WorldWideScience

Sample records for fluoroquinolone resistance genes

  1. SOS response and its regulation on the fluoroquinolone resistance.

    Science.gov (United States)

    Qin, Ting-Ting; Kang, Hai-Quan; Ma, Ping; Li, Peng-Peng; Huang, Lin-Yan; Gu, Bing

    2015-12-01

    Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.

  2. Phenotypic and genotypic evaluation of fluoroquinolone resistance in clinical isolates of Staphylococcus aureus in Tehran.

    Science.gov (United States)

    Aligholi, Marzieh; Mirsalehian, Akbar; Halimi, Shahnaz; Imaneini, Hossein; Taherikalani, Morovat; Jabalameli, Fereshteh; Asadollahi, Parisa; Mohajer, Babak; Abdollahi, Alireza; Emaneini, Mohammad

    2011-09-01

    Fluoroquinolones are broad-spectrum antibiotics widely used in the treatment of bacterial infections such as Staphylococcus aureus isolates. Resistance to these antibiotics is increasing. The occurrence of mutations in the grlA and gyrA loci were evaluated in 69 fluoroquinolone-resistant S. aureus isolates from 2 teaching hospitals of Tehran University of Medical Sciences. Out of the 165 S. aureus isolates, 87 (52.7%) were resistant to methicillin and 69 (41.8%) were resistant to fluoroquinolone. Fluoroquinolone-resistant S. aureus isolates had a mutation at codon 80 in the grlA gene and different mutational combinations in the gyrA gene. These mutational combinations included 45 isolates at codons 84 and 86, 23 isolates at codons 84, 86 and 106 and 1 isolate at codons 84, 86 and 90. Fluoroquinolone-resistant S. aureus isolates were clustered into 33 PFGE types. The findings of this study show that the fluoroquinolone-resistant S. aureus strains isolated in the teaching hospitals in Tehran had multiple mutations in the QRDRs region of both grlA and gyrA genes.

  3. Fluoroquinolone Resistance Mechanisms in an Escherichia coli Isolate, HUE1, Without Quinolone Resistance-Determining Region Mutations

    Directory of Open Access Journals (Sweden)

    Toyotaka eSato

    2013-05-01

    Full Text Available Fluoroquinolone resistance can cause major clinical problems. Here, we investigated fluoroquinolone resistance mechanisms in a clinical Escherichia coli isolate, HUE1, which had no mutations quinolone resistance-determining regions (QRDRs of DNA gyrase and topoisomerase IV. HUE1 demonstrated MICs that exceeded the breakpoints for ciprofloxacin, levofloxacin, and norfloxacin. HUE1 harbored oqxAB and qnrS1 on distinct plasmids. In addition, it exhibited lower intracellular ciprofloxacin concentrations and higher mRNA expression levels of efflux pumps and their global activators than did reference strains. The genes encoding AcrR (local AcrAB repressor and MarR (MarA repressor were disrupted by insertion of the transposon IS3-IS629 and a frameshift mutation, respectively. A series of mutants derived from HUE1 were obtained by plasmid curing and gene knockout using homologous recombination. Compared to the MICs of the parent strain HUE1, the fluoroquinolone MICs of these mutants indicated that qnrS1, oqxAB, acrAB, acrF, acrD, mdtK, mdfA, and tolC contributed to the reduced susceptibility to fluoroquinolone in HUE1. Therefore, fluoroquinolone resistance in HUE1 is caused by concomitant acquisition of QnrS1 and OqxAB and overexpression of AcrAB−TolC and other chromosome-encoded efflux pumps. Thus, we have demonstrated that QRDR mutations are not absolutely necessary for acquiring fluoroquinolone resistance in E. coli.

  4. [Impact of fluoroquinolone use on multidrug-resistant bacteria emergence].

    Science.gov (United States)

    Nseir, S; Ader, F; Marquette, C-H; Durocher, A

    2005-01-01

    During the last two decades, fluoroquinolone use has significantly increased in Europe and in the USA. This could be explained by the arrival of newer fluoroquinolones with antipneumoccal activity. Increased use of fluoroquinolones is associated with higher rates of bacterial resistance to these antibiotics. Resistance of Gram-negative bacilli to fluoroquinolones is increasing in industrialized countries. In addition, fluoroquinolone use has been identified as a risk factor for colonization and infection to methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanni, extending-spectrum beta-lactamase producing Gram negative bacilli, and multidrug-resistant bacteria. Nosocomial infections due to multidrug-resistant bacteria are associated with higher mortality and morbidity rates. This could be related to more frequent inappropriate initial antibiotic treatment in these patients. Limiting the use of fluoroquinolones, limiting the duration of treatment with fluoroquinolones, and using appropriate dosage of these antibiotics could be suggested to reduce resistance to these antibiotics and to reduce the emergence of multidrug-resistant bacteria.

  5. Global Fluoroquinolone Resistance Epidemiology and Implictions for Clinical Use

    Science.gov (United States)

    Dalhoff, Axel

    2012-01-01

    This paper on the fluoroquinolone resistance epidemiology stratifies the data according to the different prescription patterns by either primary or tertiary caregivers and by indication. Global surveillance studies demonstrate that fluoroquinolone resistance rates increased in the past years in almost all bacterial species except S. pneumoniae and H. influenzae, causing community-acquired respiratory tract infections. However, 10 to 30% of these isolates harbored first-step mutations conferring low level fluoroquinolone resistance. Fluoroquinolone resistance increased in Enterobacteriaceae causing community acquired or healthcare associated urinary tract infections and intraabdominal infections, exceeding 50% in some parts of the world, particularly in Asia. One to two-thirds of Enterobacteriaceae producing extended spectrum β-lactamases were fluoroquinolone resistant too. Furthermore, fluoroquinolones select for methicillin resistance in Staphylococci. Neisseria gonorrhoeae acquired fluoroquinolone resistance rapidly; actual resistance rates are highly variable and can be as high as almost 100%, particularly in Asia, whereas resistance rates in Europe and North America range from 30% in established sexual networks. In general, the continued increase in fluoroquinolone resistance affects patient management and necessitates changes in some guidelines, for example, treatment of urinary tract, intra-abdominal, skin and skin structure infections, and traveller's diarrhea, or even precludes the use in indications like sexually transmitted diseases and enteric fever. PMID:23097666

  6. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter.

    OpenAIRE

    Neyfakh, A A; Borsch, C M; Kaatz, G W

    1993-01-01

    The gene of the Staphylococcus aureus fluoroquinolone efflux transporter protein NorA confers resistance to a number of structurally dissimilar drugs, not just to fluoroquinolones, when it is expressed in Bacillus subtilis. NorA provides B. subtilis with resistance to the same drugs and to a similar extent as the B. subtilis multidrug transporter protein Bmr does. NorA and Bmr share 44% sequence similarity. Both the NorA- and Bmr-conferred resistances can be completely reversed by reserpine.

  7. Resistance patterns, prevalence, and predictors of fluoroquinolones resistance in multidrug resistant tuberculosis patients

    Directory of Open Access Journals (Sweden)

    Nafees Ahmad

    2016-01-01

    Conclusion: The high degree of drug resistance observed, particularly to fluoroquinolones, is alarming. We recommend the adoption of more restrictive policies to control non-prescription sale of fluoroquinolones, its rational use by physicians, and training doctors in both private and public–private mix sectors to prevent further increase in fluoroquinolones resistant Mycobacterium tuberculosis strains.

  8. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    LENUS (Irish Health Repository)

    Costa, Sofia SANTOS

    2011-10-27

    Abstract Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones. Results Augmented efflux activity was detected in 12 out of 52 isolates and correlated with increased resistance to fluoroquinolones. Addition of efflux inhibitors did not result in the full reversion of the fluoroquinolone resistance phenotype, yet it implied a significant decrease in the resistance levels, regardless of the type(s) of mutation(s) found in the quinolone-resistance determining region of grlA and gyrA genes, which accounted for the remaining resistance that was not efflux-mediated. Expression analysis of the genes coding for the main efflux pumps revealed increased expression only in the presence of inducing agents. Moreover, it showed that not only different substrates can trigger expression of different EP genes, but also that the same substrate can promote a variable response, according to its concentration. We also found isolates belonging to the same clonal type that showed different responses towards drug exposure, thus evidencing that highly related clinical isolates may diverge in the efflux-mediated response to noxious agents. The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds. Conclusions The results obtained in this work do not exclude the importance of mutations in resistance to fluoroquinolones in S. aureus, yet they underline the contribution of efflux systems for the emergence of high-level resistance. All together, the results presented in this study show the potential

  9. Characterization of fluoroquinolone resistance and qnr diversity in Enterobacteriaceae from municipal biosolids.

    Directory of Open Access Journals (Sweden)

    Ella eKaplan

    2013-06-01

    Full Text Available Municipal biosolids produced during activated sludge treatment applied in waste water treatment plants, are significant reservoirs of antibiotic resistance, since they assemble both natural and fecal microbiota, as well as residual concentrations of antibiotic compounds. This raises major concerns regarding the environmental and epidemiological consequences of using them as fertilizers for crops. The second generation fluoroquinolone ciprofloxacin is probably the most abundant antibiotic compound detected in municipal biosolids due to its widespread use and sorption properties. Although fluoroquinolone resistance was originally thought to result from mutations in bacterial gyrase and topoisomerase IV genes, it is becoming apparent that it is also attributed to plasmid-associated resistance factors, which may propagate environmental antibiotic resistance. The objective of this study was to assess the impact of the activated sludge process on fluoroquinolone resistance. The scope of resistances and mobile genetic mechanisms associated with fluoroquinolone resistance were evaluated by screening large collections of ciprofloxacin-resistant Enterobacteriaceae strains from sludge (n=112 and from raw sewage (n=89. Plasmid-mediated quinolone resistance determinants (qnrA, B and S were readily detected in isolates from both environments, the most dominant being qnrS. Interestingly, all qnr variants were significantly more abundant in sludge isolates than in the isolates from raw sewage. Almost all of ciprofloxacin-resistant isolates were resistant to multiple antibiotic compounds. The sludge isolates were on the whole resistant to a broader range of antibiotic compounds than the raw sewage isolates; however this difference was not statistically significant. Collectively, this study indicates that the activated sludge selects for multiresistant bacterial strains, and that mobile quinolone-resistance elements may have a selective advantage in the activated

  10. Pyrosequencing for Rapid Detection of Mycobacterium tuberculosis Resistance to Rifampin, Isoniazid, and Fluoroquinolones

    Science.gov (United States)

    Bravo, Lulette Tricia C.; Tuohy, Marion J.; Ang, Concepcion; Destura, Raul V.; Mendoza, Myrna; Procop, Gary W.; Gordon, Steven M.; Hall, Geraldine S.; Shrestha, Nabin K.

    2009-01-01

    After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs. PMID:19846642

  11. A novel method to discover fluoroquinolone antibiotic resistance (qnr genes in fragmented nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Boulund Fredrik

    2012-12-01

    Full Text Available Abstract Background Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. Results In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. Conclusions The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.

  12. Risk factors associated with fluoroquinolone-resistant enterococcal urinary tract infections in a tertiary care university hospital in north India.

    Science.gov (United States)

    Banerjee, Tuhina; Anupurba, Shampa

    2016-10-01

    Fluoroquinolone resistance in both Gram-positive and Gram-negative bacteria has increased with the widespread use of fluoroquinolones. Fluoroquinolone resistance in Gram-negative bacilli has been widely studied, though staphylococci and enterococci are also notably resistant. Enterococci being the second most common cause of healthcare-associated urinary tract infections (UTIs) fluoroquinolones are often the drug of choice. This study was undertaken to assess the risk factors associated with fluoroquinolone-resistant enterococcal UTI in a tertiary level health facility in north India. A total of 365 patients with UTI caused by enterococci were studied over a period of two years. Patients with ciprofloxacin-resistant and susceptible UTI were considered as cases and controls, respectively. Resistance profile of the isolates against common antibiotics was studied by minimum inhibitory concentration (MIC) determination. Mechanisms for fluoroquinolone resistance was studied by efflux pump inhibitor activity and multiplex PCR targeting the qnr genes. A total of 204 (55.89%) cases and 161 (44.1%) controls were identified. The fluoroquinolone-resistant isolates were significantly resistant to ampicillin, high strength aminoglycosides and vancomycin. The majority (78%) of the resistant isolates showed efflux pump activity. Treatment in indoor locations, presence of urinary catheters and pregnancy along with recent exposure to antibiotics especially fluoroquinolones, third generation cephalosporins and piperacillin-tazobactam were identified as independent risk factors. Our results showed that fluoroquinolone resistance in enterococcal UTI was largely associated with indoor usage of antibiotics and use of indwelling devices. Knowledge of risk factors is important to curb this emergence of resistance.

  13. Enhanced resistance to fluoroquinolones in laboratory-grown mutants & clinical isolates of Shigella due to synergism between efflux pump expression & mutations in quinolone resistance determining region

    Directory of Open Access Journals (Sweden)

    Neelam Taneja

    2015-01-01

    Full Text Available Background & objectives: There is a worldwide emergence of fluoroquinolone resistance in Shigella species. To understand the molecular mechanisms associated with fluoroquinolone resistance, naturally occurring fluoroquinolone-resistant strains and laboratory-induced spontaneous mutants of Shigella spp. were used and the relative contributions of acrAB-tolC efflux pumps, gyrase and topoisomerase target gene mutations towards fluoroquinolone resistance were determined. Methods: Eight Shigella flexneri and six S. dysenteriae clinical isolates were studied. Three consecutive mutants resistant to ciprofloxacin for S. flexneri SFM1 (≥0.25 µg/ml, SFM2 (≥4 µg/ml and SFM3 (≥32 µg/ml were selected in 15 steps from susceptible isolates by serial exposure to increasing concentrations of nalidixic acid and ciprofloxacin. Similarly, two mutants for S. dysenteriae SDM1 (≥0.25 µg/ml and SDM2 (≥4 µg/ml were selected in eight steps. After PCR amplification sequence analyses of gyrase and topoisomerase target genes were performed. Expression of efflux genes acrA, acrB, acrR and tolC was measured using real-time PCR. Results: Mutations were observed in gyrA Ser [83]→Leu, Asp [87]→Asn/Gly, Val [196]→Ala and in parC Phe [93]→Val, Ser [80]→Ile, Asp [101]→Glu and Asp [110]→Glu. Overall, acrA and acrB overexpression was associated with fluoroquinolone resistance ( p0 <0.05; while tolC and acrR expression levels did not. Interpretation & conclusions: Fluoroquinolone resistance in Shigella spp. is the end product of either a single or a combination of mutations in QRDRs and/ or efflux activity. Novel polymorphisms were observed at Val [196]→Ala in gyrA in clinical isolates and Phe [93]→Val, Asp [101]→Glu, Asp [110]→Glu and in parC in majority of laboratory-grown mutants.

  14. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains

    Directory of Open Access Journals (Sweden)

    Miseon Park

    2014-01-01

    Full Text Available Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.

  15. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges.

    Science.gov (United States)

    Rutgersson, Carolin; Fick, Jerker; Marathe, Nachiket; Kristiansson, Erik; Janzon, Anders; Angelin, Martin; Johansson, Anders; Shouche, Yogesh; Flach, Carl-Fredrik; Larsson, D G Joakim

    2014-07-15

    There is increasing concern that environmental antibiotic pollution promotes transfer of resistance genes to the human microbiota. Here, fluoroquinolone-polluted river sediment, well water, irrigated farmland, and human fecal flora of local villagers within a pharmaceutical industrial region in India were analyzed for quinolone resistance (qnr) genes by quantitative PCR. Similar samples from Indian villages farther away from industrial areas, as well as fecal samples from Swedish study participants and river sediment from Sweden, were included for comparison. Fluoroquinolones were detected by MS/MS in well water and soil from all villages located within three km from industrially polluted waterways. Quinolone resistance genes were detected in 42% of well water, 7% of soil samples and in 100% and 18% of Indian and Swedish river sediments, respectively. High antibiotic concentrations in Indian sediment coincided with high abundances of qnr, whereas lower fluoroquinolone levels in well water and soil did not. We could not find support for an enrichment of qnr in fecal samples from people living in the fluoroquinolone-contaminated villages. However, as qnr was detected in 91% of all Indian fecal samples (24% of the Swedish) it suggests that the spread of qnr between people is currently a dominating transmission route.

  16. Comparison of the in vitro activities of several new fluoroquinolones against respiratory pathogens and their abilities to select fluoroquinolone resistance.

    Science.gov (United States)

    Boswell, F J; Andrews, J M; Jevons, G; Wise, R

    2002-10-01

    In this study the in vitro activities and pharmacodynamic properties of moxifloxacin, levofloxacin, gatifloxacin and gemifloxacin were compared on recently isolated respiratory pathogens and strains of Streptococcus pneumoniae with known mechanisms of fluoroquinolone resistance. In addition, the resistance selection frequencies of moxifloxacin and levofloxacin on three recently isolated respiratory pathogens and four strains of S. pneumoniae with known mechanisms of fluoroquinolone resistance were investigated. The four fluoroquinolones had similar activities against both Moraxella catarrhalis (MIC(90)s 0.015-0.06 mg/L) and Haemophilus influenzae (MIC(90)s 0.008-0.03 mg/L). More marked differences in activity were noted with S. pneumoniae, with MIC(90)s of 0.25, 1, 0.5 and 0.03 mg/L for moxifloxacin, levofloxacin, gatifloxacin and gemifloxacin, respectively. With the S. pneumoniae strains, the four fluoroquinolones exhibited similar concentration-dependent time-kill kinetics. The resistance selection frequencies of levofloxacin were higher than those of moxifloxacin at concentrations equivalent to those at the end of the dosing interval. Therefore moxifloxacin may have less of an impact on the development of resistance than levofloxacin.

  17. Induction of prophages by fluoroquinolones in Streptococcus pneumoniae: implications for emergence of resistance in genetically-related clones.

    Directory of Open Access Journals (Sweden)

    Elena López

    Full Text Available Antibiotic resistance in Streptococcus pneumoniae has increased worldwide by the spread of a few clones. Fluoroquinolone resistance occurs mainly by alteration of their intracellular targets, the type II DNA topoisomerases, which is acquired either by point mutation or by recombination. Increase in fluoroquinolone-resistance may depend on the balance between antibiotic consumption and the cost that resistance imposes to bacterial fitness. In addition, pneumococcal prophages could play an important role. Prophage induction by fluoroquinolones was confirmed in 4 clinical isolates by using Southern blot hybridization. Clinical isolates (105 fluoroquinolone-resistant and 160 fluoroquinolone-susceptible were tested for lysogeny by using a PCR assay and functional prophage carriage was studied by mitomycin C induction. Fluoroquinolone-resistant strains harbored fewer inducible prophages (17/43 than fluoroquinolone-susceptible strains (49/70 (P = 0.0018. In addition, isolates of clones associated with fluoroquinolone resistance [CC156 (3/25; CC63 (2/20, and CC81 (1/19], had lower frequency of functional prophages than isolates of clones with low incidence of fluoroquinolone resistance [CC30 (4/21, CC230 (5/20, CC62 (9/21, and CC180 (21/30]. Likewise, persistent strains from patients with chronic respiratory diseases subjected to fluoroquinolone treatment had a low frequency of inducible prophages (1/11. Development of ciprofloxacin resistance was tested with two isogenic strains, one lysogenic and the other non-lysogenic: emergence of resistance was only observed in the non-lysogenic strain. These results are compatible with the lysis of lysogenic isolates receiving fluoroquinolones before the development of resistance and explain the inverse relation between presence of inducible prophages and fluoroquinolone-resistance.

  18. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria.

    Science.gov (United States)

    Buffet-Bataillon, Sylvie; Tattevin, Pierre; Maillard, Jean-Yves; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2016-01-01

    Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.

  19. Subspecies distribution and macrolide and fluoroquinolone resistance genetics of Mycobacterium abscessus in Korea.

    Science.gov (United States)

    Kim, J; Sung, H; Park, J-S; Choi, S-H; Shim, T-S; Kim, M-N

    2016-01-01

    Treating Mycobacterium abscessus infections with antimicrobials remains difficult, possibly due to drug resistance. To investigate the subspecies distribution of M. abscessus and its correlation with antibiotic susceptibility and the genetics of antibiotic resistance, focusing on macrolides and fluoroquinolones, in the Republic of Korea. A total of 53 M. abscessus isolates were identified to the subspecies level by sequencing of hsp65 and erm(41). The minimal inhibitory concentrations (MICs) of clarithromycin (CLM) and ciprofloxacin (CFX) were determined using Sensititre™ RAPMYCO plates. The rrl, gyrA and gyrB genes were sequenced to elucidate the molecular mechanisms of macrolide and fluoroquinolone resistance. Isolates included 22 M. abscessus subsp. abscessus and 31 M. abscessus subsp. bolletii. erm(41) sequences showing subspecies-specific deletions and sequence variations in the 28th nucleotide were concordant with inducible CLM resistance; however, mutations in rrl were not detected. Low- and high-level CFX resistance was observed in respectively 19 (35.8%) and 10 (18.9%) of the 53 clinical isolates, regardless of subspecies. However, no non-synonymous mutations were detected in gyrA or gyrB. Sequencing of the erm gene and subspeciation of M. abscessus may be used to predict inducible macrolide susceptibility. Further studies of the relationship between specific mutations in gyrA or gyrB to MIC change are required.

  20. Efficient recovery of fluoroquinolone-susceptible and fluoroquinolone-resistant Escherichia coli strains from frozen samples.

    Science.gov (United States)

    Lautenbach, Ebbing; Santana, Evelyn; Lee, Abby; Tolomeo, Pam; Black, Nicole; Babson, Andrew; Perencevich, Eli N; Harris, Anthony D; Smith, Catherine A; Maslow, Joel

    2008-04-01

    We assessed the rate of recovery of fluoroquinolone-resistant and fluoroquinolone-susceptible Escherichia coli isolates from culture of frozen perirectal swab samples compared with the results for culture of the same specimen before freezing. Recovery rates for these 2 classes of E. coli were 91% and 83%, respectively. The majority of distinct strains recovered from the initial sample were also recovered from the frozen sample. The strains that were not recovered were typically present only in low numbers in the initial sample. These findings emphasize the utility of frozen surveillance samples.

  1. Prevalence and characteristics of extended-spectrum β-lactamase and plasmid-mediated fluoroquinolone resistance genes in Escherichia coli isolated from chickens in Anhui province, China.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The aim of this study was to characterize the prevalence of extended-spectrum β-lactamase (ESBL genes and plasmid-mediated fluoroquinolone resistance (PMQR determinants in 202 Escherichia coli isolates from chickens in Anhui Province, China, and to determine whether ESBL and PMQR genes co-localized in the isolates. Antimicrobial susceptibility for 12 antimicrobials was determined by broth microdilution. Polymerase chain reactions (PCRs, DNA sequencing, and pulsed field gel electrophoresis (PFGE were employed to characterize the molecular basis for β-lactam and fluoroquinolone resistance. High rates of antimicrobial resistance were observed, 147 out of the 202 (72.8% isolates were resistant to at least 6 antimicrobial agents and 28 (13.9% of the isolates were resistant to at least 10 antimicrobials. The prevalence of blaCTX-M, blaTEM-1 and blaTEM-206 genes was 19.8%, 24.3% and 11.9%, respectively. Seventy-five out of the 202 (37.1% isolates possessed a plasmid-mediated quinolone resistance determinant in the form of qnrS (n = 21; this determinant occurred occasionally in combination with aac(6'-1b-cr (n = 65. Coexistence of ESBL and/or PMQR genes was identified in 31 of the isolates. Two E. coli isolates carried blaTEM-1, blaCTX-M and qnrS, while two others carried blaCTX-M, qnrS and aac(6'-1b-cr. In addition, blaTEM-1, qnrS and aac(6'-1b-cr were co-located in two other E. coli isolates. PFGE analysis showed that these isolates were not clonally related and were genetically diverse. To the best of our knowledge, this study is the first to describe detection of TEM-206-producing E. coli in farmed chickens, and the presence of blaTEM-206, qnrS and aac(6'-1b-cr in one of the isolates.

  2. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation.

    Science.gov (United States)

    Phillips-Jones, Mary K; Harding, Stephen E

    2018-04-01

    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics-the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that

  3. High-level fluoroquinolone resistant Salmonella enterica serovar Kentucky ST198 epidemic clone with IncA/C conjugative plasmid carrying bla(CTX-M-25) gene.

