WorldWideScience

Sample records for flywheel electrical system

  1. Flywheel in an all-electric propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Johan

    2011-07-01

    Energy storage is a crucial condition for both transportation purposes and for the use of electricity. Flywheels can be used as actual energy storage but also as power handling device. Their high power capacity compared to other means of storing electric energy makes them very convenient for smoothing power transients. These occur frequently in vehicles but also in the electric grid. In both these areas there is a lot to gain by reducing the power transients and irregularities. The research conducted at Uppsala Univ. and described in this thesis is focused on an all-electric propulsion system based on an electric flywheel with double stator windings. The flywheel is inserted in between the main energy storage (assumed to be a battery) and the traction motor in an electric vehicle. This system has been evaluated by simulations in a Matlab model, comparing two otherwise identical drivelines, one with and one without a flywheel. The flywheel is shown to have several advantages for an all-electric propulsion system for a vehicle. The maximum power from the battery decreases more than ten times as the flywheel absorbs and supplies all the high power fluxes occurring at acceleration and braking. The battery delivers a low and almost constant power to the flywheel. The amount of batteries needed de- creases whereas the battery lifetime and efficiency increases. Another benefit the flywheel configuration brings is a higher energy efficiency and hence less need for cooling. The model has also been used to evaluate the flywheel functionality for an electric grid application. The power from renewable intermittent energy sources such as wave, wind and current power can be smoothened by the fly- wheel, making these energy sources more efficient and thereby competitive with a remaining high power quality in the electric grid

  2. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  3. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  4. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  5. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  6. Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    In use since ancient times, the flywheel has smoothed the flow of energy in rotating machinery from small, hand held devices to the largest engines. Today, standalone flywheel systems are being developed to store electrical energy. These systems are deployed in applications as diverse as uninterruptible power supplies, gantry cranes, and large research facilities. This chapter presents the technical foundation of flywheel design, a comparison with other energy storage technologies, and a survey of applications where flywheel energy storage systems are currently in service.

  7. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  8. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  9. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  10. Flywheel Charge/Discharge Control Developed

    Science.gov (United States)

    Beach, Raymond.F.; Kenny, Barbara H.

    2001-01-01

    A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.

  11. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  12. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers...

  13. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...

  14. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  15. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  16. Flywheel energy storage workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  17. Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2018-03-01

    Full Text Available Energy storage systems (ESS are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of

  18. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  19. Power system for tokamak fusion experiments. Motor generator with flywheel effect

    International Nuclear Information System (INIS)

    Miyachi, Kengo

    1997-01-01

    JT-60 requires an enormous electric power pulse about 1,300 MVA periodically for its plasma initiation, containment and heating. JT-60 could not receive all electric power from a commercial line for plasma experiment except about 160 MVA because the 275 kV commercial line has some limitations. Therefore JT-60 needs huge electric power sources. The power supply system of JT-60 has 3 motor generators (MG). The total capacity of MG is 1,115 MVA that consists of a toroidal MG (TMG), poloidal MG (PMG) and Heating power supply MG (HMG), and each MG has a huge flywheel effect. For example, TMG has a 4.02 GJ energy yield that consists of 6 disk flywheel. The total weight of flywheel of TMG is 650 ton. This report describes the structure, operating system, and maintenance history of 3 types of MG. (author)

  20. A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, C.S.; Yeon, J.U.; Jeoung, H.M.; Choi, J.H. [Chungbuk National University (Korea); Lee, H.J; Hong, G.W. [Korea Atomic Energy Research Institute (Korea)

    2000-06-01

    The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy storage system)is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy, In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal currents for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment. (author). 15 refs., 17 figs., 2 tabs.

  1. Magnetic bearing flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Poubeau, P C

    1981-01-01

    A magnetic bearing flywheel was designed. In order to have a simple, reliable system, magnetic suspension with a single servoloop for one degree of freedom of the rotor was used, four other degrees of freedom being controlled passively and the sixth one, corresponding to the rotation axis. The motor that transfers electric energy to the rotor is of the ironless brushless dc type with electronic commutation. It is operated alternatively for accelerating the wheel and then as a generator for delivering the stored energy. The use of high stress composite materials in the rotor greatly increases the operational limits of this equipment. Key characteristics of kinetic energy storage are mentioned along with a wide range of applications. Besides energy storage for satellites, these include power smoothing for solar and wind energy systems as well as backup power supplies, e.g., for electric vehicles.

  2. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  3. Design and Construction of 10 kWh Class Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Jung, S. Y.; Han, S. C.; Han, Y. H.; Park, B. J.; Bae, Y. C.; Lee, W. R.

    2011-01-01

    A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel Ip/If ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.

  4. Flywheel and power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R.W.

    1992-10-28

    A power unit, e.g. for an electrically driven vehicle, incorporates a flywheel for storing kinetic energy and a battery for storing electrical energy. The battery is incorporated as a substantial part of the rotating mass of the flywheel. Preferably the unit further includes an electrical machine being a motor or generator or machine operable either as a motor or a generator for transferring energy between the battery and the flywheel and/or for the input or output of rotary energy therefrom or thereto. The motor may be used for powering the flywheel and may also operate in a regenerative mode for recharging the unit on de-acceleration of the vehicle. The unit of the invention may also be utilized as an electrical stored power source, e.g. wind or water driven. (author)

  5. Development of superconductor application technology - Flywheel energy storage system using superconducting magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Oh, Hueng Kuk; Yun, Keyng Reyl; Lee, Jeung Kun [Ahju University, Suwon (Korea, Republic of)

    1996-06-01

    Electricity must be used simultaneously with its generation. Existing storage methods either are dependent on special geography, are too expensive,= or are too inefficient. Electricity demand changes by as much as 30% over a 12-hour period and result in significant costs for utilities as power output get adjusted to meet these changes. The purpose of HTS FES is to store unused nighttime electricity until it is needed during the daytime. If every element of a rotating flywheel is stressed to a prescribed allowable value, the flywheel material will clearly be used in most efficient manner. The uniformlt stressed flywheel is about 25% stronger than a flat disk. The gap between superconductor and permanent magnet was 1.85 mm, and using bearing connector with the values, joining superconductor to permanent magnet Using bolt connector, joining permanent magnet to flywheel. Joined system is excited by exciting function that magnitude is 1, range is 0 up to 4000 HZ. 3 rd and 4 th natural frequency, 1857 HZ and 2340 HZ, in X direction and 2 nd natural frequency, 28.57 HZ, are avoided to prevent resonance. 15 refs., 11 tabs., 53 figs. (author)

  6. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation of dedica......Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation...... of dedicated flywheel energy storage system (FESS) within the charging station and compensating some of the adverse effects of high power charging is explored in this paper. Although sharing some similarities with vehicle to grid (V2G) technology, the principal advantage of this strategy is the fact that many...

  7. Performance Analysis of a Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    K. Ghedamsi

    2008-06-01

    Full Text Available The flywheel energy storage systems (FESSs are suitable for improving the quality of the electric power delivered by the wind generators and to help these generators to contribute to the ancillary services. In this paper, a flywheel energy storage system associated to a grid connected variable speed wind generation (VSWG scheme using a doubly fed induction generator (DFIG is investigated. Therefore, the dynamic behavior of a wind generator, including models of the wind turbine (aerodynamic, DFIG, matrix converter, converter control (algorithm of VENTURINI and power control is studied. This paper investigates also, the control method of the FESS with a classical squirrel-cage induction machine associated to a VSWG using back-to-back AC/AC converter. Simulation results of the dynamic models of the wind generator are presented, for different operating points, to show the good performance of the proposed system.

  8. Optimum design of flywheel energy storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Lee, Jeung Gun; Kim, Jong Soo [Ajou University, Suwon (Korea, Republic of)

    1997-07-01

    Electricity demands changes by as much as 30% over a 12-hour period and results in significant costs for utilities as power output get adjusted to meet these changes. The purpose of High-Temperature Superconducting Flywheel Energy Storage System (HTS FES) is to store unused nighttime electricity until it is needed during the daytime. The HTS FES is designed by using flywheel shape function with uniform stress. Natural frequencies and natural modes are estimated by using Finite Element Analysis and correlated with the experimental results. By performing a vibration test, the stiffness and the damping ratio of the flux line, the flux pinning phenomenon are measured Using the modal parameters of each component and the measured stiffness, damping coefficient, the IDEAS System Dynamics Analysis is performed and frequency response function(FRF) of the joined system is obtained. The effect of tangential torque on flywheel has been studied using cantilever shaft with rotor at free end. To obtain the equation of motion, the Lagrange`s equation and the assumed-mode method are used. As a admissible function, a free vibration mode of clamped-free beam is used. The eigenvalues are computed and the stability boundaries are obtained. 19 refs., 33 figs. (author)

  9. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  10. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  11. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  12. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    International Nuclear Information System (INIS)

    Wu, J.F.; Li, Y.

    2014-01-01

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely

  13. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  14. Design of a Flywheel Storage System

    International Nuclear Information System (INIS)

    Cavia Santos, S.; Garcia-Tabares Rodriguez, L.

    1998-01-01

    Storing mechanical kinetic energy for short time with flywheels has been known for centuries. However the applications of flywheels for longer storage times like electrochemical batteries is recent. Advanced flywheels have been possible thanks to the development from materials science with high tensile strength composite materials, and bearing technology with magnetic bearing, which suspend rotating shaft or rotor by magnetic forces. This summary report provides a study of the mechanics of flywheel, design considerations, material for advance flywheels, and magnetic bearing. Finally a brief description of a conventional flywheel prototype is given. (Author)

  15. Report on the FY 1999 R and D on high temperature superconducting flywheel energy storage. System design/evaluation (Comparative study and information collection); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. System sekkei hyoka (hikaku kento, joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Following the previous fiscal year, a flywheel technology survey committee by men of learning and experience was organized to make a comparative study on various flywheel energy storage systems. Concerning the list-making for checking each element of the high temperature superconducting flywheel system, characteristics and reasons for employment of the small model and medium model were outlined in terms of the system structure (structure in single unit, structure in more than one units), flywheel, bearing, electrically-driven generator, etc. Also about the system in which no superconducting magnetic bearing is used, the information is collected in Japan and abroad through internet, etc., to outline the system. Further, main results obtained in the project were made public in main international conferences or academic meetings such as EUCAS and ISOTC108. At the same time, visits were paid to research institutes such as Cambridge University in the U.K. for the purpose of supplementing the survey so far made, to investigate the recent trend of the research. (NEDO)

  16. Study of flywheel energy storage for space stations

    Science.gov (United States)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  17. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  18. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  19. COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS

    Directory of Open Access Journals (Sweden)

    M. A. Sokolov

    2014-07-01

    Full Text Available The paper presents a review and comparative analysis of late years native and foreign literature on various energy storage devices: state of the art designs, application experience in various technical fields. Comparative characteristics of energy storage devices are formulated: efficiency, quality and stability. Typical characteristics are shown for such devices as electrochemical batteries, super capacitors, pumped hydroelectric storage, power systems based on compressed air and superconducting magnetic energy storage systems. The advantages and prospects of high-speed super flywheels as means of energy accumulation in the form of rotational kinetic energy are shown. High output power of a super flywheels energy storage system gives the possibility to use it as a buffer source of peak power. It is shown that super flywheels have great life cycle (over 20 years and are environmental. A distinctive feature of these energy storage devices is their good scalability. It is demonstrated that super flywheels are especially effective in hybrid power systems that operate in a charge/discharge mode, and are used particularly in electric vehicles. The most important factors for space applications of the super flywheels are their modularity, high efficiency, no mechanical friction and long operating time without maintenance. Quick response to network disturbances and high power output can be used to maintain the desired power quality and overall network stability along with fulfilling energy accumulation needs.

  20. Flywheels: Mobile applications

    Science.gov (United States)

    Rabenhorst, D. W.

    1981-06-01

    The characteristics of modern flywheel energy storage systems uniquely qualify the flywheel for use in a variety of road vehicles, off road vehicles and rail vehicles. About sixty studies and vehicle demonstration programs in a dozen countries indicate that future such flywheel powered vehicles will have improved performance, reduced energy and fuel consumption and reduced life cycle cost. Flywheel capabilities and mobile applications were reviewed.

  1. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  2. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  3. Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system

    International Nuclear Information System (INIS)

    Matsukawa, T.; Kanke, M.; Shimada, R.; Yoshida, Y.; Yamashita, K.; Nakayama, T.

    1986-01-01

    A fusion test reactor often needs motor-generators as a power source in order to reduce disturbances to utility lines. The toroidal field coil power supply system of JT-60 also adopted a motor-generator for this purpose. The motor-generator started operation in April, 1985 at Japan Atomic Energy Research Institute together with the whole system. The motor-generator has several special features both electrically and mechanically. One electrical feature is that it is used as a pulse source of large current and power for periodic short-time duty. A mechanical feature is that a large flywheel is directly coupled to the motor-generator shaft and operated intermittently and at high speed. Therefore detailed investigations were carried out concerning constitution, characteristics as well as the coordination with the system performance. This paper describes the outlines of the flywheel motor-generator and discusses several topics

  4. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  5. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  6. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    Science.gov (United States)

    Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.

    2011-03-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  7. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    International Nuclear Information System (INIS)

    Haruna, J; Itoh, J; Murai, K; Yamada, N; Hirano, Y; Homma, T; Fujimori, T

    2011-01-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  8. Improved flywheel materials :

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Bell, Nelson S; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).

  9. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  10. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Doucette, Reed T.; McCulloch, Malcolm D. [Department of Engineering Science, University of Oxford, Thom Building, Parks Road, Oxford, OX1 3PJ (United Kingdom)

    2011-02-01

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors. (author)

  11. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  12. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  13. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (system design/evaluation (comparative assessment/information collection)); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system sekkei, hyoka (hikaku kento, joho shushu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    For the purpose of evaluating the basic characteristics of high-temperature superconducting magnetic bearings (SBM), a system model is designed, experimentally manufactured and tested, which is embodied in the design/evaluation of a large-scale system, with an investigation carried out for the introduction of the system into an electrical power system. In this framework, an examination and research were conducted for the system design technology on which each component technology in the system structure can be applied consistently in the system. In the comparative assessment of various flywheel power storage systems, the specifications and achievements were compared in the component elements of the flywheel systems developed in Europe, America and Japan through the literature studies and the field survey, with examination performed towards the future development. As a result, it was found that, in America, bearings were all SMB's without control. Boeing's objective for the development is 10kWh or so in view of convenience for transportation and is prone to arrange it in numbers. Further, investigations were made in literature and documents on the domestic and international trend of development of high-temperature superconducting flywheel systems, elucidating the details of the development. (NEDO)

  14. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  15. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    This thesis describes the design optimisation of a flywheel hybrid vehicle with respect to fuel consumption and exhaust gas emissions. The driveline of this passenger car uses two power sources: a small spark ignition internal combustion engine with three-way catalyst, and a highspeed flywheel system for kinetic energy storage. A custom-made continuously variable transmission (CVT) with so-called i{sup 2} control transports energy between these power sources and the vehicle wheels. The driveline includes auxiliary systems for hydraulic, vacuum and electric purposes. In this fully mechanical driveline, parasitic energy losses determine the vehicle's fuel saving potential to a large extent. Practicable energy loss models have been derived to quantify friction losses in bearings, gearwheels, the CVT, clutches and dynamic seals. In addition, the aerodynamic drag in the flywheel system and power consumption of auxiliaries are charted. With the energy loss models available, a calculation procedure is introduced to optimise the flywheel as a subsystem in which the rotor geometry, the safety containment, and the vacuum system are designed for minimum energy use within the context of automotive applications. A first prototype of the flywheel system was tested experimentally and subsequently redesigned to improve rotordynamics and safety aspects. Coast-down experiments with the improved version show that the energy losses have been lowered significantly. The use of a kinetic energy storage device enables the uncoupling of vehicle wheel power and engine power. Therefore, the engine can be smaller and it can be chosen to operate in its region of best efficiency in start-stop mode. On a test-rig, the measured engine fuel consumption was reduced with more than 30 percent when the engine is intermittently restarted with the aid of the flywheel system. Although the start-stop mode proves to be advantageous for fuel consumption, exhaust gas emissions increase temporarily

  16. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    Science.gov (United States)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  17. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (system design/evaluation (comparative assessment/information collection)); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system sekkei, hyoka (hikaku kento, joho shushu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    For the purpose of evaluating the basic characteristics of high-temperature superconducting magnetic bearings (SBM), a system model is designed, experimentally manufactured and tested, which is embodied in the design/evaluation of a large-scale system, with an investigation carried out for the introduction of the system into an electrical power system. In this framework, an examination and research were conducted for the system design technology on which each component technology in the system structure can be applied consistently in the system. In the comparative assessment of various flywheel power storage systems, the specifications and achievements were compared in the component elements of the flywheel systems developed in Europe, America and Japan through the literature studies and the field survey, with examination performed towards the future development. As a result, it was found that, in America, bearings were all SMB's without control. Boeing's objective for the development is 10kWh or so in view of convenience for transportation and is prone to arrange it in numbers. Further, investigations were made in literature and documents on the domestic and international trend of development of high-temperature superconducting flywheel systems, elucidating the details of the development. (NEDO)

  18. Efficient energy transfer and increase of energy density of magnetically charged flywheels

    International Nuclear Information System (INIS)

    Hinterdorfer, T.

    2014-01-01

    Flywheel Energy Storage Systems represent an ecologically and economically sustainable technology for decentralized energy storage. Compared to other storage technologies such as e.g. chemical accumulators, they offer longer life cycles without performance degradation over time and usage and need almost no systematic maintenance. Further, they are made of environmentally friendly materials. By means of the driving torque of an electric motor, the flywheel is accelerated and thus electrical energy is transformed to kinetic energy. The stored energy can be transfered back by the load torque of a generator when needed. Modern flywheel energy storage applications use magnetic bearings to minimize selfdischarge. To avoid bearing forces due to rotor eccentricity an unbalance control strategy is used. However, this leads to an off-centered run of the electric machines rotor which in turn generates undesirable forces. A force-compensating operation of the electric machine will minimize the influence on the magnetic bearings in the planned control scheme, thus increasing their efficiency. Different concepts will be developed and compared to each other by means of simulations. Validation of the simulation models is carried out on a specially constructed test setup under defined conditions. In addition, the electrical machine will be integrated into the concept of redundancy of the flywheel. A bearingless operation increases the reliability and enables a safe shutdown of the application in case of malfunction of the magnetic bearings. High strength composite materials are used to achieve high speeds. Based on existing results from past research activities, a disc-shaped rotor is optimized first. To increase material utilization and to maximize energy density a topology optimization is performed. Evolutionary and gradient based optimization algorithms are used. Thereby the unused strength potential of the material is exploited in order to increase the economic efficiency of

  19. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (investigation on system introduction); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system donyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    In introducing high-temperature superconducting flywheel power storage equipment to an electrical power system, adaptability is examined and evaluated concerning secondary effect that can be expected while a load leveling function is maintained. The 1998 plan is such that the functions and usages other than the load leveling are put in order for such equipment, and that the effect/adaptability in the case of the introduction into the power system is evaluated by means of simulation and literature studies. The high-temperature superconducting flywheel power storage equipment may be used for such purposes as energy adjustment for a short time, system voltage adjustment and emergency power source, other than the load leveling, on the basis of the characteristics that enable high speed control of active/reactive power and storage/release of energy. Enumerated, as the effects obtainable in introducing these uses into the power system, are enhancement in system stability, improvement in voltage stability, improvement in instantaneous voltage drop, maintenance of system frequency, compensation of fluctuating load, countermeasures against power outrage, and output leveling of intermittent power sources, and these effects were examined. (NEDO)

  20. Technical and economic practicability of novel flywheel mass storage systems in electricity supply networks; Technisch-wirtschaftliche Realisierbarkeit von neuartigen Schwungmassenspeicher-Systemen (SMSS) in elektrischen Netzen

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H J; Baeumer, U; Kaiser, A; Gruener, A; Gutt, H J; Hampel, R; Heyder, B; Kleimaier, M; Radtke, U; Sachse, H; Schlechter, V; Schrepfer, W; Worlitz, F

    1998-12-31

    Efficient storage of electrical energy is an increasing need. New developments in high-power electronics, high-strength materials and magnetic bearings have made efficient reliable flywheel mass storage systems in the range of 1-5 MfW/50-150 kWh conceivable. According to a first assessment, these systems may provide energy to the supply grid in a range of seconds and thus ensure frequency maintenance and compensation of short interruptions. The authors present first results of a preliminary study preparatory to a feasibility study on the technical and economic practicability of flywheel mass storage systems. (orig.) [Deutsch] Das Thema effiziente Speicherung von elektrischer Energie gewinnt immer mehr an Bedeutung. Durch neuere Entwicklungen in der Leistungselektronik und bei der Herstellung hochfester Werkstoffe sowie durch Fortschritte bei der Entwicklung von beruehrungsfreien Lagern im Bereich der aktiven Magnetlager (AML) und insbesondere supraleitenden Magnetlager (SML) sind effiziente und sichere Schwungmassenspeicher-Systeme (SMSS) bis in die Bereiche 1-5 MW/50-150 kWh denkbar. Nach einer ersten Einschaetzung eignen sich solche Anlagen, um im Sekundenbereich Energie in das Netz abzugeben und somit zur Frequenzstuetzung und zur Kompensation von Kurzunterbrechungen beizutragen. Praesentiert werden erste Ergebnisse einer Untersuchung zur Vorbereitung einer Machbarkeitsstudie ueber die technisch-wirtschaftliche Realisierbarkeit von Schwungmassenspeicher-Systemen. (orig.)

  1. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  2. Recommended Practices for the Safe Design and Operation of Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Flywheel energy storage systems are in use globally in increasing numbers . No codes pertaining specifically to flywheel energy storage exist. A number of industrial incidents have occurred. This protocol recommends a technical basis for safe flywheel de sign and operation for consideration by flywheel developers, users of flywheel systems and standards setting organizations.

  3. Stationary flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gilhaus, A; Hau, E; Gassner, G; Huss, G; Schauberger, H

    1981-01-01

    The aim of this system study is to find out industrial applications of stationary flywheel energy accumulators. The economic value for the consumer and the effects on the power supply grid are investigated. Up to now, stationary flywheel energy accumulators have only been used in a small range. The main reason for thinking of the application in a wider range was the hope that those could be used economically for lowering the maximum output demand of the power supply grid. The possible savings in energy costs, however, proved to be too small for paying back the investment costs. Further benefits are necessary for advantageous application. As to overall economy, compensation of short time maximum power output seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combustion with wind energy converters need further investigation.

  4. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  5. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  6. Fault detection of flywheel system based on clustering and principal component analysis

    Directory of Open Access Journals (Sweden)

    Wang Rixin

    2015-12-01

    Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  7. Flywheels for Low-Speed Kinetic Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-07-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that profiles of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs.

  8. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  9. The calculation of energy storage flywheels of fiber composites with electric energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Canders, W R

    1982-01-01

    The computation and the design of energy storage flywheels with electromechanical energy converters are considered in the present study. The most important stress parameters for flywheels of unidirectional laminate are determined, and criteria for the dimensioning of the flywheel are presented, taking into account centrifugal and compressive stresses. The required high speed of the flywheel is the dominating factor, which has to be considered also in the design of the driving engine for the storage device. The computation of the design characteristics of an outside-rotor motor with permanent-magnet excitation as an integral component of the storage device is discussed. The significance of the obtained results is illustrated with the aid of design examples and an application example in the area of vehicular technology.

  10. Flywheels for Low-Speed Kinetic Energy Storage Systems

    International Nuclear Information System (INIS)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-01-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that pro files of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs

  11. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  12. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

  13. Development of flywheel systems on the basis of mechatronics. Ontwikkeling van vliegwielsysteem mechatronisch aangepakt

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, A.

    1992-05-01

    Vehicles can save energy by storing the brake energy in a flywheel. So far flywheels in toys appear to be the only efficient applications. The Centre for Construction and Mechatronics (CCM) in Nuenen, Netherlands, however, is developing a flywheel system for city buses: EMAFER or Electro Mechanical Accumulator For Energy Reuse. Based on experiences with the first prototype, constructed in 1988, a second prototype will be constructed and mounted in a bus to be tested. 1 fig., 2 ills., 2 tabs.

  14. Lightweight flywheel containment

    Science.gov (United States)

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  15. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  16. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  17. Modelling and optimization of a permanent-magnet machine in a flywheel

    NARCIS (Netherlands)

    Holm, S.R.

    2003-01-01

    This thesis describes the derivation of an analytical model for the design and optimization of a permanent-magnet machine for use in an energy storage flywheel. A prototype of this flywheel is to be used as the peak-power unit in a hybrid electric city bus. The thesis starts by showing the

  18. Simulation of the fuel consumption benefits of various transmission arrangements and control strategies within a flywheel based mechanical hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Body, William; Brockbank, Chris [Torotrak (Development) Ltd. (United Kingdom)

    2009-07-01

    Flywheel based mechanical hybrid technology is being developed for both motorsport and mainstream automotive applications. One particular road car application project, part funded by the UK Government Technology Strategy Board, is being led by Jaguar Land Rover, managed by Prodrive and using advanced technology from Flybrid Systems, Ford, Ricardo. Torotrak and Xtrac. During the two year programme, the group will develop the new technology and build a demonstrator vehicle equipped with the system. The mechanical system recovers kinetic energy from the vehicle during braking to a high speed rotating flywheel via a variable drive system. When compared to an electric motor / battery arrangement, the mechanical hybrid system offers benefits in cost, weight, package, efficiency and ultimately vehicle fuel consumption. As part of the development and optimisation process in order to specify the road car system, all aspects of the mechanical hybrid system are under investigation by the group. Alongside the required quantity of energy storage and the rates of energy recovery and reapplication, a number of different physical architectures for the system are being analysed. The Torotrak full-toroidal traction drive has been assigned as the variable drive element of the mechanical hybrid system. Multiple configuration options are available including direct drive, epicyclic shunted, range extended CVT and epicyclic shunted IVT arrangements. In addition, the flywheel and variable drive system can be connected to the powertrain in a variety of different locations, from the engine through the powertrain to the wheels. This paper describes the simulation of the mechanical hybrid system with particular focus on the impact on the fuel consumption benefit, over multiple drive cycles, of the variable drive configuration, the location of the variable drive and flywheel system and the control strategy options. (orig.)

  19. Calculation of composite-fibre flywheels with electric power converters for energy storage purposes. Zur Berechnung von Schwungradenergiespeichern aus Faserverbundwerkstoff mit elektrischem Energiewandler

    Energy Technology Data Exchange (ETDEWEB)

    Canders, W R

    1982-07-13

    The dissertation discusses the calculation and design of flywheel energy storage systems with electromechanical power converters and composite-fibre flywheels. For this purpose, the main load criteria for centrifugal and pressure loads on flywheel rings of unidirectional laminates are determined, and criteria are given for the dimensioning of flywheel rings. The fast rotational speed of the flywheel dominates the design of the driving motor. As an example, the calculation of a permanent-magnet-excited external rotor motor is described. Special consideration is given to the close correlation between stator current density and ampere bars per cm, and rotor strength. The findings are illustrated by design examples, by an example from the field of vehicle construction, and by experimental studies on composite-fibre flywheels and a driving motor with a high rotational speed.

  20. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  1. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  2. A composite-flywheel burst-containment study

    Science.gov (United States)

    Sapowith, A. D.; Handy, W. E.

