to significant changes in some biochemical indicators, such as malondialdehyde, proline and amino acid contents in leaves and also in foliar free amino acid composition. Marked differences in these physiological traits were also found due to mycorrhization. In conclusion, AMF protected coffee seedlings against metal toxicity. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Caracterização de solos de duas formações de restinga e sua influência na constituição química foliar de Passiflora mucronata Lam. (Passifloraceaee Canavalia rosea (Sw. DC. (Fabaceae Soil characterization of two restinga formations and its influence on leaf chemistry in Passiflora mucronata Lam. (Passifloraceae and Canavalia rosea (Sw. DC. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Jehová Lourenço Junior

    2009-03-01

    Full Text Available As hipóteses sobre o posicionamento das formações de restinga são diversas sendo o gradiente salino e a fertilidade do solo as mais difundidas. Buscando elucidar essas questões, foram analisadas as propriedades dos solos das formações psamófila-reptante (FPR e Palmae (FP bem como a constituição química foliar de C. rosea (Sw. DC. restrita à FPR e P. mucronata Lam., na FP. O solo da FP destacou-se pela maior fertilidade. Maiores teores dos metais Fe, Zn e ISNa foram encontrados em solos da FPR. Não foi detectada a presença de Al nas duas formações. O pH dos solos é alcalino sem diferenças entre as duas formações. Os elementos químicos P, S, Cu e Zn acumulam-se em maiores concentrações em folhas de P. mucronata. C. rosea destacou-se pelos maiores teores foliares de N, Fe e B. Essa Fabaceae mostrou valores superiores do fator de concentração para o Ca, Mg, Fe, Cu e B enquanto que P. mucronata, para o P e Zn. Os resultados obtidos sugerem que as características pedológicas têm papel chave no estabelecimento de C. rosea na FPRe de P. mucronata na FP.Hypotheses as to the position of restinga formations are many, the most widespread being the salinity gradient and soil fertility. In order to elucidate these questions, soil properties of the creeping psammophyte (CPF and Palmae formations (PF as well as leaf chemistry of C. rosea (Sw. DC. restricted to the former and P. mucronata Lam. in the latter were analyzed. The PF soil was more fertile. Higher content of Fe, Zn and ISNa was found in CPF soil. The presence of Al in these two formations was not detected. Soil pH is alkaline, with no difference found between the two formations. The chemical elements P, S, Cu and Zn accumulate in greater concentrations in P. mucronata leaves. C. rosea was distinguished by a higher leaf content of N, Fe and B. This legume showed greater factor of concentration values for Ca, Mg, Fe, Cu and B whereas P. mucronata, for P and Zn. The results

  3. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  4. Effects of P-Zn interaction and lime on plant growth in the presence of high levels of extractable zinc

    Energy Technology Data Exchange (ETDEWEB)

    Koukoulakis, P

    1973-01-01

    Six glasshouse experiments were conducted in order to study (a) the effect of P and lime on dry matter yield and mineral composition of tomato, cotton, maize and sudan grass grown on a Zn polluted soil (containing 170 ppM of 2.5% acetic acid extractable Zn), (b) the effect of residual P on dry matter yield and mineral composition of beans, lettuce, and maize grown on a similar soil, and (c) the effect of various Zn treatments on the availability of indigenous and added P of a soil low in Zn (11 ppM). It was found that the yield response to applied P of maize and sudan grass was independent of lime, while cotton, tomato and beans failed almost completely to respond to the absence of lime. The crops responded differently to the excess soil Zn and the dry matter yields were related to the ability to accumulate Zn. High Zn accumulator plants failed to respond to applied P in the absence of lime, while low Zn accumulating plants responded positively. The positive and highly significant effect of P on total Zn uptake of plants, masked the depressive effect of P on Zn concentration. However, the results indicated that the P-Zn interrelationship is far more complicated than a dilution effect caused by the promotive effect of applied P. Studies of the effect of applied Zn levels on available soil P and conversely, indicated that a strong mutual fixation, probably coprecipitation takes place in the soil, which may account for a considerable part of the depressive effect of P on plant Zn, in addition to the effects like coprecipitation in roots and dilution, reported in the literature. Finally, the residual effect of P varied with the plant species, and the plant Zn concentration was found to be a determinant factor in controlling dry matter yields. 58 references, 13 figures, 24 tables.

  5. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.

    Science.gov (United States)

    Li, Liang; Reiss, Peter

    2008-09-03

    InP/ZnS core/shell nanocrystals are prepared using a single-step heating-up method relying on the difference in reactivity of the applied InP and ZnS precursors. The obtained particles exhibit size-dependent emission in the range of 480-590 nm, a fluorescence quantum yield of 50-70%, and high photostability.

  6. Control of the structural parameters in the (ZnZn16Ti single crystal growth

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2011-10-01

    Full Text Available The (Zn - single crystal was obtained by means of the Bridgman system. Several growth rates were applied during the experiment. The graphite crucible was used in order to perform the solidification process. The unidirectional solidification occurred with the presence of the moving temperature field. The thermal gradient was positive so that the constrained growth of the single crystal was ensured. The (Zn single crystal was doped with small addition of titanium and copper. The titanium formed an intermetallic compound Zn16-Ti. The copper was solved in the solid solution (Zn. The precipitates of (Zn and Zn16-Ti formed a stripes localized cyclically along the single crystal length. The intermetallic compound Zn16-Ti strengthened the (Zn single crystal. The structural transitions were observed in the stripes with the increasing solidification rate. Within the first range of the solidification rates ( the irregular L-shape rod-like intermetalliccompoundwas revealed. At the- threshold growth rate branches disappear continuously till the growth rate equal to. At the same range of growth rates the regular lamellar eutectic structure (ZnZn16-Ti appeared continuously and it existed exclusively till the second threshold growth rate equal to. Above the second threshold growth rate the regular rod-like eutectic structure was formed, only. Thegeneral theory for the stationary eutectic solidification was developed. According to this theory the eutectic structure localized within the stripes is formed under stationary state. Therefore, the criterion of the minimum entropy production defines well the stationary solidification. The entropy production was calculated for the regular rod-like eutectic structure formation and for the regular lamellar eutectic structure formation. It was postulated that the observed structure are subjected to the competition. That is why the structural transitionwere observed at therevealedthreshold growth rates.Moreover, it was

  7. Applied Enzymology.

    Science.gov (United States)

    Manoharan, Asha; Dreisbach, Joseph H.

    1988-01-01

    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  8. Synthesis and characterization of heterobinuclear (La-Zn, Pr-Zn, Nd-Zn, Sm-Zn, Eu-Zn, Gd-Zn, Tb-Zn, Dy-Zn) azine-bridged complexes

    International Nuclear Information System (INIS)

    Singh, Bachcha; Srivastav, A.K.; Singh, P.K.