    Science.gov (United States)

    Wasyl, Dariusz; Kern-Zdanowicz, Izabela; Domańska-Blicharz, Katarzyna; Zając, Magdalena; Hoszowski, Andrzej

    2015-01-30

    Multidrug resistant Salmonella Kentucky strains have been isolated from turkeys in Poland since 2009. Multiple mutations within chromosomal genes gyrA and parC were responsible for high-level ciprofloxacin resistance. One of the isolates was extended spectrum β-lactamase- (ESBL) positive: the strain 1643/2010 carried a conjugative 167,779 bps plasmid of IncA/C family. The sequence analysis revealed that it carried a blaCTX-M-25 gene and an integron with another β-lactamase encoding gene-blaOXA-21. This is the first known report of a CTX-M-25 encoding gene both in Poland and in Salmonella Kentucky world-wide, as well as in the IncA/C plasmid. Analysis of the integron showed a novel arrangement of gene cassettes-aacA4, aacC-A1 and blaOXA-21 where the latter might result from an intergeneric gene transfer. The study confirmed Salmonella Kentucky population isolated in Poland belongs to global epidemics of high level fluoroquinolone resistant clone ST198 that can carry rare β-lactamase genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Emergence of fluoroquinolone resistance among drug resistant tuberculosis patients at a tertiary care facility in Karachi, Pakistan.

    Science.gov (United States)

    Zaidi, Syed Mohammad Asad; Haseeb, Abdul; Habib, Shifa Salman; Malik, Amyn; Khowaja, Saira; SaifUllah, Nausheen; Rizvi, Nadeem

    2017-07-25

    Pakistan is classified as one of the high multi-drug resistant tuberculosis (MDR-TB) burden countries. A poorly regulated private sector, over-prescription of antibiotics and self-medication has led to augmented rates of drug-resistance in the country. Pakistan's first national anti-tuberculosis drug resistance survey identified high prevalence of fluoroquinolone resistance among MDR-TB patients. Further institutional evidence of fluoroquinolone drug-resistance can support re-evaluation of treatment regimens as well as invigorate efforts to control antibiotic resistance in the country. In this study, data for drug-susceptibility testing (DST) was retrospectively analyzed for a total of 133 patients receiving MDR-TB treatment at the Chest Department of Jinnah Postgraduate Medical Center, Karachi, Pakistan. Frequency analyses for resistance patterns was carried out and association of fluoroquinolone (ofloxacin) resistance with demographics and past TB treatment category were assessed. Within first-line drugs, resistance to isoniazid was detected in 97.7% of cases, followed by rifampicin (96.9%), pyrazinamide (86.4%), ethambutol (69.2%) and streptomycin (64.6%). Within second-line drugs, ofloxacin resistance was detected in 34.6% of cases. Resistance to ethionamide and amikacin was 2.3% and 1.6%, respectively. Combined resistance of oflaxacin and isoniazid was detected in 33.9% of cases. Age, gender and past TB treatment category were not significantly associated with resistance to ofloxacin. Fluoroquinolone resistance was observed in an alarmingly high proportion of MDR-TB cases. Our results suggest caution in their use for empirical management of MDR-TB cases and recommended treatment regimens for MDR-TB may require re-evaluation. Greater engagement of private providers and stringent pharmacy regulations are urgently required.

  5. ramR Mutations Affecting Fluoroquinolone Susceptibility in Epidemic Multidrug-Resistant Salmonella enterica Serovar Kentucky ST198

    Directory of Open Access Journals (Sweden)

    Axel eCloeckaert

    2013-07-01

    Full Text Available A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n=30, covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.

  6. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes

    NARCIS (Netherlands)

    Falzon, Dennis; Gandhi, Neel; Migliori, Giovanni B.; Sotgiu, Giovanni; Cox, Helen S.; Holtz, Timothy H.; Hollm-Delgado, Maria-Graciela; Keshavjee, Salmaan; Deriemer, Kathryn; Centis, Rosella; D'Ambrosio, Lia; Lange, Christoph G.; Bauer, Melissa; Menzies, Dick; Ahuja, S. D.; Ashkin, D.; Avendaño, M.; Banerjee, R.; Bauer, M.; Becerra, M. C.; Benedetti, A.; Burgos, M.; Centis, R.; Chan, E. D.; Chiang, C. Y.; Cobelens, F.; Cox, H.; D'Ambrosio, L.; de Lange, W. C. M.; DeRiemer, K.; Enarson, D.; Falzon, D.; Flanagan, K. L.; Flood, J.; Gandhi, N.; Garcia-Garcia, M. L.; Granich, R. M.; Hollm-Delgado, M. G.; Holtz, T. H.; Hopewell, P.; Iseman, M. D.; Jarlsberg, L. G.; Keshavjee, S.; Kim, H. R.; Koh, W. J.; Lancaster, J. L.; Lange, C.; Leimane, V.; Leung, C. C.; Li, J.

    2013-01-01

    A meta-analysis for response to treatment was undertaken using individual data of multidrug-resistant tuberculosis (MDR-TB) (resistance to isoniazid and rifampicin) patients from 26 centres. The analysis assessed the impact of additional resistance to fluoroquinolones and/or second-line injectable

  7. Fluoroquinolone-Resistant Escherichia coli Infections after Transrectal Biopsy of the Prostate in the Veterans Affairs Healthcare System

    Directory of Open Access Journals (Sweden)

    Elie Antoun Saade

    2016-09-01

    Full Text Available Background: Recent reports suggest that infections due to fluoroquinolone-resistant Escherichia coli (E. coli are an increasingly common complication of transrectal biopsy of the prostate (TBP in the United States. A better understanding of the magnitude and scope of these infections is needed to guide prevention efforts. Our objective is to determine whether the incidence of infections due to fluoroquinolone-resistant E. coli after TBP has increased nationwide in the Veterans Affairs Health Care System and to identify risk factors for infection. Methods: We performed a retrospective, observational cohort study and a nested case-control study within the US Deparment of Veterans Affairs Healthcare System. The primary outcomes were the incidence of urinary tract infection (UTI and bacteremia with E. coli and with fluoroquinolone-resistant E. coli strains within 30 days after TBP. Secondary endpoints focused on the correlation between fluoroquinolone-resistance in all urinary E. coli isolates and post-TBP infection and risk factors for infection due to fluoroquinolone-resistant E. coli infection. Results: 245 618 patients undergoing 302 168 TBP procedures from 2000 through 2013 were included in the cohort study, and 59 469 patients undergoing TBP from 2011 through 2013 were included in the nested case-control study. Between 2000 and 2013, there was a 5-fold increase in the incidence of E. coli UTI (0.18%–0.93% and a 4-fold increase in the incidence of E. coli bacteremia (0.04%–0.18% after TBP that was attributable to an increase in the incidence of fluoroquinolone-resistant E. coli UTI (0.03%–0.75% and bacteremia (0.01%–0.14%. The increasing incidence of fluoroquinolone-resistant E. coli infections after TBP occurred in parallel with increasing rates of fluoroquinolone-resistance in all urinary E. coli isolates. By multivariable logistic regression analysis, independent risk factors for fluoroquinolone-resistant

  8. Phenotypic and genetic characteristics of fluoroquinolone- and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Moreno-Flores, Antonio; Potel-Alvarellos, Carmen; Otero-Fernández, Susana; Álvarez-Fernández, Maximiliano

    2017-07-20

    Fluoroquinolone resistance in methicillin-resistant Staphylococcus aureus (MRSA) has increased in recent years. The objective of this study was to characterise two MRSA populations, one susceptible to fluoroquinolones and other resistant identifying the clonal types and the differential characteristics of both MRSA populations. Molecular typing using PFGE, MLST, spa and SSCmec was performed on 192 MRSA strains isolated from 2009 to 2011, 49 only oxacillin-resistant (OX-R) and 143 oxacillin and levofloxacin-resistant (OX-R-LEV-R). Mutations that conferred resistance to fluoroquinolones, hypermutable phenotypes and the presence of eight microbial surface components recognising adhesive matrix molecules (MSCRAMMs) were also studied. A statistically significant increase in the OX-R-LEV-R phenotype was observed (p<0.05). The most common clone of the OX-R isolates was sequence type (ST) 8 (32.6%), followed by ST72 (26.5%) and ST5 (26.5%). In the OX-R-LEV-R phenotype, the ST5 clone was the most common (65.7%), followed by ST72 (15.4%), and ST125 (12.6%). All isolates except the ST398 clone carried the SCCmecIVc. Clones ST5, ST72, ST125, and ST30 had hypermutable phenotypes. The ST72 clone and the ST30 clone in the OX-R phenotype harboured the highest number of MSCRAMMs. ST5 and ST72 clones were the most frequent clones identified in OX-R-LEV-R phenotype. Both clones showed a hypermutable phenotype that favours their selection as the fluoroquinolone resistant clones. The genetic relationships identified indicate that OX-R-LEV-R clones have evolved from OX-R MRSA clones. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran

    Directory of Open Access Journals (Sweden)

    Roghayeh Nouri

    Full Text Available Abstract The aim of this study was to examine mutations in the quinolone-resistance-determining region (QRDR of gyrA and parC genes in Pseudomonas aeruginosa isolates. A total of 100 clinical P. aeruginosa isolates were collected from different university-affiliated hospitals in Tabriz, Iran. Minimum inhibitory concentrations (MICs of ciprofloxacin and levofloxacin were evaluated by agar dilution assay. DNA sequences of the QRDR of gyrA and parC were determined by the dideoxy chain termination method. Of the total 100 isolates, 64 were resistant to ciprofloxacin. No amino acid alterations were detected in gyrA or parC genes of the ciprofloxacin susceptible or ciprofloxacin intermediate isolates. Thr-83 → Ile substitution in gyrA was found in all 64 ciprofloxacin resistant isolates. Forty-four (68.75% of them had additional substitution in parC. A correlation was found between the number of the amino acid alterations in the QRDR of gyrA and parC and the level of ciprofloxacin and levofloxacin resistance of the P. aeruginosa isolates. Ala-88 → Pro alteration in parC was generally found in high level ciprofloxacin resistant isolates, which were suggested to be responsible for fluoroquinolone resistance. These findings showed that in P. aeruginosa, gyrA was the primary target for fluoroquinolone and additional mutation in parC led to highly resistant isolates.

  10. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria.

    Science.gov (United States)

    Parkinson, Elizabeth I; Bair, Joseph S; Nakamura, Bradley A; Lee, Hyang Y; Kuttab, Hani I; Southgate, Emma H; Lezmi, Stéphane; Lau, Gee W; Hergenrother, Paul J

    2015-04-24

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections.

  11. Frequent topoisomerase IV mutations associated with fluoroquinolone resistance in Ureaplasma species.

    Science.gov (United States)

    Song, Jingjuan; Qiao, Yingli; Kong, Yingying; Ruan, Zhi; Huang, Jun; Song, Tiejun; Zhang, Jun; Xie, Xinyou

    2015-11-01

    This study aimed to investigate the role of quinolone resistance-determining regions (QRDRs) of DNA gyrase (encoded by gyrA and gyrB) and topoisomerase IV (encoded by parC and parE) associated with fluoroquinolone resistance. A total of 114 Ureaplasma spp. strains, isolated from clinical female patients with symptomatic infection, were tested for species distribution and susceptibility to four fluoroquinolones. Moreover, we analysed the QRDRs and compared these with 14 ATCC reference strains of Ureaplasma spp. serovars to identify mutations that caused antimicrobial resistance. Our study indicated that moxifloxacin was the most effective fluoroquinolone against Ureaplasma spp. (MIC range: 0.125-32 μg ml⁻¹). However, extremely high MICs were estimated for ciprofloxacin (MIC range: 1-256 μg ml⁻¹) and ofloxacin (MIC range: 0.5-128 μg ml⁻¹), followed by levofloxacin (MIC range: 0.5-64 μg ml⁻¹). Seven amino acid substitutions were discovered in GyrB, ParC and ParE, but not in GyrA. Ser-83 → Leu/Trp (C248T/G) in ParC and Arg-448 → Lys (G1343A) in ParE, which were potentially responsible for fluoroquinolone resistance, were observed in 89 (77.2 %) and three (2.6 %) strains, respectively. Pro-462 → Ser (C1384T), Asn-481 → Ser (A1442G) and Ala-493 → Val (C1478T) in GyrB and Met-105 → Ile (G315T) in ParC seemed to be neutral polymorphisms, and were observed and occurred along with the amino acid change of Ser-83 → Leu (C248T) in ParC. Interestingly, two novel mutations of ParC and ParE were independently found in four strains. These observations suggest that amino acid mutation in topoisomerase IV appears to be the leading cause of fluoroquinolone resistance, especially the mutation of Ser-83 → Leu (C248T) in ParC. Moxifloxacin had the best activity against strains with Ser-83 → Leu mutation.

  12. Prevalence of fluoroquinolone-resistant rectal flora in patients undergoing transrectal ultrasound-guided prostate needle biopsy: A prospective multicenter study.

    Science.gov (United States)

    Chung, Ho Seok; Hwang, Eu Chang; Yu, Ho Song; Jung, Seung Il; Lee, Sun Ju; Lim, Dong Hoon; Cho, Won Jin; Choe, Hyun Sop; Lee, Seung-Ju; Park, Sung Woon

    2018-03-01

    To estimate the prevalence of fluoroquinolone-resistant rectal flora in patients undergoing transrectal ultrasound-guided prostate needle biopsy and to identify the high-risk groups. From January 2015 to March 2016, rectal swabs of 557 men who underwent transrectal ultrasound-guided prostate needle biopsy were obtained from five institutions. Clinical variables, including demographics, rectal swab culture results and infectious complications, were evaluated. Univariable and multivariable analyses were used to identify the risk factors for fluoroquinolone resistance of rectal flora and infectious complications. The incidence of fluoroquinolone-resistant and extended-spectrum beta-lactamase production was 48.1 and 11.8%, respectively. The most common fluoroquinolone-resistant bacteria was Escherichia coli (81% of total fluoroquinolone-resistant bacteria, 39% of total rectal flora), and 16 (2.9%) patients had infectious complications. Univariable and multivariable analysis of clinical parameters affecting fluoroquinolone resistance showed no factor associated with fluoroquinolone resistance of rectal flora. The clinical parameter related to infectious complications after prostate biopsy was a history of operation within 6 months (relative risk 6.60; 95% confidence interval 1.99-21.8, P = 0.002). These findings suggest that a risk-based approach by history taking cannot predict antibiotic resistance of rectal flora, and physicians should consider targeted antibiotic prophylaxis or extended antibiotic prophylaxis for Korean patients undergoing transrectal ultrasound-guided prostate biopsy because of high antibiotic resistance of rectal flora. © 2017 The Japanese Urological Association.

  13. Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Yinfang Shen

    2018-03-01

    . Phylogenetic analysis of the parC QRDR sequences suggested the possibility that FQ resistance may be acquired through inter-species lateral gene transfer. This study reports the emergence of macrolide, tetracycline, and fluoroquinolone multidrug-resistant clones across several GAS emm types including emm1 and emm12, warranting continual surveillance given the extensive use of fluoroquinolones in clinical use.

  14. Changes in qnr Prevalence and Fluoroquinolone Resistance in Clinical Isolates of Klebsiella pneumoniae and Enterobacter spp. Collected from 1990 to 2005▿

    Science.gov (United States)

    Strahilevitz, Jacob; Engelstein, Dalia; Adler, Amos; Temper, Violeta; Moses, Allon E.; Block, Colin; Robicsek, Ari

    2007-01-01

    Clinical isolates of Klebsiella pneumoniae and Enterobacter spp. collected from 1990 through 2005 at a tertiary care center were studied for qnr genes. Isolates bearing these genes emerged in the mid-1990s, coinciding with the time of a rapid increase in fluoroquinolone resistance. Sixty percent of these isolates were ciprofloxacin susceptible by CLSI breakpoints. PMID:17526754

  15. Phenotypic and Genotypic Efflux Pumps in Resistance to Fluoroquinolones in E.coli Isolated from Inpatients in Kermanshah Hospitals in 2013

    Directory of Open Access Journals (Sweden)

    Maryam Doosti Mohajer

    2017-12-01

    Full Text Available Abstract Background: Antibiotic resistance rates in E. coli are rapidly rising, especially with regard to fluoroquinolones. One of the mechanisms that lead to antibiotic resistance is efflux pumps. The aim of this study was phonotypic and genotypic analysis of efflux pump role in fluoroquinolones resistance of E. coli strains isolated from hospitalized patients in Kermanshah 2013. Materials and Methods: In this cross-sectional study, 100 isolates of E. coli were collected from hospitalized patients from Kermanshah. All isolates were identified by standard biochemical tests. The antimicrobial susceptibility patterns were determined by disk diffusion method according to CLSI guidelines. The presence of Efflux pump genes was determined by a PCR method. Results: The rates of resistance to Ceftazidime, Nalidixic Acid, Ciprofloxacin, Norfloxacin, Ofloxacin, Gentamicin, and Tetracycline were 73%, 67%, 55%, 54%, 45%, 38%, and 24%, respectively. According to the results of PCR test, of 100 E. coli isolates, 99% of isolates were positive for acrA, 98% for acrB, 95% for acrE, 98% for acrF, 94% for mdfA, 96% for norE, and 96% for tolC. Conclusion: In Strains with positive gene acrA, acrB, acrA, acrB, tolC, mdfA, norE, the presence of efflux pump inhibitor reduced the amount of resistance to antibiotics. So, efflux pumps are important in antibiotic resistance.

  16. Biochanin A partially restores the activity of ofloxacin and ciprofloxacin against topoisomerase IV mutation-associated fluoroquinolone-resistant Ureaplasma species.

    Science.gov (United States)

    Jin, Hong; Qi, Chao; Zou, Yanping; Kong, Yingying; Ruan, Zhi; Ding, Honghui; Xie, Xinyou; Zhang, Jun

    2017-11-01

    This study aims to investigate the synergistic antimicrobial activity of four phytoalexins in combination with fluoroquinolones against Ureaplasma spp., a genus of cell wall-free bacteria that are intrinsically resistant to many available antibiotics, making treatment inherently difficult. A total of 22 958 urogenital tract specimens were assessed for Ureaplasma spp. identification and antimicrobial susceptibility. From these, 31 epidemiologically unrelated strains were randomly selected for antimicrobial susceptibility testing to determine the minimum inhibitory concentration (MIC) of four fluoroquinolones and the corresponding quinolone resistance-determining regions (QRDRs). Synergistic effects between fluoroquinolones and four phytoalexins (reserpine, piperine, carvacrol and biochanin A) were evaluated by fractional inhibitory concentration indices (FICIs). Analysis of the QRDRs suggested a vital role for the mutation of Ser-83→Leu in ParC in fluoroquinolone-resistant strains, and the occurrence of mutations in QRDRs showed significant associations with the breakpoint of levofloxacin. Moreover, diverse synergistic effects of the four phytoalexins with ofloxacin or ciprofloxacin were observed and biochanin A was able to enhance the antimicrobial activity of fluoroquinolones significantly. This is the first report of the antimicrobial activity of biochanin A in combination with fluoroquinolones against a pathogenic mycoplasma, and opens up the possibility of using components of biochanin A as a promising therapeutic option for treating antibiotic-resistant Ureaplasma spp. infections.

  17. The use of systemic fluoroquinolones.

    Science.gov (United States)

    2006-09-01

    The only indications for which a fluoroquinolone (ie, ciprofloxacin) is licensed by the US Food and Drug Administration for use in patients younger than 18 years are complicated urinary tract infections, pyelonephritis, and postexposure treatment for inhalation anthrax. Nonetheless, approximately 520,000 prescriptions for fluoroquinolones were written in the United States for patients younger than 18 years in 2002; 13,800 were written for infants and children 2 to 6 years of age, and 2750 were written for infants younger than 2 years. Clinical trials of fluoroquinolones in pediatric patients with various diagnoses have been published and are reviewed. Fluoroquinolones cause arthrotoxicity in juvenile animals and have been associated with reversible musculoskeletal events in both children and adults. Other adverse events associated with fluoroquinolones include central nervous system disorders, photosensitivity, disorders of glucose homeostasis, prolongation of QT interval with rare cases of torsade de pointes (often lethal ventricular arrhythmia in patients with long QT syndrome), hepatic dysfunction, and rashes. The increased use of fluoroquinolones in adults has resulted in increased bacterial resistance to this class of antibacterial agents. This report provides specific guidelines for the systemic use of fluoroquinolones in children. Fluoroquinolone use should be restricted to situations in which there is no safe and effective alternative to treat an infection caused by multidrug-resistant bacteria or to provide oral therapy when parenteral therapy is not feasible and no other effective oral agent is available.

  18. Detection and coexistence of six categories of resistance genes in Escherichia coli strains from chickens in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-12-01

    Full Text Available The aim of this study was to characterise the prevalence of class 1 integrons and gene cassettes, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants in 184 Escherichia coli isolates from chickens in Anhui Province, China. Susceptibility to 15 antimicrobials was determined using broth micro-dilution. Polymerase chain reaction and DNA sequencing were used to characterise the molecular basis of the antibiotic resistance. High rates of antimicrobial resistance were observed; 131 out of the 184 (72.3% isolates were resistant to at least six antimicrobial agents. The prevalences of class 1 integrons, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants were 49.5, 17.4, 15.8, 0.5, 57.6 and 46.2%, respectively. In 82 isolates, 48 different kinds of coexistence of the different genes were identified. Statistical (χ2 analysis showed that the resistance to amoxicillin, doxycycline, florfenicol, ofloxacin and gentamicin had significant differences (P<0.01 or 0.01resistance genes, which showed a certain correlation between antimicrobial resistance and the presence of resistance genes.

  19. Fluoroquinolone resistance mechanisms in urinary tract pathogenic Escherichia coli isolated during rapidly increasing fluoroquinolone consumption in a low-use country

    DEFF Research Database (Denmark)

    Christiansen, Nina; Nielsen, Lene; Jakobsen, Lotte

    2011-01-01

    Resistance to ciprofloxacin in Escherichia coli from urinary tract infections (UTI) in Denmark is increasing parallel to increased use of fluoroquinolones both in Denmark and in other European countries. The objective was to investigate the occurrence of ciprofloxacin resistance mechanisms......, phenotypic coresistance, and if ciprofloxacin resistance was caused by clonal spread or to individual mutational events in a collection of consecutively obtained E. coli submitted to a clinical microbiology department at a Danish hospital. One hundred four UTI-related E. coli resistant toward nalidixic acid...

  20. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Analysis of mutations in DNA gyrase and topoisomerase IV of Ureaplasma urealyticum and Ureaplasma parvum serovars resistant to fluoroquinolones.

    Science.gov (United States)

    Piccinelli, Giorgio; Gargiulo, Franco; Biscaro, Valeria; Caccuri, Francesca; Caruso, Arnaldo; De Francesco, Maria Antonia

    2017-01-01

    This study aims to determine the prevalence of fluoroquinolone resistance of Ureaplasma biovars and serovars isolated from urogenital clinical samples and determine the underlying molecular mechanism for quinolone resistance for all resistant isolates. Of 105 samples confirmed as positive for U. urealyticum/U. parvum, 85 were resistant to quinolones by the Mycoplasma-IST2 kit. However, only 43 out of 85 quinolone resistant isolates had amino acid substitutions in GyrA, GyrB, ParC and ParE proteins underlining that this assay have mis-identified as fluoroquinolone resistant 42 isolates. The known ParC E87K and ParC S83L mutations were found in 1 and 10 isolates, respectively. An original mutation of ureaplasmal ParC (E87Q, 1 isolate) was found. Furthermore, we found a ParE R448K mutation in one isolate, already described. Among the additional alterations detected, the most prevalent mutation found was L176F in GyrA protein in 18 isolates with single infection and in 3 isolates with mixed ureaplasma infections. Mutations in GyrB (E502Q, 4 isolates), ParE (Q412K, Q412P, Q412T, 3 independent isolates), whose role is unknown, were also found. Other sporadic mutations in the four genes were identified. This investigation is the result of monitoring the data for molecular fluoroquinone resistance in Ureaplasma spp. in Italy. Resulting that this acquired resistance is high and that continued local epidemiological studies are essential to monitor and document their antimicrobial resistance trends. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Overexpression of the novel MATE fluoroquinolone efflux pump FepA in Listeria monocytogenes is driven by inactivation of its local repressor FepR.

    Directory of Open Access Journals (Sweden)

    François Guérin

    Full Text Available Whereas fluoroquinolone resistance mainly results from target modifications in gram-positive bacteria, it is primarily due to active efflux in Listeria monocytogenes. The aim of this study was to dissect a novel molecular mechanism of fluoroquinolone resistance in this important human pathogen. Isogenic L. monocytogenes clinical isolates BM4715 and BM4716, respectively susceptible and resistant to fluoroquinolones, were studied. MICs of norfloxacin and ciprofloxacin were determined in the presence or in the absence of reserpine (10 mg/L. Strain BM4715 was susceptible to norfloxacin (MIC, 4 mg/L and ciprofloxacin (MIC, 0.5 mg/L whereas BM4716 was highly resistant to both drugs (MICs 128 and 32 mg/L, respectively. Reserpine was responsible for a 16-fold decrease in both norfloxacin and ciprofloxacin MICs against BM4716 suggesting efflux associated resistance. Whole-genome sequencing of the strains followed by comparative genomic analysis revealed a single point mutation in the gene for a transcriptional regulator, designated fepR (for fluoroquinolone efflux protein regulator belonging to the TetR family. The frame-shift mutation was responsible for the introduction of a premature stop codon resulting in an inactive truncated protein. Just downstream from fepR, the structural gene for an efflux pump of the MATE family (named FepA was identified. Gene expression was quantified by qRT-PCR and demonstrated that fepA expression was more than 64-fold higher in BM4716 than in BM4715. The clean deletion of the fepR gene from BM4715 was responsible for an overexpression of fepA with resistance to norfloxacin and ciprofloxacin, confirming the role of FepR as a local repressor of fepA. In conclusion, we demonstrated that overexpression of the new MATE efflux pump FepA is responsible for fluoroquinolone resistance in L. monocytogenes and secondary to inactivation of the FepR repressor.