    1982-01-01

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.

  3. DSTATCOM with Flywheel Energy Storage System for wind energy applications: Control design and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Suvire, G.O.; Mercado, P.E. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, San Juan (Argentina)

    2010-03-15

    In this work, the use of a Distribution Static Synchronous Compensator (DSTATCOM) coupled with a Flywheel Energy Storage System (FESS) is proposed to mitigate problems introduced by wind generation in the electric system. A dynamic model of the DSTATCOM/FESS device is introduced and a multi-level control technique is proposed. This control technique presents one control mode for active power and two control modes for reactive power, power factor correction, and voltage control. Tests of dynamic response of the device are conducted, and performance characteristics are studied taking into consideration variations of power references. Moreover, the behaviour of the device is analyzed when combined with wind generation in the electric system. The results obtained demonstrate a good performance of the model developed and of the control technique proposed as well as a high effectiveness of the device to mitigate problems introduced by wind generation. (author)

  4. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  5. Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Lee, J. P.; Kim, H. G.; Han, S. C.

    2012-01-01

    In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

  6. Concept of a modified flywheel for megajoule storage and pulse conditioning

    International Nuclear Information System (INIS)

    Leung, T.T.

    1991-01-01

    This paper introduces the concept of a flywheel with a variable moment of inertia for electromagnetic launch (EML). A flywheel is among the best energy density storage devices. The modified flywheel will further improve upon the energy density and efficiency. Coupled to a pulse-duty generator, it could produce a near-square pulse or other desirable pulse shapes. The mount of energy, its rate, and its switching all could be controlled prior to electric energy conversion. The modified flywheel is structured with masses movable along radial paths. Potential energy is stored with respect to mass position and kinetic energy with respect to spin. This mass positioning provides a means to control the rate of energy discharge. Control with spring-loaded weight--the design presented here--would have near constant spin output

  7. Electrochemical Batteries: Flywheels for temporary energy storage; Baterias electromecanicas: volantes de inercia para el almacenamiento temporal de energia

    Energy Technology Data Exchange (ETDEWEB)

    Pena Alzola, R.; Sebastian Fernandez, R.

    2008-07-01

    In the Electromechanical batteries (EMB) a flywheel stores mechanical energy that interchanges in form of electrical energy by means of an electrical machine with a bidirectional power converter. EMB are suitable whenever numerous charge and recharge cycles (hundred of thousands) are needed with medium to high power (kW to MW) during short periods (seconds). The materials of the flywheel, the type of the electrical machine, the type of the bearings and the atmosphere inside the housing determine the energy efficiency of the EMB. EMB are commercially available with more than a dozen of manufacturers. Amongst the applications of BEM are: uninterrupted power supplies, hybrid power systems, power grids feeding trains, hybrid vehicles and space satellites. (Author) 15 refs.

  8. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy...

  9. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  10. Energy optimization for a wind DFIG with flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria); Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla (Algeria); Bouchafaa, Farid, E-mail: fbouchafa@gmail.com [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria)

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  11. Start It up: Flywheel Energy Storage Efficiency

    Science.gov (United States)

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  12. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  13. On the Optimally Controlled Hydrostatic Mechanical Drive in Case of Flywheel Acceleration

    Directory of Open Access Journals (Sweden)

    V. A. Korsunskii

    2016-01-01

    Full Text Available An improving dynamic quality of vehicles and enhanced fuel efficiency are gained thanks to the combined power system (CPS, comprising a main energy source - internal combustion engine (ICE with an attained level of the power source - and an auxiliary energy source, i.e. an energy storage device (a flywheel.To solve this problem was developed a mathematical model of CPS comprising internal combustion engine and flywheel energy storage (FES with stepless drive.The stepless drive of the flywheel is made to be hydrostatic mechanical to raise the system efficiency. To reduce the drive weight and simplify the control system in the hydraulic part of the flywheel drive is used only one hydraulic unit being controlled.The paper presents a kinematic diagram of the track-type vehicle equipped with the CPS that has a hydrostatic mechanical drive of the flywheel and a mechanical transmission.A mathematical model of the system comprising an ICE, hydrostatic mechanical drive, and FES with stepless drive has been developed. This mathematical model was used to study the influence of ICE and flywheel drive parameters on the dynamic characteristics of the system.The paper estimates the impact of flywheel energy consumption, pressure in the hydraulic system, and control parameter of hydrostatic mechanical drive on the charging time of FES.The obtained piecewise linear law to control the regulation parameter of the hydraulic unit allows us to minimize the charging time of the flywheel at the short-term stops and in the parking area of a tracked vehicle equipped with a CPS.The causes affecting the performance of ‘ICE – drive – flywheel’ system in the course of the flywheel acceleration are a restricted maximum power of the engine, as well as a limited generating capacity, and a maximum flywheel drive hydro-system pressure.The obtained results allow us to determine rational parameters of the flywheel and the laws of drive control to provide their further

  14. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  15. Magnetic suspension of a rotating system. Application to inertial flywheels

    International Nuclear Information System (INIS)

    Lemarquand, Guy

    1984-01-01

    The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr

  16. Composite flywheel development completion report, May 1--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Huddleston, R. L.; Kelly, J. J.; Knight, C. E.

    1977-05-01

    The program to design, fabricate, and performance test a prototype, vehicular-sized, composite flywheel is described. The overall program scope encompasses development of both the flywheel and its containment; however, the FY 1976-1976T objective was directed toward development of the flywheel and testing it in existing facilities. The development effort was successful, leading to successful testing of a flywheel design which demonstrated an energy density performance of 10.1 Wh/lb during spin testing. The initial application selected for development of the composite flywheel was the heat engine/flywheel hybrid propulsion system for a vehicle. This application was selected by the ERDA Advanced Physical Methods Branch staff because of its high potential for conservation of petroleum fuel in both the near and far-term time frames. Other applications, such as utility load leveling, represent potential areas for significant energy savings but require more extensive development programs and funding resources. Successful development of a high-performance, composite, vehicular flywheel represents one step along the development path leading toward larger, higher-energy storage flywheel applications.

  17. Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System

    Science.gov (United States)

    Santiago, Walter

    2004-01-01

    NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.

  18. A Static Burst Test for Composite Flywheel Rotors

    Science.gov (United States)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  19. A superconducting thrust-bearing system for an energy storage flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Cansiz, A.; Campbell, A.M. [IRC in Superconductivity, Cambridge (United Kingdom)

    2002-05-01

    We have constructed a bearing system for an energy storage flywheel. This bearing system uses a combination of permanent magnets and superconductors in an arrangement commonly termed as an Evershed bearing. In an Evershed system there are in fact two bearings which act in concert. In our system we have one bearing constructed entirely out of permanent magnets acting in attraction. This system bears the weight of the flywheel (43.6 kg) but would not, on its own, be stable. Stability is provided by a superconducting bearing which is formed by the interaction between the magnetic field of a permanent magnet sited on the rotor and superconductors on the stator. This overall arrangement is stable over a range of levitation heights and has been tested at rotation speeds of up to around 12 Hz (the maximum speed is dictated by the drive system not the bearing system). There is a sharp resonance peaking at between 2 and 3 Hz and spin down tests indicate that the equivalent coefficient of friction is of the order of 10{sup -5}. The rate of change of velocity is, however, not constant so the drag is clearly not solely frictional. The position of the resonance is dictated by the stiffness of the bearing relative to the mass of the flywheel but the amplitude of the resonance is dictated by the variation in magnitude of the magnetic field of the permanent magnets. Large magnets are (at present) fabricated in sections and this leads to a highly inhomogeneous field. The field has been smoothed by using a combination of iron which acts passively and copper which provides magnetic shielding due to the generation of eddy currents and therefore acts as an 'active' component. Calculations based on the spin down tests indicate that the resultant variation in field is of the order of 3% and measurements are being carried out to confirm this. (author)

  20. Safety flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.T.

    1977-01-17

    The patent application relates to an inertial energy storage device employing a safety flywheel which is made of flexible material such as a twisted rope ring. The rigidity required for such a device is achieved through centrifugal forces inherent in such a device when it is operating. A small number of the strands of the rope ring have a tensile strength that is lower than the vast majority of the strands of the rope ring whereby should any of these strands fail, they will begin to whiplash allowing such a failure to be detected and braked before a catastrophic failure occurs. This is accomplished by the inclusion of glass tubes located around the periphery of the flywheel. The tubes are in communication with a braking fluid reservoir. The flywheel and glass tubes are enclosed within a vacuum-tight housing.

  1. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  2. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. System design and evaluation (comparative study and information gathering); 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. System sekkei hyoka (hikaku kento, joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Information gathering and comparative study were conducted for the purpose of putting to practical use a 10 MWh class high temperature superconducting flywheel power storage system. This paper explains the fiscal 1977 results. On various methods conceivable as a flywheel system, characteristics were extracted in such points as structure, shape, axial support system, generator motor, and protective system, and compared with the method being developed in the present project. Test items methods, etc., were studied for a small model system (0.5 kWh, {phi} 400 mm, 30,000 rpm) for the purpose of clarifying problems and ways in approaching a large system (10 MWh class) through various tests of the small one. The main test items were a free-run test, steady state rotation test and a heat-run test, and the main points to evaluate were oscillation characteristics and the control performance of AMB, flux creep and loss, for example. Investigation was conducted of a dummy flywheel experimental equipment and a highly efficient power converter with the object of contributing to the development of a flywheel equipment for daily load leveling. The research members visited seven major research organizations in Europe and gathered information. (NEDO)

  3. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  4. Research and development of a superconducting flywheel power storage system in fiscal 1998. Research and development of rotation control technology; 1998 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Kaiten seigyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Element technology research was performed on 'rotation control' aimed at practical application of a 10-MW class high-temperature superconducting flywheel power storage system. As part of the research, researches were carried out on small-size and middle-size models, low-loss control type magnetic bearing, and large-size models. For the small-size model, as a result of performing performance tests on the protective bearing by using a testing machine, it was revealed that the model is free of problems in the test for up to 5000 rpm. For the middle-size model, fabrication and installation were completed on a middle-size rotation control testing equipment having CFRP-made flywheel with a diameter of 1 m. In the control type bearing, as a result of adopting a homo-polar type magnetic pole, the rotation loss was reduced to about 1/5 of that of a hetero-polar type. The amount is about 75 W (12000 rpm) when the bias current is 1.5 A. Concept design was implemented on a 2-MWh flywheel bearing system supported with a high-temperature superconducting magnetic bearing as a full-size flywheel. The CFRP-made flywheel has a diameter of 4 m, and a circumferential velocity of 1200 m. (NEDO)

  5. JET flywheel generators

    International Nuclear Information System (INIS)

    Huart, M.; Sonnerup, L.

    1986-01-01

    Two large vertical shaft flywheel generators each provides the JET device with peak power up to 400 MW and energy up to 2600 MJ per pulse to induce and confine the multi-mega-ampere plasma current. The integrated rotor flywheel consists of a 650 tonne/10 m diameter rim carrying the poles of the machine. The energy is stored kinetically during a 9 min interval of acceleration from half-speed to full-speed and then released during a 20 s long deceleration. A design life of 100 000 cycles at full energy rating was specified. The mechanical design and construction of the generators is reviewed. Particular attention is paid to the assessment of the stresses and fatigue life of the rotor system, its dynamic behaviour (rim movement, critical speed and balancing) and on the performance in operation of the large thrust bearing. (author)

  6. TRANSIENT ANALYSIS OF WIND DIESEL POWER SYSTEM WITH FLYWHEEL ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    S. SUJITH

    2017-10-01

    Full Text Available Wind-Diesel Hybrid power generation is a viable alternative for generating continuous power to isolated power system areas which have inconsistent but potential wind power. The unpredictable nature of variable power from Wind generator to the system is compensated by Diesel generator, which supplies the deficit in generated power from wind to meet the instantaneous system load. However, one of the major challenges for such a system is the higher probability of transients in the form of wind and load fluctuations. This paper analyses the application of Flywheel Energy storage system (FESS to meet the transients during wind-speed and load fluctuations around high wind operation. The power system architecture, the distributed control mechanism governing the flow of power transfer and the modelling of major system components has been discussed and the system performances have been validated using MATLAB /Simulink software. Two cases of transient stages around the high wind system operation are discussed. The simulation results highlight the effective usage of FESS in reducing the peak overshoot of active power transients, smoothes the active power curves and helps in reducing the diesel consumption during the flywheel discharge period, without affecting the continuous power supply for meeting the instantaneous load demand.

  7. Built and operation of three powerful AC pulse flywheel generator sets

    International Nuclear Information System (INIS)

    Wang Shujin; Li Huajun; Li Zhijian; Huang Zhaorong; Wang Xiaoping; Xu Lirong; Liu Xuemei; Bu Mingnan; Hu Haotian; Mao Weicheng

    2006-10-01

    Based on modification of the old pulse generator sets the new flywheel generator system has been developed. Now it is successfully used in supplying power to the HL-2A tokamak and meets the needs of HL-2A physical experiments. By far it is the most powerful pulse flywheel generator system on in-stalled gross capacity, energy storage and release in China today. In addition, the characteristic of the flywheel generator system is that each generator stator has two Y windings with 30 degree phase shift to avoid damaging the rotor due to rectifying load. (authors)

  8. Optimal energy management for a flywheel-based hybrid vehicle

    NARCIS (Netherlands)

    Berkel, van K.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2011-01-01

    This paper presents the modeling and design of an optimal Energy Management Strategy (EMS) for a flywheel-based hybrid vehicle, that does not use any electrical motor/generator, or a battery, for its hybrid functionalities. The hybrid drive train consists of only low-cost components, such as a

  9. A Control Strategy for Flywheel Energy Storage System for Frequency Stability Improvement in Islanded Microgrid

    Directory of Open Access Journals (Sweden)

    A. A. Khodadoost Arani

    2017-03-01

    Full Text Available The Micro-Grid (MG stability is a significant issue that must be maintained in all operational modes. Usually, two control strategies can be applied to MG; V/f control and PQ control strategies. MGs with V/f control strategy should have some Distributed Generators (DGs which have fast responses versus load changes. The Flywheel Energy Storage System (FESS has this characteristic. The FESS, which converts the mechanical energy to electrical form, can generate electrical power or absorb the additional power in power systems or MGs. In this paper, the FESS structure modeled in detail and two control strategies (V/f and PQ control are applied for this application. In addition, in order to improve the MG frequency and voltage stability, two complementary controllers are proposed for the V/f control strategy; conventional PI and Fuzzy Controllers. A typical low voltage network, including FESS is simulated for four distinct scenarios in the MATLAB/ Simulink environment. It is shown that fuzzy controller has better performance than conventional PI controller in islanded microgrid.

  10. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  11. Flywheels Would Compensate for Rotor Imbalance

    Science.gov (United States)

    Hrastar, J. A. S.

    1982-01-01

    Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

  12. On the experimental determination of the efficiency of piezoelectric impact-type energy harvesters using a rotational flywheel

    International Nuclear Information System (INIS)

    Janphuang, P; Lockhart, R; Briand, D; De Rooij, N F; Henein, S

    2013-01-01

    This paper demonstrates a novel methodology using a rotational flywheel to determine the energy conversion efficiency of the impact based piezoelectric energy harvesters. The influence of the impact speed and additional proof mass on the efficiency is presented here. In order to convert low frequency mechanical oscillations into usable electrical energy, a piezoelectric harvester is coupled to a rotating gear wheel driven by flywheel. The efficiency is determined from the ratio of the electrical energy generated by the harvester to the mechanical energy dissipated by the flywheel. The experimental results reveal that free vibrations of the harvester after plucking contribute significantly to the efficiency. The efficiency and output energy can be greatly improved by adding a proof mass to the harvester. Under certain conditions, the piezoelectric harvesters have an impact energy conversion efficiency of 1.2%

  13. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  14. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  15. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    International Nuclear Information System (INIS)

    Han, Y.H.; Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C.

    2013-01-01

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown

  16. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  17. Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter

    Directory of Open Access Journals (Sweden)

    Zheng Ge

    2018-01-01

    Full Text Available We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.

  18. Flywheel-battery hydrid: a new concept for vehicle propulsion

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A new concept was examined for powering the automobile: a flywheel-battery hybrid that can be developed for near-term use from currently available lead-acid batteries and state-of-the-art flywheel designs. To illustrate the concept, a calculation is given of the range and performance of the hybrid power system in a typical commute vehicle, and the results are compared to the measured range and performance of an all-battery vehicle. This comparison shows improved performance and a twofold urban-range increase for the hybrid over the all-battery power system

  19. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  20. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    Science.gov (United States)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  1. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  2. Analisa Variable Moment of Inertia (VMI Flywheel pada Hydro-Shock Absorber Kendaraan

    Directory of Open Access Journals (Sweden)

    Hasbulah Zarkasy

    2017-01-01

    Full Text Available Flywheel selama ini dimanfaatkan untuk menyimpan energi mekanik pada mesin, membuat mesin berputar dengan lebih lembut. Prinsip kerja dari flywheel adalah dengan memanfaatkan momen inersia. Baru-baru ini dilakukan penelitian lebih lanjut mengenai pemanfaatan dari flywheel, yakni pada sistem suspense, akan tetapi selama ini penelitian yang dilakukan terbatas pada flywheel dengan momen inersia yang konstan (Constant Moment of Inertia. Kali ini akan dilakukan penelitian mengenai Variable Moment of Inertia Flywhel atau dengan kata lain flywheel yang momen inersianya berubah-ubah. Flywheel ini terdiri dari dua bagian utama, yakni flywheel berongga dan slider yang dapat bergerak bebas di sepanjang guide track. Percobaan bertujuan untuk mengetahui bagaimana karakteristik gaya redam dari VMI Flywheel. Juga akan dianalisa seperti apa respon dinamis dari slider selama flywheel berputar. Selain itu respon dinamis kendaraan saat VMI Flywheel ini dipasangkan juga dianalisa. Hasil yang didapat menunjukkan bahwa variasi massa slider berpengaruh terhadap gaya redam yang dihasilkan oleh VMI Flywheel. Semakin besar massa slider, gaya redam yang muncul juga semakin besar. Faktor frekuensi input juga berpengaruh, sebab semakin besar frekuensi input yang pada shock absorber, gaya redam yang timbul juga membesar. Perpindahan yang dialami oleh slider juga tergantung pada jenis massa slider tersebut. Semakin besar massa slider, perpindahan yang dialami juga akan semakin besar. Performa VMI Flywheel secara umum pada frekuensi rendah. Sedangkan pada frekuensi tinggi, performa VMI Flywheel cenderung tidak bagus dan menyebabkan kendaraan tidak nyaman.

  3. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  4. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis.

    Science.gov (United States)

    Nuñez Sanchez, Francisco J; Sáez de Villarreal, Eduardo

    2017-11-01

    Núñez Sanchez, FJ and Sáez de Villarreal, E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res 31(11): 3177-3186, 2017-Several studies have confirmed the efficacy of flywheel paradigm training for improving or benefiting muscle volume and force. A meta-analysis of 13 studies with a total of 18 effect sizes was performed to analyse the role of various factors on the effectiveness of flywheel paradigm training. The following inclusion criteria were employed for the analysis: (a) randomized studies; (b) high validity and reliability instruments; (c) published in a high quality peer-reviewed journal; (d) healthy participants; (e) studies where the eccentric programme were described; and (f) studies where increases in muscle volume and force were measured before and after training. Increases in muscle volume and force were noted through the use of flywheel systems during short periods of training. The increase in muscle mass appears was not influenced by the existence of eccentric overload during the exercise. The increase in force was significantly higher with the existence of eccentric overload during the exercise. The responses identified in this analysis are essential and should be considered by strength and conditioning professionals regarding the most appropriate dose response trends for flywheel paradigm systems to optimize the increase in muscle volume and force.

  5. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  6. Durability of filament-wound composite flywheel rotors

    Science.gov (United States)

    Koyanagi, Jun

    2012-02-01

    This paper predicts the durability of two types of flywheels, one assumes to fail in the radial direction and the other assumes to fail in the circumferential direction. The flywheel failing in the radial direction is a conventional filament-wound composite flywheel and the one failing in the circumferential direction is a tailor-made type. The durability of the former is predicted by Micromechanics of Failure (MMF) (Ha et al. in J. Compos. Mater. 42:1873-1875, 2008), employing time-dependent matrix strength, and that of the latter is predicted by Simultaneous Fiber Failure (SFF) (Koyanagi et al. in J. Compos. Mater. 43:1901-1914, 2009), employing identical time-dependent matrix strength. The predicted durability of the latter is much greater than that of the former, depending on the interface strength. This study suggests that a relatively weak interface is necessary for high-durability composite flywheel fabrication.

  7. The New Structure Design and Analysis of Energy Storage of Flywheel of Split Rotor

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-02-01

    Full Text Available The braking of the rail transit train consumes a great quantity of energy, and the thermal energy produced in the process of braking can affect the normal operation of the transit train. Thus recycling the braking energy becomes a research hotspot of urban rail train. This paper made an overall analysis of regenerative braking process, the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This paper also designs a new flywheel structure which can be applied on urban rail operating system. The new flywheel structure should be checked by finite element method and the radius of the rotor should be defined under the condition of meeting the requirements of carbon fiber material strength. Meanwhile, compared with the solid flywheel under the same condition, analysis shows that the maximum rotary inertia of the new flywheel and the quality energy density increased, and the discharge depth also perks up.

  8. Analysis of the energy capacity of rim-spoke composite flywheels

    International Nuclear Information System (INIS)

    Moorlat, P.A.; Portnov, G.G.

    1986-01-01

    The rim-spoke flywheel consisting of a rim, connected to the hub by spokes encompassing the rim periphery, is one of the most promising types of energy accumulators. For the rational design of rim-spoke flywheels, the authors investigate the dependence of their mass energy capacity and their volume energy capacity; the limit speed on the geometric parameters of the flywheel and the properties of the composites used in making the rim and the spokes are also examined. It is shown through various programs, worked out for analyzing the energy capacity of rim-spoke flywheels, that they can substantially facilitate the designing of such flywheels according to specified requirements that their operational characteristics have to meet

  9. Kinematics analysis of vertical magnetic suspension energy storage flywheel rotor under transient rotational speed

    Science.gov (United States)

    Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei

    2018-05-01

    In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.

  10. Research and development in fiscal 2000 on element technologies for superconducting for electric power storage by using flywheels; 2000 nendo flywheel denryoku chozoyo chodendo jikuuke gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    With an objective to put flywheel electric power storage system into practical use, developmental research has been made on superconducting bearings that can support a rotating body having large load and rotating at high speed. This paper summarizes the achievements in fiscal 2000. In the study of enhancing the loading force for developing the element technologies for the superconducting bearings, specifications were established and fabrication was performed on the Y-based superconducting bulk for bearings, whereas the healthiness thereof was verified by measuring the trapped magnetic field distribution. This bulk was applied with vacuum impregnation treatment of an epoxy-based resin, to have fabricated a superconducting bearing model with a diameter of 180 mm class. Regarding the RE-based superconducting bulk, studies were carried out on a synthesizing method including optimization of the fabricating conditions, a columnar Sm-based bulk body with a diameter of 60 mm was fabricated, and its healthiness was verified. In the research of a rotation loss reducing technology, discussions were given on optimizing the magnetic circuitry to reduce the magnetic variation, by using the three-dimensional magnetic field simulation. In the evaluation test utilizing the existing test machine, the loading force of a 180-mm class-bearing model has shown 2105N at maximum. (NEDO)

  11. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  12. Safety in unlimited power supply. Method and means of parallel operation of flywheel aggregates. [parallel operation of flywheel machines

    Energy Technology Data Exchange (ETDEWEB)

    Krause, E [Struever (A.) K.G., Hamburg (Germany, F.R.)

    1975-11-01

    A special type of Diesel emergency generator sets, i.e., with flywheel machines is described. Construction and operation of a flywheel machine are described and reasons are given for a possible or necessary parallel operation. The basic requirements for parallel operation are explained and the intrinsic operation is described. Special designs are also presented.

  13. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  14. Comparison of joint kinetics during free weight and flywheel resistance exercise.

    Science.gov (United States)

    Chiu, Loren Z F; Salem, George J

    2006-08-01

    The most common modality for resistance exercise is free weight resistance. Alternative methods of providing external resistance have been investigated, in particular for use in microgravity environments such as space flight. One alternative modality is flywheel inertial resistance, which generates resistance as a function of the mass, distribution of mass, and angular acceleration of the flywheel. The purpose of this investigation was to characterize net joint kinetics of multijoint exercises performed with a flywheel inertial resistance device in comparison to free weights. Eleven trained men and women performed the front squat, lunge, and push press on separate days with free weight or flywheel resistance, while instrumented for biomechanical analysis. Front squats performed with flywheel resistance required greater contribution of the hip and ankle, and less contribution of the knee, compared to free weight. Push presses performed with flywheel resistance had similar impulse requirements at the knee compared to free weight, but greater impulse requirement at the hip and ankle. As used in this investigation, flywheel inertial resistance increases the demand on the hip extensors and ankle plantarflexors and decreases the mechanical demand on the knee extensors for lower extremity exercises such as the front squat and lunge. Exercises involving dynamic lower and upper extremity actions, such as the push press, may benefit from flywheel inertial resistance, due to the increased mechanical demand on the knee extensors.

  15. Performance testing and economic analysis of a photovoltaic flywheel energy storage and conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R. D.; Millner, A. R.; Jarvinen, P. O.

    1980-01-01

    A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power conditioning electronics, is described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery-inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in some utility-interactive applications.

  16. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  17. Rotational loss of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T c superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  18. Dynamical analysis of a flywheel-superconducting bearing with a moving magnet support

    International Nuclear Information System (INIS)

    Sivrioglu, Selim; Nonami, Kenzo

    2003-01-01

    A lateral stiffness improvement approach based on a moving magnet support is developed to reduce the vibration of a flywheel rotor-high temperature superconductor (HTS) bearing. A flywheel rotor levitated with an HTS bearing is modelled and then analysed with a moving stator magnet placed above the rotor. A dynamic support principle is introduced based on moving the stator magnet in anti-phase with the rotor displacement for small variations. A complete dynamical equation of the flywheel rotor is derived including gyroscopic and imbalance effects. The simulation results showed that the dynamic support of the flywheel rotor with additional stator magnet movements decreases the vibration of the flywheel rotor considerably

  19. Instantaneous flywheel torque of IC engine grey-box identification

    Science.gov (United States)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  20. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  1. Quadriceps muscle use in the flywheel and barbell squat.

    Science.gov (United States)

    Norrbrand, Lena; Tous-Fajardo, Julio; Vargas, Roberto; Tesch, Per A

    2011-01-01

    Resistance exercise has been proposed as an aid to counteract quadriceps muscle atrophy in astronauts during extended missions in orbit. While space authorities have advocated the squat exercise should be prescribed, no exercise system suitable for in-flight use has been validated with regard to quadriceps muscle use. We compared muscle involvement in the terrestrial "gold standard" squat using free weights and a nongravity dependent flywheel resistance exercise device designed for use in space. The subjects were 10 strength-trained men who performed 5 sets of 10 repetitions using the barbell squat (BS; 10 repetition maximum) or flywheel squat (FS; each repetition maximal), respectively. Functional magnetic resonance imaging (MRI) and surface electromyography (EMG) techniques assessed quadriceps muscle use. Exercise-induced contrast shift of MR images was measured by means of transverse relaxation time (T2). EMG root mean square (RMS) was measured during concentric (CON) and eccentric (ECC) actions and normalized to EMG RMS determined during maximal voluntary contraction. The quadriceps muscle group showed greater exercise-induced T2 increase following FS compared with BS. Among individual muscles, the rectus femoris displayed greater T2 increase with FS (+24 +/- 14%) than BS (+8 +/- 4%). Normalized quadriceps EMG showed no difference across exercise modes. Collectively, the results of this study suggest that quadriceps muscle use in the squat is comparable, if not greater, with flywheel compared with free weight resistance exercise. Data appear to provide support for use of flywheel squat resistance exercise as a countermeasures adjunct during spaceflight.