    1997-01-01

    Zinc(II) complex of 2-acetylpyridine salicyl aldazine (Haps) of the type Zn(aps) 2 (H 2 O) 2 has been synthesised. The reaction of Zn(aps) 2 (H 2 O) 2 with lanthanide chlorides, LnCl 3 (where Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) yields azine-bridged heterobinuclear complexes of the formulae LnCl 3 Zn(aps) 2 (H 2 O) 2 . These complexes have been characterized by elemental analyses, molecular weight, conductance (solid and solution) and magnetic susceptibility measurements, mass, IR and electronic spectral data. X-ray powder diffraction data indicate the tetragonal unit lattice for Zn(aps) 2 (H 2 O) 2 and PrCl 3 Zn(aps) 2 (H 2 O) 2 . (author)

  9. [Characteristics of foliar delta13C values of common shrub species in various microhabitats with different karst rocky desertification degrees].

    Science.gov (United States)

    Du, Xue-Lian; Wang, Shi-Jie; Rong, Li

    2011-12-01

    By measuring the foliar delta13C values of 5 common shrub species (Rhamnus davurica, Pyracantha fortuneana, Rubus biflorus, Zanthoxylum planispinum, and Viburnum utile) growing in various microhabitats in Wangjiazhai catchment, a typical karst desertification area in Guizhou Province, this paper studied the spatial heterogeneity of plant water use at niche scale and the response of the heterogeneity to different karst rocky desertification degrees. The foliar delta13C values of the shrub species in the microhabitats followed the order of stony surface > stony gully > stony crevice > soil surface, and those of the majority of the species were more negative in the microhabitat soil surface than in the others. The foliar delta13C values decreased in the sequence of V. utile > R. biflorus > Z. planispinum > P. fortuneana > R. davurica, and the mean foliar delta13C value of the shrubs and that of typical species in various microhabitats all increased with increasing karst rocky desertification degree, differed significantly among different microhabitats. It was suggested that with the increasing degree of karst rocky desertification, the structure and functions of karst habitats were impaired, microhabitats differentiated gradually, and drought degree increased.

  10. Influence of foliar applications of humic acids on yield and fruit quality of table grape cv. Italia

    Directory of Open Access Journals (Sweden)

    Giuseppe Ferrara

    2008-06-01

    Significance and impact of study: This study gives new information about the positive effects of foliar application of humic acids, active components of soil and compost organic matter, on yield and fruit quality of table grape. In organic viticulture humic acids may find a valid and appropriate application for a technical and economical use.

  11. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China.

    Directory of Open Access Journals (Sweden)

    Yonggang Chi

    Full Text Available BACKGROUND: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf, An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf, responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag to Tleaf, and foliar nitrogen (N concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year and 2011 (a wet year. Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. CONCLUSIONS/SIGNIFICANCE: Warming decreased the temperature sensitivity (Q10 of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.

  12. Seasonal relationships between foliar moisture content, heat content and biochemistry of lodge pole pine and big sagebrush foliage

    Science.gov (United States)

    Yi Qi; Matt Jolly; Philip E. Dennison; Rachael C. Kropp

    2016-01-01

    Wildland fires propagate by liberating energy contained within living and senescent plant biomass. The maximum amount of energy that can be generated by burning a given plant part can be quantified and is generally referred to as its heat content (HC). Many studies have examined heat content of wildland fuels but studies examining the seasonal variation in foliar HC...

  13. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  14. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  15. Preliminary Essay on the Effect of Foliar Treatment with the Fungicide Triadimenol on Barley Culture Infected by Scald

    Directory of Open Access Journals (Sweden)

    Nasraoui, B.

    1999-01-01

    Full Text Available This study deals with the foliar treatment by the fungicide triadimenol against barley scald. Results have shown that two or three triadimenol treatments have practically stopped the infection evolution. The disease have slightly extended with only one treatment. Moreover, other assessment showed that one, two or three triadimenol treatments were significantly associated to the same increase in the yield.

  16. Effect of Foliar Application of Chitosan on Growth and Biochemical Characteristics of Safflower (Carthamus tinctorius L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    batool mahdavi

    2014-09-01

    Full Text Available In order to study the effects of water deficit stress and foliar application of chitosan in safflower (Carthamus tinctorius L., a pot experiment was conducted in 2009. Experimental design was a randomized complete block in factorial arrangement with three replications. Experimental factors were water deficit levels (unstressed (control and 70% available water depletion from soil (water deficit stress, chitosan concentrations (0, 0.05, 0.1%, all dissolved in 1% acetic acid along with an additional treatment of distilled water and foliar application times (before and during stem elongation. The results showed that water deficit stress reduced plant height, leaf area, shoot and root dry weight, root height and volume. Whereas, foliar application of chitosan increased mentioned traits. In addition, water deficit stress decreased chlorophyll fluorescence, chlorophyll concentration and relative water content. Carotenoid, proline and malondialdehyde (MDA content were increased in response to stress. Foliar application of chitosan increased chlorophyll fluorescence, relative water content (68.77% and chlorophyll b in the water deficit stressed plants, whereas decreased MDA content. The results of the present study indicate that application of chitosan can reduce the harmful effects of water deficit and improve plant growth.

  17. Combined effects of drought stress and npk foliar spray on growth, physiological processes and nutrient uptake in wheat

    International Nuclear Information System (INIS)

    Shabir, R.N.; Waraocj, E.A.

    2015-01-01

    The present study investigated the effects of supplemental foliar nitrogen (N), phosphorous (P) and potassium (K) spray, alone or in various combinations, on physiological processes and nutrients uptake in wheat under water deficit conditions. The study comprised of two phases; during the first phase, ten local wheat (Triticum aestivum L.) genotypes were evaluated for their response to PEG-6000 induced osmotic stress. One drought tolerant (Bhakkar-2002) and sensitive (Shafaq-2006) genotype selected from screening experiments were used in the second phase to determine the individual and combined effects of N, P and K foliar spray on physiological mechanisms in wheat under drought stress. The results revealed that limited water supply significantly reduced germination, growth and uptake of N, P and K. Supplemental foliar fertilisation of these macronutrients alone or in different combinations significantly improved the water relations, gas exchange characteristics and nutrient contents in both the genotypes. Bhakkar-2002 maintained higher turgor, net CO/sub 2/ assimilation rate (Pn), transpiration rate (E), stomatal conductance (gs) and accumulated more N, P and K in shoot than Shafaq-2006. The foliar spray of NPK in combination was effective in improving wheat growth under both well-watered and water-deficit conditions. (author)

  18. Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brook Watershed in Maine

    Science.gov (United States)

    Jose Alexander Elvir; Lindsey Rustad; G. Bruce Wiersma; Ivan Fernandez; Alan S. White; Gregory J. White

    2005-01-01

    The foliar chemistry of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red spruce (Picea rubens Sarg.) was studied from 1993 to 2003 at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study, with one watershed treated bimonthly since...

  19. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  20. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Science.gov (United States)

    Jianwei Zhang; Marcus Schaub; Jonathan A. Ferdinand; John M. Skelly; Kim C. Steiner; James E. Savage

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top...