  3. Systemic use of fluoroquinolone in children

    Directory of Open Access Journals (Sweden)

    Soo-Han Choi

    2013-05-01

    Full Text Available Fluoroquinolones are an important class of antibiotics that are widely used in adult patients because of their broad spectrum of activity, good tissue penetration, and oral bioavailability. However, fluoroquinolone use in children is limited because juvenile animals developed arthropathy in previous experiments on fluoroquinolone use. Indications for fluoroquinolone use in patients younger than 18 years, as stated by the U.S. Food and Drug Administration, include treatment of complicated urinary tract infections and postexposure treatment for inhalation anthrax. In Korea, the systemic use of fluoroquinolones has not been approved in children younger than 18 years. Although concerns remain regarding the adverse musculoskeletal effects of fluoroquinolones in children, their use in the pediatric population has increased in many circumstances. While pediatricians should be aware of the indications and adverse effects of fluoroquinolones, recent studies have shown that the risk for musculoskeletal complications in children did not significantly increase following fluoroquinolone treatment. In addition, fluoroquinolones may be particularly helpful in treating multidrug-resistant infections that have not responded to standard antibiotic therapy in immunocompromised patients. In the present article, we provide an updated review on the safety and current recommendations for using fluoroquinolones in children.

  4. Increasing incidence of fluoroquinolone-resistant Mycobacterium tuberculosis in Mumbai, India.

    Science.gov (United States)

    Agrawal, D; Udwadia, Z F; Rodriguez, C; Mehta, A

    2009-01-01

    Tertiary referral centre, private hospital, Mumbai, India. To analyse the incidence of fluoroquinolone (FQ) resistant Mycobacterium tuberculosis (TB) in our laboratory from 1995 to 2004. Retrospective review and analysis of the drug susceptibility test records of all M. tuberculosis culture-positive samples from our Microbiology Department from 1995 to 2004. FQ resistance has increased exponentially in our laboratory, from 3% in 1996 to 35% in 2004. The incidence of multidrug-resistant tuberculosis has also increased during the same period, from 33% in 1995 to 56% in 2004. The incidence of FQ-resistant M. tuberculosis is gradually increasing to alarming levels. This may be due to widespread use of this vital group of drugs in the treatment of community-acquired infections. We urge that these broad spectrum antibiotics be used judiciously, and ideally be reserved for treatment of resistant TB in TB-endemic areas.

  5. Fluoroquinolone-resistant Escherichia coli carriage in long-term care facility.

    Science.gov (United States)

    Maslow, Joel N; Lee, Betsy; Lautenbach, Ebbing

    2005-06-01

    We conducted a cross-sectional study to determine the prevalence of, and risk factors for, colonization with fluoroquinolone (FQ)-resistant Escherichia coli in residents in a long-term care facility. FQ-resistant E. coli were identified from rectal swabs for 25 (51%) of 49 participants at study entry. On multivariable analyses, prior FQ use was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures in the previous 3, 6, 9, or 12 months. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified clonal spread of 1 strain among 16 residents. Loss (6 residents) or acquisition (7 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. Unlike the case in the hospital setting, FQ-resistant E. coli carriage in long-term care facilities is associated with clonal spread.

  6. The incidence and risk factors of resistant E. coli infections after prostate biopsy under fluoroquinolone prophylaxis: a single-centre experience with 2215 patients.

    Science.gov (United States)

    Kandemir, Özlem; Bozlu, Murat; Efesoy, Ozan; Güntekin, Onur; Tek, Mesut; Akbay, Erdem

    2016-08-01

    We evaluated the incidence and risk factors of resistant Escherichia coli infections after the prostate biopsy under flouroquinolone prophylaxis. From January 2003 to December 2012, we retrospectively evaluated the records of 2215 patients. The risk factors were described for infective complications and resistant E. coli in positive cultures was calculated. Of 2215 patients, 153 had positive urine cultures, such as 129 (84·3%) E. coli, 8 (5·2%) Enterococcus spp., 6 (3·9%) Enterobacter spp., 5 (3·2%) Pseudomonas spp., 3 (1·9%) MRCNS, and 2 (1·3%) Klebsiella spp. Of the positive urine cultures which yielded E. coli, 99 (76·7%) were evaluated for fluoroquinolone resistance. Of those, 83 (83·8%) were fluoroquinolone-resistant and composed of 51 (61·4%) extended-spectrum beta-lactamase (ESBL)-positive. Fluoroquinolone-resistant E. coli ratios were 73·4 and 95·9% before 2008 and after 2008, respectively (P = 0·002). The most sensitive antibiotics for fluoroquinolone-resistant E. coli strains were imipenem (100%), amikacin (84%) and cefoperazone (83%). The use of quinolones in the last 6 months and a history of hospitalization in the last 30 days were found to be significant risk factors. We found that resistant E. coli strains might be a common microorganism in patients with this kind of complication. The risk factors for development of infection with these resistant strains were history of the use of fluoroquinolones and hospitalization.

  7. Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location

    Directory of Open Access Journals (Sweden)

    Hamill Richard J

    2008-01-01

    Full Text Available Abstract Background Escherichia coli infections are common and often treated with fluoroquinolones. Fluoroquinolone resistance is of worldwide importance and is monitored by national and international surveillance networks. In this study, we analyzed the effects of time, culture site, and patient age, sex, and location on fluoroquinolone resistance in E. coli clinical isolates. Methods To understand how patient factors and time influenced fluoroquinolone resistance and to determine how well data from surveillance networks predict trends at Ben Taub General Hospital in Houston, TX, we used Perl to parse and MySQL to house data from antibiograms (n ≅ 21,000 for E. coli isolated between 1999 to 2004 using Chi Square, Bonferroni, and Multiple Linear Regression methods. Results Fluoroquinolone resistance (i increased with time; (ii exceeded national averages by 2- to 4-fold; (iii was higher in males than females, largely because of urinary isolates from male outpatients; (iv increased with patient age; (v was 3% in pediatric patients; (vi was higher in hospitalized patients than outpatients; (vii was higher in sputum samples, particularly from inpatients, than all other culture sites, including blood and urine, regardless of patient location; and (viii was lowest in genital isolates than all other culture sites. Additionally, the data suggest that, with regard to susceptibility or resistance by the Dade Behring MicroScan system, a single fluoroquinolone suffices as a "surrogate marker" for all of the fluoroquinolone tested. Conclusion Large surveillance programs often did not predict E. coli fluoroquinolone resistance trends at a large, urban hospital with a largely indigent, ethnically diverse patient population or its affiliated community clinics.

  8. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake.

    Science.gov (United States)

    Flach, Carl-Fredrik; Johnning, Anna; Nilsson, Ida; Smalla, Kornelia; Kristiansson, Erik; Larsson, D G Joakim

    2015-10-01

    Antibiotic-polluted environments may function as reservoirs for novel resistance plasmids not yet encountered in pathogens. The aims of this study were to assess the potential of resistance transfer between bacteria from such environments and Escherichia coli, and to characterize the conjugative elements involved. Sediment samples from Kazipally lake and Asanikunta tank, two Indian lakes with a history of severe pollution with fluoroquinolones, were investigated. Proportions of resistant bacteria were determined by selective cultivation, while horizontal gene transfer was studied using a GFP-tagged E. coli as recipient. Retrieved transconjugants were tested for susceptibility by Etest(®) and captured conjugative resistance elements were characterized by WGS. The polluted lakes harboured considerably higher proportions of ciprofloxacin-resistant and sulfamethoxazole-resistant bacteria than did other Indian and Swedish lakes included for comparison (52% versus 2% and 60% versus 7%, respectively). Resistance plasmids were captured from Kazipally lake, but not from any of the other lakes; in the case of Asanikunta tank because of high sediment toxicity. Eight unique IncA/C and IncN resistance plasmids were identified among 11 sequenced transconjugants. Five plasmids were fully assembled, and four of these carried the quinolone resistance gene qnrVC1, which has previously only been found on chromosomes. Acquired resistance genes, in the majority of cases associated with class 1 integrons, could be linked to decreased susceptibility to several different classes of antibiotics. Our study shows that environments heavily polluted with antibiotics contain novel multiresistance plasmids transferrable to E. coli. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Impact of preoperative screening for rectal colonization with fluoroquinolone-resistant enteric bacteria on the incidence of sepsis following transrectal ultrasound guided prostate biopsy

    Directory of Open Access Journals (Sweden)

    Farrell JJ

    2017-02-01

    Full Text Available John J Farrell,1,2 Jennifer L Hicks,3 Stephanie E Wallace,2 Allen D Seftel4,5 1Department of Medicine, Division of Infectious Diseases, University of Illinois College of Medicine, 2Department of Laboratory Medicine, Division of Clinical Microbiology & Serology, OSF/Saint Francis Medical Center, 3Department of Urology, OSF /Saint Francis Medical Center, Peoria, IL, 4Department of Urology, Cooper University Hospital, 5Department of Surgery, Cooper University School of Medicine, Camden, NJ, USA Abstract: With the universal adoption of antibiotic prophylaxis prior to prostate biopsy, the current risk of post-biopsy infection (including sepsis is <2%. Preoperative prophylactic antibiotic regimens can vary, and although fluoroquinolones have emerged as the standard of care, there is no universally agreed upon preoperative antibiotic regimen. Recently, an increase in the proportion of postoperative infections caused by fluoroquinolone-resistant Escherichia coli (as well as other Enterobacteriaceae has led to the exploration of simple, practical, and cost-effective methods to minimize this postoperative infection risk. We performed a prospective, nonrandomized, controlled study of preoperative rectal cultures to screen for rectal colonization with fluoroquinolone-resistant bacteria using ciprofloxacin-supplemented MacConkey agar culture media. To evaluate the feasibility and practicality of this test, one provider used the results of rectal swab cultures collected during the preoperative outpatient evaluation to adjust each patient’s preoperative antibiotic prophylaxis when fluoroquinolone-resistant enteric bacteria were detected, whereas two other providers continued usual preoperative care and empiric antimicrobial prophylaxis. Rectal colonization with fluoroquinolone-resistant bacteria was detected in 19/152 (12.5% of patients. In our intention-to-treat analysis (N=268, the rate of post-biopsy sepsis was 3.6% lower in the group that was screened

  10. Risk factors associated with fluoroquinolone-resistant enterococcal urinary tract infections in a tertiary care university hospital in north India

    Directory of Open Access Journals (Sweden)

    Tuhina Banerjee

    2016-01-01

    Interpretation & conclusions: Our results showed that fluoroquinolone resistance in enterococcal UTI was largely associated with indoor usage of antibiotics and use of indwelling devices. Knowledge of risk factors is important to curb this emergence of resistance.

  11. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by acquired resistance...... genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  12. Therapeutic administration of enrofloxacin in mice does not select for fluoroquinolone resistance in Campylobacter jejuni.

    Science.gov (United States)

    Inglis, G Douglas; Zaytsoff, S J M; Selinger, L Brent; Taboada, Eduardo N; Uwiera, R R E

    2018-05-11

    Enrofloxacin is registered for therapeutic use in beef cattle to treat bovine respiratory disease in Canada. A murine model was used to experimentally examine the impact of therapeutic administration of enrofloxacin on fluoroquinolone resistance development in Campylobacter jejuni. Administration of enrofloxacin to mice via subcutaneous injection or per os routes resulted in equivalent levels of bioactive enrofloxacin within the intestine, but bioactivity was short-lived (Enrofloxacin administration did not affect densities of total bacteria, Firmicutes, or Bacteroidetes in digesta, and had modest impacts on densities of Enterobacteriaceae. All mice inoculated with C. jejuni NCTC 11168 became persistently colonized by the bacterium. Enrofloxacin reduced C. jejuni cell densities within the cecal and colonic digesta for all treatments, and densities shed in feces as a function of antibiotic duration. None of the C. jejuni isolates recovered from mice after administration of enrofloxacin (n=260) developed resistance to ciprofloxacin regardless of method or duration of administration. Furthermore, only modest shifts in the minimum inhibitory concentration of the isolates by treatment were noted. The study findings indicate that the risk posed by short-term subcutaneous administration of enrofloxacin for the development of fluoroquinolone resistance in mammals is low.

  13. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis.

    Science.gov (United States)

    Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.

  14. Comparative study of the in vitro activity of a new fluoroquinolone, ABT-492.

    Science.gov (United States)

    Harnett, S J; Fraise, A P; Andrews, J M; Jevons, G; Brenwald, N P; Wise, R

    2004-05-01

    The in vitro activity of a new fluoroquinolone, ABT-492, was determined. MICs were compared with those of two beta-lactams, telithromycin, ciprofloxacin and four later generation fluoroquinolones. The effects of human serum and of inoculum concentration were also investigated. MIC data indicate that ABT-492 has potent activity against Gram-positive organisms with enhanced anti-staphylococcal activity compared with earlier fluoroquinolones, in addition to activity against beta-haemolytic streptococci, pneumococci including penicillin- and fluoroquinolone-resistant strains and vancomycin-susceptible and -resistant Enterococcus faecalis but not Enterococcus faecium. ABT-492 was the most active agent tested against Haemophilus influenzae, Moraxella catarrhalis, Neisseria meningitidis, fluoroquinolone-susceptible Neisseria gonorrhoeae and anaerobes. Good activity was observed for ABT-492 amongst the Enterobacteriaceae and anaerobes tested, but ciprofloxacin showed superior activity for species of Proteus, Morganella and Providencia, as well as for Pseudomonas spp. In common with the other fluoroquinolones tested, organisms with reduced susceptibility to ciprofloxacin had raised MIC(90)s to ABT-492. The one isolate of H. influenzae tested with reduced fluoroquinolone susceptibility had an ABT-492 MIC close to that of the population lacking a mechanism of quinolone resistance. ABT-492 was more active than ciprofloxacin against Chlamydia spp. An inoculum effect was observed with a number of isolates of Staphylococcus aureus, Streptococcus pneumoniae, E. faecium, Klebsiella spp. and Escherichia coli, in addition to moderately raised MICs in the presence of 70% serum protein. The clinical significance of these findings is yet to be determined. ABT-492 is a new fluoroquinolone with excellent activity against both Gram-positive and Gram-negative organisms, with many potential clinical uses.

  15. National antimicrobial stewardship and fluoroquinolone-resistant Clostridium difficile in China

    Directory of Open Access Journals (Sweden)

    Xiao M

    2017-10-01

    Full Text Available Meng Xiao,1,* Jing-Wei Cheng,1,2,* Timothy Kudinha,3 Fanrong Kong,4 Ying-Chun Xu1,21Department of Clinical Laboratory, Peking Union Medical College Hospital, 2Faculty of Clinical Laboratory Diagnostics, Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; 3School of Biomedical Sciences, The Charles Sturt University, Leeds Parade, Orange, 4Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR–Pathology West, Westmead Hospital, University of Sydney, Westmead, NSW, Australia*These authors contributed equally to this workIn a recent report, Dingle et al showed that national intervention programs aimed at judicious antimicrobial usage, especially restrictions to fluoroquinolones, contributed to a significant decrease in Clostridium difficile infection (CDI in England.1 This is considered an outstanding achievement in combating antimicrobial resistance worldwide.

  16. Antimicrobial drug resistance of Salmonella enterica serovar typhi in asia and molecular mechanism of reduced susceptibility to the fluoroquinolones

    NARCIS (Netherlands)

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.; Dutta, Shanta; Agtini, Magdarina; Dong, Baiqing; Honghui, Yang; Anh, Dang Duc; Canh, Do Gia; Naheed, Aliya; Albert, M. John; Phetsouvanh, Rattanaphone; Newton, Paul N.; Basnyat, Buddha; Arjyal, Amit; La, Tran Thi Phi; Rang, Nguyen Ngoc; Phuong, Le Thi; van Be Bay, Phan; von Seidlein, Lorenz; Dougan, Gordon; Clemens, John D.; Vinh, Ha; Hien, Tran Tinh; Chinh, Nguyen Tran; Acosta, Camilo J.; Farrar, Jeremy; Dolecek, Christiane

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar

  17. Assessment of antibiotic resistance genes and integrons in commensal Escherichia coli from the Indian urban waste water: Implications and significance for public health

    Directory of Open Access Journals (Sweden)

    Nambram Somendro Singh

    2017-10-01

    Full Text Available Antibiotics like β-lactams, quinolones/fluoroquinolones, aminoglycosides and tetracycline constitute the major mainstay of treatment against most infectious diseases including Escherichia coli. Indiscriminate use of antibiotics for human and animal well-being has generated an enormous evolutionary pressure on bacteria especially E.coli, which has a highly plastic/evolving genome. Though, antibiotic resistance (AR has been extensively studied in pathogenic E.coli, commensal strains have been studied less owing to lesser clinical significance. However, commensal strains pose a serious threat as reservoirs and transmitters of resistance genes to other bacteria. Therefore, the present study was undertaken to investigate the prevalence of resistance genes and integrons in commensal E.coli isolated from river Yamuna, Delhi, India, which receives plentiful urban waste water. Eighty three well-characterized E.coli strains of phylogroups A and B1 isolated from river Yamuna were investigated. Antimicrobial susceptibilities and minimal inhibitory concentrations (MICs for β-lactams, aminoglycosides, tetracycline and quinolone/fluoroquinolone were determined by disk diffusion and Etest, according to Clinical and Laboratory Standards Institute (CLSI guidelines. Production of Extended spectrum β-lactamases (ESBL and AmpC was investigated. Prevalence of antibiotic-resistance genes for β-lactams (blaTEM,blaSHV, blaCTX-M, blaOXA, blaCMY-42, aminoglycosides (rmtA, rmtB, rmtC, armA, str, aacC2, tetracycline (tetA, tetR, tetM, tetW, and plasmid-mediated quinolone resistance, PMQR (qnrA, qnrB, qnrC, qnrD, qnrS, qep, aac were assessed. Integrons and  gene-cassette arrays were characterized. Commensal E.coli strains showed a higher resistance to ampicillin (95%, less to cefazolin (45% and still lesser to tetracycline (15%. About 19% of these strains showed multidrug resistant (three or more classes of antibiotics, of which 15% also produced ESBLs. None of the

  18. Fluoroquinolone treatment and susceptibility of isolates from bacterial keratitis.

    Science.gov (United States)

    Ray, Kathryn J; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E; Sun, Catherine Q; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M

    2013-03-01

    To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold-higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P < .001). Fourth-generation fluoroquinolones were associated with a 3.48-fold-higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P < .001). This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. clinicaltrials.gov Identifier: NCT00324168.

  19. [Ecology and fluoroquinolon resistance profiles in febrile urinary tract infections (FUTI) after prostate needle biopsy: A retrospective study in 466 biopsies].

    Science.gov (United States)

    Duboureau, H; Achkar, K; Stephan, R; Schmit, J L; Saint, F

    2017-05-01

    The biopsies of prostate are the reference examination to assert the diagnosis of prostate cancer. Even if the urinary infectious complications are rare thanks to the systematic oral antibiotic prophylaxis, they may still be serious. The SPILF (Society of Infectious Pathology and French language) published in 2014, an important increase of the resistances in fluoroquinolones for Escherichia coli (3 to 25%), whereas this is the most bacterium frequently found in the urinary infections (70-80%). The objectives of this study were to estimate the indicence of the febrile urinary tract infections after prostate needle biopsy and to define the ecology and the profile of E. coli's resistance. A total of 466 transrectal ultrasound-guided needle prostate biopsy were included in the study from 2012 to 2015. All the patients were taken care according to the recommendations of the AFU (Ouzzane et al., 2011). We estimated, for all the inclusive patients, if they had presented a clinic sign of urinary infection like fever or burning which suggestive of an urinary infection, and having a urines and blood culture, in the next 30 days the realization of the medical exam. Among 466 realized biopsies, seven patients developed a febril urinary tract infection (1.5%) [prostatitis (n=6), orchitis (n=1)]. Five infections to E. coli were identified; two were resistant for fluoroquinolones (40%). No germ was able to be identified for two patients. The infectious complications post-biopsy of prostate are rare (1.5%). E. coli is the germ most frequently identified with 40% of resistance with fluoroquinolones. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Mechanisms of quinolone resistance in Salmonella spp. / Mecanismos de resistência às quinolonas em Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Rocha Moreira de Oliveira

    2010-07-01

    Full Text Available Salmonellosis is a common and widespread zoonotic disease of humans and a frequent cause of foodborne disease. Treatment of severe and systemic salmonellosis is usually done with fluoroquinolones. In this review resistance mechanisms of Salmonella to quinolones are discussed. Single point mutations in the quinolone resistant determining region (QRDR of the gyrA gene may be sufficient to generate high levels of resistance to non-fluorated quinolones and also may decrease the fluoroquinolones susceptibility. Other resistance mechanisms that should be considered are mutations in parC gene, the possibility of acquiring resistance through plasmidial transference and hyper-expression of efflux pumps. Fluoroquinolones resistance is still relatively uncommon in Salmonella compared to other species belonging to the Enterobacteriaceae family. However, the more careful use of fluoroquinolones in veterinary and human medicine is essential to decrease the selective pressure which can avoid the emergence and spread of resistant clones and consequently maintain the clinical efficacy of this group of antibiotics.A salmonelose é uma zoonose de importância mundial e uma das mais freqüentes doenças de origem alimentar. As fluoroquinolonas são a principal opção para o tratamento de salmoneloses graves ou sistêmicas. Esta revisão de literatura teve como objetivo apresentar os principais mecanismos envolvidos na resistência de Salmonella spp a estes antimicrobianos. Mutações de ponto na Região Determinante de Resistência à Quinolona (QRDR do gene gyrA podem gerar altos níveis de resistência a quinolonas não-fluoradas, além de reduzir a suscetibilidade as fluoroquinolonas. Outros mecanismos de resistência que também precisam ser considerados são as mutações no gene parC, a possibilidade do envolvimento de plasmídios de resistência e o sistema de efluxo ativo. A resistência às fluoroquinolonas ainda é incomum em Salmonella spp., quando

  1. Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China.

    Science.gov (United States)

    Zhao, Yongda; Guo, Lili; Li, Jie; Huang, Xianhui; Fang, Binghu

    2018-01-01

    Haemophilus parasuis is a common porcine respiratory pathogen that causes high rates of morbidity and mortality in farmed swine. We performed a molecular characterization of antimicrobial resistance genes harbored by H. parasuis from pig farms in China. We screened 143 H. parasuis isolates for antimicrobial susceptibility against six fluoroquinolone antibiotics testing by the broth microdilution method, and the presence of 64 antimicrobial resistance genes by PCR amplification and DNA sequence analysis. We determined quinolone resistance determining region mutations of DNA gyrase ( gyrA and gyrB ) and topoisomerase IV ( parC and parE ). The genetic relatedness among the strains was analyzed by pulsed-field gel electrophoresis. Susceptibility test showed that all isolates were low resistance to lomefloxacin (28.67%), levofloxacin (20.28%), norfloxacin (22.38%), ciprofloxacin (23.78%), however, high resistance levels were found to nalidixic acid (82.52%) and enrofloxacin (55.94%). In addition, we found 14 antimicrobial resistance genes were present in these isolates, including bla TEM-1 , bla ROB-1 , ermB, ermA, flor, catl, tetB, tetC, rmtB, rmtD, aadA1, aac(3')-llc, sul1, and sul2 genes. Interestingly, one isolate carried five antibiotic resistance genes ( tetB, tetC, flor, rmtB, sul1 ). The genes tetB , rmtB, and flor were the most prevalent resistance genes in H. parasuis in China. Alterations in the gyrA gene (S83F/Y, D87Y/N/H/G) were detected in 81% of the strains and parC mutations were often accompanied by a gyrA mutation. Pulsed-field gel electrophoresis typing revealed 51 unique patterns in the isolates carrying high-level antibiotic resistance genes, indicating considerable genetic diversity and suggesting that the genes were spread horizontally. The current study demonstrated that the high antibiotic resistance of H. parasuis in piglets is a combination of transferable antibiotic resistance genes and multiple target gene mutations. These data provide novel

  2. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  3. Detection of meca gene from methicillin resistant staphylococcus aureus isolates of north sumatera

    Science.gov (United States)

    Septiani Nasution, Gabriella; Suryanto, Dwi; Lia Kusumawati, R.

