WorldWideScience

Sample records for folded waveguide icrf

  1. ICRF waveguide coupler research. Progress report, July 1983-July 1984

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1984-01-01

    This report highlights results we have obtained on our ICRF (Ion Cyclotron Range of Frequencies) waveguide launcher research during the past year. We have completed an analysis of waveguide aperture launching of waves into a hot plasma with any prescribed edge density and temperature profile. The model Fourier analyzes the waveguide aperture fields and calculates the incident and reflected fast magnetosonic wave fields in the plasma edge region utilizing a stratified slab model. The requirement that the total wave fields at the waveguide-plasma interface match provides the boundary conditions which allow the solution for the plasma input impedance and reflection coefficient

  2. Theoretical study of the folded waveguide

    International Nuclear Information System (INIS)

    Chen, G.L.; Owens, T.L.; Whealton, J.H.

    1988-01-01

    We have applied a three-dimensional (3-D) algorithm for solving Maxwell's equations to the analysis of foleded waveguides used for fusion plasma heating at the ion cyclotron resonance frequency. A rigorous analysis of the magnetic field structure in the folded waveguide is presented. The results are compared to experimenntal measurements. Optimum conditions for the folded waveguide are discussed. 6 refs., 10 figs

  3. Rf modeling and design of a folded waveguide launcher for the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Bigelow, T.S.; Fogelman, C.F.; Baity, F.W.; Carter, M.D.; Hoffman, D.J.; Ryan, P.M.; Yugo, J.J.; Golovato, S.N.; Bonoli, P.

    1993-01-01

    The folded waveguide (FWG) launcher is being investigated as an improved antenna configuration for plasma heating in the ion cyclotron range of frequencies (ICRF). A development FWG launcher was successfully tested at Oak Ridge National Laboratory (ORNL) with a low-density plasma load and found to have significantly greater power density capability than current strap-type antennas operating in similar plasmas. To further test the concept on a high density tokamak plasma, a collaboration has been set up between ORNL and Massachusetts Institute of Technology (MIT) to develop and test an 80-MHz, 2-MW FWG on the Alcator C-Mod tokamak at MIT. The radio frequency (rf) electromagnetic modeling techniques and laboratory measurements used in the design of this antenna are described in this paper. A companion paper describes the mechanical design of the FWG

  4. Tokamak wave coupling and heating in the ICRF

    International Nuclear Information System (INIS)

    Romero, H.; Scharer, J.; Sund, R.

    1983-01-01

    The authors consider wave propagation in the vicinity of the Ion Cyclotron Range of Frequencies (ICRF) in general tokamak geometries. The problem of wave coupling by means of waveguides is addressed. In particular, the reflection coefficient for a simple TE 10 waveguide is obtained by taking into account both the z and y spectrum of the launcher. In order to take into account spatial gradients in the plasma medium, they use a one-dimensional slab model of the plasma. Good coupling and heating results are obtained for the first few harmonics for sufficiently weak edge density gradient and > about 1 keV core temperatures. To analyze the heating of the plasma interior in the presence of ICRF, a 2-D differential equation is being developed which takes into account spatial gradients and mode coupling

  5. Modeling and simulation support for ICRF heating of fusion plasmas. Annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-15

    Recent experimental, theoretical and computational results have shown the need and usefulness of a combined approach to the design, analysis and evaluation of ICH antenna configurations. The work at the University of Wisconsin (UW) in particular has shown that much needed information on the vacuum operation of ICH antennas can be obtained by a modest experimental and computational effort. These model experiments at UW and SAIC simulations have shown dramatically the potential for positive impact upon the ICRF program. Results of the UW-SAIC joint ICRF antenna analysis effort have been presented at several international meetings and numerous meetings in the United States. The PPPL bay M antenna has been modeled using the ARGUS code. The results of this effort are shown in Appendix C. SAIC has recently begun a collaboration with the ICRF antenna design and analysis group at ORNL. At present there are two separate projects underway. The first is associated with the simulation of and determination of the effect of adding slots in the antenna septum and side walls. The second project concerns the modeling and simulation of the ORNL folded waveguide (FWG) concept.

  6. Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Alan J. [HRL Laboratories LLC, Sensors and Materials Laboratory, 3011 Malibu Canyon Road, Malibu, CA 90265-4797 (United States); Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA (United States)], E-mail: ajjacobsen@hrl.com; Barvosa-Carter, William [HRL Laboratories LLC, Sensors and Materials Laboratory, 3011 Malibu Canyon Road, Malibu, CA 90265-4797 (United States); Nutt, Steven [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA (United States)

    2008-06-15

    A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values ({rho}/{rho}{sub s} = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity.

  7. Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides

    International Nuclear Information System (INIS)

    Jacobsen, Alan J.; Barvosa-Carter, William; Nutt, Steven

    2008-01-01

    A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values (ρ/ρ s = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity

  8. Fast wave at 433 MHz on FTU by a folded waveguide launcher

    International Nuclear Information System (INIS)

    Barbato, E.; De Marco, F.

    1993-01-01

    The use of fast wave (FW) power to interact directly with electrons is a useful tool for central heating of high density, high temperature plasmas and for electron current drive (CD). Direct electron heating by FW has been observed on JET and TFTR and, although FW absorption is weak at low β, successful electron heating and CD have been achieved on DIII-D at Te=2--3keV. The folded waveguide (FWG) is a promising new concept for ICRF launchers having the advantage of compact, rigid structure and very low impedence (E y /H z ) at the plasma edge. The FWG is particularly attractive for FTU since loop antennas suffer efficiency degradation at high frequency due to poloidal current decrease, whereas the RF flux coupled by a FWG is more poloidally uniform. Here we consider the possibility of injecting ∼ 1 MW of FW at 433 MHz into the FTU-Tokamak using the FWG as a launcher. Besides testing the FWG, and studying the FW electron heating regime, an other interesting issue of this experiment would be the study of possible sinergy between FW and the lower hybrid wave (LHW) at 8 GHz which is also available on FTU. The main parameters of FTU are a=30 cm, R 0 =90 cm, B T =4--8 T, I p e =0.4--2.0 10 14 cm -3

  9. ICRF waveguide couplers. Progress report, February 1983-Aug 1983

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1983-08-01

    Calculations were made for the reflection coefficient from a dielectric loaded TE 10 waveguide operating at 54.8 MHz to a plasma with a prescribed density profile. Optimum waveguide proportions are determined to minimize reflections and the proper match point for a coaxial feed to match the system is determined. Future plans call for fabrication and field measurements of a prototype design and the design of an all metal launcher

  10. Waveguide circuit for LHRF heating in 'JT-60'

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Saegusa, Mikio; Mizuno, Takenori; Sano, Keigo; Hara, Mitsuru; Oishi, Isamu; Kanai, Takao.

    1985-01-01

    As the heating method for attaining the critical condition in the critical plasma experiment apparatus 'JT-60' in the Japan Atomic Energy Research Institute, in addition to Joule heating, as the second heating method, neutral beam injection heating and high frequency heating have been adopted. For this high frequency heating, several tens to 200 MHz band of ICRF heating, several hundreds MHz to several GHz band of LHRF heating and several tens to 200 GHz band of ECR heating were considered, and in the JT-60, 100 MHz band (ICRF) and 2 GHz band (LHRF) have been adopted. Furukawa Electric Co., Ltd. has engaged in the development and manufacture of the waveguides of transmission system used for this high frequency heating through NEC Corp. This high frequency heating is to heat plasma by injecting high frequency radio waves into plasma proper, and reaches 10 MW for the whole high frequency heating. The system efficiently transmitting the radio waves of large power from a Klystron as a high frequency source to the JT-60 is the transmission system. The outline of the waveguides of the 2 GHz band transmission system and the individual performance of respective waveguides are reported. (Kako, I.)

  11. ICRF edge modeling

    International Nuclear Information System (INIS)

    1991-01-01

    This report describes the technical progress for the DOE sponsored grant, ''ICRF Edge Modeling.'' An emphasis is placed on the progress since the Technical Progress Report (January 10, 1990) was submitted to the Department of Energy. The design of ICRF antennas for C-Mod and TFTR was investigated during this period. In addition, quasilinear models for electron heating were refined and applied to the design of ICRF antennas. The relevant professional activities sponsored by this grant are given. 4 refs., 11 figs

  12. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  13. ICRF enhanced potentials

    International Nuclear Information System (INIS)

    Nelson, B.A.

    1987-01-01

    Ion-confining potentials in the Phaedrus tandem mirror are shown to be enhanced over Boltzmann-relations predicted values by radio-frequency (rf) waves in the ion cyclotron range of frequencies (ICRF). The ICRF enhanced potential is larger in the end cell with a lower passing density. Peak potential values decrease with increasing ion endloss current (or central cell density) for a constant rf capacitor bank voltage, and increase with increasing rf-capacitor bank voltage, for a constant ion endloss value (or central cell density). In fully axisymmetric operation, a potential peak is produced in an end cell by the central-cell rf, (with-out end-cell rf) and is found only in the end cell nearer the central-cell antenna. ICRF enhanced potentials are explained as an equilibrium between the electron-collisional filling-in rate and the electron pumping out rate provided by axial time-varying electric fields. Thermal barrier-like potential structures were found in the transition regions between the central cell and end cells, in the fully axisymmetric Phaedrus. Central-cell ICRF trapping effects combined with end-cell μΔ B forces create and pump the barrier potential wells

  14. EAST ICRF system for long pulse operation

    International Nuclear Information System (INIS)

    Zhao, Y.P.; Zhang, X.J.; Mao, Y.Z.

    2013-01-01

    Radio frequency (RF) power in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating techniques for Experimental Advanced Superconducting Tokamak (EAST). A 6.0 MW ICRF systems in the range of 25-70 MHz has been put into operation during the EAST 2012 spring campaign. The ICRF systems consist of two port-mounted antennas and each antenna is driven by two independent 1.5 MW RF power source. Another four 1.5 MW ICRF system is under way of construction.The system will deliver more than 10 MW of RF power to the plasma for 1000 sec pulse length. This paper gives brief introduction of the ICRF systems capability on EAST. (author)

  15. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  16. Recent progress with ICRF heating on EAST

    International Nuclear Information System (INIS)

    Zhang Xinjun; Zhao, Y.P.; Mao, Y.Z.

    2014-01-01

    Radio Frequency (RF) power in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating techniques for Experimental Advanced Superconducting Tokamak (EAST). The ICRF system for the EAST has been developed to support long-pulse, high-β, advanced tokamak fusion physics experiments. The ICRF system can deliver 12 MW of RF power to the plasma for 1000 seconds through two antennas located in B- and I-ports. Each ICRF transmitter with high power up to 1.5 MW has been successfully tested on a dummy load. The main technical features of the ICRF system is described. Two simulation codes, TORIC (a full wave solver) and SSFPQL (the quasilinear Fokker-Planck solver), are combined to simulate the ICRF heating in the EAST 2D magnetic configuration. The fast wave propagation and absorption characteristics, power partitions among the plasma species and the RF driven energetic tails have been analyzed. (author)

  17. ICRF modelling

    International Nuclear Information System (INIS)

    Phillips, C.K.

    1985-12-01

    This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs

  18. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  19. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  20. ICRF/edge physics research on TEXTOR

    International Nuclear Information System (INIS)

    Oost, G. van; Nieuwenhove, R. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Weynants, R.R.; Dippel, K.H.; Finken, K.H.; Lie, Y.T.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Conn, R.W.; Corbett, W.J.; Goebel, D.M.; Moyer, R.A.; California Univ., Los Angeles

    1990-01-01

    Extensive investigations of ICRF-induced effects on the edge plasma and on plasma-wall interaction were conducted on TEXTOR under different wall- and limiter as well as plasma- and heating conditions. Several strong effects of ICRF on the edge parameters were observed on TEXTOR, such as density rise, instantaneous electron heating, modification of SOL profiles, influx of ligth and/or heavy impurities, increased heat flux to the limiters, and production of energetic ions in the SOL. The fast response time of some of the changes and the observation of a maximum in the SOL profile of electron temperature, heat flux and metal sputtering clearly demonstrated that RF power is directly absorbed in the SOL. Estimates of this power amount to several percent of the total RF power launched into the plasma. Plasma-wall interaction during ICRF was substantially reduced by an appropriate choice of the wall conditioning procedures (wall carbonization with liner at 400degC or, above all, boronization). As a result record low values of the radiated power fraction were achieved during ICRF and long pulse, high power, low impurity operation was possible. Further improvement was obtained by ICRF antenna phasing. When ICRF power is coupled to the plasma, several effects on the core and edge plasma influence the operation of the toroidal pump limiter ALT-II. Experimental and theoretical studies were performed to elucidate the mechanisms responsible for the ICRF-induced effects, including the propagation of plasma waves in the edge plasma and nonlinear phenomena such as parametric decay, important changes in the DC current between the antenna structure and the liner due to the sheath effect at the antennas, and the generation of waves at harmonics of the RF generator frequency. Radial profiles of the DC radial and poloidal electric fields as well as a localized RF electric field structure were measured in the SOL using a fast scanning probe. (orig.)

  1. ICRF heating experiments in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1986-01-01

    This is an experimental study of ICRF heating on JFT-2 Tokamak in Japan Atomic Energy Research Institute. In this study, we first clarified physical and engineering problems of ICRF heating of tokamak plasma. Next, we optimized the design of the ICRF heating system, and the plasma parameters for the heating. Finally, we could demonstrate a high efficiency of this additional heating method by launching RF power which is two or three times as large as an ohmic input power to a plasma. And we achieved following things. (1) We optimized a design of an antenna, and we improved a durability of the system for high voltage. With the result that we achieved the maximum power density on an antenna. (2) We demonstrated that electron heating regime and ion heating regime can be easily accessed by controlling plasma parameters. Also we found the optimum heating conditions in each heating regime. (3) We experimentally clarified the production mechanism of impurities during ICRF heating. We could reduce the influx of metal impurity ions to a plasma by employing low z materials for limiters and antenna shields. Consequently, we improved a heating efficiency of electrons. Next, we studied a power balance of plasma during ICRF heating, and we could compare heating characteristics of ICRF with other additional heatings on JFT-2. (author)

  2. ICRF stabilization of sawteeth on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.; Stevens, J.; Wilson, J.R.; Bell, M.; Bitter, M.; Cheng, C.Z.; Darrow, D.; Fredrickson, E.; Hammett, G.W.; Hill, K.; Hsuan, H.; Jassby, D.; McCune, D.; McGuire, K.; Owens, D.K.; Park, H.; Ramsey, A.; Schilling, G.; Schivell, J.; Stratton, B.; Synakowski, E.; Taylor, G.; Towner, H.; White, R.; Zweben, S.; Phillips, M.W.; Hughes, M.; Bush, C.; Goldfinger, R.; Hoffman, D.; Houlberg, W.; Nagayama, Y.; Smithe, D.N.

    1992-01-01

    Results obtained from experiments utilizing high power ICRF (ion cyclotron range of frequency) heating to stabilize sawtooth oscillations on TFTR are reviewed. The key observations include existence of a minimum ICRF power required to achieve stabilization, a dependence of the stabilization threshold on the relative size of the ICRF power deposition profile to the q=1 volume, and a peaking of the equilibrium pressure and current profiles during sawtooth-free phases of the discharges. In addition, preliminary measurements of the poloidal magnetic field profile indicate that q on axis decreases to a value of 0.55±0.15 after a sawtooth-stabilized period of ∼0.5 sec has transpired. The results are discussed in the context of theory, which suggests that the fast ions produced by the ICRF heating suppress sawteeth by stabilizing the m=1 MHD instabilities believed to be the trigger for the sawtooth oscillations. Though qualitative agreement is found between the observations and the theory, further refinement of the theory coupled with more accurate measurements of experimental profiles will be required in order to complete quantitative comparisons

  3. ICRF-induced fusion product loss in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Chang, C.S.; Zweben, S.J.

    1994-01-01

    When ICRF power is applied to plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Predictions based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  4. Uses of the ICRF and implications for future VLBI

    Science.gov (United States)

    Ma, Chopo

    2006-01-01

    Since its inception on 1 Jan 1998, the fundamental ICRF has been set by the VLBI positions of 212 "defining" extragalactic radio sources. In all there are approx.3000 sources with usefully accurate (< few mas) positions consistent with the ICRF. The uses of the ICRF include fundamental astrometry, monitoring of Earth orientation, and spacecraft navigation. For fundamental astrometry, stability and accuracy are most important, and realizations at different frequencies must be in proper registration. However, there is no preferred frequency, and the GAIA mission has the potential for an optical ICRF with 500,000 objects at the 50 microarcsec level some time after the planned 2011 launch. The radio ICRF should be properly prepared for a transition to assure long term stability and consistency. Earth orientation monitoring requires objects attached to the solid Earth, and VLBI will continue to be the fundamental technique. For this purpose it is essential that the new VLBI stations contemplated in the VLBI20l0 report be capable of observing a sufficiently large and well-distributed set of stable sources, and identifying these sources is an on-going effort. Spacecraft navigation by differential VLBI is planned using the Ka-band telemetry signal, and work has begun towards an ICRF realization suitable for this purpose. The balancing of different needs related to the VLBI ICRF will be discussed.

  5. International Celestial Reference Frame (ICRF): mantenimiento y extensión

    Science.gov (United States)

    Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.

    A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.

  6. Mechanical design of the second ICRF antenna for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q., E-mail: yangqx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T.; Wu, S.T.; Zhao, Y.P.; Zhang, J.X.; Wang, Z.W. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The second ICRF antenna of EAST is capable of coupling higher power than the former ICRF antenna due to it has been designed with four current straps. Black-Right-Pointing-Pointer Many cooling channels have been designed for the key components of faraday shied, current strap, baffles and transmission lines, which can remove the dissipated RF loss power and incoming heat loads on them and make ICRF antenna being capable of coupling higher power in constant wave operation. Black-Right-Pointing-Pointer Extra structure via cantilever support beam has been designed to support the forepart of the ICRF antenna. Black-Right-Pointing-Pointer Numerical analysis by applying the thermo-mechanical coupling method have been applied to analyze for the key components of ICRF antenna. - Abstract: In order to satisfy the requirements of heating plasma on EAST project, 3 MW ion cyclotron range of frequency (ICRF) heating system will be available at the second stage. Based on this requirement, the second ICRF antenna, has been designed for EAST. The antenna which is planned to operate with a frequency ranging from 30 MHz to 110 MHz, comprises four poloidal current straps. The antenna has many cooling channels inside the current straps, faraday shield and baffle to remove the dissipated RF loss power and incoming plasma heat loads. The antenna is supported via a cantilever support box to the external support structure. Its assembly is plugged in the port and fixed on the support box. External slideway and bellows allow the antenna to be able to move in the radial direction. The key components of the second ICRF antenna has been designed together with structural and thermal analysis presented.

  7. ICRF Review: From ERASMUS To ITER

    Science.gov (United States)

    Weynants, R. R.

    2009-11-01

    This is a personal account of how I saw ICRF evolve since 1974, with a presentation that is ordered according to the topics: heating, antenna coupling, impurity generation/mitigation and system technology. The nature of the main issues is each time reviewed, recent findings are incorporated, and it is shown how the ICRF community has been able to react to sometimes rapidly changing demands and is indeed resolutely preparing ITER.

  8. ICRF sawtooth stabilization: Application on TFTR and CIT

    International Nuclear Information System (INIS)

    Hosea, J.C.; Phillips, C.K.; Stevens, J.E.; Wilson, J.R.; Bell, M.; Boivin, R.; Cavallo, A.; Colestock, P.; Fredrickson, E.; Hammett, G.; Hsuan, H.; Janos, A.; Jassby, D.; Jobes, F.; McGuire, K.; Mueller, D.; Nagayama, Y.; Owens, K.; Park, H.; Schmidt, G.; Stratton, B.; Taylor, G.; Wong, K.L.; Zweben, S.

    1991-03-01

    The use of ICRF heating to stabilize the core plasma sawtooth relaxations has been extended to TFTR where such stabilization has been produced at relatively low power in the L Mode regime at moderate density (P RF = 4 MW, 2.6 MW in helium and deuterium discharges, respectively, for the minority hydrogen ICRF heating regime with bar n e ∼2.5 x 10 13 cm -3 ). These results, as in the case of those obtained on JET, are qualitatively consistent with energetic ion stabilization of the m = 1, n = 1 ideal/resistive kink mode. The relevance of sawtooth stabilization to the primary regimes of interest on TFTR -- the high-Q supershot regime and the high density pellet injection regimes -- and on CIT -- the high density ICRF heated regime -- is considered in the context of the present theory and the projected ICRF power deposition characteristics. 35 refs., 11 figs

  9. ICRF-induced DD fusion product losses in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Zweben, S.J.; Budny, R.V.

    1994-10-01

    When ICRF power is applied to TFTR plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Extrapolations based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  10. ICRF heating on the burning plasma experiment (BPX)

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; Swain, D.W.; Tolliver, J.S.; Yugo, J.J.; Goldston, R.J.; Hosea, J.C.; Kaye, S.M.; Phillips, C.K.; Wilson, J.R.; Mau, T.K.

    1991-01-01

    RF power in the ion cyclotron range of frequencies (ICRF) has been chosen as the primary heating technique for BPX. This decision is based on the wide success of ICRF heating in existing experiments (JET, TFTR, JT-60), the capability of ion cyclotron waves to penetrate the high-density plasmas of BPX, the ability to concentrate ICRF power deposition near the plasma center, and the ready availability of high-power sources at the appropriate frequency. The primary task of the ICRF system is to heat the plasma to ignition. However, other important roles are envisaged; these include the stabilization of sawteeth, preheating of the plasma during current ramp-up, and possible control of the plasma current profile by means of fast-wave current drive. We give a brief overview of the RF system, describe the operating scenarios planned for BPX, and discuss some of the antenna design issues for BPX. 4 refs., 3 figs

  11. Upgrade of ICRF heating system on EAST

    International Nuclear Information System (INIS)

    Chen Gen; Zhao Yanpin; Mao Yuzhou

    2013-01-01

    ICRF (Ion Cyclotron Range of Frequency) heating is an essential heating and current drive tool on EAST (Experimental Advanced Superconducting Tokamak). The high-power steady-state transmitters were designed as a part of research and development of ICRF heating system which aimed at output power of 1.5 MW for 1000 s in a frequency range of 25 to 70 MHz. There are 3 stage power amplifiers for each transmitter. Tube TH525A and TH535 were chosen for drive power amplifier (DPA) and final power amplifier (FPA), respectively. The power supply system of DPA and FPA were upgraded by using reliable PSM high voltage sources, whose response time is less than 5 μs. The ICRF system, which consists of 8 transmitters, will give out more than 10 MW total output power in the future. Four of them have been already fabricated, and another four are under construction. Three liquid stub tuners are used for impedance matching between antennas and transmitters, which can be only tuned shot to shot. There are two fast wave heating antennas which are assembled at I port and B port on EAST. Several projects are in progress including fast response impedance matching, distributed data acquisition and control system and so on for EAST ICRF heating system. (author)

  12. Benchmarking ICRF Full-wave Solvers for ITER

    International Nuclear Information System (INIS)

    Budny, R.V.; Berry, L.; Bilato, R.; Bonoli, P.; Brambilla, M.; Dumont, R.J.; Fukuyama, A.; Harvey, R.; Jaeger, E.F.; Indireshkumar, K.; Lerche, E.; McCune, D.; Phillips, C.K.; Vdovin, V.; Wright, J.

    2011-01-01

    Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  13. Orbit losses of strongly ICRF-heated ions

    International Nuclear Information System (INIS)

    Anderson, A.; Dillner, Oe.; Lisak, M.

    1992-01-01

    An approximate analytical investigation is made to assess the importance of orbit losses of strongly ICRF-heated minority ions. Explicit expressions for the fraction of lost minority ions are derived and shown to be in good agreement with numerical simulation results. The results indicate that present day ICRF heating power density levels cannot be raised significantly without causing important particle and energy losses due to unconfined particle orbits. 6 refs., 5 figs

  14. ICRF [ion cyclotron range of frequencies] coupling on DIII-D and the implications on ICRF technology development

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Mayberry, M.J.; Swain, D.W.

    1987-01-01

    Low-power coupling tests have been carried out with a prototype ion cyclotron range of frequencies (ICRF) compact loop antenna on the DIII-D tokamak. Plasma load resistance values higher than originally calculated are measured in ohmic and L-mode, beam-heated plasmas. Load resistance decreases by a factor of ∼2 in H-mode operation. When edge localized modes (ELMs) occur, the antenna loading increases transiently to several ohms. Results indicate that fast-wave ICRF antenna coupling characteristics are highly sensitive to changes in the edge plasma profiles associated with the H-mode regime

  15. A new radiation stripline ICRF antenna design for EAST Tokamak

    International Nuclear Information System (INIS)

    Qin, C. M.; Zhao, Y. P.; Wan, B. N.; Li, J.; Zhang, X. J.; Yang, Q. X.; Yuan, S.; Braun, F.; Notedame, J.-M.; Kasahara, H.

    2014-01-01

    A new type of toroidal long Radiation Stripline Antenna (RSA) is presented, which can effectively improve antenna radiation, leading in reduction of max voltage on transmission line and decrease of the sensitivity to ELM's of the ICRF system at some frequencies. Based on the new concept, a 4-straps RSA is proposed for EAST device. Using 3-D computing simulator code (HFSS), RF current distribution, S-parameters and electromagnetic field distribution on and near the RSA ICRF antenna are analyzed and compared with present ICRF antenna on EAST

  16. Mechanical design of the folded waveguide for PBX-M and TFTR

    International Nuclear Information System (INIS)

    Fogelman, C.H.; Bigelow, T.S.; Yugo, J.J.

    1995-01-01

    The folded waveguide (FWG) antenna is an advanced Cyclotron Range of Frequencies launcher being designed at Oak Ridge National Laboratory in collaboration with Princeton Plasma Physics Laboratory. The FWG offers a drastic increase in radio frequency (RF) power density over typical loop antennas. It also results in internal electric fields of much lower magnitude near the plasma. It is scheduled for installation on either the Tokamak Fusion Test Reactor (TFTR) or the Princeton Beta Experiment-Modified (PBX-M) tokamak in January 1996. The design objective is to provide an FWG that can withstand the thermal loads and disruption scenarios and meet the space constants of both machines. The design is also intended to be prototypical for the International Thermonuclear Experimental Reactor (ITER). The FWG is fully retractable, and maintenance operations can be performed while the vessel remains under vacuum. The FWG can operate in fast-wave mode, or it can be retracted, rotated 90 degrees, and reengaged for the ion-Bernstein wave launch. The polarizing plate completely covers the front of the antenna, except for slots cut at every other gap between with plates of other configurations such as a 0-π dipole plate

  17. Removal of particles by ICRF cleaning in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Hu Jiansheng; Li Jiangang; Zhang Shouyin; Gu Xuemao; Zhang Xiaodong; Zhao Yanping; Gong Xianzu; Kuang Guangli; Li Chengfu; Luo Jiarong; Wang Xiaoming; Gao Xiang; Wan Baonian; Xie Jikang; Wan Yuanxi

    2001-01-01

    The ICRF (Ion Cyclotron Range Frequency) cleaning technique has been used as a routine wall cleaning method in the HT-7 superconducting tokamak. In a wide range of toroidal field, the removal rate of residual gas by ICRF cleaning was about twenty times higher than that of glow discharge cleaning (GDC). At different gas pressure and RF power levels, the ICRF cleaning is studied carefully. A good impurity cleaning effect and a very high hydrogen removal rate were obtained. The removal rate of hydrogen by 5 kW ICRF cleaning achieved was 1.6 x 10 -5 Torr.l/s. And the relationships among pressure P, outgassing rate Q, atomic layers L absorbed on surface and the cleaning mode were discussed briefly

  18. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  19. ICRF heating in JET during initial operations with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.; Brix, M.; Graham, M.; Mayoral, M.-L.; Meigs, A.; Monakhov, I.; Sirinelli, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V.; Drewelow, P.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Brezinsek, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM-FZJ (Germany); Campergue, A-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Klepper, C. C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Lerche, E.; Van-Eester, D. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Mlynar, J. [Association EURATOM-IPP.CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Collaboration: JET-EFDA Contributors

    2014-02-12

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the antenna coupling resistance was observed with the ILW as compared with the carbon wall. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography (maximum 4.5 MW/m{sup 2} in current drive phasing) are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can well reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. Some experimental facts indicate that main-chamber W components could be an important impurity source: the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions; the W content is also increased in ICRF-heated limiter plasmas; and Be evaporation in the main chamber results in a strong and long lasting reduction of the impurity level. The ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 20%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating efficiency; The ICRF power can be deposited at plasma centre and the radiation is mainly from the outer part of the plasma. Application of ICRF heating in H-mode plasmas started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core could be observed.

  20. ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Ochoukov, R.; Whyte, D. G.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Terry, J. L.; Wukitch, S. J. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); D' Ippolito, D. A.; Myra, J. R. [Lodestar Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 (United States)

    2014-02-12

    We performed an extensive survey of the plasma potential in the scrape-off layer (SOL) of Ion Cyclotron Range-of Frequencies (ICRF)-heated discharges on Alcator C-Mod. Our results show that plasma potentials are enhanced in the presence of ICRF power and plasma potential values of >100 V are often observed. Such potentials are high enough to induce sputtering of high-Z molybdenum (Mo) plasma facing components by deuterium ions on C-Mod. For comparison, the plasma potential in Ohmic discharges is typically less than 10 V, well below the threshold needed to induce Mo sputtering by deuterium ions. ICRF-enhanced plasma potentials are observed in the SOL regions that both magnetically map and do not map to active ICRF antennas. Regions that magnetically map to active ICRF antennas are accessible to slow waves directly launched by the antennas and these regions experience plasma potential enhancement that is partially consistent with the slow wave rectification mechanism. One of the most defining features of the slow wave rectification is a threshold appearance of significant plasma potentials (>100 V) when the dimensionless rectification parameter Λ{sub −o} is above unity and this trend is observed experimentally. We also observe ICRF-enhanced plasma potentials >100 V in regions that do not magnetically map to the active antennas and, hence, are not accessible for slow waves launched directly by the active antennas. However, unabsorbed fast waves can reach these regions. The general trend that we observe in these 'un-mapped' regions is that the plasma potential scales with the strength of the local RF wave fields with the fast wave polarization and the highest plasma potentials are observed in discharges with the highest levels of unabsorbed ICRF power. Similarly, we find that core Mo levels scale with the level of unabsorbed ICRF power suggesting a link between plasma potentials in the SOL and the strength of the impurity source.