  1. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Science.gov (United States)

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  2. Preparation and characterizations of electroluminescent p-ZnO : N/n-ZnO : Ga/ITO thin films by spray pyrolysis method

    Directory of Open Access Journals (Sweden)

    C. Panatarani

    2016-02-01

    Full Text Available ZnO thin films were fabricated by spray pyrolysis (SP method with p-ZnO : N/n-ZnO:Ga/ITO structure. The X-ray results show that the deposited films have hexagonal wurtzite structure. The EDS results observed that the composition of Ga in ZnO:Ga and N in ZnO:N was 3.73% and 27.73% respectively. The photoluminescence (PL with excitation wave length of 260 nm shows that ZnO:Ga and ZnO:N films emitted UV emission at ∼393 and ∼388 nm, respectively and the films resistivity was 7.12 and 12.80 Ohm-cm respectively. The electroluminescence of the p-ZnO : N/n-ZnO:Ga/ITO structure was obtained by applying forward bias of 5 volt with 30 mA current, resulting in a 3.35 volt threshold bias with the peak electroluminescence in UV-blue range.

  3. Efficacy of zinc with nitrogen as foliar feeding on growth, yield and quality of tomato grown under poly tunnel

    International Nuclear Information System (INIS)

    Awan, A.A.; Abbas, S.J.; Ullah, E.

    2012-01-01

    Zinc (Zn) deficiency is considered one of nutritional constraints for crop yield worldwide. In recent past, the deficiency of Zn has heavily declined the quality of vegetables, especially tomato. Thus, a study was planned to enhance the growth, yield and quality of tomato plant using Zn and N alone and in combination. ZnSO/sub 4/ was used as a source of Zn (10% and 12%) and urea as source of N (1% and 2%). The results showed that application of either Zn or N alone at both concentrations enhanced growth, yield and quality of tomato plants under poly tunnel. However, the combined use of both Zn and N further enhanced the growth, yield and fruit quality with application of Zn (12%) plus N (2%). Hence the combined use of Zn and N can be a viable strategy for improving yield and quality of tomato. (author)

  4. Hot LO-phonon limited electron transport in ZnO/MgZnO channels

    Science.gov (United States)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.

    2018-05-01

    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  5. Response of winter rape (Brassica napus L. ssp. oleifera Metzg., Sinsk to foliar fertilization and different seeding rates

    Directory of Open Access Journals (Sweden)

    Cezary A. Kwiatkowski

    2012-12-01

    Full Text Available A field experiment in growing winter rape was carried out during the period 2009-2011 in a family farm (owned by Mr. M. Bednarczyk located in Jaroszewice (Lublin region, on podzolic soil. Plant biometric features as well as yield and seed qualitative parameters (oil, protein and glucosinolate content were evaluated depending on the following rates of soil NPK fertilizers and on foliar fertilization (autumn spraying with the fertilizer solution: 100% and 75% of NPK as well as urea + nickel chelate + MgSO4H2O; 100% and 75% of NPK as well as urea + Plonvit R + MgSO4H2O. Plots without foliar fertilization (only 100% of NPK were the control treatment. The other experimental factor was the seeding rate (2.5 kg×ha-1 – 30 cm row spacing; 4 kg×ha-1 – 18 cm row spacing. Foliar spraying was done once in the autumn in the second decade of October. Tillage as well as mechanical and chemical control of agricultural pests in the plantation were typical for this plant species and consistent with the recommendations for winter rape protection. A hypothesis was made that the application of foliar fertilizers would have a beneficial effect on winter rape productivity, at the same time maintaining the high quality of raw material. It was also assumed that a reduction in the seeding rate of winter oilseed rape would result in reduced plant lodging and an increased number of siliques per plant; as a consequence, seed and oil productivity would be at a level not lower than that obtained at the higher seeding rate. The present study has proved that foliar fertilization of winter oilseed rape in the autumn period contributes to improved plant winter hardiness and increased productivity. The application of foliar fertilizers also enables the rates of basic mineral NPK fertilizers to be reduced by 25% without detriment to seed yield. Foliar fertilizers have been found to have a weaker effect on changing the chemical composition of rapeseed. The study has shown that

  6. Emission and structure varieties in ZnO:Ag nanorods obtained by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Lozada, E Velázquez; Torchynska, T V; Espinola, J L Casas

    2014-01-01

    Scanning electronic microscopy (SEM), X ray diffraction (XRD) and photoluminescence (PL) have been applied to the study of the structural and optical properties of ZnO nanocrystals prepared by the ultrasonic spray pyrolysis (USP) at different temperatures. The variation of temperatures and times at the growth of ZnO films permits modifying the ZnO phase from the amorphous to crystalline, to change the size of ZnO nanocrystals (NCs), as well as to vary their photoluminescence spectra. The study has revealed three types of PL bands in ZnO NCs: defect related emission, the near-band-edge (NBE) PL, related to the LO phonon replica of free exciton (FE) recombination, and FE second-order diffraction peaks. The PL bands related to the LO phonon replica of FE in PL spectra measured at room temperature testify on the high quality of ZnO films prepared by the USP technology.

  7. Glyphosate e adubação foliar com manganês na cultura da soja transgênica Glyphosate and foliar fertilization using manganese in transgenic soybean crop

    Directory of Open Access Journals (Sweden)

    N.M. Correia

    2009-01-01

    evaluate the interaction of transgenic soybean sprayed with glyphosate and manganese foliar fertilization. The experiment was carried out under field conditions in the agricultural year 2007/2008 on the UNESP Campus Teaching, Research and Production Farm in Jaboticabal, São Paulo, Brazil. An experiment was arranged in a randomized block design, in a factorial scheme (4 x 4, with four replications. Four weed controls [glyphosate (c.p. Roundup Ready at 0.72 and 1.20 kg ha-1 of equivalent acid; fluazifop-p-butyl plus fomesafen (c.p. Fusiflex at 0.25 plus 0.25 kg ha-1 and under mechanical control, without herbicide] and four manganese rates (0, 42, 84 and 126 g ha-1 were applied on the soybean leaf. The treatments did not significantly affect grain yield, manganese concentration in the soil, height and dry matter of the soybean plants. Only the mixture fluazifop-p-butyl plus fomesafen caused visible injuries in the plants. However, the symptoms were restricted to the leaves that intercepted spraying. The herbicide treatments did not differ from the control for 100 grain mass, although the plants treated with glyphosate 0.72 kg ha-1 presented less grain mass. Manganese application did not influence element concentration in the plant treated with glyphosate and under mechanical control. Therefore, glyphosate did not impair manganese absorption or metabolism by the plant. Growth and development of the herbicide-treated plants were statistically similar to those of the plants not treated with herbicides.