    2018-03-01

    Methicillin Resistant Staphylococcus aureus (MRSA) is a major pathogen associated with hospital-acquired infections (nosocomial infections). MRSA is a type of S. aureus resistant to the sub-group of beta-lactam antibiotics such as penicillin, cephalosporin, monobactam, and carbapenem. MRSA is resistant because of genetic changes caused by exposure to irrational antibiotic therapy. This study aimed to detect mecA gene in North Sumatra isolates of MRSA and to determine the pattern of antibiotic resistance in S.aureus isolates classified as MRSA by Vitek 2 Compact in the Central Public Hospital Haji Adam Malik, Medan. Samples were 40 isolates of S. aureus classified as MRSA obtained from clinical microbiology specimens. DNA isolation of the isolates was conducted by a method of freeze-thaw cycling. Amplification of mecA gene was done by PCR technique using specific primer for the gene. PCR products were visualized using mini-gel electrophoresis. The results showed that all MRSA isolates showed to have 533 bp band of mecA. Antibiotics test of Vitek 2 Compact showed that despite all isolates were resistant to beta-lactam antibiotics groups; the isolates showed multidrug resistant to other common antibiotics, such as aminoglycosides, macrolides, and fluoroquinolones. However, they were still sensitive to vancomycin (82.5% isolates), linezolid (97.5% isolates), and tigecycline (100% isolates).

  4. Plasmid-mediated quinolone resistance; interactions between human, animal and environmental ecologies

    Directory of Open Access Journals (Sweden)

    Laurent ePOIREL

    2012-02-01

    Full Text Available Resistance to quinolones and fluoroquinolones is being increasingly reported among human but also veterinary isolates during the last two to three decades, very likely as a consequence of the large clinical usage of those antibiotics. Even if the principle mechanisms of resistance to quinolones are chromosome-encoded, due to modifications of molecular targets (DNA gyrase and topoisomerase IV, decreased outer-membrane permeability (porin defect and overexpression of naturally-occurring efflux, the emergence of plasmid-mediated quinolone resistance (PMQR has been reported since 1998. Although these PMQR determinants confer low-level resistance to quinolones and/or fluoroquinolones, they are a favorable background for selection of additional chromosome-encoded quinolone resistance mechanisms. Different transferable mechanisms have been identified, corresponding to the production of Qnr proteins, of the aminoglycoside acetyltransferase AAC(6’-Ib-cr, or of the QepA-type or OqxAB-type efflux pumps. Qnr proteins protect target enzymes (DNA gyrase and type IV topoisomerase from quinolone inhibition (mostly nalidixic acid. The AAC(6’-Ib-cr determinant acetylates several fluoroquinolones, such as norfloxacin and ciprofloxacin. Finally, the QepA and OqxAB efflux pumps extrude fluoroquinolones from the bacterial cell. A series of studies have identified the environment to be a reservoir of PMQR genes, with farm animals and aquatic habitats being significantly involved. In addition, the origin of the qnr genes has been identified, corresponding to the waterborne species Shewanella sp. Altogether, the recent observations suggest that the aquatic environment might constitute the original source of PMQR genes, that would secondly spread among animal or human isolates.

  5. Rate of bacterial eradication by ophthalmic solutions of fourth-generation fluoroquinolones.

    Science.gov (United States)

    Callegan, Michelle C; Novosad, Billy D; Ramadan, Raniyah T; Wiskur, Brandt; Moyer, Andrea L

    2009-04-01

    Antibacterial activity of ophthalmic fourth-generation fluoroquinolones has traditionally been evaluated by comparing only their active ingredients, gatifloxacin and moxifloxacin. However, ophthalmic formulations of fourth-generation fluoroquinolones differ in terms of the inclusion of preservatives. While gatifloxacin ophthalmic solution 0.3% (Zymar; Allergan, Inc., Irvine, CA, USA) contains 0.005% benzalkonium chloride (BAK), moxifloxacin ophthalmic solution 0.5% (Vigamox; Alcon Laboratories, Inc., Fort Worth, TX, USA) is preservative-free. Recent studies have demonstrated that the presence of BAK dramatically affects the antibacterial activity of the ophthalmic formulation of gatifloxacin. This study was designed to compare the kill rates of ophthalmic solutions of fourth-generation fluoroquinolones against isolates of common ocular bacterial pathogens. Approximately 5.6 log(10) colony-forming units (CFU)/mL of Haemophilus influenzae (n=1), Streptococcus pneumoniae (n=1), Staphylococcus aureus (n=2), methicillin-resistant Staphylococcus aureus (MRSA) (n=4), methicillinresistant Staphylococcus epidermidis (MRSE) (n=4), and fluoroquinolone-resistant S. epidermidis (n=1) were incubated with ophthalmic solutions of either gatifloxacin or moxifloxacin. Viable bacteria were quantified at specific time points up to 60 minutes. Gatifloxacin 0.3% completely eradicated H. influenzae and Strep. pneumoniae in 5 minutes, one of two S. aureus isolates in 15 minutes, and the other S. aureus isolate in 60 minutes. Gatifloxacin 0.3% completely killed all MRSA, MRSE, and fluoroquinolone-resistant S. epidermidis isolates in 15 minutes. Moxifloxacin 0.5% completely eradicated Strep. pneumoniae and one of four MRSA isolates in 60 minutes. All other isolates incubated with moxifloxacin 0.5% retained viable bacteria ranging from 1.8 to 4.4 log(10) CFU/mL. The ophthalmic solution of gatifloxacin 0.3% eradicated bacteria that frequently cause postoperative ocular infections

  6. Novel Conserved Genotypes Correspond to Antibiotic Resistance Phenotypes of E. coli Clinical Isolates.

    Science.gov (United States)

    Swick, Michelle C; Evangelista, Michael A; Bodine, Truston J; Easton-Marks, Jeremy R; Barth, Patrick; Shah, Minita J; Bormann Chung, Christina A; Stanley, Sarah; McLaughlin, Stephen F; Lee, Clarence C; Sheth, Vrunda; Doan, Quynh; Hamill, Richard J; Steffen, David; Becnel, Lauren B; Sucgang, Richard; Zechiedrich, Lynn

    2013-01-01

    Current efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover single nucleotide polymorphisms (SNPs) unanimously conserved in each pool. The multidrug-resistant pools were genotypically similar to SMS-3-5, a previously sequenced multidrug-resistant isolate from a polluted environment. The similarity was evenly spread across the entire genome and not limited to plasmid or pathogenicity island loci. Among the pools of clinical isolates, genomic variation was concentrated adjacent to previously reported inversion and duplication differences between the SMS-3-5 isolate and the drug-susceptible laboratory strain, DH10B. SNPs that result in non-synonymous changes in gyrA (encoding the well-known S83L allele associated with fluoroquinolone resistance), mutM, ligB, and recG were unanimously conserved in every fluoroquinolone-resistant pool. Alleles of the latter three genes are tightly linked among most sequenced E. coli genomes, and had not been implicated in antibiotic resistance previously. The changes in these genes map to amino acid positions in alpha helices that are involved in DNA binding. Plasmid-encoded complementation of null strains with either allelic variant of mutM or ligB resulted in variable responses to ultraviolet light or hydrogen peroxide treatment as markers of induced DNA damage, indicating their importance in DNA metabolism and revealing a potential mechanism for fluoroquinolone resistance. Our approach uncovered evidence that additional DNA binding enzymes may contribute to fluoroquinolone resistance and further implicate environmental bacteria as a reservoir for

  7. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  8. Molecular typing, antibiotic resistance, virulence gene and biofilm formation of different Salmonella enterica serotypes.

    Science.gov (United States)

    Turki, Yousra; Mehr, Ines; Ouzari, Hadda; Khessairi, Amel; Hassen, Abdennaceur

    2014-01-01

    Salmonella enterica isolates representing commonly isolated serotypes in Tunisia were analyzed using genotyping and phenotyping methods. ERIC and ITS-PCR applied to 48 Salmonella spp. isolates revealed the presence of 12 and 10 different profiles, respectively. The distribution of profiles among serotypes demonstrated the presence of strains showing an identical fingerprinting pattern. All Salmonella strains used in this study were positive for the sdiA gene. Three Salmonella isolates belonging to serotypes Anatum, Enteritidis and Amsterdam were negative for the invA gene. The spvC gene was detected in thirteen isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Gallinarum and Montevideo. Antibiotic resistance was frequent among the recovered Salmonella isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Zanzibar and Derby. The majority of these isolates exhibited resistance to at least two antibiotic families. Four multidrug-resistant isolates were recovered from food animals and poultry products. These isolates exhibited not only resistance to tetracycline, sulphonamides, and ampicillin, but also have shown resistance to fluoroquinolones. Common resistance to nalidixic acid, ciprofloxacin and ofloxacin in two S. Anatum and S. Zanzibar strains isolated from raw meat and poultry was also obtained. Furthermore, wastewater and human isolates exhibited frequent resistance to nalidixic acid and tetracycline. Of all isolates, 33.5% were able to form biofilm.

  9. Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China

    Directory of Open Access Journals (Sweden)

    Yongda Zhao

    2018-04-01

    Full Text Available Background Haemophilus parasuis is a common porcine respiratory pathogen that causes high rates of morbidity and mortality in farmed swine. We performed a molecular characterization of antimicrobial resistance genes harbored by H. parasuis from pig farms in China. Methods We screened 143 H. parasuis isolates for antimicrobial susceptibility against six fluoroquinolone antibiotics testing by the broth microdilution method, and the presence of 64 antimicrobial resistance genes by PCR amplification and DNA sequence analysis. We determined quinolone resistance determining region mutations of DNA gyrase (gyrA and gyrB and topoisomerase IV (parC and parE. The genetic relatedness among the strains was analyzed by pulsed-field gel electrophoresis. Results Susceptibility test showed that all isolates were low resistance to lomefloxacin (28.67%, levofloxacin (20.28%, norfloxacin (22.38%, ciprofloxacin (23.78%, however, high resistance levels were found to nalidixic acid (82.52% and enrofloxacin (55.94%. In addition, we found 14 antimicrobial resistance genes were present in these isolates, including blaTEM-1, blaROB-1, ermB, ermA, flor, catl, tetB, tetC, rmtB, rmtD, aadA1, aac(3′-llc, sul1, and sul2 genes. Interestingly, one isolate carried five antibiotic resistance genes (tetB, tetC, flor, rmtB, sul1. The genes tetB, rmtB, and flor were the most prevalent resistance genes in H. parasuis in China. Alterations in the gyrA gene (S83F/Y, D87Y/N/H/G were detected in 81% of the strains and parC mutations were often accompanied by a gyrA mutation. Pulsed-field gel electrophoresis typing revealed 51 unique patterns in the isolates carrying high-level antibiotic resistance genes, indicating considerable genetic diversity and suggesting that the genes were spread horizontally. Discussion The current study demonstrated that the high antibiotic resistance of H. parasuis in piglets is a combination of transferable antibiotic resistance genes and multiple target

  10. Molecular epidemiological survey of the quinolone- and carbapenem-resistant genotype and its association with the type III secretion system in Pseudomonas aeruginosa.

    Science.gov (United States)

    Ferreira, Melina Lorraine; Dantas, Raquel Cavalcanti; Faria, Ana Luiza Souza; Gonçalves, Iara Rossi; Silveira de Brito, Cristiane; Queiroz, Lícia Ludendorff; Gontijo-Filho, Paulo P; Ribas, Rosineide Marques

    2015-03-01

    This study evaluated the predictors of mortality and the impact of inappropriate therapy on the outcomes of patients with bacteraemia and ventilator-associated pneumonia (VAP). Additionally, we evaluated the correlation of the type III secretion system (TTSS) effector genotype with resistance to carbapenems and fluoroquinolones, mutations in the quinolone resistance-determining regions (QRDRs), metallo-β-lactamase and virulence factors. A retrospective cohort was conducted at a tertiary hospital in patients with multidrug-resistant (MDR) P. aeruginosa bacteraemia (157 patients) and VAP (60 patients). The genes for blaIMP, blaVIM, blaSIM, blaGIM and blaSPM and virulence genes (exoT, exoS, exoY, exoU, lasB, algD and toxA) were detected; sequencing was conducted for QRDR genes on fluoroquinolone-resistant strains. The multivariate analyses showed that the predictors independently associated with death in patients with bacteraemia were cancer and inappropriate therapy. Carbapenem resistance was more frequent among strains causing VAP (53.3 %), and in blood we observed the blaSPM genotype (66.6 %) and blaVIM genotype (33.3 %). The exoS gene was found in all isolates, whilst the frequency was low for exoU (9.4 %). Substitution of threonine to isoleucine at position 83 in gyrA was the most frequent mutation among fluoroquinolone-resistant strains. Our study showed a mutation at position 91 in the parC gene (Glu91Lys) associated with a mutation in gyrA (Thre83Ile) in a strain of extensively drug-resistant P. aeruginosa, with the exoT(+)exoS(+)exoU(+) genotype, that has not yet been described in Brazil to the best of our knowledge. This comprehensive analysis of resistance mechanisms to carbapenem and fluoroquinolones and their association with TTSS virulence genes, covering MDR P. aeruginosa in Brazil, is the largest reported to date. © 2015 The Authors.

  11. [The participation of the transport-barrier functions of the plasma membrane in the development of fluoroquinolone (ciprofloxacin) resistance in Acholeplasma laidlawii].

    Science.gov (United States)

    Abramycheva, N Iu; Govorun, V M

    2000-01-01

    The role of transport activity of Acholeplasma laidlawii plasmatic membrane in the development of resistance to ciprofloxacin was investigated. It was shown that ethidium bromide used as fluoroquinolone analogue in plasmatic membrane efflux pump was accumulated in ciprofloxacin-resistant cells in much less amount. It was estimated that ethidium bromide efflux depended on temperature, glucose and transmembrane electro-chemical proton potential. Inhibitors of efflux systems--reserpine and verapamil enhanced the ethidium bromide accumulation much more intensively in ciprofloxacin resistant cells. The results of investigation allowed to consider the existence of active efflux system for toxic agents in acholeplasma; in the case of ciprofloxacin-resistant strain these systems are inducible.

  12. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and

  13. Eliminação de resistência a drogas por fluorquinolonas em Staphylococcus aureus de origem bovina Elimination of resistance to drugs by fluoroquinolones in bovine strains of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Maria S.V. Pereira

    2004-03-01

    Full Text Available Cepas de Staphylococcus aureus de origem bovina foram submetidas ao tratamento com quatro fluoquinolonas na concentração subinibitória (1/2 x CMI, para avaliar a influência desses agentes sobre plasmídios. A ciprofloxacina mostrou ser a fluorquinolona mais eficiente, eliminando marcas de resistência para estreptomicina, tetraciclina, penicilina e cádmio. A norfloxacina e a pefloxacina eliminaram resistência para penicilina e tetraciclina, respectivamente; no entanto, não foi evidenciada a eliminação de plasmídio com ofloxacina. Os resultados confirmam a eficácia das fluor-quinolonas em eliminar plasmídios de resistência mostrando a importância desses estudos como contribuição para o entendimento da prevenção de linhagens multiresistentes, uma vez que as quinolonas em concentrações subinibitórias podem aumentar a sensibilidade das linhagens a outros agentes antimicrobianos.Bovine strains of Staphylococcus aureus were submitted to treatment with four fluoro-quinolones in subinhibitory concentrations (1/2 x MICs to evaluate their influence on the curing of plasmids. Ciprofloxacin showed to be the most efficient by eliminating resistance to streptomycin, tetracyclin, penicillin, and cadmium nitrate. Norfloxacin and pefloxacin eliminated penicillin- and tetracyclin-resistance respectively. Otherwise, plasmids elimination by ofloxacin was not evidenced. The results obtained in this study confirm the potential of fluoroquinolones to eliminate antibiotic-resistant plasmids, and showed to be a valuable contribution for the prevention of multi-resistant strains, and may even enhance their sensitivity to other chemotherapeutic agents.

  14. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Science.gov (United States)

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights

  15. Rapid diagnosis of drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol using genotype MTBDRsl assay: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yan Feng

    Full Text Available BACKGROUND: There are urgent needs for rapid and accurate drug susceptibility testing of M. tuberculosis. GenoType MTBDRsl is a new molecular kit designed for rapid identification of the resistance to the second-line antituberculosis drugs with a single strip. In recent years, it has been evaluated in many settings, but with varied results. The aim of this meta-analysis was to synthesize the latest data on the diagnostic accuracy of GenoType MTBDRsl in detecting drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol, in comparison with the phenotypic drug susceptibility test. METHODS: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guideline. The search terms of "MTBDRsl" and "tuberculosis" were used on PubMed, EMBASE, and Web of Science. QUADAS-2 was used to assess the quality of included studies. Data were analyzed by Meta-Disc 1.4. We calculated the sensitivity, specificity, positive likelihood ratio (PLR, negative likelihood ratio (NLR, diagnostic odds ratio (DOR and corresponding 95% confidence interval (CI for each study. From these calculations, forest plots and summary receiver operating characteristic (SROC curves were produced. RESULTS: Patient selection bias as well as flow and timing bias were observed in most studies. The summarized sensitivity (95% CI was 0.874(0.845-0.899, 0.826(0.777-0.869, 0.820(0.772-0.862, 0.444(0.396-0.492, and 0.679(0.652-0.706 for fluoroquinolones, amikacin, capreomycin, kanamycin, and ethambutol, respectively. The specificity (95% CI was 0.971(0.961-0.980, 0.995(0.987-0.998, 0.973(0.963-0.981, 0.993(0.985-0.997, and 0.799(0.773-0.823, respectively. The AUC (standard error were 0.9754(0.0203, 0.9300(0.0598, 0.9885(0.0038, 0.9689(0.0359, and 0.6846(0.0550, respectively. CONCLUSION: Genotype MTBDRsl showed good accuracy for detecting drug resistance to fluoroquinolones, amikacin and capreomycin, but it may not be an

  16. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    Science.gov (United States)

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  17. Fluoroquinolone Resistance Mechanisms and population structure of Enterobacter cloacae non-susceptible to Ertapenem in North-Eastern France.

    Directory of Open Access Journals (Sweden)

    Thomas eGuillard

    2015-10-01

    Full Text Available Fluoroquinolone (FQ agents are a potential resort to treat infection due to Enterobacteriaceae producing extended spectrum β-lactamase and susceptible to FQ. In a context of increase of non-susceptibility to carbapenems among Enterobacteriaceae, we characterized FQ resistance mechanisms in 75 Enterobacter cloacae isolates non-susceptible to ertapenem in North-Eastern France in 2012 and describe the population structure by pulsed field gel electrophoresis (PFGE and multilocus sequence typing (MLST.Among them, 14.7% (12/75 carried a carbapenemase-encoding gene. Except one isolate producing VIM-1, the carbapenemase-producing isolates carried the well-known IncL/M pOXA48a plasmid. Most of the isolates (59/75 harbored at least a FQ-R determinant. qnr genes were predominant (40%, 30/75. The MLST study revealed that E. cloacae isolates’ clonality was wide (24 different STs. The more widespread STs were ST74, ST101, ST110, ST114 and ST133. Carbapenem MICs were higher for E. cloacae ST74 than for other E. cloacae isolates. PMQR determinants were more often observed in E. cloacae ST74 isolates. These findings showed that (i pOXA-48a is spreading in North-Eastern France, (ii qnr is preponderant in E. cloacae, (iii E. cloacae comprised a large amount of lineages spreading in North-Eastern France and (iv FQ as an alternative to β-lactams to treat ertapenem non-susceptible Enterobacteriaceae are compromised.

  18. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river.

    Science.gov (United States)

    Rodriguez-Mozaz, Sara; Chamorro, Sara; Marti, Elisabet; Huerta, Belinda; Gros, Meritxell; Sànchez-Melsió, Alexandre; Borrego, Carles M; Barceló, Damià; Balcázar, Jose Luis

    2015-02-01

    Antibiotic resistance has become a major health concern; thus, there is a growing interest in exploring the occurrence of antibiotic resistance genes (ARGs) in the environment as well as the factors that contribute to their emergence. Aquatic ecosystems provide an ideal setting for the acquisition and spread of ARGs due to the continuous pollution by antimicrobial compounds derived from anthropogenic activities. We investigated, therefore, the pollution level of a broad range of antibiotics and ARGs released from hospital and urban wastewaters, their removal through a wastewater treatment plant (WWTP) and their presence in the receiving river. Several antimicrobial compounds were detected in all water samples collected. Among antibiotic families, fluoroquinolones were detected at the highest concentration, especially in hospital effluent samples. Although good removal efficiency by treatment processes was observed for several antimicrobial compounds, most antibiotics were still present in WWTP effluents. The results also revealed that copy numbers of ARGs, such as blaTEM (resistance to β-lactams), qnrS (reduced susceptibility to fluoroquinolones), ermB (resistance to macrolides), sulI (resistance to sulfonamides) and tetW (resistance to tetracyclines), were detected at the highest concentrations in hospital effluent and WWTP influent samples. Although there was a significant reduction in copy numbers of these ARGs in WWTP effluent samples, this reduction was not uniform across analyzed ARGs. Relative concentration of ermB and tetW genes decreased as a result of wastewater treatment, whereas increased in the case of blaTEM, sulI and qnrS genes. The incomplete removal of antibiotics and ARGs in WWTP severely affected the receiving river, where both types of emerging pollutants were found at higher concentration in downstream waters than in samples collected upstream from the discharge point. Taken together, our findings demonstrate a widespread occurrence of

  19. Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2015-10-19

    This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern.

  20. Quinolone Resistance among Salmonella enterica from Cattle, Broilers and Swine in Denmark

    DEFF Research Database (Denmark)

    Wiuff, C.; Baggesen, Dorte Lau; Madsen, M.

    2000-01-01

    This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... that quinolone-resistant isolates have emerged in recent years among food-producing animals, especially among S. Enteritidis from broilers in Denmark, and that the resistance mainly is associated with mutations in gyrA.......This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... to quinolones. A single (1.1%) S. Typhimurium isolate from 1995 and three (5.9%) from 1998 were resistant to nalidixic acid. Six (9.0%) S. Dublin isolates from 1996, four (4.2%) from 1997, and one (1.7%) from 1998 were resistant to nalidixic acid. Resistance was not observed among isolates from cattle in 1999...

  1. Fluoroquinolone susceptibilities to methicillin-resistant and susceptible coagulase-negative Staphylococcus isolated from eye infection Suscetibilidade dos Staphylococcus coagulase negativo meticilina-resistentes e suscetíveis isolados em infecções oculares

    Directory of Open Access Journals (Sweden)

    Adália Dias Dourado Oliveira

    2007-03-01

    Full Text Available PURPOSE: To evaluate the fluoroquinolone susceptibilities of ocular isolate coagulase-negative staphylococci (CoNS, identified at the Microbiology Laboratory - UNIFESP. DESIGN: Experimental laboratory investigation. METHODS: The minimum inhibitory concentrations (MICs of 21 strains of methicillin-resistant coagulase-negative staphylococci (MRCoNS and 22 methicillin-sensitive coagulase-negative staphylococci (MSCoNS to ciprofloxacin, ofloxacin, gatifloxacin and moxifloxacin were determined, using the E-test method standardized by the Clinical and Laboratory Standards Institute (CLSI/NCCLS. RESULTS: The MIC90s (µg/ml for the second generation of tested fluoroquinolones were higher than the fourth generation, especially for the methicillin-resistant coagulase-negative staphylococci group. CONCLUSION: Our results indicate that methicillin-sensitive coagulase-negative staphylococci are more susceptible to quinolones than are methicillin-resistant coagulase-negative staphylococci and that fourth generation fluoroquinolones appear to be more potent, affecting even coagulase-negative staphylococcal strains resistant to second generation fluoroquinolones.OBJETIVOS: Avaliar a suscetibilidade a fluorquinolonas dos Staphylococcus coagulase-negativo (SCoN identificados no Laboratório de Microbiologia Ocular da Unifesp. MÉTODOS: Foi determinada a concentração inibitória mínima de 21 cepas de SCoN meticilina-resistentes e 22 meticilina-sensíveis para ciprofloxacina, ofloxacina, gatifloxacina e moxifloxacina, utilizando o E-test estandartizado pelo CLSI/NCCLS. RESULTADOS: Os MIC90 (µg/ml de 43 SCoN isolados para fluorquinolonas de segunda geração foram maiores do que os de quarta geração, principalmente para o grupo dos meticilina-resistentes. CONCLUSÃO: Nossos resultados indicam que Staphylococcus coagulase-negativo meticilina-sensíveis são mais suscetíveis às quinolonas do que os Staphylococcus coagulase-negativo meticilina

  2. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Science.gov (United States)

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  3. Azithromycin, fluoroquinolone and chloramphenicol resistance of non-chlamydia conjunctival bacteria in rural community of Ethiopia

    Directory of Open Access Journals (Sweden)

    Bayeh Abera

    2014-01-01

    Full Text Available Aim: To determine profiles of non-chlamydia conjunctival bacteria and their antimicrobial susceptibility from adults who underwent trachomatous trichiasis surgery in rural areas of Ethiopia. Materials and Methods: A cross-sectional study was conducted in rural districts in West Gojjam administrative zone. Conjunctival swabs were collected during surgery and transported using Stuart transport broth (Oxoid, UK. Antibiotic susceptibility of conjunctival isolates was determined using the Kirby-Bauer disc-diffusion method. Results: Non-chlamydia pathogenic bacteria were recovered from conjunctiva of 438 (31% participants before treatment. The isolated conjunctival bacteria were Staphylococcus aureus, coagulase-negative Staphylococci, Streptococcus group (A, C, F and G, Enterococci, Streptococcus pneumoniae, Moraxella spp., Escherichia coli, Citrobacter spp., Proteus spp., Klebsiella spp., Pseudomonas spp. and Enterobacter spp. Overall, resistance rates of 57.8% to azithromycin and 68.5% to chloramphenicol were found. However, 86-94.4% sensitivity was demonstrated to ciprofloxacin and norfloxacin. Moderate sensitivity rates (61.8-78.4% were observed to ceftriaxone, tetracycline and cotrimoxazole. Conclusion: Fluoroquinolones that have activity against the majority of bacterial isolates were potent at in vitro. However, unacceptably high levels of resistance to azithromycin and chloramphenicol in rural community indicated a need for further study and antimicrobial resistance surveillance.