  1. ICRF power limitation relation to density limit in ASDEX

    International Nuclear Information System (INIS)

    Ryter, F.

    1992-01-01

    Launching high ICRF power into ASDEX plasmas required good antenna-plasma coupling. This could be achieved by sufficient electron density in front of the antennas i.e. small antenna-plasma distance (1-2 cm) and moderate to high line-averaged electron density compared to the density window in ASDEX. These are conditions eventually close to the density limit. ICRF heated discharges terminated by plasma disruptions caused by the RF pulse limited the maximum RF power which can be injected into the plasma. The disruptions occurring in these cases have clear phenomenological similarities with those observed in density limit discharges. We show in this paper that the ICRF-power limitation by plasma disruptions in ASDEX was due to reaching the density limit. (orig.)

  2. ICRF power limitation relation to density limit in ASDEX

    International Nuclear Information System (INIS)

    Ryter, F.

    1992-01-01

    Launching high ICRF power into ASDEX plasmas required good antenna-plasma coupling. This could be achieved by sufficient electron density in front of the antennas i.e. small antenna-plasma distance (1-2 cm) and moderate to high line-averaged electron density compared to the density window in ASDEX. These are conditions eventually close to the density limit. ICRF heated discharges terminated by plasma disruptions caused by the RF pulse limited the maximum RF power which can be injected into the plasma. The disruptions occurring in these cases have clear phenomenological similarities with those observed in density limit discharges. We show in this paper that the ICRF-power limitation by plasma disruptions in ASDEX was due to reaching the density limit. (author) 3 refs., 3 figs

  3. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    Science.gov (United States)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  4. ICRF induced edge plasma convection in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); University of Ghent, Ghent (Belgium); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Feng, Yuehe; Lunt, Tilmann; Jacquot, Jonathan; Coster, David; Bilato, Roberto; Bobkov, Volodymyr; Ochoukov, Roman [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); University of Ghent, Ghent (Belgium); Colas, Laurent [CEA, IRFM, Saint-Paul-Lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    Ion Cyclotron Range of Frequency (ICRF) heating is one of the main auxiliary plasma heating methods in tokamaks. It relies on the fast wave to heat the plasma. However the slow wave can also be generated parasitically. The parallel electric field of the slow wave can induce large biased plasma potential through sheath rectification. The rapid variation of this rectified potential across the magnetic field can cause significant E x B convection in the Scrape-Off Layer (SOL). The ICRF induced convection can affect the SOL density, influence the ICRF power coupling and enhance the strength of plasma-wall interactions. To explore these physics, we not only show the experimental evidences in ASDEX Upgrade, but also present the associated simulation results with the 3D edge plasma fluid code EMC3-Eirene. Further simulations via combination of EMC3-Eirene and a sheath code SSWICH in an iterative and quasi self-consistent way can give good predictions for future experiments.

  5. Perspectives gained from ICRF physics studies on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Bell, M.; Batha, S.

    1998-01-01

    The physics of ICRF heating and current drive has been studied on TFTR for over a decade. Following the early low power coupling studies, high power experiments resulted in sawtooth stabilization, the first observation of RF-driven excitation of toroidal Alfven eigenmodes, and the discovery of a mode conversion scenario for localized off-axis electron heating. The program culminated with the first studies of high power ICRF heating and profile control in tritium-rich high performance plasmas. A significant part of the concluding experiments centered on the potential of ICRF to drive sheared flows in order to suppress turbulence in the plasma core. Initial measurements taken with a novel poloidal velocity diagnostic suggest that localized sheared poloidal flows can be driven with ion Bernstein waves excited directly or else via mode conversion from a propagating fast magnetosonic wave. In this paper, recent results from TFTR on wave-based profile control techniques will be summarized along with suggestions for future studies elsewhere

  6. The effect of ICRF antenna phasing on metal impurities in TFTR

    International Nuclear Information System (INIS)

    Stevens, J.E.; Bush, C.; Colestock, P.L.; Oak Ridge National Lab., TN; AN Ukrainskoj SSR, Kharkov

    1989-07-01

    ICRF power levels of up to 2.8 MW were achieved during the 1988 experimental run on TFTR. Metal impurity concentrations (Ti, Cr, Fe, Ni) and Z eff were monitored during ICRF heating by x-ray pulse height analysis and uv spectroscopy. Antenna phasing was the key variable affecting ICRF performance. No increase in metallic impurities was observed for P rf approx lt 2.8 MW with the antenna straps 0-Π, while a measurable increase in titanium (Faraday screen material) was observed for P rf approx gt 1.0 MW with 0-0 phasing. 18 refs., 8 figs

  7. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    Directory of Open Access Journals (Sweden)

    Gallart Dani

    2017-01-01

    Full Text Available During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ∼7.0 MW in D-T.

  8. Three-dimensional calculation analysis of ICRF heating in LHD

    International Nuclear Information System (INIS)

    Seki, Tetsuo; Kumazawa, Ryuhei; Mutoh, Takashi

    2004-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of the heating methods for the fusion plasma experiments and also effective for the helical plasmas. For the purpose of analysis of the ICRF heating in the helical plasmas, the three-dimensional full-wave code has been developed. The feature of the helical system compared with the tokamak device is the strong coupling of the toroidal harmonic modes. They cannot be treated independently. Dependence of the power absorption on the position of the ion cyclotron resonance layer is calculated including all toroidal modes. Strong power absorption was obtained when the position of the resonance layer is slightly different from the experimental results. Difference of the position of the resonance layer in different toroidal angle is thought to be important to achieve the good heating efficiency in the ICRF heating for the helical plasmas. (author)

  9. High-power ICRF and ICRF plus neutral-beam heating on PLT

    International Nuclear Information System (INIS)

    Hwang, D.; Bitter, M.; Budny, R.

    1983-01-01

    PLT ICRF experiments with RF powers up to approx.=3 MW have demonstrated efficient plasma heating in both the minority fundamental and the second harmonic ion-cyclotron regimes. In the minority 3 He regime, ion temperatures of approx.=3 keV have been produced along with approx.=1 kW of D- 3 He fusion power and substantial electron heating. In the second harmonic H regime, an equivalent averaged ion energy of approx.=4 keV has been achieved. Combined ICRF plus neutral-beam heating experiments with auxiliary powers totalling up to 4.5 MW have provided insight into auxiliary heating performance at stored plasma energy levels up to approx.=100 kJ. Values of #betta#sub(phi) in the range of 1.5-2% have been attained for Bsub(phi) approx.=17 kG. Energetic discharges with n-barsub(e) up to approx.6x10 13 cm - 3 at Bsub(phi) approx.=28 kG have also been investigated. Preliminary confinement studies suggest that energetic ion losses may contribute to a direct loss of the input RF power in the H minority heating regime but are insignificant in the 3 He minority case. The energy confinement time for the H minority regime is reduced somewhat from the Ohmic value. (author)

  10. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  11. Development and test of decoupler for ICRF antenna in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gen, E-mail: chengen@ipp.ac.cn; Mao, Yuzhou; Zhao, Yanping; Yuan, Shuai; Zhang, Xinjun; Qing, Chengming

    2016-06-15

    Highlights: • The mechanism of decoupler for ICRF antenna is proposed. • Three candidate assembly positions for the decouper can be used. • The performance relies on the ohmic dissipation and the assembly position of decoupler. - Abstract: Ion Cyclotron Range of Frequency (ICRF) heating has been adopted in EAST tokamak as one of main auxiliary heating methods. The ICRF antenna usually consists of multiple launching elements because of limited port and space of tokamak device. Mutual coupling between straps has been observed in previous EAST ICRF current drive experiments. Due to adverse effects of such mutual coupling, many issues induced by cross power cannot be ignored, such as power imbalance in feed lines, high voltage standing wave ratio (VSWR), and etc. To restrain such mutual coupling, A device named decoupler was developed and tested in EAST ICRF system. According to the admittance matrix of load, three assembly positions (oscillation position, optimum position, and smooth position) along transmission line for the decoupler were taken into account and tested. The test results showed that ohmic dissipation in decoupler could not be neglected, which partly influenced the decoupling performance. The oscillation position and optimum position could restrain such adverse effects of ohmic dissipation and showed good decoupling performance. However, they cannot ensure the steady operation during H-mod due to the load variation. Finally, the smooth position has been adopted for EAST I port antenna because of steady decoupling performance comprised with engineering error and load resilience, which sincerely enhance the capability of system operation.

  12. DT simulation of ICRF heated supershots in TFTR using TRANSP

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.; Phillips, C.K.; Budny, R.; Hammett, G.W.; Hosea, J.C.; McCune, D.M.; Stevens, J.E.; Wilson, J.R.

    1993-01-01

    The principal goal of ion cyclotron range of frequency (ICRF) heating on the Tokamak Fusion Test Reactor (TFTR) is to enhance plasma performance during the deuterium-tritium (DT) physics phase of operations. Strongly centralized ICRF heating may play a critical role in obtaining high Q DT and high β α operation in TFTR, as well as in future fusion reactors. ICRF heating of a dilute minority species leads to the formation of an energetic ion population that, in turn, provides strong central electron heating. The corresponding rise in the central electron temperature translates into an increase in the slowing-down time of either neutral beam or alpha particles in the discharge. Preliminary DT simulations of the experimental results in deuterium-deuterium (DD) plasmas performed with the TRANSP code are presented in this paper

  13. ICRF heating of passing ions in TMX-U

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Barter, J.; Campbell, R.; Cummins, W.F.; Falabella, S.; Ferguson, S.W.; Poulsen, P.

    1986-04-01

    By placing ion-cyclotron resonant frequency (ICRF) antennas on both sides of a midplane gas-feed system in the central cell of the Tandem Mirror Experiment-Upgrade (TMX-U), our results have improved in the following areas: (a) The end losses out both ends show a factor of 3 to 4 increase in passing-ion temperatures and a factor of 2 to 3 decrease in passing-ion densities. (b) The passing-ion heating is consistent with Monte Carlo predictions. (c) The plasma density can be sustained by ICRF plus gas fueling as observed on other experiments

  14. Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator

    International Nuclear Information System (INIS)

    Cai Jin-Chi; Chen Huai-Bi; Hu Lin-Lin; Ma Guo-Wu; Chen Hong-Bin; Jin Xiao

    2015-01-01

    In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other. (paper)

  15. Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    International Nuclear Information System (INIS)

    Krivska, A.; Milanesio, D.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2009-01-01

    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re-design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operation.

  16. Modeling of high power ICRF heating experiments on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L.; Murakami, M.

    1993-01-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P rf ∼ 6 MW) in the TFTR experiments

  17. Ripple losses during ICRF heating in Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Eriksson, L.-G.; Bergeaud, V.; Chantant, M.; Martin, G.; Nguyen, F.; Reichle, R.; Vallet, J.C.; Delpeche, L.; Surle, F.

    2004-01-01

    The toroidal field coils in Tore Supra are supra-conducting, and their number is restricted to 18. As a result, the ripple is fairly large, about 7% at the plasma boundary. Tore Supra has consequently been equipped with dedicated ripple loss diagnostics, which has allowed ripple loss studies. This paper reports on the measurements made with these diagnostics and provides an analysis of the experimental results, comparing them with theoretical expectations whenever possible. Furthermore, the main heating source accelerating ions in Tore Supra is ion cyclotron resonance range of frequency (ICRF) heating, and the paper provides new information on the ripple losses of ICRF accelerated ions. (author)

  18. Bulk Ion Heating with ICRF Waves in Tokamaks

    DEFF Research Database (Denmark)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.

    2015-01-01

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER...... when 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LTi of about 20, which are unusually large for AUG...

  19. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  20. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-01-01

    The ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated, including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using results based on Monte Carlo simulations (Murakami, S., et al., Fusion Eng. Des. 26 (1995) 209). The global energy confinement time including the energetic ion effect can be expressed in heliotrons in terms of ICRF heating power, plasma density and magnetic field strength. Results in plasmas at CHS show a systematic decrease of the global energy confinement time due to energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. The model is also applied to ICRF minority heating in LHD plasmas in two cases of typical magnetic configurations. A clear increase of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while a decrease is observed in the 'standard' configuration. (author)

  1. Lead elimination by ICRF 158 in rats after chronic lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Witting, U; Hultsch, E

    1981-02-01

    Lead elimination by ICRF 158, a lipophilic derivative of ethylene-diaminetetra-acetate (EDTA), was investigated in rats after chronic lead exposure. The animals had received a lead concentration of 550 ppm in their drinking water for 140 days. Subsequent treatment with ICRF 158 for 30 days led to increased mobilization and elimination of incorporated lead, and the lead-induced inhibition of hemosynthesis was removed. ICR 158 produced no renal damage in excess to lead-induced tubular nephrosis. Separate toxicity tests in mice demonstrated that is less toxic than CaNa/sub 2/EDTA. ICRF 158 does not form stable complexes with lead ions in vitro. The mechanism of action of this lipophilic EDTA derivative is compared to that of its hydrophilic correspondent, the chelating agent CaNa/sub 2/EDTA.

  2. Recent results of JT-60U ICRF antenna operation

    International Nuclear Information System (INIS)

    Fujii, T.; Saigusa, M.; Kimura, H.

    1994-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of attractive plasma heating methods for reactor grade tokamaks, because it is quite effective in the wide ranges of plasma density and temperature. An antenna which should inject high power into plasma has been developed intensively because the heating efficiency and the coupling properties depend on its design. The antenna was operated at a small antenna-plasma gap in the JT-60 in out of phase mode, which showed the high heating efficiency to obtain high loading resistance, and similarly to other tokamaks. However, in order to reduce heat load to the antenna from plasma, a wide gap is required in reactor grade tokamaks such as ITER, in which the gap is designed to be 0.15 m in CDA. Two new antennas were fabricated for the JT-60U, which were designed to obtain high loading resistance at a wide gap for (π,0) phasing. The JT-60U ICRF heating system is explained. Also the JT-60U antenna is described. Antenna conditioning has been conducted well in the initial operation period. The phasing mode was set at (π,0) phasing, in which high heating efficiency is expected. The procedure is explained. The coupling and radiation loss properties during ICRF heating are reported. The JT-60U ICRF antennas were conditioned quickly with about 70 shots. The maximum coupled power was 6.4 MW for (π,0) phasing, and the power density was 6.1 MW/m 2 . (K.I.)

  3. Expanding the operating space of ICRF on JET with a view to ITER

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Bonheure, G.; Durodie, F.; Lerche, E.; Lyssoivan, A.; Van Eester, D.; Weyssow, B.; Mantsinen, M.J.; Heikkinen, J.; Salmi, A.; Santala, M.I.K.; Noterdaeme, J.M.; Bovkov, V.V.; Alper, B.; Beaumont, P.; Blackman, T.; Vries, P. de; Gowers, C.; Felton, R.; Kiptily, V.; Lawson, K.; Lomas, P.; Mayoral, M.L.; Monakhov, I.; Popovichev, S.; Sharapov, S.; Bertalot, L.; Castaldo, C.; Tardocchi, M.; La Luna, E. de; Eriksson, L.G.; Baar, M. de; Meo, F.; Mironov, M.; Nunes, I.; Piazza, G.; Noterdaeme, J.M.

    2004-01-01

    The paper reports on ITER-relevant ICRF (ion cyclotron resonance frequency) physics investigated on JET in 2003 and early 2004: minority heating of He 3 and D in H plasmas, minority heating of tritium in D, investigations of finite Larmor radius effects on the RF-induced high-energy tails, fast wave heating and current drive, and new results on the heating efficiency of ICRF antennas. ELM (edge localized mode) studies using fast RF measurements, experimental demonstration of a new ELM-tolerant antenna matching scheme, and technical enhancements planned on the JET ICRF system for 2005, themselves likewise strongly driven by the preparation for ITER, are also summarized. (authors)

  4. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    Directory of Open Access Journals (Sweden)

    Jacquot Jonathan

    2017-01-01

    Full Text Available A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing. Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  5. Design and RF Test of Broadband Coaxial Hybrid Splitter for ITER ICRF System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Wang, S. J.; Park, B. H.; Yang, H. L.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of); Choi, J. J. [Kwangwoon Univ., Seoul (Korea, Republic of)

    2013-10-15

    The ICRF system of the ITER is required to couple 20 MW to the plasma in the 40∼55 MHz frequency band for RF heating and current drive operation. The corresponding matching system of ICRF antenna must be load-resilient for a wide range of antenna load variations due to mode transitions or edge localized modes. Indeed the use of hybrid splitters ensures that no reflections occur at the generator when the reflections on the adjacent lines are equal both in magnitude and in phase, in which case all reflected power will not be seen by the generators and will be returned to the dummy loads. Most 3 dB coaxial hybrid circuits installed and implemented on the ICRF system is single section coupler providing best performance at the design frequency with narrow bandwidth. The bandwidth of such a single-section 3 dB hybrid coupler is limited to less than 20% due to the quarter wavelength transmission line requirement. The amplitude balance becomes rapidly degraded away from the center frequency. We designed, fabricated and tested a high power, ultra-wideband two-section 3 dB coaxial hybrid coupler over all frequencies from 40 MHz to 55 MHz for ITER ICRF system by configuring asymmetric impedance matching. We have designed, fabricated, and tested a 3-dB wideband hybrid coupler for stable and load resilient operation of the ITER ICRF system. The wideband two section 3-dB coaxial hybrid coupler was well designed by configuring asymmetric impedance matching using HFSS. In the rf measurements, we found that wideband hybrid splitter has an amplitude imbalance of 0.1 dB over all frequencies from 40 MHz to 55 MHz. We expect that wideband hybrid splitter will be applicable to ITER ICRF matching system for load resilient operation at fusion plasmas.

  6. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    International Nuclear Information System (INIS)

    Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong; Liao, Suying

    2015-01-01

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator

  7. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Liao, Suying, E-mail: suying-liao@163.com [Air Force Airborne Academy, Guilin, Guangxi 541003 (China)

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.

  8. ICRF heating of passing ions in a thermal barrier tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Campbell, R.; Barter, J.; Cummins, W.F.; Falabella, S.; Poulsen, P.

    1985-05-01

    Ion heating is used in the central cells of tandem mirrors to reduce the collisional trapping of passing ions in the end cell thermal barriers. In this paper, we reevaluate ICRF heating of the TMX-U central cell in two limits. The first we term isotropic, because we impose the condition that ions heated in the perpendicular direction be confined for at least one 90 0 scattering time, thereby heating the passing ions. The second we call anisotropic heating. It uses higher ICRF power to mirror trap a majority of the ions near the midplane, thereby reducing the density and collisionality of passing ions. Anisotropic heating has the advantage of increasing with ICRF power, whereas isotropic heating is limited by ion collisionality. Both techniques require gas fueling near the central cell midplane, with an ion cyclotron resonance toward each end cell to heat the cold ions

  9. Matrix method for two-dimensional waveguide mode solution

    Science.gov (United States)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  10. Full-wave and Fokker Planck analysis of ICRF heating experiments in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Golovato, S.; Porkolab, M.; Takase, Y.

    1996-01-01

    The Alcator C-Mod device is a high field, high density, shaped tokamak with parameters a = 0.22 m, R 0 = 0.67 m, B 0 ≤ 9.0 T, κ ≤ 1.8, δ ≤ 0.8, and 1.0 x 10 20 m -3 n e (0) ≤ 1.0 x 10 21 m -3 . Four megawatt of ICRF power is available at 80 MHz. The wide operating range in magnetic field makes several heating schemes possible: (i) Second harmonic heating of hydrogen (f 0 = 2f CH ) at 2.6 T in (D-H); (ii) Fundamental heating of (H) (f 0 = f CH ) at 5.3T in a D-(H) plasma; and (iii) Fundamental heating of ( 3 He) (f 0 = f C 3 He ) at 7.9 T in a D-( 3 He) plasma. The most successful heating regime to date has been (H)-minority heating at 5.3 T. Pellet enhanced performance (PEP) modes have also been achieved in C-Mod in D-(H) at 5.3 T and in D-( 3 He) at 7.9 T, with a combination of intense ICRF heating and Li-pellet injection. A variety of numerical models are used to analyze these heating schemes. A 1-D full-wave code (FELICE) is used to study open-quotes single passclose quotes damping of the ICRF wavefront and damping of mode-converted ion Bernstein waves. A toroidal full-wave code (FISIC) is used to study interference and focussing effects of the ICRF waves as well as damping of the ICRF power upon multiple passes of the ICRF wavefront. A combined bounce averaged Fokker Planck and toroidal full-wave code (FPPRF) is used to study the ion tail formation, orbit losses, and the power partition of the ICRF tail to the background electrons and ions. Full-wave and Fokker Planck analyses confirm the strong single pass absorption of the ICRF power in D-(H) at 5.3 T. Analysis of PEP-mode plasmas in D-( 3 He) indicates improved wave focussing and 3 He-cyclotron absorption of the ICRF waves relative to L-mode. A dramatic increase in the transfer of 3 He tail power to the background deuterium is also found for PEP-mode plasmas

  11. Review of ICRF antenna development and heating experiments up to advanced experiment I, 1989 on the JT-60 tokamak

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki

    1992-03-01

    Two main subjects of ion cyclotron range of frequencies (ICRF) heating on JT-60 are described in this paper from development phase of the JT-60 ICRF heating system up to advanced experiment I, 1989. One is antenna design and development for the high power JT-60 ICRF heating system (6 MW for 10 s at a frequency range of 108 - 132 MHz). The other is the experimental investigation of characteristics of second harmonic ICRF heating in a large tokamak. (J.P.N.)

  12. Density convection near radiating ICRF antennas and its effect on the coupling of lower hybrid waves

    International Nuclear Information System (INIS)

    Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F.; Noterdaeme, J.M.; Tuccillo, A.A.

    2003-01-01

    Combined operation of lower hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore-Supra and Jet tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore-Supra experiments. Moreover, recent experiments in Jet indicate that the LH coupling degradation depends on the ICRF power and its launched k / spectrum. The 2D density distribution around the Tore-Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum. (authors)

  13. Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves

    International Nuclear Information System (INIS)

    Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F.; Mayoral, M.-L.; Mailloux, J.; Noterdaeme, J.-M.; Tuccillo, A.A.

    2003-01-01

    Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum

  14. Simulation study of energetic ion distribution during combined NBI and ICRF heating in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Kasilov, V.

    2006-01-01

    In the LHD, significant performances of ICRF heating (fundamental, minority heating regime) have been demonstrated and up to 500keV of energetic tail ions have been observed by fast neutral particle analysis (NPA). These measured results indicate a good property of energetic ion confinement in helical systems. From the 9th campaign of LHD experiment (FY2005) a new perpendicular NBI heating system (P<3MW) has been installed and an effective heating of perpendicularly injected beam ions by the higher harmonics ICRF heating is expected. ICRF heating generates highly energetic tail ions, which drift around the torus for a long time (typically on a collisional time scale). Thus, the behavior of these energetic ions is strongly affected by the characteristics of the drift motions, which depend on the magnetic field configuration. In particular, in a three-dimensional (3D) magnetic configuration, complicated drift motions of trapped particles would play an important role in the confinement of the energetic ions and the ICRF heating process. Therefore a global simulation of ICRF heating is necessary for the accurate modeling of the plasma heating process in a 3D magnetic configuration. In this paper we study the energetic ion distribution during combined NBI and 2nd harmonics ICRF heating in LHD using two global simulation codes: a full wave field solver TASK/WK and a drift kinetic equation solver GNET. GNET solves a linearized drift kinetic equation for energetic ions including complicated behavior of trapped particles in 5-D phase space. TASK/WM solves Maxwell's equation for RF wave electric field with complex frequency as a boundary value problem in the 3D magnetic configuration. (author)

  15. Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator

    Science.gov (United States)

    Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying

    2017-06-01

    In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.

  16. Fusion plasma theory: Task 3, Auxiliary heating in tokamaks

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1989-07-01

    The research that we have accomplished during the past year (1988--1989) includes the topics of ICRF fast wave waveguide coupling to H-mode profiles simulating CIT and full wave ICRF field solutions and a power conservation relation based on fundamental principles with JET and CIT heating applications. We have also published work on Fokker-Planck simulations of minority ion ICRF strong core electron sawteeth processes in JET, a publication on the effect of plasma edge density fluctuation and ponderomotive force effects on the coupling of ion Bernstein waves and a publication on the coupling of dielectric filled waveguides to plasmas in the ICRF. The analysis of ICRF H-mode coupling is crucial to the economic success of proposed ignition devices such as CIT and ITER. We have analyzed the coupling of ICRF waveguide launchers to H-mode density profiles modelled by a pedestal width and Gaussian edge variations with gradients comparable to current machines. We find that the launcher aperture spectrum, density gradients and width of the pedestal are important parameters in determining the coupling efficiency. The launcher-plasma admittance spectrum in k y -k z space is utilized to show that the H-mode launcher reflections increase when compared to the L-mode profile, but that they can be handled by launcher matching circuits and modest modifications of the H-mode profile. We plan to analyze the recent successful JET ICRF H-mode operation utilizing our formalism. We have also carried out a full wave ICRF field solution and the associated power conservation relation with expressions evaluated up to the third harmonic. We have implemented this in a computer code which utilizes invariant imbedding to solve the system of equations. 7 refs., 1 tab

  17. Heat deposition on the first wall due to ICRF-induced loss of fast ions in JT-60U

    International Nuclear Information System (INIS)

    Kusama, Y.; Tobita, K.; Kimura, H.; Hamamatsu, K.; Fujii, T.; Nemoto, M.; Saigusa, M.; Moriyama, S.; Tani, K.; Koide, Y.; Sakasai, A.; Nishitani, T.; Ushigusa, K.

    1995-01-01

    In JT-60U, the heat deposition on the first wall due to the ICRF-induced loss of fast ions was investigated by changing the position of the resonance layer in the ripple-trapping region. A heat spot appears on the first wall of the same major radius as the resonance layer of the ICRF waves. The broadening of the heat spot in the major radius direction is consistent with that of the resonance layer due to the Doppler broadening. The heat spot is considered to be formed by the ICRF-induced ripple-trapped loss of fast ions. Although the total ICRF-induced loss power to the heat spot is as low as 2% of the total ICRF power, the additional heat flux will become a new issue because of the localized heat deposition on the first wall. ((orig.))

  18. Heat Loads On Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Chantant, M.; Beaumont, B.; Ekedahl, A.; Goniche, M.; Moreau, P.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency launchers plasma facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. Lessons are drawned both with regards to Tore Supra possible operational limits and to ITER ICRF launcher design

  19. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  20. The numerical solution of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.; Todd, A.M.M.

    1986-01-01

    The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)

  1. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  2. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  3. Numerical solutions of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.

    1985-01-01

    The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown

  4. Possible effects of RF field near ICRF antenna on density control during long pulse discharge in LHD

    International Nuclear Information System (INIS)

    Saito, K.; Kumazawa, R.; Mutoh, T.; Seki, T.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Noda, N.; Watanabe, T.; Shoji, M.; Masuzaki, S.; Morita, S.; Goto, M.; Torii, Y.; Takeuchi, N.; Shimpo, F.; Nomura, G.; Yokota, M.; Kato, A.; Zhao, Y.

    2005-01-01

    In the large helical device (LHD), the plasma duration time was extended up to 150 s by ion cyclotron range of frequencies (ICRF) heating. Time-integrated total input power reached 71 MJ. However, this discharge terminated due to radiation collapse accompanied by an increase of electron density. The temperature of the divertor plates and the intensity of H α were locally increased in the same toroidal section, near the ICRF antenna. One of the possible causes of the increase of radiation power is an outgassing from the divertor plates that were heated by particles accelerated in the cyclotron resonance layer near the antenna. Another possible cause is the outgassing from the ICRF antenna itself due to a temperature increase of the ICRF antenna owing to high-energy particles, or the formation of an RF (radio frequency) sheath

  5. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  6. Foundations of ICRF heating--A historical perspective

    International Nuclear Information System (INIS)

    Hosea, J.C.