  8. Morfologia e distribuição de galhas foliares de Anacardium occidentale L. (Anacardiaceae

    Directory of Open Access Journals (Sweden)

    Claudia Scareli-Santos

    2015-12-01

    Full Text Available Galhas são estruturas que exibem associações específicas entre o indutor e a planta hospedeira, onde são evidenciadas modificações morfológicas, anatômicas e químicas dos tecidos vegetais. Objetivou-se descrever a morfologia e a distribuição de galhas foliares de Anacardium occidentale L. (Anacardiaceae. Foram coletadas 294 folhas, da porção apical dos ramos, de indivíduos localizados na Universidade Federal do Tocantins - Campus Araguaína, TO. Foram realizadas análises morfológicas utilizando microscópio estereoscópico, paquímetro e bibliografia específica. Determinou-se o número de galhas no limbo foliar seguida da análise de regressão linear entre o número de galhas por limbo e o seu comprimento. Foram observadas galhas do tipo cônico atravessando a lâmina foliar, glabras, de coloração verde quando jovens e vermelho alaranjadas quando maduras, com distribuição isolada/agrupada e aderência total; internamente apresentou um lóculo e uma larva do indutor (Cecidomyiidae. A distribuição das galhas no limbo apresentou diferenças significativas (p<0,001, em ordem decrescente foi observado maior número de galhas entre as nervuras (57,1%, sobre a nervura secundária (35,7%, na margem (6,3% e na nervura central (1,2%; a análise de regressão linear apresentou fracamente positiva (r2= 0,03; coeficiente de Pearson= 0,2025, o que sugere que a oviposição está associada, em parte, com o tamanho do limbo e que outras variáveis podem ser determinantes. Estes são os primeiros registros de galhas em A. occidentale no estado do Tocantins.

  9. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide

    Directory of Open Access Journals (Sweden)

    Yanbo eHu

    2014-07-01

    Full Text Available While plant roots are specialized organs for the uptake and transport of water and nutrients, the absorption of gaseous or liquid mineral elements by aerial plant parts has been recognized since more than one century. Nitrogen (N is an essential macronutrient which generally absorbed either as nitrate (NO3- or ammonium (NH4+ by plant roots. Gaseous nitrogen pollutants like N dioxide (NO2 can also be absorbed by plant surfaces and assimilated via the NO3– assimilation pathway. The subsequent NO3– flux may induce or repress the expression of various NO3–-responsive genes encoding for instance, the transmembrane transporters, NO3–/NO2– (nitrite reductase, or assimilatory enzymes involved in N metabolism. Based on the existing information, the aim of this review was to theoretically analyze the potential link between foliar NO2 absorption and N transport and metabolism. For such purpose, an overview of the state of knowledge on the NO3– transporter genes identified in leaves or shoots of various species and their roles for NO3– transport across the tonoplast and plasma membrane, in addition to the process of phloem loading is briefly provided. It is assumed that a NO2-induced ac-cumulation of NO3–/NO2– may alter the expression of such genes, hence linking transmembrane NO3– transporters and foliar uptake of NO2. It is likely that NRT1/NRT2 gene expression and spe-cies-dependent apoplastic buffer capacity may be also related to the species-specific foliar NO2 uptake process. It is concluded that further work focusing on the expression of NRT1 (NRT1.1, NRT1.7, NRT1.11 and NRT1.12, NRT2 (NRT2.1, NRT2.4 and NRT2.5 and chloride channel family genes (CLCa and CLCd may help us elucidate the physiological and metabolic response of plants fumigated with NO2.

  10. Zn-K edge EXAFS study of human nails

    Energy Technology Data Exchange (ETDEWEB)

    Katsikini, M; Mavromati, E; Pinakidou, F; Paloura, E C [School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Gioulekas, D, E-mail: katsiki@auth.g [Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2009-11-15

    Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Zn - K edge is applied for the study of the bonding geometry of Zn in human nails. The studied nail clippings belong to healthy donors and donors who suffer from lung diseases. Fitting of the first nearest neighboring shell of Zn reveals that it is bonded with N and S, at distances that take values in the ranges 2.00-2.04 A and 2.23-2.28A, respectively. Zn is four - fold coordinated and the ratio of the number of sulfur and nitrogen atoms (N{sub S}/N{sub N}) in the first coordination shell ranges from 0.52 to 1. The sample that belongs to the donor who suffers from lung fibrosis, a condition that is related to keratinization of the lung tissue, is characterized by the highest number of N{sub S}/N{sub N}. Simulation, using the FEFF8 code, of the Zn - K edge EXAFS spectra with models of tetrahedrally coordinated Zn with 1 (or 2) cysteine and 3 (or 2) histidines is satisfactory.

  11. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  12. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  13. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from central British Columbia.

    Science.gov (United States)

    Wallis, Christopher M; Huber, Dezene P W; Lewis, Kathy J

    2011-06-01

    Lodgepole pines, Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson, are encountering increased abiotic stress and pest activity due to recent increases in temperature and changes in precipitation throughout their range. This tree species counters these threats by producing secondary metabolites, including phenolics and terpenoids. We examined foliar levels of lignin, soluble phenolics, monoterpenoids, sesquiterpenoids, and diterpenoids in 12 stands in British Columbia, Canada. We used these data to assess associations among foliar secondary metabolite levels and ecosystem, geographic, and climatic variables. Regressions were also performed to observe which combinations of variables best explained secondary metabolite variance. Stands of P. c. latifolia in the Coastal Western Hemlock and Interior Cedar/Hemlock biogeoclimatic zones had consistently greater foliar levels of almost all measured secondary metabolites than did other stands. Lignin was present in greater amounts in Boreal White/Black Spruce ecosystem (i.e., northern) stands than in southern stands, suggesting a role for this metabolite in pine survival in the boreal forest. Attempts to develop regression models with geographic and climatic variables to explain foliar secondary metabolite levels resulted in multiple models with similar predictive capability. Since foliar secondary metabolite levels appeared to vary most between stand ecosystem types and not as much due to geographic and climatic variables, metabolic profiles appeared best matched to the stress levels within local environments. It is unknown if differences in secondary metabolite levels are the result of genetic adaptation or phenotypic plasticity, but results from this and other studies suggest that both are important. These results are interpreted in light of ongoing efforts to assist in the migration of certain populations of P. c. latifolia northward in an effort to counter predicted effects of climate change.

  14. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  15. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    International Nuclear Information System (INIS)

    Samadi, Morasae; Zirak, Mohammad; Naseri, Amene; Khorashadizade, Elham; Moshfegh, Alireza Z.

    2016-01-01

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  16. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Morasae; Zirak, Mohammad [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Naseri, Amene [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of); Khorashadizade, Elham [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-04-30

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  17. Estimación de la biomasa foliar de Prosopis flexuosa mediante relaciones alométricas Estimation of leaf biomass in Prosopis flexuosa by means of allometric relationships

    Directory of Open Access Journals (Sweden)