  2. Electric Machine Topologies in Energy Storage Systems

    OpenAIRE

    Santiago, Juan De; Oliveira, Janaina Goncalves de

    2010-01-01

    Energy storage development is essential if intermittent renewable energy generation is to increase. Pumped hydro, CAES and flywheels are environmentally friendly and economical storage alternatives that required electric motor/generators. The popularization of power electronics is relatively new and therefore the technology is still under development. There is not a clear winner when comparing technologies and therefore the optimal alternative depends on the specific requirements of the appli...

  3. The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator

    Directory of Open Access Journals (Sweden)

    Tomeh Elias

    2017-01-01

    Full Text Available The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator. Hydraulic power plants are systems that produce electrical energy with high investment costs. In order to fulfil their goals, investments should create conditions for a safe production of energy in a long lasting and reliable way, and with the required power and quality. These goals are possible to reach by an optional control process linked to a systematic monitoring of the operating machinery state, using the method of vibration diagnostics. Lately, there has been an increase of noise level in the hydraulic power plants.

  4. Operating characteristics of a 0.87 kW-hr flywheel energy storage module

    Science.gov (United States)

    Loewenthal, S. H.; Scibbe, H. W.; Parker, R. D.; Zaretsky, E. V.

    1985-01-01

    Discussion is given of the design and loss characteristics of 0.87 kW-hr (peak) flywheel energy storage module suitable for aerospace and automotive applications. The maraging steel flywheel rotor, a 46-cm- (18-in-) diameter, 58-kg (128-lb) tapered disk, delivers 0.65 kW-hr of usable energy between operating speeds of 10,000 and 20,000 rpm. The rotor is supported by 20- and 25-mm bore diameter, deep-groove ball bearings, lubricated by a self-replenishing wick type lubrication system. To reduce aerodynamic losses, the rotor housing was evacuated to vacuum levels from 40 to 200 millitorr. Dynamic rotor instabilities uncovered during testing necessitated the use of an elastometric-bearing damper to limit shaft excursions. Spindown losses from bearing, seal, and aerodynamic drag at 50 millitorr typically ranged from 64 to 193 W at 10,000 and 20,000 rpm, respectively. Discharge efficiency of the flywheel system exceeded 96 percent at torque levels greater than 21 percent of rated torque.

  5. Levitation properties of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    In this paper we propose a new combination of high T c superconducting levitation and ring-shaped flywheel energy storage systems. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub, because it is a non-contact and automatically stable levitation without any control systems. The levitation properties such as static and dynamic lateral stiffnesses, lateral damping, and lateral vibration during rotation have been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The spring constant increased as the levitation gap height decreased, and the dynamic spring constant was slightly higher than the static constant. The damping coefficient increased as the gap height decreased and the vibration amplitude increased. The experimental critical speed was in good agreement with the calculated one using a one-degree of freedom model. Finally, the possibility of large-scaled practical systems is discussed from the viewpoint of superconducting levitation. (author)

  6. Near-term electric test vehicle ETV-2. Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  7. High-performance sensorless nonlinear power control of a flywheel energy storage system

    International Nuclear Information System (INIS)

    Amodeo, S.J.; Chiacchiarini, H.G.; Solsona, J.A.; Busada, C.A.

    2009-01-01

    The flywheel energy storage systems (FESS) can be used to store and release energy in high power pulsed systems. Based on the use of a homopolar synchronous machine in a FESS, a high performance model-based power flow control law is developed using the feedback linearization methodology. This law is based on the voltage space vector reference frame machine model. To reduce the magnetic losses, a pulse amplitude modulation driver for the armature is more adequate. The restrictions in amplitude and phase imposed by the driver are also included. A full order Luenberger observer for the torque angle and rotor speed is developed to implement a sensorless control strategy. Simulation results are presented to illustrate the performance.

  8. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  9. THE REDUCTION OF VIBRATIONS IN A CAR – THE PRINCIPLE OF PNEUMATIC DUAL MASS FLYWHEEL

    Directory of Open Access Journals (Sweden)

    Robert GREGA

    2014-09-01

    Full Text Available The dual-mass flywheel replaces the classic flywheel in such way that it is divided into two masses (the primary mass and the secondary mass, which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the engine with regard to the engine dynamic behaviour what leads to a reduction of vibrations consequently. However, there is also a disadvantage of the dualmass flywheels. The disadvantage is its short-time durability. There was projected a new type of the dual-mass flywheel in the framework of our workplace in order to eliminate disadvantages of the present dual-mass flywheels, i.e. we projected the pneumatic dual-mass flywheel, taking into consideration our experiences obtained during investigation of vibrations.

  10. Flywheel Energy Storage Drive System for Wind Applications

    Directory of Open Access Journals (Sweden)

    Marius Constantin Georgescu

    2014-09-01

    Full Text Available This paper presents a wind small power plant with a Smart Storage Modular Structure (SSMS, as follows: a Short Time Storage Module (STSM based on a flywheel with Induction Motor (IM and a Medium/Long Time Storage Module (MLTSM based on a Vanadium Redox flow Battery (VRB. To control the speed and torque of the IM are used a nonlinear sensorless solution and a direct torque solution which have been compared. Now, the author proposes to replace the IM by a dc motor with permanent magnet energy injection. In this aim, are accomplished some laboratory tests.

  11. Study of Servo Press with a Flywheel

    Science.gov (United States)

    Tso, Pei-Lum; Li, Cheng-Ho

    The servo press with a flywheel is able to provide flexible motions with energy-saving merit, but its true potential has not been thoroughly studied and verified. In this paper, such the “hybrid-driven” servo press is focused on, and the stamping capacity and the energy distribution between the flywheel and the servomotor are investigated. The capacity is derived based on the principle of energy conservation, and a method of using a capacity percentage plane for evaluation is proposed. A case study is included to illustrate and interpret that the stamping capacity is highly dependent on the programmed punch motions, thus the capacity prediction is always necessary while applying this kind of servo press. The energy distribution is validated by blanking experiments, and the results indicate that the servomotor needs only to provide 15% to the flywheel torque, 12% of the total stamping energy. This validates that the servomotor power is significantly saved in comparison with conventional servo presses.

  12. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  13. Rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Hidekazu [Nippon Steel Corp., Kawasaki, Kanagawa (Japan). Advanced Materials and Technology Research Labs.; Tawara, Taichi; Shimada, Ryuichi

    1997-08-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  14. A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications

    International Nuclear Information System (INIS)

    Boukettaya, Ghada; Krichen, Lotfi

    2014-01-01

    A global supervisory strategy for a micro-grid power generation system that comprises wind and photovoltaic generation subsystems, a flywheel storage system, and domestic loads connected both to the hybrid power generators and to the grid, is developed in this paper. The objectives of the supervisor control are, firstly, to satisfy in most cases the load power demand and, secondly, to check storage and grid constraints to prevent blackout, to reduce energy costs and greenhouse gas emissions, and to extend the life of the flywheel. For these purposes, the supervisor determines online the operation mode of the different generation subsystems, switching from maximum power conversion to power regulation. Decision criteria for the supervisor based on actual variables are presented. Finally, the performance of the supervisor is extensively assessed through computer simulation using a comprehensive nonlinear model of the studied system. - Highlights: • We supervise a micro-grid power generation system with an objective to produce clipping grid consumption. • The supervisor switch online from maximum power conversion to power regulation. • We provide services both for domestic users and for the distribution network manager. • The developed algorithm is tested and validated for different scenarios

  15. Performance enhanced design of chaos controller for the mechanical centrifugal flywheel governor system via adaptive dynamic surface control

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2016-09-01

    Full Text Available This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the “explosion of complexity” of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.

  16. Kinetic energy storage of off-peak electricity

    International Nuclear Information System (INIS)

    Simpson, L.A.; Oldaker, I.E.; Stermscheg, J.

    1975-09-01

    The concept of using large flywheels to store off-peak electricity has been considered. The development of high strength composite materials has made possible improvements in the energy storage capacity of such devices. The problems involved in designing large flywheels and their economic advantages over alternative means of energy storage are discussed. The economic arguments are based on the present or near future capabilities and costs of structural composite materials. The flywheel costs turn out to be considerably higher than for many alternative schemes including advanced batteries, gas turbine generators and pumped storage schemes. (author)

  17. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  18. Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Lee, Jung Pil; Kim, Han Gun

    2012-01-01

    In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).

  19. Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2017-01-01

    Highlights: • Comparison of HESS Ultracapacitor and Flywheel for maximizing EV energy recovery. • Energy recovery performed for extreme two front-wheel driven EV brake conditions. • Regenerative EV braking control strategies and constraints for HESS. • Comparative cost effectiveness for two HESS solutions Ultracapacitors and Flywheel. - Abstract: This paper presents the comparative study of two hybrid energy storage systems (HESS) of a two front wheel driven electric vehicle. The primary energy source of the HESS is a Li-Ion battery, whereas the secondary energy source is either an ultracapacitor (UC) or a flywheel energy system (FES). The main role of the secondary source is to deliver/recover energy during high peak power demand, but also to increase battery lifetime, considered among the most expensive items in the electric vehicle. As a first step, a techno-economic comparative study, supported by strong literature research, is performed between the UC and the FES. The design and sizing of each element will be presented. The comparison criteria and specifications are also described. The adopted approach in this paper is based on an academic non-oriented point of view. In a second step, each of the HESS will be integrated in a more global Simulink model which includes the vehicle model, the traction control system (TCS), the regenerative braking system and the vehicle actuators. Simulation tests are performed for an extreme braking and vehicle starting-up operations. Tests are realized on two different surface road types and conditions (high and low friction roads) and for different initial system states. In order to show the most appropriate storage system regarding compactness, weight and battery constraints minimization, deep comparative analysis is provided.

  20. Proposed TFTR electrical system

    International Nuclear Information System (INIS)

    Bronner, G.; Murray, J.

    1975-01-01

    The development of controlled thermonuclear fusion has progressed to the stage where the present facilities and energy available for future devices are not sufficient and must be increased by about a factor of ten. This report describes the proposed TFTR ac utility power distribution system, an energy storage motor generator flywheel facility, and the rectifier conversion equipment for the Toroidal Field Confining System (TF), Ohmic Heating System (OH), Equilibrium Field System (EF) and the Neutral Beam Heating System (NB). The general requirements are described and the special design considerations identified

  1. Structural integrity analysis of reactor coolant pump flywheel(I)

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    A reactor coolant pump flywheel is an important machine element to provide the necessary rotational inertia in the event of loss of power to the pumps. This paper attempts to assess the influence of keyways on flywheel stresses and fracture behaviour in detail. The finite element method was used to determine stresses near keyways, including residual stresses, and to establish stress intensity factors for keyway cracks for use in fracture mechanics assessments. (Author)

  2. Thirty year operational experience of the JET flywheel generators

    Energy Technology Data Exchange (ETDEWEB)

    Rendell, Daniel, E-mail: dan.rendell@ccfe.ac.uk; Shaw, Stephen R.; Pool, Peter J.; Oberlin-Harris, Colin

    2015-10-15

    Highlights: • The pony-motor rotor circuit's liquid resistor requires frequent maintenance. • A crowned profile on the thrust pads is desirable. • Both plug braking transformers have been replaced after flashovers occurred. • Two-plane balancing of one of the flywheel generators has improved vibration levels but also provided information to lead further investigations. • A half-life inspection on the flywheel generators has shown no major issues after 30 year of operating. - Abstract: The JET flywheel generator converters have operated since 1983 and for over 85,000 pulses. Problems with this plant are discussed, including corrosion, unbalanced flow and arcing within the liquid resistors; starting difficulties on both machines; and failure of the plug-braking transformers at energisiation. In 2012/13 two sets of thrust bearing pads have required refurbishment, a process which highlighted the importance of their profile. Extensive half-life inspections have shown that there are no serious problems with either generator.

  3. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    Science.gov (United States)

    Severson, Eric Loren

    The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of

  4. Design, Fabrication, and Testing of the INSTAR [INertial STorage And Recovery] System: A Flywheel-based, High Power Energy Storage System for Improved Hybrid Vehicle Fuel Efficiency

    OpenAIRE

    Talancon, Daniel Raul

    2015-01-01

    This thesis describes the development of the INSTAR system: a high-power, cost-effective energy storage system designed to improve HEV regenerative braking capabilities by combining chemical batteries with an electromechanical flywheel. This combination allows the regenerative braking system in hybrid vehicles to recapture more available braking energy at a lower battery pack charging current, increasing vehicle energy efficiency while also potentially increasing battery life.A prototype flyw...

  5. Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-30

    In this program, Amber Kinetics designed, built, and tested a sub-­scale 5 kWh engineering prototype flywheel system. Applying lessons learned from the engineering prototype, Amber Kinetics then designed, built and tested full-­size, commercial-­scale 25 kWh flywheel systems. The systems underwent basic functional qualification testing before being installed, sequentially, at the company’s outdoor test site in Alameda, CA for full-­speed field-testing. The primary considerations in testing the prototype units were to demonstrate the functionality of the system, verify the frequencies of resonant modes, and quantify spinning losses and motor/generator efficiency.

  6. Coordinated Control for Flywheel Energy Storage Matrix Systems for Wind Farm Based on Charging/Discharging Ratio Consensus Algorithms

    DEFF Research Database (Denmark)

    Cao, Qian; Song, Y. D.; Guerrero, Josep M.

    2016-01-01

    This paper proposes a distributed algorithm for coordination of flywheel energy storage matrix system (FESMS) cooperated with wind farm. A simple and distributed ratio consensus algorithm is proposed to solve FESMS dispatch problem. The algorithm is based on average consensus for both undirected...... and unbalanced directed graphs. Average consensus is guaranteed in unbalanced digraphs by updating the weight matrix with both its row sums and column sums being 1. Simulation examples illustrate the effectiveness of the proposed control method....

  7. Report on achievements in fiscal 1999. Research and development of electric power storage using high-temperature super-conductive flywheels (research and development on manufacture of super-conductive magnetic bearings); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Chodendo jiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)

  8. Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles

    International Nuclear Information System (INIS)

    Huang, Chung-Neng; Chen, Yui-Sung

    2017-01-01

    Because hydrogen can be extracted naturally and stored for a long time, different types of fuel cells have been developed to generate clean power, particularly for use in vehicles. However, the power demand of a running vehicle leads to unstable and irregular loading of fuel cells. This not only reduces fuel cell lifespan and efficiency but also affects driving safety when the slow output response cannot satisfy an abrupt increase in power demand. Magnetic flywheels with characteristics such as high energy density, high-speed charging ability, and low loss have been extensively used in Formula One cars. This study developed a hybrid powertrain in which a magnetic flywheel system (MFS) is integrated with the fuel cells to solve the aforementioned problems. Moreover, an auto-tuning proportional–integral–derivative (PID) controller based on the controls of a multiple adaptive neuro-fuzzy interference system and particle swarm optimization was designed for MFS control. Furthermore, MATLAB/Simulink simulations considering an FTP-75 urban driving cycle were conducted, and a variability improvement of approximately 27.3% in fuel cell output was achieved. - Highlights: • A hybrid powertrain integrating the magnetic flywheel and fuel cells is proposed. • An auto-tuning PID controller is designed for MFS control. • The MIMO-ANFIS and PSO based optimal control is realized. • A 27.3% improvement in the output variability of fuel cell is achieved under control.

  9. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghak [Korea KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed.

  10. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    International Nuclear Information System (INIS)

    Kim, Donghak

    2015-01-01

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed

  11. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  12. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  13. Flywheel for a 167 MVA surge power motor-generator set

    International Nuclear Information System (INIS)

    Mertens, H.

    1975-01-01

    Flywheels to be subjected to major speed fluctuations are designed on the basis of both the usual strength analysis and fracture mechanics considerations, and the testing and operating instructions have to allow for this. Appropriate test units are used to determine the fracture toughness of the material. Residual stresses are measured and extensive ultrasonic and magnetic particle tests performed to enable the permissible number of stress cycles to be predicted. The article deals with these problems by reference to the flywheel of a 167 MVA surge power motor-generator set for the Max Planck Insitute for Plasma Physics in Garching. (orig.) [de

  14. Contribution to design and to integrate a flywheel-based storage system in a test bench for electric vehicles with hybrid source; Contribution a la conception et a l'integration d'un accumulateur cinetique d'energie dans une plate-forme de test pour vehicules electriques a source hybride

    Energy Technology Data Exchange (ETDEWEB)

    Briat, O.

    2002-11-01

    This work deals with the design and the integration of a flywheel-based storage system in a test bench for EV with hybrid source. The flywheel used to supply/recover the peak power during acceleration/braking is associated to a battery which supplies the average power. The main goal is to prove the interest of such a sources hybridization for heavy duty EV. First, a simulation tool has been used for EV studies. Models have been validated thanks to on-board vehicle measurements. Then, a EV test bench has been designed on a reduced power scale. The representativeness of this experimental tool has allowed us to validate simulation models. A flywheel module has been integrated and associated to a battery in order to validate the hybridization principle. Experimental results have shown the performances of the battery power limitation and have proved the interest of a systematic regenerative braking on the battery. In these conditions, an increase of the vehicle payload can be expected. (author)

  15. An Evershed type superconducting flywheel bearing

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A.; Campbell, A.M.; Coombs, T.A

    2003-07-15

    The objective of this work is to develop a bearing using high temperature superconductors (HTSs) for use in an energy storage flywheel. The experimental apparatus includes a cylindrical rotor levitated with the Evershed design in which the majority of the levitation force is provided by a permanent magnet arrangement and the stabilization of the system is achieved by HTS elements. The design characteristics and dynamics of the bearing associated with the rotor part are presented. The instrumentation measures the out of balance force and magnetomechanical stiffness associated with the rotor. A study of the rotational losses was performed using free spin down experiments associated with magnetic field variation measurements. The results are consistent with the loss being caused by hysteresis in the superconductor due to magnet inhomogeneity.

  16. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  17. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  18. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  19. Provision of Flexible Load Control by Multi-Flywheel-Energy-Storage System in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Andrade, Fabio

    2015-01-01

    in order to support basic electrical operation. This paper proposes a local implementation of a hysteresis-based aggregation algorithm for coordinated control of multiple stations that can provide functions such as peak shaving, spinning reserves, frequency control, regulation and load following. Local......Electrical vehicle (EV) chargers are going to occupy a considerable portion of total energy consumption in the future smart grid. Fast charging stations (FCS), as the most demanding representatives of charging infrastructure, will be requested to provide some ancillary services to the power system...... stability. Finally, corresponding hardware in the loop results based on dSPACE1006 platform have been reported in order to verify the validity of proposed approach....

  20. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  1. Plate heat exchanger - inertia flywheel performance in loss of flow transient

    International Nuclear Information System (INIS)

    Abou-El-Maaty, Talal; Abd-El-Hady, Amr

    2009-01-01

    One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)

  2. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Utsunomiya, A.

    2007-01-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor

  3. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    Science.gov (United States)

    Tsukamoto, O.; Utsunomiya, A.

    2007-10-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.

  4. Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    OpenAIRE

    Sun, Bo

    2017-01-01

    Growing environmental awareness and strong political impetus have resulted in plug-in electric vehicles (PEV) becoming ever more attractive means of transportation. They are expected to have a significant impact to the overall loading of future distribution networks. Thus, current distribution grids need to be updated in order to accommodate PEV fleets, which are recognized in smart grid (SG) objective. The prevailing concern in that sense is the combined impact of a large number of randomly ...

  5. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.

    Science.gov (United States)

    Smith, Aynsley M; Krause, David A; Stuart, Michael J; Montelpare, William J; Sorenson, Matthew C; Link, Andrew A; Gaz, Daniel V; Twardowski, Casey P; Larson, Dirk R; Stuart, Michael B

    2013-12-01

    Ice hockey requires frequent skater crossovers to execute turns. Our investigation aimed to determine the effectiveness of training crossovers on a motorized, polyethylene high-resistance flywheel. We hypothesized that high school hockey players training on the flywheel would perform as well as their peers training on ice. Participants were 23 male high-school hockey players (age 15-19 years). The study used an experimental prospective design to compare players who trained for 9 sessions on the 22-foot flywheel with players who trained for 9 sessions on a similarly sized on-ice circle. Both groups were compared with control subjects who were randomly selected from the same participant pool as those training on ice. All players were tested before and after their 3-week training regimens, and control subjects were asked to not practice crossovers between testing. Group 1 trained in a hockey training facility housing the flywheel, and group 2 trained in the ice hockey arena where testing occurred. Primary outcome measures tested in both directions were: (a) speed (time in seconds) required to skate crossovers for 3 laps of a marked face-off circle, (b) cadence of skating crossovers on the similarly sized circles, and (c) a repeat interval speed test, which measures anaerobic power. No significant changes were found between groups in on-ice testing before and after training. Among the group 1 players, 7 of 8 believed they benefited from flywheel training. Group 2 players, who trained on ice, did not improve performance significantly over group 1 players. Despite the fact that no significant on-ice changes in performance were observed in objective measures, players who trained on the flywheel subjectively reported that the flywheel is an effective cost-effective alternative to training on ice. This is a relevant finding when placed in context with limited availability of on-ice training.

  6. 1977 flywheel technology symposium proceedings. [Fifty-two papers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, G.C.; Stone, R.G. (eds.)

    1978-03-01

    Fifty-two papers, four paper abstracts, and four brief summaries of panel discussions are presented on flywheel energy storage technology. A separate abstract was prepared for each of 41 papers for inclusion in DOE Energy Research Abstracts (ERA). Eleven papers were processed previously for inclusion in the data base. (PMA)

  7. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  8. Short-time action electric generators to power physical devices

    International Nuclear Information System (INIS)

    Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.

    1982-01-01

    Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t

  9. Research and development of a high-temperature superconducting flywheel energy storage system. Research and development of the New Sunshine Program; Furaihoiru denryoku chozo shisutemu kenkyu kaihatsu. Nyu sanshain keikaku ni motozuku kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Y. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-11-25

    The project conducted by NEDO for developing a high-temperature superconducting flywheel energy storage system is introduced; the two test results of fundamental studies are described. One is the measurement of levitation force and rotation loss of superconducting magnetic bearings composed of oxide superconducting bulks and permanent magnet composite. Two types of superconducting magnetic bearings. axial and radial types, were fabricated and tested. The other test was the fabrication and testing of two functional models. A small-sized superconducting flywheel model of the 0.5 kWh class was fabricated and tested. A medium-sized rotating functional model of the 10 kWh class was fabricated as well. (author)

  10. Transient heat transfer analysis of superconducting magnetic levitating flywheel rotor operating in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, A.; Kudo, K.; Higasa, H.

    1999-07-01

    In the present study, transient temperature rise is analyzed in a flywheel type power storage system operated in vacuum environment. The flywheel rotor is levitated by high-temperature-superconducting magnetic bearing to reduce the bearing loss. Though the superconductor is cooled by liquid nitrogen, the temperature of the whole system rises due to Joule heating in the coils of the bearings and the motor during the operation. If the temperature should reach the critical temperature of the permanent magnet used for the magnetic bearings after long time operation, the magnetic bearings lose their effect. The heat generated in the levitated rotor diffuses within it by heat conduction and finally emitted to its surrounding solid materials by thermal radiation from the rotor surfaces across vacuum layer. Numerical simulation is carried out calculating the transient radiative-conductive heat transfer and time-dependent profiles of temperature within the rotor are obtained. The results are compared with the experimentally obtained temperatures by measured a test model of 1kWh power storage and the measured profiles of the temperature rise of the rotor fit very well with the calculated ones. Using this simulation tool, the effects of the surface emissivity of the materials of the rotor and the stator, the temperature of the surrounding casings and the thermal conductivity of the materials on the temperature profiles in the system are estimated.

  11. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  12. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    International Nuclear Information System (INIS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-01-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG

  13. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  14. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Science.gov (United States)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  15. Guest Editorial Electric Machines in Renewable Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  16. Design mechanic generator under speed bumper to support electricity recourse for urban traffic light

    Science.gov (United States)

    Sabri, M.; Lauzuardy, Jason; Syam, Bustami

    2018-03-01

    The electrical energy needs for the traffic lights in some cities of developing countries cannot be achieved continuously due to limited capacity and interruption of electricity distribution, the main power plant. This issues can lead to congestion at the crossroads. To overcome the problem of street chaos due to power failure, we can cultivate to provide electrical energy from other sources such as using the bumper to generate kinetic energy, which can be converted into electrical energy. This study designed a generator mechanic that will be mounted on the bumper construction to generate electricity for the purposes of traffic lights at the crossroads. The Mechanical generator is composed of springs, levers, sprockets, chains, flywheel and customize power generator. Through the rotation of the flywheel, we can earned 9 Volt DC voltage and electrical current of 5.89 Ampere. This achievement can be used to charge the accumulator which can be used to power the traffic lights, and to charge the accumulator capacity of 6 Ah, the generator works in the charging time for 1.01 hours.

  17. Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system

    International Nuclear Information System (INIS)

    Zhang Jiangang; Li Xianfeng; Chu Yandong; Yu Jianning; Chang Yingxiang

    2009-01-01

    In this paper, complex dynamical behavior of a class of centrifugal flywheel governor system is studied. These systems have a rich variety of nonlinear behavior, which are investigated here by numerically integrating the Lagrangian equations of motion. A tiny change in parameters can lead to an enormous difference in the long-term behavior of the system. Bubbles of periodic orbits may also occur within the bifurcation sequence. Hyperchaotic behavior is also observed in cases where two of the Lyapunov exponents are positive, one is zero, and one is negative. The routes to chaos are analyzed using Poincare maps, which are found to be more complicated than those of nonlinear rotational machines. Periodic and chaotic motions can be clearly distinguished by all of the analytical tools applied here, namely Poincare sections, bifurcation diagrams, Lyapunov exponents, and Lyapunov dimensions. This paper proposes a parametric open-plus-closed-loop approach to controlling chaos, which is capable of switching from chaotic motion to any desired periodic orbit. The theoretical work and numerical simulations of this paper can be extended to other systems. Finally, the results of this paper are of practical utility to designers of rotational machines.

  18. Storage the electric power: yes, it is indispensable and it is possible. Why, where, how

    International Nuclear Information System (INIS)

    2003-01-01

    This document describes the main characteristics of various electric power storage methods and their application domains. The large-scale storages include the hydraulic systems, those using compressed air, the batteries or those implementing a thermal way. The small-scale storages are electrochemical as the accumulators, the super-capacitors, mechanical as the flywheel, magnetic or also by the hydrogen use. The first part presents the necessity of the electric power storage, the second part the places of these storage. The third part details the forms of storage. (A.L.B.)