    1994-01-01

    Tom Stix has made many major contributions to the development of understanding of a wide array of rf heating and diagnostics methods, in experiment and theory. In recognition of his profound influence on ion cyclotron range of frequencies (ICRF) heating research, this paper is focused on two major building blocks contributed by him which served to help guide and quantify the research toward establishing ICRF heating as a viable technique for the reactor regime: (1) the formalism for quantitative evaluation of antenna loading contained in his 1962 text book and (2) his Fokker-Planck analysis for heating of ions and especially minority species ions in his 1975 Nuclear Fusion paper. Importantly, his work from the mid 1950s to the mid 1970s from which these two building blocks derive, provided a solid basis for the rapid developing ion cyclotron heating research in the 1970s and helped to guide that research to definitive demonstration of the viability of the minority ion heating regime as a reactor heating method by the end of the decade

  7. Rf sheaths and impurity generation by ICRF [ion cyclotron range of frequencies] antennas

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1988-11-01

    In general, Faraday screen elements in an ICRF antenna are not aligned precisely along the combined toroidal and poloidal magnetic fields. When plasma of density n > 2ε 0 V/eg 2 /approximately/ 10 9 cm -3 is present in the gap between elements, electron response to the parallel electric field shorts out the electric field over most of the gap, leaving a narrow sheath of positive space charge and intense electric field. Here V denotes the voltage across the gap and g the gap spacing. This intense electric field accelerates ions up to an appreciable fraction of the gap voltage (/approximately/ 1 kV), sufficient to cause physical sputtering of the screen material. Impurities so generated constitute the principal limitation on power density (kW/cm 2 ) for ICRF antennas. ICRF antenna and Faraday screen design principles which minimize sputtering are discussed. 24 refs., 9 figs., 1 tab

  8. ICRF antenna modeling and simulation. Final report, March 1, 1993--May 31, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    SAIC has undergone a three year research and development program in support of the DOE Office of Fusion Energy's (OFE) program in Ion Cyclotron Range of Frequencies (ICRF) heating of present, next generation, and future plasma fusion devices. The effort entailed advancing theoretical models and numerical simulation technology of ICRF physics and engineering issues associated predominately with, but not limited to, tokamak Ion Cyclotron Heating (ICH) and fast wave current drive (FWCD). Ion cyclotron heating and current drive is a central element in all current and planned large fusion experiments. In recent years, the variety of uses for ICRF systems has expanded, and includes the following: (1) Heating sufficient to drive plasma to ignition. (a) Second-harmonic T heating. (b) He 3 minority heating. (2) Second-harmonic He 4 heating in H plasma (for non-activated phase). (3) Detailed equilibrium profile control minority heating. (a) Ion minority (He 3 ) CD (for profile control on inside of plasma). (b) Ion minority (He 3 ) CD (for profile control on outside of plasma). (4) Ion-ion hybrid regime majority ion heating. (5) Electron current drive. (6) Mode conversion to drive current. (7) Deuterium minority heating. (8) Sawtooth instability stabilization. (9) Alpha particle parameter enhancement. (10) The generation of minority tails by ICRF to simulate D-T plasma particle physics in a deuterium plasma. Optimization of ICRF antenna performance for either heating or current drive depends critically on the complex balance and interplay between the plasma physics and the electromechanical system requirements. For example, ITER IC rf designs call for an IC. system frequency range from 20 MHz to 100 MHz. Additionally, antenna designs and operational modes that minimize impurity production and induced sheath formation may degrade current drive efficiency. Such effects have been observed in experiments involving it versus zero antenna phasing

  9. ICRF antenna modeling and simulation. Final report, March 1, 1993--May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-30

    SAIC has undergone a three year research and development program in support of the DOE Office of Fusion Energy`s (OFE) program in Ion Cyclotron Range of Frequencies (ICRF) heating of present, next generation, and future plasma fusion devices. The effort entailed advancing theoretical models and numerical simulation technology of ICRF physics and engineering issues associated predominately with, but not limited to, tokamak Ion Cyclotron Heating (ICH) and fast wave current drive (FWCD). Ion cyclotron heating and current drive is a central element in all current and planned large fusion experiments. In recent years, the variety of uses for ICRF systems has expanded, and includes the following: (1) Heating sufficient to drive plasma to ignition. (a) Second-harmonic T heating. (b) He{sup 3} minority heating. (2) Second-harmonic He{sup 4} heating in H plasma (for non-activated phase). (3) Detailed equilibrium profile control minority heating. (a) Ion minority (He{sup 3}) CD (for profile control on inside of plasma). (b) Ion minority (He{sup 3}) CD (for profile control on outside of plasma). (4) Ion-ion hybrid regime majority ion heating. (5) Electron current drive. (6) Mode conversion to drive current. (7) Deuterium minority heating. (8) Sawtooth instability stabilization. (9) Alpha particle parameter enhancement. (10) The generation of minority tails by ICRF to simulate D-T plasma particle physics in a deuterium plasma. Optimization of ICRF antenna performance for either heating or current drive depends critically on the complex balance and interplay between the plasma physics and the electromechanical system requirements. For example, ITER IC rf designs call for an IC. system frequency range from 20 MHz to 100 MHz. Additionally, antenna designs and operational modes that minimize impurity production and induced sheath formation may degrade current drive efficiency. Such effects have been observed in experiments involving it versus zero antenna phasing.

  10. Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra

    International Nuclear Information System (INIS)

    Harris, J.H.; Hutter, T.; Hogan, J.T.; Basiuk, V.; Beaumont, B.; Becoulet, A.; Bremond, S.; Carter, M.D.; Goniche, M.; Goulding, R.H.; Guilhem, D.; Haste, G.R.; Hoffman, D.J.; Litaudon, X.; Nguyen, F.

    1997-01-01

    The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra ion-cyclotron range of frequencies (ICRF) antennas and lower-hybrid (LH) grills are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900 C are observed by the end of 2 s power pulses of 2 MW per antenna. The steady-state temperature distribution is determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90 (current drive) phasing. Transient heat fluxes of 1-20 MW/m 2 are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m 2 over areas of several cm 2 to plasma-facing components. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented. (orig.)

  11. Monte-Carlo study of ICRF-sustained mode operation in tandem mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1984-09-01

    A study, using a Monte-Carlo simulation code, of ICRF-sustained mode operation in tandem mirrors by way of ICRF end-cell fuelling and heating is described. Although the basic parameter space considered corresponds to the Phaedrus experiment, the central-cell density and temperatures are extended towards the reactor regime. It is found that significant end cell ion potential barriers can be generated with ICRF, but that, owing to choking of the central-cell ion source stream by the plugging potential, saturation occurs and power requirements rapidly increase, so that the potential rise is limited to about twice the central-cell ion temperature. Although performance is improved as the ion cyclotron resonance approaches the end-cell mid-plane, no significant difference is found between inboard, outboard or double resonance location. As the central-cell density and temperatures are increased, the RF power requirement is found to increase dramatically. Optimum performance for end cell fuelling results when the central-cell electron temperature is higher than the ion temperature, but the magnitude of this ratio is limited by an increase in threshold power level with electron temperature.

  12. Global analysis of ICRF wave coupling on Tore Supra

    International Nuclear Information System (INIS)

    Goniche, M.; Bremond, S.; Colas, L.

    2003-01-01

    The Tore Supra tokamak is equipped with a multi-megawatt ion cyclotron range of frequency (ICRF) system for heating and current drive. The coupling of the fast wave to the plasma, characterized by the distributed coupling resistance along the radiating straps, is a crucial issue in order to launch large RF powers. Many factors can have an effect on ICRF wave coupling. Quantitative prediction from theoretical modelling requires the knowledge of the local inhomogeneous plasma density profile in front of the antenna for running sophisticated antenna codes. In this work, we have rather followed a 'global' approach, based on Tore Supra experimental results, for the parametric study of the coupling resistance. From a large data base covering seven experimental campaigns (∼2250 shots), a scaling law of the coupling resistance including the main parameters of the plasma and of the antenna configuration is established. This approach is found to be reliable for the analysis of coupling in the different scenarios: He/D 2 gas filling, gas/pellets for plasma fuelling, plasma leaning on inner wall/low field side limiter, limiter/ergodic divertor configuration, minority heating/direct electron heating. From one scenario to another, a significant variation of the coefficients of the scaling law is found. The study of these variations allows to get some insight on the main physical mechanisms which influence the ICRF wave coupling in a tokamak operation, such as the wall conditioning and recycling conditions, RF sheaths or frequency. (author)

  13. Operation of ICRF antennas in a full tungsten environment in ASDEX Upgrade

    Science.gov (United States)

    Bobkov, Vl.; Braun, F.; Dux, R.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; ASDEX Upgrade Team

    2009-06-01

    In the 2007 and early part of 2008 experimental campaigns, ASDEX Upgrade operated with full tungsten (W) wall without boronization. Use of ICRF power results in a significant increase of W source. Low temperature conditions at the plasma facing components, achieved by a large clearance between the separatrix and the antenna (>6 cm) and by elevated gas puff rates (>5×1021 s) help to lower W sputtering yield during ICRF. Operation of neighboring ICRF antennas at the phase difference close to -90° can lead to a reduction in the W source. However, a reduction of parallel near-fields by antenna design is needed to further minimize the W source. A relation has been established between the HFSS code calculations predicting a dominant role of box currents in the formation of parallel antenna near-fields and the experiment. The shapes of the measured vertical profile of effective sputtering yields and the calculated sheath driving voltages show a qualitative agreement. This confirms that the existing tools are a good basis to design an improved antenna.

  14. Operation of ICRF antennas in a full tungsten environment in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Bobkov, Vl.; Braun, F.; Dux, R.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Mueller, H.W.; Neu, R.; Noterdaeme, J.-M.; Puetterich, Th.; Rohde, V.

    2009-01-01

    In the 2007 and early part of 2008 experimental campaigns, ASDEX Upgrade operated with full tungsten (W) wall without boronization. Use of ICRF power results in a significant increase of W source. Low temperature conditions at the plasma facing components, achieved by a large clearance between the separatrix and the antenna (>6 cm) and by elevated gas puff rates (>5x10 21 s -1 ) help to lower W sputtering yield during ICRF. Operation of neighboring ICRF antennas at the phase difference close to -90 deg. can lead to a reduction in the W source. However, a reduction of parallel near-fields by antenna design is needed to further minimize the W source. A relation has been established between the HFSS code calculations predicting a dominant role of box currents in the formation of parallel antenna near-fields and the experiment. The shapes of the measured vertical profile of effective sputtering yields and the calculated sheath driving voltages show a qualitative agreement. This confirms that the existing tools are a good basis to design an improved antenna.

  15. Alpha-particle simulation using NBI beam and ICRF wave

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hamada, Y.

    1984-07-01

    A new idea to produce the distribution function similar to that of alpha-particles in an ignited plasma has been proposed. This concept is attributed to the acceleration of the injected beam up to about 1 MeV/nucleon by the ICRF wave with cyclotron higher harmonics. This new method makes it possible to perform the simulation experiments for alpha-particles under the condition of moderate plasma parameters (e.g., Tsub(e) = 4 keV, nsub(e) = 3.5x10 19 m -3 and B sub(T) = 3 T). And it is found that 3ωsub(ci) ICRF wave is preferable compared with other cyclotron harmonics, from the viewpoints of the effective tail formation with smaller bulk ion heating and lower amplitude of the applied electric field. The formula for the maximum energy of the extended beam is also derived. (author)

  16. Effects of ICRF-187 and L-Carnitine on bleomycin-induced lung toxicity in rats

    International Nuclear Information System (INIS)

    Shouman, Samia A.; Abdel-Hamid, M.A.; Hassan, Zeinab A.; Mansour, Heba H.

    2002-01-01

    The possible modulatory effects of ICRF-187 and L-carnitine against bleomycin-induced pulmonary toxicity in male rats were investigated. Repeated administration of bleomycin (10 mg/kg, twice weekly for 6 consecutive weeks) produced significant lung toxicity. The toxicity was manifested by significant increase in normal contents of lipid peroxide (LPO, 91.7%) reduced glutathione (GSH, 73.2%) and oxidized glutathione (GSSG, 135.4%) as well as the activity of superoxide dismutase (SOD, 222.7%). Thirty minutes prior to bleomycin treatment, other groups of rats received either ICRF-187 (95 mg/kg) or L-carnitine (500 mg/kg) adopting the same schedule of treatment as in bleomycin-treated group. L-carnitine decreased bleomycin-induced elevations in SOD activity, GSH and GSSG contents, however, it failed to suppress the increase in LPO level. On the other hand, treatment with ICRF-187 returned back all the elevated biochemical parameters induced by bleomycin to nearly normal levels. In conclusion, the results of this study showed a potential capability of ICRF-187 to mitigate the bleomycin-induced lung injury. Moreover, despite the inability of L-carnitine to change the elevated LPO content, it was able however, to decrease the elevated endogenous antioxidant parameters. (author)

  17. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  18. ICRF specific plasma wall interactions in JET with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, Vl., E-mail: bobkov@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Arnoux, G. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); Brezinsek, S.; Coenen, J.W. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Colas, L. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Clever, M. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Czarnecka, A. [Association EURATOM-IPPLM, Hery 23, 01-497 Warsaw (Poland); Braun, F.; Dux, R. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Huber, A. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Jacquet, P. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); Klepper, C. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Lerche, E. [LPP-ERM/KMS, Association Euratom-Belgian State, TEC Partners, Brussels (Belgium); Maggi, C. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Marcotte, F. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Maslov, M.; Matthews, G.; Mayoral, M.L. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); McCormick, K. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Meigs, A. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); and others

    2013-07-15

    A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q{sub 95}-scans, and intensification of those for the −90° phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall.

  19. A thermal transport coefficient for ohmic and ICRF plasmas in alcator C-mode

    International Nuclear Information System (INIS)

    Daughton, W.; Coppi, B.; Greenwald, M.

    1996-01-01

    The energy confinement in plasmas produced by Alcator C-Mod machine is markedly different from that observed by previous high field compact machines such as Alcator A and C, FT, and more recently FTU. For ohmic plasmas at low and moderate densities, the confinement times routinely exceed those expected from the so-called open-quotes neo-Alcatorclose quotes scaling by a factor as high as three. For both ohmic and ICRF heated plasmas, the energy confinement time increases with the current and is approximately independent of the density. The similarity in the confinement between the ohmic and ICRF regimes opens the possibility that the thermal transport in Alcator C-Mod may be described by one transport coefficient for both regimes. We introduce a modified form of a transport coefficient previously used to describe ohmic plasmas in Alcator C-Mod. The coefficient is inspired by the properties of the so-called open-quotes ubiquitousclose quotes mode that can be excited in the presence of a significant fraction of trapped electrons and also includes the constraint of profile consistency. A detailed series of transport simulations are used to show that the proposed coefficient can reproduce the observed temperature profiles, loop voltage and energy confinement time for both ohmic and ICRF discharges. A total of nearly two dozen ohmic and ICRF Alcator C-Mod discharges have been fit over the range of parameter space available using this transport coefficient

  20. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  1. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  2. Spontaneous emission of quantum dots in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear...... in the slow light regime of the waveguide mode. Time resolved experiments show a 15-fold enhancement of the spontaneous emission rate, with coupling efficiencies of single photons into Anderson localized cavity modes of 94%. These results show that the performances of Anderson-localized cavities...

  3. Auxiliary radiofrequency heating of tokamaks, Task 3

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1991-07-01

    The research performed under this grant during the past three years has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling and heating issues: efficient coupling during the L- to H-mode transition by analysis and computer simulation of ICRF antennas edge plasma profiles; analysis of both dielectric-filled waveguide and coil ICRF antenna coupling to plasma edge profiles; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results; ICRF full-wave field solutions, power conservation and heating analyses; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report. 15 refs

  4. Arc detection for the ICRF system on ITER

    Science.gov (United States)

    D'Inca, R.

    2011-12-01

    The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.

  5. 2-D mapping of ICRF-induced SOL perturbations in

    Czech Academy of Sciences Publication Activity Database

    Colas, L.; Gunn, J. P.; Nanobashvili, I.; Petržílka, Václav; Goniche, M.; Ekedahl, A.; Heuraux, S.; Joffrin, E.; Saint Laurent, F.; Balorin, C.; Lowry, C.; Basiuk, V.

    363-365, č. 4 (2007), s. 555-559 ISSN 0022-3115 R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : ICRF antenna * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.643, year: 2007

  6. ICRF experiments and potential formation on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ichimura, M.; Cho, T.; Higaki, H.

    2005-01-01

    Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase in the plasma parameters. Recently, a new high power gyrotron system has been constructed and the plug ECRH power extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed. (author)

  7. Interaction of ICRF power and edge plasma in Tore Supra ergodic divertor configuration

    International Nuclear Information System (INIS)

    Nguyen, F.; Grosman, A.; Basiuk, V.; Fraboulet, D.; Beaumont, B.; Becoulet, A.; Ghendrih, Ph.; Ladurelle, L.; Meslin, B.

    2000-01-01

    The coupling of ICRF power to plasma is a crucial problem in Tore Supra for high power and long pulse operations and depends greatly on the edge parameters, in particular on the edge density. Conversely, the behaviour of the bulk plasma is related to the edge conditions and the injection of RF power also induces major modifications on the edge plasma. Moreover, the Ergodic Divertor (ED) of Tore Supra imposes a complex configuration at the edge due to the presence of the magnetic perturbation. Several diagnostics are available to study the interaction of ICRF power with the edge plasma: Langmuir probes on the ED modules, infra red (IR) cameras, charge exchange neutral analysers. In minority heating scheme, the edge density is very sensitive to any perturbation in the high recycling regime which is always found in the ED configuration for relevant plasma parameters. Partially detached regimes, with or without inhomogeneities of density and temperature induced by the flux tubes of the laminar layer, are obtained for high resistance coupling values. The coupling is then not very robust and feedback control or antenna automatic matching techniques are developed. In fast wave electron heating scheme with ED, various fast wave absorption mechanisms (minority heating, Mode Conversion, Alfven resonance) are present at the plasma edge due to the large size of the plasma. The ICRF coupling is difficult due to the low fast wave direct electron damping, even with high hydrogen minority scheme. An increase of the injected ICRF power could improve this situation

  8. Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.H. [Oak Ridge National Lab., TN (United States); Hutter, T. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Hogan, J.T. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra- ion-cyclotron range-of-frequencies (ICRF) antennas and lower-hybrid (LH) grills-are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900{degrees} C are observed by the end of 2-s power pulses of 2 MW per antenna. The distribution and maximum values of temperature are determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90` (current drive) phasing. Transient heat fluxes of 1-20 MW/m{sup 2} are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control, and are not simply correlated with the strap phasing or the final surface temperature distributions. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m{sup 2} over areas of several cm{sup 2} to plasma-facing components such as the grill or antenna lateral bumpers. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented, and possibilities for controlling these interactions are discussed.

  9. ICRF power-deposition profiles and heating in monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Stuart, D.F.

    1989-01-01

    In this paper, we compare experimental results of electron and ion-heating in discharges that feature monster sawtooth with those in pellet-produced peaked-density profile discharges which were heated with ICRF. Also we carry out a comprehensive analysis of ICRF-heated peaked-density profile discharges by a transport code to simulate the evolution of JET discharges and to provide an insight into the improved heating and confinement found in these discharges. In this analysis, the ICRF power-deposition profile in the minority-heating scenario is computed by the ray-tracing code BRAYCO that self-consistently takes the finite antenna geometry, its radiation spectrum and the hot-plasma damping into account. The power delivered to ions and electrons is calculated based on Stix model. (author) 10 refs., 5 figs

  10. Electromagnetic simulations of JET ICRF ITER-like antenna with TOPICA and SSWICH asymptotic codes

    Directory of Open Access Journals (Sweden)

    Křivská Alena

    2017-01-01

    Full Text Available Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF heating is routinely used in the JET tokamak. To increase the ICRF heating power available from the A2 antennas, the ICRF ITER-Like Antenna (ILA was reinstalled for the 2015 JET ITER-like wall experimental campaign. The application of high levels of ICRF power typically results in increased plasma wall interaction which leads to the observation of enhanced influx of metallic impurities in the plasma edge. It is assumed that the impurity production is mainly driven by the parallel component of the Radio-Frequency (RF antenna electric near-field, E// (parallel to the confinement magnetic field of the tokamak, that is rectified in a thin boundary layer (RF sheath. Torino Polytechnic Ion Cyclotron Antenna (TOPICA code was used to compute E// field maps in front of the ILA and between its poloidal limiters in the presence of plasma using measured density profiles and various antenna feedings. E// field maps calculated between the poloidal limiters were used to estimate the poloidal distribution of RF-sheath Direct Current (DC potential in this private region of the ILA and make relative comparison of various antenna electrical settings. For this purpose we used the asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating Slow-Wave (SSWICH-SW code. These estimations can help to study the formation of RF sheaths around the antenna and even at distant locations (∼3m away.

  11. ICRF [Ion Cyclotron Range of Frequencies] heating and antenna coupling in a high beta tokamak

    International Nuclear Information System (INIS)

    Elet, R.S.

    1988-01-01

    Maxwell's Equations are solved in two-dimensions for the electromagnetic fields in a toroidal cavity using the cold plasma fluid dielectric tensor in the Ion Cyclotron Range of Frequencies (ICRF). The Vector Wave Equation is transformed to a set of two, coupled second-order partial differential equations with inhomogeneous forcing functions which model a wave launcher. The resulting equations are finite differenced and solved numerically with a complex banded matrix algorithm on a Cray-2 computer using a code described in this report. This code is used to study power coupling characteristics of a wave launcher for low and high beta tokamaks. The low and high beta equilibrium tokamak magnetic fields applied in this model are determined from analytic solutions to the Grad-Shafranov equation. The code shows good correspondence with the results of low field side ICRF heating experiments performed on the Tokamak of Fontenay-Aux-Roses (TFR). Low field side and high field side antenna coupling properties for ICRF heating in the Columbia High Beta Tokamak (HBT) experiment are calculated with this code. Variations of antenna position in the tokamak, ionic concentration and plasma density, and volume-averaged beta have been analyzed for HBT. It is found that the location of the antenna with respect to the plasma has the dominant role in the design of an ICRF heating experiment in HBT. 10 refs., 52 figs., 13 tabs

  12. Task III: auxillary heating in tokamaks and tandem mirrors. Progress report on fusion plasma theory

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1986-06-01

    The research we have accomplished with this grant has focused on ICRF coupling, wave propagation, heating and breakeven studies for tokamaks such as JET. The highlights include fundamental work on a differential equation for wave fields incorporating equilibrium gradients, strong absorption and mode conversion and a new wave power absorption and conservation relation for ICRF in inhomogeneous plasmas. We have also formulated and developed a code which solves differential equation for ICRF waveguide coupling in tokamak edge density regions. We are also examining the excitation of ion Bernstein waves from fast magnetosonic waves occurring in density gradients. Our current efforts involve the explanation of current JET ICRF results such as the large electron sawteeth in the core region in terms of hot, non-Maxwellian ICRF theory

  13. RF field measurements in the vicinity of an ICRF antenna

    International Nuclear Information System (INIS)

    Majeski, R.; Intrator, T.; Roberts, D.; Hershkowitz, N.; Tataronis, J.; Grossmann, W.

    1988-01-01

    Measurements of the rf fields near an ICRF antenna installed in the central cell of the Phaedrus-B tandem mirror have been made, both in vacuum and in the presence of plasma. The antenna is a Faraday shielded partial turn loop. The front surface of the Faraday shield is composed of cylindrical elements in an arrangement similar to the Faraday shield design employed on TFTR. The antenna is run at relatively low power levels, in the 3.5-10 MHz frequency range. Two other ICRF systems in the phaedrus-B central cell sustain and heat the plasma at the 400 KW level. The vacuum field measurements are compared with the predictions of the ARGUS code, which models details of the Faraday shield structure. Fields in the plasma are modelled by the ANTENA code. Particle currents collected by the Faraday shield during plasma operation are also observed

  14. Advanced impedance matching system for ICRF heating using innovative twin stub tuner and frequency variation

    International Nuclear Information System (INIS)

    Kumazawa, R.; Saito, K.; Kasahara, H.; Seki, T.; Mutoh, T.; Shimpo, F.; Nomura, G.; Kato, A.; Okada, H.; Zhao, Y.; Kwak, J.G.; Yoon, J.S.

    2008-01-01

    Ion cyclotron range of frequency (ICRF) heating has been a reliable tool for steady-state plasma heating with high RF power of several tens of megawatts. However, a sudden increase in the reflected RF power during ICRF heating experiments with ELMy H-mode plasmas is an issue which must be solved for future fusion experimental devices or fusion reactors. This paper describes an innovative ICRF heating system using a frequency feedback control to reduce the reflected power in response to the rapid change in the plasma impedance in the ELMy H-mode plasma. A twin stub tuner has been newly invented for this purpose. The feasibility of keeping the reflected RF power fraction at a low level, e.g. 1%, is demonstrated even with a large change in plasma resistance, e.g. 2 ∼ 8Ω. Calculated and experimental results are presented for the conventional double stub tuner impedance matching system equipped with the twin stub tuner.

  15. Current phase control test based on real-time measurement of impedance matrix of ICRF antennas

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kumazawa, R.; Seki, T.; Kasahara, H.; Yokota, M.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    New ion cyclotron range of frequencies (ICRF) antennas have just been installed in the large helical device (LHD). These side-by-side ICRF antennas are symmetrical and designed to launch fast waves with various wave numbers parallel to the magnetic field line. The wave number can be controlled by changing the current phase on the straps; however, the mutual coupling between antennas changes antenna impedances, even if the plasma parameters are constant, leading to an increase in the reflected power. In addition to the current phase control, impedance matching devices must be tuned for the protection of tetrode tubes and efficient power injection. For this purpose, the impedance matrix of ICRF antennas must be determined, and it can be deduced from the forward and reflected waves at the outlet of the power amplifier by assuming geometric symmetry and reciprocity of the antennas. Using half-scale antennas, we successfully demonstrated simultaneous impedance matching and current phase control.

  16. ICRF current drive by using antenna phase control

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Itoh, K.

    1987-01-01

    A global analysis of current drive in tokamaks by using waves in the ion cyclotron range of frequencies (ICRF), considering the entire antenna-plasma system, is presented. A phase shifted antenna array is used to inject toroidal momentum into the electrons. Within the context of quasi-linear theory, a Fokker-Planck calculation is combined with an ICRF wave propagation-absorption analysis which includes kinetic effects and realistic boundary conditions. The radial profile of the current induced by the mode converted ion Bernstein wave and by the magnetosonic fast wave is obtained, together with the global current drive efficiency (total induced current/total emitted power from the antennas) in the high density and temperature plasma regime. The phase dependence of the global efficiency is investigated by changing the launching conditions such as the total antenna number and the antenna spacing. In medium size tokamaks, the electron power absorption and the associated driven current are found to be affected considerably by the plasma cavity resonance. It is also found that the global efficiency is sensitive to the antenna spacing. When the antenna spacing is increased, the global efficiency is reduced by counter current generation. (author)

  17. ICRF heating and current drive experiments on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Hosea, J.C.; Phillips, C.K.

    1996-01-01

    Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in Enhanced Reverse Shear (ERS) plasmas has been found to delay the back transition out of the ERS state. D-T mode conversion of the fast magnetosonic wave to an Ion Berstein Wave (IBW) for off-axis heating and current drive has been successfully demonstrated for the first time. Parasitic Li 7 cyclotron damping limited the fraction of the power going to the electrons to less than 30%. Similar parasitic damping by Be 9 could be problematic in ITER. Doppler shifted fundamental resonance heating of beam ions and alpha particles has also been observed

  18. Combined therapy of the Walker-256 carcinosarcoma with X-rays and ICRF-159

    International Nuclear Information System (INIS)

    Schaphaus, A.

    1974-01-01

    The radiosensitivity of the Walker-256 carcinosarcoma of the rat under the influence of the tumour-inhibiting bisdioxopiperazine ICRF-159 was studied in collectives of 11-16 animals with tumours. In the combined radio- and chemotherapy, the animals received a daily i.p. injection of 30 mg/kg K.G. of the bisdioxopiperazine ICRF-159 in 1.0 ml NaCl solution containing carboxyl methyl cellulose. The tumour inhibition was determined by multidimensional measurements of the increase in tumour size with the aid of a slide gange. The combined therapy had a better inhibiting effect on tumour growth than radiotherapy alone. (orig./AK) [de

  19. The ICRF-3: Status, Plans, and Multi-wavelength Progress on the next generation Celestial Reference Frame.

    Science.gov (United States)

    Jacobs, Christopher

    2015-08-01

    ICRF-3 seeks to improve upon the highly successful ICRF-2. Our goals are to improve the precision, spatial and frequency coverage relative to the ICRF-2 by 2018. This date is driven by the desire to create radio frames that are ready for comparison with the Gaia optical frame.Several specific actions are underway. A collaboration to improve at S/X-band precision of the Very Long Baseline Array (VLBA) Calibrator Survey's ~2200 sources, which are typically 5 times less precise than the rest of the ICRF-2, is bearing fruit and is projected to yield a factor of 3 improvement in precision. S/X-band southern hemisphere precision improvements are underway with observations using southern antennas such as the AuScope, Warkworth, and HartRAO, South Africa.We also seek to improve radio frequency coverage with X/Ka-band and K-band work. An X/Ka frame of 660 sources now has full sky coverage from the addition of a 2nd southern station in Argentina which is strengthening the southern hemisphere in general. The X/Ka-band frame's precision is now comparable to the ICRF-2 for the 530 sources in common. A K-band collaboration has formed with similar coverage and southern precision goals. By the time of this meeting, we expect K-band to complete full sky coverage with south polar cap observations and to improve spatial density north of -30 deg declination with VLBA observations.On the analysis front, special attention is being given to combination techniques both of Very Long Baseline Interferometry (VLBI) frames and of multiple data types. Consistency of the Celestial Reference Frame (CRF) with the Terrestrial Reference Frame (TRF) and Earth Oreintation Parameters (EOP) is another area of concern. Comparison of celestial frame solutions from various groups is underway in order to identify and correct systematic errors. We will discuss evidence emerging for 100 µas zonal errors in the ICRF2 in the declination range from 0 to -30 deg.Finally, work is underway to identify and

  20. Monte Carlo simulation study of ICRF minority heating in the large helical device

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Ohnishi, M.; Okada, H.

    1994-01-01

    A Monte Carlo simulation code is developed for ion cyclotron range of frequencies (ICRF) heating in helical systems, which takes into account finite beta effects, complicated orbits of high energetic particles, Coulomb collisions and interactions between particles and the applied waves. The code is used to investigate ICRF minority heating in the Large Helical Device (LHD). The configuration of the magnetic fields changes significantly due to finite beta effects in the LHD. The resonance layer position is found to be crucial to the heating efficiency as the plasma beta increases. When the strength of the resonance magnetic field is set to the value at the magnetic axis, a higher heat efficiency is obtained and no clear difference of the heat efficiency due to finite beta effects is found in the high ICRF wave power region. However, the radial profile of the power transferred to majority ions and electrons from minority ions changes because of the deformation of the trapped particle due to the finite beta effects. The heat efficiency is improved if the radial electric field, E r , is positive (E r is directed radially outward) and it is also improved by supplying 3 He minority ions rather than proton minority ions. (author). 26 refs, 11 figs, 2 tabs

  1. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  2. ICRF wave propagation and absorption in axisymmetric mirrors. Annual report, July 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Phillips, M.W.

    1986-04-01

    A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror. In general, the fields peak on the outside which would show that the resulting pondermotive force would tend to stabilize the plasma

  3. Power absorption and confinement studies of ICRF-heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Ogawa, Y.; Toi, K.

    1988-08-01

    The energy confinement characteristics of ICRF-heated tokamak plasmas are studied at high input power density ∼ 2 MWm -3 volume averaged, on the JIPP T-IIU device(R = 0.91 m/a = 0.23 m). High electron and ion temperatures (T e ∼ 2.5 keV, T i ∼ 2.0 keV, at each maximum) have been achieved by the operation at a plasma current I P of 280 kA, plasma line-averaged electron density n-bar e of 7 x 10 13 cm -3 and input power of 2 MW, with a suppression of total radiation loss (30 to 40 % of the total input power) by a carbon coating on the vacuum vessel. The fraction of ICRF power absorbed by the plasma, α, is determined experimentally from the decay of the stored plasma energy just after the ICRF pulse is terminated. The value of α increases slightly with increasing electron density and decreases from 90 to 70 % as the ICRF power is increased from 1 MWm -3 to 2 MWm -3 volume averaged. The global energy confinement time τ E , defined by W P /(P OH + αP rf ), decreases by a factor of 2 ∼ 3 from that in ohmic plasmas as the heating power increases up to 2 MW. It is found that the energy confinement time has a strong line-averaged electron density dependence as τ E ∝n-bar e 0.6 , which is obtained by the use of the measured absorbed power, while the Kaye-Goldston scaling predicts τ E ∝n-bar e 0.26 . (author)

  4. ICRF Mode Conversion Current Drive for Plasma Stability Control in Tokamaks

    International Nuclear Information System (INIS)

    Grekov, D.; Kock, R.; Lyssoivan, A.; Noterdaeme, J. M.; Ongena, J.