    M. Ledesma

    2010-12-01

    Full Text Available La estimación alométrica de la biomasa foliar arbórea es necesaria para determinar la producción primaria y para analizar algunas de las interacciones ecológicas entre los árboles y los demás componentes de la vegetación. El objetivo del trabajo fue ajustar y seleccionar modelos para estimar la biomasa foliar de Prosopis flexuosa a partir de variables dendrométricas. Se apearon seis árboles, se midió su diámetro y se calculó el área de albura de muestras transversales de leño, en cuatro niveles: en los órdenes de ramificación dentro de la copa viva (ramas secundarias, terciarias y cuaternarias agrupadas, en el extremo distal de las ramas primarias y en los extremos distal y basal del fuste. Se recolectaron las hojas correspondientes a cada nivel y se obtuvo el peso seco. El área de albura fue la mejor variable predictora de biomasa foliar, aunque el diámetro tuvo buen ajuste en ramas dentro de la copa viva y en ramas primarias. Los modelos calculados con variables de fuste tuvieron menor ajuste. Se concluye que para la estimación no destructiva de la biomasa foliar de plantas adultas de Prosopis flexuosa es recomendable utilizar el modelo basado en el diámetro distal de las ramas primarias.The estimation of leaf biomass, usually performed by alometric relations, is important for the interpretation of primary production and for the assessment of ecological interactions between trees and the rest of the components in a wood vegetation. The goal for the present work was to adjust and to select allometric models for the estimation of leaf biomass Prosopis flexuosa based on dendrometric variables. Six trees were surveyed. The diameter and sapwood area of transversal samples of wood were determined at four different levels: in the orders of ramification within living crown (secondary, tertiary and quaternary grouped branches, at the distal portions of primary branches and in the apical and basal portions of bole. The leaves were

  18. Novel red-emission of ternary ZnCdSe semiconductor nanocrystals

    Science.gov (United States)

    Chung, Shu-Ru; Wang, Kuan-Wen; Chen, Hong-Shuo; Chen, Hong-Hong

    2015-02-01

    The effect of chain lengths of fatty acids on the physical properties of CdSe and ZnCdSe semiconductor nanocrystals (NCs) synthesized by the colloidal chemistry procedure is investigated. The fatty acids, lauric acid (LA), and stearic acid (SA), with different lengths of carbon chains, are used to prepare CdSe and ZnCdSe NCs when hexyldecylamine (HDA) is applied as the sole surfactant. For CdSe-SA and ZnCdSe-SA, they have the same emission wavelength at 592 nm and the same particle size of 3.3 nm; however, their quantum yield (QY) is 75 and 16 %, respectively. In contrast, the emission wavelength of CdSe-LA and ZnCdSe-LA NCs is 609 and 615 nm, the particle size is about 3.5 and 4 nm under the same reaction time, and the QY of them are 33 and 59 %, respectively. The X-ray diffraction pattern shows that ZnCdSe NCs all have the wurtzite structure, and their main peaks are located between those of pure CdSe and ZnSe materials. The main phase of ZnCdSe-SA and ZnCdSe-LA is ZnSe and CdSe, respectively, implying that alloyed ZnCdSe NC can be prepared and ZnSe and CdSe phase can be promoted by SA and LA, respectively. Moreover, the QY of red-emission ZnCdSe-LA is higher than 50 %. These results suggest that the growth rate of CdSe as well as ZnCdSe NC can be enhanced by using LA as complex reagent and HDA as sole surfactant. It is expected that the reported effective synthetic strategy can be developed as a very practical, easy and not time-consuming approach to prepare red emissive NCs with high QY and high reproducibility.

  19. Glands on the foliar surfaces of tribe Cercideae (Caesapiniodeae, Leguminosae: distribution and taxonomic significance

    Directory of Open Access Journals (Sweden)

    JOAQUIM M. DUARTE-ALMEIDA

    2015-06-01

    Full Text Available Large elongated glands occur on Cercideae leaf surfaces. Leaves of Bauhinia (55 taxa, 53 species, Cercis (1 species, Phanera (1 species, Piliostigma (2 species, Schnella (19 species and Tylosema (1 species were observed to determine location and relative number of glands. They were only observed on the abaxial leaf surface of 42 Bauhinia taxa. The glands were analyzed by light stereomicroscope and scanning electron microscopy. They are large (up to 270 µm long and 115 µm wide and multicellular, containing lipophilic substances, probably volatile oils. Presence or absence and density of the glands in species of Bauhinia may be useful to determine species delimitation or distinction among infraspecific taxa. Higher density of glands is more common in species from "cerrado" (a savanna ecosystem and "caatinga" (a semiarid ecosystem from northeast Brazil areas. Bauhinia species devoid of foliar glands are frequently from humid forests.

  20. FOLIAR ANATOMY OF ENDEMICS SPECIES OF Cattleya (ORCHIDACEAE ENDEMIC FROM GUIANA SHIELD

    Directory of Open Access Journals (Sweden)

    Graciene Tomaz Carneiro

    2017-03-01

    Full Text Available The main goal of this study was characterize the leaf's anatomical aspects of Cattleya jenmanii Rolfe and e C. lawrenceana Rchb. f., describing its anatomical structures in order to increase the knowledge of this endemic species from the region of the Guiana Shield. Besides, it also intended to identify foliar characters to assist in the anatomical comparison of these species. For anatomical study, the material was fixed in FAA and to make the slides we used the usual cut freehand technique and stained with double staining from Safranin with Blue Astra (Safrablau. C. jenmanii and C. lawrenceana has fleshy leaves covered with a thick cuticle. The mesophyll presented dorsiventral with collateral vascular bundles. A large number of bundles of smaller caliber fibers are distributed in the mesophyll poles. Only the presence of a subepidermal layer of fibers differed C. lawrenceana from C. jenmanii. Keyword: Roraima; Guiana Shield; Cattleya; Amazon Basin.

  1. Effect of foliar application of selenium on its uptake and speciation in carrot

    DEFF Research Database (Denmark)

    Kápolna, Emese; Hillestrøm, Peter René; Laursen, K.H.

    2009-01-01

    Carrot (Daucus carota) shoots were enriched by selenium using foliar application. Solutions of sodium selenite or sodium selenate at 10 and 100 mu g Se ml(-1), were sprayed on the carrot leaves and the selenium content and uptake rate of selenium were estimated by ICP-MS analysis. Anion and cation......(-1) (dry mass) in the carrot root whereas the selenium concentration in the controls was below the limit of detection at 0.045 mu g Se g(-1) (dry mass). Selenate-enriched carrot leaves accumulated as much as 80 mu g Se g(-1) (dry mass), while the selenite-enriched leaves contained approximately 50 mu...... g Se g(-1) (dry mass). The speciation analyses showed that inorganic selenium was present in both roots and leaves. The predominant metabolised organic forms of selenium in the roots were selenomethionine and gamma-glutamyl-selenomethyl-selenocysteine, regardless of which of the inorganic species...

  2. Foliar flavonoids from Tanacetum vulgare var. boreale and their geographical variation.

    Science.gov (United States)

    Uehara, Ayumi; Akiyama, Shinobu; Iwashina, Tsukasa

    2015-03-01

    Foliar flavonoids of Tanacetum vulgare var. boreale were isolated. Eight flavonoid glycosides, 7-O-glucosides of apigenin, luteolin, scutellarein and 6- hydroxyluteolin, and 7-O-glucuronides of apigenin, luteolin, chrysoeriol and eriodictyol were identified. Moreover, eight flavonoid aglycones, apigenin, luteolin, hispidulin, nepetin, eupatilin, jaceosidin, pectolinarigenin and axillarin were also isolated and identified. The flavonoid composition of two varieties of T. vulgare, i.e. var. boreale and var. vulgare, were compared. All samples of var. boreale and one sample of var. vulgare had the same flavonoid pattern, and could be distinguished from almost all the samples of var. vulgare. Thus, the occurrence of chemotypes, which are characterized by either the presence or absence of scutellarein 7-O-glucoside, eriodictyol 7-O-glucuronide and pectolinarigenin was shown in T. vulgare sensu lato.