  19. Study of damping in 5 kWh superconductor flywheel energy storage system using a piezoelectric actuator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H.K.; Song, D.; Kim, S.B. [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Han, S.C. [Korea Electric Power Research Institute, 103-16 Munji-Ro, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of); Sung, T.H., E-mail: sungth@hanyang.ac.kr [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of)

    2012-05-15

    A 5 kWh superconductor flywheel energy storage system (SFES) has advantages in terms of high electrical energy density, environmental affinity and long life. However, the SFES has disadvantage that electromagnetic damper is needed because superconducting bearings do not have enough damping coefficient. The purpose of this experiment is to develop a method of damping the vibration of the SFES. A piezoelectric actuator was attached to a superconducting bearing system for feasibility test in order to make it as a damper of the SFES. For this experiment, a cylindrical permanent magnet (PM) 40 mm in diameter and 10 mm height was used as a rotor, a high-temperature superconductor bulk (HTS bulk) with dimensions 40 mm Multiplication-Sign 40 mm Multiplication-Sign 15 mm was used as a stator, and two vibration exciters (an upper and a lower vibration exciter) and a piezoelectric actuator were used. The PM was fixed on the upper vibration exciter. The HTS bulk was fixed on either the lower vibration exciter to test for damping in the feasibility test, or on the piezoelectric actuator for the actual SFES. The conditions of this experiment included various voltage outputs of a power amplifier to the lower vibration exciter, moving distances of the piezoelectric actuator which are displacements of the HTS bulk, and phase differences between the upper and lower vibration exciter or the piezoelectric actuator. The damping feasibility test was conducted with a 300 {mu}m gap between the PM and HTS bulk with a PM vibration of 30 {mu}m. For the actual SFES test, the gap between the PM and HTS bulk was 1.6 mm and the PM vibration was 25 {mu}m. The following conditions were conducted to optimize: an appropriate voltage input to the lower vibration exciter or a displacement of piezoelectric actuator and an appropriate phase difference. When the piezoelectric actuator was used, the damping effect was greatly improved up to 92.32% which a displacement of damped PM was 1.92 {mu}m.

  20. An overview of flywheel energy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Wolsky, A. M.; Energy Systems

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time.

  1. Electricity storage - A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Cagnac, Albannie; Brisse, Annabelle; Jeandel, Elodie; Lefebvre, Thierry; Penneau, Jean-Francois; Radvanyi, Etienne; Delille, Gautier; Hinchliffe, Timothee; Lancel, Gilles; Loevenbruck, Philippe; Soler, Robert; Stevens, Philippe; Torcheux, Laurent

    2017-01-01

    After a presentation of the energetic context and of its issues, this collective publication proposes presentations of various electricity storage technologies with a distinction between direct storage, thermal storage and hydrogen storage. As far as direct storage is concerned, the following options are described: pumped energy transfer stations or PETS, compressed air energy storage or CAES, flywheels, various types of electrochemical batteries (lead, alkaline, sodium, lithium), metal air batteries, redox flow batteries, and super-capacitors. Thermal storage comprises power-to-heat and heat-to-power technologies. Hydrogen can be stored under different forms (compressed gas, liquid), in saline underground cavities, or by using water electrolysis and fuel cells. The authors propose an overview of the different services provided by energy storage to the electricity system, and discuss the main perspectives and challenges for tomorrow's storage (electric mobility, integration of renewable energies, electrification of isolated areas, scenarios of development)

  2. GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels

    DEFF Research Database (Denmark)

    Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar

    2016-01-01

    We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...... positions on the users body. We evaluated the impact of GyroVR onto different mounting positions on the head (back and front) in terms of immersion, enjoyment and simulator sickness. Our results show, that attaching GyroVR onto the users head (front of the Head Mounted Display (HMD)) resulted in the highest...

  3. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  4. The flywheel as an energy storage device in railway and tram networks; Schwungrad als Energiespeicher in Bahnnetzen. Erfahrungen aus einem Versuchsprojekt in der Stadt Zuerich

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, M. [EWZ, Zuerich (Switzerland)

    2010-07-01

    This article reviews experience made with a flywheel-based energy storage system that was tested on part of Zurich's tram network. The aim of the six weeks of tests was to determine how much energy that is generated by the recuperation of braking energy can be temporarily stored to provide power for accelerating trams on the network. The article discusses the valuable knowledge gained during the tests. The basic ideas behind the tests and the goals aimed for are discussed, both concerning energy balances as well as other factors such as noise and electromagnetic emissions. The part of the tram line used for the tests is described and the results are discussed. Other power storage systems using flywheels and capacitors are reviewed.

  5. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  6. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  7. Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems

    International Nuclear Information System (INIS)

    Aghababa Mohammad Pourmahmood

    2012-01-01

    The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers. (general)

  8. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    Science.gov (United States)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  9. Proceedings of the Prop'Elec 2000 colloquium. Advances of electric drive in urban transportation systems; Actes du colloque Prop'Elec 2000. Progres de la traction electrique dans les transports urbains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document is the proceedings of Prop'Elec 2000 colloquium on the advances in electric power drive in urban transportation systems. The colloquium comprises 5 sessions dealing with: 1 - public collective electric-powered transportation system: synthesis of urban guided systems (C. Soulas, INRETS), the fast travelator (A. Cote, RATP), the power supply system of METEOR automatic underground railway (P. Lagrange, W. Seiler, RATP); 2 - electrical drive in urban transportation systems: start-up of a thermal engine with super-capacitors (D. Bouquain (CREEBEL), H. Gualous, A. Djerdir, A. Berthon, J.M. Kauffmann (L2ES, IGE)), The LEV (light weight electric vehicle) project in Mendrisio (U. Schwegler, LEV/Suisse), prototype of electrical bike that use a wheel-engine (C. Espanet, F. Gustin, J.M. Kauffmann (IGE), S. Robert, M. Karmous (EICN)), TWIL: a new generation of small electrical bikes (E. Escallot, T. Bontems (EPMI)), thermal and magnetic analysis of a rectilinear movement actuator (J.C. Vannier, M. Kadiri (SUPELEC)), torque undulation and vibrations in automobile electrical drives (A.L. Bui-Van (Renault), A. Fonseca (LEG)); 3 - collective electric-powered transportation systems: STARS: autonomous transportation system with flywheel charging at the station (P. Gibard (Alstom Transport), K. Abuda, J.M. Vinassa (IXL Bordeaux)), Translhor tramway: presentation of the drive system (L. Verdier, LHOR); 4 - electric-powered and hybrid vehicles: batteries for electric-powered vehicles (J.F. Fauvarque, CNAM), Li-ion batteries and their application in automotive industry (T. Faugeras, SAFT), optimized drive systems for electric-powered vehicles (J. Saint-Michel, Leroy Somer), the Citroen Xsara Dynactive (S. Derou, PSA), 5 - electric-powered and hybrid vehicles: the electrical car in tomorrows' city (M. Parent, INRIA), the market of electric-powered vehicles in France and Europe (M. Valet, PSA). (J.S.)

  10. Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo

    energy storage system (FESS). The proposed PhD project supports a corresponding smart control strategy that could be termed “charging station to grid (CS2G)”. It explores the possibility of using a dedicated energy storage system (FESS) within the charging station to alleviate grid and market conditions...... converters is built and analyzed. |Based on modeling analysis, centralized and distributed control methods are both explored to realize the coordination control of each components in the system. Specially, this project proposes a “dc voltage vs speed” droop strategy for FESS control based on distributed bus...... function method when the system switches its operation behavior between two modes. Finally, a downscaled FCS prototype with FESS is built in the intelligent MG lab, and experiments and hardware-in-loop simulation results are conducted to verify the effectiveness and feasibility with the proposed FCS...

  11. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  12. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  13. Proceedings of the Prop'Elec 2000 colloquium. Advances of electric drive in urban transportation systems; Actes du colloque Prop'Elec 2000. Progres de la traction electrique dans les transports urbains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document is the proceedings of Prop'Elec 2000 colloquium on the advances in electric power drive in urban transportation systems. The colloquium comprises 5 sessions dealing with: 1 - public collective electric-powered transportation system: synthesis of urban guided systems (C. Soulas, INRETS), the fast travelator (A. Cote, RATP), the power supply system of METEOR automatic underground railway (P. Lagrange, W. Seiler, RATP); 2 - electrical drive in urban transportation systems: start-up of a thermal engine with super-capacitors (D. Bouquain (CREEBEL), H. Gualous, A. Djerdir, A. Berthon, J.M. Kauffmann (L2ES, IGE)), The LEV (light weight electric vehicle) project in Mendrisio (U. Schwegler, LEV/Suisse), prototype of electrical bike that use a wheel-engine (C. Espanet, F. Gustin, J.M. Kauffmann (IGE), S. Robert, M. Karmous (EICN)), TWIL: a new generation of small electrical bikes (E. Escallot, T. Bontems (EPMI)), thermal and magnetic analysis of a rectilinear movement actuator (J.C. Vannier, M. Kadiri (SUPELEC)), torque undulation and vibrations in automobile electrical drives (A.L. Bui-Van (Renault), A. Fonseca (LEG)); 3 - collective electric-powered transportation systems: STARS: autonomous transportation system with flywheel charging at the station (P. Gibard (Alstom Transport), K. Abuda, J.M. Vinassa (IXL Bordeaux)), Translhor tramway: presentation of the drive system (L. Verdier, LHOR); 4 - electric-powered and hybrid vehicles: batteries for electric-powered vehicles (J.F. Fauvarque, CNAM), Li-ion batteries and their application in automotive industry (T. Faugeras, SAFT), optimized drive systems for electric-powered vehicles (J. Saint-Michel, Leroy Somer), the Citroen Xsara Dynactive (S. Derou, PSA), 5 - electric-powered and hybrid vehicles: the electrical car in tomorrows' city (M. Parent, INRIA), the market of electric-powered vehicles in France and Europe (M. Valet, PSA). (J.S.)

  14. Power supply system for COMPASS tokamak re-installed at the IPP, Prague

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Pánek, Radomír; Žáček, František; Vlček, Jiří; Hron, Martin; Křivská, Alena; Hauptmann, R.; Daněk, M.; Šimek, J.; Prosek, J.

    2009-01-01

    Roč. 84, 7-11 (2009), s. 2020-2024 ISSN 0920-3796. [Symposium on Fusion Technology /25th./. Rostock, 15.09.2008-19.09.2008] Institutional research plan: CEZ:AV0Z20430508 Keywords : Compass * Power supply system * Flywheel-generator * Plasma start-up Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.122, year: 2009 http://dx.doi.org/10.1016/j.fusengdes.2008.11.092

  15. Energizing the future: New battery technology a reality today

    Science.gov (United States)

    Chase, Henry; Bitterly, Jack; Federici, Al

    1997-04-01

    The U.S. Flywheel Systems' flywheel energy storage system could be the answer to a critical question: How do we replace conventional chemical batteries with a more-efficient system that lasts longer and is non-polluting? The new product, which has a virtually unlimited life expectancy, has a storage capacity four times greater per pound than conventional chemical batteries. USFS designed and built each component of the system—from the specially wound carbon fiber wheel, the magnetic bearing, the motor/generator, and the electronic control. The flywheel is designed to spin at speeds up to 100,000 rpm and deliver about 50 horsepower using a proprietary high-speed, high-power-density motor/generator that is the size of a typical coffee mug. Some of the important markets and applications for the flywheel storage system include electric vehicles, back-up power supply, peak power smoothing, satellite energy storage systems, and locomotive power.

  16. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    International Nuclear Information System (INIS)

    Zhang Wei-Ya; Li Yong-Li; Chang Xiao-Yong; Wang Nan

    2013-01-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments. (interdisciplinary physics and related areas of science and technology)

  17. Deformation and Life Analysis of Composite Flywheel Disk and Multi-disk Systems

    Science.gov (United States)

    Arnold, S. M.; Saleeb, A. F.; AlZoubi, N. R.

    2001-01-01

    In this study an attempt is made to put into perspective the problem of a rotating disk, be it a single disk or a number of concentric disks forming a unit. An analytical model capable of performing an elastic stress analysis for single/multiple, annular/solid, anisotropic/isotropic disk systems, subjected to both pressure surface tractions, body forces (in the form of temperature-changes and rotation fields) and interfacial misfits is derived and discussed. Results of an extensive parametric study are presented to clearly define the key design variables and their associated influence. In general the important parameters were identified as misfit, mean radius, thickness, material property and/or load gradation, and speed; all of which must be simultaneously optimized to achieve the "best" and most reliable design. Also, the important issue of defining proper performance/merit indices (based on the specific stored energy), in the presence of multiaxiality and material anisotropy is addressed. These merit indices are then utilized to discuss the difference between flywheels made from PMC and TMC materials with either an annular or solid geometry. Finally two major aspects of failure analysis, that is the static and cyclic limit (burst) speeds are addressed. In the case of static limit loads, upper, lower, and out-of-plane bounds for disks with constant thickness are presented for both the case of internal pressure loading (as one would see in a hydroburst test) and pure rotation (as in the case of a free spinning disk). The results (interaction diagrams) are displayed graphically in designer friendly format. For the case of fatigue, a representative fatigue/life master curve is illustrated in which the normalized limit speed versus number of applied cycles is given for a cladded TMC disk application.

  18. Storage the electric power: yes, it is indispensable and it is possible. Why, where, how; Stocker l'electricite: oui, c'est indispensable, et c'est possible. Pourquoi, ou, comment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document describes the main characteristics of various electric power storage methods and their application domains. The large-scale storages include the hydraulic systems, those using compressed air, the batteries or those implementing a thermal way. The small-scale storages are electrochemical as the accumulators, the super-capacitors, mechanical as the flywheel, magnetic or also by the hydrogen use. The first part presents the necessity of the electric power storage, the second part the places of these storage. The third part details the forms of storage. (A.L.B.)

  19. The BPX electrical power system

    International Nuclear Information System (INIS)

    Huttar, D.; Bronnev, G.; Fromm, N.

    1992-01-01

    This paper reports on the Burning Plasma Experiment (BPX) which when operating at a toroidal field of 8.1 tesla and a plasma current of 10.6 megamps, requires peak power of 1235 megawatts and total pulse energy of over 21 gigajoules. These requirements are twice and over four times the corresponding figures for the Tokamak Fusion Test Reactor (TFTR), respectively. The design of the BPX power system has evolved, along with the tokamak, over a period of several years and has included studies of several alternative approaches. The reapplication of the existing TFTR power and energy facilities has been basic to all approaches. Among the new sources of pulse power and energy that have been considered are: direct utility grid pulsing, new flywheel units, and lead-acid storage batteries. The toroidal field power requirements are the greatest of the BPX subsystems and, fortunately, are sufficiently free of dynamics to allow the consideration of all approaches. Additional design challenges were presented by the multiplicity of plasma control scenarios incorporated in the BPX physics planning and the power response demanded of the plasma position control system

  20. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  1. An overview of flywheel energy systems with HTS bearings

    Energy Technology Data Exchange (ETDEWEB)

    Wolsky, A.M. [Argonne National Laboratory, Argonne, IL (United States)]. E-mail: AWolsky@ANL.gov

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers' needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time. (author)

  2. Energy storage technology for electric and hybrid vehicles. Matching technology to design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, J. [Sycon Energikonsult AB, Malmoe (Sweden)

    1999-12-01

    A central issue when dealing with electrical vehicles has always been how to store energy in sufficient quantities. On April 27 through 28 1999 a workshop was held on this matter at University of California Davis (UC Davis). Organizer and host was Dr. Andrew Burke and the Institute of Transportation Studies (ITS) at UC Davis. The workshop included battery technology, ultra capacitors and fly wheels, but did not include fuel cell technology. In this paper the conference is reviewed with the emphasis on battery development. A section on ultra capacitors and flywheels is also included. The overall observation made at the conference is that most of the effort on energy storage in electric and hybrid vehicles are put into batteries. There is some development on ultra capacitors but almost none on flywheels. The battery also seems to be the choice of the car industry at this point, especially the pulse battery for engine dominant hybrid vehicles, like the Toyota Prius. The battery manufacturers seem to focus more on technology development than cost reduction at this point. An important technological issue as of now is to improve thermal management in order to increase life of the batteries. But when the technological goals are met focus must shift to cost minimization and marketing if the battery electric vehicle shall make a market break through.

  3. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  4. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks

    Directory of Open Access Journals (Sweden)

    de Hoyo Moisés

    2015-09-01

    Full Text Available This study aimed to analyze the effects of power training using traditional vertical resistance exercises versus direction specific horizontal inertial flywheel training on performance in common sport-related tasks. Twenty-three healthy and physically active males (age: 22.29 ± 2.45 years volunteered to participate in this study. Participants were allocated into either the traditional training (TT group where the half squat exercise on a smith machine was applied or the horizontal flywheel training (HFT group performing the front step exercise with an inertial flywheel. Training volume and intensity were matched between groups by repetitions (5-8 sets with 8 repetitions and relative intensity (the load that maximized power (Pmax over the period of six weeks. Speed (10 m and 20 m, countermovement jump height (CMJH, 20 m change of direction ability (COD and strength during a maximal voluntary isometric contraction (MVIC were assessed before and after the training program. The differences between groups and by time were assessed using a two-way analysis of variance with repeated measures, followed by paired t-tests. A significant group by time interaction (p=0.004 was found in the TT group demonstrating a significantly higher CMJH. Within-group analysis revealed statistically significant improvements in a 10 m sprint (TT: −0.17 0.27 s vs. HFT: −0.11 0.10 s, CMJH (TT: 4.92 2.58 cm vs. HFT: 1.55 2.44 cm and MVIC (TT: 62.87 79.71 N vs. HFT: 106.56 121.63 N in both groups (p < 0.05. However, significant differences only occurred in the 20 m sprint time in the TT group (−0.04 0.12 s; p = 0.04. In conclusion, the results suggest that TT at the maximal peak power load is more effective than HFT for counter movement jump height while both TT and HFT elicited significant improvements in 10 m sprint performance while only TT significantly improved 20 m sprint performance.

  5. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  6. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  7. Pervasive Electricity Distribution System

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Tahir

    2017-06-01

    Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.

  8. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  9. Composites in energy generation and storage systems - An overview

    Science.gov (United States)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  10. Remote impact of rotating objects on semiconductor detector of gamma radiation

    International Nuclear Information System (INIS)

    Mel'nik, I.A.

    2005-01-01

    Remote impact of rotating objects (such as electric motors, flywheels) on meter and ionizing radiation detector readings were studied. A model, explaining diminution of readings of scintillation and gas-discharge intensimeters at switched on hygroscopic electric motor and at mechanically rotating flywheel, is proposed

  11. Electrical system architecture

    Science.gov (United States)

    Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Akasam, Sivaprasad [Peoria, IL; Hoff, Brian D [East Peoria, IL

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  12. Electric distribution systems

    CERN Document Server

    Sallam, A A

    2010-01-01

    "Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--

  13. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  14. Reactor coolant pump type RUV for Westinghouse Electric Company LLC reactor AP1000 TM

    International Nuclear Information System (INIS)

    Baumgarten, S.; Brecht, B.; Bruhns, U.; Fehring, P.

    2010-01-01

    The RUV is a reactor coolant pump, specially designed for the Westinghouse Electric Company LLC AP1000 TM reactor. It is a hermetically sealed, wet winding motor pump. The RUV is a very compact, vertical pump/motor unit, designed to fit into the compartment next to the reactor pressure vessel. Each of the two steam generators has two pump casings welded to the channel head by the suction nozzle. The pump/motor unit consists of a pump part, where a semi-axial impeller/diffuser combination is mounted in a one-piece pump casing. Computational Fluid Dynamics methods combined with various hydraulic tests in a 1:2 scale hydraulic test assure full compliance with the specific customer requirements. A short and rigid shaft, supported by a radial bearing, connects the impeller with the high inertia flywheel. This flywheel consists of a one-piece forged stainless steel cylinder, with an option for several smaller heavy metal cylinders inside. The flywheel is located inside the thermal barrier, which forms part of the pressure boundary. A specific arrangement of cooling water circuits guarantees a homogeneous temperature distribution in and around the flywheel, minimizes the friction losses of the flywheel and protects the motor from hot coolant. The driving torque is transmitted by the motor shaft, which itself is supported by two radial bearings. A three-phase, high-voltage squirrel-cage induction motor generates the driving torque. Due to the wet winding concept it is possible to achieve positive effects regarding motor lifetime. The cooling water is forced through the stator windings and the gap between rotor and stator by an auxiliary impeller. Furthermore, this wet winding motor concept has higher efficiency as compared to a canned motor since there are no eddy current losses. As part of the design process and in addition to the hydraulic scale model, a complete half scale model pump was built. It was used to verify the calculations performed like coast

  15. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  16. Hawaii Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva Monroy, Cesar Augusto [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  17. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  18. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  19. Hawaii electric system reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  20. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  1. The New Structure Design and Analysis of Energy Storage of Flywheel of Split Rotor

    OpenAIRE

    Peng Xu; Wei Wang; Jin Yan; Shaoyang Han

    2015-01-01

    The braking of the rail transit train consumes a great quantity of energy, and the thermal energy produced in the process of braking can affect the normal operation of the transit train. Thus recycling the braking energy becomes a research hotspot of urban rail train. This paper made an overall analysis of regenerative braking process, the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This pa...

  2. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  3. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  4. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  5. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  6. Continuously rotating cat scanning apparatus and method

    International Nuclear Information System (INIS)

    Bax, R.F.

    1980-01-01

    A tomographic scanner with a continuously rotating source of radiation is energized by converting inertial mechanical energy to electrical energy. The mechanical-to-electrical conversion apparatus is mounted with the x-ray source to be energized on a rotating flywheel. The inertial mechanical energy stored in the rotating conversion apparatus, flywheel and x-ray source is utilized for generating electrical energy used, in turn, to energize the x-ray source

  7. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  8. Ten questions to Jean Dhers on the storage of electric energy

    International Nuclear Information System (INIS)

    2006-01-01

    The authors proposes a comprehensive set of technical and economical data and information on electricity storage: the reasons to store energy (autonomous, stationary and network applications), the different types and advantages of energy storages with reversible power, the means to massively store electricity to exploit in on the network (description, uses and comparison of pumping energy transfer station, energy storage under the form of compressed air), the inertial storage (storage of kinetic energy accumulated in a flywheel, and its applications), the importance of storage with electrochemical batteries (reversible storage, evolution of batteries in ground transports, main economic sectors for batteries), fuel cells, the role of energy storage by power capacitors, the perspectives of super capacitors in a near future (comparison of their performance with those of batteries, possible applications), the use of electromagnetic storage of electricity (description, advantages, drawbacks and applications of superconducting magnet energy storage or SMES), and how the research on electric power storage is organised

  9. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  10. Electrical distribution system management

    International Nuclear Information System (INIS)

    Hajos, L.; Mortarulo, M.; Chang, K.; Sparks, T.

    1990-01-01

    This paper reports that maintenance of electrical system data is essential to the operation, maintenance, and modification of a nuclear station. Load and equipment changes affect equipment sizing, available short-circuit currents and protection coordination. System parameters must be maintained in a controlled manner to enable evaluation of proposed modifications and provide adequate verification and traceability. For this purpose, Public Service Electric and Gas Company has implemented a Verified and Validated Electric Distribution System Management (EDSM) program at the Hope Creek and Salem Nuclear Power Stations. EDSM program integrates computerized configuration management of electrical systems with calculational software the Technical Standard procedures. The software platform is PC-based. The Database Manager and Calculational programs have been linked together through a user friendly menu system. The database management nodule enable s assembly and maintenance of databases for individual loads, buses, and branches within the electrical systems with system access and approval controlled through electronic security incorporated within the database manger. Reports drawn from the database serve as the as-built and/or as-designed record of the system configurations. This module also creates input data files of network parameters in a format readable by the calculational modules. Calculations modules provide load flow, voltage drop, motor starting, and short-circuit analyses, as well as dynamic analyses of bus transfers

  11. Integrated Power and Attitude Control System (IPACS) technology developments

    Science.gov (United States)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  12. Electromechanical Storage Systems for Application to Isolated Wind Energy Plants

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and energy storage capacity, while decreasing overall system size, weight and cost. These improvements have brought flywheels to the forefront in the quest for alternate systems. The result of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs

  13. Thermo-electrical systems for the generation of electricity

    International Nuclear Information System (INIS)

    Bitschi, A.; Froehlich, K.

    2010-01-01

    This article takes a look at theoretical models concerning thermo-electrical systems for the generation of electricity and demonstrations of technology actually realised. The potentials available and developments are discussed. The efficient use of energy along the whole generation and supply chain, as well as the use of renewable energy sources are considered as being two decisive factors in the attainment of a sustainable energy supply system. The large amount of unused waste heat available today in energy generation, industrial processes, transport systems and public buildings is commented on. Thermo-electric conversion systems are discussed and work being done on the subject at the Swiss Federal Institute of Technology in Zurich is discussed. The findings are discussed and results are presented in graphical form

  14. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  15. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  16. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  17. The electricity certificate system, 2008

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The electricity certificate system is now in its sixth year. Since the start, both the system and the market have developed, and have undergone a number of changes. In January 2007, the Swedish Energy Agency published a report on the system, 'The electricity certificate system, 2006', to provide easily accessible information on the development of the system and to improve general understanding of it. With the passing of another year, it is now time for the third edition, 'The electricity certificate system, 2008', describing the market status of the electricity certificate system, with statistics from 2003 to 2007. This year's special theme chapter describes current support systems for renewable electricity production throughout the EU. The report also contains expanded information and statistics on biofuels, together with a new chapter that describes planned expansion of renewable electricity production up to 2012. The chapter on consumers' contribution to renewable electricity production has also been updated. A new feature this year is provided in the form of a number of tables at the end of the report, complementing the text. Through annual publication of the report, we hope to create a means of continuously developing the statistical material and analyses, in order to assist those involved in the market, and all other interested persons, to follow achievement of the objectives set out in the Government's Bill No. 205/06:154, 'Renewable electricity with green certificates'. We welcome views on the content and presentation of the report in order further to improve it. The target for the certificate system is to increase, by 2016, the annual production of electricity from renewable sources by 17 TWh relative to its production in 2002. So far, the actual production of renewable electricity is less than the indicative stage target for 2007. Nevertheless, progress is regarded as good, as there are many planned projects

  18. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; Fernandez-Gonzalo, Sol; Turon, Marc; Prieto, Cristina; Tesch, Per A; García-Carreira, Maria del Carmen

    2016-04-06

    Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. Clinical Trials NCT02120846.

  19. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  20. Effects of Material Properties on the Total Stored Energy of a Hybrid Flywheel Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Ha, S.K.; Yoon, Y.B. [Hanyang University, Seoul (Korea); Han, S.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-05-01

    A numerical method based on an assumption of a generalized plane strain (GPS) state is presented for calculating the stress and strength ratio distributions of the rotating composite flywheel rotor of varying material properties in the radial direction. The rotor is divided into many rings and each ring has constant material properties. All the rings are assumed to expand and have the same axial strain. A three-dimensional finite element method is then used to verify the accuracy of the present method for various height ratios and ply angles. This method gives a better solution for most of the rotors than other methods of a plane stress or plane strain state. After verification, the effects of material properties on the total stored energy (TSE) of the composite flywheel rotor are investigated. For this purpose, the material properties of the rotor, i.e., circumferential and radial Youngs moduli, ply angles and mass densities, are expressed by power functions of the radius and the rotor is analyzed. The analysis shows that TSE can be most effectively increased by changing the circumferential Youngs moduli along the radius, which amounts to over 300% of TSE of the constant material properties. The variation of ply angles along the radius can increase TSE by about 30% at most. The method of changing the mass densities along the radius could be also effective but its effects are not so noticeable in the rotor where the circumferential stiffness is properly arranged. (author). 24 refs., 7 figs.