    2007-01-01

    There is a substantial incentive for the International Thermonuclear Experimental Reactor (ITER) to operate at the highest attainable beta (plasma pressure normalized to magnetic pressure), a point emphasized by requirements of attractive economics in a reactor. Recent experiments aiming at stationary high beta discharges in tokamak plasmas have shown that maximum achievable beta value is often limited by the onset of instabilities at rational magnetic surfaces (neoclassical tearing modes). So, methods of effective control of these instabilities have to be developed. One possible way for neoclassical tearing modes control is an external current drive in the island to locally replace the missing bootstrap current and thus to suppress the instability. Also, a significant control of the sawtooth behaviour was demonstrated when the magnetic shear was modified by driven current at the magnetic surface where safety factor equals to 1. In the ion cyclotron range of frequencies (ICRF), the mode conversion regime can be used to drive the local external current near the position of the fast-to-slow wave conversion layer, thus providing an efficient means of plasma stability control. The slow wave energy is effectively absorbed in the vicinity of mode conversion layer by electrons with such parallel to confining magnetic field velocities that the Landau resonance condition is satisfied. For parameters of present day tokamaks and for ITER parameters the slow wave phase velocity is rather low, so the large ratio of momentum to energy content would yield high current drive efficiency. In order to achieve noticeable current drive effect, it is necessary to create asymmetry in the ICRF power absorption between top and bottom parts of the plasma minor cross-section. Such asymmetric electron heating may be realized using: - shifted from the torus midplane ICRF antenna in TEXTOR tokamak; - plasma displacement in vertical direction that is feasible in ASDEX-Upgrade; - the

  5. TRANSP modeling of minority ion sawtooth mixing in ICRF + NBI heated discharges in TFTR

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.; Murakami, M.; Phillips, C.K.; Budny, R.; Hammett, G.W.; McCune, D.M.; Wilson, J.R.; Zarnstorff, M.C.

    1995-01-01

    Time independent code analysis indicates that the sawtooth relaxation phenomenon affects RF power deposition profiles through the mixing of fast ions. Predicted central electron heating rates are substantially above experimental values unless sawtooth relaxation is included. The PPPL time dependent transport analysis code, TRANSP, currently has a model to redistribute thermal electron and ion species, energy densities, plasma current density, and fast ions from neutral beam injection at each sawtooth event using the Kadomtsev (3) prescription. Results are presented here in which the set of models is extended to include sawtooth mixing effects on the hot ion population generated from ICRF heating. The ICRF generated hot ion distribution function, line-integral(ν parallel , ν perpendicular ), which is strongly peaked at the center before each sawtooth, is replaced throughout the sawtooth mixing volume by its volume averaged value at each sawtooth. The modified line-integral(ν parallel ,ν perpendicular ) is then used to recalculate the collisional transfer of power from the minority species to the background species. Results demonstrate that neglect of sawtooth mixing of ICRF-induced fast ions leads to prediction of faster central electron reheat rates than are measured experimentally

  6. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  7. 3D electromagnetic theory of ICRF multi PORT multi loop antenna

    International Nuclear Information System (INIS)

    Vdovin, V.L.; Kamenskij, I.V.

    1997-01-01

    In this report the theory of three dimensional antenna in Ion Cyclotron Resonance Frequency (ICRF) is developed for a plasma with circular magnetic surfaces. The multi loop antenna is located in ITER several ports. Circular plasma and antenna geometry provides new important tools to account for: 1) right loading antenna impedance matrix calculation urgently needed for a matching of RF generator with an antenna; 2) right calculation of an antenna toroidal and poloidal excited spectra because the DIFFRACTION, refraction and REFLECTION effects for the Fast Waves (FW) are in FIRST time are included self consistently in 3D ICRF antenna - plasma treatment; 3) right calculation of RF power deposition profiles because self consistently found 3D antenna - plasma FW excited spectra in non slab plasma model are important ones in a weakly dissipated plasma for Fast Waves (even for ITER parameters). (J.P.N.)

  8. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2008-01-01

    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling...... of in-plane curved or helically wound waveguides with use of available simulators for straight waveguides without the restrictions of the known approximate equivalent-index formulas....

  9. High-power and steady-state operation of ICRF heating in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Shinya, T. [The University of Tokyo, Kashiwa 2777-8561 (Japan)

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.

  10. Advanced ponderomotive description of electron acceleration in ICRF discharge initiation

    Directory of Open Access Journals (Sweden)

    Wauters Tom

    2017-01-01

    An example for plasma production by the TOMAS ICRF system is given. Following the described conditions it can be derived that plasma production is (i most efficient close to the antenna straps (few cm's where the field gradient and amplitude are large, and (ii that the lower frequency field accelerates electrons more easily for a given antenna voltage.

  11. Long-Pulse Operation and High-Energy Particle Confinement Study in ICRF Heating of LHD

    International Nuclear Information System (INIS)

    Mutoh, Takashi; Kumazawa, Ryuhei; Seki, Tetsuo

    2004-01-01

    Long-pulse operation and high-energy particle confinement properties were studied using ion cyclotron range of frequency (ICRF) heating for the Large Helical Device. For the minority-ion mode, ions with energies up to 500 keV were observed by concentrating the ICRF heating power near the plasma axis. The confinement of high-energy particles was studied using the power-modulation technique. This confirmed that the confinement of high-energy particles was better with the inward-shifted configuration than with the normal configuration. This behavior was the same for bulk plasma confinement. Long-pulse operation for more than 2 min was achieved during the experimental program in 2002. This was mainly due to better confinement of the helically trapped particles and accumulation of fewer impurities in the region of the plasma core, in conjunction with substantial hardware improvements. Currently, the plasma operation time is limited by an unexpected density rise due to outgassing from the chamber materials. The temperature of the local carbon plates of the divertor exceeded 400 deg, C, and a charge-coupled device camera observed the hot spots. The hot spot pattern was well explained by a calculation of the accelerated-particle orbits, and those accelerated particles came from outside the plasma near the ICRF antenna

  12. Monte Carlo simulation study of the ICRF minority heating in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Nakajima, N.; Ohnishi, M.; Okada, H.

    1993-10-01

    A Monte Carlo simulation code is developed for the ICRF heating in helical systems, which takes into account finite beta effects, complicated orbits of high energetic particles, Coulomb collisions, and interactions between the particles and the applied waves. The code is used to investigate the ICRF minority heating in the Large Helical Device. The configuration of the magnetic fields changes significantly due to finite beta effects in the Large Helical Device. The resonance layer position is found to be crucial to the heating efficiency as the plasma beta increases. When the strength of the resonance magnetic field is set to the value at the magnetic axis, the higher heat efficiency is obtained and no clear difference of the heat efficiency due to the finite beta effects is found at the high ICRF wave power region. However the radial profile of the transferred power to majority ions and electrons from minority ions changes by the deformation of the trapped particle orbits due to the finite beta effects. The heat efficiency is improved if the radial electric field, E r , is positive (E r is directed radially outward) and it is also improved by supplying 3 He minority ions rather than proton minority ions. (author)

  13. Wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, George

    2012-01-01

    This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhe...... bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain....

  14. Modeling of EAST ICRF antenna performance using the full-wave code TORIC

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, E. M., E-mail: eedlund@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Bonoli, P. T.; Porkolab, M.; Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2015-12-10

    Access to advanced operating regimes in the EAST tokamak will require a combination of electron-cyclotron resonance heating (ECRH), neutral beam injection (NBI) and ion cyclotron range frequency heating (ICRF), with the addition of lower-hybrid current drive (LHCD) for current profile control. Prior experiments at the EAST tokamak facility have shown relatively weak response of the plasma temperature to application of ICRF heating, with typical coupled power about 2 MW out of 12 MW source. The launched spectrum, at n{sub φ} = 34 for 0-π -0-π phasing and 27 MHz, is largely inaccessible at line-averaged densities of approximately 2 × 10{sup 19} m{sup −3}. However, with variable antenna phasing and frequency, this system has considerable latitude to explore different heating schemes. To develop an ICRF actuator control model, we have used the full-wave code TORIC to explore the physics of ICRF wave propagation in EAST. The results presented from this study use a spectrum analysis using a superposition of n{sub φ} spanning −50 to +50. The low density regime typical of EAST plasmas results in a perpendicular wavelength comparable to the minor radius which results in global cavity resonance effects and eigenmode formation when the single-pass absorption is low. This behavior indicates that improved performance can be attained by lowering the peak of the k{sub ||} spectrum by using π/3 phasing of the 4-strap antenna. Based on prior studies conducted at Alcator C-Mod, this phasing is also expected to have the advantage of nearly divergence-free box currents, which should result in reduced levels of impurity production. Significant enhancements of the loading resistance may be achieved by using low k{sub ||} phasing and a combination of magnetic field and frequency to vary the location of the resonance and mode conversion regions. TORIC calculations indicate that the significant power may be channeled to the electrons and deuterium majority. We expect that

  15. Assessment of ICRF Antenna Performance in Alcator C-Mod

    International Nuclear Information System (INIS)

    Schilling, G.; Wukitch, S.J.; Lin, Y.; Basse, N.; Bonoli, P.T.; Edlund, E.; Lin, L.; Parisot, A.; Porkolab, M.

    2004-01-01

    The Alcator C-Mod has presented a challenge to install high-power ICRF antennas in a tight space. Modifications have been made to the antenna plasma-facing surfaces and the internal current-carrying structure in order to overcome performance limitations. At the present time, the antennas have exceeded 5 MW into plasma with heating phasing, up to 2.7 MW with current-drive phasing, with good efficiency and no deleterious effects

  16. The healthiness of JT-60 ICRF antenna and development of its temperature measurement device

    International Nuclear Information System (INIS)

    Hiranai, Shinichi; Yokokura, Kenji; Moriyama, Shinichi; Sato, Tomio; Ishii, Kazuhiro; Fujii, Tsuneyuki

    1998-03-01

    Ion Cyclotron Range of Frequency (ICRF) heating system in JT-60 employs two antennas to couple RF power in the range of 100 MHz to the plasma. The antennas are installed in the vacuum vessel of JT-60, facing to the high temperature plasma. Due to the severe heat load from the plasma, parts of the antenna surface are suffering from melt. It is important to investigate the mechanism of the heat load and the melting. 'Temperature measurement for ICRF antenna surface' employing an infrared thermographic camera has been developed, in order to investigate the heat load to the antenna and to maintain the antenna available. We have succeeded in minimizing the melting damage of the antenna surface using the temperature measurement device. (author)

  17. Coupling of an ICRF compact loop antenna to H-mode plasmas in DIII-D

    International Nuclear Information System (INIS)

    Mayberry, M.J.; Baity, F.W.; Hoffman, D.J.; Luxon, J.L.; Owens, T.L.; Prater, R.

    1987-01-01

    Low power coupling tests have been carried out with a prototype ICRF compact loop antenna on the DIII-D tokamak. During neutral-beam-heated L-mode discharges the antenna loading is typically R≅1-2Ω for an rf frequency of 32 MHz (B/sub T/ = 21 kG, ω = 2Ω/sub D/(0)). When a transition into the H-mode regime of improved confinement occurs, the loading drops to R≅0.5-1.0Ω. During ELMs, transient increases in loading up to several Ohms are observed. The apparent sensitivity of ICRF antenna coupling to changes in the edge plasma profiles associated with the H-mode regime could have important implications for the design of future high power systems

  18. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  19. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  20. Influence of ICRF-159 and levamisole on the incidence of metastases following local irradiation of a solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.; Constable, W.; Elkon, D.; Rinehart, L.

    1981-11-15

    Courses of irradiation consisting of 6000 rad in ten equal fractions over 12 days delivered to KHT sarcomas in mice controlled 55% of the local tumors but 83% of the mice died from metastases. Three strategies to reduce the risk of metastatic spread were tested. The fractionation scheme was changed to deliver the same total dose using a large initial fraction followed by seven equal portions with the same overall time. ICRF-159 was used with the intention of partially synchronizing the tumor growth fraction in a radiosensitive state of the growth cycle and of promoting normalization of the tumor vasculature. Levamisole was used to stimulate the immune system. The combination of ICRF-159 with the eight-fraction radiation course proved to be effective for both increasing local control and decreasing the incidence of metastases. The addition of levamisole did not improve the results obtained with a combination of ICRF-159 and irradiation.

  1. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  2. Simulations of ICRF-fast wave current drive on DIIID

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1990-06-01

    Self-consistent calculations of MHD equilibria, generated by fast wave current drive and including the bootstrap effect, were done to guide and anticipate the results of upcoming experiments on the DIIID tokamak. The simulations predict that 2 MW of ICRF power is more than adequate to create several hundred kiloamperes in steady state; the total current increases with the temperature and density of the target plasma. 12 refs., 12 figs., 1 tab

  3. Heat loads on Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Beaumont, B.; Chantant, M.; Goniche, M.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency (ICRF) launchers plasma-facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. It is found that the most critical items for Tore-Supra operation are localized heat loads on the Faraday screen top left corner and vertical edges. Warming up close to maximum temperature limit originally set for protection of the plasma-facing components is found of high power pulses, but no erosion was observed after detailed inspection of the launcher in Tore-Supra vessel. Yet, the associated heat loads could be limiting for Tore-Supra operation in the future, and some dedicated work is under progress to improve the understanding of these power fluxes, pointing out the importance of getting a better knowledge of particle flows in the scrape of layer

  4. Extending the ICRF to Higher Radio Frequencies: 24 and 43 GHz Astrometry

    Science.gov (United States)

    Jacobs, Christopher S.; Charlot, Patrick; Fomalont, Ed B.; Gordon, David; Lanyi, Gabor E.; Ma, Chopo; Naudet, Charles J.; Sovers, Ojars J.; Zhang, Liwei D.; Kq VLBI Survey Collaboration

    2004-06-01

    Celestial reference frames have been constructed at K-band (24 GHz) and Q-band (43 GHz) based on VLBI astrometric survey observations of active galactic nuclei. Five VLBA observing sessions covered the full 24 hours of right ascension and declinations down to -44°. K-band's 230 sources have median formal position uncertainties of 150 and 290 μas in α cos δ and δ, respectively; the corresponding uncertainties for 132 Q-band sources are 215 and 360 μas, respectively. K-band weighted RMS (WRMS) residuals were 33 ps and 48 fs/s in delay and rate, respectively. Comparison of the K-band frame to the S/X-band ICRF shows WRMS agreement of 330 and 590 μas in α cos δ and δ, respectively. The motivations for extending the ICRF to higher frequencies are to use more compact sources to construct a more stable frame, to provide phase calibrators, and to support spacecraft navigation at Ka-band.

  5. 2-D mapping of ICRF-induced SOL perturbations in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Colas, L.; Gunn, J.P.; Nanobashvili, I.; Petrzilka, V.; Goniche, M.; Ekedahl, A.; Heuraux, S.; Joffrin, E.; Saint-Laurent, F.; Balorin, C.; Lowry, C.; Basiuk, V.

    2007-01-01

    ICRF-induced SOL modifications are mapped for the first time in 2-D around Tore Supra ICRF antennas using reciprocating Langmuir probes. When probe heads are magnetically connected to powered antennas, radical modifications of floating potentials V float , effective temperatures T eff and ion saturation currents are observed. V float perturbations are located radially near antenna limiters, with a typical extension 2 cm. Poloidally they are locally minimal near the equatorial plane, and maximal near antenna box corners. Two possible interpretations for increased T eff are proposed: localised electron heating and RF loop voltage induced along probe circuit. Both interpretations rely on the generation of parallel RF fields by parallel RF currents on the antenna structure. The topology of such currents could explain the 2-D structure of T eff maps. Both interpretations also imply a positive DC biasing of the antenna environment. Differential biasing of nearby flux tubes drives DC E x B 0 convection that could explain 2-D density patterns

  6. TFTR Ion Cyclotron Range of Frequencies (ICRF) experimental data analysis collaboration. Annual progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Sharer, J.E.; Bettenhausen, M.; Lam, N.; Sund, R.

    1994-08-01

    The research performed under this grant during the past year has concentrated on coupling, heating, and current drive issues for TFTR. The authors have developed a code and submitted for publication a open-quotes 3-Dclose quotes coupling analysis of the TFIR ICRF cavity-backed coil antennas to plasma edge profiles including the Faraday shield blade angle and fast wave coupling for heating and current drive. They have also carried out TFTR ICRF full-wave field solutions and heating analyses for the second harmonic tritium supershot, and the effects of fusion alpha particle and tritium ion tail populations on the ICRF absorption. They have also published a paper on the effects of alpha particle absorption on fundamental deuterium ion cyclotron absorption incorporating self-consistent deuterium tails and fusion reactivity. Research progress, publications, and conference presentations are summarized in this report

  7. Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides

    International Nuclear Information System (INIS)

    Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Wang, Tongbiao; Liao, Qinghua; Liu, Nianhua

    2015-01-01

    We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented. (paper)

  8. The influence of ICRF-159 and levamisole on the incidence of metastases following local irradiation of a solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.; Constable, W.; Elkon, D.; Rinehart, L.

    1981-11-15

    Courses of irradiation consisting of 6000 rad in ten equal fractions over 12 days delivered to KHT sarcomas in mice controlled 55% of the local tumors but 83% of the mice died from metastases. Three strategies to reduce the risk of metastatic spread were tested. The fractionation scheme was changed to deliver the same total dose using a large initial fraction followed by seven equal portions with the same overall time. ICRF-159 was used with the intention of partially synchronizing the tumor growth fraction in a radiosensitive state of the growth cycle and of promoting normalization of the tumor vasculature. Levamisole was used to stimulate the immune system. The combination of ICRF-159 with the eight-fraction radiation course proved to be effective for both increasing local control and decreasing the incidence of metastases. The addition of levamisole did not improve the results obtained with a combination of ICRF-159 and irradiation.

  9. Toroidal mode-conversion in the ICRF

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode-conversion is studied in the ion-cyclotron range of frequencies (ICRF) taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighborhood of the ion-ion hybrid resonance, where it is converted to a slow wave which deposits the wave energy through resonant interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted and could in experiments be driven to large amplitudes so as to interact efficiently with fast particles. (author) 5 figs., 1 tab., 48 refs

  10. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  11. ICRF power deposition profile and determination of the electron thermal diffusivity by modulation experiments in JET

    International Nuclear Information System (INIS)

    Gambier, D.J.; Evrard, M.P.; Adam, J.

    1990-01-01

    The power deposition profile in the ion cyclotron range of frequencies (ICRF) has been investigated experimentally in JET by means of a square wave modulated RF perturbation. The study has been conducted in D(H) and D( 3 He) plasmas for two heating scenarios. In D( 3 He) plasmas and for central heating in a scenario where mode conversion to Bernstein waves is accessible, the direct power deposition profile on electrons has been derived. It accounts for 15% of the total coupled power and extends over 25% of the minor radius. Outside the RF power deposition zone, the electron thermal diffusivity χ e inside the inversion radius surface (r i ) can be estimated through observation of the diffusive electronic transport. In discharges without monster sawteeth and for a low central temperature gradient (∇T e (r ≤ r i ) ≤ ∇T e (r ≥ r i ) approx. = 5 keV·m -1 ) the value obtained is small (approx. =0.24 +- 0.05 m 2 · s -1 ), typically ten times lower than χ e values deduced from heat pulse propagation in similar discharges at radii larger than the inversion radius. For the D(H) minority heating scheme, a large fraction of the ICRF modulated power is absorbed by minority ions, and the minority tail is modulated with a characteristic ion-electron (i-e) slowing-down time. In this scheme, electron heating occurs only through collisions with the minority ion tail and no modulation of the electron temperature is observed in sawtoothing discharges. This is interpreted as a consequence of the long i-e equipartition time, acting as an integrator for the modulated ICRF signal. Finally, a correlation between the time of the sawtooth crash and the periodic turn-off of the ICRF power is found and its consequence for modulation experiments is reviewed. (author). 22 refs, 16 figs

  12. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    Science.gov (United States)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  13. Ion heating up to 1 MeV range with higher harmonic ICRF wave on JT-60U

    International Nuclear Information System (INIS)

    Nemoto, M.; Kusama, Y.; Hamamatsu, K.; Kimura, H.; Fujii, T.; Moriyama, S.; Saigusa, M.; Afanassiev, V.I.

    1997-01-01

    The properties of protons under accleration by an ion cyclotron range of frequency (ICRF) waves with the second to fourth hydrogen harmonics have been investigated in the JT-60U tokamak at the Japan Atomic Energy Research Institute (JAERI). Protons have been accelerated up to 1 MeV in the presence of an ICRF wave of fixed frequency, neutral beams (NB), and a fixed toroidal magnetic field which is scanned through several plasma discharges. The tail temperature of the protons, which is evaluated in the range 0.32-0.86 MeV, has been observed to increase in the second to third harmonics, however increase of the tail temperature in the third to fourth harmonics has not been observed clearly. Furthermore, the dependence of tail temperature on the harmonic number has been found to be in qualitative agreement with results from a simulation code analysis based upon the one-dimensional Fokker-Planck equation coupled with the kinetic wave equation. Experimental values for the stored energy of the accelerated ions have shown, however, that the response of stored energy to changes in absorbed ICRF power is much stronger than the response to changes in harmonic number. Also, the incremental energy confinement times for heating discharges matching the third and fourth harmonics (3 ω CH) and 4 ω CH) of hydrogen have been observed to be less than half that for those matching the second harmonic. It has been found that suppression of the absorbed ICRF power accompanied with the occurence of cavity resonance in the 3ω CH and 4ω CH heating discharges reduces the stored energy of the accelerated ions and the incremental energy confinement time. (Author)

  14. Improved confinement during ICRF heating on JFT-2M

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Ogawa, Toshihide; Tamai, Hiroshi

    1986-10-01

    Significant improvement of energy confinement was observed on JFT-2M during ICRF heating. This improvement is associated with the sudden depression of H α /D α emission and the following increase of plasma stored energy, electron density and the radiation loss. This should be the same phenomena as H-mode transitions observed in ASDEX, PDX, and D-III divertor experiments with neutral beam injection heating. However, this transition is also observed in limiter discharges as well as in open divertor configurations on JFT-2M. (author)

  15. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  16. All-solid-state cavity QED using Anderson-localized modes in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lodahl, Peter; Sapienza, Luca; Nielsen, Henri Thyrrestrup

    2010-01-01

    We employ Anderson-localized modes in deliberately disordered photonic crystal waveguides to confine light and enhance the interaction with matter. A 15-fold enhancement of the decay rate of a single quantum dot is observed meaning that 94% of the emitted single photons are coupled to an Anderson...

  17. Two frequency ICRF operation on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Majeski, R.; Wilson, J.R.; Hosea, J.C.; Schilling, G.; Stevens, J.; Phillips, C.K.

    1993-01-01

    Modifications have been made recently to allow two of the ICRF antennas (bays L and M) on TFTR to operate at either of two frequencies, 43 MHz or 64 MHz. This was accomplished by lengthening the resonant loops (2Λ at 43 MHz, 3Λ at 64 MHz) and replacing the conventional quarter wave impedance transformers with a tapered impedance design. The other two antennas (bays K and N) will operate at a fixed frequency, 43 MHz. The two frequency operation will allow a combination of 3 He-minority and H-minority heating at near full field on TFTR. The higher frequency, 64 MHz, may also be useful in direct electron heating and current drive experiments at lower toroidal fields. Models of the antenna, resonant loops and impedance matching system are presented

  18. Efficiencies of the ICRF minority heating in the CHS and LHD plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Nakajima, N.; Mutoh, T.

    1994-01-01

    ICRF minority heatings are investigated in the plasmas of the Compact Helical System (CHS) and the Large Helical Device (LHD) by means of the orbit following Monte Carlo simulation. It is found that the heating efficiency decreases with increase of the absorption power by minority ions and depends strongly on the magnetic field strength and the field configuration. (author)

  19. Hybrid code simulation on mode conversion in the second harmonic ICRF heating

    International Nuclear Information System (INIS)

    Sakai, K.; Takeuchi, S.; Matsumoto, M.; Sugihara, R.

    1985-01-01

    ICRF second harmonic heating of a single-species plasma is studied by using a 1-1/2 dimensional quasi-neutral hybrid code. Mode conversion, transmission and reflection of the magnetosonic waves are confirmed, both for the high- and low-field-side excitations. The ion heating by waves propagating perpendicularly to the static magnetic field is also observed

  20. ICRF heating experiments on JIPP T-II

    International Nuclear Information System (INIS)

    Ichimura, M.; Fujita, J.; Hirokura, S.

    1983-10-01

    Data of JIPP T-II ICRF heating experiments are presented. The experiment covers three typical cases: the low concentration hydrogen minority case, the high concentration hydrogen minority case, and the 3 He minority case. The best heating efficiency is obtained for the 3 Heminority case. It is shown through power balance analysis that the two H-minority cases are different in the wave energy deposition profile. The difference is explained by the presence of local cavity mode for the high concentration minority case. The ion temperature stops rising at the power density level of 0.65 W/cm 3 . An analytic solution of the Fokker-Planck equation is derived to interpret the deterioration of heating efficiency. (author)

  1. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  2. Expanding the operating space of ICRF on JET with a view to ITER

    DEFF Research Database (Denmark)

    Lamalle, P.U.; Mantsinen, M.J.; Noterdaeme, J.M.

    2006-01-01

    when the 3 He concentration increased above similar to 2%. In the latter regime the best heating performance (a maximum electron temperature of 8 keV with 5 MW of ICRF power) was achieved with dipole array phasing, i.e. a symmetric antenna power spectrum. Minority heating of deuterium in hydrogen...

  3. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  4. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Conroy, S W; Hone, M; Sadler, G J; Van Belle, P [Commission of the European Communities, Luxembourg (Luxembourg)

    1994-07-01

    {sup 3} He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the JET tokamak. The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3} He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (authors). 5 refs., 6 figs.

  5. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Conroy, S.W.; Hone, M.; Sadler, G.J.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    {sup 3}He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the Joint European Torus (JET). The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3}He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (author) 5 refs., 6 figs.

  6. Optical waveguide demultiplexer

    International Nuclear Information System (INIS)

    Gajdaj, Yu.O.; Maslyukyivs'kij, R.M.; Sirota, A.V.

    2009-01-01

    For channels division in fibre-optical networks with wavelength multiplexing, the planar waveguide together with a prism coupler is offered for using. The planar waveguide fulfils a role of a dispersing unit, and prism coupler is the selector of optical channels. The parameters of the planar waveguide which provide maximal space division of adjacent information channels in networks with coarse wavelength multiplexing are calculated

  7. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides.

    Science.gov (United States)

    Kong, Deqing; Tsubokawa, Makoto

    2015-07-27

    We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

  8. Present and future JET ICRF antennae

    International Nuclear Information System (INIS)

    Kaye, A.; Brown, T.; Bhatnagar, V.; Crawley, P.; Jacquinot, J.; Lobel, R.; Plancoulaine, J.; Rebut, P.H.; Wade, T.; Walker, C.

    1994-01-01

    Since the initial operation of the JET ICRF system in 1985, up to 22 MW has been coupled to the plasma, many heating scenarios have been demonstrated and the main technological problem of RF-specific impurity production overcome. Many developments of the antennae have taken place over this period, notably the replacement of the water-cooled nickel screens with indirectly cooled beryllium screens, and the forthcoming installation of eight new A2 antennae for operation during the pumped divertor phase of JET. The A2 antennae include enhanced provision for fast wave current drive experiments on JET. This paper describes the beryllium screens, the technological results from operation and subsequent inspection of these screens, the design of the A2 antennae and the results from high power RF testing of a model of the A2 antenna. (orig.)

  9. Advanced fusion in ICRF injected plasmas

    International Nuclear Information System (INIS)

    Carpignano, F.; Coppi, B.; Detragiache, P.; Migliuolo, S.; Nassi, M.; Rogers, B.

    1994-01-01

    Fusion burning of a D- 3 He mixture in a high density, high magnetic field, compact toroidal experiment (Ignitor) with a high injected power density at the ion cyclotron frequency (ICRF) is investigated. A superthermal tail (with energies exceeding 1 MeV in the central part of the plasma column) is induced in the distribution of the minority 3 He population ( 0 20 m -3 ). This stems from the high value of the peak RF power density absorbed by the minority species (ρ RF ∼ 60 MW/m 3 ) that should be obtained in Ignitor when the total injected power is about 18 MW. This experiment is suitable to begin the study of advanced fusion burning, because of the high plasma currents (I p 3 He fusion powers of the order of 1 MW should be attained. (author) 8 refs., 3 figs

  10. Status of R&D activity for ITER ICRF power source system

    International Nuclear Information System (INIS)

    Mukherjee, Aparajita; Trivedi, Rajesh; Singh, Raghuraj; Rajnish, Kumar; Machchhar, Harsha; Ajesh, P.; Suthar, Gajendra; Soni, Dipal; Patel, Manoj; Mohan, Kartik; Hari, J.V.S.; Anand, Rohit; Verma, Sriprakash; Agarwal, Rohit; Jha, Akhil; Kazarian, Fabienne; Beaumont, Bertrand

    2015-01-01

    Highlights: • R&D program to establish high power RF technology for ITER ICRF source is described. • R&D RF source is being developed using Diacrode & Tetrode technologies. • Test rig (3 MW/3600 s/35–65 MHz) simulating plasma load is developed. - Abstract: India is in-charge for the procurement of ITER Ion Cyclotron Resonance Frequency (ICRF) sources (1 Prototype + 8 series units) along with auxiliary power supplies and Local Control Unit. As there is no unique amplifier chain able to meet the output power specifications as per ITER requirement (2.5 MW per source at 35–65 MHz/CW/VSWR 2.0), two parallel three-stage amplifier chains along with a combiner circuit on the output side is considered. This kind of RF source will be unique in terms of its stringent specifications and building a first of its kind is always a challenge. An R&D phase has been initiated for establishing the technology considering single amplifier chain experimentation (1.5 MW/35–65 MHz/3600 s/VSWR 2.0) prior to Prototype and series production. This paper presents the status of R&D activity to resolve technological challenges involved and various infrastructures developed at ITER-India lab to support such operation.