  4. Evaluating Fluoroquinolone Use in Patients Admitted to the Tuberculosis Outpatient Clinic

    Directory of Open Access Journals (Sweden)

    Sinem İliaz

    2016-08-01

    Full Text Available Objective: Inelaborate use of new quinolones with strong anti-tuberculosis (TB activity leads to difficulty in diagnosis and more importantly, quinolone-resistant Mycobacterium tuberculosis. We aimed to determine the frequency of quinolone use in patients who were referred to our hospital for suspected TB and to evaluate the association between quinolone use and different clinical laboratory parameters. Methods: Between November 15 and December 15, 2013, all patients who were admitted to the TB outpatient clinic with no previous diagnosis of TB were included in this study. Demographic and clinical laboratory findings and history of antibiotic use were recorded. Patients’ quinolone use were questioned by showing fluoroquinolone antibiotic boxes’ photographs available on the market. The departments of the doctors who prescribed quinolones were recorded. Results: The mean age of 179 patients included in the study was 37±16 (15–89 years. Among these, 113 patients (63.1% were male. Seventy five patients (41.9% were diagnosed as tuberculosis according to the clinical-radiological and/or bacteriological findings. Of 179 patients, 58.1% (n=104 had been prescribed antibiotics for current complaints before referral to our clinic. Sixteen patients (15% had been recommended fluoroquinolones. Fluoroquinolones were prescribed by seven internal medicine specialists, five pulmonologists, three emergency medicine specialists, and one family medicine practitioner. Among 16 fluoroquinolones prescribed, nine were moxifloxacin, four were levofloxacin, and three were gemifloxacin. Quinolone use revealed a significant inverse relationship only with the presence of hemoptysis (p=0.04. Conclusion: Besides increased educational activities regarding the rational use of antibiotics in recent years, the quinolone group of antibiotics is still prescribed for suspected TB cases. To avoid quinolone-resistant M. tuberculosis strains, further education is required.

  5. Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico.

    Directory of Open Access Journals (Sweden)

    Flor Yazmin Ramirez Castillo

    2013-06-01

    Full Text Available Contamination of surface waters in developing countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks and may represent a significant dissemination mechanism of antibiotic resistance genes. In this study, the water quality of San Pedro River, the main river and pluvial collector of the Aguascalientes State, Mexico was assessed. Thirty sample locations were tested throughout the River. The main physicochemical parameters of water were evaluated. Results showed high levels of fecal pollution as well as inorganic and organic matter abundant enough to support the heterotrophic growth of microorganisms. These results indicate poor water quality in samples from different locations. One hundred and fifty Escherichia coli were collected and screened by PCR for several virulence genes. Isolates were classified as either pathogenic (n = 91 or commensal (n = 59. The disc diffusion method was used to determine antimicrobial susceptibility to 13 antibiotics. Fifty-two percent of the isolates were resistant to at least one antimicrobial agent and 30.6% were multi-resistant. Eighteen E. coli strains were quinolone resistant of which 16 were multi-resistant. Plasmid-mediated quinolone resistance genes were detected in 12 isolates. Mutations at the Ser-83→Leu and/or Asp-87→Asn in the gyrA gene were detected as well as mutations at the Ser-80→Ile in parC. An E. coli microarray (Maxivirulence V 3.1 was used to characterize the virulence and antimicrobial resistance genes profiles of the fluoroquinolone-resistant isolates. Antimicrobial resistance genes such as blaTEM, sulI, sulII, dhfrIX, aph3 (strA and tet (B as well as integrons were found in fluoroquinolone resistance E. coli strains. The presence of potential pathogenic E. coli and antibiotic resistance in San Pedro River such as fluoroquinolone resistant E. coli could pose a potential threat to human

  6. Safety of Fluoroquinolones: An Update

    Directory of Open Access Journals (Sweden)

    L Mandell

    2002-01-01

    Full Text Available The fluoroquinolone class of antimicrobials has been in clinical use for over 13 years. During that period, some representatives of the class have been extensively prescribed, such as ciprofloxacin and levofloxacin, while others have seen minimal use and have been restricted or withdrawn, namely, trovafloxacin and grepafloxacin. Manipulation of the fluoroquinolone structure by substituting a range of moieties around the core has yielded enhanced antibacterial activity, but in some cases this has come at a price. Specific substitutions are discussed in relation to particular recognized adverse events. In the present paper, newly introduced fluoroquinolones, such as moxifloxacin and gatifloxacin, are examined in terms of anticipated class effects and recent clinical experience. These antimicrobials are associated with reactions such as diarrhea, nausea, headache and other typical antimicrobial phenomena at rates less than 5%. New fluoroquinolone agents should be examined carefully in light of structural findings until adequate clinical data are amassed.

  7. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections

    Science.gov (United States)

    Sjölund-Karlsson, Maria; Gordon, Melita A.; Parry, Christopher M.

    2015-01-01

    SUMMARY Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015. PMID:26180063

  8. [Hospital fluoroquinolone prescription habits in northern France].

    Science.gov (United States)

    Levent, T; Cabaret, P

    2010-09-01

    The aim of the study was to assess the good use organization and fluoroquinolone prescription habits in cases of bone and joint, urinary, pulmonary, and digestive infections. A declarative survey was made (questionnaire for the hospital and for the prescriber). Thirty percent (44/145) of hospitals participated with 274 prescribers. Eighty percent had prescription protocols, 71 % of clinicians had access to epidemiologic data. A percentage of 30.7 (853/2,771) of prescriptions included a fluoroquinolone, 44.5 % (380/853) among these had not been recommended. The excessive prescription reached 24.4 % (116/474) in case of bone and joint infection, 14.6 % (107/731), and 20 % (157/779) in cases of digestive and respiratory infection respectively. Prescriptions for urinary infection were adequate in 47.6 % (375/787) of cases. Inadequate prescriptions were made because of bad knowledge of bacteria resistance epidemiology and pharmacology (insufficient dose, monotherapy at risk of selection), and non-application of good practice recommendations. This study justifies the rationalization of antibiotic prescription. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway.

    Science.gov (United States)

    Theodore, Alyssa; Lewis, Kim; Vulic, Marin

    2013-12-01

    Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called "persisters," depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis of the respective mutants indicates that, in addition to repair of double-strand breaks, tolerance depends on the repair of collapsed replication forks and stalled transcription complexes. Mutation in recF results in increased survival, which identifies RecAF recombination as a poisoning mechanism not previously linked to FQ lethality. DinG acts upstream of SOS promoting its induction, whereas RuvAB participates in repair only. UvrD directly promotes all repair processes initiated by FQ-induced damage and prevents RecAF-dependent misrepair, making it one of the crucial SOS functions required for tolerance.

  10. In vitro activity of fluoroquinolones (gatifloxacin, levofloxacin and trovafloxacin and seven other antibiotics against Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Nicodemo A.C.

    2001-01-01

    Full Text Available In recent years, the level of resistance of S. pneumoniae to beta-lactam and/or macrolides has increased around the world including some countries in South America. Because of this resistance, it is necessary to test the therapeutic alternatives for treating this pathogen, including the newer quinolones. This study was carried out in order to compare the in vitro activity of fluoroquinolones gatifloxacin, levofloxacin and trovafloxacin, to penicillin G, amoxicillin, amoxicillin-clavulanate, cufuroxime sodium, ceftriaxone, azithromycin and clarithromycin, against 300 strains of S. pneumoniae. Of the 300 samples tested, 18.6% were not susceptible to penicillin (56 strains and 7% (21 strains were resistant to the second generation cephalosporin. Among the macrolides, resistance ranged from 6.7% for clarithromycin to 29.6% for azithromycin. Susceptibility to the newer quinolones was 100% including the 56 strains not susceptible to penicillin. Among the 10 antibiotics evaluated, the fluoroquinolones gatifloxacin, levofloxacin, and trovafloxacin displayed high levels of in vitro activity against S. pneumoniae.

  11. Characterization of Acinetobacter baumannii clinical isolates carrying bla(OXA-23) carbapenemase and 16S rRNA methylase armA genes in Yemen.

    Science.gov (United States)

    Bakour, Sofiane; Alsharapy, Samer Ahmed; Touati, Abdelaziz; Rolain, Jean-Marc

    2014-12-01

    The aim of this study was to investigate the molecular support of resistance to carbapenems, aminoglycosides, and fluoroquinolones in Acinetobacter baumannii clinical isolates collected from Yemen hospital. Three A. baumannii were isolated in February 2013 from three patients hospitalized at Al-Thawra University Hospital in Sana'a, Yemen. Antibiotic susceptibility testing was performed using the disk diffusion and E-test methods. Carbapenemase production was carried out by the modified Hodge test (MHT) and imipenem-ethylenediaminetetraacetic acid (EDTA) methods. Carbapenem, aminoglycoside, and fluoroquinolone resistance determinants were studied by polymerase chain reaction and sequencing. The epidemiological relatedness of the three strains was studied using multilocus sequence typing (MLST). The isolates were resistant to almost all antibiotics tested with very high imipenem, amikacin, and ciprofloxacin minimum inhibitory concentrations (>32, >256, and >32 mg/L, respectively). The microbiological tests showed that the three A. baumannii were MHT positive, besides, the activity of β-lactamases was not inhibited by EDTA. All the three isolates contained the naturally occurring bla(OXA-51)-like gene and the bla(OXA-23)-like carbapenemase-encoding gene. The 16S rRNA methylase armA gene was detected in the three isolates. In addition, screening for genes encoding the aminoglycoside-modifying enzymes (AMEs) demonstrated that one isolate contained the acetyltransferase gene aac(6')-Ib. Fluoroquinolone resistance was associated with a single mutation Ser83Leu in the quinolone resistance determining region of the gyrA gene in all isolates. The MLST showed that the sequence type (ST) obtained corresponds to ST2 for the three strains. Here we report the first identification of multidrug-resistant A. baumannii isolates harboring the bla(OXA-23)-like gene, AMEs [aac(6')-Ib], and the 16S rRNA methylase (armA) in the Yemen hospital.

  12. Mechanisms of antibiotic resistance in Staphylococcus aureus.

    Science.gov (United States)

    Pantosti, Annalisa; Sanchini, Andrea; Monaco, Monica

    2007-06-01

    Staphylococcus aureus can exemplify better than any other human pathogen the adaptive evolution of bacteria in the antibiotic era, as it has demonstrated a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin and methicillin, until the most recent, linezolid and daptomycin. Resistance mechanisms include enzymatic inactivation of the antibiotic (penicillinase and aminoglycoside-modification enzymes), alteration of the target with decreased affinity for the antibiotic (notable examples being penicillin-binding protein 2a of methicillin-resistant S. aureus and D-Ala-D-Lac of peptidoglycan precursors of vancomycin-resistant strains), trapping of the antibiotic (for vancomycin and possibly daptomycin) and efflux pumps (fluoroquinolones and tetracycline). Complex genetic arrays (staphylococcal chromosomal cassette mec elements or the vanA operon) have been acquired by S. aureus through horizontal gene transfer, while resistance to other antibiotics, including some of the most recent ones (e.g., fluoroquinolones, linezolid and daptomycin) have developed through spontaneous mutations and positive selection. Detection of the resistance mechanisms and their genetic basis is an important support to antibiotic susceptibility surveillance in S. aureus.

  13. Antimicrobial resistance and detection of the mecA gene besides enterotoxin-encoding genes among coagulase-negative Staphylococci isolated from clam meat of Anomalocardia brasiliana.

    Science.gov (United States)

    Batista, Jacqueline Ellen Camelo; Ferreira, Ewerton Lucena; Nascimento, Danielle Cristina de Oliveira; Ventura, Roberta Ferreira; de Oliveira, Wagner Luis Mendes; Leal, Nilma Cintra; Lima-Filho, José Vitor

    2013-12-01

    The marine clam Anomalocardia brasiliana is a candidate as a sentinel animal to monitor the contamination levels of coliforms in shellfish-harvesting areas of Brazil's northeastern region. The aim of the present study was to search enterotoxin-encoding genes plus the mecA gene among coagulase-negative staphylococci (CNS) isolates from shellfish meats of A. brasiliana. The specimen clam (n=48; 40 clams per sample) was collected during low tide in the bay area of Mangue Seco from April through June 2009, and random samples of chilled and frozen shelled clam meat (n=33; 250 g per sample) were obtained from retail shops from January through March 2012. Seventy-nine CNS isolates were identified, including Staphylococcus xylosus, S. cohnii spp. urealyticus, S. sciuri, and S. lentus. A high percentage of isolates resistant to erythromycin (58.5%), penicillin (51.2%), and tetracycline (43.9%), and the fluoroquinolones levofloxacin (39%) and ciprofloxacin (34.1%) were recorded from those environmental samples. Isolates from retail shops were particularly resistant to oxacillin (55.3%) and penicillin (36.8%). All CNS resistant to oxacillin and/or cefoxitin were positive for the presence of the mecA gene, but phenotypically susceptible to vancomycin. Also, the enterotoxin-encoding genes seg and seh were detected through multiplex-polymerase chain reaction in 77.7% and 88.8% of the isolates from environmental samples, versus 90.5% and 100% of the isolates from retail shops, respectively. The data reveal the risk to public health due to consuming raw or undercooked shellfish containing enterotoxigenic plus methicillin-resistant CNS.

  14. Associations between resistance phenotype and gene expression in response to serial exposure to oxacillin and ciprofloxacin in Staphylococcus aureus.

    Science.gov (United States)

    Uddin, M J; Ahn, J

    2017-12-01

    This study was designed to delineate the relationship between resistance phenotypes and gene expression in wild-type (SA WT ), oxacillin-induced (SA OXA ), ciprofloxacin-induced (SA CIP ) and clinically acquired antibiotic-resistant Staphylococcus aureus (SA CA ) exposed to oxacillin (β-lactam) and ciprofloxacin (fluoroquinolone). The phenotypic response and gene expression were varied with the antibiotic exposure. SA WT was highly resistant to oxacillin (MIC = 8 μg ml -1 ) after serial exposure to oxacillin, while the oxacillin susceptibility was not changed in SA WT when exposed to ciprofloxacin (MIC = 0·25 μg ml -1 ). The clinical isolate, SA CA , was highly resistant to all classes of antibiotics used in this study. The increased resistance of SA OXA and SA CIP to penicillinase-labile penicillins was attributed to the production of β-lactamase, which is in good agreement with the overexpression of blaZ (>2-fold). The overexpression of efflux pump-related genes (norA, norB, norC, mdeA, mepR, mgrA and lmrS) was associated with the increased resistance of SA CIP and SA CA to aminoglycosides and quinolones. This study confirmed that the linkage between resistance phenotypes and molecular genotypes highly varied depending on intrinsic resistance profile, response to antibiotic exposure and genes conferring resistance. This study provides useful information for understanding the mechanisms of methicillin resistance in S. aureus in association with phenotypic and genotypic resistance determinants. The improvement in current standards is essential to accurately detect methicillin-resistant Staphylococcus aureus in consideration of various resistance phenotypes and genotypes. The varied and distinctive expression patterns of antibiotic resistance-related genes were observed in S. aureus exposed to oxacillin and ciprofloxacin. It is worth noting the relationship between resistance phenotype and resistance genotype in terms of MIC values and expression of

  15. Resistance gene pool to co-trimoxazole in non-susceptible Nocardia strains.

    Directory of Open Access Journals (Sweden)

    Sylvia eValdezate

    2015-04-01

    Full Text Available The soil-borne pathogen Nocardia spp. causes severe cutaneous, pulmonary and central nervous system infections. Against them, co-trimoxazole (SXT constitutes the mainstay of antimicrobial therapy. However, some Nocardia strains show resistance to SXT, but the underlying genetic basis is unknown. We investigated the presence of genetic resistance determinants and class 1-3 integrons in 76 SXT-resistant Nocardia strains by PCR and sequencing. By E-test, these clinical strains showed SXT MICs of ≥32:608 mg/L (ratio of 1:19 for trimethoprim: sulfamethoxazole. They belonged to 12 species, being the main representatives N. farcinica (32%, followed by N. flavorosea (6.5%, N. nova (11.8%, N. carnea (10.5%, N. transvalensis (10.5% and Nocardia spp. (6.5%. The prevalence of resistance genes in the SXT-resistant strains was as follows: sul1 and sul2 93.4% and 78.9% respectively, dfrA(S1 14.7%, blaTEM-1 and blaZ 2.6% and 2.6% respectively, VIM-2 1.3%, aph(3´-IIIa 40.8%, ermA, ermB, mefA and msrD 2.6%, 77.6%, 14.4%, and 5.2% respectively, and tet(O, tet(M, and tet(L 48.6%, 25.0% and 3.9% respectively. Detected amino acid changes in GyrA were not related to fluoroquinolone resistance, but probably linked to species polymorphism. Class 1 and 3 integrons were found in 93.42% and 56.57% strains, respectively. Class 2 integrons and sul3 genes were not detected. Other mechanisms, different than dfrA(S1, dfrD, dfrF, dfrG and dfrK, could explain the strong trimethoprim resistance shown by the other 64 strains. For first time, resistance determinants commonly found in clinically important bacteria were detected in Nocardia spp. sul1, sul2, erm(B and tet(O were the most prevalent in the SXT-resistant strains. The similarity in their resistome could be due to a common genetic platform, in which these determinants are co-transferred

  16. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia.

    Science.gov (United States)

    Goic-Barisic, Ivana; Seruga Music, Martina; Kovacic, Ana; Tonkic, Marija; Hrenovic, Jasna

    2017-06-01

    Acinetobacter baumannii is an emerging nosocomial pathogen with also emerging resistance to different antibiotics. Multidrug and pan drug-resistant clinical isolates were reported worldwide. Here we report the first evidence of pan drug-resistant environmental isolate of A. baumannii. The isolate was recovered from the effluent of secondary treated municipal wastewater of the City of Zagreb, Croatia. The isolate was resistant to penicillins/β-lactamase inhibitors, carbapenems, fluoroquinolones, aminoglycosides, folate pathway inhibitors, and polymyxins, except intermediately susceptible to minocycline and tigecycline. Intrinsic chromosomally located bla OXA-51-like gene and acquired plasmid-located bla OXA-23-like gene were related to clinical isolates. Pan drug-resistant A. baumannii can occur in natural environments outside of the hospital. Secondary treated municipal wastewater represents a potential epidemiological reservoir of pan drug-resistant A. baumannii and carbapenem resistance gene.

  17. Prevalence and Antimicrobial Resistance of Enterococcus Species: A Hospital-Based Study in China

    Directory of Open Access Journals (Sweden)

    Wei Jia

    2014-03-01

    Full Text Available Objective: to investigate the prevalence and antimicrobial resistance of Enterococcus species isolated from a university hospital, and explore the mechanisms underlying the antimicrobial resistance, so as to provide clinical evidence for the inappropriate clinical use of antimicrobial agents and the control and prevention of enterococcal infections. Methods: a total of 1,157 enterococcal strains isolated from various clinical specimens from January 2010 to December 2012 in the General Hospital of Ningxia Medical University were identified to species level with a VITEK-2 COMPACT fully automated microbiological system, and the antimicrobial susceptibility of Enterococcus species was determined using the Kirby-Bauer disc diffusion method. The multiple-drug resistant enterococcal isolates were screened from the clinical isolates of Enterococcus species from the burns department. The minimal inhibitory concentration (MIC of Enterococcus species to the three fluoroquinolones, including ciprofloxacin, gatifloxacin and levofloxacin was determined with the agar dilution method, and the changes in the MIC of Enterococcus species to the three fluoroquinolones following reserpine treatment were evaluated. The β-lactam, aminoglycoside, tetracycline, macrolide, glycopeptide resistance genes and the efflux pump emeA genes were detected in the enterococcal isolates using a polymerase chain reaction (PCR assay. Results: the 1,157 clinical isolates of Enterococcus species included 679 E. faecium isolates (58.7%, 382 E. faecalis isolates (33%, 26 E. casseliflavus isolates (2.2%, 24 E. avium isolates (2.1%, and 46 isolates of other Enterococcus species (4%. The prevalence of antimicrobial resistance varied significantly between E. faecium and E. faecalis, and ≤1.1% of these two Enterococcus species were found to be resistant to vancomycin, teicoplanin or linezolid. In addition, the Enterococcus species isolated from different departments of the hospital

  18. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    Science.gov (United States)

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Presence of quinolone resistance to qnrB1 genes and blaOXA-48 carbapenemase in clinical isolates of Klebsiella pneumoniae in Spain.

    Science.gov (United States)

    Rodríguez Martínez, J M; Díaz-de Alba, P; Lopez-Cerero; Ruiz-Carrascoso, G; Gomez-Gil, R; Pascual, A

    2014-01-01

    A study is presented on the presence of quinolone resistance qnrB1 genes in clinical isolates belonging to the largest series of infections caused by OXA-48-producing Klebsiella pneumoniae in a single-centre outbreak in Spain. Evidence is also provided, according to in vitro results, that there is a possibility of co-transfer of plasmid harbouring blaOXA-48 with an other plasmid harbouring qnrB1 in presence of low antibiotic concentrations of fluoroquinolones, showing the risk of multi-resistance screening. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Evaluation of the appropriate use of commonly prescribed fluoroquinolones and the risk of dysglycemia

    Science.gov (United States)

    Kabbara, Wissam K; Ramadan, Wijdan H; Rahbany, Peggy; Al-Natour, Souhaila

    2015-01-01

    Background Fluoroquinolones are among the most widely prescribed antibiotics. However, concerns about increasing resistant microorganisms and the risk of dysglycemia associated with the use of these agents have emerged. Objective The primary objective of the study was to evaluate the appropriate use of commonly prescribed fluoroquinolones, including appropriate indication, dose, dose adjustment in renal impairment, and duration of treatment. The secondary objective was to investigate the dysglycemic effect of fluoroquinolone use (hypoglycemia and/or hyperglycemia) in diabetic and nondiabetic patients. Methods A prospective observational study at a teaching hospital in Lebanon was conducted over a 6-month period. A total of 118 patients receiving broad-spectrum fluoroquinolones (levofloxacin, ciprofloxacin, and moxifloxacin) were identified. Patients were mainly recruited from internal medicine floors and intensive care units. Results The final percentage for the appropriate indication, dose, and duration of fluoroquinolone therapy was 93.2%, 74.6%, and 57.6%, respectively. A total of 57.1% of the patients did not receive the appropriate dose adjustment according to their level of renal impairment. In addition, dysglycemia occurred in both diabetic and nondiabetic patients. Dysglycemia was more frequently encountered with ciprofloxacin (50.0%), followed by levofloxacin (42.4%) and moxifloxacin (7.6%). Hyperglycemia was more common than hypoglycemia in all groups. The highest incidence of hyperglycemia occurred with levofloxacin (70.0%), followed by ciprofloxacin (39.0%) and moxifloxacin (33.3%). In contrast, hypoglycemia did not occur in the ciprofloxacin group, but it was more common with moxifloxacin (11.1%) and levofloxacin (6.0%). Conclusion The major clinical interventions for the future will adjust the dose and duration of therapy with commonly prescribed fluoroquinolones. The incidence of hypoglycemia was less common than hyperglycemia. PMID:25960658

  1. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay.

    Science.gov (United States)

    Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo

    2017-09-27

    Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and bla CTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms.