  1. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Tang Jiqiang; Fang Jiancheng; Ge, Shuzhi Sam

    2012-01-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  2. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  3. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  4. Applying reliability analysis to design electric power systems for More-electric aircraft

    Science.gov (United States)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  5. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2010-11-26

    ... Bulk-Power System. See Rules Concerning Certification of the Electric Reliability Organization; and... Bulk-Power System in North America because it protects the reliability of the bulk electric system and... Electric Reliability Organization Definition of Bulk Electric System; Final Rule #0;#0;Federal Register...

  6. observer-based diagnostics and monitoring of vibrations in nuclear reactor core cooling system

    International Nuclear Information System (INIS)

    Siry, S.A K.

    2007-01-01

    analysis and diagnostics of vibration in industrial systems play a significant rule to prevent severe severe damages . drive shaft vibration is a complicated phenomenon composed of two independent forms of vibrations, translational and torsional. translational vibration measurements in case of the reactor core cooling system are introduced. the system under study consists of the three phase induction motor, flywheel, centrifugal pump, and two coupling between motor-flywheel, and flywheel-pump. this system structure is considered to be one where the blades are pegged into the discs fitting into the shafts. a non-linear model to simulate vibration in the reactor core cooling system will be introduced. simulation results of an operating reactor core cooling system using the actual parameters will be presented to validate the accuracy and reliability of the proposed analytical method the accuracy in analyzing the results depends on the system model. the shortcomings of the conventional model will be avoided through the use of that accurate nonlinear model which improve the simulation of the reactor core cooling system

  7. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  8. A strategic review of electricity systems models

    International Nuclear Information System (INIS)

    Foley, A.M.; O Gallachoir, B.P.; McKeogh, E.J.; Hur, J.; Baldick, R.

    2010-01-01

    Electricity systems models are software tools used to manage electricity demand and the electricity systems, to trade electricity and for generation expansion planning purposes. Various portfolios and scenarios are modelled in order to compare the effects of decision making in policy and on business development plans in electricity systems so as to best advise governments and industry on the least cost economic and environmental approach to electricity supply, while maintaining a secure supply of sufficient quality electricity. The modelling techniques developed to study vertically integrated state monopolies are now applied in liberalised markets where the issues and constraints are more complex. This paper reviews the changing role of electricity systems modelling in a strategic manner, focussing on the modelling response to key developments, the move away from monopoly towards liberalised market regimes and the increasing complexity brought about by policy targets for renewable energy and emissions. The paper provides an overview of electricity systems modelling techniques, discusses a number of key proprietary electricity systems models used in the USA and Europe and provides an information resource to the electricity analyst not currently readily available in the literature on the choice of model to investigate different aspects of the electricity system. (author)

  9. Underwater electric field detection system based on weakly electric fish

    Science.gov (United States)

    Xue, Wei; Wang, Tianyu; Wang, Qi

    2018-04-01

    Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.

  10. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  11. Development of AC-DC power system simulator

    International Nuclear Information System (INIS)

    Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio

    1984-01-01

    A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)

  12. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  13. Inspection of the Sizewll 'B' reactor coolant pump flywheels

    International Nuclear Information System (INIS)

    McNulty, A.L.; Cheshire, A.

    1992-01-01

    The Sizewell ''B'' safety case has categorised some primary circuit items as components for which failure is considered to be incredible. These Incredibility of Failure (IOF) components are particularly critical in their safety function, and specially stringent and all embracing provisions are made in their design, manufacture, inspection and operation. These provisions are such as to limit the probability of failure to levels which are so low that it does not have to be taken into account and no steps are necessary to control the consequences. The reactor coolant pump flywheel is considered to be an IOF component. Consequently there is a need for rigorous inspection during both manufacture and in service (ISI). The ISI requirement results in the need for an automated inspection. There is therefore a prerequisite to perform a Pre-Service Inspection (PSI) for baseline fingerprinting purposes. Furthermore there is a requirement that the inspection procedure, the inspection equipment and the operators are validated at the Inspection Validation Centre (IVC) of the AEA Technology laboratories at Risley. Development work is described. (author)

  14. The electricity certificate system, 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The electricity certificate system is a market based support system to assist the expansion of electricity production in Sweden from renewable energy sources and peat. Its objective is to increase the production of electricity from such sources by 17 TWh by 2016 relative to the production level in 2002. It is part of the country's overall objective of moving Sweden towards a more ecologically sustainable energy system. This report describes the market status of the electricity certificate system, and includes statistics from 2003 to 2006. It is our aim to create a forum for continuously developing the statistical material and analyses, in order to assist those involved in the market, and all other interested persons, to follow achievement of the objectives set out in the Government's Bill No. 2005/06:154, Renewable Electricity with Green Certificates. It is also our aim that, in future, each issue of the report should include a more in depth theme article on some particular subject. This year the report provides expanded information and statistics on wind power. Electricity certificates are issued to those who produce electricity from various renewable energy sources, and from peat, and who have had their production plants approved by the Swedish Energy Agency. To date, certificates have been issued to producers of electricity from biofuels and peat, wind power, hydro power and solar energy. Production from the renewable sources amounted to 11.6 TWh in 2006, which is 5.1 TWh more than corresponding production in 2002

  15. Increased fuel economy in transportation systems by use of energy management. Third year's program. Final report, May 1, 1976--July 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beachley, N.H.; Frank, A.A.

    1976-07-01

    A report is given of the results accomplished during the third year of a three-year research program, the overall goal of which has been to conceive and evaluate practical ways to increase automobile fuel economy by energy management within the engine-transmission-vehicle system. The third year was devoted primarily to the detailed design, construction, and preliminary evaluation of a Flywheel Energy Management Powerplant (FEMP) installed in a Pinto. The vehicle has been built to experimentally verify performance simulations and to allow the practical aspects of a real flywheel vehicle to be studied. The FEMP consists basically of an internal combustion engine, a high-speed energy-storage flywheel, and a hydrostatic power-split continuously-variable transmission (CVT) system. The flywheel drives the car, and the engine comes on to ''recharge'' it (with efficient wide-open throttle operation) only when the flywheel speed drops below a predetermined value. The concept also permits effective and efficient regenerative braking. Computer simulations have indicated an improvement in city fuel mileage of about 50%, with improvements of 100% appearing feasible with further research. Preliminary testing of the car shows favorable performance.

  16. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  17. Energy storage for load leveling; Fuka heijunka ni kakasenai denryoku chozo

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, S. [Tokyo Electric Power Co. Inc., Tokyo (Japan)

    1996-09-20

    This paper introduces features and state of development of electric power storage technologies. Pumped storage power generation is a technology to store electric power by utilizing energy of position. However, because the plant locations are limited to mountainous areas far away from power demand areas, development of power storage technologies is being progressed from a new viewpoint of installing plants in the vicinity of demand areas. Superconduction power storage continues flowing current into a superconductor coil to store the power as electromagnetic energy, which is drawn out as electric power on request. Research and development is in progress in Japan on superconductor coils, permanent current switches, and control and protection systems. A flywheel system stores energy by rotating a disk at high speeds. Element technologies are being developed on long-period storage technologies such as superconductor magnetic bearings and high-speed rotating flywheels. For new load leveling batteries, development efforts are being given on sodium-sulfur batteries, zinc-bromine batteries, redox flow batteries, and lithium batteries. 3 refs., 1 fig., 2 tabs.

  18. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  19. 76 FR 16263 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2011-03-23

    ...; Order No. 743-A] Revision to Electric Reliability Organization Definition of Bulk Electric System AGENCY... certain provisions of the Final Rule. Order No. 743 directed the Electric Reliability Organization (ERO) to revise the definition of the term ``bulk electric system'' through the ERO's Reliability Standards...

  20. Expansion planning for electrical generating systems

    International Nuclear Information System (INIS)

    1984-01-01

    The guidebook outlines the general principles of electric power system planning in the context of energy and economic planning in general. It describes the complexities of electric system expansion planning that are due to the time dependence of the problem and the interrelation between the main components of the electric system (generation, transmission and distribution). Load forecasting methods are discussed and the principal models currently used for electric system expansion planning presented. Technical and economic information on power plants is given. Constraints imposed on power system planning by plant characteristics (particularly nuclear power plants) are discussed, as well as factors such as transmission system development, environmental considerations, availability of manpower and financial resources that may affect the proposed plan. A bibliography supplements the references that appear in each chapter, and a comprehensive glossary defines terms used in the guidebook

  1. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  2. Research Study Towards a MEFFV Electric Armament System

    National Research Council Canada - National Science Library

    Pappas, J

    2004-01-01

    .... One vehicle variant seeks to exploit synergies between electric mobility and electric armament systems by employing a hybrid electric mobility propulsion system and an electric gun for an all Electric MEFFV...

  3. Restructured electric power systems analysis of electricity markets with equilibrium models

    CERN Document Server

    2010-01-01

    Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets.

  4. Home electrical system safety in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Auditor,

    1990-06-01

    Italy, amongst the industrialized countries, has the highest mortality rate due to accidents associated with the improper use or maintenance of home electrical systems. The increasing use of domestic electrical appliances has raised the risk of accidents, especially in homes equipped with out-dated, low-capacity electrical plants and worn wiring. Within this context, this paper reports on the results of survey to establish the worthiness and type of electrical systems in use in a sample of 1,000 residential buildings. The paper then assesses the efficacy of recent normatives designed to increase the safety and efficiency of home electrical installations.

  5. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro

    2014-01-01

    and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric......A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...

  6. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  7. Batteries in network-independent electric power supply plants. Demands on batteries, storage concepts, lead batteries, load condition, operation management; Batterien in netzfernen Stromversorgungsanlagen. Anforderungen an Batterien, Speicherkonzepte, Bleibatterien, Ladezustand, Betriebsfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, R.; Sauer, D.U. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg (Germany)

    2005-07-01

    In principal there are the storage possibilities, which mainly distinguish themselves by the type of energy for storage:1) electric storage; a) supra-conducting ring storage, b) condensers; 2) mechanical storage; a) water high storage, b) flywheels, c) (cavern-) pressurized air storage; 3) electro-chemical storage; a) gas storage systems (with electrolysis or fuel cell unit), b) accumulators with external storage (e.g. FeCR-Redox system), c) accumulators with internal storage (e.g.) Pb/PbO{sub 2}, NiCd). A few electro-chemical storage systems only are economically and technically feasible today. This contribution focuses on these systems, in particular on lead-acid accumulators. An overview of terms, which are often used related to battery storage, can be found at the end. A detailed bibliography is supposed to give the reader specific answers to various questions. (orig.)

  8. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  9. 33 CFR 127.107 - Electrical power systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of one...

  10. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  11. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  12. Multicriteria analysis of the hybrid systems with biogas: fuzzy set and rules; Analise multicriterio de sistemas hibridos com biogas: conjuntos e regras fuzzy

    Energy Technology Data Exchange (ETDEWEB)

    Barin, A.; Canha, L.; Abaide, A.; Magnago, K. [Federal University of Santa Maria (UFSM), RS (Brazil)], E-mail: chbarin@gmail.com; Machado, R. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], E-mail: rquadros@sel.eesc.usp.br

    2009-07-01

    A multicriteria analysis to manage de renewable sources of energy is presented, identifying the most appropriate hybrid system to be used as distributed generation of electric energy using biogas. In this methodology, fuzzy sets and rules are defined simulated in the software MATLAB, where the main characteristics of the operation and application of hybrid systems of electric power generation are considered. The main generation system, that can use the biogas, as micro turbines and fuel cells, are evaluated. Afterwards, the systems of energy storage are analyzed: flywheel, H{sub 2} storage and conventional and redox batteries. For the development of the proposed methodology, it was considered the following criteria: efficiency, costs, technological maturity, environmental impacts, the amplitude of the system action (power range), useful life, co-generation possibility and operation temperature. A classification, by priority order, for the use of the sources and storages associated to the environment and cost scenarios is also presented.

  13. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  14. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  15. Pragmatic electrical engineering systems and instruments

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Systems and Instruments is about some of the non-energy parts of electrical systems, the parts that control things and measure physical parameters. The primary topics are control systems and their characterization, instrumentation, signals, and electromagnetic compatibility. This text features a large number of completely worked examples to aid the reader in understanding how the various principles fit together.While electric engineers may find this material useful as a review, engineers in other fields can use this short lecture text as a modest introduction

  16. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  17. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  18. Anàlisi experimental de la problemàtica de càrrega-descàrrega de ACEE aplicables en transports

    OpenAIRE

    Garrigosa i Garcia, Ramón

    2017-01-01

    lt's a well-known fact that the flywheel stores energy inside, and this energy is proportional to the rotational speed and the moment of inertia. lf the moment of inertia increases, the energy increases in the same proportion to it. But if the rotational speed increases, the energy increases in the quadratic portian. Then, the faster the rotation, the greater the energy storage becomes. lf it engages an electric machine with a flywheel, this is Kinetic storage. The electric machine will be...

  19. Electrical railway transportation systems

    CERN Document Server

    Brenna, Morris; Zaninelli, Dario

    2018-01-01

    Allows the reader to deepen their understanding of various technologies for both fixed power supply installations of railway systems and for railway rolling stock. This book explores the electric railway systems that play a crucial role in the mitigation of congestion and pollution caused by road traffic. It is divided into two parts: the first covering fixed power supply systems, and the second concerning the systems for railway rolling stock. In particular, after a historical introduction to the framework of technological solutions in current use, the authors investigate electrification systems for the power supply of rail vehicles, trams, and subways. Electrical Railway Transportation Systems explores the direct current systems used throughout the world for urban and suburban transport, which are also used in various countries for regional transport. It provides a study of alternating current systems, whether for power supply frequency or for special railway frequency, that are used around the world for ...

  20. 77 FR 39858 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2012-07-05

    ... bulk electric system reliability through steady state power flow, and contain a transient stability... Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System... definition of ``bulk electric system'' developed by the North American Electric Reliability Corporation (NERC...

  1. Electric field prediction for a human body-electric machine system.

    Science.gov (United States)

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  2. Power supply for magnetic coils in thermonuclear devices

    International Nuclear Information System (INIS)

    Shimada, Ryuichi; Tamura, Sanae; Kishimoto, Hiroshi.

    1981-01-01

    Purpose: To decrease the load fluctuations in an external power supply, as well as to increase the operation efficiency capacity of thermonuclear devices. Constitution: Electrical power with the same frequency as that of a dynamo generator is supplied by a power supply-driving power source including a frequency converter and the like to DC converters for driving plasma-exciting and -controlling coils. At the same time, the electrical power from the frequency converter is supplied to the dynamo generator with flywheel to add accumulate energies to the EC converters. Accordingly, the energy for the great power pulses in a short time comprises the sum of the energy supplied from the dynamo generator with flywheel and the energy supplied continuously from the outside to eliminate the need of providing a stand-by period for the re-acceleration of the dynamo generator with flywheel even if the scale of the thermonuclear device is enlarged and energy consumed in one cycle is increased, whereby the decrease in the operation efficiency can be prevented and the capacity of the flywheel can be reduced. (Yoshino, Y.)

  3. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  4. Real-Time Energy Management Control for Hybrid Electric Powertrains

    Directory of Open Access Journals (Sweden)

    Mohamed Zaher

    2013-01-01

    Full Text Available This paper focuses on embedded control of a hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real-time energy management strategy. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in the opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, the motion is driven by gravitational force, or load driven. There are three main concepts for energy storing devices in hybrid vehicles: electric, hydraulic, and mechanical (flywheel. The real-time control challenge is to balance the system power demands from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle. In the worst-case scenario, only the engine is used and the hybrid system is completely disabled. A rule-based control algorithm is developed and is tuned for different work cycles and could be linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the work machine and its position via GPS and maps both of them to the gains.

  5. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  6. Electric markets and services of the system

    International Nuclear Information System (INIS)

    Carbajo, A.

    2007-01-01

    Electricity cannot be stored in significant quantities and requires generation and demand be balanced instantly in order to control the frequency. This means that the electric system must be equipped with specific devices in order to ensure this dynamic balance. Of the services required by the electric system, some are mandatory for the generators, while others are voluntary, these last ones being those supplied under market schemes. On the other hand, the commitment of the Spanish electric system to incorporate a significant volume of renewable energy, due to its intermittent properties, demands that these adjustment services use a greater volume of this energy in order to ensure the reliability of the system at all times. Finally, securing the Iberian electric market implies that there might be variations in these services - not only in the volume but also in their characteristics. (Author)

  7. Electric cars as mobile power storage systems

    International Nuclear Information System (INIS)

    Herzog, B.

    2010-01-01

    This article discusses the use of electric cars as a means of optimising the use of renewable energy sources. Charging the cars' batteries during periods when cheap electricity prices prevail and then using excess capacity to supply the mains with electricity during periods of peak demand is discussed. The possible use of wind for power generation is discussed and a system proposed by a leading supplier of electrical apparatus and systems is examined. Two examples of electric cars and associated power chains are looked at and tests in everyday practice are described

  8. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  9. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  10. Electric Bike Sharing--System Requirements and Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Christopher; Worley, Stacy; Jordan, David

    2010-08-01

    Bike sharing is an exciting new model of public-private transportation provision that has quickly emerged in the past five years. Technological advances have overcome hurdles of early systems and cities throughout the globe are adopting this model of transportation service. Electric bikes have simultaneously gained popularity in many regions of the world and some have suggested that shared electric bikes could provide an even higher level of service compared to existing systems. There are several challenges that are unique to shared electric bikes: electric-assisted range, recharging protocol, and bike and battery checkout procedures. This paper outlines system requirements to successfully develop and deploy an electric bike sharing system, focusing on system architecture, operational concepts, and battery management. Although there is little empirical evidence, electric bike sharing could be feasible, depending on demand and battery management, and can potentially improve the utility of existing bike sharing systems. Under most documented bike sharing use scenarios, electric bike battery capacity is insufficient for a full day of operation, depending on recharging protocol. Off-board battery management is a promising solution to address this problem. Off-board battery management can also support solar recharging. Future pilot tests will be important and allow empirical evaluation of electric bikesharing system performance. (auth)

  11. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  12. Electrochemical Storage Systems for Application to Isolated Wind Energy Plants; Sistemas Electromecanicos de Acumulacion de Energia para Aplicacion en Plantas Eolicas Aislados

    Energy Technology Data Exchange (ETDEWEB)

    Avia Aranda, F.; Cruz Cruz, I. [CIEMAT. Madrid (Spain)

    1999-03-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and storage capacity, while decreasing overall system size, weight and cost. These improvement have brought flywheels to the forefront in the quest for alternate systems. The results of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs.

  13. The Brazilian electrical system reform

    International Nuclear Information System (INIS)

    Mendonca, A.F.; Dahl, C.

    1999-01-01

    Although the Brazilian electrical system has been a public monopoly, the threat of electricity shortages from a lack of investment triggered a comprehensive reform. In 1993 the government began a series of laws, decrees and regulations reforming the tariff policy, allowing privatization of utilities, foreign investments and independent power producers, and creating an independent transmission grid and a new electricity regulatory agency (ANEEL). The new regulatory framework is not completely defined but the proposed model intends to transform bulk electricity supply into a competitive market similar to that adopted in England. Our objective is to evaluate whether the proposed reform will succeed in attracting the required private capital, will allow an unregulated wholesale electricity market and will require a strict regulatory framework. The reform has been quite successful in privatizing the distribution companies but is allowing monopolistic rents, and has failed until now to attract private investments to expand generation capacity. The risk of blackouts has increased, and the proposed wholesale electricity market may not be appropriate because of barriers to constructing new hydroelectric units, now 90% of the system. Therefore, a new regulatory framework and a strong regulatory agency with a well-defined tariff policy should have preceded the privatization. (author)

  14. Life Cycle Assessment of Electricity Systems

    DEFF Research Database (Denmark)

    Turconi, Roberto

    and discussed. For example, electricity used during the manufacturing of the power plant, reference year and data collection approach (process-chain or input-output analysis) strongly affected the impacts of hydro, wind and solar power. This information needs to be documented, to ensure comparability between......), as the efficiency may vary depending on the operation of the plant within the power system. The choice of LCA approach used to solve multi-functionality for combined heat and power plants strongly influenced how the environmental impact of electricity produced at such plants was estimated. When it is not possible...... on aggregated modelling. The results showed that an increase in wind power causes greater emissions from other power plants in the electricity system (which need to ‘cycle’ – adjust their production – more frequently); however, considering the entire electricity system, increasing wind power penetration reduces...

  15. Electricity tariff systems for informatics system design regarding consumption optimization in smart grids

    Directory of Open Access Journals (Sweden)

    Simona Vasilica OPREA

    2016-01-01

    Full Text Available High volume of data is gathered via sensors and recorded by smart meters. These data are processed at the electricity consumer and grid operators' side by big data analytics. Electricity consumption optimization offers multiple advantages for both consumers and grid operators. At the electricity customer level, by optimizing electricity consumption savings are significant, but the main benefits will come from indirect aspects such as avoiding onerous grid investments, higher volume of renewable energy sources' integration, less polluted environment etc. In order to optimize electricity consumption, advanced tariff systems are essential due to the financial incentive they provide for electricity consumers' behaviour change. In this paper several advanced tariff systems are described in details. These systems are applied in England, Spain, Italy, France, Norway and Germany. These systems are compared from characteristics, advantages/disadvantages point of view. Then, different tariff systems applied in Romania are presented. Romanian tariff systems have been designed for various electricity consumers' types. Different tariff systems applied by grid operators or electricity suppliers will be included in the database model that is part of an informatics system for electricity consumption optimization.

  16. NSTX Electrical Power Systems

    International Nuclear Information System (INIS)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems

  17. Quality electricity lines of external power systems electric traction DC

    Directory of Open Access Journals (Sweden)

    A.V. Petrov

    2012-08-01

    Full Text Available The results of studies that compare and analyze the numerical values of some key indicators quality electricity in the lines of the external power supply system the electric traction DC. As a supplement are additional and fundamental values of energy losses in them.

  18. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    International Nuclear Information System (INIS)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-01-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: ► Control methods of rotor driven by AHMBs and their characteristics are researched. ► Optimized stator and rotor of AHMB reduce its eddy losses greatly. ► Presented the factors affecting the eddy losses of AHMBs. ► The good performances of AHMB with low eddy loss are proved by experiments.

  19. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  20. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  1. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  2. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  3. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  4. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  5. Economic market design and planning for electric power systems

    CERN Document Server

    Mili, Lamine

    2010-01-01

    Discover cutting-edge developments in electric power systems. Stemming from cutting-edge research and education activities in the field of electric power systems, this book brings together the knowledge of a panel of experts in economics, the social sciences, and electric power systems. In ten concise and comprehensible chapters, the book provides unprecedented coverage of the operation, control, planning, and design of electric power systems. It also discusses:. A framework for interdisciplinary research and education;. Modeling electricity markets;. Alternative economic criteria and proactiv.

  6. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  7. Electrical system design status of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Taek; Mun, Kyeong Jun; Kim, Jun Yeon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Proton Engineering Frontier Project (PEFP) has been developing a 100 MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center in Gyeongju. In site, we installed GIS (Gas Insulated Switchgear) to receive 154kV electric power and 154kV/3.3kV transformer. For the energy saving scheme, we are now installing solar power system, automatic lighting control system and maximum control power system of PEFP. In this paper, we described electrical power system of PEFP.

  8. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  9. Apollo Lunar Module Electrical Power System Overview

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.

  10. Experimental time to burnout of a prototypical ITER divertor plate during a simulated loss of flow accident

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Nuclear Engineering; Watson, R.D.; McDonald, J.M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  11. Experimental time to burnout of a prototypical ITER divertor plate during a simulated loss of flow accident

    International Nuclear Information System (INIS)

    Marshall, T.D.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components

  12. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  13. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  14. Noether symmetries of discrete mechanico–electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Xie Fengping; Chen Benyong

    2008-01-01

    This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electrical systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange–Maxwell equations, the discrete analogue of Noether theorems for Lagrange–Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results. (general)

  15. Calculation of residual electricity mixes when accounting for the EECS (European Electricity Certificate System) - The need for a harmonised system

    International Nuclear Information System (INIS)

    Raadal, H. L.; Nyland, C. A.; Hanssen, O. J.

    2009-01-01

    According to the Electricity Directive, suppliers of electricity must disclose their electricity portfolio with regards to energy source and environmental impact. This paper gives some examples of disclosure systems and residual electricity mixes in Norway, Sweden and Finland, compared to an approach based on a common regional disclosure. Disclosures based on the E-TRACK standard are presented, as well as the variation in CO 2 emissions from different residual mixes. The results from this study clearly show that there is a need for a harmonised, transparent and reliable system for the accounting of electricity disclosure in Europe. (author)

  16. Chaos in electric drive systems analysis control and application

    CERN Document Server

    Chau, K T

    2011-01-01

    In Chaos in Electric Drive Systems: Analysis, Control and Application authors Chau and Wang systematically introduce an emerging technology of electrical engineering that bridges abstract chaos theory and practical electric drives. The authors consolidate all important information in this interdisciplinary technology, including the fundamental concepts, mathematical modeling, theoretical analysis, computer simulation, and hardware implementation. The book provides comprehensive coverage of chaos in electric drive systems with three main parts: analysis, control and application. Corresponding drive systems range from the simplest to the latest types: DC, induction, synchronous reluctance, switched reluctance, and permanent magnet brushless drives.The first book to comprehensively treat chaos in electric drive systemsReviews chaos in various electrical engineering technologies and drive systemsPresents innovative approaches to stabilize and stimulate chaos in typical drivesDiscusses practical application of cha...

  17. Energetic diversification in the interconnected electric system

    International Nuclear Information System (INIS)

    Villanueva M, C.; Beltran M, H.; Serrano G, J.A.

    2007-01-01

    In the interconnected electric system of Mexico the demanded electricity in different timetable periods it is synthesized in the annual curve of load duration, which is characterized by three regions. The energy in every period is quantified according to the under curve areas in each region, which depend of the number of hours in that the power demand exceeds the minimum and the intermediate demands respectively that are certain percentages of the yearly maximum demand. In that context, the generating power stations are dispatched according to the marginal costs of the produced electricity and the electric power to be generated every year by each type of central it is located in some of the regions of the curve of load duration, as they are their marginal costs and their operation characteristic techniques. By strategic reasons it is desirable to diversify the primary energy sources that are used in the national interconnected system to generate the electricity that demand the millions of consumers that there are in Mexico. On one hand, when intensifying the use of renewable sources and of nucleo electric centrals its decrease the import volumes of natural gas, which has very volatile prices and it is a fuel when burning in the power stations produces hothouse gases that are emitted to the atmosphere. On the other hand, when diversifying the installed capacity of the different central types in the interconnected system, a better adaptation of the produced electricity volumes is achieved by each type to the timetable variation, daily, weekly and seasonal of the electric demand, as one manifests this in the curve of load duration. To exemplify a possible diversification plan of the installed capacity in the national interconnected system that includes nucleo electric centrals and those that use renewable energy, charts are presented that project of 2005 at 2015 the capacity, energy and ost of the electricity of different central types, located in each one of the

  18. Increase in the number of distributed power generation installations in electricity distribution grids - Storage technologies; Zunahme der dezentralen Energieerzeugungsanlagen in elektrischen Verteilnetzen: Grundlagen der Speicher

    Energy Technology Data Exchange (ETDEWEB)

    Luechinger, P.