  11. Modeling ambipolar potential formation due to ICRF heating effects on electrons

    International Nuclear Information System (INIS)

    Johnson, J.W.; Callen, J.D.; Hershkowitz, N.

    1985-08-01

    A mechanism for the potential bump observed near the region of ICRF heating in the endplugs of the Phaedrus tandem mirror experiment is investigated by numerical simulation of electron orbits in a simple mirror geometry. Given initial magnetic and ambipolar potential wells that trap the electrons, the ''near field'' parallel electric field E-tilde/sub z/e/sup -iωt/, which is localized near and due to the ICRF heating, tends to eject electrons from the region where E-tilde/sub z/ is nonzero. This depletion of the local electron population causes a local increase in the ambipolar potential. The rate at which the electrons are ejected, (dn/dt), is calculated from the electron orbit computation for a given potential well depth. The rate at which passing particles ''fill in'' the potential well can also be calculated. An estimate of how large the bump in the ambipolar potential becomes is obtained by finding the well depth at which (dn/dt) approximately equals the ''filling'' rate. For Phaedrus parameters (n 0 approx. = 4.0 x 10 12 cm -3 , T/sub e/ = 20 eV, E-tilde/sub z/ approx. = 1.0 V/cm) the electron pumping rate balances the ''filling'' rate at a potential well depth of approximately 40 V, consistent with experimental results

  12. Status of R&D activity for ITER ICRF power source system

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Aparajita, E-mail: aparajita.mukherjee@iter-india.org [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar–382428 (India); Trivedi, Rajesh; Singh, Raghuraj; Rajnish, Kumar; Machchhar, Harsha; Ajesh, P.; Suthar, Gajendra; Soni, Dipal; Patel, Manoj; Mohan, Kartik; Hari, J.V.S.; Anand, Rohit; Verma, Sriprakash; Agarwal, Rohit; Jha, Akhil [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar–382428 (India); Kazarian, Fabienne; Beaumont, Bertrand [ITER Organization, CS 90 046, 13067 Sain-Paul-Les-Durance (France)

    2015-10-15

    Highlights: • R&D program to establish high power RF technology for ITER ICRF source is described. • R&D RF source is being developed using Diacrode & Tetrode technologies. • Test rig (3 MW/3600 s/35–65 MHz) simulating plasma load is developed. - Abstract: India is in-charge for the procurement of ITER Ion Cyclotron Resonance Frequency (ICRF) sources (1 Prototype + 8 series units) along with auxiliary power supplies and Local Control Unit. As there is no unique amplifier chain able to meet the output power specifications as per ITER requirement (2.5 MW per source at 35–65 MHz/CW/VSWR 2.0), two parallel three-stage amplifier chains along with a combiner circuit on the output side is considered. This kind of RF source will be unique in terms of its stringent specifications and building a first of its kind is always a challenge. An R&D phase has been initiated for establishing the technology considering single amplifier chain experimentation (1.5 MW/35–65 MHz/3600 s/VSWR 2.0) prior to Prototype and series production. This paper presents the status of R&D activity to resolve technological challenges involved and various infrastructures developed at ITER-India lab to support such operation.

  13. Full-wave modeling of ICRF waves: global and quasi-local descriptions

    International Nuclear Information System (INIS)

    Dumont, R. J.

    2007-01-01

    Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes

  14. Study and optimization of magnetized ICRF discharges for tokamak wall conditioning and assessment of the applicability to ITER

    International Nuclear Information System (INIS)

    Wauters, T.

    2011-11-01

    This work is devoted to the study and optimization of the Ion Cyclotron Wall Conditioning (ICWC) technique. ICWC, operated in presence of the toroidal magnetic field, makes use of four main tokamak systems: the ICRF antennas to initiate and sustain the conditioning discharge, the gas injection valves to provide the discharge gas, the machine pumps to remove the wall desorbed particles, and the poloidal magnetic field system to optimize the discharge homogeneity. Additionally neutral gas and plasma diagnostics are required to monitor the discharge and the conditioning efficiency. In chapter 2 a general overview on ICWC is given. Chapter 3 treats the ICRF discharge homogeneity and the confinement properties of the employed magnetic field. In the first part we will discuss experimental facts on plasma homogeneity, and how experimental optimization led to its improvement. In the second part of the chapter the confinement properties of a partially ionized plasma in a toroidal magnetic field configuration with additional small vertical component are discussed. Chapter 4 gives an overview of experimental results on the efficiency of ICWC, obtained on TORE SUPRA, TEXTOR, JET and ASDEX Upgrade. In chapter 5 a 0D kinetic description of hydrogen-helium RF plasmas is outlined. The model, describing the evolution of ICRF plasmas from discharge initiation to the (quasi) steady state plasma stage, is developed to obtain insight on ICRF plasma parameters, particle fluxes to the walls and the main collisional processes. Chapter 6 presents a minimum structure for a 0D reservoir model of the wall to investigate in deeper detail the ICWC plasma wall interaction during isotopic exchange experiments. The hypothesis used to build up the wall model is that the same model structure should be able to describe the wall behavior during normal plasmas and conditioning procedures. Chapter 7 extrapolates the results to the envisaged application of ICWC on ITER

  15. Reversed magnetic shear operation with ICRF minority heating on Tore Supra

    International Nuclear Information System (INIS)

    Hoang, G.T.; Antar, G.; Aniel, T.

    1999-01-01

    This paper reports a scenario recently investigated in Tore Supra for high density and high plasma current (Ip) operation, which allows to use the ion cyclotron resonance frequency (ICRF) minority heating only for the internal transport barrier (ITB) formation. The main aim is to perform a hollow current density profile by minimizing the edge resistive skin depth during the rapid Ip ramp-up, i-e efficient freezing of the resistive current diffusion

  16. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  17. Maximization of ICRF power by SOL density tailoring with local gas injection

    Czech Academy of Sciences Publication Activity Database

    Jacquet, P.; Goniche, M.; Bobkov, V.; Lerche, E.; Pinsker, R.I.; Pitts, R.A.; Zhang, W.; Colas, L.; Hosea, J.; Moriyama, S.; Wang, S.-J.; Wukitch, S.; Zhang, X.; Bilato, R.; Bufferand, H.; Guimarais, L.; Faugel, H.; Hanson, G.R.; Kocan, M.; Monakhov, I.; Noterdaeme, J.-M.; Petržílka, Václav; Shaw, A.; Stepanov, I.; Sips, A.C.C.; Van Eester, D.; Wauters, T.

    2016-01-01

    Roč. 56, č. 4 (2016), s. 046001 ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : ICRF power * antenna loading * gas injection * SOL density Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/4/046001

  18. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    International Nuclear Information System (INIS)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of the thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system (ρ,ξ) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number α as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions

  19. The ASDEX Upgrade ICRF system: Operational experience and developments

    International Nuclear Information System (INIS)

    Faugel, H.; Angene, P.; Becker, W.; Braun, F.; Bobkov, Vl.V.; Eckert, B.; Fischer, F.; Hartmann, D.A.; Heilmaier, G.; Kneidl, J.; Noterdaeme, J.-M.; Siegl, G.; Wuersching, E.

    2005-01-01

    The ICRF system at the ASDEX Upgrade tokamak is in operation since May 1992. Following some modifications of which the major one was the installation of 3 dB couplers it has become a reliable additional heating system. The maximum power coupled into the plasma has been raised up to 7.2 MW (90% of the installed RF power) for short pulses and up to 6.2 MW for pulses several second long with energy of up to 29 MJ. A power of 5 MW is delivered on a regular basis to replace two NBI sources

  20. EMC3-Eirene simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching (Germany); University of Ghent, Ghent (Belgium); Coster, David; Lunt, Tilmann; Bobkov, Volodymyr; Feng, Yuehe [Max Planck Institute for Plasma Physics, Garching (Germany); Collaboration: ASDEX Upgrade team

    2015-05-01

    Ion cyclotron range of frequency (ICRF) heating relies on the Fast Wave (FW) to transport the power from the edge (the antenna) to the plasma center. Since the FW is evanescent below a critical density (typically in the 10{sup 18} m{sup -3} range), the wave does not propagate in the region where the density is below this value in the very edge of the plasma. The coupling depends strongly on the width of this region. The distance between the ICRF antenna and the FW cut-off layer can be made smaller by increasing the edge density in front of the ICRF antenna. Previous experiments in many tokamaks and preliminary simulation results for AUG and JET with EDGE2D-EIRENE show that the edge density could indeed be increased with gas puffing at the top of the vessel or in the midplane. But the 2D code cannot quantitatively reproduce the experimental results, mainly due to the assumptions of toroidal axisymmetry. EMC3-EIRENE is a 3D Edge Monte Carlo plasma fluid transport code. By including the toroidal nonaxisymmetric plasma facing components and 3D positions of gas valves in the code, the simulations can be made more realistic. We will show first simulation results of the code and a comparison to experiments.

  1. ICRF heating analysis on ASDEX plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Fukuyama, Atsushi; Morishita, Takayuki; Steinmetz, K.; Noterdaeme, J.-M.

    1988-01-01

    ICRF (ion cyclotron range of frequencies) waves heating in an ASDEX tokamak are analyzed. The excitation, propagation and absorption are studied by using a global wave code. This analysis is combined with a Fokker-Planck code. The waveform in the plasma, the loading resistance and the reactance of the antenna are calculated for both the minority ion heating and the second harmonic resonance heating. Attention is given to the change of the antenna loading associated with the L/H transition. Optimum conditions for the loading are discussed. In the minority heating case, the tail generation and thermalization are analyzed. Spatial profiles of the tail-ion temperature and the power transferred to the bulk electrons and ions are obtained. Central as well as off-central heating cases are investigated. The effect of the reactive electric field is discussed in connection with rf losses and impurity production. (author)

  2. ICRF heating in T.F.R

    International Nuclear Information System (INIS)

    Gambier, D.J.

    1983-06-01

    Experiments on plasma heating by RF in the ion cyclotron range of frequency have been performed on T.F.R. in various regimes, such as the mode conversion regime and the minority regime. The latest theoretical developments of ICRF modeling are presented and the experimental data obtained in a deuterium plasma containing 20% or 5% of hydrogen are reviewed. With 20% of hydrogen a large increase of both ion and electron temperature is observed while the level of metallic impurity radiation has been considerably reduced using a carbon limiter. With 5% of hydrogen the location of the antenna system in the minor cross section produces no dramatic differences with respect to ion heating. Finally the metallic impurity production is examined and thus allows one to eliminate the Faraday shield of the antenna as the main source of pollution by heavy ions of the plasma

  3. Development of ceramic-free antenna feeder

    International Nuclear Information System (INIS)

    Moriyama, S.; Kimura, H.; Fujii, T.; Saigusa, M.; Arai, H.

    1994-01-01

    We have proposed a ceramics-free antenna feeder line employing a ridged waveguide as a local support for IC antenna of next-generation tokamaks. One fourth mock-up model of the all metal waveguide designed for the ITER ICRF system is fabricated and electrical characteristics of the model including the coaxial line - waveguide converter are measured. Power reflection coefficient of the model including the coax-waveguide converter to the input coaxial line is estimated to be less than 15% below the cut-off frequency of 107 MHz and less than 3% above the cut-off frequency. It is found that this ceramics-free antenna support employing a ridged waveguide is quite available for IC antenna of next-generation tokamaks. (author)

  4. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  5. Waveguide harmonic damper for klystron amplifier

    International Nuclear Information System (INIS)

    Kang, Y.

    1998-01-01

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper

  6. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW trans......This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....

  7. Omnidirectional optical waveguide

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-08-02

    In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.

  8. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    International Nuclear Information System (INIS)

    Deng Yang; Liu Yuan; Gao Dingshan

    2011-01-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  9. Evanescent fields of laser written waveguides

    Science.gov (United States)

    Jukić, Dario; Pohl, Thomas; Götte, Jörg B.

    2015-03-01

    We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.

  10. Progress in planar optical waveguides

    CERN Document Server

    Wang, Xianping; Cao, Zhuangqi

    2016-01-01

    This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

  11. Advanced Gas Sensors Using SERS-Activated Waveguides

    Science.gov (United States)

    Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi

    2010-08-01

    This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required

  12. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  13. Experiences with rectangular waveguide

    International Nuclear Information System (INIS)

    Beltran, J.; Sepulveda, J. J.; Navarro, E. A.

    2000-01-01

    A simple and didactic experimental arrangement is presented to show wave propagation along a structure with translational symmetry, particularly the rectangular waveguide. Parameters of this waveguide as cutoff frequency, guide wavelength and field distribution of fundamental mode can be measured. For this purpose a large paralelepipedical waveguide structure is designed and built, its dimensions can be varied in order to change its parameters. (Author) 9 refs

  14. Synthesis of the Thickness Profile of the Waveguide Layer of the Thin Film Generalized Waveguide Luneburg Lens

    Directory of Open Access Journals (Sweden)

    Ayryan E.A.

    2016-01-01

    Full Text Available A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z with the distribution of the effective refractive index of the waveguide β (y, z is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r and in the form of a cubic spline for Δβ (r.

  15. Light-emitting waveguide-plasmon polaritions

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.

    2012-01-01

    We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency

  16. Design of optimized impedance transformer for ICRF antenna in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan); Seki, T.; Kasahara, H.; Seki, R.; Kumazawa, R.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan)

    2013-10-15

    Highlights: ► We developed optimization method of impedance transformer for ICRF antenna. ► Power loss will be one-third with the optimized impedance transformer. ► Possibility of damage on the transmission line will be drastically reduced. ► High performance will be kept in the wide antenna impedance region. -- Abstract: A pair of ion cyclotron range of frequencies (ICRF) antennas in the large helical device (LHD), HAS antennas showed high efficiency in minority ion heating. However the low loading resistance must be increased to prevent breakdown in transmission line. Moreover, the voltage and the current around the feed-through must be reduced to protect it. For these purpose, we developed a design procedure of the impedance transformer for HAS antennas. To optimize the transformer, the inner conductors were divided into several segments and the radii of them were given discretely and independently. The maximum effective loading resistance was obtained by using all combinations of radii within the limitations of the voltage and current at the feed-through and the electric field on the transformer. To get a precise solution, this procedure was repeated several times by narrowing the range of radii of inner conductors. Then the optimized impedance transformer was designed by smoothing the radii of inner conductors. For the typical discharge, the voltage and current at the feed-through were reduced to the half of the original values with the same power. The effective loading resistance was increased to more than four times. High performance is expected in wide impedance region.

  17. Nanoscale waveguiding methods

    Directory of Open Access Journals (Sweden)

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  18. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  19. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...... index of the waveguide substrate less than the refractive index of the medium covering the waveguiding film (n(water) = 1.33). This is opposed to the conventional waveguide geometry, where the substrate is usually glass or polymers with refractive indices of approximate to1.5. The reverse configuration...... are combined with air-grooved polymer supports to form freestanding single-material polymer waveguides of reverse symmetry capable of guiding light....

  20. Theoretical study for ICRF sustained LHD type p-11B reactor

    International Nuclear Information System (INIS)

    Watanabe, Tsuguhiro

    2003-04-01

    This is a summary of the workshop on 'Theoretical Study for ICRF Sustained LHD Type p- 11 B Reactor' held in National Institute for Fusion Science (NIFS) on July 25, 2002. In the workshop, study of LHD type D- 3 He reactor is also reported. A review concerning the advanced nuclear fusion fuels is also attached. This review was reported at the workshop of last year. The development of the p- 11 B reactor research which uses the LHD magnetic field configuration has been briefly summarized in section 1. In section 2, an integrated report on advanced nuclear fusion fuels is given. Ignition conditions in a D- 3 He helical reactor are summarized in section 3. 0-dimensional particle and power balance equations are solved numerically assuming the ISS95 confinement law including a confinement factor (γ HH ). It is shown that high average beta plasma confinement, a large confinement factor (γ HH > 3) and the hot ion mode (T i /T e > 1.4) are necessary to achieve the ignition of the D- 3 He helical reactor. Characteristics of ICRF sustained p- 11 B reactor are analyzed in section 4. The nuclear fusion reaction rate is derived assuming a quasilinear plateau distribution function (QPDF) for protons, and an ignition condition of p- 11 B reactor is shown to be possible. The 3 of the presented papers are indexed individually. (J.P.N.)

  1. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    Science.gov (United States)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne 18 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  2. Generation and Sustainment of Plasma Rotation by ICRF Heating

    Science.gov (United States)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  3. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  4. Development of Tokamak experiment technology - Study of ICRF coupling in the KAIST tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Duk In; Chang, Hang Young; Lee, Soon Chil; Kwon, Gi Chung; Seo, Sung Hun; Jeon, Sang Jin; Heo, Sung Hee; Heo, Eun Gi; Lee, Dae Hang; Lee, Chan Hee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    Research objectives are to design and fabricate antenna, measure the property of absorption transmitted to the plasma, and research the physical phenomena about the ICRF coupling. Main heating method is ohmic heating at the KAIST tokamak. So, the plasma current produced is more than 30 kA and, the loop voltage of the plasma is 2 {approx} 3V. The power of the plasma by ohmic heating is about 100 kW. Because the toroidal field is 5 {approx} 8 kG, it is needed RF system with more than 100 kW in 7 {approx} 15 MHz. In the first year a RF amplifier with 1 kW in 300 khz {approx} 35 MHz was bought. The manufacture of ICRF system will start from next years. In the research on antenna, we study the method how to measure electric field emitted from antenna using piezo elements. Experimentally, we obtain the results that the signal of piezo element is proportional to the square of electric field. In the next year, we will research the type of antenna subsequently. 28 refs., 3 tabs., 18 figs. (author)

  5. On the role of ion heating in ICRF-heated discharges in Tore Supra

    International Nuclear Information System (INIS)

    Eriksson, L.G.; Hoang, G.; Bergeaud, V.

    2000-09-01

    The effect of bulk ion heating in Tore Supra has been investigated by studying discharges with varying concentrations of minority ions during ICRF hydrogen minority heating in Deuterium/ 4 He plasmas. As expected, the level of bulk ion heating is found to increase with the minority concentration. Higher levels of ion heating are shown to be accompanied by two significant effects: an improved energy confinement and a strong influence on the plasma rotation. (author)

  6. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  7. ICRF array module development and optimization for high power density

    International Nuclear Information System (INIS)

    Ryan, P.M.; Swain, D.W.

    1997-02-01

    This report describes the analysis and optimization of the proposed International Thermonuclear Experimental Reactor (ITER) Antenna Array for the ion cyclotron range of frequencies (ICRF). The objectives of this effort were to: (1) minimize the applied radiofrequency rf voltages occurring in vacuum by proper layout and shape of components, limit the component's surface/volumes where the rf voltage is high; (2) study the effects of magnetic insulation, as applied to the current design; (3) provide electrical characteristics of the antenna for the development and analysis of tuning, arc detection/suppression, and systems for discriminating between arcs and edge-localized modes (ELMs); (4) maintain close interface with mechanical design

  8. Grating-Coupled Waveguide Cloaking

    International Nuclear Information System (INIS)

    Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect

  9. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  10. MHD waveguides in space plasma

    International Nuclear Information System (INIS)

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-01-01

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  11. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly

  12. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...... is heavily dependent on the lattice position of the waveguide and its direction. Our experiments of defect inscription by 2-photon polymerization for the production of straight and bent waveguides in opal templates are reported....

  13. Electromagnetic analysis of the Faraday shield of the EAST ICRF antenna

    International Nuclear Information System (INIS)

    Yang Qingxi; Song Yuntao; Wu Songtao; Zhao Yanping

    2011-01-01

    Faraday shield is one of the important components of ICRF antenna for EAST. In view of the structural safety of the Faraday shield, the electromagnetic and structural analyses for the Faraday shield have been carried out by applying the finite element method and the formulas under the cases of plasma disruption and vertical displacement event (VDE). Results of the electromagnetic forces, the stresses distribution as well as the deformation in the Faraday shield have been obtained under the two cases. They meet the design requirements and provide the theoretical basis for the structural safety evaluation of the Faraday shield. (authors)

  14. All-optical LAN architectures based on arrayed waveguide grating multiplexers

    Science.gov (United States)

    Woesner, Hagen

    1998-10-01

    The paper presents optical LAN topologies which are made possible using an Arrayed Waveguide Grating Multiplexer (AWGM) instead of a passive star coupler to interconnect stations in an all-optical LAN. Due to the collision-free nature of an AWGM it offers the n-fold bandwidth compared to the star coupler. Virtual ring topologies appear (one ring on each wavelength) if the number of stations attached to the AWGM is a prime number. A method to construct larger networks using Cayley graphs is shown. An access protocol to avoid collisions on the proposed network is outlined.

  15. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei

    2007-01-01

    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  16. Effect of patterns and inhomogeneities on the surface of waveguides used for optical waveguide lightmode spectroscopy applications

    DEFF Research Database (Denmark)

    Horvath, R.; Voros, J.; Graf, R.

    2001-01-01

    It has been found that patterns acid inhomogeneities on the surface of the waveguide used fur optical waveguide lightmode spectroscopy applications can produce broadening and fine structure in the incoupled light peak spectra. During cell spreading on the waveguide, a broadening of the incoupling...

  17. ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.; Weitzner, H.; Whealton, J.H.

    1985-01-01

    Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to vector Bis assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in vertical barBvertical bar along vectorB are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that vectorB . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybird resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where vectorB . delB approx. 0(1) + 11

  18. ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.; Weitzner, H.; Whealton, J.H.

    1986-01-01

    Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and in a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to B vector is assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in absolute value B along B vector are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that B vector . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybrid resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where B vector . delB approx. 0(1) naturally. 13 refs., 23 figs

  19. Analytical models for predicting the ion velocity distributions in JET in the presence of ICRF heating

    International Nuclear Information System (INIS)

    Anderson, A.; Eriksson, L.G.; Lisak, M.

    1986-01-01

    The present report summarizes the work performed within the contract JT4/9008, the aim of which is to derive analytical models for ion velocity distributions resulting from ICRF heating on JET. The work has been performed over a two-year-period ending in August 1986 and has involved a total effort of 2.4 man years. (author)

  20. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  1. Diffraction of an Electromagnetic Wave on a Dielectric Rod in a Rectangular Waveguide. A Method of Partial Waveguide Filling

    Science.gov (United States)

    Zav'yalov, A. S.

    2018-04-01

    A variant of the method of partial waveguide filling is considered in which a sample is put into a waveguide through holes in wide waveguide walls at the distance equal to a quarter of the wavelength in the waveguide from a short-circuiter, and the total input impedance of the sample in the waveguide is directly measured. The equivalent circuit of the sample is found both without and with account of the hole. It is demonstrated that consideration of the edge effect makes it possible to obtain more exact values of the dielectric permittivity.

  2. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  3. Analysis of Waveguides on Lithium Niobate Thin Films

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2018-04-01

    Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.

  4. High coupling performance of JT-60U ICRF antennas

    International Nuclear Information System (INIS)

    Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.; Sato, M.; Hosogane, N.; Nemoto, M.; Yamamoto, T.

    1994-01-01

    Sufficient coupling of an ICRF antenna for high power experiments was obtained even for a wide gap between the separatrix and the antenna in JT-60U. The loading resistances for an out-of-phase mode are over 4 Ω for a gap of 13 cm between the separatrix and the Faraday shield over the wide range of electron density from 1 x 10 19 to 5.5 x 10 19 m -3 . In particular, the loading resistances for an in-phase mode are about 5 Ω for a gap of 33 cm between the separatrix and the Faraday shield for the same plasma parameters. However, the heating response for the out-of phase mode is much stronger than that for the in-phase mode. (author). Letter-to-the-editor. 11 refs, 6 figs

  5. A predictive transport modeling code for ICRF-heated tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hwang, D.Q.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5

  6. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    Directory of Open Access Journals (Sweden)

    Mantsinen Mervi

    2017-01-01

    Full Text Available Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW. In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (∼1000 s thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  7. Nanoscale devices based on plasmonic coaxial waveguide resonators

    Science.gov (United States)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  8. Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy

    DEFF Research Database (Denmark)

    Martin, E.; Thougaard, A.V.; Grauslund, M.

    2009-01-01

    of topoisomerase II, resulting in the risk of additional myelosuppression in patients receiving ICRF-187 as a cardioprotectant in combination with doxorubicin. The development of a topoisomerase II-inactive iron chelating compound thus appeared attractive. In the present paper we evaluate the topoisomerase II...... chelation alone does not appear to be sufficient for protection against anthracycline-induced cardiomyopathy Udgivelsesdato: 2009/1/8...

  9. Comparative study of fundamental and second-harmonic ICRF wave propagation and damping at high density in the Alcator tokamak

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.

    1981-09-01

    Due to the versatility of the high power apparatus, the fast magnetosonic branch is used with ω 0 = 1,2,3,4 ω/sub ci/, unlike most other ICRF experiments. Unusually high magnetic field (B 0 = 40 to 80 kG), plasma density (n/sub e/ = 10 13 - 5 x 10 14 /cm 3 ), generator frequency (f 0 = 90 to 200 MHz) and transmitter power, with shielded and unshielded antennas, are the key parameters of the experiment. This wide parameter range allows a direct comparison between fundamental and second harmonic regimes, and shielded and unshielded antennas, our prime goals. The real and imaginary parts of the parallel and perpendicular wave numbers are measured with extensive magnetic probe diagnostics for a spectrum of plasma parameters and compared with theory. Qualitative and quantitative evaluations of the wave structure and scaling laws are derived analytically in simple geometries and computed numerically for realistic plasma parameters and profiles. General figures of merit, such as radiation resistance and quality factor, are also derived and compared with the experiment. Secondary effects of the high power wave launching, such as changes in plasma current, density, Z/sub eff/, energetic neutral flux, soft x-rays, neutron flux, and impurities are also discussed. Most important, a general synthesis of the many engineering, physics, and experimental problems and conclusions of the Alcator A ICRF program are inspected in detail. Finally, the derived and experimentally determined scaling laws and engineering constraints are used to estimate the ICRF requrements, advantages, and potential pitfalls of the next generations of experiments on the Alcator tokamaks

  10. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman

    2009-07-01

    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  11. Reduction in 14 MeV neutron generation rate by ICRF injection in D-3He burning plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki; Nakao, Yasuyuki

    2004-01-01

    The triton distribution function during ion cyclotron range of frequency (ICRF) waves injection in D- 3 He plasmas is examined by solving the 2-dimensional Fokker-Planck equation. Triton distribution function originally has a non-Maxwellian (tail) component around 1.01 MeV birth energy range due to D(d,p)T fusion reaction. Owing to the extension of the original tail by ICRF injection, the high-energy resonance tritons further increase, and the velocity-averaged T(d,n) 4 He fusion reaction rate coefficient, i.e. 14 MeV neutron generation rate, decreases from the values when triton is assumed to be Maxwellian. It is shown that when tritons absorb ∼1/200 of the fusion power from the waves in typical D- 3 He plasma, i.e. T=80 keV, n D =2x10 20 m -3 , τ E0 =3 sec and B=6T, the 14 MeV neutron generation rate is reduced by about ∼20% from the values for Maxwellian plasmas. (author)

  12. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  13. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  14. Progress in ICRF heating technology and designs for future large tokamak heating systems

    International Nuclear Information System (INIS)

    Baity, F.W.; Swain, D.W.; Hoffman, D.J.; Becraft, W.R.; Bryan, W.E.; Mayberry, M.J.; Owens, T.L.; Yugo, J.J.

    1986-01-01

    The problem of advancing the technology of heating with the ion cyclotron range of frequencies (ICRF) for successful application to ignited plasmas is being addressed at Oak Ridge National Laboratory (ORNL) with the collaboration of several laboratories in the United States and Europe. The needs of experiments such as the Compact Ignition Tokamak (CIT) have been evaluated and conceptual approaches identified. These concepts and their components are examined in the laboratory and applied to present-day machines. The status of this program is presented

  15. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu

    2007-01-01

    and thickness-modulated gold strips different waveguide components including reflecting gratings can be realized. For applications where polarization is random or changing, metal nanowire waveguides are shown to be suitable candidates for efficient guiding of arbitrary polarized light. Plasmonic waveguides...

  16. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers

    Science.gov (United States)

    Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier

    2015-12-01

    SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.

  17. Theoretical study for ICRF sustained LHD type p-{sup 11}B reactor

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tsuguhiro (ed.)

    2003-04-01

    This is a summary of the workshop on 'Theoretical Study for ICRF Sustained LHD Type p-{sup 11}B Reactor' held in National Institute for Fusion Science (NIFS) on July 25, 2002. In the workshop, study of LHD type D-{sup 3}He reactor is also reported. A review concerning the advanced nuclear fusion fuels is also attached. This review was reported at the workshop of last year. The development of the p-{sup 11}B reactor research which uses the LHD magnetic field configuration has been briefly summarized in section 1. In section 2, an integrated report on advanced nuclear fusion fuels is given. Ignition conditions in a D-{sup 3}He helical reactor are summarized in section 3. 0-dimensional particle and power balance equations are solved numerically assuming the ISS95 confinement law including a confinement factor ({gamma}{sub HH}). It is shown that high average beta plasma confinement, a large confinement factor ({gamma}{sub HH} > 3) and the hot ion mode (T{sub i}/T{sub e} > 1.4) are necessary to achieve the ignition of the D-{sup 3}He helical reactor. Characteristics of ICRF sustained p-{sup 11}B reactor are analyzed in section 4. The nuclear fusion reaction rate < {sigma}{upsilon} > is derived assuming a quasilinear plateau distribution function (QPDF) for protons, and an ignition condition of p-{sup 11}B reactor is shown to be possible. The 3 of the presented papers are indexed individually. (J.P.N.)

  18. Concept of ceramics-free coaxial waveguide

    International Nuclear Information System (INIS)

    Arai, Hiroyuki

    1994-01-01

    A critical key point of the ITER IC antenna is ceramics support of an internal conductor of a coaxial antenna feeder close to the plasma, because dielectric loss tangent of ceramics enhanced due to neutron irradiation limits significantly the antenna injection power. This paper presents a ceramics-free waveguide to overcome this problem by a T-shaped ridged waveguide with arms for the mechanical support. This ridged waveguide has a low cutoff frequency for its small cross section, which has been proposed for the conceptual design study of Fusion Experimental Reactor (FER) IC system and the high frequency supplementary IC system for ITER. This paper presents the concept of ceramics-free coaxial waveguide consisting of the coaxial-line and the ridged waveguide. This paper also presents the cutoff frequency and the electric field distribution of the ridged waveguide calculated by a finite element method and an approximate method. The power handling capability more than 3 MW is evaluated by using the transmission-line theory and the optimized antenna impedance considering the ITER plasma parameters. We verify this transmission-line model by one-tenth scale models experimentally. (author)

  19. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  20. Low-index discontinuity terahertz waveguides

    Science.gov (United States)

    Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich

    2006-10-01

    A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

  1. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  2. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use...... of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested...... for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements....