  3. Fungos associados ao processo de decomposição foliar: 2 anos de estudo

    Directory of Open Access Journals (Sweden)

    Anelise Kappes Marques

    2015-12-01

    Full Text Available O processo de decomposição da matéria orgânica em córregos de baixa ordem, realizado em grande parte pelos fungos, é importante para o fornecimento de energia a diversos níveis tróficos neste ecossistema. O presente trabalho avaliou a variação temporal de bolores e leveduras associados ao processo de decomposição foliar em um córrego de baixa ordem no cerrado tocantinense. Detrito vegetal misto foi coletado do aporte vertical da vegetação ripária e colocado em sacos de malha grossa e submersos por 30 dias no córrego Buritizal. O isolamento e contagem dos fungos filamentosos e leveduras foi realizado a partir do macerado de discos foliares em caldo peptonado e semeado em placas de petri contendo meio BDA e YMA incubados por 30 dias. As contagens de leveduras variaram de 1,42 logUFC.gMOF em junho de 2011 a 5,90 logUFC.gMOF em abril de 2012. Os fungos filamentosos variaram de 1,98 logUFC.gMOF em julho de 2011 a 6,27 logUFC.gMOF em março de 2013. As maiores contagens de fungos filamentosos e leveduras ocorreram em ambos períodos chuvosos porém somente os filamentosos apresentam diferença estatisticamente significativa e podem estar associadas as enxurradas, quando há o escoamento da serrapilheira e solo das margens com consequente maior entrada de geofungos e demais sapróbios associados ao aporte horizontal.

  4. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  5. Soil and leaf fertilization of lettuce crop with cow urine Fertilização com urina de vaca em alface via solo e foliar

    Directory of Open Access Journals (Sweden)

    Nelson Licínio C de Oliveira

    2009-12-01

    Full Text Available The use of cow urine can be considered an agricultural practice of low cost for farmers. Nevertheless, its efficiency on crop needs research information. The present research aimed to evaluate the effect of cow urine on the growth and yield of 'Regina 2000' lettuce, in an experiment carried out from January 13, 2006 to March 22, 2006. The experiment was set up with 12 treatments, in a split-plot design and four completely randomized blocks. The soil and leaf applications were installed in the plot. In the split-plot, cow urine was applied at different concentrations (0.00; 0.25; 0.50; 0.75; 1.00 and 1.25 %. The plot presented four rows with 1.75 m each, in 0.25 x 0.25 m spacing. The six central plants of the two central rows formed the sampled split-plot. At harvest, the following variables were evaluated: fresh (FLM and dry (DLM leaf mass, fresh (FSM and dry (DSM stem mass, stem length (SL, fresh (FRM and dry (DRM root mass, fresh (FHM and dry (DHM head mass and commercial yield (CY. The increase in cow urine concentrations increased the performance of all lettuce characteristics, except DRM, which presented reduction, and DSM and FRM, which were not affected. The highest yield was obtained with the concentration of 1.25% (17.00 t ha-1 applied to leaves and with 1.01% (14.92 t ha-1, applied to soil, corresponding, respectively to increases of 28.1% and 47.3%, in comparison to the control. Application to leaves, in comparison to application to soil, resulted in greater FLM (0.50 and 1.25%, SL (0.50; 0.75 and 1.25%, FSM and FRM (0.5%, FHM and CY (0.50 and 1.25%, but lower DSM and FRM (1.25% and DRM (1.0 and 1.25%. The application of cow urine solution at 1.25% to leaves or 1.0% to soil is recommended for lettuce crops.A utilização da urina de vaca pode ser considerada uma prática de custo baixo para os produtores rurais. Todavia, a sua eficiência sobre as culturas carece de informações da pesquisa. Assim, objetivou-se avaliar o efeito da

  6. Caracterização de isolados de Rhizoctonia associados à queima foliar em Roraima = Characterization of Rhizoctonia isolates associated with foliar blight in Roraima.

    Directory of Open Access Journals (Sweden)

    Dayane Rodrigues Youssef

    2012-08-01

    Full Text Available O objetivo desse trabalho foi caracterizar isolados do fungo Rhizoctonia associados à queima foliar, obtidos de hospedeiros de importância econômica no estado de Roraima. Os isolados foram obtidos de plantas de feijão-caupi (Vigna unguiculata, soja (Glycine max, seringueira (Hevea brasiliensis, melancia (Citrullus lanatus, alface (Lactuca sativa e feijão-guandu (Cajanus cajan. Os parâmetros utilizados foram números de núcleos, grupo de anastomose e as características culturais da colônia, taxa de crescimento micelial e a formação de escleródios nos meios de cultura: batata dextrose agar (BDA, BDA+asparagina, BDA+extrato de levedura, Czapek Agar, maltose-peptona-agar, soil extract agar, sacarose-yeast-asparagina e V-8. Todos os 10 isolados estudados foram caracterizados como multinucleados e pertencentes à espécie Rhizoctonia solani. Três isolados de feijão-caupi, um de soja e o isolado de melancia foram identificados como AGI-1A e um isolado de feijãocaupi, um de soja e o isolado de feijão-guandu como AGI-1B. O isolado de seringueira não foi identificado como nenhum dos padrões de anastomose utilizado. Para a maioria dos isolados as maiores taxas de crescimento micelialforam obtidas no meio de cultura Soil Extract Agar. Dois tipos de escleródios, característicos do grupo AGI, foram observados: formação de 2-20 tufos placa-1 coloração variável, 1-2 mm e formação de 38-611 microescleródios placa-1, de coloração marrom, medindo 100 μm. A produção e o tipo de escleródio variaram com o isolado e o meio de cultura utilizado.The aim of this work was to characterize Rhizoctonia isolates associated with foliar blight symptom from hosts with economic importance at Roraima state. The isolates were recovered from cowpea (Vigna unguiculata, soybean (Glycine max, rubber tree (Hevea brasiliensis, watermelon (Citrullus lanatus, lettuce (Lactuca sativa and pigeonpea (Cajanus cajan. The evaluated characteristics were nuclear

  7. ZnMgO-ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Bakin, A.; El-Shaer, A.; Mofor, A.C.; Al-Suleiman, M.; Schlenker, E.; Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany)