    2003-07-01

    This is the fifth part of a ten-part final report for the Swiss Federal Office of Energy (SFOE) on a project that looked into potential problems relating to the Swiss electricity distribution grid with respect to the increasing number of distributed power generation facilities being put into service. The identification of special conditions for the grid's operation and future development that take increasing decentralised power production into account are discussed. The results of the project activities encompass the analysis and evaluation of various problem areas associated with planning and management of the grid during normal operation and periods of malfunction, as well as required modifications to safety systems and grid configurations. This fourth appendix to the main report describes six ways of storing electricity, including accumulators, super caps, super-conducting magnetic and flywheel energy storage units. The accumulator technologies discussed include lead-acid, nickel-cadmium and sodium-sulphur batteries. Each of these types of power storage technologies is briefly described. The characteristics of these various types of storage are compared.

  19. 78 FR 29209 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2013-05-17

    ... Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System... local distribution'' as set forth in the Federal Power Act (FPA). \\1\\ Revisions to Electric Reliability... Reliability Organization Definition of Bulk Electric System, Order No. 743, 133 FERC ] 61,150, at P 16 (2010...

  20. 78 FR 803 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2013-01-04

    ... Bulk 74. Electric System 1. Inclusion I1 (Transformers) 75. Commission Determination 80. 2. Inclusion... configurations are included in the bulk electric system. Inclusions: I1--Transformers with the primary terminal... bulk electric system. 15. NERC explained that inclusion I1 includes transformers with the primary...

  1. Dust-Tolerant Intelligent Electrical Connection System

    Science.gov (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  2. Electric power system basics for the nonelectrical professional

    CERN Document Server

    Blume, Steven W

    2016-01-01

    The second edition of Steven W. Blume’s bestseller provides a comprehensive treatment of power technology for the non-electrical engineer working in the electric power industry. This book aims to give non-electrical professionals a fundamental understanding of large interconnected electrical power systems, better known as the “Power Grid”, with regard to terminology, electrical concepts, design considerations, construction practices, industry standards, control room operations for both normal and emergency conditions, maintenance, consumption, telecommunications and safety. The text begins with an overview of the terminology and basic electrical concepts commonly used in the industry then it examines the generation, transmission and distribution of power. Other topics discussed include energy management, conservation of electrical energy, consumption characteristics and regulatory aspects to help readers understand modern electric power systems.

  3. Opportunities for electricity storage in deregulating markets

    International Nuclear Information System (INIS)

    Graves, F.; Jenkin, T.; Murphy, D.

    1999-01-01

    This article addresses the value of electricity storage and its ability to take advantage of emerging energy arbitrage opportunities: buying power when it is inexpensive, and reselling it at a higher price. The focus of this article is on electricity markets and the opportunities they present for a merchant storage device, rather than on storage technologies themselves. There are a number of existing and emerging storage technologies: pumped hydro, various batteries, compressed air energy storage (CAES), superconducting magnetic energy storage (SMES), flywheels--even conventional hydro has storage-like properties. However, all these technologies operated on the same basic principle of exploiting short-term differentials in electricity prices: buy low, sell high (a strategy that is actually meaningful in electricity markets, unlike in financial markets). The object of this article is to develop and demonstrate a means for assessing the potential value of storage in different electricity markets, rather than to attempt to assess the prospects of a particular technology. The approach taken here is to look at price data from a number of actual electricity markets to determine what opportunities they might offer to a generic storage device. A storage technology is described here by its basic performance parameters--charge and generate capacity, energy inventory limits, and efficiency--which are sufficient to assess the basic economic potential of storage in a given market. The authors look primarily at US markets, but also compare and contrast findings with the situation in foreign markets in the U.K., Norway, Canada, and Australia, and discuss how market structure can influence the value of storage. Moreover, the authors use empirically observed relationships between hourly and 5 x 16 blocked prices to infer a rule for adjusting the value of storage assets in regions where only blocked price information is available

  4. Electrical swing adsorption gas storage and delivery system

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  5. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  6. Technical-economic analysis of electric energy storage systems

    International Nuclear Information System (INIS)

    Stefanescu, Florian; Curuia, Marian; Brad, Sebastian; Anghel, Mihai; Stefanescu, Ioan

    2009-01-01

    Fluctuations in electric energy consumption and changes that affected last years the electric energy market, as well, entail perturbations in transport and distribution systems due to outrunning of their current physical capacities. Consequently, storing the electric energy in buffer systems appears to be a must owing to its strategic and economical importance. Indeed, it can enhance firmly the capacity of fulfilling the electric energy demands in real time and so, avoiding the blackout events caused by disruptions in power supply . Also, of great importance is the role of energy storing systems as backing ancillaries for promoting variable or uncertain renewable sources (like photovoltaic or wind sources). The Superconducting Magnetic Energy Storage (SMES) is a promising system of direct storing of electricity by means of magnetic energy deposing in a short-circuited superconducting loop. However difficulties related to the use o superconducting systems and cryogenic temperatures (concerning construction and maintenance) hinder at present the application of SMES systems on a scale larger than some particular applications. Actually, owing to the lack of alternative solutions the rather high costs are accepted in such cases

  7. Modelling carbon emissions in electric systems

    International Nuclear Information System (INIS)

    Lau, E.T.; Yang, Q.; Forbes, A.B.; Wright, P.; Livina, V.N.

    2014-01-01

    Highlights: • We model carbon emissions in electric systems. • We estimate emissions in generated and consumed energy with UK carbon factors. • We model demand profiles with novel function based on hyperbolic tangents. • We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid. • We apply Ensemble Kalman Filter to forecast energy data in these case studies. - Abstract: We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies

  8. Aging evaluation of electrical circuits using the ECCAD [Electrical Circuit Characterization and Diagnostic] system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport Atomic Power Station Decommissioning Project. The objective of this work was to evaluate the effectiveness of the Electrical Circuit Characterization and Diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  9. Mechanical braking system for the pulsed power supply system of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Käsemann, C.-P.; Huart, M.; Stobbe, F.; Goldstein, I.; Sigalov, A.; Sachs, E.; Perk, E.

    2013-01-01

    Highlights: ► Compact and innovative solution for dumping of large kinetic energy. ► Small mass of energy converter at the shaft due to circulating storage medium. ► Design of the active parts ensures flat torque/power characteristics. ► Also suitable for spending a great part of operating life in “Freewheeling” mode. -- Abstract: A few years ago, IPP reviewed the safety of the ASDEX Upgrade pulsed power supply system. Two critical sub-systems had been identified: The (electrical) braking system for the flywheel generators and the oil lubrication system for the shaft bearings. A simultaneous failure of these two systems may lead to severe damages and could have consequences for the safety of operating personnel. Therefore a second, independent braking possibility for every generator was stipulated. Especially the challenges adapting a dynamometer, originally designed for motor test benches, towards a plant safety system for generator EZ4 will be described in the paper. Further on, the paper will present the problems, implementing such a system into an existing installation, including the calculation of the required supporting structure, balancing of the extended shaft line and required water cooling and control. Finally it will report on the performance achieved during operation

  10. Mechanical braking system for the pulsed power supply system of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Käsemann, C.-P., E-mail: c.p.kaesemann@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Huart, M. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Michel Huart Personal Coaching and Consulting, Georgenschwaigstraße 23 RG, 80807 München (Germany); Stobbe, F.; Goldstein, I.; Sigalov, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Sachs, E. [Siemens AG, Industrial Automation Systems, Gleiwitzer Straße 555, 90475 Nürnberg (Germany); Perk, E. [Piper Test and Measurement Ltd., The Barn, Bilsington, Ashford, Kent TN25 7JT, England (United Kingdom)

    2013-10-15

    Highlights: ► Compact and innovative solution for dumping of large kinetic energy. ► Small mass of energy converter at the shaft due to circulating storage medium. ► Design of the active parts ensures flat torque/power characteristics. ► Also suitable for spending a great part of operating life in “Freewheeling” mode. -- Abstract: A few years ago, IPP reviewed the safety of the ASDEX Upgrade pulsed power supply system. Two critical sub-systems had been identified: The (electrical) braking system for the flywheel generators and the oil lubrication system for the shaft bearings. A simultaneous failure of these two systems may lead to severe damages and could have consequences for the safety of operating personnel. Therefore a second, independent braking possibility for every generator was stipulated. Especially the challenges adapting a dynamometer, originally designed for motor test benches, towards a plant safety system for generator EZ4 will be described in the paper. Further on, the paper will present the problems, implementing such a system into an existing installation, including the calculation of the required supporting structure, balancing of the extended shaft line and required water cooling and control. Finally it will report on the performance achieved during operation.

  11. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  12. A complete electrical hazard classification system and its application

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of

  13. Green electricity: Tracking systems for environmental disclosure

    Energy Technology Data Exchange (ETDEWEB)

    Biewald, B.E.; Ramey, J.A. [Synapse Energy Economics, Inc., Cambridge, MA (United States)

    1997-12-31

    For the first time, electricity consumers in the US are beginning to choose their generation providers. One of the opportunities created by the introduction of retail choice in electricity is the chance for customers to influence the mix of generating resources through their purchasing decisions. Some environmentally aware consumers will want {open_quotes}clean,{close_quotes} {open_quotes}green,{close_quotes} or renewable power. While some suppliers will attempt to differentiate themselves according to their environmental performance, such claims for green electricity can be particularly difficult to verify given the complexity of the interconnected electric system. Because electricity is delivered over an integrated transmission grid and kilowatt-hours at the point of retail sale are indistinguishable from each other; disclosure requires tracking protocols to attribute generation at power plants to sales at the customers` meters. Fortunately, it is possible to implement a workable disclosure system. Some states have already included disclosure requirements in their electric industry restructuring orders and legislation. In this paper, a set of design criteria for an environmental disclosure system are presented along with two methods for disclosure: the company approach and the product approach. In addition, the authors discuss of power pools, data availability issues, and propose a company-based disclosure system using a {open_quotes}wholesale sales first{close_quotes} approach to transaction accounting.

  14. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation

    Directory of Open Access Journals (Sweden)

    Magdalena Szechyńska-Hebda

    2017-09-01

    Full Text Available Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA and the systemic acquired resistance (SAR. The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.

  15. On Noether symmetries and form invariance of mechanico-electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Chen Liqun

    2004-01-01

    This Letter focuses on form invariance and Noether symmetries of mechanico-electrical systems. Based on the invariance of Hamiltonian actions for mechanico-electrical systems under the infinitesimal transformation of the coordinates, the electric quantities and the time, the authors present the Noether symmetry transformation, the Noether quasi-symmetry transformation, the generalized Noether quasi-symmetry transformation and the general Killing equations of Lagrange mechanico-electrical systems and Lagrange-Maxwell mechanico-electrical systems. Using the invariance of the differential equations, satisfied by physical quantities, such as Lagrangian, non-potential general forces, under the infinitesimal transformation, the authors propose the definition and criterions of the form invariance for mechanico-electrical systems. The Letter also demonstrates connection between the Noether symmetries and the form invariance of mechanico-electrical systems. An example is designed to illustrate these results

  16. British and Italian electric power systems: Comparative study

    International Nuclear Information System (INIS)

    Lolli, A.

    1992-01-01

    This study compares the new electricity system in England, Wales and Scotland, after the 1989 Electricity Act, and the Italian electricity system (as modified by the January, 9, 1991, Law No. 9 and by the December 5, 1991, Decree No. 386 made law (No. 35) on January, 29, 1992). The study focuses on legal aspects and socio-economic factors influencing planning and organizing by the national electric power industries in their efforts to maintain supply and demand equilibrium

  17. 49 CFR 238.425 - Electrical system.

    Science.gov (United States)

    2010-10-01

    ... protected with a lightning arrestor, automatic circuit breaker, and overload relay. The lightning arrestor... the operating environment. (2) The electronic equipment shall not produce electrical noise that...) Electrical and electronic systems of equipment shall be capable of operation in the presence of external...

  18. Nuclear Energy and Renewables interaction: System Effects in Low-carbon Electricity Systems

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cometto, Marco

    2013-01-01

    This report presents a synthesis of the OECD/NEA study 'Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems'. It addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems

  19. A Measurement System of Electric Signals on Standing Trees

    Directory of Open Access Journals (Sweden)

    Hao TIAN

    2014-01-01

    Full Text Available The standing tree electric signal (STES, defined as the electric potential difference between standing trees and the surrounding soil, can be utilized to reflect the biological nature of the trees. This signal should be measured precisely because it can also be collected and used as the electric power energy. In this paper, the automatic measurement system of standing tree biological electric signal based on MSP430 MCU. First of all, the basic structure of the presented system is introduced and it includes three modules: amplification module of the standing tree electric signal, the acquisition and processing of the signal module and the serial communication module. Then, the performances of the built system are respectively validated by the Poplar, Planetree, and Platanus in Beijing Forestry University. The result indicated that the relative error of this system is less than 2 %. The presented system can be considered as the foundation of the subsequent study on the mechanism of the biological electric signal and the application of the biological electric energy on standing trees.

  20. System Architecture Design for Electric Vehicle (EV) Systems

    DEFF Research Database (Denmark)

    Xu, Zhao; Wu, Qiuwei; Nielsen, Arne Hejde

    2010-01-01

    The electric vehicle (EV) system should fulfill the energy needs of EVs to meet the EV users’ driving requirements and enable the system service from EVs to support the power system operation with high penetration of renewable energy resources (RES) by providing necessary infrastructures. In orde...

  1. Improving electrical equipment and control systems for shield integrated mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabinovich, Z.M.; Starikov, B.Ya.; Kibrik, I.S.

    1984-06-01

    The design and operation are discussed for electrical equipment and control systems for the 1AShchM, the ANShch and the 2ANShch shield integrated face systems consisting of shield supports, coal plow and chain conveyor. The shield system is used for mining inclined and steep coal seams endangered by coal dust explosions, methane or rock bursts. Control and electrical system for 3 types of shield face mining systems is similar. It cuts energy supply when methane content at working faces exceeds the maximum permissible level, controls haulage rate and cutting rate of a coal plow, controls operation of shield supports (using the Sirena system), controls dust suppression system and its water consumption. The system is also equipped with communications equipment. Tests of the control and electrical system for the integrated shield system carried out in the im. Gagarin mine in the Ukraine are described. The VAUS III control system developed by Dongiprouglemash was tested.

  2. HEMP emergency planning and operating procedures for electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Reddoch, T.W.; Markel, L.C. (Electrotek Concepts, Inc., Knoxville, TN (United States))

    1991-01-01

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  3. Calculation of Residual Electricity Mixes when Accounting for the EECS (European Electricity Certificate System — the Need for a Harmonised System

    Directory of Open Access Journals (Sweden)

    Ole Jørgen Hanssen

    2009-07-01

    Full Text Available According to the Electricity Directive, suppliers of electricity must disclose their electricity portfolio with regards to energy source and environmental impact. This paper gives some examples of disclosure systems and residual electricity mixes in Norway, Sweden and Finland, compared to an approach based on a common regional disclosure. Disclosures based on the E-TRACK standard are presented, as well as the variation in CO2 emissions from different residual mixes. The results from this study clearly show that there is a need for a harmonised, transparent and reliable system for the accounting of electricity disclosure in Europe.

  4. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  5. Manned spacecraft electrical power systems

    Science.gov (United States)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  6. Numerical simulation and analysis of single grain YBCO processed from graded precursor powders

    OpenAIRE

    Zou, J; Ainslie, Mark Douglas; Hu, D; Zhai, W; Kumar, N Devendra; Durrell, John Hay; Shi, Yunhua; Cardwell, David Anthony

    2015-01-01

    Large single-grain bulk high-temperature superconducting materials can trap high magnetic fields in comparison with conventional permanent magnets, making them ideal candidates to develop more compact and efficient devices, such as actuators, magnetic levitation systems, flywheel energy storage systems and electric machines. However, macro-segregation of Y-211 inclusions in melt processed Y–Ba–Cu–O (YBCO) limits the macroscopic critical current density Jc of such bulk supercond...

  7. Authentication System for Electrical Charging of Electrical Vehicles in the Housing Development

    Science.gov (United States)

    Song, Wang-Cheol

    Recently the smart grid has been a hot issue in the research area. The Electric Vehicle (EV) is the most important component in the Smart Grid, having a role of the battery component with high capacity. We have thought how to introduce the EV in the housing development, and for proper operation of the smart grid systems in the housing area the authentication system is essential for the individual houses. We propose an authentication system to discriminate an individual houses, so that the account management component can appropriately operate the electrical charging and billing in the housing estate. The proposed system has an architecture to integrate the charging system outside a house and the monitoring system inside a house.

  8. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels. Research and development of high-temperature superconducting materials; 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (koon chodendozai no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This R and D program is aimed at optimization of superconductors for improved levitation force of the superconducting magnetic bearings which support a 10 MWh power storage system by high-temperature superconducting flywheel (FW), to clarify possibility of sizing up the FW body and R and D themes for the commercialization. The processes are screened to simultaneously solve the conflicting targets of sizing up the sample of the Y-based bulk superconducting material and improved crystal orientation of the whole bearing, leading to selection of multi-seeding. The sample made on a trial basis improves levitation force by approximately 30%. It is considered that the OCMG-processed rare-earth-based superconducting material can generate very strong electromagnetic force, when combined with a permanent magnet. The Ag-doped Sm-based bulk material shows a reduced creep-caused loss of loading force, and a lower loss of Jc resulting from increased temperature than the Y-based one, decreasing AC loss and controlling temperature rise. The running characteristics and mechanical strength of the FW, and causes for temporal changes are investigated, in order to evaluate the superconducting material characteristics. (NEDO)

  9. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  10. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  11. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  12. Energy conservation through utilization of mechanical energy storage

    Science.gov (United States)

    Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.

    Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.

  13. System for detecting and limiting electrical ground faults within electrical devices

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1990-01-01

    This paper discusses, in a nuclear power plant of a variety wherein a reactor is provided including a reactor vessel retaining a liquid metal coolant, a reactor core and an electromagnetic pump having inductive windings insulatively retained within the electrically conductive wall of an enclosure, the method for controlling electrical ground fault current between a the inductive winding and the walls. It comprises providing an electrically isolated power source by inductive coupling with the plant power supply; rectifying the power source to provide an isolated d.c. power source; providing an inverter powered from the isolated d.c. power source under the control of the plant control system for selectively energizing the inductive windings; providing a fault control conductor electrically connected with the pump enclosure wall and extending as an electrical return for ground fault current to the inverter; and providing an electrical resistance between the conductor and the isolated inverter having an impedance selected to limit the fault current below a predetermined value limiting arc damage at any the electrical ground fault location

  14. Commercial information system of Slovak Electricity Transmission System, Plc

    International Nuclear Information System (INIS)

    Laznicka, L.

    2004-01-01

    Commercial Information System (CIS), which main role of is to support the commercial activities of the company, is built up by business department of SEPS, Plc in close co-operation with the supplier company Sfera, Plc. The system entries are data from electricity meters obtained by automatized data acquisition and from bugging sheets, contractual hour diagrams, parameters of transmission system like measuring schemes and formulas for calculation of demand and supply, contractual data resulting from agreements, business conditions, URSO decisions and valid legislative. A part of the system is also support of process of data evaluation like calculation of transmitted energy quantity, calculation of actual output diagrams, comparison of actual and contractual diagrams, calculation of system divergence, calculation of demand divergence, etc. The final price for the drawings of services, which are joined with transmission of the electric power will be determined by the accounting process. In this causality there are automatically made out invoices for access, losses, system charges, system services, short-term and long-term transits, divergences and for cross-border transmission auctions. System also generates various specialized synopses and statistics for the evaluation requirements of important aspects and for parameter observations. Successive liberalisation of the electricity power market, changes in legislative and URSO decisions require CIS to be sufficiently configurable and to adapt flexible on the alternating environs. (author)

  15. The value of electricity and reserve services in low carbon electricity systems

    International Nuclear Information System (INIS)

    Vijay, Avinash; Fouquet, Nicolas; Staffell, Iain; Hawkes, Adam

    2017-01-01

    Highlights: •A power dispatch model is used to simulate electricity and reserve prices. •Good agreement is observed between modelled and historic prices in 2015. •Higher renewables and CCS with lower fossil fuels leads to lower electricity prices. •Contrary to expectation, gone green scenario leads to lowest increase in reserve price. •Flexible aggregated demand response likely to offer significant economic benefits. -- Abstract: Decarbonising electricity systems is essential for mitigating climate change. Future systems will likely incorporate higher penetrations of intermittent renewable and inflexible nuclear power. This will significantly impact on system operations, particularly the requirements for flexibility in terms of reserves and the cost of such services. This paper estimates the interrelated changes in wholesale electricity and reserve prices using two novel methods. Firstly, it simulates the short run marginal cost of generation using a unit commitment model with post-processing to achieve realistic prices. It also introduces a new reserve price model, which mimics actual operation by first calculating the day ahead schedules and then letting deviations from schedule drive reserve prices. The UK is used as a case study to compare these models with traditional methods from the literature. The model gives good agreement with and historic prices in 2015. In a 2035 scenario, increased renewables penetration reduces mean electricity prices, and leads to price spikes due to expensive plants being brought online briefly to cope with net load variations. Contrary to views previously held in literature, a renewable intensive scenario does not lead to a higher reserve price than a fossil fuel intensive scenario. Demand response technology is shown to offer sizeable economic benefits when maintaining system balance. More broadly, this framework can be used to evaluate the economics of providing reserve services by aggregating decentralised energy

  16. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  17. The Norwegian Electric Power System - System Description and Future Developments; Norsk kraftforsyning - dagens system og fremtidig utvikling

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Janne Merete; Nystuen, Kjell Olav; Fridheim, Haavard; Rutledal, Frode

    2000-09-01

    This report presents a description of the present Norwegian electric power system, as well as a discussion of emerging trends and future developments in this system. The report provides the basis for FFI's current vulnerability analysis of the electric power system. Norway's electric power system is getting increasingly complex, due to a large-scale implementation of electronic components and information systems. Workforce reductions and efficiency improvements dominate the development of the electric power sector. Norway is also becoming increasingly dependent on foreign power sources. These trends provide for an entirely different electric power system than just a few years ago. Also, these trends make it virtually impossible to present a ''static'' description of the system. Thus, the report also contains a scenario, describing possible future developments of the system until 2010. (author)

  18. Probabilistic Fault Diagnosis in Electrical Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  19. A Case Study of Harmonic Impact on a Motor-Generator Set System

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Pil-Bum [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Motor-Generator Sets are usually used to supply power to a Control Element Drive Mechanism Control System (CEDMCS) at nuclear power plants with pressurized water reactors. Two Motor-Generator Sets, which have 100% capacity, are operated in parallel to improve the reliability of the power supply to the CEDMCS. Fig. 1 presents a diagram of a Motor- Generator Set system. The system of a Motor-Generator Set is composed of electrical equipment, such as a motor, a fly-wheel, and a generator, an exciter and protection-control device, such as a protective relay, synchro check relay, and an auto voltage regulator. In general, the harmonic impact of electrical equipment increases the deterioration of the equipment, the motor, and the generator’s lifetime, which can also be caused by vibration and over-heating and maloperation of the protection-control device. In this paper, we came to understand the harmonic impact on the Motor-Generator Set system through a study of delaying parallel operation by non-operation of the synchro check relay and the fault of under voltage protective relay. Thus, KHNP has established and applied the measures of harmonic reduction by the CEDMCS, such as limiting the voltage harmonic distortion to less than 10%, which is described in IEEE Std 519.

  20. Electric energy supply systems: description of available technologies

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhauer, J.L.; Rogers, E.A.; King, J.C.; Stegen, G.E.; Dowis, W.J.

    1985-02-01

    When comparing coal transportation with electric transmission as a means of delivering electric power, it is desirable to compare entire energy systems rather than just the transportation/transmission components because the requirements of each option may affect the requirements of other energy system components. PNL's assessment consists of two parts. The first part, which is the subject of this document, is a detailed description of the technical, cost, resource and environmental characteristics of each system component and technologies available for these components. The second part is a computer-based model that PNL has developed to simulate construction and operation of alternative system configurations and to compare the performance of these systems under a variety of economic and technical conditions. This document consists of six chapters and two appendices. A more thorough description of coal-based electric energy systems is presented in the Introduction and Chapter 1. Each of the subsequent chapters describes technologies for five system components: Western coal resources (Chapter 2), coal transportation (Chapter 3), coal gasification and gas transmission (Chapter 4), and electric power transmission (Chapter 6).

  1. Estimating cell capacity for multi-cell electrical energy system

    Science.gov (United States)

    Hashemi, Iman Ahari

    A Multi-Cell Electrical Energy System is a set of batteries that are connected in series. The series batteries provide the required voltage necessary for the contraption. After using the energy that is provided by the batteries, some cells within the system tend to have a lower voltage than the other cells. Also, other factors, such as the number of times a battery has been charged or discharged, how long it has been within the system and many other factors, result in some cells having a lesser capacity compared to the other cells within the system. The outcome is that it lowers the required capacity that the electrical energy system is required to provide. By having an unknown cell capacity within the system, it is unknown how much of a charge can be provided to the system so that the cells are not overcharged or undercharged. Therefore, it is necessary to know the cells capacity within the system. Hence, if we were dealing with a single cell, the capacity could be obtained by a full charge and discharge of the cell. In a series system that contains multiple cells a full charging or discharging cannot happen as it might result in deteriorating the structure of some cells within the system. Hence, to find the capacity of a single cell within an electrical energy system it is required to obtain a method that can estimate the value of each cell within the electrical energy system. To approach this method an electrical energy system is required. The electrical energy system consists of rechargeable non-equal capacity batteries to provide the required energy to the system, a battery management system (BMS) board to monitor the cells voltages, an Arduino board that provides the required communication to BMS board, and the PC, and a software that is able to deliver the required data obtained from the Arduino board to the PC. The outcome, estimating the capacity of a cell within a multi-cell system, can be used in many battery related technologies to obtain unknown

  2. Using Intelligent System Approaches for Simulation of Electricity Markets

    Science.gov (United States)

    Hamagami, Tomoki

    Significances and approaches of applying intelligent systems to artificial electricity market is discussed. In recent years, with the moving into restructuring of electric system in Japan, the deregulation for the electric market is progressing. The most major change of the market is a founding of JEPX (Japan Electric Power eXchange.) which is expected to help lower power bills through effective use of surplus electricity. The electricity market designates exchange of electric power between electric power suppliers (supplier agents) themselves. In the market, the goal of each supplier agents is to maximize its revenue for the entire trading period, and shows complex behavior, which can model by a multiagent platform. Using the multiagent simulations which have been studied as “artificial market" helps to predict the spot prices, to plan investments, and to discuss the rules of market. Moreover, intelligent system approaches provide for constructing more reasonable policies of each agents. This article, first, makes a brief summary of the electricity market in Japan and the studies of artificial markets. Then, a survey of tipical studies of artificial electricity market is listed. Through these topics, the future vision is presented for the studies.

  3. Air pollution restrictions in electrical production system

    International Nuclear Information System (INIS)

    Gallizioli, G.