  2. Evaluation of the appropriate use of commonly prescribed fluoroquinolones and the risk of dysglycemia

    Directory of Open Access Journals (Sweden)

    Kabbara WK

    2015-04-01

    Full Text Available Wissam K Kabbara,1 Wijdan H Ramadan,1 Peggy Rahbany,2 Souhaila Al-Natour3 1Department of Pharmacy Practice, School of Pharmacy, Lebanese American University, Byblos, Lebanon; 2Children’s National Medical Center, Washington, DC, USA; 3Medex Pharmaceutical Company, Beirut, Lebanon Background: Fluoroquinolones are among the most widely prescribed antibiotics. However, concerns about increasing resistant microorganisms and the risk of dysglycemia associated with the use of these agents have emerged.Objective: The primary objective of the study was to evaluate the appropriate use of commonly prescribed fluoroquinolones, including appropriate indication, dose, dose adjustment in renal impairment, and duration of treatment. The secondary objective was to investigate the dysglycemic effect of fluoroquinolone use (hypoglycemia and/or hyperglycemia in diabetic and nondiabetic patients.Methods: A prospective observational study at a teaching hospital in Lebanon was conducted over a 6-month period. A total of 118 patients receiving broad-spectrum fluoroquinolones (levofloxacin, ciprofloxacin, and moxifloxacin were identified. Patients were mainly recruited from internal medicine floors and intensive care units.Results: The final percentage for the appropriate indication, dose, and duration of fluoroquinolone therapy was 93.2%, 74.6%, and 57.6%, respectively. A total of 57.1% of the patients did not receive the appropriate dose adjustment according to their level of renal impairment. In addition, dysglycemia occurred in both diabetic and nondiabetic patients. Dysglycemia was more frequently encountered with ciprofloxacin (50.0%, followed by levofloxacin (42.4% and moxifloxacin (7.6%. Hyperglycemia was more common than hypoglycemia in all groups. The highest incidence of hyperglycemia occurred with levofloxacin (70.0%, followed by ciprofloxacin (39.0% and moxifloxacin (33.3%. In contrast, hypoglycemia did not occur in the ciprofloxacin group, but it was

  3. Drug susceptibility testing of Mycobacterium tuberculosis to fluoroquinolones

    DEFF Research Database (Denmark)

    Johansen, I S; Larsen, A R; Sandven, P

    2003-01-01

    In the first attempt to establish a quality assurance programme for susceptibility testing of Mycobacterium tuberculosis to fluoroquinolones, 20 strains with different fluoroquinolone susceptibility patterns were distributed by the Supranational Reference Laboratory in Stockholm to the other...

  4. Molecular Detection of Helicobacter pylori and its Antimicrobial Resistance in Brazzaville, Congo.

    Science.gov (United States)

    Ontsira Ngoyi, Esther Nina; Atipo Ibara, Blaise Irénée; Moyen, Rachelle; Ahoui Apendi, Philestine Clausina; Ibara, Jean Rosaire; Obengui, O; Ossibi Ibara, Roland Bienvenu; Nguimbi, Etienne; Niama, Rock Fabien; Ouamba, Jean Maurille; Yala, Fidèle; Abena, Ange Antoine; Vadivelu, Jamuna; Goh, Khean Lee; Menard, Armelle; Benejat, Lucie; Sifre, Elodie; Lehours, Philippe; Megraud, Francis

    2015-08-01

    Helicobacter pylori infection is involved in several gastroduodenal diseases which can be cured by antimicrobial treatment. The aim of this study was to determine the prevalence of H. pylori infection and its bacterial resistance to clarithromycin, fluoroquinolones, and tetracycline in Brazzaville, Congo, by using molecular methods. A cross- sectional study was carried out between September 2013 and April 2014. Biopsy specimens were obtained from patients scheduled for an upper gastrointestinal endoscopy and were sent to the French National Reference Center for Campylobacters and Helicobacters where they were tested by molecular methods for detection of H. pylori and clarithromycin resistance by real-time PCR using a fluorescence resonance energy transfer-melting curve analysis (FRET-MCA) protocol, for detection of tetracycline resistance by real-time PCR on 16S rRNA genes (rrnA and rrnB), for detection of point mutations in the quinolone resistance-determining regions (QRDR) of H. pylori gyrA gene, associated with resistance to quinolones, by PCR and sequencing. This study showed a high H. pylori prevalence (89%), low rates of clarithromycin and tetracycline resistance (1.7% and 2.5%, respectively), and a high rate of quinolone resistance (50%). Therefore, the use of standard clarithromycin-based triple therapy is still possible as an empiric first-line treatment as well as prescription of bismuth-based quadruple therapy, which includes tetracycline, but not a levofloxacin-based triple therapy because of the high rate of resistance to fluoroquinolones. © 2015 John Wiley & Sons Ltd.

  5. Triceps Ruptures After Fluoroquinolone Antibiotics: A Report of 2 Cases.

    Science.gov (United States)

    Shybut, Theodore B; Puckett, Ernest R

    Rupture of the triceps brachii tendon is exceedingly rare, and surgical repair is generally indicated. Fluoroquinolone antibiotics have been implicated in tendon pathology, including tendon ruptures. Triceps rupture has not been previously reported in the setting of fluoroquinolone antibiotic therapy. We present 2 cases of triceps tendon rupture after treatment with fluoroquinolones. In both cases, triceps repair was performed with good outcomes. These cases highlight a risk of fluoroquinolone-induced tendinopathy to athletes. The sports medicine team should be aware of this risk and consider it when choosing antibiotics to treat athletes.

  6. Molecular detection of genes encoding AcrAB , Qep A efflux pumps in Klebsiella pneumoniae strains isolated from hospitalized patients in selected hospitals in Tehran

    Directory of Open Access Journals (Sweden)

    Mohsen Heidary

    2017-03-01

    Full Text Available Abstract Background and Objectives: Increasing emergence of fluoroquinolone resistance among clinical isolates of Klebsiella pneumoniae  (K. pneumoniae, has limited the treatment options for treatment of infections caused by these bacteria. The aim of this study was to investigate the dissemination of genes encoding AcrAB and QepA efflux pumps among K. pneumoniae strains. Methods: This study was carried out on 117 K. pneumoniae strains isolated from patients hospitalized in selected hospitals in Tehran city, 2015-2016, Iran. Antimicrobial susceptibility tests were performed using disk diffusion method (based on CLSI guidelines and identification of acr A, acr B and qep A genes using PCR assay. Results: In this study, colistin and tigecycline had the best effect against clinical isolates of K. pneumoniae. According to PCR results, 110 (94% isolates had acrA gene and 102 (87% isolates had acrB gene, respectively. The qepA gene was not found in any of the K. pneumoniae strains. Conclusion: According to the results of the present study, dissemination of the genes encoding AcrAB efflux pumps among K. pneumoniae strains, which cause resistance to fluoroquinolones, is a matter of concern. Therefore, infection control and prevention of the spread of drug-resistant bacteria requires careful management in drug prescription and identification of resistant isolates.

  7. Risk Factors for the Development of Gastrointestinal Colonization With Fluoroquinolone-Resistant Escherichia coli in Residents of Long-Term Care Facilities

    Science.gov (United States)

    Han, Jennifer H.; Maslow, Joel; Han, Xiaoyan; Xie, Sharon X.; Tolomeo, Pam; Santana, Evelyn; Carson, Lesley; Lautenbach, Ebbing

    2014-01-01

    Background. The objective of this study was to assess risk factors for the development of fluoroquinolone (FQ)–resistant Escherichia coli gastrointestinal tract colonization in long-term care facility (LTCF) residents. Methods. A prospective cohort study was conducted from 2006 to 2008 at 3 LTCFs. Residents initially colonized with FQ-susceptible E. coli were followed by means of serial fecal sampling for new FQ-resistant E. coli colonization for up to 12 months or until discharge or death. A Cox proportional hazards regression model was developed to identify risk factors for new FQ-resistant E. coli colonization, with antibiotic and device exposures modeled as time-varying covariates. Results. Fifty-seven (47.5%) of 120 residents became newly colonized with FQ-resistant E. coli, with a median time to colonization of 57 days. Fecal incontinence (hazard ratio [HR], 1.78; 95% confidence interval [CI], 1.04–3.06; P = .04) was significantly associated with FQ-resistant E. coli acquisition. Receipt of amoxicillin-clavulanate (HR, 6.48; 95% CI, 1.43–29.4; P = .02) and the presence of a urinary catheter (HR, 3.81; 95% CI, 1.06–13.8; P = .04) during LTCF stay increased the risk of new FQ-resistant E. coli colonization. Conclusions. Acquisition of FQ-resistant E. coli was common, with nearly half of LTCF residents developing new FQ-resistant E. coli colonization. Further studies are needed on interventions to limit the emergence of FQ-resistant E. coli in LTCFs. PMID:23986544

  8. Evaluation of fluoroquinolones for the prevention of BK viremia after renal transplantation.

    Science.gov (United States)

    Gabardi, Steven; Waikar, Sushrut S; Martin, Spencer; Roberts, Keri; Chen, Jie; Borgi, Lea; Sheashaa, Hussein; Dyer, Christine; Malek, Sayeed K; Tullius, Stefan G; Vadivel, Nidyanandh; Grafals, Monica; Abdi, Reza; Najafian, Nader; Milford, Edgar; Chandraker, Anil

    2010-07-01

    Nearly 30% of renal transplant recipients develops BK viremia, a prerequisite for BK nephropathy. Case reports have evaluated treatment options for BK virus, but no controlled studies have assessed prophylactic therapies. Fluoroquinolone antibiotics were studied for prevention of BK viremia after renal transplantation. This retrospective analysis evaluated adult renal transplant recipients with at least one BK viral load (blood) between 90 and 400 days after transplantation. Six to 12 months of co-trimoxazole was used for Pneumocystis prophylaxis. In sulfa-allergic/-intolerant patients, 6 to 12 months of atovaquone with 1 month of a fluoroquinolone was used. Fluoroquinolones can inhibit BK DNA topoisomerase. The two groups studied were those that received 30 days of levofloxacin or ciprofloxacin after transplantation and those that did not. The primary endpoint was BK viremia rates at 1 year. Of note, of the 160 patients not receiving fluoroquinolone prophylaxis, 40 received a fluoroquinolone for treatment of a bacterial infection within 3 months after transplantation. Subgroup analysis evaluating these 40 patients against the 120 who had no exposure to fluoroquinolones was completed. A 1-month fluoroquinolone course after transplantation was associated with significantly lower rates of BK viremia at 1 year compared with those with no fluoroquinolone. In the subgroup analysis, exposure to fluoroquinolone for treatment of bacterial infections within 3 months after transplantation was associated with significantly lower 1-year rates of BK viremia. This analysis demonstrates that fluoroquinolones are effective at preventing BK viremia after renal transplantation.

  9. [Susceptibility surveillance of clinical isolates to fluoroquinolone antimicrobial agents from 2003 to 2008: post-marketing study of prulifloxacin].

    Science.gov (United States)

    Kawai, Shin; Yoshida, Atsushi; Okazaki, Mitsuhiro; Tsujihara, Yoshito; Inuzuka, Kazuhisa; Takeuchi, Kazuhide; Yamashita, Naoko; Onodera, Makoto; Hiraishi, Toru; Ida, Takashi; Maebashi, Kazunori

    2010-06-01

    Yearly changes in the susceptibility of clinical isolates to ulifloxacin (UFX) and other fluoroquinolones were examined through surveys over 3 periods. In the first survey, 534 strains derived from 19 species were collected from clinical specimens during 6 months from December 2003 to May 2004. In the same way, 805 strains were collected from December 2005 to May 2006 in the second survey, and 863 strains were from December 2007 to May 2008 in the third survey. Over these 3 study periods, the susceptibilities of fluoroquinolones against methicillin-susceptible Staphylococcus aureus and Escherichia coli were decreased. The isolation frequency of levofloxacin-nonsusceptible strain was increased from 0% to 11.8% and from 14.6% to 20.8%, respectively. MIC90s of UFX against these pathogens were also increased, but its MIC90 for E. coli was 2 to 4 times lower than that of levofloxacin. On the other hand, the susceptibility of strains of Klebsiella pneumoniae to UFX was increased. Among the fluoroquinolones tested, UFX showed the most potent activity against Pseudomonas aeruginosa, and no changes in the MIC90s occurred during the surveillance. Although one strain of Streptococcus pneumoniae isolated in the third study period showed levofloxacin-resistance (MIC, 8 microg/mL), there were nearly no changes in the MIC90s of any agents tested including UFX against S. pneumoniae during the surveillance. As for other bacterial species, a tendency to increase in resistance to UFX was not observed. The activity of UFX against Salmonella spp. and Shigella spp. was superior/equal to those of fluoroquinolones tested.

  10. Molecular Characterization of Multidrug Resistant Uropathogenic E. Coli Isolates from Jordanian Patients.

    Science.gov (United States)

    Nairoukh, Yacoub R; Mahafzah, Azmi M; Irshaid, Amal; Shehabi, Asem A

    2018-01-01

    Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), fluoroquinolones mutated genes ( parC and gyrA ) and clone of ST131 type using PCR methods. A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15 , 76% for CTX-M-I and for 8% CTX-M-9 , respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), except of one isolate was positive for blaKPC-2 . This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.

  11. Molecular Basis of Resistance to Selected Antimicrobial Agents in the Emerging Zoonotic Pathogen Streptococcus suis.

    Science.gov (United States)

    Gurung, Mamata; Tamang, Migma Dorji; Moon, Dong Chan; Kim, Su-Ran; Jeong, Jin-Ha; Jang, Geum-Chan; Jung, Suk-Chan; Park, Yong-Ho; Lim, Suk-Kyung

    2015-07-01

    Characterization of 227 Streptococcus suis strains isolated from pigs during 2010 to 2013 showed high levels of resistance to clindamycin (95.6%), tilmicosin (94.7%), tylosin (93.8%), oxytetracycline (89.4%), chlortetracycline (86.8%), tiamulin (72.7%), neomycin (70.0%), enrofloxacin (56.4%), penicillin (56.4%), ceftiofur (55.9%), and gentamicin (55.1%). Resistance to tetracyclines, macrolides, aminoglycosides, and fluoroquinolone was attributed to the tet gene, erm(B), erm(C), mph(C), and mef(A) and/or mef(E) genes, aph(3')-IIIa and aac(6')-Ie-aph(2″)-Ia genes, and single point mutations in the quinolone resistance-determining region of ParC and GyrA, respectively. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    Science.gov (United States)

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.

  13. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes?

    Science.gov (United States)

    Nguyen, Huy Quang; Nguyen, Nhung Viet; Contamin, Lucie; Tran, Thanh Hoa Thi; Vu, Thuong Thi; Nguyen, Hung Van; Nguyen, Ngoc Lan Thi; Nguyen, Son Thai; Dang, Anh Duc; Bañuls, Anne-Laure; Nguyen, Van Anh Thi

    2017-06-01

    In Vietnam, a country with high tuberculosis (137/100.000 population) and multidrug-resistant (MDR)-TB burdens (7.8/100.000 population), little is known about the molecular signatures of drug resistance in general and more particularly of second line drug (SLD) resistance. This study is specifically focused on Mycobacterium tuberculosis isolates resistant to four first-line drugs (FLDs) that make TB much more difficult to treat. The aim is to determine the proportion of SLD resistance in these quadruple drug resistant isolates and the genetic determinants linked to drug resistance to better understand the genetic processes leading to quadruple and extremely drug resistance (XDR). 91 quadruple (rifampicin, isoniazid, ethambutol and streptomycin) FLD resistant and 55 susceptible isolates were included. Spoligotyping and 24-locus MIRU-VNTR techniques were performed and 9 genes and promoters linked to FLD and SLD resistance were sequenced. SLD susceptibility testing was carried out on a subsample of isolates. High proportion of quadruple-FLD resistant isolates was resistant to fluoroquinolones (27%) and second-line injectable drugs (30.2%) by drug susceptibility testing. The sequencing revealed high mutation diversity with prevailing mutations at positions katG315, inhA-15, rpoB531, embB306, rrs1401, rpsL43 and gyrA94. The sensitivity and specificity were high for most drug resistances (>86%), but the sensitivity was lower for injectable drug resistances (resistance. Nevertheless, particular mutation patterns linked to high-level resistance and low fitness costs seem to be favored. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Intravenous piperacillin/tazobactam plus fluoroquinolone prophylaxis prior to prostate ultrasound biopsy reduces serious infectious complications and is cost effective

    Directory of Open Access Journals (Sweden)

    Remynse LC

    2011-08-01

    Full Text Available Louis C Remynse III, Patrick J Sweeney, Kevin A Brewton, Jay M LonswayUrology Associates of Battle Creek, PC, Battle Creek, MI, USAAbstract: Infectious complications related to prostate ultrasound and biopsy have increased in the past decade with the emergence of increasing fluoroquinolone bacterial resistance. We investigated the addition of intravenous (iv piperacillin/tazobactam immediately prior to prostate ultrasound and biopsy with standard fluoroquinolone prophylaxis to determine if it would decrease the incidence of serious infectious complications after prostate ultrasound and biopsy. Group 1 patients were a historic control of 197 patients who underwent prostate ultrasound and biopsy with standard fluoroquinolone prophylaxis. Group 2 patients, 104 patients, received standard fluoroquinolone prophylaxis and the addition of a single dose of iv piperacillin/tazobactam 30 minutes prior to prostate ultrasound and biopsy. There were ten serious bacterial infectious complications in group 1 patients. No patients in group 2 developed serious bacterial infections after prostate ultrasound and biopsy. There was approximately a 5% incidence of serious bacterial infection in group 1 patients. Subgroup analysis revealed an almost 2.5 times increased risk of infection in diabetes patients undergoing prostate ultrasound and biopsy. There was a 10% risk of serious bacterial infection in diabetics compared with a 3.8% risk group 1 nondiabetes patients. The addition of a single dose of iv piperacillin/tazobactam along with standard fluoroquinolone prophylaxis substantially reduces the risk of serious bacterial infection after prostate ultrasound and biopsy (P < 0.02.Keywords: piperacillin/tazobactam, fluoroquinolone, prostate biopsy, infectious complications

  15. Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Temilolu Idowu

    2017-11-01

    Full Text Available Fluoroquinolones are synthetic antibacterial agents that stabilize the ternary complex of prokaryotic topoisomerase II enzymes (gyrase and Topo IV, leading to extensive DNA fragmentation and bacteria death. Despite the similar structural folds within the critical regions of prokaryotic and eukaryotic topoisomerases, clinically relevant fluoroquinolones display a remarkable selectivity for prokaryotic topoisomerase II, with excellent safety records in humans. Typical agents that target human topoisomerases (such as etoposide, doxorubicin and mitoxantrone are associated with significant toxicities and secondary malignancies, whereas clinically relevant fluoroquinolones are not known to exhibit such propensities. Although many fluoroquinolones have been shown to display topoisomerase-independent antiproliferative effects against various human cancer cells, those that are significantly active against eukaryotic topoisomerase show the same DNA damaging properties as other topoisomerase poisons. Empirical models also show that fluoroquinolones mediate some unique immunomodulatory activities of suppressing pro-inflammatory cytokines and super-inducing interleukin-2. This article reviews the extended roles of fluoroquinolones and their prospects as lead for the unmet needs of “small and safe” multimodal-targeting drug scaffolds.

  16. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers

    International Nuclear Information System (INIS)

    Proia, Lorenzo; Schiller, Daniel von; Sànchez-Melsió, Alexandre; Sabater, Sergi; Borrego, Carles M.; Rodríguez-Mozaz, Sara; Balcázar, José Luis

    2016-01-01

    The extensive use of antibiotics in human and veterinary medicine and their subsequent release into the environment may have direct consequences for autochthonous bacterial communities, especially in freshwater ecosystems. In small streams and rivers, local inputs of wastewater treatment plants (WWTPs) may become important sources of organic matter, nutrients and emerging pollutants, such as antibiotic resistance genes (ARGs). In this study, we evaluated the effect of WWTP effluents as a source of ARGs in river biofilms. The prevalence of genes conferring resistance to main antibiotic families, such as beta-lactams (bla_C_T_X_-_M), fluoroquinolones (qnrS), sulfonamides (sul I), and macrolides (ermB), was determined using quantitative PCR (qPCR) in biofilm samples collected upstream and downstream WWTPs discharge points in four low-order streams. Our results showed that the WWTP effluents strongly modified the hydrology, physico-chemistry and biological characteristics of the receiving streams and favoured the persistence and spread of antibiotic resistance in microbial benthic communities. It was also shown that the magnitude of effects depended on the relative contribution of each WWTP to the receiving system. Specifically, low concentrations of ARGs were detected at sites located upstream of the WWTPs, while a significant increase of their concentrations was observed in biofilms collected downstream of the WWTP discharge points (particularly ermB and sul I genes). These findings suggest that WWTP discharges may favour the increase and spread of antibiotic resistance among streambed biofilms. The present study also showed that the presence of ARGs in biofilms was noticeable far downstream of the WWTP discharge (up to 1 km). It is therefore reasonable to assume that biofilms may represent an ideal setting for the acquisition and spread of antibiotic resistance determinants and thus be considered suitable biological indicators of anthropogenic pollution by active

  17. Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Sánchez-Céspedes, Javier; Sáez-López, Emma; Frimodt-Møller, N

    2015-01-01

    the gyrA wild-type gene. However, only a slight recovery was observed in the colonization of the bladder in the GyrA complement strain compared to the mutant strain in a murine model of ascending urinary tract infection. In conclusion, a mutation in the gyrA gene of uropathogenic E. coli reduced......Fluoroquinolones are among the drugs most extensively used for the treatment of bacterial infections in human and veterinary medicine. Resistance to quinolones can be chromosome or plasmid mediated. The chromosomal mechanism of resistance is associated with mutations in the DNA gyrase...

  18. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome

    Directory of Open Access Journals (Sweden)

    Manina Giulia

    2006-07-01

    Full Text Available Abstract Background Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance. Results Genome analysis and homology searches revealed 14 open reading frames encoding putative drug efflux pumps belonging to RND family in B. cenocepacia J2315 strain. By reverse transcription (RT-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia. Futhermore, orf3 was strongly induced by chloramphenicol. The orf2 conferred resistance to fluoroquinolones, tetraphenylphosphonium, streptomycin, and ethidium bromide when cloned and expressed in Escherichia coli KAM3, a strain lacking the multidrug efflux pump AcrAB. The orf2-overexpressing E. coli also accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of CCCP, an energy uncoupler altering the energy of the drug efflux pump. Conclusion The 14 RND pumps gene we have identified in the genome of B. cenocepacia suggest that active efflux could be a major mechanism underlying antimicrobial resistance in this microorganism. We have characterized the ORF2 pump, one of these 14 potential RND efflux systems. Its overexpression in E. coli conferred resistance to several antibiotics and to ethidium bromide but it remains to be determined if this pump play a significant role in the antimicrobial intrinsic resistance of B. cenocepacia. The characterization of antibiotic efflux pumps in B

  19. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil.

    Science.gov (United States)

    Nõlvak, Hiie; Truu, Marika; Kanger, Kärt; Tampere, Mailiis; Espenberg, Mikk; Loit, Evelin; Raave, Henn; Truu, Jaak

    2016-08-15

    Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (porganic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were similar (p<0.05 in all cases) in different treatments and resembled the dynamics of the whole bacterial community abundance in each soil treatment. Copyright © 2016. Published by Elsevier B.V.

  20. High prevalence of antibiotic-resistant Mycoplasma genitalium in nongonococcal urethritis: the need for routine testing and the inadequacy of current treatment options.

    Science.gov (United States)

    Pond, Marcus J; Nori, Achyuta V; Witney, Adam A; Lopeman, Rose C; Butcher, Philip D; Sadiq, Syed Tariq

    2014-03-01

     Empirical antibiotic therapy for nongonococcal urethritis (NGU) and cervicitis is aimed at Chlamydia trachomatis, but Mycoplasma genitalium, which also commonly causes undiagnosed NGU, necessitates treatment with macrolides or fluoroquinolones rather than doxycycline, the preferred chlamydia treatment. Prevalence of M. genitalium and associated genotypic markers of macrolide and fluoroquinolone resistance among men symptomatic of urethritis were investigated. Genetic diversity of M. genitalium populations was determined to infer whether findings were applicable beyond our setting.  Mycoplasma genitalium and other NGU pathogens were detected using nucleic acid amplification methods, and DNA sequencing was used to detect genotypic resistance markers of macrolide and fluoroquinolone antibiotics in 23S ribosomal RNA, gyrA, gyrB, and parC genes. MG191 single-nucleotide polymorphism typing and MG309 variable number tandem analysis were combined to assign a dual locus sequence type (DLST) to each positive sample.  Among 217 men, M. genitalium prevalence was 16.7% (95% confidence interval [CI], 9.5%-24.0%) and C. trachomatis prevalence was 14.7% (95% CI, 7.8%-21.6%) in NGU cases. Nine of 22 (41%; 95% CI, 20%-62%) patients with M. genitalium were infected with DLSTs possessing genotypic macrolide resistance and 1 patient was infected with a DLST having genotypic fluoroquinolone resistance. Typing assigned M. genitalium DLSTs to 2 major clusters, broadly distributed among previously typed international strains. Genotypic macrolide resistance was spread within these 2 clusters.  Mycoplasma genitalium is a frequent undiagnosed cause of NGU in this population with rates of macrolide resistance higher than those previously documented. Current guidelines for routine testing and empirical treatment of NGU should be modified to reduce treatment failure of NGU and the development of further resistance.