  3. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    International Nuclear Information System (INIS)

    Colas, L.; Heuraux, S.; Bremond, S.; Bosia, G.

    2005-01-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pecoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed

  4. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...... is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β...

  5. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  6. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  7. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Glückstad, Jesper

    2013-01-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding......-stop characteristic. We give geometrical parameters necessary for realizing functioning nanoantennas. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.......In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding...... light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations...

  8. Waveguide Phased Array Antenna Analysis and Synthesis

    NARCIS (Netherlands)

    Visser, H.J.; Keizer, W.P.M.N.

    1996-01-01

    Results of two software packages for analysis and synthesis of waveguide phased array antennas are shown. The antennas consist of arrays of open-ended waveguides where irises can be placed in the waveguide apertures and multiple dielectric sheets in front of the apertures in order to accomplish a

  9. DIII-D ICRF high voltage power supply regulator upgrade

    International Nuclear Information System (INIS)

    Cary, W.P.; Burley, B.L.; Grosnickle, W.H.

    1997-11-01

    For reliable operation and component protection, of the 2 MW 30--120 MHz ICRF Amplifier System on DIII-D, it is desirable for the amplifier to respond to high VSWR conditions as rapidly as possible. This requires a rapid change in power which also means a rapid change in the high voltage power supply current demands. An analysis of the power supply's regulator dynamics was needed to verify its expected operation during such conditions. Based on this information it was found that a new regulator with a larger dynamic range and some anticipation capability would be required. This paper will discuss the system requirements, the as-delivered regulator performance, and the improved performance after installation of the new regulator system. It will also be shown how this improvement has made the amplifier perform at higher power levels more reliably

  10. Spectroelectrochemical sensing: planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R

    2003-09-30

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)

  11. Spectroelectrochemical sensing: planar waveguides

    International Nuclear Information System (INIS)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.

    2003-01-01

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)

  12. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  13. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    International Nuclear Information System (INIS)

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-01-01

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass

  14. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...

  15. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  16. Dispersion characteristics of plasmonic waveguides for THz waves

    Science.gov (United States)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  17. Guided modes of elliptical metamaterial waveguides

    International Nuclear Information System (INIS)

    Halterman, Klaus; Feng, Simin; Overfelt, P. L.

    2007-01-01

    The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide

  18. Talbot Effect in Three Waveguide Arrays

    International Nuclear Information System (INIS)

    Zhi, Li; Hai-Feng, Zhou; Jian-Yi, Yang; Xiao-Qing, Jiang

    2008-01-01

    By taking the coupling between the non-neighbourhood waveguides into account, the coupling characteristic of three waveguide arrays is analysed. The strong coupling equation of three waveguides is dealt with Laplace transform and LU decomposition. The general field evolution equation is obtained by inversion of the Laplace transform. The results show that the self-imaging conditions (Talbot effect) do not satisfy in general. The theoretical predictions are in good agreement with the BPM simulations. (fundamental areas of phenomenology (including applications))

  19. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  20. Sub-micrometer waveguide for nano-optics

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Dyndgaard, Morten Glarborg; Andersen, Karin Nordström

    2003-01-01

    With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide for prob......With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide...... for probing the reflection of light against a nano structure. The planar waveguide is based on a silicon nitride core layer, surrounded by a silica cladding region. In our design we utilize this waveguide to couple light into a nano-structure....

  1. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    Science.gov (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  2. Linear and nonlinear properties of segmented waveguides

    International Nuclear Information System (INIS)

    Katz, M.

    1998-07-01

    This dissertation deals with Periodically Segmented Waveguides (PSW), which are applied on KTiOP0 4 (KTP) crystals, by chemical ion-exchange process. In these waveguides, the crystal polarity and refractive index are periodically modulated to obtain Quasi Phase Matching (QPM) between the fundamental and second-harmonic waves. PSW is a relatively new optical device which exhibits unique optical properties in comparison with a continuous waveguide. The possibility of utilizing the KTP-PSW as a compact, cw, blue-violet, source by doubling infra-red light, is the main motivation for studying the optical properties of KTP segmented waveguides. Nevertheless, much attention in this work is also given to the study of linear optical properties of KTP-PSW, most of which, to my best knowledge, has not been studied yet. Controlling and understanding the linear optical properties of KTP-PSW, are required, for applying the PSW as an optical device by its own, and for control and characterization of the non-linear optical properties of the waveguide. In this work the dependence of the linear optical properties of KTP-PSW on geometrical parameters (period size, duty cycle and waveguide width) were studied. The experimental measured parameters include the PSW near field and the Bragg reflections, which appear due lo the grating structure of the waveguide. The possibility of controlling the wavelength and intensity, of the segmented waveguide Bragg reflections of regular period and super-period, is shown theoretically and experimentally. An unexpected dependence was found, by the experimental measurement, between the index profile and the ion-exchanged segment area,. The segmented waveguide dispersion curve, n eff (λ) in the infra-red region was found, A main part of the research work is dedicated to the study of nonlinear characteristics of PSW. The different factors, which effect the Second Harmonic Generation (SHG), are measured experimentally and analyzed. The experimental

  3. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  4. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    Science.gov (United States)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  5. Silicon Photonic Waveguides for Near- and Mid-Infrared Regions

    Science.gov (United States)

    Stankovic, S.; Milosevic, M.; Timotijevic, B.; Yang, P. Y.; Teo, E. J.; Crnjanski, J.; Matavulj, P.; Mashanovich, G. Z.

    2007-11-01

    The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.

  6. Waveguide image-slicers for ultrahigh resolution spectroscopy

    Science.gov (United States)

    Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Eberhardt, Ramona; Tünnermann, Andreas; Andersen, Michael

    2008-07-01

    Waveguide image-slicer prototypes with resolutions up to 310.000 for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 30 μm have been manufactured. The waveguides were macroscopically prepared, stacked up to an order of 7 and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 4.6 μm, using index matching adhesives for TIR within the waveguides. The image-slicer stacks can be used in immersion mode and are miniaturized to be implemented in a set of four, measurements indicate an overall efficiency of above 80% for them.

  7. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  8. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Strangeway, Robert A. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin 53201 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Department of Chemistry and Physics, Milwaukee School of Engineering, Milwaukee, Wisconsin 53201 (United States)

    2016-03-15

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  9. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    International Nuclear Information System (INIS)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman; Hyde, James S.; Strangeway, Robert A.; Mett, Richard R.

    2016-01-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE 10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  10. The waveguide Free-Electron Laser. 14

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1990-01-01

    The general characteristics of free-electron lasers (FELs) which employ a waveguiding structure to confine electromagnetic fields and to couple them to the electron beam is discussed. The mode structure of the basic parallel plate waveguide and its adaptation via quasi-optical techniques to FEL resonator design are considered in detail. A summary of the theory of FEL systems which depend intrinsically on a guide structure (micro-undulator, Cerenkov and metal-grating FELs) and a review of progress on waveguide FEL experiments are also presented. (author). 44 refs.; 16 figs

  11. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  12. Systematic Design of Slow Light Waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen

    it is vulnerable to manufacturing disorders. This thesis aims to design novel waveguides to alleviate signal distortions and propagation loss using optimization methodologies, and to explore the design robustness with respect to manufacturing imperfections. To alleviate the signal distortions in waveguides...

  13. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  14. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  15. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  16. Perturbation measurement of waveguides for acoustic thermometry

    Science.gov (United States)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  17. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  18. Parametric resonance in superconducting micron-scale waveguides

    International Nuclear Information System (INIS)

    Fomin, N.V.; Shalaev, O.L.; Shantsev, D.V.

    1997-01-01

    A parametric resonance due to temperature oscillations in superconducting micron-scale waveguides is considered. Oscillations of superconductor temperature are assumed to be induced by the irradiation of the waveguide with a laser beam. The laser power and parameters of the waveguide providing a possibility of parametric excitation have been calculated. It is shown that for a waveguide made of a YBa 2 Cu 3 O 7 microstrip with resonant frequency of 10 GHz a laser with a power of about 70 W/cm 2 is needed to excite oscillations. The effect can be used for the creation of high-sensitivity tuneable filters and optoelectric transformers on superconducting microstrips in the GHz range. copyright 1997 American Institute of Physics

  19. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  20. Low-loss curved subwavelength grating waveguide based on index engineering

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.

    2016-03-01

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.

  1. Waveguide module comprising a first plate with a waveguide channel and a second plate with a raised portion in which a sealing layer is forced into the waveguide channel by the raised portion

    Science.gov (United States)

    Strassner, II, Bernd H.; Liedtke, Richard; McDonald, Jacob Jeremiah; Halligan, Matthew

    2018-04-17

    The various technologies presented herein relate to utilizing a sealing layer of malleable material to seal gaps, etc., at a joint between edges of a waveguide channel formed in a first plate and a surface of a clamping plate. A compression pad is included in the surface of the clamping plate and is dimensioned such that the upper surface of the pad is less than the area of the waveguide channel opening on the first plate. The sealing layer is placed between the waveguide plate and the clamping plate, and during assembly of the waveguide module, the compression pad deforms a portion of the sealing layer such that it ingresses into the waveguide channel opening. Deformation of the sealing layer results in the gaps, etc., to be filled, improving the operational integrity of the joint.

  2. Fundamental losses in planar Bragg waveguides

    NARCIS (Netherlands)

    Vinogradov, A. V.; Mitrofanov, A. N.; Popov, A. V.; Fedin, M. A.

    2007-01-01

    This paper considers a planar Bragg waveguide. The guided modes and their dissipation due to the fundamental absorption are described. In the interacting-wave approximation, an analytical relation between the characteristics of the modes and parameters of the Bragg-waveguide geometry was

  3. Diffractive beam shaping, tracking and coupling for wave-guided optical waveguides (WOWs)

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2014-01-01

    techniques to create multiple focal spots that can be coupled into light manipulated WOWs. This is done by using a spatial light modulator to project the necessary phase to generate the multiple coupling light spots. We incorporate a diffractive setup in our Biophotonics Workstation (BWS) and demonstrate......We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). The full strength of this structure-mediated paradigm can be harnessed by addressing multiple WOWs and manipulating them to work in tandem. We propose the use of diffractive...

  4. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    of developing new material platforms for integrated plasmonic devices. Furthermore, novel plasmonic materials such as transparent conductive oxides and transition metal nitrides can offer a variety of new opportunities. In particular, they offer adjustable/tailorable and nonlinear optical properties, dynamic...... modulators based on ultra-compact waveguides with different active cores. Plasmonic modulators with the active core such as indium phosphides or ferroelectrics sandwiched between metal plates have promising characteristics. Apart from the speed and dimensions advantages, the metal plates can serve...... as electrodes for electrical pumping of the active material making it easier to integrate. Including an additional layer in the plasmonic waveguide, in particular an ultrathin transparent conductive oxide film, allows the control of the dispersive properties of the waveguide and thus the higher efficiency...

  5. ICRF [Ion Cyclotron Range of Frequencies] edge modeling studies

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Colestock, P.L.

    1989-01-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. 19 refs., 9 figs

  6. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  7. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  8. A global simulation of ICRF heating in a 3D magnetic configuration

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Akutsu, T.

    2005-01-01

    A global simulation code for the ICRF heating analysis in a three-dimensional (3D) magnetic configuration is developed combining two global simulation codes; a drift kinetic equation solver, GNET, and a wave field solver, TASK/WM. Both codes take into account 3D geometry using the numerically obtained 3D MHD equilibrium. The developed simulation code is applied to the LHD configuration as an example. Characteristics of energetic ion distributions in the phase space are clarified in LHD. The simulation results are also compared with experimental results by evaluating the count number of the neutral particle analyzer using the obtained energetic ion distribution, and a relatively good agreement is obtained. (author)

  9. Testing Born-Infeld Electrodynamics in Waveguides

    International Nuclear Information System (INIS)

    Ferraro, Rafael

    2007-01-01

    Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior

  10. A self-repairing polymer waveguide sensor

    International Nuclear Information System (INIS)

    Song, Young J; Peters, Kara J

    2011-01-01

    This paper presents experimental demonstrations of a self-repairing strain sensor waveguide created by self-writing in a photopolymerizable resin system. The sensor is fabricated between two multi-mode optical fibers via lightwaves in the ultraviolet (UV) wavelength range and operates as a sensor through interrogation of the power transmitted through the waveguide in the infrared (IR) wavelength range. After failure of the sensor occurs due to loading, the waveguide re-bridges the gap between the two optical fibers through the UV resin. The response of the original sensor and the self-repaired sensor to strain are measured and show similar behaviors

  11. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  12. Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Zweben, S.J.; Chang, Z.

    1996-04-01

    Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B T , and by H-minority ICRF tail ions at higher B T . The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case

  13. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  14. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver

    2005-01-01

    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...

  15. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  16. Acoustic one-way mode conversion and transmission by sonic crystal waveguides

    Science.gov (United States)

    Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping

    2016-09-01

    We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.

  17. All silicon waveguide spherical microcavity coupler device.

    Science.gov (United States)

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  18. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  19. Spatial mode discriminator based on leaky waveguides

    Science.gov (United States)

    Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian

    2018-06-01

    We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.

  20. Use of the TFTR prototype charge exchange neutral analyzer for fast He3++ diagnostics during ICRF heating on PLT

    International Nuclear Information System (INIS)

    Medley, S.S.

    1981-07-01

    The Charge Exchange Neutral Analyzer (CENA) for TFTR is designed to measure singly charged ion species of atomic mass A = 1, 2, and 3 simultaneously with up to 75 energy channels per mass and an energy range of 0.5 3 charge exchange neutrals makes the analyzer of particular interest for recently proposed fast He 3 ++ diagnostics during ICRF heating on PLT

  1. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  2. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    Directory of Open Access Journals (Sweden)

    Ryohei Takei

    2012-05-01

    Full Text Available This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  3. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators.

    Science.gov (United States)

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-05-24

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO₃. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  4. Apodized coupled resonator waveguides.

    Science.gov (United States)

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  5. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    International Nuclear Information System (INIS)

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun

    2014-01-01

    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide

  6. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  7. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  8. Quantitative study of rectangular waveguide behavior in the THz.

    Energy Technology Data Exchange (ETDEWEB)

    Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement

    2009-10-01

    This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.

  9. Competition and transformation of modes of unidirectional air waveguide

    Science.gov (United States)

    Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan

    2016-10-01

    In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.

  10. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  11. Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating

    International Nuclear Information System (INIS)

    Li Kai-Li; An Jun-Ming; Zhang Jia-Shun; Wang Yue; Wang Liang-Liang; Li Jian-Guang; Wu Yuan-Da; Yin Xiao-Jie; Hu Xiong-Wei

    2016-01-01

    The factors influencing the crosstalk of silicon-on-insulator (SOI) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate the deterioration of crosstalk. The SOI nanowire AWGs with different arrayed waveguide widths are fabricated by using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technology. The measurement results show that the crosstalk performance is improved by about 7 dB through adopting 800 nm arrayed waveguide width. (paper)

  12. Silicon-Based Technology for Integrated Waveguides and mm-Wave Systems

    DEFF Research Database (Denmark)

    Jovanovic, Vladimir; Gentile, Gennaro; Dekker, Ronald

    2015-01-01

    IC processing is used to develop technology for silicon-filled millimeter-wave-integrated waveguides. The front-end process defines critical waveguide sections and enables integration of dedicated components, such as RF capacitors and resistors. Wafer gluing is used to strengthen the mechanical...... support and deep reactive-ion etching forms the waveguide bulk with smooth and nearly vertical sidewalls. Aluminum metallization covers the etched sidewalls, fully enclosing the waveguides in metal from all sides. Waveguides are fabricated with a rectangular cross section of 560 μm x 280 μm. The measured...

  13. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  14. Discontinuities during UV writing of waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc

    2005-01-01

    UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....

  15. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M.L.; Roberts, A.; Nugent, K.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  16. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M L; Roberts, A; Nugent, K; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  17. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  18. Sm 3+-doped polymer optical waveguide amplifiers

    Science.gov (United States)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  19. Photonic Choke-Joints for Dual-Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  20. Reconfigurable optical manipulation by phase change material waveguides.

    Science.gov (United States)

    Zhang, Tianhang; Mei, Shengtao; Wang, Qian; Liu, Hong; Lim, Chwee Teck; Teng, Jinghua

    2017-05-25

    Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge 2 Sb 2 Te 5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.

  1. 16 channel 200 GHz arrayed waveguide grating based on Si nanowire waveguides

    International Nuclear Information System (INIS)

    Zhao Lei; An Junming; Zhang Jiashun; Song Shijiao; Wu Yuanda; Hu Xiongwei

    2011-01-01

    A 16 channel arrayed waveguide grating demultiplexer with 200 GHz channel spacing based on Si nanowire waveguides is designed. The transmission spectra response simulated by transmission function method shows that the device has channel spacing of 1.6 nm and crosstalk of 31 dB. The device is fabricated by 193 nm deep UV lithography in silicon-on-substrate. The demultiplexing characteristics are observed with crosstalk of 5-8 dB, central channel's insertion loss of 2.2 dB, free spectral range of 24.7 nm and average channel spacing of 1.475 nm. The cause of the spectral distortion is analyzed specifically. (semiconductor devices)

  2. Fabrication of raised and inverted SU8 polymer waveguides

    Science.gov (United States)

    Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.

    2005-01-01

    Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.

  3. Brillouin gain enhancement in nano-scale photonic waveguide

    Science.gov (United States)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  4. Analysis of resonant fast ion distributions during combined ICRF and NBI heating with transients using neutron emission spectroscopy

    Science.gov (United States)

    Hellesen, C.; Mantsinen, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Kiptily, V. G.; Nabais, F.; Contributors, JET

    2018-05-01

    ICRF heating at the fundamental cyclotron frequency of a hydrogen minority ion species also gives rise to a partial power absorption by deuterium ions at their second harmonic resonance. This paper studies the deuterium distributions resulting from such 2nd harmonic heating at JET using neutron emission spectroscopy data from the time of flight spectrometer TOFOR. The fast deuterium distributions are obtained over the energy range 100 keV to 2 MeV. Specifically, we study how the fast deuterium distributions vary as ICRF heating is used alone as well as in combination with NBI heating. When comparing the different heating scenarios, we observed both a difference in the shapes of the distributions as well as in their absolute level. The differences are most pronounced below 0.5 MeV. Comparisons are made with corresponding distributions calculated with the code PION. We find a good agreement between the measured distributions and those calculated with PION, both in terms of their shapes as well as their amplitudes. However, we also identified a period with signs of an inverted fast ion distribution, which showed large disagreements between the modeled and measured results. Resonant interactions with tornado modes, i.e. core localized toroidal alfven eigenmodes (TAEs), are put forward as a possible explanation for the inverted distribution.

  5. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    Science.gov (United States)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  6. Analysis and synthesis of (SAR) waveguide phased array antennas

    Science.gov (United States)

    Visser, H. J.

    1994-02-01

    This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.

  7. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  8. Vector pulsing soliton of self-induced transparency in waveguide

    International Nuclear Information System (INIS)

    Adamashvili, G.T.

    2015-01-01

    A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes. - Highlights: • An optical vector pulsing soliton in a planar waveguide is presented. • Explicit form of the optical vector pulsing soliton are obtained. • The vector pulsing soliton and the soliton have different parameters and profiles

  9. Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas

    International Nuclear Information System (INIS)

    Ding Siye; Wan Baonian; Ti Ang; Zhang Xinjun; Liu Zixi; Qian Jinping; Zhong Guoqiang; Duan Yanmin; Wang Lu

    2014-01-01

    Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length, which is qualitatively in agreement with Wang's theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST. (magnetically confined plasma)

  10. Tunable inkjet-printed slotted waveguide antenna on a ferrite substrate

    KAUST Repository

    Nafe, Ahmed; Farooqui, Muhammad; Shamim, Atif

    2015-01-01

    In this work an inkjet-printed frequency-tunable slotted waveguide antenna on a ferrite substrate is reported. Unlike the typical substrate integrated waveguide approach with via holes, a true 3D rectangular waveguide is realized by inkjet-printing

  11. Excitation of waves in elastic waveguides by piezoelectric patch actuators

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available for waveguides excited by piezoelectric patch actuators. The waveguide is modelled using specially developed waveguide finite elements. These elements are formulated using a complex exponential to describe the wave propagation along the structure and finite...

  12. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    Science.gov (United States)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  13. Coaxial waveguide mode reconstruction and analysis with THz digital holography.

    Science.gov (United States)

    Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan

    2012-03-26

    Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.

  14. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  15. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  16. Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides

    International Nuclear Information System (INIS)

    Xiao-Yu, Mao; Geng-Yan, Zhang; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2008-01-01

    By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W 2 ) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity ν g in incident waveguide can be achieved. In particular, proper W 2 and r' can lead to the lowest ν g of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion

  17. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    Science.gov (United States)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  18. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  19. Analysis of a Waveguide-Fed Metasurface Antenna

    Science.gov (United States)

    Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.

    2017-11-01

    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

  20. A portable data acquisition system on J.I.P.P. T-II ICRF experiment

    International Nuclear Information System (INIS)

    Hidekuma, S.

    1982-03-01

    This system has been developed for the data acquisition in the J.I.P.P. T-II ICRF experiment. It is composed of the LSI-11/2(56KB), a dual floppy disk drive, CAMAC modules, a graphic display and an interface module to the HITAC 10-II system. The operating system is RT-11. This system has functions of the data acquisition through A-D converters (max.32ch), the transfer of the data to the HITAC 10-II system and the preservation of them in its floppy disk. Furthermore, a user can easily develop his application programs with this system. The operating procedures of this system are described. (author)

  1. The cross waveguide grating: proposal, theory and applications.

    Science.gov (United States)

    Muñoz, Pascual; Pastor, Daniel; Capmany, José

    2005-04-18

    In this paper a novel grating-like integrated optics device is proposed, the Cross Waveguide Grating (XWG). The device is based upon a modified configuration of a traditional Arrayed Waveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.

  2. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  3. Engineering spin-wave channels in submicrometer magnonic waveguides

    Directory of Open Access Journals (Sweden)

    XiangJun Xing

    2013-03-01

    Full Text Available Based on micromagnetic simulations and model calculations, we demonstrate that degenerate well and barrier magnon modes can exist concurrently in a single magnetic waveguide magnetized perpendicularly to the long axis in a broad frequency band, corresponding to copropagating edge and centre spin waves, respectively. The dispersion relations of these magnon modes clearly show that the edge and centre modes possess much different wave characteristics. By tailoring the antenna size, the edge mode can be selectively activated. If the antenna is sufficiently narrow, both the edge and centre modes are excited with considerable efficiency and propagate along the waveguide. By roughening the lateral boundary of the waveguide, the characteristics of the relevant channel can be easily engineered. Moreover, the coupling of the edge and centre modes can be conveniently controlled by scaling the width of the waveguide. For a wide waveguide with a narrow antenna, the edge and centre modes travel relatively independently in spatially-separate channels, whereas for a narrow strip, these modes strongly superpose in space. These discoveries might find potential applications in emerging magnonic devices.

  4. Planned waveguide electric field breakdown studies

    International Nuclear Information System (INIS)

    Wang Faya; Li Zenghai

    2012-01-01

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  5. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  6. Poling of UV-written Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Hübner, Jörg

    1999-01-01

    We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months......We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months...

  7. Compact Probe for Power Detection from the Narrow Side of the Waveguide

    International Nuclear Information System (INIS)

    Kung, C.C.; Bernabei, S.; Gumbas, J.; Greenough, N.; Fredd, E.; Wilson, J.R.; Hosea, J.

    2004-01-01

    Phased array antennas with high directivity have a variety of applications. One of their applications is in RF heating for magnetically confined plasma fusion research. Among these RF heating schemes, waveguide arrays with careful phase control on each waveguide can act as a phased array antenna to deliver megawatts of power for heating fusion plasmas in the lower-hybrid range of frequencies (1 GHz-10 GHz). In order to achieve compactness, it is common to stack reduced height waveguide together to form the waveguide array. As long as the delivered power does not cause arcing in the waveguide, the waveguide height can be quite small. Due to this confined space in a stack of reduced height waveguides, power detection of the incident and reflected wave in the reduced height waveguide is extremely difficult. A new compact probe, which employs current loops, to monitor the incident and reflected wave from the narrow side of the reduced height waveguide has been developed. Its theory and performance will be reported in this paper

  8. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  9. Utilization of optical waveguides in dosimetry

    International Nuclear Information System (INIS)

    Darikova, A.; Vanickova, M.; Matejec, V.; Pospisilova, M.

    1994-01-01

    Some optical waveguides used for communication purposes are very sensitive to ionizing radiation.Ionizing radiation radiation affects the optical waveguides by creating color centers that are responsible for the transmission loss.This transmission loss is the function of wavelength of the passing light. The dose of ionizing radiation will manifest itself not only in the magnitude of the transmission loss value but even in changing the position of maximum of the transmission loss curve with respect to the wavelength. The position of the maximum is stable in time and temperature and independent of dose rate. The study of effects of ionizing radiation on the optical waveguides leads to the possibility of utilizing them not only as sensors of ionizing radiation but even as a dosimeters. 4 figs., 2 refs. (author)

  10. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  11. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  12. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    Science.gov (United States)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  13. A unified approach for radiative losses and backscattering in optical waveguides

    International Nuclear Information System (INIS)

    Melati, D; Morichetti, F; Melloni, A

    2014-01-01

    Sidewall roughness in optical waveguides represents a severe impairment for the proper functionality of photonic integrated circuits. The interaction between the propagating mode and the roughness is responsible for both radiative losses and distributed backscattering. In this paper, a unified vision on these extrinsic loss phenomena is discussed, highlighting the fundamental role played by the sensitivity of the effective index n eff of the optical mode to waveguide width variations. The n w model presented applies to both 2D slab waveguides and 3D laterally confined waveguides and is in very good agreement with existing models that individually describe radiative loss or backscattering only. Experimental results are presented, demonstrating the validity of the n w model for arbitrary waveguide geometries and technologies. This approach enables an accurate description of realistic optical waveguides and provides simple design rules for optimization of the waveguide geometry in order to reduce the propagation losses generated by sidewall roughness. (paper)

  14. Near-coast tsunami waveguiding: phenomenon and simulations

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Adytia, D.; Adytia, D.; Andonowati, A.

    2008-01-01

    In this paper we show that shallow, elongated parts in a sloping bottom toward the coast will act as a waveguide and lead to large enhanced wave amplification for tsunami waves. Since this is even the case for narrow shallow regions, near-coast tsunami waveguiding may contribute to an explanation

  15. Devices Based on Parallel-Plate Waveguides for Terahertz Applications

    Science.gov (United States)

    Reichel, Kimberly S.

    The promise of terahertz (THz) frequencies for technological applications is wide, spanning from wireless communications for faster downloads to non-destructive imaging for security screening. Although the potential is high, there is a lack of the basic devices necessary to make these prospects a reality. One essential component for any electromagnetic wave technology is a waveguide, which as the name implies can guide light waves, like a hose would direct water from the source to the desired target location. Several waveguide types have been introduced for THz frequencies, one of the most promising of which is the parallel-plate waveguide (PPWG). The PPWG is attractive based on its superior waveguiding performance of efficient input coupling and low losses, but additionally it serves as an excellent platform for other purposes. The projects presented in this dissertation highlight a few new functionalities incorporated into, and enabled by, a PPWG for sensing, filtering, and splitting. First, we characterize a high quality factor resonator integrated into a PPWG used for microfluidic sensing. Typically, the characterization of the frequency-dependent electric field profile inside a narrowband resonator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. In our situation however, the geometry of the PPWG allows for direct access to the resonant cavity via the open sides of the waveguide and a novel implementation of the air-biased coherent detection (ABCD) method permits non-invasive probing. Through both experiment and simulation, we see the narrowband frequencies trapped in the resonator and also discover an unexpected broadband asymmetric field distribution due to the resonator inside the waveguide, yielding new information that is not available in the far field. Second, we investigate a narrowband tunable filter based on extraordinary optical transmission (EOT) through a 1D array of subwavelength holes inside

  16. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Friis, Peter; Hübner, Jörg

    2001-01-01

    The UV wavelength region is of great interest in absorption spectroscopy, which is employed for chemical analysis, since many organic compounds absorb in only this region. Germanium-doped silica, which is often preferred as the waveguide core material in optical devices for telecommunication....... The applicability of these waveguides was demonstrated in a biochemical microsystem consisting of multimode buried-channel SiOxNy waveguides that were monolithically integrated with microfluidic channels. Absorption measurements of a beta -blocking agent, propranolol, at 212-215 nm were performed. The detection...

  17. Waveguide-based optofluidics

    DEFF Research Database (Denmark)

    Karnutsch, Christian; Tomljenovic-Hanic, Snjezana; Monat, Christelle

    2010-01-01

    blocks in many applications, from microlasers and biomedical sensor systems to optical switches and integrated circuits. In this paper, we show that PhC microcavities can be formed by infusing a liquid into a selected section of a uniform PhC waveguide and that the optical properties of these cavities...... and highlight the benefits of an optofluidic approach, focusing on optofluidic cavities created in silicon photonic crystal (PhC) waveguide platforms. These cavities can be spatially and spectrally reconfigured, thus allowing a dynamic control of their optical characteristics. PhC cavities are major building...... can be tuned and adapted. By taking advantage of the negative thermo-optic coefficient of liquids, we describe a method which renders PhC cavities insensitive to temperature changes in the environment. This is only one example where the fluid-control of optical elements results in a functionality...

  18. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  19. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    Science.gov (United States)

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  20. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    the diffraction limit, i.e., on the nanoscale, while enhancing local field strengths by several orders of magnitude. This unique feature of SPP modes along with ever increasing demands for miniaturization of photonic components and circuits generates an exponentially growing interest to SPP-mediated radiation...... guiding and SPP-based waveguide components. Here we review the current status of this rapidly developing field, starting with a brief presentation of main planar SPP modes, and then describing in detail various SPP-based waveguide configurations that ensure two-dimensional mode confinement. Excitation...