    1993-01-01

    A description of the principal characteristics regarding the Italian electrical power system and the evolution of standardization in air pollution control is given. Afterwards, ENEL (the Italian National Electricity Board) actions in the environmental protection field (with particular respect to thermo-electrical production) are presented. Finally, principal ENEL research programs on new air pollution control technologies are discussed

  4. Survey of aircraft electrical power systems

    Science.gov (United States)

    Lee, C. H.; Brandner, J. J.

    1972-01-01

    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  5. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  6. 46 CFR 108.407 - Detectors for electric fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  7. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels (research and development of permanent magnet); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (eikyu jishaku no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The permanent magnets have been investigated and developed, for eventual commercialization of a 10 MWh power storage system by high-temperature superconducting flywheel. The permanent magnet rotors have been already developed in the previous years using a praseodymium-based magnet (Pr magnet) and neodymium-based sintered magnet (Nd sintered magnet), and the target rotational speed of 30,000 rpm has been attained. For development of the magnetic circuit to produce a stronger and smoother magnetic field, magnetic flux density of the Nd sintered magnet is measured. It shows a lower magnetic flux irregularity than the Pd magnet, but there is still room for further improvement. For development of large-size permanent magnet fabrication techniques, it is confirmed that the large-size Nd sintered magnet can be easily magnetized by partial magnetizing, as is the case with the Pr magnet. In this year, the irregular magnetic flux is three-dimensionally simulated, based on the results obtained in the previous years, to find that the simulated results are in good agreement with the observed ones. The measures to solve the problems are also investigated. It is also confirmed that the large-size ring magnet can be easily magnetized by partial magnetization. (NEDO)

  8. Multiagent based protection and control in decentralized electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten; Veloso, Manuela

    2010-01-01

    Electric power systems are going through a major change both in their physical and control structure. A large num- ber of small and geographically dispersed power generation units (e.g., wind turbines, solar cells, plug-in electric cars) are replacing big centralized power plants. This shift has...... created interesting possibilities for application of intelligent systems such as multiagent systems for control and automation in electric power systems. This paper describes work on designing a multiagent system for protection and control of electric power distribution networks.It demonstrates how...... explicit modeling of capabilities, states, roles and role transition in agents can capture the control and automation in electric power systems. We present illustrative results from using our proposed schema in realistic simulations....

  9. Hydropower's future, the environment, and global electricity systems

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, R. [Department of Earth and Environmental Studies, Montclair State University, 1 Normal Ave, Montclair, NJ 07043-1624 (United States)

    2010-02-15

    Hydropower is a well established electricity system on the global scene. Global electricity needs by far exceed the amount of electricity that hydrosystems can provide to meet global electricity needs. Much of the world's hydropower remains to be brought into production. Improved technology, better calibrated environmental parameters for large projects have become the norm in the past 15 years. How and why does hydropower retain a prominent role in electricity production? How and why does hydropower find social acceptance in diverse social systems? How does hydropower project planning address issues beyond electricity generation? How does the systems approach to hydropower installations further analysis of comparative energy sources powering electricity systems? Attention to the environmental impact of hydropower facilities forms an integral part of systems analysis. Similarly, the technical, political and economic variables call for balanced analysis to identify the viability status of hydro projects. Economic competition among energy systems requires in context assessments as these shape decision making in planning of hydropower systems. Moreover, technological change has to be given a time frame during which the sector advances in productivity and share in expanding electricity generation. The low production costs per kWh assure hydropower at this juncture, 2009, a very viable future. (author)

  10. Electric axle. HV components and system; Elektrische Achse. HV-Komponenten und System

    Energy Technology Data Exchange (ETDEWEB)

    Schermann, Markus [Magna Powertrain, Oberwaltersdorf (Austria). Elektrische Antriebssysteme

    2013-03-15

    Magna Powertrain introduces the system of an electric rear axle drive. The system consists of an electric machine integrated into the gearbox and an appropriate inverter. The system is used to apply power to the rear axle while a conventional combustion engine drives the front axle. This kind of parallel hybrid approach is called ''through-the-road-hybrid'' because the total power of both combustion engine and electric motor is applied through the road at different axles. With this approach, the all-wheel drive functionality is covered as well.

  11. Simulation and energy analysis of distributed electric heating system

    Science.gov (United States)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  12. Energy consumption of auxiliary systems of electric cars

    Directory of Open Access Journals (Sweden)

    Evtimov Ivan

    2017-01-01

    Full Text Available The paper analyzes the power demand of the auxiliary systems of electric cars. On the basis of existing electric cars an analysis of energy consumption of different auxiliary systems is done. As a result possibilities for rational use of these systems have been proposed, which can increase the mileage per one charge of the battery.

  13. Results of an electrical power system fault study

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  14. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  15. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  16. TOPEX electrical power system

    Science.gov (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  17. New electricity 21. Designing a sustainable electric system for the twenty-first century

    International Nuclear Information System (INIS)

    1996-01-01

    The five main sessions of the conference are opportunities to increase electricity use for sustainable development; electric system expansion and integration to meet growing competition; power producers and global climate change issues; technology for supplying electricity in developing and transitional economies; power industry structure, regulatory policies and technological innovation. All contributions have been indexed and abstracted for the INIS and Energy database. (R.P.)

  18. Overall Optimization for Offshore Wind Farm Electrical System

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Cong

    2017-01-01

    Based on particle swarm optimization (PSO), an optimization platform for offshore wind farm electrical system (OWFES) is proposed in this paper, where the main components of an offshore wind farm and key technical constraints are considered as input parameters. The offshore wind farm electrical...... system is optimized in accordance with initial investment by considering three aspects: the number and siting of offshore substations (OS), the cable connection layout of both collection system (CS) and transmission system (TS) as well as the selection of electrical components in terms of voltage level...... that save 3.01% total cost compared with the industrial layout, and can be a useful tool for OWFES design and evaluation....

  19. A hybrid electrical power system for aircraft application.

    Science.gov (United States)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  20. Electricity pricing and management systems

    International Nuclear Information System (INIS)

    Sawal, D.M.; Bajapai, Ashok

    1997-01-01

    The installed capacity of power generation in India is at present 80,000 MW. Out of the total 5.79 lakh inhabitated villages in the country, 4.79 villages have been electrified so far. Total number of consumers of electricity are about 95 million in the country. For such a large country with population of over 900 million and area of 32.873 lakh sq. kms., the role of electricity pricing and management system of the power sector is of paramount importance

  1. Intelligent Electric Power Systems with Active-Adaptive Electric Networks: Challenges for Simulation Tools

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2015-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of intelligent electric power systems with active-adaptive electric networks (IES including Flexible Alternating Current Transmission System (FACTS devices. The key requirements for the simulation were formed. The presented analysis of simulation results of IES confirms the need to use a hybrid modelling approach.

  2. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  3. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  4. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  5. State Electricity Regulatory Policy and Distributed Resources: Distributed Resources and Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Cowart, R.; Harrington, C.; Moskovitz, D.; Shirley, W.; Weston, F.; Sedano, R.

    2002-10-01

    Designing and implementing credit-based pilot programs for distributed resources distribution is a low-cost, low-risk opportunity to find out how these resources can help defer or avoid costly electric power system (utility grid) distribution upgrades. This report describes implementation options for deaveraged distribution credits and distributed resource development zones. Developing workable programs implementing these policies can dramatically increase the deployment of distributed resources in ways that benefit distributed resource vendors, users, and distribution utilities. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Accommodating Distributed Resources in Wholesale Markets, NREL/SR-560-32497; (2) Distributed Resources and Electric System Re liability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501.

  6. Results of an electrical power system fault study (CDDF)

    Science.gov (United States)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  7. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  8. The electricity certificate system, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Joehnemark, Maria; Oestberg, Roger; Johansson, Martin

    2009-07-01

    Over the years, the electricity certificate system has been maturing and consolidating, so that it is today an effective and functional policy measure that has won wide acceptance from all parties concerned. The long term approach and security of the system are attracting an increasing number of investors, which is described more fully in this report. This year's special theme chapter, Investing in Renewable Energy, presents the status of the system from an investment point of view. In addition to this chapter, the report includes, as always, an introduction to how the certificate system works, together with an updating with the latest statistics. A quick glance at external factors that can affect the system indicates that there are several that may do so in the future. Just the fact that the climate problem is still high on the political agenda, despite strong competition from economic crises, shows that there is a need for more renewable energy. The EU Renewable Energy Directive, which was adopted at the end of 2008, requires the Swedish energy system to deliver 49 % of its output from renewable sources by 2020. In addition, the Energy Bill adopted by the Swedish Parliament identifies the electricity certificate system as one of the most important means of achieving the country's objectives. Taken together, this indicates that there are many factors that will further strengthen the role of the certificate system in the next few years. If we look at the system itself, we can see that a number of important changes have been made since the previous report. With effect from 1st January 2009, the definition of electricity-intensive industries has changed, bringing it more closely in line with the definition used in energy taxation. Since 1st May, the rules have changed concerning entitlement to a new allocation period of certificates after a plant has been substantially modified. In addition, certificates can now be allocated for increases in output from

  9. Computer-integrated electric-arc melting process control system

    OpenAIRE

    Дёмин, Дмитрий Александрович

    2014-01-01

    Developing common principles of completing melting process automation systems with hardware and creating on their basis rational choices of computer- integrated electricarc melting control systems is an actual task since it allows a comprehensive approach to the issue of modernizing melting sites of workshops. This approach allows to form the computer-integrated electric-arc furnace control system as part of a queuing systemelectric-arc furnace - foundry conveyor” and consider, when taking ...

  10. Comparison of all-electric secondary power systems for civil transport

    Science.gov (United States)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  11. Electrical overstress (EOS) devices, circuits and systems

    CERN Document Server

    Voldman, Steven H

    2013-01-01

    Electrical Overstress (EOS) continues to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics.  This bookteaches the fundamentals of electrical overstress  and how to minimize and mitigate EOS failures. The text provides a clear picture of EOS phenomena, EOS origins, EOS sources, EOS physics, EOS failure mechanisms, and EOS on-chip and system design.  It provides an illuminating insight into the sources of EOS in manufacturing, integration of on-chip, and system level EOS protection networks, followed by examples in spe

  12. Reconstruction of electric systems (ELE)

    International Nuclear Information System (INIS)

    Kohutovic, P.

    2001-01-01

    The original design of WWER-230 units consisted of a single common system EEPS (essential electric power supply system) per unit. The establishment of redundancy 2 x 100% EEPS was a global task. The task was started during the 'Small reconstruction' - MR V1, continued in 'Gradual reconstruction' and finished in the year 2000. (author)

  13. Developing nucleic acid-based electrical detection systems

    Directory of Open Access Journals (Sweden)

    Gabig-Ciminska Magdalena

    2006-03-01

    Full Text Available Abstract Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in

  14. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  15. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  16. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  17. System Description of the Electrical Power Supply System for the ATLAS Integral Test Loop

    International Nuclear Information System (INIS)

    Moon, S. K.; Park, J. K.; Kim, Y. S.; Song, C. H.; Baek, W. P.

    2007-02-01

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is constructed by Thermal-Hydraulics Safety Research Team in Korea Atomic Energy Research Institute (KAERI). The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. This report describes the design and technical specifications of the electrical power supply system which supplies the electrical powers to core heater rods, other heaters, various pumps and other systems. The electrical power supply system had acquired the final approval on the operation from the Korea Electrical Safety Corporation. During performance tests for the operation and control, the electrical power supply system showed completely acceptable operation and control performance

  18. Electric systems failures produced by CG lightning in Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Ana Paula Paes dos Santos

    2014-12-01

    Full Text Available Operational records of power outages of the electric energy distribution systems in eastern Amazonia presented a large number of events attributed to lightning strikes, during the 2006 to 2009 period. The regional electricity concessionary data were compared to actual lightning observations made by SIPAM's LDN system, over two areas where operational sub systems of transmission lines are installed. Statistical relations were drawn between the monthly lightning occurrence density and the number of power outages of the electric systems for both areas studied. The results showed that, although with some delays between these variables peaks, the number of power disruptions has a tendency to follow the behavior of the lightning occurrence densities variations. The numerical correlations were positive and may be useful to the transmission lines maintenance crews at least for the Belém-Castanhal electricity distribution sub system. Evidence was found, that the SST's over certain areas of the Pacific and Atlantic Oceans, influence convection over the area of interest, and may help to prognosticate the periods of intense electric storms, requiring repair readiness for the regional electric systems.

  19. Power supply for the Spanish stellarator TJ-II, design, construction, and tests

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Lucia, C.; Alberdi, B.; Del Rio, J.M. [JEMA SA, Lasarte-Oria (Spain); Almoguera, L.; Blaumoser, M.; Kirpitchev, I.; Mendez, P. [Asociacion EURATOM-CIEMAT para Fusion, Madrid (Spain)

    1995-12-31

    Most of the components of the electrical power supply system of the new TJ-II stellarator, which is under construction in Madrid (Spain), are now constructed and tested. The flywheel synchronous generator is still under construction and its tests are planned for the end of 1995. The power plant is described in detail as well as the tests which have been carried out and their results.

  20. Electricity reforms, democracy and technological change. (Electricity systems, 'market liberalization' reforms, internationalisation, and the need for new democratic governance system - the Danish case)

    International Nuclear Information System (INIS)

    Hvelplund, F.

    2001-07-01

    At the end of the 1990s, Danish energy policy reached a turning point because of technical challenges due to the high proportion of fluctuating wind power production and the increased cogeneration share, and because of new regulation regimes being introduced in Denmark and its neighbouring countries. In this specific historical situation, with the above background, the questions that will be analysed in this publication are as follows: 1) Which governance systems are most efficient, with regard to achieving optimal goal performance by means of the present typical uranium/fossil fuel electricity supply systems? 2) Which governance systems are the most efficient in the transformation process from the present uranium/fossil fuel electricity supply systems to renewable energy-/conservation based electricity system? 3) Which changes in goal performance of the Danish electricity supply system has the 1999 Danish electricity 'liberalization' reform induced? 4) Will the Danish electricity supply system be able to maintain its consumer ownership institutions and remain independent of the 'third party' shareholder ownership structure after the 1999 Danish 'liberalization' reform? a) Are the Danish electricity companies able to compete on the Danish electricity market with foreign suppliers? b) Will the Danish energy companies be able to compete on the market for energy capital goods, or will foreign companies, for instance German power companies, buy them? Will the Danish consumer ownership model survive? c) Will the Danish 'flat' price structure survive on the future electricity market? d) Will the 1975-2000 energy technology innovation process survive under the new market conditions? How will conditions on the German market influence this development? The relevance of these questions is particulary enhanced when seen in relation to the goals of international, and especially Danish, energy policy. The main question therefore, is: will the development outlined under 1

  1. A data seamless interaction scheme between electric power secondary business systems

    Science.gov (United States)

    Ai, Wenkai; Qian, Feng

    2018-03-01

    At present, the data interaction of electric power secondary business systems is very high, and it is not universal to develop programs when data interaction is carried out by different manufacturers' electric power secondary business systems. There are different interaction schemes for electric power secondary business systems with different manufacturers, which lead to high development cost, low reusability and high maintenance difficulty. This paper introduces a new data seamless interaction scheme between electric power secondary business systems. The scheme adopts the international common Java message service protocol as the transmission protocol, adopts the common JavaScript object symbol format as the data interactive format, unified electric power secondary business systems data interactive way, improve reusability, reduce complexity, monitor the operation of the electric power secondary business systems construction has laid a solid foundation.

  2. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  3. Electricity system performance in Brazil

    International Nuclear Information System (INIS)

    Pires Rodrigues, A.; Souza Dias, D. De

    1992-01-01

    Nowadays, there is great uncertainty and concern about the capacity of the electric sector to go ahead with the programme of investments which was planned to keep pace with the growth in electricity demand. The sector is in an important financial crisis caused by the progressive reduction in its ability to generate resources either through self-financing or through external sources. The Brazilian electric sector is mostly public. Moreover, it is marked by a high degree of integration, which makes the whole system vulnerable to problem in each of its parts. First, the financial health of the Electrobras system which is at the top of the pyramidal sectoral structure depends on the capacity of the state-level utilities (operating mainly on the distribution side) to pay for the bulk supplies which they buy from Electrobras-controlled utilities. Second, tariffs are equal in the country as a whole regardless of differences in costs. Differences must be covered by the transfers between state utilities. Thus, there is also a significant horizontal financial inter-dependence in the sector. These institutional characteristics have been very important in the context of the present financial crisis

  4. Electrical Power Systems Protection and Interdependencies with ICT

    OpenAIRE

    Milis, George; Kyriakides, Elias; Hadjiantonis, Antonis

    2017-01-01

    The present chapter discusses the issue of protection of the electrical power systems, addressing all dimensions, from the need of protection to the identified faults and disturbances to the available protection schemes and further considerations, also looking at the challenges brought by recognizing the interdependent nature of the today’s electrical power systems.

  5. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  6. Alberta's new competitive electricity system

    International Nuclear Information System (INIS)

    Hancher, L.

    1996-01-01

    The shape, speed and direction of further reforms in Alberta's electric power industry were forecast, following the introduction of a competitive framework for the industry, the first province to do so in Canada, effective January 1996. This study reviews the previously existing system ( a mix of investor-owned and municipally-owned utilities), as well as the proposed new structure as laid out in the new Electric Utilities Act, based on the three principles of unbundling, a competitive power pool and open system access transmission. The paper also reviewed some of the major issues that will have to be faced in the future, such as how to deal with market power and possible collusion between the generators to hold prices down, a problem that has been the well-known failing of the U.K. pool mechanism

  7. Wind power electric systems modeling, simulation and control

    CERN Document Server

    Rekioua, Djamila

    2014-01-01

    The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies.Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems.Mathematical models are provided for each system and a corresponding MAT

  8. Safety analyses of the electrical systems on VVER NPP

    International Nuclear Information System (INIS)

    Andel, J.

    2004-01-01

    Energoprojekt Praha has been the main entity responsible for the section on 'Electrical Systems' in the safety reports of the Temelin, Dukovany and Mochovce nuclear power plants. The section comprises 2 main chapters, viz. Offsite Power System (issues of electrical energy production in main generators and the link to the offsite transmission grid) and Onsite Power Systems (AC and DC auxiliary system, both normal and safety related). In the chapter on the off-site system, attention is paid to the analysis of transmission capacity of the 400 kV lines, analysis of transient stability, multiple fault analyses, and probabilistic analyses of the grid and NPP power system reliability. In the chapter on the on-site system, attention is paid to the power balances of the electrical sources and switchboards set for various operational and accident modes, checks of loading and function of service and backup sources, short circuit current calculations, analyses of electrical protections, and analyses of the function and sizing of emergency sources (DG sets and UPS systems). (P.A.)

  9. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jun [University of Denver; Gao, Wenzhong [University of Denver; Zheng, Xinhu [University of Minnesota; Yang, Liuqing [Colorado State University; Hao, Jun [University of Denver; Dai, Xiaoxiao [University of Denver

    2017-09-01

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logic and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.

  10. Assessment of Energy Conservation in Egypt's Electric System

    Directory of Open Access Journals (Sweden)

    Azhar El Saeed Awad Abou Ghoniem

    2017-03-01

    Full Text Available This paper provides an evaluation of energy saving policy as a key factor in Egypt's electric system in terms of benefits, invested cost, power quality and environmental impact, solutions have been made by system planners and decision makers aiming to face the challenges that being encountered by the electric system such as scarce and precious of prime energies are compared in terms of invested cost, implementation time and advantages for both of power providers and end users w.r.to energy savings. A case study that implemented in a pilot program for energy savings was given. It is a group of facilities include industrial, commercial, administrative companies and worship houses, they are connected to Alexandria electrical distribution network, they are classified as big customers, i.e. contracted power for each is higher than 0.5 mega watt, the goals of the program were evaluating potentials of energy saving opportunities in the system and estimating the outcomes. Options were evaluated with regard to savings in electricity, fuels and water. Cost of investments and pay back periods were calculated. Environmental impact as a result of saving in emitted green house gas co2 is determined. Potentials of energy savings are analyzed and benefits to both electric utilities and end users were assessed.

  11. Aging evaluation of electrical circuits using the ECCAD system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulator Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport atomic power station decommissioning project. The objective of this work was to evaluate the effectiveness of the electrical circuit characterization and diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  12. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  13. Designing a sustainable electric system for the 21. Century. 5 sessions

    International Nuclear Information System (INIS)

    1995-01-01

    The UNIPEDE (International Union of Producers and Distributors of Electrical Energy) conference is composed of 97 communications grouped in 5 sessions which titles and main themes are: opportunities to increase electricity use for sustainable development (energy efficiency improvement, technology substitution, environmental issues); electric system expansion and integration to meet growing competition (interconnected systems, electricity transfer, distribution system upgrade, system reliability, superconductive systems); power producers and global climate change issues (electricity generation, renewable energies, combined cycle, rational energy use, reduction of emissions, efficiency improvements); technology for supplying electricity in developing and transitional economies development strategies, financial factor and international investments, technology transfer and implementation, transmission systems); power industry structure, regulatory policies and technological innovation (demand side management, deregulation, competitive energy markets, legislative and economic policy changes). 48 communications were considered in the INIS scope, 41 in the ETDE scope and 7 out of scope

  14. Electrical Energy Quality Studies in 3 kV DC Electric Traction Systems for Different Schemes of Connection Traction Substation to Power Utility System

    Directory of Open Access Journals (Sweden)

    Leszek Mierzejewski

    2004-01-01

    Full Text Available The paper present aspects of DC electric traction system influence on electric energetic system. Study is based on modeling and simulation of electrified railway line. After simulation, there was performed analysis of energy quality, whitch using results of simulation and supply systems parameters.

  15. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  16. Small Wind Electric Systems: A Kansas Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Kansas Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of state incentives and state contacts for more information

  17. Nuclear Energy and Renewables. System Effects in Low-carbon Electricity Systems - Executive Summary

    International Nuclear Information System (INIS)

    2012-01-01

    This report addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems. (authors)

  18. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    Science.gov (United States)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  19. Electrical power system WP-04

    Science.gov (United States)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  20. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This publication is the first global analysis of energy consumption and energy efficiency potential of EMDS (electric motor- driven system). The electric motors and systems they drive are the largest single electricity end use, accounting for more than 40% of global electricity consumption. Huge energy efficiency potential was found untapped in EMDS - around 25% of EMDS electricity use could be saved cost-effectively, reducing total global electricity demand by about 10%. However, the energy efficiency of EMDS has been relatively neglected in comparison with other sustainable energy opportunities. It is crucial to scale up the operations and resources committed to realizing the vast savings potential of optimized EMDS. This paper proposes a comprehensive package of policy recommendations to help governments realize the potential for energy savings in EMDS.

  1. Carbon footprint of the Danish electricity transmission and distribution systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Astrup, Thomas Fruergaard

    . The purpose was to evaluate the potential importance of environmental impacts associated with T&D in current and future electricity systems. Including the emissions from electricity T&D is needed to provide a full carbon footprint of electricity systems, and is essential to properly assess the environmental...

  2. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  3. Impacts of Demand-Side Management on Electrical Power Systems: A Review

    Directory of Open Access Journals (Sweden)

    Hussein Jumma Jabir

    2018-04-01

    Full Text Available Electricity demand has grown over the past few years and will continue to grow in the future. The increase in electricity demand is mainly due to industrialization and the shift from a conventional to a smart-grid paradigm. The number of microgrids, renewable energy sources, plug-in electric vehicles and energy storage systems have also risen in recent years. As a result, future electricity grids have to be revamped and adapt to increasing load levels. Thus, new complications associated with future electrical power systems and technologies must be considered. Demand-side management (DSM programs offer promising solutions to these issues and can considerably improve the reliability and financial performances of electrical power systems. This paper presents a review of various initiatives, techniques, impacts and recent developments of the DSM of electrical power systems. The potential benefits derived by implementing DSM in electrical power networks are presented. An extensive literature survey on the impacts of DSM on the reliability of electrical power systems is also provided for the first time. The research gaps within the broad field of DSM are also identified to provide directions for future work.

  4. DTU International Energy Report 2013

    DEFF Research Database (Denmark)

    to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage...... as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage...

  5. Electrical system regulations of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Mello, Jose Roberto de; Madi Filho, Tufic

    2013-01-01

    The IEA-R1 reactor of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), is a research reactor open pool type, designed and built by the U.S. firm Babcock and Wilcox, having, as coolant and moderator, deionized light water and beryllium and graphite, as reflectors. Until about 1988, the reactor safety systems received power from only one source of energy. As an example, it may be cited the control desk that was powered only by the vital electrical system 220V, which, in case the electricity fails, is powered by the generator group: no-break 220V. In the years 1989 and 1990, a reform of the electrical system upgrading to increase the reactor power and, also, to meet the technical standards of the ABNT (Associacao Brasileira de Normas Tecnicas) was carried out. This work has the objective of showing the relationship between the electric power system and the IEA-R1 reactor security. Also, it demonstrates that, should some electrical power interruption occur, during the reactor operation, this occurrence would not start an accident event. (author)

  6. Expert System Applications for the Electric Power Industry: Proceedings

    International Nuclear Information System (INIS)

    1992-06-01

    A conference on Expert System Applications for the Electric Power Industry was held in Boston on September 8--11, 1991 to provide a forum for technology transfer, technical information exchange, and education. The conference was attended by more than 150 representatives of electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, and government agencies. The meeting included a keynote address, 70 papers, and 18 expert system demonstrations. Sessions covered expert systems in power system planning operations, fossil power plant applications, nuclear power plant applications, and intelligent user interfaces. The presentations showed how expert systems can provide immediate benefits to the electric power industry in many applications. Individual papers are indexed separately

  7. States of Cybersecurity: Electricity Distribution System Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Ivonne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ingram, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Maurice [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-16

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE), Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.

  8. Electrical Power System Architectures for In-House NASA/GSFC Missions

    Science.gov (United States)

    Yun, Diane D.

    2006-01-01

    This power point presentation reviews the electrical power system (EPS) architecture used for a few NASA GSFC's missions both current and planned. Included in the presentation are reviews of electric power systems for the Space Technology 5 (ST5) mission, the Solar Dynamics Observatory (SDO) Mission, and the Lunar Reconnaissance Orbiter (LRO). There is a slide that compares the three missions' electrical supply systems.

  9. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  10. Switching conditions in the electric power system

    International Nuclear Information System (INIS)

    Tsukushi, M.; Hirasawa, K.; Kurosawa, Y.