  1. Fluorescence quenching of fluoroquinolones by gold nanoparticles with different sizes and its analytical application

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, Mohammad, E-mail: amjadi@tabrizu.ac.ir; Farzampour, Leila

    2014-01-15

    The interaction of some fluoroquinolones including norfloxacin, ciprofloxacin, danofloxacin and ofloxacin with gold nanoparticles (AuNPs) of different sizes (8, 20 and 75 nm) was studied. In the studied systems, fluoroquinolones are noncovalently adsorbed onto the surface of AuNPs, which results in severe quenching of fluoroquinolones fluorescence possibly as a result of fluorescence resonance energy transfer. Stern–Volmer quenching constants were obtained and found to increase with an increase in the size of AuNPs. Moreover, the interactions between some thiols and fluoroquinolone-adsorbed AuNPs were investigated to explore the analytical applicability of the systems. It was found that upon the addition of thiols to fluoroquinolone-AuNPs systems the fluorescence of fluoroquinolones switches to “turn-on” due to the strong binding of thiols to AuNPs and removal of quinolines from NP surface. Under the optimum conditions, the fluorescence enhancement showed a linear relationship with the concentration of thiols, indicating the analytical usefulness of the system. -- Highlights: • Interaction of fluoroquinolones with AuNPs of different sizes was investigated. • The fluorescence of fluoroquinolones is efficiently quenched by AuNPs. • The fluorescence quenching efficiency increases by increasing NP size. • Fluoroquinolone-AuNPs systems can be used as sensitive turn-on sensors for thiols. • Danofloxacin-20-nm AuNPs system exhibits the highest sensitivity for thiols.

  2. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections

    Directory of Open Access Journals (Sweden)

    Jones TM

    2016-06-01

    Full Text Available Travis M Jones,1,2 Steven W Johnson,1,3 V Paul DiMondi,1,4 Dustin T Wilson,1,2 1Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, 2Department of Pharmacy, Duke University Hospital, Durham, 3Department of Pharmacy, Forsyth Medical Center, Novant Health, Winston-Salem, 4Department of Pharmacy, Durham VA Medical Center, Durham, NC, USA Abstract: JNJ-Q2 is a novel, fifth-generation fluoroquinolone that has excellent in vitro and in vivo activity against a variety of Gram-positive and Gram-negative organisms. In vitro studies indicate that JNJ-Q2 has potent activity against pathogens responsible for acute bacterial skin and skin structure infections (ABSSSI and community-acquired bacterial pneumonia (CABP, such as Staphylococcus aureus and Streptococcus pneumoniae. JNJ-Q2 also has been shown to have a higher barrier to resistance compared to other agents in the class and it remains highly active against drug-resistant organisms, including methicillin-resistant S. aureus, ciprofloxacin-resistant methicillin-resistant S. aureus, and drug-resistant S. pneumoniae. In two Phase II studies, the efficacy of JNJ-Q2 was comparable to linezolid for ABSSSI and moxifloxacin for CABP. Furthermore, JNJ-Q2 was well tolerated, with adverse event rates similar to or less than other fluoroquinolones. With an expanded spectrum of activity and low potential for resistance, JNJ-Q2 shows promise as an effective treatment option for ABSSSI and CABP. Considering its early stage of development, the definitive role of JNJ-Q2 against these infections and its safety profile will be determined in future Phase III studies. Keywords: JNJ-Q2, fluoroquinolone, ABSSSI, CABP, MRSA

  3. Antibiotic resistance potential of the healthy preterm infant gut microbiome

    Directory of Open Access Journals (Sweden)

    Graham Rose

    2017-01-01

    Full Text Available Background Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected. Results Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average of 13 antimicrobial resistance genes per preterm infant, ranging across eight different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples. Conclusions We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.

  4. Comparison of contamination rates between preserved and preservative-free fluoroquinolone eyedrops.

    Science.gov (United States)

    Kim, Mo Sae; Kim, Hong Kyun; Kim, Joon Mo; Choi, Chul Young

    2013-03-01

    To evaluate the antimicrobial effectiveness of preservative-free fluoroquinolone products compared with benzalkonium chloride containing fluoroquinolones using the challenge test provided by the United States Pharmacopeia (USP) and the in-use test. 1. Challenge test: to compare the growth of microorganisms between different fluoroquinolone preparations, four test organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger were chosen among five microorganisms listed by USP 2004. The inoculated products were sampled for microbial survivors at days 7, 14, and 28 following initial inoculation at room temperature. The number of surviving organisms were calculated as a Log10 reduction from the original inocula. 2. In-use test: a total of 100 bottles were collected after instillation of preservative-free fluoroquinolone eyedrops in volunteer patients after 1 week of use. The remaining fluid and tips of the bottles were cultured. Colonies on the plates were counted at the end of the incubation period. All microorganisms were identified by Gram staining and biochemical assays. 1. Challenge test: preservative-free gatifloxacin and levofloxacin demonstrated a lower log reduction against A. niger than preserved fluoroquinolones and preservative-free moxifloxacin at all time points. 2. In-use test: There was no contamination identified on plates inoculated by preservative-free quinolone bottles after 1 week of use in this study. Physicians should be aware of the lower antifungal preservative effectiveness of some preservative-free fluoroquinolone preparations than preserved ones.

  5. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    Science.gov (United States)

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  6. Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Abeer Ahmed Rushdy

    Full Text Available OBJECTIVES: To study the potential factors include gene mutation, efflux pump and alteration of permeability associated with quinolone-resistance of Salmonella enterica strains isolated from patients with acute gastroenteritis and to evaluate the degree of synergistic activity of efflux pump inhibitors when combined with ciprofloxacin against resistant isolates. METHODS: Antimicrobial resistance patterns of fifty-eight Salmonella isolates were tested. Five isolates were selected to study the mechanism of resistance associated with quinolone group, including mutation in topoisomerase-encoding gene, altered cell permeability, and expression of an active efflux system. In addition, the combination between antibiotics and efflux pump inhibitors to overcome the microbial resistance was evaluated. RESULTS: Five Salmonella isolates totally resistant to all quinolones were studied. All isolates showed alterations in outer membrane proteins including disappearance of some or all of these proteins (Omp-A, Omp-C, Omp-D and Omp-F. Minimum inhibitory concentration values of ciprofloxacin were determined in the presence/absence of the efflux pump inhibitors: carbonyl cyanide m-chlorophenylhydrazone, norepinephrin and trimethoprim. Minimum inhibitory concentration values for two of the isolates were 2-4 fold lower with the addition of efflux pump inhibitors. All five Salmonella isolates were amplified for gyrA and parC genes and only two isolates were sequenced. S. Enteritidis 22 had double mutations at codon 83 and 87 in addition to three mutations at parC at codons 67, 76 and 80 whereas S. Typhimurium 57 had three mutations at codons 83, 87 and 119, but no mutations at parC. CONCLUSIONS: Efflux pump inhibitors may inhibit the major AcrAB-TolC in Salmonella efflux systems which are the major efflux pumps responsible for multidrug resistance in Gramnegative clinical isolates.

  7. High prevalence of fluoroquinolone resistance amongst commensal flora of antibiotic naïve neonates: a study from India.

    Science.gov (United States)

    Saksena, Rushika; Gaind, Rajni; Sinha, Anju; Kothari, Charu; Chellani, Harish; Deb, Manorama

    2018-04-01

    The emergence of resistance amongst commensal flora is a serious threat to the community. However, there is paucity of data regarding antibiotic resistance in commensals in the absence of antibiotic pressure. Altogether, 100 vaginally delivered antibiotic naïve exclusively breastfed neonates were selected. Stool samples collected on day (D)1, D21 and D60 of birth were cultured. Enterobacteriaceae isolates were screened for nalidixic acid (NA) and ciprofloxacin susceptibility as per CLSI guidelines. In 28 randomly selected neonates, isolates (n=92) resistant to NA and ciprofloxacin were characterized for the presence of plasmid-mediated quinolone resistance (PMQR) genes (qnrA, qnrB and qnrS, qepAand aac(6')-Ib-cr) and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC genes by specific primers and confirmed by sequencing. A total of 343 Enterobacteriaceae were isolated from 100 neonates. On D1, 58 % of neonates were colonized with at least one Enterobacteriaceae predominantly E. coli. Overall resistance to NA was 60 % but ciprofloxacin resistance increased significantly from 15 % (14/96) on D1 to 38 % (50/132) on D60 (P-value flora of antibiotic naïve and exclusively breastfed neonates suggests a rampant rise of resistance in the community. The source of resistance genes on D1 is probably maternal flora acquired at birth. High load of PMQR genes in commensal flora are a potential source of spread to pathogenic organisms.

  8. A Livestock-Associated, Multidrug-Resistant, Methicillin-Resistant Staphylococcus aureus Clonal Complex 97 Lineage Spreading in Dairy Cattle and Pigs in Italy

    DEFF Research Database (Denmark)

    Feltrin, Fabiola; Alba, Patricia; Kraushaar, Britta

    2016-01-01

    by macrorestriction pulsed-field gel electrophoresis (PFGE) analysis, multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and antimicrobial resistance pattern analysis. Virulence and resistance genes were investigated by PCR and microarray analysis. Most...... resistance, fluoroquinolone resistance (n = 33), tet(K) in 32/37 tet(M)-positive isolates, and blaZ in almost all MRSA isolates. Few host-associated differences were detected among CC97 MRSA isolates: their extensive MDR nature in both pigs and dairy cattle may be a consequence of a spillback from pigs......Pandemic methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 97 (CC97) lineages originated from livestock-to-human host jumps. In recent years, CC97 has become one of the major MRSA lineages detected in Italian farmed animals. The aim of this study was to characterize and analyze...

  9. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra; Ali, Asho; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  10. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra

    2015-03-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  11. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  12. Helicobacter pylori from Peptic Ulcer Patients in Uganda Is Highly Resistant to Clarithromycin and Fluoroquinolones: Results of the GenoType HelicoDR Test Directly Applied on Stool

    Directory of Open Access Journals (Sweden)

    Denish Calmax Angol

    2017-01-01

    Full Text Available Background. Around 70–90% of peptic ulcer disease (PUD is due to Helicobacter pylori and requires treatment with antimicrobials to which these bacteria are susceptible. Common H. pylori diagnostic tests do not provide drug susceptibility data. Using the GenoType HelicoDR PCR test designed for gastric biopsies for simultaneous detection of H. pylori and its resistance to clarithromycin (CLA/fluoroquinolones (FLQ, we present evidence for stool as an optional test specimen and also provide data on prevalence of H. pylori resistance to CLA and FLQ in Uganda. Methods. Stool from 142 symptomatic PUD patients at three hospitals in Kampala was screened for H. pylori using a rapid antigen test. The GenoType HelicoDR test was run on all H. pylori antigen positives to determine PCR positivity and resistance to CLA/FLQ. Results. Thirty-one samples (22% were H. pylori antigen positive, and 21 (68% of these were H. pylori PCR positive. Six of the 21 (29% were resistant to CLA and eight to FLQ (42%, while two gave invalid FLQ resistance results. Conclusion. Stool is a possible specimen for the GenoType HelicoDR test for rapid detection of H. pylori and drug resistance. In Uganda, Helicobacter pylori is highly resistant to CLA and FLQ.

  13. Use of antimicrobials in veterinary medicine and mechanisms of resistance.

    Science.gov (United States)

    Schwarz, S; Chaslus-Dancla, E

    2001-01-01

    This review deals with the application of antimicrobial agents in veterinary medicine and food animal production and the possible consequences arising from the widespread and multipurpose use of antimicrobials. The various mechanisms that bacteria have developed to escape the inhibitory effects of the antimicrobials most frequently used in the veterinary field are reported in detail. Resistance of bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, beta-lactam antibiotics, aminoglycosides, sulfonamides, trimethoprim, fluoroquinolones and chloramphenicol/florfenicol is described with regard to enzymatic inactivation, decreased intracellular drug accumulation and modification/protection/replacement of the target sites. In addition, basic information is given about mobile genetic elements which carry the respective resistance genes, such as plasmids, transposons, and gene cassettes/integrons, and their ways of spreading via conjugation, mobilisation, transduction, and transformation.

  14. In vitro synergistic effect of fluoroquinolone analogues in combination with artemisinin against Plasmodium falciparum; their antiplasmodial action in rodent malaria model.

    Science.gov (United States)

    Agarwal, Drishti; Sharma, Manish; Dixit, Sandeep K; Dutta, Roshan K; Singh, Ashok K; Gupta, Rinkoo D; Awasthi, Satish K

    2015-02-05

    Emergence of drug-resistant parasite strains has surfaced as a major obstacle in attempts to ameliorate malaria. Current treatment regimen of malaria relies on the concept of artemisinin-based combination therapy (ACT). Fluoroquinolone analogues, compounds 10, 12 and 18 were investigated for their anti-malarial interaction in combination with artemisinin in vitro, against Plasmodium falciparum 3D7 strain, employing fixed-ratio combination isobologram method. In addition, the efficacy of these compounds was evaluated intraperitoneally in BALB/c mice infected with chloroquine-resistant Plasmodium berghei ANKA strain in the Peters' four-day suppressive test. Promising results were obtained in the form of synergistic or additive interactions. Compounds 10 and 12 were found to have highly synergistic interactions with artemisinin. Antiplasmodial effect was further verified by the convincing ED50 values of these compounds, which ranged between 2.31 and 3.09 (mg/kg BW). In vivo studies substantiated the potential of the fluoroquinolone derivatives to be developed as synergistic partners for anti-malarial drug combinations.

  15. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  16. Mycoplasma genitalium infection: current treatment options, therapeutic failure, and resistance-associated mutations

    Directory of Open Access Journals (Sweden)

    Couldwell DL

    2015-05-01

    Full Text Available Deborah L Couldwell,1,2 David A Lewis1,21Western Sydney Sexual Health Centre, Parramatta, 2Centre for Infectious Diseases and Microbiology and Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Clinical School, University of Sydney, Sydney, NSW, Australia Abstract: Mycoplasma genitalium is an important cause of non-gonococcal urethritis, cervicitis, and related upper genital tract infections. The efficacy of doxycycline, used extensively to treat non-gonococcal urethritis in the past, is relatively poor for M. genitalium infection; azithromycin has been the preferred treatment for several years. Research on the efficacy of azithromycin has primarily focused on the 1 g single-dose regimen, but some studies have also evaluated higher doses and longer courses, particularly the extended 1.5 g regimen. This extended regimen is thought to be more efficacious than the 1 g single-dose regimen, although the regimens have not been directly compared in clinical trials. Azithromycin treatment failure was first reported in Australia and has subsequently been documented in several continents. Recent reports indicate an upward trend in the prevalence of macrolide-resistant M. genitalium infections (transmitted resistance, and cases of induced resistance following azithromycin therapy have also been documented. Emergence of antimicrobial-resistant M. genitalium, driven by suboptimal macrolide dosage, now threatens the continued provision of effective and convenient treatments. Advances in techniques to detect resistance mutations in DNA extracts have facilitated correlation of clinical outcomes with genotypic resistance. A strong and consistent association exists between presence of 23S rRNA gene mutations and azithromycin treatment failure. Fluoroquinolones such as moxifloxacin, gatifloxacin, and sitafloxacin remain highly active against most macrolide-resistant M. genitalium. However, the first clinical cases of moxifloxacin treatment

  17. Defining the Relationship Between Phenotypic and Genotypic Resistance Profiles of Multidrug-Resistant Enterobacterial Clinical Isolates.

    Science.gov (United States)

    Galal, Lamis; Abdel Aziz, Neveen A; Hassan, Walaa M

    2018-05-11

    Fluoroquinolones and aminoglycosides offer effective therapy for extended-spectrum beta-lactamase (ESBL)-producing enterobacterial infections, but their usefulness is threatened by increasing resistant strains. This study was conducted to demonstrate the phenotypic outcomes of the coexistence of genetic determinants mediating resistance to extended-spectrum cephalosporins and quinolones in enterobacterial isolates collected from patients with health-care-associated infections in Egypt. ESBL phenotype was determined using double-disk synergy test (DDST). The PCR technique was used to detect the presence of the genes mediating quinolone resistance (qnr and aac(6')-Ib-cr) and coexistence with ESBL genes. We also examined the association between the genetic makeup of the isolates and their resistance profiles including effect on MIC results. Phenotypically ESBLs were detected in 60-82% of the enterobacterial isolates. ESBL, qnr and aac(6')-Ib-cr genes were detected with the following percentages in Citrobacter isolates (69%, 69%, and 43%, respectively), E.coli isolates (65%, 70%, and 45%, respectively), Enterobacter isolates (56%, 67%, and 33%, respectively), and finally Klebsiella isolates (42%, 66%, and 25%, respectively). The coexistence of these multiresistant genetic elements significantly increased the MIC values of the tested antibiotics from different classes. We suggest using blaTEM, blaCTX-M-15, qnr, and aac(6')-Ib-cr genes for better and faster prediction of suitable antibiotic therapy with effective doses against ESBL-producing isolates harboring plasmid-mediated quinolone resistance (PMQR) determinants. Amikacin, meropenem, gentamicin, and imipenem seem to be better choices of treatment for such life-threatening infections, because of their remaining highest activity.

  18. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    Science.gov (United States)

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  19. Increasing Resistance to Extended-Spectrum Cephalosporins, Fluoroquinolone, and Carbapenem in Gram-Negative Bacilli and the Emergence of Carbapenem Non-Susceptibility in Klebsiella pneumoniae: Analysis of Korean Antimicrobial Resistance Monitoring System (KARMS) Data From 2013 to 2015.

    Science.gov (United States)

    Kim, Dokyun; Ahn, Ji Young; Lee, Chae Hoon; Jang, Sook Jin; Lee, Hyukmin; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon

    2017-05-01

    National surveillance of antimicrobial resistance becomes more important for the control of antimicrobial resistance and determination of treatment guidelines. We analyzed Korean Antimicrobial Resistance Monitoring System (KARMS) data collected from 2013 to 2015. Of the KARMS participants, 16 secondary or tertiary hospitals consecutively reported antimicrobial resistance rates from 2013 to 2015. Data from duplicate isolates and institutions with fewer than 20 isolates were excluded. To determine the long-term trends, previous KARMS data from 2004 to 2012 were also considered. The prevalence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium from 2013 to 2015 was 66-72% and 29-31%, respectively. The resistance rates of Escherichia coli to cefotaxime and cefepime gradually increased to 35% and 31%, respectively, and fluoroquinolone resistance reached 48% in 2015. The resistance rates of Klebsiella pneumoniae to cefotaxime, cefepime, and carbapenem were 38-41%, 33-41%, and carbapenem susceptibility rates of E. coli and K. pneumoniae decreased from 100% and 99.3% in 2011 to 99.0% and 97.0% in 2015, respectively. The resistance rate of Pseudomonas aeruginosa to carbapenem increased to 35% and the prevalence of carbapenem-resistant Acinetobacter baumannii increased from 77% in 2013 to 85% in 2015. Between 2013 and 2015, the resistance rates of E. coli to third- and fourth-generation cephalosporins increased continuously, while carbapenem-susceptibility gradually decreased, particularly in K. pneumoniae. The prevalence of carbapenem-resistant P. aeruginosa and A. baumannii increased significantly; therefore, few treatment options remain for these resistant strains. © The Korean Society for Laboratory Medicine

  20. Fluoroquinolone-induced bilateral rupture of the Achilles tendon: clinical and sonographic findings

    Directory of Open Access Journals (Sweden)

    P. Busilacchi

    2011-09-01

    Full Text Available The fluoroquinolones are antibiotics widely used in the clinical practice. The concomitant use of corticosteroids and fluoroquinolones in elderly patients is recognised as a risk factor for developing clinically relevant tendon lesions. Fluoroquinolone-induced tendinopathy is underreported in the literature. Clinical case. A 67-year-old man, came to our observation complaining of 5 days history of bilateral heel pain. The patient had a medical history of sarcoidosis and was treated with a daily dose of 5 mg of prednisone. He was initially given oral levofloxacin (500 mg/die for 10 days, because of an acute respiratory infection. Two days before the end of the antibiotic therapy, he developed bilateral heel pain. He denied any history of trauma. Physical examination revealed swelling and marked tenderness with mild palpation of the Achilles tendons at the calcaneal insertion. The ultrasound evaluation of the Achilles tendons revealed the following main abnormalities: diffuse thickening, loss of the “fibrillar” echotexture, blurred margins, and bilateral partial tendon tears. Discussion. Bilateral Achilles tendon pain and rupture has been described as a rare adverse effect of fluoroquinolone treatment. Most of the fluoroquinolone-induced tendinopathies of the Achilles tendon are due to ciprofloxacin. To the best of our knowledge, this is the first description of bilateral Achilles tendon rupture due to levofloxacin. The risk/benefit ratio of the fluoroquinolones should be carefully considered and these drugs should be prescribed cautiously in elderly patients treated with corticosteroids. This case can be regarded as a representative example of the potential clinical efficacy of sonography in daily rheumatological practise.

  1. Molecular Characterization of the Resistance of Mycobacterium ...

    African Journals Online (AJOL)

    Purpose: To characterize the resistance of Mycobacterium tuberculosis to second line drugs using a line probe assay. Methods: Multi-drug resistant strains of Mycobacterium tuberculosis isolated between December 2008 and December 2009 were tested for resistance to fluoroquinolones and second-line injectable drugs ...

  2. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    Science.gov (United States)

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  3. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils.

    Science.gov (United States)

    Leal, Rafael Marques Pereira; Alleoni, Luis Reynaldo Ferracciú; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges

    2013-08-01

    Animal production is a leading economic activity in Brazil and antibiotics are widely used. However, the occurrence, behavior, and impacts of antibiotics in Brazilian soils are still poorly known. We evaluated the sorption behavior of four fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) and five sulfonamides (sulfadiazine, sulfachloropyridazine, sulfamethoxazole, sulfadimidine, and sulfathiazole) in 13 Brazilian soils with contrasting physical, chemical, and mineralogical properties. Fluoroquinolone sorption was very high (Kd≥544 L kg(-1)) whereas sulfonamide sorption ranged from low to high (Kd=0.7-70.1 L kg(-1)), consistent with previous reports in the literature. Soil texture and cation exchange capacity were the soil attributes that most affected sorption. Cation exchange was the most important sorption mechanism for the fluoroquinolones in highly weathered tropical soils, although cation bridging and ion pairing could not be ruled out. Hydrophobic partition played an important role in the sorption of the sulfonamides, but sorption was also affected by non-hydrophobic interactions with organic and/or mineral surfaces. Sorption for both compound classes tended to be higher in soils with high Al and Fe oxihydroxide contents, but they were not correlated with Kd values. No direct effect of soil pH was seen. The fluoroquinolones are not expected to leach even in worst-case scenarios (soils rich in sand and poor in organic carbon), whereas soil attributes dictate leaching potential for the sulfonamides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21...... antimicrobial agents. The presence of integrons classes 1 and 2 and antimicrobial resistance genes was investigated by PCR using specific primers. Results: A total of eight antimicrobial resistance profiles were identified, with the profile of resistance to sulfamethoxazole, trimethoprim, spectinomycin...... of 2214 bp harbouring a gene cassette array conferring resistance to trimethoprim, streptothricin and spectinomycin/streptomycin. The genes coding for resistance to chloramphenicol (catA1), tetracycline [tet(A) and tet(B)] and ampicillin (bla(OXA) and bla(TEM)), were detected in resistant strains...

  5. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth......Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...

  6. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  7. Organization of a resistance gene cluster linked to rhizomania resistance in sugar beet

    Science.gov (United States)

    Genetic resistance to rhizomania has been in use for over 40 years. Characterization of the molecular basis for susceptibility and resistance has proved challenging. Nucleotide-binding leucine-rich-repeat-containing (NB-LRR) genes have been implicated in numerous gene-for-gene resistance interaction...