  1. Simulation of light propagation in the thin-film waveguide lens

    Science.gov (United States)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  2. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    International Nuclear Information System (INIS)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-01

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  3. Low loss hollow-core waveguide on a silicon substrate

    Science.gov (United States)

    Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2012-07-01

    Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.

  4. Silicon waveguided components for the long-wave infrared region

    Science.gov (United States)

    Soref, Richard A.; Emelett, Stephen J.; Buchwald, Walter R.

    2006-10-01

    We propose that the operational wavelength of waveguided Si-based photonic integrated circuits and optoelectronic integrated circuits can be extended beyond the 1.55 µm telecom range into the wide infrared from 1.55 to 100 µm. The Si rib-membrane waveguide offers low-loss transmission from 1.2 to 6 µm and from 24 to 100 µm. This waveguide, which is compatible with Si microelectronics manufacturing, is constructed from silicon-on-insulator by etching away the oxide locally beneath the rib. Alternatively, low-loss waveguiding from 1.9 to 14.7 µm is assured by employing a crystal Ge rib grown directly upon the Si substrate. The Si-based hollow-core waveguide is an excellent device that minimizes loss due to silicon's 6-24 µm multi-phonon absorption. Here the rectangular air-filled core is surrounded by SiGe/Si multi-layer anti-resonant or Bragg claddings. The hollow channel offers less than 1.7 dB cm-1 loss from 1.2 to 100 µm. .

  5. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    Science.gov (United States)

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  6. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Lorenzo Pavesi

    2011-07-01

    Full Text Available Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies.

  7. Waveguide-Integrated MEMS Concepts for Tunable Millimeter-Wave Systems

    OpenAIRE

    Baghchehsaraei, Zargham

    2014-01-01

    This thesis presents two families of novel waveguide-integrated components based on millimeter-wave microelectromechanical systems (MEMS) for reconfigurable systems. The first group comprises V-band (50–75 GHz) and W-band (75–110 GHz) waveguide switches and switchable irises, and their application as switchable cavity resonators, and tunable bandpass filters implemented by integration of novel MEMS-reconfigurable surfaces into a rectangular waveguide. The second category comprises MEMS-based ...

  8. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu

    2017-01-01

    and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...

  9. Multi-resolution waveguide image slicer for the PEPSI instrument

    Science.gov (United States)

    Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Harnisch, Gerd; Hornaff, Marcel; Weber, Michael; Barnes, Stuart

    2016-07-01

    A waveguide image slicer with resolutions up to 270.000 (planned: 300.000) for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 70 μm has been manufactured and tested. The waveguides were macroscopically prepared, stacked up to an order of seven and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 3.6 μm, using index matching adhesives for TIR within the waveguides. The image slicer stacks are used in immersion mode and are miniaturized to enable implementation in a set of 2x8. The overall efficiency is between 92 % and 96 %.

  10. Metallic and 3D-printed dielectric helical terahertz waveguides.

    Science.gov (United States)

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

  11. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  12. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  13. Design and control of phased ICRF antenna arrays

    International Nuclear Information System (INIS)

    Goulding, R.H.; Baity, F.W.; Hoffman, D.J.

    1993-01-01

    Phased antenna arrays operating in the ion cyclotron range of frequencies (ICRF) are used to produce highly directional wave spectra, primarily for use in current drive experiments. RF current drive using phased antennas has been demonstrated in both the JET and DIII-D tokamaks, and both devices are planning to operate new four-element arrays beginning early next year. Features of antenna design that are relevant to phased operation and production of directional spectra are reviewed. Recent advances in the design of the feed circuits and the related control systems for these arrays should substantially improve their performance, by reducing the coupling seen by the matching networks and rf power supplies caused by the mutual impedance of the array elements. The feed circuit designs for the DIII-D and JET phased antenna arrays are compared. The two configurations differ significantly due to the fact that one power amplifier is used for the entire array in the former case, and one per element in the latter. The JET system uses automatic feedback control of matching, phase and amplitude of antenna currents, and the transmitter power balance. The design of this system is discussed, and a time dependent model used to predict its behavior is described

  14. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...

  15. Attenuation Coefficient of Single-Mode Periodic Waveguides

    Science.gov (United States)

    Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln⁡(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  16. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  17. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  18. Design and optimization of carbon-nanotube-material/dielectric hybrid nonlinear optical waveguides

    International Nuclear Information System (INIS)

    Zhao, Xin; Zheng, Zheng; Lu, Zhiting; Zhu, Jinsong; Zhou, Tao

    2011-01-01

    The nonlinear optical characteristics of highly nonlinear waveguides utilizing carbon nanotube composite materials are investigated theoretically. The extremely high nonlinearity and relatively high loss of the carbon nanotube materials are shown to greatly affect the performance of such waveguides for nonlinear optical applications, in contrast to waveguides using conventional nonlinear materials. Different configurations based on applying the carbon nanotube materials to the popular ridge and buried waveguides are thoroughly studied, and the optimal geometries are derived through simulations. It is shown that, though the nonlinear coefficient is often huge for these waveguides, the loss characteristics can significantly limit the maximum achievable accumulated nonlinearity, e.g. the maximum nonlinear phase shift. Our results suggest that SOI-based high-index-contrast, carbon nanotube cladding waveguides, rather than the currently demonstrated low-contrast waveguides, could hold the promise of achieving significantly higher accumulated nonlinearity

  19. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Science.gov (United States)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  20. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  1. Induced transparencies in metamaterial waveguides doped with quantum dots

    International Nuclear Information System (INIS)

    Singh, Mahi R; Brzozowski, Marek; Racknor, Chris

    2015-01-01

    The light-mater interaction in quantum dots doped artificial electromagnetic materials such as metamaterial waveguides has been studied. The effect of surface plasmon polaritons (SPPs) on the absorption coefficient of quantum dots in metamaterial waveguides is investigated. The waveguides are made by sandwiching a metamaterial slab between two dielectric material layers. An ensemble of quantum dots are deposited near the waveguide interfaces. The transfer matrix method is used to calculate the SSPs in the waveguide and the density matrix method and Schrödinger equation method are used to calculate the absorption spectrum. It is found that when the thickness of the metamaterial slab is greater than the SPP wavelength the SPP energy is degenerate. However when the thickness of the slab is smaller than that of the SPP wavelength the degeneracy of SPP state splits into odd and even SPP modes due the surface mode interaction (SMI) of the waveguide. We also found that the absorption spectrum has a minima (transparent state) which is due to strong coupling between excitons in quantum dots and SPPs in the waveguide. This transparent state is called the SPP induced transparency. However when the thickness of the slab is smaller than that of the SPP wavelength one transparent state in the absorption spectrum split into two transparent states due to the surface mode interaction. This type of transparency is called the SMI induced transparency. Transparent states can be achieved by applying pulse stress field or an intense laser pulse field. Hence present findings can be used to fabricate the metamaterial optical sensors and switches. (paper)

  2. Joule loss on a Faraday shield of JT-60 ICRF test antenna

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki; Saigusa, Mikio; Ikeda, Yoshitaka; Kimura, Haruyuki; Hirashima, Teruhisa; Uehara, Munenori.

    1988-01-01

    Joule loss on a Faraday shield of JT-60 ICRF test antenna with a conductive casing is investigated at the frequency range of 120 MHz. The magnetic field radiated from the antenna is measured by three-dimensionally scanning an rf probe both inside and outside the antenna casing. The magnetic field perpendicular to the Faraday shield, B x , is found to be the largest component near the Faraday shield. It consequently gives the major part of the joule loss on the Faraday shield. The temperature distribution of the Faraday shield due to joule loss is measured directly with a thermocamera. It is confirmed that the area of the high temperature rise is consistent with the peak positions of the B x field. Faraday shield resistance which is estimated from power measurements agrees with the theoretical value. (author)

  3. Long-range hybrid ridge and trench plasmonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yusheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-23

    We report a class of long-range hybrid plasmon polariton waveguides capable of simultaneously achieving low propagation loss and tight field localization at telecommunication wavelength. The symmetric (quasi-symmetric) hybrid configurations featuring high-refractive-index-contrast near the non-uniform metallic nanostructures enable significantly improved optical performance over conventional hybrid waveguides, exhibiting considerably longer propagation distances and dramatically enhanced figure of merits for similar degrees of confinement. Compared to their traditional long-range plasmonic counterparts, the proposed hybrid waveguides put much less stringent requirements on index-matching conditions, demonstrating nice performance under a wide range of physical dimensions and robust characteristics against certain fabrication imperfections. Studies concerning crosstalk between adjacent identical waveguides further reveal their potential for photonic integrations. In addition, alternative configurations with comparable guiding properties to the structures in our case studies are also proposed, which can potentially serve as attractive prototypes for numerous high-performance nanophotonic components.

  4. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    Science.gov (United States)

    Rindorf, Lars; Glückstad, Jesper

    2013-03-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations that the nanoantenna can be made to operate in a bandstop mode around its resonant wavelength where there is a very high evanescent strong electrical probing field close to the antennas, and additionally the fluorescence or Raman excitations will be be unpolluted by stray light from the WOW due to the band-stop characteristic. We give geometrical parameters necessary for realizing functioning nanoantennas.

  5. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    Science.gov (United States)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  6. Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Kulkova, Irina V.; Malureanu, Radu

    2012-01-01

    . The modulation is achieved by changing the gain of the core that results in different transmittance through the waveguides. A MSM waveguide enables high field localization and therefore high modulation speed. Bulk semiconductor, quantum wells and quantum dots, arranged in either horizontal or vertical layout......, are considered as the core of the MSM waveguide. Dependences on the waveguide core size and gain values of various active materials are studied. The designs consider also practical aspects like n- and p-doped layers and barriers in order to obtain results as close to reality. The effective propagation constants...

  7. The effect of vocal fold vertical stiffness gradient on sound production

    Science.gov (United States)

    Geng, Biao; Xue, Qian; Zheng, Xudong

    2015-11-01

    It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.

  8. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes are obtained by the method of matching, taking advantage of the modal power orthogonality relations. The necessary excitation of modes provided by a number of coaxial loop antennas inserted inside the waveguide section. The antennas currents are computed from the solution of the waveguide excitation inverse problem. The accuracy of the synthesized wave field (compared to the mathematical model) and the power efficiency of the generation technique are evaluated in order to practically realize a launcher for LWs in the microwave regime. © 2011 IEEE.

  9. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  10. Broadband and scalable optical coupling for silicon photonics using polymer waveguides

    Science.gov (United States)

    La Porta, Antonio; Weiss, Jonas; Dangel, Roger; Jubin, Daniel; Meier, Norbert; Horst, Folkert; Offrein, Bert Jan

    2018-04-01

    We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

  11. COMPACT ATHERMAL OPTICAL WAVEGUIDE USING THERMAL EXPANSION AMPLIFICATION

    DEFF Research Database (Denmark)

    2001-01-01

    A method of temperature stabilising optical waveguides having positive thermal optical path length expansion, in particular fiber Bragg gratings or optical fiber DFB lasers or optical fiber DBR lasers, comprising affixing the optical waveguide to at least two points of a negative expanding fixture...

  12. Planar optical waveguides for civil and military applications

    International Nuclear Information System (INIS)

    Lavers, C R

    2009-01-01

    There is significant military and civil interest in being able to detect chemical species adsorbed from air or present in aqueous solutions. Planar optical waveguide transmission properties are sensitive to changes in parameters such as refractive index or absorption and to light-emitting processes such as fluorescence. These changes modulate light travelling in optical waveguides, and so may be used as sensors for detecting biological and chemical agents, non-ionizing and ionizing electromagnetic radiation. Several waveguide systems have been studied theoretically and experimentally, and their responses to basic influences such as alcohol and UV radiation, and gamma rays determined.

  13. Index-antiguided planar waveguide lasers with large mode area

    Science.gov (United States)

    Liu, Yuanye

    The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that

  14. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashim Dhakal

    2017-02-01

    Full Text Available Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

  15. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  16. Analysis of 4-strap ICRF Antenna Performance in Alcator C-Mod

    International Nuclear Information System (INIS)

    Schilling, G.; Wukitch, S.J.; Boivin, R.L.; Goetz, J.A.; Hosea, J.C.; Irby, J.H.; Lin, Y.; Parisot, A.; Porkolab, M.; Wilson, J.R.

    2003-01-01

    A 4-strap ICRF antenna was designed and fabricated for plasma heating and current drive in the Alcator C-Mod tokamak. Initial upgrades were carried out in 2000 and 2001, which eliminated surface arcing between the metallic protection tiles and reduced plasma-wall interactions at the antenna front surface. A boron nitride septum was added at the antenna midplane to intersect electric fields resulting from radio-frequency sheath rectification, which eliminated antenna corner heating at high power levels. The current feeds to the radiating straps were reoriented from an E||B to E parallel B geometry, avoiding the empirically observed ∼15 kV/cm field limit and raising antenna voltage holding capability. Further modifications were carried out in 2002 and 2003. These included changes to the antenna current strap, the boron nitride tile mounting geometry, and shielding the BN-metal interface from the plasma. The antenna heating efficiency, power, and voltage characteristics under these various configurations will be presented

  17. Planar optical waveguide sensor of ammonia

    Science.gov (United States)

    Sarkisov, Sergey S.; Curley, Michael J.; Boykin, Courtney; Diggs, Darnell E.; Grote, James G.; Hopkins, Frank K.

    2004-12-01

    We describe a novel sensor of ammonia based on a planar optical waveguide made of a thin film of polymer polyimide doped with indicator dye bromocresol purple. The film of dye-doped polyimide demonstrated reversible increase of absorption with a peak near 600 nm in response to presence of ammonia in ambient air. Coupling of input and output optic fibers with the waveguide was done by means of coupling prisms or coupling grooves. The latter configuration has the advantage of low cost, less sensitivity to temperature variation, and the possibility of coupling from both sides of the waveguide. Special experimental setup was built to test the sensor. It included test gas chamber with sealed optic fiber feed-throughs, gas filling line, laser source, photodetector, and signal processing hardware and software. The sensor was capable of detecting 100 ppm of ammonia in air within 8 seconds. Further increase of sensitivity can be achieved by adding more dye dopant to the polymer, increase of the length of the waveguide, and suppression of noise. Overexposure of the sensor to more than 5000 ppm of ammonia led to the saturation of the polymer film and, as a result, significant decrease of sensitivity and increase of the response time. The sensor can be used as low cost component of a distributed optical network of chemical sensors for monitoring presence of hazardous industrial pollutants in air.

  18. Experimental demonstration of a four-port photonic crystal cross-waveguide structure

    DEFF Research Database (Denmark)

    Yu, Yi; Heuck, Mikkel; Ek, Sara

    2012-01-01

    We report the design and fabrication of a four-port InP photonic crystal cavity-waveguide structure in which two crossing waveguides intersect in a cavity. Transmission measurements show that by exploiting mode-gap effects, high cross-talk suppression between the two waveguides can be obtained. I....... In addition, the waveguides couple to two distinct cavity resonances with different quality-factors as well as small mode volumes. This structure is promising for realizing ultra-fast, low-energy optical switches or memories....

  19. A hybrid plasmonic waveguide terahertz quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Degl' Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-02-23

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.

  20. Wave-guide type photo reactor for water purification

    International Nuclear Information System (INIS)

    Nobuaki, Negishi; Feng, He; Sadao, Matsuzawa; Koji, Takeuchi; Kayo, Ohno

    2006-01-01

    A wave-guide type photo-catalytic rod that is consisting of a glass tube with transparent TiO 2 (outside) and an optical wave-guide rod (inside) was designed and examined its performance. A model of polluted water, which contains 100 ppm of toluene or phenol, was taken in a 500 ml of beaker and the performance of this unit was evaluated by the removal rate of pollutants in water under photo-irradiation. Acrylic rod with 6-mm diameter was used as the wave-guide of light. One end of acrylic rod 50 mm had a frosted part or a screw thread for increasing seep out of the light. For the glass tube with transparent TiO 2 , four kinds with different film thickness were prepared by the dip-coating method. The wave-guide type photo-catalytic rods effectively eliminated toluene and phenol and the total amount of intermediates formation was low. (authors)

  1. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    Science.gov (United States)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  2. Break up of bound-N-spatial-soliton in a ramp waveguide

    NARCIS (Netherlands)

    Suryanto, A.; van Groesen, Embrecht W.C.

    2002-01-01

    We present an analytical and numerical investigation of the propagation of spatial solitons in a nonlinear waveguide with ramp linear refractive index profile (ramp waveguide). For the propagation of a single soliton beam in a ramp waveguide, the particle theory shows that the soliton beam follows a

  3. 3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2016-11-01

    We demonstrate broadband, low loss, and close-to-zero dispersion guidance of terahertz (THz) radiation in a dielectric tube with an anti-reflection structure (AR-tube waveguide) in the frequency range from 0.2 to 1.0 THz. The anti-reflection structure (ARS) consists of close-packed cones in a hexagonal lattice arranged on the outer surface of the tube cladding. The feature size of the ARS is in the order of the wavelength between 0.2 and 1.0 THz. The waveguides are fabricated with the versatile and cost efficient 3D-printing method. Terahertz time-domain spectroscopy (THz-TDS) measurements as well as 3D finite-difference time-domain simulations (FDTD) are performed to extensively characterize the AR-tube waveguides. Spectrograms, attenuation spectra, effective phase refractive indices, and the group-velocity dispersion parameters β 2 of the AR-tube waveguides are presented. Both the experimental and numerical results confirm the extended bandwidth and smaller group-velocity dispersion of the AR-tube waveguide compared to a low loss plain dielectric tube THz waveguide. The AR-tube waveguide prototypes show an attenuation spectrum close to the theoretical limit given by the infinite cladding tube waveguide.

  4. Antenna loading and electron heating experiments of ICRF wave in TNT-A tokamak

    International Nuclear Information System (INIS)

    Shinohara, Shunjiro; Asakura, Nobuyuki; Naito, Masahiro; Miyamoto, Kenro

    1984-01-01

    Antenna loading resistance and electron heating effects of ICRF wave were investigated in TNT-A tokamak. Lodaing resistance increased with the mean plasma density and decreased with the input power. The effect of the distance between the plasma and antenna surface on loading resistance was studied and had good agreements with the calculated results. The increase in the soft Xray emissivity was larger in the presence of ion-ion hybrid and/or ion cyclotron resonance layer in the plasma than that in the absence of them. With the absorbed power up to two times of the ohmic power, the central electron temperature increased by 20%, the soft Xray emissivity increased by 80% and the mean plasma density decreased by 10%, while the total radiation loss increased slightly (by 15%). (author)

  5. Femtosecond laser written waveguides deep inside silicon.

    Science.gov (United States)

    Pavlov, I; Tokel, O; Pavlova, S; Kadan, V; Makey, G; Turnali, A; Yavuz, Ö; Ilday, F Ö

    2017-08-01

    Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 μm. To this end, we use 350 fs long, 2 μJ pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The position of the beam is accurately controlled with pump-probe imaging during fabrication. Waveguides that were 5.5 mm in length and 20 μm in diameter were created by scanning the focal position along the beam propagation axis. The fabricated waveguides were characterized with a continuous-wave laser operating at 1.5 μm. The refractive index change inside the waveguide was measured with optical shadowgraphy, yielding a value of 6×10 -4 , and by direct light coupling and far-field imaging, yielding a value of 3.5×10 -4 . The formation mechanism of the modification is discussed.

  6. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography.

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Kamyab, Lobna; Rostami, Ali; Capolino, Filippo; Boyraz, Ozdal

    2015-03-09

    We demonstrate a novel technique to fabricate sub-micron silicon nitride waveguides using conventional contact lithography with MEMS-grade photomasks. Potassium hydroxide anisotropic etching of silicon facilitates line reduction and roughness smoothing and is key to the technique. The fabricated waveguides is measured to have a propagation loss of 0.8dB/cm and nonlinear coefficient of γ = 0.3/W/m. A low anomalous dispersion of <100ps/nm/km is also predicted. This type of waveguide is highly suitable for nonlinear optics. The channels naturally formed on top of the waveguide also make it promising for plasmonics and quantum efficiency enhancement in sensing applications.

  7. Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides

    International Nuclear Information System (INIS)

    Handapangoda, Dayan; Rukhlenko, Ivan D; Premaratne, Malin

    2013-01-01

    We theoretically analyze guided modes in optically active and passive double-slot plasmonic waveguides. We show that for one of the two different mode symmetries supported by the waveguide, a most productive guiding condition can be realized by adjusting the thicknesses of the layers to optimal values. We also derive approximate analytic expressions to calculate the optimal geometrical parameters of the waveguide. Interestingly, our analysis shows that the propagation losses associated with the inverse mode symmetry of the double-slot waveguide are comparatively low, regardless of the dimensions of the waveguide. We further show that the propagation losses become the smallest in the limiting case of a single-slot (metal–dielectric–metal (MDM)) waveguide. For both double- and single-slot waveguides, we show that the gain required to overcome the losses can be reduced by choosing a dielectric with a low refractive index. We also derive accurate analytical expressions to readily estimate the critical gain and modal gain of the waveguides. (paper)

  8. Optical waveguides in lithium niobate: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  9. Efficient waveguide coupler based on metal materials

    Science.gov (United States)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  10. Planar waveguides and other confined geometries theory, technology, production, and novel applications

    CERN Document Server

    2015-01-01

    This book provides a comprehensive overview of the theoretical concepts and experimental applications of planar waveguides and other confined geometries, such as optical fibres. Covering a broad array of advanced topics, it begins with a sophisticated discussion of planar waveguide theory, and covers subjects including efficient production of planar waveguides, materials selection, nonlinear effects, and applications including species analytics down to single-molecule identification, and thermo-optical switching using planar waveguides. Written by specialists in the techniques and applications covered, this book will be a useful resource for advanced graduate students and researchers studying planar waveguides and optical fibers.

  11. Multiple temperature sensors embedded in an ultrasonic “spiral-like” waveguide

    Directory of Open Access Journals (Sweden)

    Suresh Periyannan

    2017-03-01

    Full Text Available This paper studies the propagation of ultrasound in spiral waveguides, towards distributed temperature measurements on a plane. Finite Element (FE approach was used for understanding the velocity behaviour and consequently designing the spiral waveguide. Temperature measurements were experimentally carried out on planar surface inside a hot chamber. Transduction was performed using a piezo-electric crystal that is attached to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes L(0,1 and T(0,1 were employed. Notches were introduced along the waveguide to obtain ultrasonic wave reflections. Time of fight (TOF differences between the pre-defined reflectors (notches located on the waveguides were used to infer local temperatures. The ultrasonic temperature measurements were compared with commercially available thermocouples.

  12. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    International Nuclear Information System (INIS)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua; Gong Zhao

    2008-01-01

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 μm, the splitting length of the devices is only 35 μm even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits

  13. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua [Department of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou (China); Gong Zhao [Zhejiang University City College, 310027 Hangzhou (China)

    2008-05-07

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 {mu}m, the splitting length of the devices is only 35 {mu}m even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits.

  14. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed; Niver, Edip

    2011-01-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes

  15. Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate

    Science.gov (United States)

    Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.

    2018-04-01

    Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.

  16. Optical waveguides with memory effect using photochromic material for neural network

    Science.gov (United States)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  17. General technique for the integration of MIC/MMIC'S with waveguides

    Science.gov (United States)

    Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)

    1987-01-01

    A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.

  18. Enhancement of single mode operation in coaxial optical waveguide using DB boundary conditions

    Science.gov (United States)

    Lohia, Pooja; Prajapati, Y.; Saini, J. P.; Rai, B. S.

    2014-11-01

    In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.

  19. Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects

    Science.gov (United States)

    Burrell, Derek; Middlebrook, Christopher

    2016-03-01

    Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.

  20. Field of view of limitations in see-through HMD using geometric waveguides.

    Science.gov (United States)

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  1. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  2. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  3. Transmission of infrared radiation through cylindrical waveguides

    International Nuclear Information System (INIS)

    Nucara, A.; Dore, P.; Calvani, P.; Cannavo', D.; Marcelli, A.

    1998-01-01

    Measurement of the transmittance of infrared radiation (v -1 ) through cylindrical waveguides are presented and discussed. The experimental results are compared with numerical simulations, obtained through conventional ray tracing programs. Finally, it' estimated the transmittance of a waveguide in the case of an infrared synchrotron radiation source. Are applied the results to the case of the DAΦNE collider, where a synchrotron radiation beamline for the far infrared is under construction

  4. Optical vortex propagation in few-mode rectangular polymer waveguides

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs

    2017-01-01

    We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...

  5. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    Science.gov (United States)

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  6. Materials tests and analyses of Faraday shield tubes for ICRF [ion cyclotron resonant frequency] antennas

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.

    1988-01-01

    The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs

  7. Evolution of Eigenmodes of the Mhd-Waveguide in the Outer Magnetosphere

    Science.gov (United States)

    Chuiko, Daniil

    EVOLUTION OF EIGENMODES OF THE MHD-WAVEGUIDE IN THE OUTER MAGNETOSPHERE Mazur V.A., Chuiko D.A. Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Geomagnetic field and plasma inhomogeneties in the outer equatorial part of the magnetosphere al-lows for existence of a channel with low Alfven speeds, which spans from the nose to the far flanks of the magnetosphere, in the morning as well as in the evening sectors. This channel plays a role of a waveguide for fast magnetosonic waves. When an eigenmode travels along the waveguide (i.e. in the azimuthal direction) it undergoes certain evolution. The parameters of the waveguide are changing along the way of wave’s propagation and the eigenmode “adapts” to these parameters. Conditions of the Kelvin-Helmholtz instability are changing due to the increment in the solar wind speed along the magnetopause. The conditions of the solar wind hydromagnetic waves penetration to the magnetosphere are changing due to the same increment. As such, the process of the penetration turns to overreflection regime, which abruptly increases the pump level of the magnetospheric waveguide. There is an Alfven resonance deep within the magnetosphere, which corresponds to the propagation of the fast mode along the waveguide. Oscillation energy dissipation takes place in the vicinity of the Alfven resonance. Alfven resonance is a standing Alfven wave along the magnetic field lines, so it reaches the ionosphere and the Earth surface, when the fast modes of the waveguide, localized in the low Alfven speed channel cannot be observed on Earth. The evolution of the waveguide oscillation propagating from the nose to the far tail is theoretically investigated in this work with consideration of all aforementioned effects. The spatial structure var-iation character, spectral composition and amplitude along the waveguide are found.

  8. Plasmon enhanced light amplification in metal–insulator–metal waveguides with gain

    International Nuclear Information System (INIS)

    Zhong, Xiao-Lan; Li, Zhi-Yuan

    2012-01-01

    In this paper we study the loss compensation and light amplification properties of metal–insulator–metal (MIM) waveguides that are doped with gain material in the dielectric core. An analytical approach based on Maxwell’s equations is developed to evaluate quantitatively the influence of the gain coefficient on the loss compensation and light amplification efficiencies of the waveguide under different values of the waveguide width and working wavelengths. The analytical results agree excellently with all-numerical calculations that directly solve Maxwell’s equations. The results show that the light amplification efficiency obeys a strict linear relationship with the gain coefficient, and MIM waveguides with narrower widths and under shorter wavelengths have better efficiencies. In addition, the MIM waveguides have higher light amplification efficiencies than usual dielectric waveguides, which suggests a very positive role of the plasmonic structure in enhancing the light amplification when gain is introduced. These loss and gain behaviors can be well explained by looking at the modal profile of each transport mode and the corresponding light energy confinement effect and slow light effect. (paper)

  9. Optical waveguide loop for planar trapping of blood cells and microspheres

    Science.gov (United States)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  10. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  11. Proton beam writing of passive waveguides in PMMA

    International Nuclear Information System (INIS)

    Sum, T.C.; Bettiol, A.A.; Seng, H.L.; Rajta, I.; Kan, J.A. van; Watt, F.

    2003-01-01

    Symmetric y-branch buried channel waveguides in poly-methylmethacrylate (PMMA) were fabricated by proton beam writing using a focused sub-micron beam of 1.5 and 2.0 MeV protons with a dose ranging from 25 to 160 nC/mm 2 (i.e. ∼1.6 x 10 13 to 1.0 x 10 14 particles/cm 2 ) and beam currents of approximately 5-10 pA. The proton beam modifies the PMMA (i.e. changes the refractive index), forming buried channel waveguides near the end of range. The buried channel waveguides were end-coupled with monochromatic light (633 nm) and the transmitted intensity profiles were measured, indicating an intensity distribution of 0.45/0.55 from each branch. The surface compaction of the PMMA as a result of the irradiation for doses up to 160 nC/mm 2 was also investigated. From these investigations, the optimal fabrication conditions for proton beam writing of PMMA were established. Waveguides of arbitrary design can be easily fabricated using proton beam writing, making the technique ideal for the rapid prototyping of optical circuits

  12. Nanoparticle sorting in silicon waveguide arrays

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  13. Experimental investigations on channelized coplanar waveguide

    Science.gov (United States)

    Simons, Rainee N.; Ponchak, George E.; Martzaklis, Konstantinas S.; Romanofsky, Robert R.

    1990-01-01

    A new variant of coplanar waveguide (CPW) which was termed channelized coplanar waveguide (CCPW) is presented. Measured propagation characteristics for CCPW such as epsilon(eff) and unloaded Q as a function of geometrical parameters and frequency are presented. The measured and modeled epsilon(eff) are also compared. Equivalent circuit model element values are presented for a CCPW open circuit and a CCPW right angle bend. A CCPW matched T-junction, matched 1:3 junction, and a novel coax-to-CCPW in-phase, N-way, radial power divider are also demonstrated.

  14. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Directory of Open Access Journals (Sweden)

    Bruno Bureau

    2009-09-01

    Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.

  15. Incorporating an optical waveguide into a neural interface

    Energy Technology Data Exchange (ETDEWEB)

    Tolosa, Vanessa; Delima, Terri L.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tooker, Angela C.

    2016-11-08

    An optical waveguide integrated into a multielectrode array (MEA) neural interface includes a device body, at least one electrode in the device body, at least one electrically conducting lead coupled to the at least one electrode, at least one optical channel in the device body, and waveguide material in the at least one optical channel. The fabrication of a neural interface device includes the steps of providing a device body, providing at least one electrode in the device body, providing at least one electrically conducting lead coupled to the at least one electrode, providing at least one optical channel in the device body, and providing a waveguide material in the at least one optical channel.