    1991-01-01

    This paper reports that a circuit breaker must be capable of making, carrying, and interrupting the current under both normal and abnormal conditions, especially in the case of a short-circuit fault. Before installing a circuit breaker, it is necessary to estimate the maximum short-circuit current that can occur in the electric power system and then select a circuit breaker that can interrupt and make the estimated current. Many types of short-circuit faults occur in electric power systems

  11. Integration between electric vehicle charging and micro-cogeneration system

    International Nuclear Information System (INIS)

    Angrisani, Giovanni; Canelli, Michele; Roselli, Carlo; Sasso, Maurizio

    2015-01-01

    Highlights: • The interaction between an MCHP system and EV charging is investigated. • A parametric analysis with respect to daily driving distance of the EV is performed. • Dynamic simulations are carried out considering two different climates. • Two EV charging strategies are analyzed to maximize the self-consumed electricity. • The impact of EVs on electric grid and economic feasibility of MCHP can be improved. - Abstract: In the near future the diffusion of plug-in electric vehicles (EVs) could play an important role in the reduction of emissions and oil dependency associated with the transport sector. However this technology could have a big impact on the electric network because EVs require a considerable amount of electricity. In order to meet the growing load due to the diffusion of EVs, the construction of new infrastructures will be required. The introduction of micro-cogeneration systems could represent a key factor in the reduction of the negative effects on the electric network related to EVs charging. The EVs are often driven during the day and recharged during the night; so the overnight charge of the EVs allows to reduce the amount of electricity exported to the grid. In this way the economic benefits associated with the introduction of micro-cogenerator system (Micro Combined Heat and Power, MCHP), that depend on the economic value of the “produced” electricity, can be improved. At the same time the impact of EVs charge on the electric network can be reduced when electricity is provided by MCHP. In this paper the interaction between an MCHP system, the EV charging and a typical semidetached house is investigated by means of dynamic simulations. The analysis is carried out in two different locations (Torino and Napoli) in order to evaluate the effects of climatic conditions on the system performance. A parametric analysis with respect to the daily driving distance of the EV is carried out in order to highlight the effect of this

  12. Design and Implementation of Effective Electrical Power System for Surya Satellite-1

    Science.gov (United States)

    Sulistya, A. H.; Hasbi, W.; Muhida, R.

    2018-05-01

    Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.

  13. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  14. Small Wind Electric Systems An Alaska Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Alaska Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  15. Small Wind Electric Systems: A Vermont Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  16. REACTIVE POWER DEVICES IN SYSTEMS OF ELECTRIC TRACTION

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2010-04-01

    Full Text Available A comparative characteristic of different concepts and expressions for determination of reactive power in the circuits with non-sinusoidal electric values has been given. For the first Ukrainian electric locomotives of DE1 type with the system of DC electric traction, the values of reactive power after Budeany, Fryze, and also the differential, integral and generalized reactive powers have been determined. Some measures on reducing its consumption by the DC electric rolling stock have been suggested.

  17. Reliability evaluation of deregulated electric power systems for planning applications

    International Nuclear Information System (INIS)

    Ehsani, A.; Ranjbar, A.M.; Jafari, A.; Fotuhi-Firuzabad, M.

    2008-01-01

    In a deregulated electric power utility industry in which a competitive electricity market can influence system reliability, market risks cannot be ignored. This paper (1) proposes an analytical probabilistic model for reliability evaluation of competitive electricity markets and (2) develops a methodology for incorporating the market reliability problem into HLII reliability studies. A Markov state space diagram is employed to evaluate the market reliability. Since the market is a continuously operated system, the concept of absorbing states is applied to it in order to evaluate the reliability. The market states are identified by using market performance indices and the transition rates are calculated by using historical data. The key point in the proposed method is the concept that the reliability level of a restructured electric power system can be calculated using the availability of the composite power system (HLII) and the reliability of the electricity market. Two case studies are carried out over Roy Billinton Test System (RBTS) to illustrate interesting features of the proposed methodology

  18. Electricity for road transport, flexible power systems and wind power

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Lars Henrik; Ravn, H.; Meibom, P. (and others)

    2011-12-15

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles. The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle connection systems including technical regulation options and analysis of needs for standardisation. 4: Setting up scenarios covering potential developments for utilizing electric drive trains in road transport. Period: Up to year 2030. 5: Analysis of capacity constraints in the electricity grid (transmission and distribution) as consequence of increasing electricity demand, and new flexible consumption patterns from segments in the transport sector, and as consequence of increasing capacity on wind power in the system. 6: Setting up and analysis of combined scenarios covering both the heat and power system and the transport sector. (Author)

  19. Bus bar electrical feedthrough for electrorefiner system

    Science.gov (United States)

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  20. A fly-wheel drive with controlled-torque clutch for a reactors cooling circuit pumps; Entrainement des pompes du circuit de refrigeration d'un reacteur par volant a embrayage sous couple controle

    Energy Technology Data Exchange (ETDEWEB)

    Riettini, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-15

    After a theoretical study on the slowing down of a centrifugal pump, the motion equations have been checked by means of experimental tests. In order to have important slowing down times (which is the case of the cooling pumps of a research reactor) it is necessary to add a fly-wheel. To prevent troubles when starting, a block pump-fly-wheel with clutch under controlled torque was developed. It is so possible to start the fly-wheel progressively without increasing too much power of the driving motor. (author) [French] Apres une etude theorique sur le mouvement de ralentissement d'une pompe centrifuge, les equations du mouvement ont ete verifiees par des essais pratiques. Pour obtenir des temps de ralentissement importants (cas des pompes de refrigeration d'un reacteur de recherche) il est necessaire d'y adjoindre un volant d'inertie. Pour eviter les inconvenients au demarrage, on a etudie un ensemble pompe-volant avec embrayage sous couple controle. Cette solution permet de lancer progressivement le volant sans augmentation appreciable de la puissance du moteur d'entrainement. (auteur)

  1. Modified Electric System Cascade Analysis for optimal sizing of an autonomous Hybrid Energy System

    International Nuclear Information System (INIS)

    Zahboune, Hassan; Zouggar, Smail; Yong, Jun Yow; Varbanov, Petar Sabev; Elhafyani, Mohammed; Ziani, Elmostafa; Zarhloule, Yassine

    2016-01-01

    Ensuring sufficient generation for covering the power demand at minimum cost of the system are the goals of using renewable energy on isolated sites. Solar and wind capture are most widely used to generate clean electricity. Their availability is generally shifted in time. Therefore, it is advantageous to consider both sources simultaneously while designing an electrical power supply module of the studied system. A specific challenge in this context is to find the optimal sizes of the power generation and storage facilities, which would minimise the overall system cost and will still satisfy the demand. In this work, a new design algorithm is presented minimising the system cost, based on the Electric System Cascade Analysis and the Power Pinch Analysis. The algorithm takes as inputs the wind speed, solar irradiation, as well as cost data for the generation and storage facilities. It has also been applied to minimise the loss of power supply probability (LPSP) and to ensure the minimum of the used storage units without using outsourced electricity. The algorithm has been demonstrated on a case study with daily electrical energy demand of 18.7 kWh, resulting in a combination of PV Panels, wind turbine, and the batteries at minimal cost. For the conditions in Oujda city, the case study results indicate that it is possible to achieve 0.25 €/kWh Levelised Cost of Electricity for the generated power. - Highlights: • Renewable electricity systems for remote locations. • Optimal sizes of the power generation and storage facilities. • Improved Power Pinch procedure. • Achieves viable power cost levels.

  2. ISO New England: Results of Ancillary Service Pilot Programs, Alternative Technology Regulation Pilot Program and Demand Response Reserves Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, Jon [ISO New England, Holyoke, MA (United States); Yoshimura, Henry [ISO New England, Holyoke, MA (United States)

    2011-10-26

    This PowerPoint presentation compares performance of pilot program assets and generation resources in alternative technology regulation and demand response reserves for flywheels and residential electric thermal storage.

  3. Maintenance Optimization Schedulingof Electric Power SystemsConsidering Renewable EnergySources

    OpenAIRE

    Yu, Jia

    2015-01-01

    Maintenance is crucial in any industry to keep components in a reasonable functionalcondition, especially in electric power system, where maintenance is done so that thefrequency and the duration of a fault can be shortened, thus increasing the availability of acertain component. And the reliability of the whole electric power system can also beimproved. In the many deregulated electricity markets, reliability and economic drivingforces are the two aspects that system operators mainly conside...

  4. Small Wind Electric Systems: A U.S. Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The U.S. Consumer's Guide for Small Wind Electric systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy

  5. Improving Sound Systems by Electrical Means

    DEFF Research Database (Denmark)

    Schneider, Henrik

    to intelligent control and protection functionality and so on. In this work different strategies towards improvements of sound systems by electrical means was investigated considering the interfaces between each component and the performance of the full system. The strategies can be categorized by improvements...... reduction in the best case. This technology is very promising since it compensates for most distortion mechanisms of the transducer such as non-linearities, production variation, wear-n-tear, temperature changes and so on. Furthermore the accelerometer output can be used for protection purposes. The only...... of the bended copper foils to optimize the DC resistance. The DC resistance was reduced by 30 % compared to the starting point for a 10 turn toroidal inductor using this method. The combined work indicate that large sound system improvements are in reach by use of electrical means. Innovative solutions have...

  6. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. R and D of characteristic analysis of superconducting magnetic bearing; 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. chodendo jiki jikuuke no tokusei kaiseki no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This paper explains fiscal 1997 results of the development of technologies for characteristic analysis of superconducting magnetic bearings (SMB), the development aimed at putting a 10 MWh high temperature superconducting flywheel power storage system to practical use. Following fiscal 1996, calculation programs were prepared for a load capacity and bearing constant (spring constant, damping constant) on an axial type SMB, with validity of the program examined through comparison with experimental values. A finite element method was applied to a complex magnetic field by a magnet arrangement devised for the purpose of improving load capacity, dividing a superconductor into divided sections so that the effect of a complex magnetic field distribution could be reflected, determining the magnetization generating in each divided section by using a two-dimensional Bean model, and developing a method for calculating load capacity of each divided section by a magnetic moment method. A program was completed for calculating the load capacity and bearing constant of the entire bearing in the axial type SMB. The calculated value of the load capacity and the bearing constant showed a superior agreement with the experimental value. (NEDO)

  7. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  8. MSFC Skylab electrical power systems mission evaluation

    Science.gov (United States)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  9. Systemic design methodologies for electrical energy systems analysis, synthesis and management

    CERN Document Server

    Roboam, Xavier

    2012-01-01

    This book proposes systemic design methodologies applied to electrical energy systems, in particular analysis and system management, modeling and sizing tools. It includes 8 chapters: after an introduction to the systemic approach (history, basics & fundamental issues, index terms) for designing energy systems, this book presents two different graphical formalisms especially dedicated to multidisciplinary devices modeling, synthesis and analysis: Bond Graph and COG/EMR. Other systemic analysis approaches for quality and stability of systems, as well as for safety and robustness analysis tools are also proposed. One chapter is dedicated to energy management and another is focused on Monte Carlo algorithms for electrical systems and networks sizing. The aim of this book is to summarize design methodologies based in particular on a systemic viewpoint, by considering the system as a whole. These methods and tools are proposed by the most important French research laboratories, which have many scientific partn...

  10. Harmonic Analysis of Electric Vehicle Loadings on Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yijun A [University of Southern California, Department of Electrical Engineering; Xu, Yunshan [University of Southern California, Department of Electrical Engineering; Chen, Zimin [University of Southern California, Department of Electrical Engineering; Peng, Fei [University of Southern California, Department of Electrical Engineering; Beshir, Mohammed [University of Southern California, Department of Electrical Engineering

    2014-12-01

    With the increasing number of Electric Vehicles (EV) in this age, the power system is facing huge challenges of the high penetration rates of EVs charging stations. Therefore, a technical study of the impact of EVs charging on the distribution system is required. This paper is applied with PSCAD software and aimed to analyzing the Total Harmonic Distortion (THD) brought by Electric Vehicles charging stations in power systems. The paper starts with choosing IEEE34 node test feeder as the distribution system, building electric vehicle level two charging battery model and other four different testing scenarios: overhead transmission line and underground cable, industrial area, transformer and photovoltaic (PV) system. Then the statistic method is used to analyze different characteristics of THD in the plug-in transient, plug-out transient and steady-state charging conditions associated with these four scenarios are taken into the analysis. Finally, the factors influencing the THD in different scenarios are found. The analyzing results lead the conclusion of this paper to have constructive suggestions for both Electric Vehicle charging station construction and customers' charging habits.

  11. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  12. Comparison of all-electric secondary power systems for civil subsonic transports

    Science.gov (United States)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  13. Specification and Design of Electrical Flight System Architectures with SysML

    Science.gov (United States)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  14. Potential of reversible solid oxide cells as electricity storage system

    OpenAIRE

    Di Giorgio, Paolo; Desideri, Umberto

    2016-01-01

    Electrical energy storage (EES) systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES), and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC) working in both ...

  15. PEGASUS: a multi-megawatt nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements

  16. A generalization information management system applied to electrical distribution

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, K.I.; Neumann, S.A.; Nielsen, T.D.; Bower, P.K. (Empros Systems International (US)); Hughes, B.A.

    1990-07-01

    This article presents a system solution approach that meets the requirements being imposed by industry trends and the electric utility customer. Specifically, the solution addresses electric distribution management systems. Electrical distribution management is a particularly well suited area of application because it involves a high diversity of tasks, which are currently supported by a proliferation of automated islands. Islands of automation which currently exist include (among others) distribution operations, load management, automated mapping, facility management, work order processing, and planning.

  17. Electric motor systems in developing countries: Opportunities for efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1993-08-01

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  18. Enabling Communications in Heterogeneous Multi-Agent Systems: Electricity Markets Ontology

    Directory of Open Access Journals (Sweden)

    Gabriel SANTOS

    2016-11-01

    Full Text Available Electricity markets worldwide are complex and dynamic environments with very particular characteristics, resulting from their restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. The rising complexity and unpredictability in electricity markets has increased the need for the intervenient entities in foreseeing market behaviour. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. However, they have a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. This paper proposes the Electricity Markets Ontology, which integrates the essential necessary concepts related with electricity markets, while enabling an easier cooperation and adequate communication between related systems. Additionally, it can be extended and complemented according to the needs of other simulators and real systems in this area

  19. To an optimal electricity supply system. Possible bottlenecks in the development to an optimal electricity supply system in northwest Europe

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; De Joode, J.; Scheepers, M.J.J.

    2006-02-01

    It is uncertain how the electricity system in Europe, and in particular northwest Europe and the Netherlands, will develop in the next fifteen years. The main objective of this report is to identify possible bottlenecks that may hamper the northwest European electricity system to develop into an optimal system in the long term (until 2020). Subsequently, based on the identified bottlenecks, the report attempts to indicate relevant market response and policy options. To be able to identify possible bottlenecks in the development to an optimal electricity system, an analytical framework has been set up with the aim to identify possible (future) problems in a structured way. The segments generation, network, demand, balancing, and policy and regulation are analysed, as well as the interactions between these segments. Each identified bottleneck is assessed on the criteria reliability, sustainability and affordability. Three bottlenecks are analysed in more detail: (1) The increasing penetration of distributed generation (DG) and its interaction with the electricity network. Dutch policy could be aimed at: (a) Gaining more insight in the costs and benefits that result from the increasing penetration of DG; (b) Creating possibilities for DSOs to experiment with innovative (network management) concepts; (c) Introducing locational signals; and (d) Further analyse the possibility of ownership unbundling; (2) The problem of intermittency and its implications for balancing the electricity system. Dutch policy could be aimed at: (a) Creating the environment in which the market is able to respond in an efficient way; (b) Monitoring market responses; (c) Market coupling; and (d) Discussing the timing of the gate closure; and (3) Interconnection and congestion issues in combination with generation. Dutch policy could be aimed at: (a) Using the existing interconnection capacity as efficient as possible; (b) Identifying the causes behind price differences; and (c) Harmonise market

  20. Sensitivity analysis in electric system expansion planning study using DECADES

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.

    1998-01-01

    To cover the increasing electricity demand as a key economic and social factor of development, it is necessary to have adequate expansion police. The delay in installation of certain capabilities produces electricity deficit. In other hand, construction of oversized capacities generates excessive costs. Therefore it is important to acquire or develop adequate methodologies according to the country specific conditions to carry out electric expansion planning studies. The goal is to chose optimal solutions in order to reach sustainable development using owns energy resources and preserving the environment. In the paper the Decades methodology is used for electricity system expansion planning. Premises and main assumptions for the calculations are presented. Some electric system expansion cases are evaluated. We also present the results of a sensibility study varying the discount rate, loss of load probability energy not served cost, fuel availability and fuel and investment costs. The reliability criteria currently not used in Cuban electric system are evaluated. We discuss the results and display the conclusions and recommendations

  1. Commissioning of the JET flywheel-generator-convertor systems

    International Nuclear Information System (INIS)

    Huart, M.

    1985-01-01

    The JET Power Supply Scheme relies on a combination of generator convertors and mains driven transformer rectifiers to supply power to the four major pulse loads, namely the toroidal field coils, the poloidal field coils, the plasma positioning coils and the additional heating. The availability of a network with considerable pulse capability has allowed the generator-convertors to be dedicated, one to the poloidal field coils and the other to the toroidal field coils, thus making possible the use of diode in the output AC/DC convertors. Moreover, it has allowed the use of high p.u. machine reactance compatible with the pulse duty. The extent of supply covered by the Contract, awarded to GEC Large Machine Ltd of Rugby, includes the generators, driving/braking system, excitation system, control-monitoring and protection system, cooling system, output AC/DC convertors, inductors and DC busbars as well as all generator auxiliaries and cabling. Both generators were specified identical to reduce design, tool and spare costs

  2. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations...... are also discussed in the paper. Simulation results show that the proposed optimal operation strategy is an effective measure to achieve minimum energy costs of the PEV. The optimal operation strategy of the PEV and the optimal load response may have significant effects on the distribution power system......Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...

  3. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  4. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    Science.gov (United States)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  5. How Engineers Make Markets Organizing Electricity System Decarbonization

    DEFF Research Database (Denmark)

    Jenle, Rasmus Ploug; Pallesen, Trine

    2017-01-01

    construction process undertaken by scientists at the Technical University of Denmark, this article shows how engineers have approached the task by designing markets as technical control systems. It is demonstrated that EcoGrid has been designed by modeling a retail electricity market on three different...... conceptions of control systems as found in the discipline of control systems engineering. By tracing the origins of EcoGrid, this article documents the governing of electricity consumers through what we here call a synthetic market, i.e. a market artifact devised to attain goals. These findings about...

  6. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  7. Design and implementation of a hybrid electric motorcycle management system

    International Nuclear Information System (INIS)

    Hsu, Yuan-Yong; Lu, Shao-Yuan

    2010-01-01

    This paper presents a successful design and implement of a shunt-winding hybrid electric motorcycle management system which utilizes an electronic control unit (ECU) to integrate two major subsystems together, one being the traditional system of 125 c.c. internal combustion engine and the other an electric power motor. The hybrid electric motorcycle is assembled together robustly by these two major subsystems and eventually leads to successful road tests. The hybrid power system thus implemented can recharge its own batteries with electricity provided by the electrical recharge system and thus increasing the cruising mileages largely. The testing results obtained by using the proposed experimental platform indicate that lead-acid cells can boost their state of charge (SOC) by approximately 4% when it is operated under the hybrid mode for four driving cycles (about 1600 s) with the recharger on in a standard ECE-40 testing procedure. The results of road tests also clearly show that the pollutant emissions of the engine can be reduced at a lower speed or idling condition, and the problem of insufficient cruising range for electric motorcycles can also be greatly enhanced.

  8. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    International Nuclear Information System (INIS)

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  9. Environmental inventories for future electricity supply systems for Switzerland

    International Nuclear Information System (INIS)

    Dones, R.; Gantner, U.; Hirschberg, S.; Doka, G.; Knoepfel, I.

    1996-02-01

    This report provides the analysis of environmental inventories for selected electricity supply systems considered as possible options to meet the expected electricity demand in Switzerland in year 2030. The work was carried out by the Paul Scherrer Institute (PSI) and the Swiss Federal Institute of Technology Zurich (ETHZ), and was supported by the Swiss Association of Producers and Distributers of Electricity (VSE). Two possible electricity demand level cases were postulated by VSE, both under the basic assumption of economic growth: a high-growth demand case corresponding to a yearly increase of 2% from year 1995 to year 2010 and 1% from year 2010 to year 2030, and a low-growth demand case corresponding to a yearly increase of 1% from year 1995 to year 2010 and 0.5% from year 2010 to year 2030. The base (i.e. secured) supply in year 2030 will be, according to VSE, totally dominated by hydro with rather minor contributions from combined heat-and-power plants, small gas turbines, incinerators and solar photovoltaic plants. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually occur a gap between the postulated electricity demand and the base supply. VSE provided seven options to cover this gap, defined in terms of mixes with different contributions from gas, coal, nuclear and solar chains; in this context a distinction is also made with respect to shares of domestic and imported electricity. The systems considered represent advanced technologies, regarded as either typical or most suitable for the Swiss conditions. System-specific input to the present analysis has been partially generated based on direct contacts with the industry. Life Cycle Analysis (LCA) was used to establish environmental inventories for the systems analysed. The analysis has been performed on three levels: 1) individually for each system considered, 2) comparison of systems, 3) comparison of supply

  10. Fujian electric system analysis and nuclear power planning

    International Nuclear Information System (INIS)

    Lin Jianwen; Fu Qiang; Cheng Ping

    1994-11-01

    The objective of the study is to conduct a long term electric expansion planning and nuclear power planning for Fujian Province. The Wien Automatic System Planning Package (WASP-III) is used to optimize the electric system. Probabilistic Simulation is one of the most favorite techniques for middle and long term generation and production cost planning of electric power system. The load duration curve is obtained by recording the load data of a time interval into a monotone non-increasing sense. Polynomial function is used to describe the load duration curve (LDC), and this LDC is prepared for probabilistic simulation in WASP-III. WASP-III is a dynamic optimizing module in the area of supply modelling. It could find out the economically optimal expansion plan for a power generating system over a period of up to thirty years, with the constraints given by the planners. The optimum is evaluated in terms of minimum discounted total costs. Generating costs, amount of energy not served and reliability of the system are analyzed in the system expansion planning by using the probabilistic simulation method. The following conclusions can be drawn from this study. Hydro electricity is the cheapest one of all available technologies and resources. After the large hydro station is committed at the end of 1995, more base load power plants are needed in the system. Coal-fired power plants with capacity of 600 MWe will be the most competitive power plants in the future of the system. At the end of the studying period, about half of the stalled capacity will be composed of these power plants. Nuclear power plants with capacity of 600 MWe are suitable for the system after the base load increases to a certain level. Oil combustion units will decrease the costs of the system. (12 tabs., 6 figs.)

  11. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  12. Damping System for Torsional Resonances in Generator Shafts Using a Feedback Controlled Buffer Storage of Magnetic Energy at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Kaesemann, C.-P.; Huart, M.; Mueller, P.; Sigalov, A.

    2006-01-01

    The electrical power and energy for ASDEX Upgrade (AUG) is provided by three separate pulsed networks based on flywheel generators. Major damages at couplings of the shaft of the synchronous generator EZ4 (220 MVA / 600 MWs) were discovered during a routine check. The damage can only be explained by torsional resonances in the generator shaft which are excited by active power transients from the converter loads. For generator protection, torque sensors were installed near the coupling between the flywheel and the rotor. They cause an early termination of plasma experiments if a predefined torque level is exceeded. These terminations limited the achievable plasma current flattop time of AUG significantly. Since a low natural damping of the torsional resonances was identified as a major cause of the phenomena observed, novel feedback controlled DC circuits were developed providing electromagnetic damping for the generator shafts in case of excitation. Each damping circuit consists of a DC choke, acting as a buffer storage of magnetic energy, fed by a thyristor converter. The current reference for the converter is derived from the torque sensor signals. This enables the choke current to alternate with the measured natural frequency of the shaft assembly. Thus, with proper phasing, torsional resonances in generator shaft systems weighing more than 100 tons can be damped with little additional power. Since April 2003, the damping circuits have been routinely operated during all plasma experiments. Despite the low damping power used, torsional resonances could be reduced to a value that avoids a trip signal from the torque sensors. This paper describes the results from analysing, designing and testing of the feedback controlled buffer storage of magnetic energy, representing an effective and low cost solution for damping torsional resonances in electric power systems. It will present the layout, analyse the results of measurements obtained during commissioning and

  13. Development of energy storage system for DC electric rolling stock applying electric double layer capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Sekijima, Y.; Kudo, Y.; Inui, M. [Central Japan Railway Co., Aichi (Japan); Monden, Y.; Toda, S.; Aoyama, I. [Toshiba Corp., Tokyo (Japan)

    2006-07-01

    This paper provided details of an energy storage system designed for use with DC electric rolling stock through the application of an electric double layer capacitor (EDLC). The EDLC was selected due to its long life-span and its low operational costs. Testing was conducted to assess the system's basic control function, acceleration using stored energy, and behaviour during regenerative brake failure. A control circuit chip was used in the DC electric rolling stock on an inverter of the energy storage system. Tests confirmed that the control method was effective for actual rolling stocks. A full-scale energy storage system for installation on series 313 locomotives was then constructed. Braking energy was generated only from a regenerative brake. In case of brake failure, braking energy was generated from an air brake was well as an electric brake. Data from a field test conducted at the Tokaido and Chuo railway lines showed a capacity of 0.6 kWh. The EDLC was used to reduce peak air brake energy. It was concluded that storing 0.28 kW of brake energy in the EDLC can reduce peaks of air brake energy in high speed ranges. Experimental equipment was used to confirm use of the system with 0.56 kWh of EDLC, the average energy of air brake used in regenerative energy failure. 1 tab., 10 figs.

  14. Environmental inventories for future electricity supply systems for Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R; Gantner, U; Hirschberg, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Doka, G; Knoepfel, I [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1996-02-01

    This report provides the analysis of environmental inventories for selected electricity supply systems considered as possible options to meet the expected electricity demand in Switzerland in year 2030. Two possible electricity demand level cases were postulated by VSE, both under the basic assumption of economic growth: a high-growth demand case corresponding to a yearly increase of 2% from year 1995 to year 2010 and 1% from year 2010 to year 2030, and a low-growth demand case corresponding to a yearly increase of 1% from year 1995 to year 2010 and 0.5% from year 2010 to year 2030. The base (i.e. secured) supply in year 2030 will be, according to VSE, totally dominated by hydro with rather minor contributions from combined heat-and-power plants, small gas turbines, incinerators and solar photovoltaic plants. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually occur a gap between the postulated electricity demand and the base supply. VSE provided seven options to cover this gap, defined in terms of mixes with different contributions from gas, coal, nuclear and solar chains; in this context a distinction is also made with respect to shares of domestic and imported electricity. The systems considered represent advanced technologies, regarded as either typical or most suitable for the Swiss conditions. System-specific input to the present analysis has been partially generated based on direct contacts with the industry. Life Cycle Analysis (LCA) was used to establish environmental inventories for the systems analysed. The analysis has been performed on three levels:(1) individually for each system considered, (2) comparison of systems, (3) comparison of supply options. Results are also provided for these three levels.

  15. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  16. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  17. Automating a spacecraft electrical power system using expert systems

    Science.gov (United States)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  18. Optimizing electrical distribution systems

    International Nuclear Information System (INIS)

    Scott, W.G.

    1990-01-01

    Electrical utility distribution systems are in the middle of an unprecedented technological revolution in planning, design, maintenance and operation. The prime movers of the revolution are the major economic shifts that affect decision making. The major economic influence on the revolution is the cost of losses (technical and nontechnical). The vehicle of the revolution is the computer, which enables decision makers to examine alternatives in greater depth and detail than their predecessors could. The more important elements of the technological revolution are: system planning, computers, load forecasting, analytical systems (primary systems, transformers and secondary systems), system losses and coming technology. The paper is directed towards the rather unique problems encountered by engineers of utilities in developing countries - problems that are being solved through high technology, such as the recent World Bank-financed engineering computer system for Sri Lanka. This system includes a DEC computer, digitizer, plotter and engineering software to model the distribution system via a digitizer, analyse the system and plot single-line diagrams. (author). 1 ref., 4 tabs., 6 figs

  19. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  20. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    Science.gov (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.