    2007-07-01

    ZnO thin films, ZnMgO/ZnO heterostructures and ZnO nanostructures were fabricated using molecular beam epitaxy (MBE), vapour phase transport (VPT) and an aqueous chemical growth approach (ACG). The possibility to employ several fabrication techniques is of special importance for the realization of unique device structures. MBE was implemented for ZnO-based layer and heterostructure growth. Pronounced RHEED oscillations were used for growth control and optimisation, resulting in high quality ZnO and Zn{sub 1-x}Mg{sub x}O epilayers and heterostructures, as well as ZnMgO/ZnO quantum wells on sapphire and SiC substrates. A novel advanced VPT approach is developed and sapphire, SiC, ZnO epitaxial layers, and even plastic and glass were implemented as substrates for ZnO growth. The VPT fabrication of ZnO nanopillars, leading to well aligned, c-axis oriented nanopillars with excellent quality and purity is demonstrated. Successful steps were made towards device fabrication on ZnO basis. The nanopillar fabrication technique is combined with MBE technology: MBE-grown ZnMgO/ZnO quantum well structures were grown on ZnO nanopillars presenting significant progress towards nano-LEDs realization. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. EVALUACIÓN DE DOS MÉTODOS DE DIGESTIÓN ÁCIDA EN EL ANÁLISIS DE TEJIDO FOLIAR DE CAÑA (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Betty Mendoza

    2015-02-01

    Full Text Available El desempeño de los métodos de digestión, vía seca (DVS y ácida asistida por microondas (DAAM fue evaluado en el análisis de muestras foliares de caña de azúcar (Saccharum officinarum L.. También se evaluó el efecto de las técnicas de detección comúnmente utilizadas en el laboratorio [P: espectrometría de absorción molecular visible (UV-VIS; K: espectrometría de emisión atómica (AES; Ca, Mg, Cu, Zn: espectrofotometría de absorción atómica (FAAS] respecto a la técnica de fluorescencia de rayos X de reflexión total (TXRF sobre los resultados obtenidos a partir de los dos métodos de digestión. La exactitud y precisión de los métodos de digestión se determinó con dos muestras certificadas, Tejido vegetal N°6 y N°11 (Comisión de Normalización y Acreditación - Sociedad Chilena de la Ciencia del Suelo. La determinación de P vía TXRF reportó resultados mayores respecto a UV-VIS en las muestras foliares de caña de azúcar. Los métodos de digestión mostraron resultados exactos y precisos en Ca cuando se utiliza FAAS o TXRF. En Zn y Cu se presentan desviaciones y varianzas asociadas a las concentraciones bajas en las muestras y su relación con el blanco de reactivos. En general, la precisión y exactitud están relacionadas principalmente con el rango de concentración de cada elemento en las muestras y el límite de cuantificación. No se encontro diferencias apreciables en cuanto al desempeño analítico de ambos métodos de digestión. La detección por TXRF presenta menor eficiencia analítica en cuanto a exactitud y precisión en algunos elementos, pero menores costos en tiempo de análisis.

  9. Adubação foliar com macro e micronutrientes no crescimento de mudas micropropagadas do abacaxizeiro cv. Gold [Ananas comosus (L. Merrill] em diferentes recipientes Foliar fertilization with macro and micronutrients in the growth of plantlets micropropagated of pineapple cv. Gold [Ananas comosus (L. Merrill] in different containers

    Directory of Open Access Journals (Sweden)

    Izaias dos Santos Bregonci

    2008-06-01

    Full Text Available Objetivou-se com este trabalho avaliar o efeito da adubação foliar com macro e micronutrientes no crescimento das mudas micropropagadas do abacaxizeiro cv. Gold [Ananas comosus (L. Merrill], em diferentes recipientes. O experimento foi em esquema fatorial 8x3, adubação foliar em 8 níveis e recipientes em 3 níveis, através de um delineamento inteiramente casualizado com 5 repetições. As mudas foram padronizadas com altura média de 7,12 cm. As adubações foliares foram feitas com uréia, cloreto de potássio, ácido bórico, um formulado comercial com macro e micronutrientes e testemunha (pulverização com água e os recipientes: bandeja de isopor com 200 células; tubete pequeno de 115 cm³; e tubete grande com 300 cm³. O substrato utilizado foi o plantmax hortaliças®. Avaliaram-se as características área foliar, altura de planta e massa seca da parte aérea e da raiz, aos 140 dias do transplantio. Os adubos foliares proporcionaram maior crescimento em área foliar, altura e massa seca da parte aérea às mudas do abacaxizeiro, embora com resultados diferentes. Os adubos foliares não aumentaram a massa seca do sistema radicular. A bandeja de isopor apresentou as menores médias, com todos os adubos foliares para área foliar, altura e massa seca da parte aérea das mudas do abacaxizeiro. O tubete pequeno e o tubete grande apresentaram resultados semelhantes com a maioria dos adubos foliares utilizados.The objective of this work was to evaluate the effect of the foliar fertilization with macro and micronutrients on the growth of the plantlets micropropagated of pineapple cv. Gold [Ananas comosus (L. Merrill] in different containers. The experiment was mounted in factorial arrangement 8x3, with foliar fertilization in 8 levels and containers in 3 levels, through a completely randomized design with five repetitions. The plantlets were standardized with average height of 7,12 cm. The foliar fertilization was used in the urea

  10. Variation in Foliar δ13C of Desert Plant Reaumuria soongorica (Pall.) Maxim. among Different Environments in Northwestern China

    Science.gov (United States)

    Ma, J.; Pendall, E.; Chen, F.

    2008-12-01

    Reaumuria soongorica is a dominant desert shrub species in arid regions of northwest China, it playing an important role in the maintenance of the stability and continuity of desert ecosystem. The objectives of this study were to investigate the distribution characteristics of foliar δ13C value in R. soongorica, establish the correlations between foliar characteristics and environmental factors, and identify the major factor controlling the variations of foliar δ13C among different environments. Leaves of R. soongorica were collected from 21 natural populations in its major distribution area in northwestern China, across a range of mean annual precipitation from 27 to 328 mm, at altitudes from 394 to 1987 m above sea level, at latitudes from 36°N to 45°N and at longitudes from 81°E to 107°E. We measured the leaf nitrogen (LN), phosphorus (LP), potassium content (LK), leaf water content (LWC) and foliar δ13C in leaves of 407 individuals, and the soil physicochemical properties including nitrogen (SN), phosphorus (SP), soil organic matter (SOM), soil water contents (SWC) and total dissolved solids (TDS). Mean annual precipitation (MAP), mean annual temperature (MAT), evaporation, mean relative humidity (MRH) and duration of sunshine (DS), were collected from the Cold and Arid Environmental and Engineering Research Institute, Chinese Academy of Sciences. We observed that the foliar δ13C values increased significantly with the decreasing of MAP (r = -0.623, P = 0.003) and MRH(r = -0.702, P = 0.002), and decreased with decreasing DS and evaporation. No significant correlation with MAT was detected in δ13C values of R. soongorica. The correlations between foliar δ13C value and the soil factors demonstrated that the foliar δ13C values in R. soongorica significantly increased with the decreasing SWC (r = - 0.470, P = 0.037) and increasing TDS (r = 0.507, P = 0.022) in soil. There were no significant correlations between the foliar δ13C values and soil pH, total

  11. Fabrication of modified hydrogenated castor oil/GPTMS-ZnO composites and effect on UV resistance of leather.

    Science.gov (United States)

    Ma, Jianzhong; Duan, Limin; Lu, Juan; Lyu, Bin; Gao, Dangge; Wu, Xionghu

    2017-06-16

    Leather products are made from the natural skin collagen fibers. It is vulnerable to the environmental factor such as solar ultraviolet irradiation in the using process. Therefore anti-UV performance is a very important quality, particularly for chrome-free leather. ZnO is a well-known UV absorber commonly used in the cosmetic industry. We have investigated its potential to increase the anti-UV performance of chrome-free leather. Modified hydrogenated castor oil/GPTMS-ZnO (MHCO/ GPTMS-ZnO) composites were prepared using spherical ZnO nanoparticles, hydrogenated castor oil, maleic anhydride and sodium bisulfite. MHCO/GPTMS-ZnO composites have better anti-UV ability and stability. MHCO/GPTMS-ZnO composites were applied to the leather processing. The treated samples were exposed to artificial sunlight. Anti-yellowing tests showed that MHCO/GPTMS-ZnO composites significantly improved anti-UV performance of leather.