  16. The Complexity of Folding Self-Folding Origami

    Science.gov (United States)

    Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind

    2017-10-01

    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  17. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed

  18. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    Science.gov (United States)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  19. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  20. Nonclassical statistics of intracavity coupled chi((2)) waveguides: The quantum optical dimer

    DEFF Research Database (Denmark)

    Bache, Morten; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2003-01-01

    A model is proposed where two chi((2)) nonlinear waveguides are contained in a cavity suited for second-harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the interplay between this coupling and the nonlinear interaction within the waveguides gives...

  1. Scalable electro-photonic integration concept based on polymer waveguides

    Science.gov (United States)

    Bosman, E.; Van Steenberge, G.; Boersma, A.; Wiegersma, S.; Harmsma, P.; Karppinen, M.; Korhonen, T.; Offrein, B. J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-03-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low cost approach for the polymer waveguide fabrication is based on the nano-imprinting of a spin-coated waveguide core layer. The assembly of VCSELs and photodiodes is performed before waveguide layers are applied. By embedding these components in deep reactive ion etched pockets in the silicon substrate, the planarity of the substrate for subsequent layer processing is guaranteed and the thermal path of chip-to-substrate is minimized. Optical coupling of the embedded devices to the nano-imprinted waveguides is performed by laser ablating 45 degree trenches which act as optical mirror for 90 degree deviation of the light from VCSEL to waveguide. Laser ablation is also implemented for removing parts of the polymer stack in order to mount a custom fabricated connector containing glass fiber arrays. A demonstration device was built to show the proof of principle of the novel fabrication, packaging and optical coupling principles as described above, combined with a set of sub-demonstrators showing the functionality of the different techniques separately. The paper represents a significant part of the electro-photonic integration accomplishments in the European 7th Framework project "Firefly" and not only discusses the development of the different assembly processes described above, but the efforts on the complete integration of all process approaches into the single device demonstrator.

  2. A green-color portable waveguide eyewear display system

    Science.gov (United States)

    Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan

    2013-08-01

    Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.

  3. Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides

    International Nuclear Information System (INIS)

    Bibra, M.L. von; Roberts, A.; Dods, S.D.

    2000-01-01

    Buried waveguides with graded depths have been fabricated using a focussed ion beam, direct-write process in fused silica by irradiation with 3 MeV protons through a tapered film varying in thickness from 5 to 40 μm. The resulting waveguides ramp uniformly from 25 to 80 μm below the substrate surface. The waveguides are also uniform in cross-section along their lengths. This demonstrates the potential for this fabrication technique to direct-write three-dimensional waveguide devices within a substrate

  4. The Complexity of Folding Self-Folding Origami

    Directory of Open Access Journals (Sweden)

    Menachem Stern

    2017-12-01

    Full Text Available Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of “distractor” folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal’s paradox and other NP-hard satisfiability (SAT problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out (“folding islands”. Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  5. Waveguide superconducting single-photon autocorrelators for quantum photonic applications

    NARCIS (Netherlands)

    Sahin, D.; Gaggero, A.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J.P.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Fiore, A.; Hasan, Z.U.; Hemmer, P.R.; Lee, H.; Santori, C.M.

    2013-01-01

    We report a novel component for integrated quantum photonic applications, a waveguide single-photon autocorrelator. It is based on two superconducting nanowire detectors patterned onto the same GaAs ridge waveguide. Combining the electrical output of the two detectors in a correlation card enables

  6. Fluorescence based fiber optic and planar waveguide biosensors. A review

    International Nuclear Information System (INIS)

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C.

    2016-01-01

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  7. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  8. Investigation for connecting waveguide in off-planar integrated circuits.

    Science.gov (United States)

    Lin, Jie; Feng, Zhifang

    2017-09-01

    The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6  dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.

  9. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    Science.gov (United States)

    Vawter, G.A.; Smith, R.E.

    1998-04-28

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides. 7 figs.

  10. Propagation of a laser beam in a time-varying waveguide

    International Nuclear Information System (INIS)

    Chapman, J.M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is examined. First, an extended paraxial procedure is developed for the case of an axially uniform waveguide. It is shown that the essential feature of an alternate focusing and defocusing beam is retained, but that the intensity distribution is cumulatively modified at the foci and at the outer portions of the beam as compared to that of the paraxial case. Second, some general features of paraxial beam propagation are examined for the case of axially varying waveguides. Finally, laser plasma coupling is examined for the case when laser heating generates a density distribution that is radially parabolic near the axis and when the energy absorbed over a focal length of a plasma lens is small. It is shown that stable or unstable beam propagation depends upon the relative magnitude of the density fluctuations which exist in the axial variation of the waveguides as a result of laser heating. When the fluctuations are small, the propagation is stable, and a simple algebraic expression is obtained which relates the beam diameter to the axially slow averaged variation in the waveguide. When the fluctuations are large, the propagation stability can be determined only by consistently combining plasma dynamics and beam propagation to interrelate the axial variation of the beam to that of the waveguide. In this case of beam propagation in a time-varying waveguide, it is shown that the global stability of the propagation depends upon the initial fluctuation growth rate compared to the initial time rate of change in the radial curvature of the waveguide

  11. Polymer waveguide Bragg grating Fabry–Perot filter using a nanoimprinting technique

    International Nuclear Information System (INIS)

    Binfeng, Yun; Guohua, Hu; Yiping, Cui

    2014-01-01

    A narrow band waveguide Fabry–Perot filter at 1550 nm, which is composed of two polymer waveguide Bragg gratings as reflectors, is presented. By using conventional lithography, a low-loss polymer channel waveguide was fabricated, and the submicron Bragg grating structure was transferred onto the waveguide surface using a nanoimprinting technique. The transmission spectrum of the device was measured, and the results show that there is a very narrow transmission peak, with a 3 dB bandwidth of 0.011 nm in the 0.38 nm rejection band of the waveguide Bragg grating. A quality factor of Q ≈ 1.41 × 10 5 is achieved. The insertion loss and the extinction ratio of the Fabry–Perot filter are about −12.5 dB and 17 dB, respectively. In addition, the measured transmission spectrum is in excellent accordance with the numerical simulation. (paper)

  12. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-01-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C 5+ ions at a fluence of 2 × 10 14 ions/cm 2 . After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (n e ) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C 5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics

  13. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    Science.gov (United States)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  14. Hybrid numerical calculation method for bend waveguides

    OpenAIRE

    Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno

    2017-01-01

    National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...

  15. PROSPECTS FOR APPLICATION OF FLEXIBLE ULTRASONIC WAVEGUIDE SYSTEMS IN MEDICINE AND ENGINEERING

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2010-01-01

    Full Text Available The article presents comprehensive review of current and possible future applications of flexible ultrasonic waveguides in medicine and engineering. Issues of design, modelling and manufacturing of flexible waveguides are considered. The article also presents some results of the authors in this field, particularly modelling techniques developed for the design of flexible waveguides and ultrasonic technologies and equipment for ultrasonic thromboectomy, heating of frozen fuel and ultrasonic drilling of brittle materials. Novel technology for manufacturing flexible waveguides based on electrolytic-plasma machining is also described

  16. Writing single-mode waveguides in lithium niobate by ultra-low intensity solitons

    International Nuclear Information System (INIS)

    Fazio, E.; Ramadan, W.; Petris, A.; Chauvet, M.; Bosco, A.; Vlad, V.I.; Bertolotti, M.

    2005-01-01

    Optical waveguides can be conveniently written in photorefractive materials by using spatial solitons. We have generated bright spatial solitons inside lithium niobate which allow single-mode light propagation. Efficient waveguides have been generated with CW light powers as high as few microwatts. According to the soliton formation, waveguides can be formed with different shapes. Due to the slow response time of the lithium niobate, both for soliton formation and relaxation, the soliton waveguide remains memorised for a long time, of the order of months

  17. A holographic waveguide based eye tracker

    Science.gov (United States)

    Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng

    2018-02-01

    We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.

  18. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  19. Fast-wave ICRF minority-regime heating experiments on the Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G; Beaumont, B; Becoulet, A; Kuus, H; Saoutic, B; Martin, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (FR). Dept. de Recherches sur la Fusion Controlee; Shepard, T D; Haste, G R; Baity, F W [Oak Ridge National Lab., TN (US); Evans, T E [General Atomics, San Diego, CA (US)

    1992-12-31

    Up to 4 MW of rf power at 57 MHz has been coupled to Ohmic target plasmas during the first ICRF heating experiments on Tore Supra. A total of 12 MW of rf power will ultimately be available from six tetrode amplifiers and will be coupled to the plasmas using three ORNL/CEA-designed resonant double-loop antennas. During these first experiments, two antennas were used, with one or two energized at a time. The antenna loading with plasma was observed to be well over an order of magnitude greater than that without plasma. In addition, one kilo-electron-volt of electron heating, significant minority nonthermal ions, and significant increases in diamagnetic stored energy were observed. A comparison of in-phase and out-of-phase antenna operation showed the same increase in stored energy, less radiated power, and a larger drop in loop voltage for out-of-phase operation. Confinement scaling agrees with the ITER scaling law.

  20. Loading, absorption, and Fokker-Planck calculations for upcoming ICRF experiments on ATF

    International Nuclear Information System (INIS)

    Shepard, T.D.; Carter, M.D.; Goulding, R.H.; Kwon, M.

    1989-01-01

    ICRF experiments on ATF at the 100-kW level are planned for the current 1989 operating period. These plans include the 2ω/sub cH/ regime at f/sub RF/ = 28.88 MHz, D(H) at 14.44 MHz, and 4 He( 3 He) and D( 3 He) at 9.63 MHz. ECH target plasmas have n/sub eO/ /approxreverse arrowlt/ 0.15 /times/ 10 20 m/sup /minus/3/ and B = 0.95 T. The density and temperature profiles obtained are broader than those from 1988, owing to recent field error corrections. The values used for target-plasma parameters in the calculations were taken from initial 1989 ATF data. Loading and absorption calculations have been performed using the 3D RF heating code ORION with a helically symmetric equilibrium, and Fokker-Planck calculations were performed using the steady-state code RFTRANS with two velocity dimensions and one spatial dimension. 6 refs., 3 figs

  1. Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas in ITER

    Science.gov (United States)

    Berry, L. A.; Batchelor, D. B.; Jaeger, E. F.; RF SciDAC Team

    2011-10-01

    The spectral wave solver AORSA has been used extensively to model full-field, ICRF heating scenarios for DT plasmas in ITER. In these scenarios, the tritium (T) second harmonic cyclotron resonance is positioned near the magnetic axis, where fast magnetosonic waves are efficiently absorbed by tritium ions. In some cases, a fundamental deuterium (D) cyclotron layer can also be located within the plasma, but close to the high field boundary. In this case, the existence of multiple ion cyclotron resonances presents a serious challenge for numerical simulation because short-wavelength, mode-converted waves can be excited close to the plasma edge at the ion-ion hybrid layer. Although the left hand circularly polarized component of the wave field is partially shielded from the fundamental D resonance, some power penetrates, and a small fraction (typically LLC.

  2. Full Ka Band Waveguide-to-Microstrip Inline Transition Design

    Science.gov (United States)

    Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue

    2018-05-01

    In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.

  3. Periodically modulated single-photon transport in one-dimensional waveguide

    Science.gov (United States)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  4. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  5. An experimental study of the fabrication of polycarbonate optical waveguides

    Science.gov (United States)

    Chen, Jianguo; Zhang, Xiao-yang; Zhang, Tong; Zhu, Jing-song; Wu, Peng-qin; Zhou, Jing-lun; Fan, Jiang-feng; Yan, Hao-feng

    2008-12-01

    A novel polycarbonate (PC) was introduced to apply in the optical waveguide devices. PC has following distinct merits than common polycarbonate: good processability, high thermal stability up to 293 C° and high optical transparency. Optical properties of absorption behavior and propagation loss were investigated in slab waveguides, and low propagation losses of 0.335 dB/cm (@1550nm) and 0.197 dB/cm @632.8nm) have been achieved by using prismcoupler. Additionally, straight optical waveguide and MMI coupler of ring resonator were fabricated using ultraviolet (UV) cured resin Norland optical adhesive 61 (NOA61) as under or upper cladding layer and polycarbonate as waveguide core-layer material through conventional methods such as spin coating, photolithography and reactive ion etching (RIE). The process was studied in detail and the experimental results were given.

  6. Hybrid finite element/waveguide mode analysis of passive RF devices

    Science.gov (United States)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  7. Hollow core waveguide as mid-infrared laser modal beam filter

    Energy Technology Data Exchange (ETDEWEB)

    Patimisco, P.; Giglio, M.; Spagnolo, V. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Sampaolo, A. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Kriesel, J. M. [Opto-Knowledge Systems, Inc. (OKSI), 19805 Hamilton Ave., Torrance, California 90502-1341 (United States); Tittel, F. K. [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States)

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  8. Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams

    Science.gov (United States)

    Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.

    2010-11-09

    All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.

  9. Wave-guided Optical Waveguides tracked and coupled using dynamic diffractive optics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro-actuation requ......With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro...... waveguides (WOWs) [2]. As the WOWs are optically trapped and maneuvered in 3D-space, it is important to maintain efficient light-coupling through these free-standing waveguides within their operating volume [3]. We propose the use ofdynamic diffractive techniques to create focal spots that will track...... and couple to the WOWs during full volume operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking...

  10. Chaotic behavior of a quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)

    2013-02-15

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.

  11. Chaotic behavior of a quantum waveguide

    International Nuclear Information System (INIS)

    Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.

    2013-01-01

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system

  12. Upgrades to the 4-strap ICRF Antenna in Alcator C-Mod

    International Nuclear Information System (INIS)

    G. Schilling; J.C. Hosea; J.R. Wilson; W. Beck; R.L. Boivin; P.T. Bonoli; D. Gwinn; W.D. Lee; E. Nelson-Melby; M. Porkolab; R. Vieira; S.J. Wukitch; J.A. Goetz

    2001-01-01

    A 4-strap ICRF antenna suitable for plasma heating and current drive has been designed and fabricated for the Alcator C-Mod tokamak. Initial operation in plasma was limited by high metallic impurity injection resulting from front surface arcing between protection tiles and from current straps to Faraday shields. Antenna modifications were made in February 2000, resulting in impurity reduction, but low-heating efficiency was observed when the antenna was operated in its 4-strap rather than a 2-strap configuration. Further modifications were made in July 2000, with the installation of BN plasma-facing tiles and radio- frequency bypassing of the antenna backplane edges and ends to reduce potential leakage coupling to plasma surface modes. Good heating efficiency was now observed in both heating configurations, but coupled power was limited to 2.5 MW in H-mode, 3 MW in L-mode, by plasma-wall interactions. Additional modifications were started in February 2001 and will be completed by this meeting. All the above upgrades and their effect on antenna performance will be presented

  13. Construction of a resonant loop with the ICRF antenna for KSTAR

    International Nuclear Information System (INIS)

    Bae, Young Dug; Jeong, Sung Un; Yoon, Jae Sung; Hong, Bong Geon

    2003-01-01

    The antenna of the KSTAR ICRF heating system consists of four current straps, each of which is grounded at the center, and has two coaxial ports, one at each end. The top and bottom ports of each strap are fed by one transmitter. The two ports are connected at tee connector to form a resonant loop, and the coaxial feed line from the transmitter is connected to the tee. One resonant loop with the proto-type antenna is built at the RF test stand in KAERI. It is composed with one current strap, one tee connector and two arms connecting them. Each arm consists of a 6-inch vacuum transmission line, a vacuum feed through, a part of pressurized 9-inch coaxial line, and an adjustable phase shifter to cover wide frequency range of 25-60 MHz. Total electrical length is changeable from 45 to 51 m. Many voltage probes and directional couplers are installed to measure RF voltage of the standing wave, power flow and phase difference. Resonant and matching conditions are investigated for various frequencies

  14. Direct mapping of light propagation in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.

    2002-01-01

    Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...

  15. A Waveguide Transverse Broad Wall Slot Radiating Between Baffles

    DEFF Research Database (Denmark)

    Dich, Mikael; Rengarajan, S.R.

    1997-01-01

    An analysis of the self impedance of waveguide-fed transverse slots radiating between baffles is presented. The region exterior to the slot is treated as a parallel plate (PP) waveguide which radiates into half space through an aperture in an infinite ground plane. The slot problem is analyzed...

  16. Design and Measurement of Metallic Post-Wall Waveguide Components

    NARCIS (Netherlands)

    Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, F.E. van

    2009-01-01

    Abstract—In this paper we discuss the design and measurement of a set of metallic post-wall waveguide components for antenna feed structures. The components are manufactured on a single layer printed circuit board and excited by a grounded coplanar waveguide. For a straight transmission line, a 90°

  17. Development of a novel rf waveguide vacuum valve

    CERN Document Server

    Grudiev, A

    2006-01-01

    The development of a novel rf waveguide vacuum valve is presented. The rf design is based on the use of TE0n modes of circular waveguides. In the device, the TE01 mode at the input is converted into a mixture of several TE0n modes which provide low-loss rf power transmission across the vacuum valve gap, these modes are then converted back into the TE01 mode at the output. There are a number of advantages associated with the absence of surface fields in the region of the valve: • Possibility to use commercially available vacuum valves equipped with two specially designed mode converter sections. • No necessity for an rf contact between these two sections. • Increased potential for high power rf transmission. This technology can be used for all frequencies for which vacuum waveguides are used. In rectangular waveguides, mode converters from the operating mode into the TE01 mode and back again are necessary. Experimental results for the 30 GHz valves developed for the CLIC Test Facility 3 (CTF3) a...

  18. All-optical bit magnitude comparator device using metal-insulator-metal plasmonic waveguide

    Science.gov (United States)

    Kumar, Santosh; Singh, Lokendra; Chen, Nan-Kuang

    2017-12-01

    A plasmonic metal-insulator-metal (MIM) waveguide has great success in confining the surface plasmon up to a deep subwavelength scale. The structure of a nonlinear Mach-Zehnder interferometer (MZI) using a plasmonic MIM waveguide has been analyzed. A one-bit magnitude comparator has been designed using an MZI and two linear control waveguides. The device works on the Kerr effect inside the plasmonics waveguide. The mathematical description of the device is explained. The simulation of the device is done using MATLAB® and the finite-difference time-domain (FDTD) method.

  19. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    Science.gov (United States)

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  20. Fabrication and Characterisation of Silicon Waveguides for High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup

    This Ph.D. thesis treats various aspects of silicon photonics. From the limitations of silicon as a linear and nonlinear waveguide medium to its synergy with other waveguide materials. Various methods for reducing sidewall roughness and line edge roughness of silicon waveguides are attempted...... was too high for any practical applications. It is speculated that the attempt at creating a material with low density of dangling bonds was unsuccessful. Nevertheless, linear losses of 2.4dB/cm at 1550nm wavelength in the silicon waveguides remained sufficiently low that high speed nonlinear optical...

  1. Evanescent Waveguide Apparatus and Method for Measurement of Dielectric Constant

    National Research Council Canada - National Science Library

    Tonn, David A

    2005-01-01

    .... In one embodiment, a metal septum is inserted between two samples of the unknown material to thereby reduce the cross-sectional area of the waveguide aperture by splitting width a of the rectangular waveguide in half...

  2. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    International Nuclear Information System (INIS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2016-01-01

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m"2, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  3. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Polytechnic University of Catalonia (UPC), Barcelona (Spain); Department of Applied Physics, Ghent University, Ghent (Belgium); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Department of Applied Physics, Ghent University, Ghent (Belgium); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Dies, J. [Polytechnic University of Catalonia (UPC), Barcelona (Spain)

    2016-11-15

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m{sup 2}, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  4. Absorption Spectroscopy in Hollow-Glass Waveguides Using Infrared Diode Lasers[4817-25

    International Nuclear Information System (INIS)

    Blake, Thomas A.; Kelly, James F.; Stewart, Timothy L.; Hartman, John S.; Sharpe, Steven W.; Sams, Robert L.; Alan Fried

    2002-01-01

    Near- and mid-infrared diode lasers combined with flexible, hollow waveguides hold the promise of light weight, field portable, fast response gas sensors. The advantages of using the waveguides compared to White or Herriott multireflection cells include a small gas volume, a high photon fill factor in the waveguide, which increases molecule-light interactions, and reduction or elimination of optical fringing, which usually sets the practical limit of detectivity in absorption spectroscopy. Though hollow waveguides have been commercially available for several years, relatively few results have been reported in the literature. We present here results from our laboratory where we have injected infrared laser light into straight and coiled lengths of hollow waveguides and performed direct and wavelength modulated absorption spectroscopy on nitrous oxide, ethylene, and nitric oxide. Using a 1 mm bore, 3 meter long coiled waveguide coated for the near infrared, nitrous oxide transitions near 6595 cm-1 were observed under flowing conditions. Signal-to-noise ratios on the order of 1500:1 with RMS noise equal to 2 X 10-5 were measured. In the mid-infrared light from either a 10.1 or 5.3 micron lead salt diode laser was injected into a three meter length of 1 mm bore hollow waveguide coated for the mid-infrared. The waveguide was coiled with one loop at a diameter of 52 cm. Ethylene transitions were observed in the vicinity of 985 cm-1 with a static fill of 0.2 Torr of pure ethylene in the waveguide and nitric oxide transitions were observed in the vicinity of 1906 cm-1 using either a flow or a static fill of 1 ppm NO in nitrogen. In direct absorption the NO transitions are observed to have a signal-to-noise of approximately 5:1 for transitions with absorbances on the order of 10-3. Using wavelength modulated techniques the signal-to-noise ratio improves at least an order of magnitude. These encouraging results indicate that waveguides can be used for in situ gas monitoring

  5. 3-D near-field imaging of guided modes in nanophotonic waveguides

    Directory of Open Access Journals (Sweden)

    Ziegler Jed I.

    2017-04-01

    Full Text Available Highly evanescent waveguides with a subwavelength core thickness present a promising lab-on-chip solution for generating nanovolume trapping sites using overlapping evanescent fields. In this work, we experimentally studied Si3N4 waveguides whose sub-wavelength cross-sections and high aspect ratios support fundamental and higher order modes at a single excitation wavelength. Due to differing modal effective indices, these co-propagating modes interfere and generate beating patterns with significant evanescent field intensity. Using near-field scanning optical microscopy (NSOM, we map the structure of these beating modes in three dimensions. Our results demonstrate the potential of NSOM to optimize waveguide design for complex field trapping devices. By reducing the in-plane width, the population of competing modes decreases, resulting in a simplified spectrum of beating modes, such that waveguides with a width of 650 nm support three modes with two observed beats. Our results demonstrate the potential of NSOM to optimize waveguide design for complex field trapping devices.

  6. Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.

    Science.gov (United States)

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2008-09-01

    This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.

  7. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing

    Science.gov (United States)

    Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-11-01

    We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.

  8. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    Science.gov (United States)

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  9. Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Chamanei S., E-mail: cp.hettiarachchige@qut.edu.au; Vernon, Kristy C.; Mcleod, Angus [Plasmonic Device Group, Queensland University of Technology, GPO box 2434, Brisbane, Queensland (Australia)

    2014-02-07

    In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.

  10. Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide

    International Nuclear Information System (INIS)

    Perera, Chamanei S.; Vernon, Kristy C.; Mcleod, Angus

    2014-01-01

    In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode

  11. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  12. Single-bunch beam breakup in a dielectric-lined waveguide

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1992-08-01

    We examine beam breakup of a 100 nC I mm-long (rms) source bunch inside a cylindrical dielectric waveguide, with dielectric ε = 2.65 filling the radius between 7.5 and 9.0 mm. Only ∼ 78% of the bunch with an initial offset of 0.3 mm survives the passage of the 3.75 m waveguide. The loss is mainly due to the large deflections of some particles that are slowed down to nearly zero velocity. As a result, quadrupole focussing of any sort will not help. However, if the waveguide is shortened to 3.3 m, the loss reduces to only 5.5%

  13. Characterization of UV written waveguides with luminescence microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Rosbirk, Tue

    2005-01-01

    Luminescence microscopy is used to measure the refractive index profile and molecular defect distribution of UV written waveguides with a spatial resolution of ~0.4 mm and high signal-to-noise ratio. The measurements reveal comlex waveguide formation dynamics with significant topological changes...... in the core profile. In addition, it is observed that thewaveguide formation process requires several milliseconds of UV exposure before starting....

  14. Directly UV written silica-on-silicon planar waveguides with low insertion loss

    DEFF Research Database (Denmark)

    Zauner, Dan; Svalgaard, Mikael; Kristensen, Martin

    1998-01-01

    in waveguide geometry, and excellent control of the refractive index step. Direct UV writing of waveguides became a realistic alternative to other fabrication methods when propagation losses below 0.2 dB/cm were reported in single-mode waveguides. However, the coupling loss to optical fibers remained high......, typically 1.8 dB/facet, which is significantly more than that obtained with other techniques. In this paper we present results in which the coupling loss to optical fibers has been lowered substantially. In addition, the glass photosensitivity has been increased, thus permitting shorter fabrication times......The photosensitive properties of germanosilica may be utilized to directly induce waveguide patterns into thin-film structures using ultraviolet (UV) light. The advantages of fabricating planar waveguides with UV light include the absence of photolithography and reactive ion etching, flexibility...

  15. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  16. CRPP's Evacuated Waveguide Proposal for JET-EP ECRH Transmission Line

    International Nuclear Information System (INIS)

    Henderson, M. A.; Alberti, S.; Goodman, T. P.; Hogge, J.-P.; Porte, L.; Tran, M. Q.

    2002-01-01

    The goal of this document is to provide a detailed description of the preliminary design and technical information of a proposed evacuated transmission lines for JET . EP ECRH system. Three waveguide diameters (31.75mm, 45mm and 63.5mm) were studied and compared to the base design of the 87mm waveguide/quasi.optical proposal (WG87-QO). This report concentrates on only the 45mm waveguide diameter (WG45). This size represents an optimization between the flexibility of the smaller diameter and the low loss of the larger. For simplicity only the WG45 will be compared with the WG87-QO, but the other diameters (31.75 and 63.5 mm) should be kept under consideration for a final evacuated waveguide line. The characteristics of the 63.5 mm waveguide system can be found in the report which was distributed in September. After an introduction of the history and motivation for this study a general overview of the proposal is presented. Sections 4 and 5 describe the elements to be used in the proposed line including the overall transmission losses for the line. Section 6 offers a cost comparison of the two proposaIs. The 7th section is a brief description of an alternative launcher design using the waveguide inserted into the launcher port. The 8th section describes the ca1ibration and conditioning process to be performed after the line is insta1led and how the torus displacements wi1l be handled. The 9th section describes the proposed schedule for purchasing and insta1lation of the waveguide lines. Sections II and 12 include a conclusion and summary of the proposal. (author)

  17. Measurements of the loading impedance and field scaling of a cavity ICRF launcher for Big D

    International Nuclear Information System (INIS)

    Rettig, C.; Ryan, P.M.; Hoffman, D.J.

    1985-01-01

    Recently, a new ICRF launcher in the form of a resonant coil cavity has been proposed and analyzed using a convenient two-dimensional model and a Poisson-solver computer code. Here, a physical model of the launcher has been fabricated to test the scaling characteristics of the impedance and relative fields as a function of the physical sizing of the structure. Variable parameters include the antenna-to-plasma distance, the cavity back wall-to-plasma distance, and the antenna cross-sectional shape. Each of these parameters is varied in the interest of optimizing the radiated power for given antenna voltage and current limits. Critical design criterial will be determined from the data. The report consists of 21 viewgraphs

  18. Spatial distribution of {gamma} emissivity and fast ions during ({sup 3}He)D ICRF heating experiments on JET

    Energy Technology Data Exchange (ETDEWEB)

    Start, D F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Righi, E [Imperial Coll. of Science and Technology, London (United Kingdom); Warrick, C [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    A model is presented that can simulate the {gamma} emissivity in the poloidal cross-section during ({sup 3}He)D ICRF heated discharges in JET plasmas, by merging information obtained from the fast ion distribution and from nuclear reactions producing the observed {gamma} emissivity (production of {gamma} photons during {sup 3}He-{sup 9}Be reactions). This technique can play an important role in the identification of plasma instabilities that affect the redistribution of the fast ions in the plasma, like the TAE modes and the ripple in the tokamak magnetic field. 9 refs., 4 figs., 1 tab.

  19. The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene polymer waveguide

    International Nuclear Information System (INIS)

    Chiu, J.-J.; Perng, Tsong P

    2008-01-01

    The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene (BCB) waveguide were investigated. The silicon nanoparticles, of a size varying from 6 to 25 nm, were prepared by vapor condensation. The transmission modes and losses were examined by the prism coupler and cut-back methods. A He-Ne laser beam with a wavelength of 6328 A was used to measure the effective index and thickness of the waveguide. Laser light could be efficiently coupled into the BCB waveguide when the embedded Si nanoparticles were smaller than 6 nm. The film thickness and effective index of the Si-embedded BCB waveguide were measured to be 1.825 μm and 1.565, respectively. The optical transmission losses of the pure BCB and Si-embedded ridge waveguides measured by the cut-back method were 0.85 and 1.63 dB cm -1 , respectively. Although the optical loss was increased by the embedded Si, the disturbance of the output contour was quite small. This result demonstrates that the nanoparticle-embedded polymer waveguide may be used for optoelectronic integrated circuits

  20. Resonance absorption of ICRF wave in edge plasma

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Yamanaka, Kaoru.

    1987-07-01

    An edge plasma is shown to significantly absorb ICRF wave when a resonant triplet, a cutoff-resonance-cutoff triplet, is constructed in the evanescent region. Two-ion-component plasmas in a torus are considered though the plasmas are modeled by a slab in which the density changes linearly along the x-axis. The resonance is a perpendicular-ion-cyclotron resonance, i.e., an Alfven resonance, and is formed when the applied frequency ω is smaller than the local cyclotron frequency, at the edge of the antenna side, of the lighter species of ions. Roughly the absorption rate A b is given by M 2 for M 2 >> S 2 and S 4 for S 2 >> M 2 where M = k y l and S ≅ k z l and l is a scale length of the order of the plasma minor radius and k y and k z are the perpendicular and the parallel components of the wave vector. It is noted that the both quantities, M and S, readily become of the order of unity. Since A b is not very sensitive to the density ratio of the two ion species, a few percent of impurities may cause a significant absorption. As the mass ratio of the two ion species comes close to unity the triplet forms readily. Therefore a D-T plasma seems to suffer more easily this kind of resonance absorption than a D-H plasma. (author)