  12. Applied geodesy

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc

  13. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  14. Resistive switching in ZnO/ZnO:In nanocomposite

    Science.gov (United States)

    Khakhulin, D. A.; Vakulov, Z. E.; Smirnov, V. A.; Tominov, R. V.; Yoon, Jong-Gul; Ageev, O. A.

    2017-11-01

    A lot of effort nowadays is put into development of new approaches to processing and storage of information in integrated circuits due to limitations in miniaturisation. Our research is dedicated to one of actively developed concepts - oxide based resistive memory devices. A material that draws interest due to its promising technological properties is ZnO but pure ZnO lacks in performance in comparison with some other transition metal oxides. Thus our work is focused on improvement of resistive switching parameters in ZnO films by creation of complex nanocomposites. In this work we report characterisation of a nanocomposite based on PLD grown ZnO films with inclusions of In. Such solution allows us to achieve improvements of main parameters that are critical for ReRAM device: RHRS/RLRS ratio, endurance and retention.

  15. ZnO Film Photocatalysts

    Directory of Open Access Journals (Sweden)

    Bosi Yin

    2014-01-01

    Full Text Available We have synthesized high-quality, nanoscale ultrathin ZnO films at relatively low temperature using a facile and effective hydrothermal approach. ZnO films were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, Raman spectroscopy, photoluminescence spectra (PL, and UV-vis absorption spectroscopy. The products demonstrated 95% photodegradation efficiency with Congo red (CR after 40 min irradiation. The photocatalytic degradation experiments of methyl orange (MO and eosin red also were carried out. The results indicate that the as-obtained ZnO films might be promising candidates as the excellent photocatalysts for elimination of waste water.

  16. Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A.G. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Yeryukov, N.A.; Sveshnikova, L.L.; Duda, T.A. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Himcinschi, C. [TU Bergakademie Freiberg, Institut fuer Theoretische Physik, Freiberg (Germany); Zenkevich, E.I. [Belarussian National Technical University, Minsk (Belarus); Zahn, D.R.T. [Chemnitz University of Technology, Semiconductor Physics, Chemnitz (Germany)

    2012-05-15

    Resonant Raman scattering by optical phonon modes as well as their overtones was investigated in ZnS and ZnO quantum dots grown by the Langmuir-Blodgett technique. The in situ formation of ZnS/ZnO core/shell quantum dots was monitored by Raman spectroscopy during laser illumination. (orig.)

  17. Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface

    DEFF Research Database (Denmark)

    Hellström, Matti; Beinik, Igor; Broqvist, Peter

    2016-01-01

    techniques, we find that the polar Zn-terminated ZnO(0001) surface becomes excessively Zn deficient during high-temperature annealing (780 K) in ultrahigh vacuum (UHV). The Zn vacancies align themselves into rows parallel to the [10-10] direction, and the remaining surface Zn ions alternately occupy wurtzite...

  18. Estimativa da área foliar do girassol por método não destrutivo

    Directory of Open Access Journals (Sweden)

    Leonardo Angelo de Aquino

    2011-01-01

    Full Text Available Métodos de fácil execução, rápidos e não destrutivos, que possibilitem estimar a área foliar com precisão, são importantes para avaliar o crescimento das plantas nas condições de campo. Objetivou-se no presente trabalho, ajustar equações para estimar a área do limbo foliar e a área das folhas do girassol, em função das medidas lineares do limbo e do número de folhas por planta, incluindo a verificação da possibilidade de modelos comuns para as cultivares BR-122 e M-734. Seis plantas de cada cultivar nos estádios de início de florescimento e de florescimento pleno foram coletadas. As áreas dos limbos foliares foram determinadas por método direto. Foram medidos o comprimento ao longo da nervura principal e a largura de forma perpendicular à inserção do limbo no pecíolo. Foram ajustados os modelos linear, quadrático, cúbico, exponencial e potencial. Os modelos potenciais Ŷi = 1,6329Xi1,7164 e Ŷi = 0,5405Xi1,0212 com a utilização, respectivamente, das medidas da largura e do produto largura e comprimento são os mais adequados para estimar a área do limbo foliar do girassol. O modelo Ŷi = 5,1014Xi2,4383 permite estimar com precisão a área foliar total do girassol em função do número de folhas por planta. A precisão das equações ajustadas para as estimativas da área do limbo foliar ou de folhas por planta não é reduzida quando se ajustam modelos comuns às cultivares BR-122 e M-734.

  19. Effects of Biopesticides on Foliar Diseases and Japanese Beetle (Popillia japonica) Adults in Roses (Rosa spp.), Oakleaf Hydrangea (Hydrangea quercifolia), and Crapemyrtle (Lagerstroemia indica)

    Science.gov (United States)

    This study evaluated efficacy of biopesticides for reducing foliar diseases and feeding damage from Japanese beetle adults on hybrid T rose (Rosa spp.), oakleaf hydrangea (Hydrangea quercifolia), and crapemyrtle (Lagerstroemia indica). The materials tested included household soaps with Triclosan act...

  20. Unusual electrochemical response of ZnO nanowires-decorated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Mo Guangquan; Ye Jianshan; Zhang Weide

    2009-01-01

    A novel type of ZnO nanowires-modified multiwalled carbon nanotubes (MWCNTs) nanocomposite (ZnO-NWs/MWCNTs) has been prepared by a hydrothermal process. The ZnO-NWs/MWCNTs nanocomposite has a uniform surface distribution and large coverage of ZnO nanowires onto MWCNTs with 3D configuration, which was characterized by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy methods were applied to investigate the electrochemical properties of ZnO-NWs/MWCNTs nanocomposite. Surprisingly, unlike the conventional n-type semiconducting ZnO nanowires grown on Ta substrate, the ZnO-NWs/MWCNTs nanocomposite exhibits excellent electron transfer capability and gives a pair of well-defined symmetric redox peaks towards ferricyanide probe. What's more, the ZnO-NWs/MWCNTs nanocomposite shows remarkable electrocatalytic activity (current response increased 4 folds at 0.3 V) towards H 2 O 2 by comparing with bare MWCNTs. The ZnO-NWs/MWCNTs nanocomposite could find applications in novel biosensors and other electronic devices.