  8. Antibiotic resistance among Ureaplasma spp. isolates: cause for concern?

    Science.gov (United States)

    Beeton, M L; Spiller, O B

    2017-02-01

    There is growing global concern regarding the rise of antibiotic-resistant organisms. Many of these reports have focused on various Gram-positive and Gram-negative pathogens, with little attention to the genus Ureaplasma. Ureaplasma spp. are associated with numerous infectious diseases affecting pregnant women, neonates and the immunocompromised. Treatment options are extremely limited due to high levels of intrinsic resistance resulting from the unique physiology of these organisms and further restricted in cases of the developing fetus or neonate, often limiting therapeutic options to predominantly macrolides or rarely fluoroquinolones. The increasing presence of macrolide- and fluoroquinolone-resistant strains among neonatal infections may result in pan-drug resistance and potentially untreatable conditions. Here, we review the requirements for accurate measurement of antimicrobial susceptibility, provide a comprehensive review of the antimicrobial resistance (AMR) for Ureaplasma species in the literature and contextualize these results relative to some investigators' reliance on commercial kits that are not CLSI compliant when determining AMR. The dramatic variation in the resistance patterns and impact of high levels of AMR amongst neonatal populations suggests the need for continued surveillance. Commercial kits represent an excellent tool for initial antibiotic susceptibility determination and screening. However, AMR reporting must utilize internationally standardized methods, as high-titre samples, or Mycoplasma hominis-contaminated samples routinely give false AMR results. Furthermore, there is a requirement for future reports to determine the underlying AMR mechanisms and determine whether expanding AMR is due to spontaneous mutation, transmission of resistance genes on mobile elements or selection and expansion of resistant clones. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy

  9. Early postoperative fluoroquinolone use is associated with an increased revision rate after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Cancienne, Jourdan M; Brockmeier, Stephen F; Rodeo, Scott A; Young, Chris; Werner, Brian C

    2017-07-01

    To evaluate the association of postoperative fluoroquinolone use following arthroscopic primary rotator cuff repair with failure requiring revision rotator cuff repair. An insurance database was queried for patients undergoing rotator cuff repair from 2007 to 2015. These patients were divided into three groups: (1) patients prescribed fluoroquinolones within 6 months postoperatively (divided into 0-2, 2-4, and 4-6 months), (2) a matched negative control cohort of patients not prescribed fluoroquinolones, and (3) a matched positive control cohort of patients prescribed fluoroquinolones between 6 and 18 months following rotator cuff repair. Rates of failure requiring revision rotator cuff repair were compared within 2 years. A total of 1292 patients were prescribed fluoroquinolones within 6 months after rotator cuff repair, including 442 within 2 months, 433 within 2 to 4 months, and 417 within 4 to 6 months, and were compared to 5225 matched negative controls and 1597 matched positive controls. The rate of revision rotator cuff repair was significantly higher in patients prescribed fluoroquinolones within 2 months (6.1 %) compared to matched negative (2.2 %, P = 0.0009) and positive controls (2.4 %, P = 0.0026). There were no significant differences in the rate of revision rotator cuff repair when fluoroquinolones were prescribed >2 months after rotator cuff repair. Early use of fluoroquinolones following rotator cuff repair was independently associated with significantly increased rates of failure requiring revision rotator cuff repair. This is the first clinical study examining the association of postoperative fluoroquinolone use with failure following arthroscopic rotator cuff repair. III.

  10. Intravenous to oral conversion of fluoroquinolones: knowledge versus clinical practice patterns.

    Science.gov (United States)

    Conort, Ornella; Gabardi, Steven; Didier, Marie-Pauline; Hazebroucq, Georges; Cariou, Alain

    2002-04-01

    To assess the knowledge of prescribers regarding intravenous to oral conversions of fluoroquinolones, the frequency and time until conversion, and to compare prescriber knowledge with the data collected concerning the reasons stated for continuation of intravenous fluoroquinolones. Prospective chart review and questionnaire. Large teaching hospital in Paris, France. Fifty-one males and females. Data were collected on in-patients receiving intravenous fluoroquinolone for at least three days and hospitalized in one of six in-patient units. Patients receiving intravenous fluoroquinolone for less than three days were excluded. A questionnaire to assess the awareness of a potential conversion was distributed to those practitioners who had patients reviewed during the data-collection phase. The questionnaire revealed the ten most common reasons for continuing intravenous administration for more than three days. However, the physicians agreed that most patients should be converted as soon as possible. Practice patterns differed, with only 17 of 51 patients actually converted to oral therapy. In theory, the clinicians were aware of when to perform the conversion. However, in practice, the frequency of conversion was lower than optimum. Changes in clinical practice are needed to decrease the costs of intravenous therapy, without jeopardizing quality of care.

  11. Impact of fluoroquinolone treatment on delay of tuberculosis diagnosis: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Catherine A Hogan

    2017-01-01

    Full Text Available Background: Fluoroquinolones are among the most commonly used antibiotics for the treatment of respiratory infections. Because fluoroquinolones show bactericidal activity against Mycobacterium tuberculosis, there is concern that their use can delay the diagnosis of tuberculosis. We conducted a systematic review and meta-analysis to assess whether empiric treatment with fluoroquinolones delays the diagnosis and treatment of tuberculosis in patients with respiratory tract infections. Objectives: The primary objective was to assess the delay in days in the diagnosis and treatment of tuberculosis, among patients who received quinolones, compared to those who received non-fluoroquinolone antibiotics. Methods: We included studies of adult patients treated with fluoroquinolones prior to a confirmed diagnosis of tuberculosis. We performed a literature search of 7 databases (including PubMed, Embase and Cochrane Library with no language restrictions. We calculated an unweighted mean of estimate of difference in delay across all studies. For the studies for which the estimate was available as a mean with standard deviation, a weighted average using a random effects meta-analysis model was estimated. Results: A total of 3983 citations were identified from the literature search; of these, 17 articles were selected for full-text review. A total of 10 studies were retained for the synthesis. These included 7 retrospective cohort studies and 3 case-control studies. Only one of these studies was from a high TB burden country, South Africa. The most commonly used fluoroquinolones were levofloxacin, gemifloxacin and moxifloxacin. The unweighted average of difference in delay between the fluoroquinolone group and non-fluoroquinolone group was 12.9 days (95% CI 6.1–19.7. When these differences were pooled using a random effects model, the weighted estimate was 10.9 days (95% CI 4.2–17.6. When stratified by acid-fast smear status, the delay was

  12. Removal of five fluoroquinolone antibiotics during broiler manure composting.

    Science.gov (United States)

    Yang, Bing; Meng, Lei; Xue, Nandong

    2018-02-01

    Composting is a cost-effective approach for the removal of antibiotics from the environment; however, the consequence of this approach on fluoroquinolone antibiotics is limited. The fate of five representative fluoroquinolone antibiotics, namely ciprofloxacin, enrofloxacin, lomefloxacin, norfloxacin, and sarafloxacin, was investigated in a pilot-scale composting of broiler manure over 42 days. The effect of antibiotic concentrations (at a dose of 15, 30, or 60 mg/kg for each and a control without antibiotic addition) on the composting process was also assessed. The 42-day composting showed 45.3-75.4% of antibiotic removal with species-specific patterns. However, the observed variations in such removal among both antibiotics concentrations and composting times were not significant in most cases, possibly indicating a slight side-effect of the tested antibiotic concentrations on the composting process. To the best of our knowledge, this study is among few studies with a focus on the persistence of fluoroquinolone antibiotics during a pilot-scale composting, which warrants further study in regards to the mechanism underlying the removal of these compounds during composting.

  13. Mechanisms of quinolone action and microbial response.

    Science.gov (United States)

    Hawkey, Peter M

    2003-05-01

    Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones.

  14. Biological activities of some Fluoroquinolones-metal complexes

    African Journals Online (AJOL)

    McRoy

    DNA cleavage studies of some synthesized metal complexes of fluoroquinolone ... Although the FQs are generally characterized by a broad antimicrobial spectrum ..... six Coordinate 3rd metal complexes with N- (5 –Phenyl-3,4- thiadiazol-2-yl).

  15. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao

    International Nuclear Information System (INIS)

    Yiruhan; Wang Qiaojun; Mo Cehui; Li Yanwen; Gao Peng; Tai Yiping; Zhang Yan; Ruan Zhili; Xu Jiawei

    2010-01-01

    Four fluoroquinolone antibiotics (norfloxacin, ciprofloxacin, lomefloxacin, and enrofloxacin) in tap water in Guangzhou and Macao were analyzed using high performance liquid chromatography fluorescence detection. The results showed that all target antibiotics were detected in high rate both in Guangzhou (77.5%) and Macao (100%), ranging from 1.0 to 679.7 ng/L (SD ≤ 37.6) in Guangzhou, and from 2.0 to 37.0 ng/L (SD ≤ 2.5) in Macao. The fluoroquinolone antibiotics pollution in tap water widely distributes in Guangzhou and Macao. In addition, the effect of rainfall on concentration of fluoroquinolone antibiotics in south China was also investigated. Our result indicates that the antibiotic concentration in tap water in Guangzhou tends to obviously reduce at the beginning of rainy season, even decreases below the limit of quantification immediately. Thus, it was clarified that the heavy rain in south China has the function of reducing the fluoroquinolone antibiotics concentrations in tap water. - The antibiotics were detected in the tap water in Guangzhou and Macao using our developed method for fluoresence detection with high performance liquid chromatography

  16. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao

    Energy Technology Data Exchange (ETDEWEB)

    Yiruhan; Wang Qiaojun [Department of Environmental Engineering, Jinan University, Huangpudadaoxi 601, Guangzhou 510632 (China); Mo Cehui, E-mail: tchmo@jnu.edu.c [Department of Environmental Engineering, Jinan University, Huangpudadaoxi 601, Guangzhou 510632 (China); Li Yanwen; Gao Peng; Tai Yiping; Zhang Yan; Ruan Zhili; Xu Jiawei [Department of Environmental Engineering, Jinan University, Huangpudadaoxi 601, Guangzhou 510632 (China)

    2010-07-15

    Four fluoroquinolone antibiotics (norfloxacin, ciprofloxacin, lomefloxacin, and enrofloxacin) in tap water in Guangzhou and Macao were analyzed using high performance liquid chromatography fluorescence detection. The results showed that all target antibiotics were detected in high rate both in Guangzhou (77.5%) and Macao (100%), ranging from 1.0 to 679.7 ng/L (SD {<=} 37.6) in Guangzhou, and from 2.0 to 37.0 ng/L (SD {<=} 2.5) in Macao. The fluoroquinolone antibiotics pollution in tap water widely distributes in Guangzhou and Macao. In addition, the effect of rainfall on concentration of fluoroquinolone antibiotics in south China was also investigated. Our result indicates that the antibiotic concentration in tap water in Guangzhou tends to obviously reduce at the beginning of rainy season, even decreases below the limit of quantification immediately. Thus, it was clarified that the heavy rain in south China has the function of reducing the fluoroquinolone antibiotics concentrations in tap water. - The antibiotics were detected in the tap water in Guangzhou and Macao using our developed method for fluoresence detection with high performance liquid chromatography

  17. Resistance of M. leprae to quinolones: a question of relativity?

    Science.gov (United States)

    Veziris, Nicolas; Chauffour, Aurélie; Escolano, Sylvie; Henquet, Sarah; Matsuoka, Masanori; Jarlier, Vincent; Aubry, Alexandra

    2013-11-01

    Multidrug resistant leprosy, defined as resistance to rifampin, dapsone and fluoroquinolones (FQ), has been described in Mycobacterium leprae. However, the in vivo impact of fluoroquinolone resistance, mainly mediated by mutations in DNA gyrase (GyrA2GyrB2), has not been precisely assessed. Our objective was to measure the impact of a DNA gyrase mutation whose implication in fluoroquinolone resistance has been previously demonstrated through biochemical studies, on the in vivo activity of 3 fluoroquinolones: ofloxacin, moxifloxacin and garenoxacin. We used the proportional bactericidal method. 210 four-week-old immunodeficient female Nude mice (NMRI-Foxn1(nu) /Foxn1(nu) ) were inoculated in the left hind footpad with 0.03 ml of bacterial suspension containing 5 × 10(3), 5 × 10(2), 5 × 10(1), and 5 × 10(0) M. leprae AFB organisms of strain Hoshizuka-4 which is a multidrug resistant strain harboring a GyrA A91V substitution. An additional subgroup of 10 mice was inoculated with 5 × 10(-1) bacilli in the untreated control group. The day after inoculation, subgroups of mice were treated with a single dose of ofloxacin, moxifloxacin, garenoxacin or clarithromycin at 150 mg/kg dosing. 12 months later mice were sacrificed and M. leprae bacilli were numbered in the footpad. The results from the untreated control group indicated that the infective inoculum contained 23% of viable M. leprae. The results from the moxifloxacin and garenoxacin groups indicated that a single dose of these drugs reduced the percentage of viable M. leprae by 90%, similarly to the reduction observed after a single dose of the positive control drug clarithromycin. Conversely, ofloxacin was less active than clarithromycin. DNA gyrase mutation is not always synonymous of lack of in vivo fluoroquinolone activity in M. leprae. As for M. tuberculosis, in vivo studies allow to measure residual antibiotic activity in case of target mutations in M. leprae.

  18. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid-Smith, Richard J.

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  19. Antimicrobial resistance mechanisms among Campylobacter.

    Science.gov (United States)

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  20. Duodenal ulcer promoting gene 1 (dupA1 is associated with A2147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients

    Directory of Open Access Journals (Sweden)

    N.R. Hussein

    2015-07-01

    Full Text Available Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma. The aims were to study the influence of dupA1 positivity upon interleukin-8 (IL-8 secretion from gastric mucosa and determine the prevalence of mutations responsible for clarithromycin and fluoroquinolone resistance. DNA was extracted from 74 biopsies and the virulence factors were studied. Levels of IL-8 in gastric mucosa were measured using ELISA and the mutations responsible for clarithromycin and fluoroquinolone resistance were determined using a GenoType-HelicoDR assay. The prevalence of cagA in strains isolated from gastric ulcer (GU and duodenal ulcer (DU was significantly higher than those isolated from non-ulcer disease (NUD (90% and 57.9% versus 33.3%; p 0.01. The vacA s1m1 genotype was more prevalent in patients with DU (73.7% and GU (70% than in those with NUD (13.3% (p 0.01. The prevalence of dupA1 was higher in DU patients (36.8% than those with GU (10% and NUD (8.9% (p 0.01. Multivariate analysis showed that a cagA+/vacA s1i1m2 virulence gene combination was independently associated with the developing peptic ulcer disease (PUD with increased odds of developing PUD (p 0.03; OR = 2.1. We found no significant difference in the levels of IL-8 secretion in gastric mucosa infected with H. pylori dupA-negative and H. pylori dupA1-positive strains (dupA-negative: mean ± median: 28 ± 26 versus 30 ± 27.1 for dupA1; p 0.6. While 12 strains were clarithromycin resistant, only three isolates were levofloxacin resistant. A significant association was found between dupA1 genotype and A2147G clarithromycin resistance mutation (p <0.01. Further study is needed to explore the relationship between virulence factors and disease process and treatment failure.

  1. Duodenal ulcer promoting gene 1 (dupA1) is associated with A2147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients.

    Science.gov (United States)

    Hussein, N R; Tunjel, I; Majed, H S; Yousif, S T; Aswad, S I; Assafi, M S

    2015-07-01

    Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma. The aims were to study the influence of dupA1 positivity upon interleukin-8 (IL-8) secretion from gastric mucosa and determine the prevalence of mutations responsible for clarithromycin and fluoroquinolone resistance. DNA was extracted from 74 biopsies and the virulence factors were studied. Levels of IL-8 in gastric mucosa were measured using ELISA and the mutations responsible for clarithromycin and fluoroquinolone resistance were determined using a GenoType-HelicoDR assay. The prevalence of cagA in strains isolated from gastric ulcer (GU) and duodenal ulcer (DU) was significantly higher than those isolated from non-ulcer disease (NUD) (90% and 57.9% versus 33.3%; p 0.01). The vacA s1m1 genotype was more prevalent in patients with DU (73.7%) and GU (70%) than in those with NUD (13.3%) (p 0.01). The prevalence of dupA1 was higher in DU patients (36.8%) than those with GU (10%) and NUD (8.9%) (p 0.01). Multivariate analysis showed that a cagA+/vacA s1i1m2 virulence gene combination was independently associated with the developing peptic ulcer disease (PUD) with increased odds of developing PUD (p 0.03; OR = 2.1). We found no significant difference in the levels of IL-8 secretion in gastric mucosa infected with H. pylori dupA-negative and H. pylori dupA1-positive strains (dupA-negative: mean ± median: 28 ± 26 versus 30 ± 27.1 for dupA1; p 0.6). While 12 strains were clarithromycin resistant, only three isolates were levofloxacin resistant. A significant association was found between dupA1 genotype and A2147G clarithromycin resistance mutation (p <0.01). Further study is needed to explore the relationship between virulence factors and disease process and treatment failure.

  2. Antibiotic resistance in animals.

    Science.gov (United States)

    Barton, Mary D; Pratt, Rachael; Hart, Wendy S

    2003-01-01

    There is currently no systematic surveillance or monitoring of antibiotic resistance in Australian animals. Registration of antibiotics for use in animals is tightly controlled and has been very conservative. Fluoroquinolones have not been registered for use in food producing animals and other products have been removed from the market because of human health concerns. In the late 1970s, the Animal Health Committee coordinated a survey of resistance in Salmonella and Escherichia coli isolates from cattle, pigs and poultry and in bovine Staphylococcus aureus. Some additional information is available from published case reports. In samples collected prior to the withdrawal of avoparcin from the market, no vancomycin resistant Enterococcus faecium or Enterococcus faecalis were detected in samples collected from pigs, whereas some vanA enterococci, including E. faecium and E. faecalis, were found in chickens. No vanB enterococci were detected in either species. Virginiamycin resistance was common in both pig and poultry isolates. Multiple resistance was common in E. coli and salmonellae isolates. No fluoroquinolone resistance was found in salmonellae, E. coli or Campylobacter. Beta-lactamase production is common in isolates from bovine mastitis, but no methicillin resistance has been detected. However, methicillin resistance has been reported in canine isolates of Staphylococcus intermedius and extended spectrum beta-lactamase producing E. coli has been found in dogs.

  3. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  4. The clinical consequences of antimicrobial resistance.

    Science.gov (United States)

    Rice, Louis B

    2009-10-01

    The continued evolution of antimicrobial resistance in the hospital and more recently in the community threatens to seriously compromise our ability to treat serious infections. The major success of the seven-valent Streptococcus pneumoniae vaccine at reducing both infection and resistance has been followed by the emergence of previously minor serotypes that express multiresistance. The almost universal activity of cephalosporins and fluoroquinolones against community Escherichia coli strains has been compromised by the spread of CTX-M beta-lactamase-producing, fluoroquinolone-resistant strains, and the emergence of community-onset methicillin-resistant Staphylococcus aureus, particularly in the United States, has forced us to re-think our empirical treatment guidelines for skin and soft-tissue infections. Finally, our most potent and reliable class of antibiotics, the carbapenems, is compromised by the growth, primarily in intensive care units, of multiresistant Klebsiella pneumoniae, Acinetobacter baumanni, and Pseudomonas aeruginosa. The lack of a robust pipeline of new agents, particularly against resistant Gram-negative bacteria, emphasizes the importance of optimizing our use of current antimicrobials and promoting strict adherence to established infection control practices.

  5. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Science.gov (United States)

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  6. Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat.

    Science.gov (United States)

    He, Huagang; Zhu, Shanying; Jiang, Zhengning; Ji, Yaoyong; Wang, Feng; Zhao, Renhui; Bie, Tongde

    2016-04-01

    The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.

  7. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  8. Determination of rust resistance genes in pakistani bread wheats

    International Nuclear Information System (INIS)

    Qamar, M.; Ahmad, S.D.; Rabbani, M.A.; Shinwari, Z.K.

    2014-01-01

    Stripe and leaf rusts are the major constraints to bread wheat production in Pakistan. Molecular markers were used to investigate the presence of leaf rust and stripe rust resistance gene cluster Lr34/Yr18 and stem rust resistance gene Sr2 in 52 Pakistani bread wheat cultivars/lines. PCR amplification of DNA fragments using DNA marker csLV-34 showed that 13 of the studied cultivars/lines, namely 03FJ26, NR 337, NR 339, NR 347, NR 350, Manthar, Margalla 99, Iqbal 2000, Saleem 2000, Wafaq 2001, Marwat 2001, Pirsabak 2004 and Fareed 2006 carry leaf rust and stripe rust resistance genes Lr34/Yr18. Stem rust resistance gene Sr2 was observed in 36 Pakistani spring wheat cultivars/lines using stm560.3tgag marker. The slow rusting gene Sr2 needs to be combined with additional stem rust resistance genes to establish durable resistance against Ug99 in modern wheat cultivars. Low frequency of Lr34/Yr18 was found in Pakistani wheats. This gene cluster needs to be incorporated into Pakistani wheats for durable rust resistance. (author)

  9. Trial Comparing a Combined Regimen of Amikacin and Ciprofloxacin to Ciprofloxacin Alone as Transrectal Prostate Biopsy Prophylaxis in the Era of High Fluoroquinolone-Resistant Rectal Flora.

    Science.gov (United States)

    Son, Kyung Chul; Chung, Ho Seok; Jung, Seung Il; Kim, Myung Soo; Hwang, Eu Chang; Kim, Jin Woong; Kwon, Dong Deuk

    2018-04-09

    To investigate whether addition of amikacin to fluoroquinolone (FQ) antimicrobial prophylaxis reduces infections after transrectal ultrasound-guided prostate biopsy (TRUSPB). A total of 503 patients undergoing rectal swab were divided into three groups. Patients with FQ-sensitive rectal flora (group 1, n = 248) were administered ciprofloxacin before TRUSPB, and patients with FQ-resistant rectal flora were either administered ciprofloxacin (group 2, n = 97) or amikacin and ciprofloxacin (group 3, n = 158) before TRUSPB. Based on the rectal swab, FQ resistance was 54.9%, and extended-spectrum β-lactamase (ESBL) positivity was 17.2%. The incidence of infectious complication in group 1 was 1.6%. Groups 2 and 3, with FQ-resistant rectal flora, tended to have increased infectious complications (5.2% and 4.4%, respectively) but the difference between those results is not statistically significant. The most common pathogens of infectious complications in patients with FQ-resistant rectal flora were FQ-resistant and ESBL-producing Escherichia coli. E. coli pathogens isolated in Group 3 were amikacin-susceptible species. The operation history and ESBL positivity of rectal flora increased the incidence of infectious complications (odds ratio [OR] = 3.68; P = 0.035 and OR = 4.02; P = 0.008, respectively). DM and antibiotics exposure were risk factors for FQ resistance (OR = 2.19; P = 0.002) and ESBL positivity of rectal flora (OR = 2.96; P = 0.005), respectively. Addition of amikacin to ciprofloxacin prophylaxis could not reduce infectious complications in patients with FQ-resistant rectal flora. Despite the amikacin sensitivity of infectious complications, single-dose amikacin addition to ciprofloxacin prophylaxis has limitations. © 2018 The Korean Academy of Medical Sciences.

  10. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries

    DEFF Research Database (Denmark)

    Veldman, Kees; Cavaco, Lina; Mevius, Dik

    2011-01-01

    OBJECTIVES: This study was initiated to collect retrospective information on the occurrence of plasmid-mediated quinolone resistance (PMQR) in Salmonella enterica and Escherichia coli isolates in Europe and to identify the responsible genes. METHODS: Databases of national reference laboratories...... containing MIC values for Salmonella and E. coli isolated between 1994 and 2009 in animals, humans, food and the environment from 13 European countries were screened for isolates exhibiting a defined quinolone resistance phenotype, i.e. reduced susceptibility to fluoroquinolones and nalidixic acid. PCR...... isolate. No qnrC or qepA genes were detected in either Salmonella or E. coli. CONCLUSIONS: This study shows the occurrence and dissemination of PMQR genes in Salmonella and E. coli in Europe with a defined quinolone resistance phenotype. We also report the first detection of qnrD in Salmonella collected...

  11. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  12. Nalidixic acid-resistant Salmonella enteric serotype typhi infection presenting with sub-intestinal obstruction and mesenteric adenitis

    International Nuclear Information System (INIS)

    Al-Khuwaitir, Tarig S.; Al-Zuhair, Amin A.; Al-Ghamdi, Ali G.; Khan, A.

    2008-01-01

    Nalidixic acid-resistant Salmonella typhi NARST infections increase minimal inhibitory concentrations of fluoroquinolones, due to chromosomal mutations in the gene encoding DNA gyrase, and can lead to a delayed treatment response. This in turn alters the course of the disease allowing for a protracted period of illness and the occurrence of complications. In this case report, we present a patient from the Indian sub-continent, who was diagnosed with NARST complicated by sub-intestinal obstruction, her diagnosis, treatment and subsequent recovery. (author)

  13. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  14. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    Science.gov (United States)

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  15. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    Directory of Open Access Journals (Sweden)

    Sylvie eBaucheron

    2014-01-01

    Full Text Available Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e. in gyrA, gyrB, or parC correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  16. New luminophor-activators based on (fluoro)quinolone antibacterials

    International Nuclear Information System (INIS)

    Polishchuk, A.V.; Karaseva, E.T.; Korpela, T.; Karasev, V.E.

    2008-01-01

    It was shown that (fluoro)quinolone antibiotics form strongly fluorescent solid-state complexes with Eu(III) and Tb(III) lanthanide ions, with a wavelength red-shift beneficial for applications to greenhouse-cover polymers. Complexes with optimal properties were prepared by the mechanical activation of fine-dispersed composite mixtures with the lanthanide salts. The spectral properties, photo-stability to UV-light, and compatibility with the polyethylene matrix were investigated. The formulation additives of the tablet forms of the antibiotic medicines did not quench the fluorescence from the lanthanide ions. Therefore, the outdated drug forms of the antibiotics can serve as cheap recyclable sources for the covering material of greenhouses. In addition, diphenylguanidine (DPG) was investigated as a coligand. DPG enhanced fluorescence of the fluoroquinolone complexes by decreasing the non-radiative energy loss through O-H vibration of H 2 O

  17. Functional and molecular surveillance of Helicobacter pylori antibiotic resistance in Kuala Lumpur.

    Directory of Open Access Journals (Sweden)

    Xinsheng Teh

    Full Text Available BACKGROUND: Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment. METHODS AND FINDINGS: H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC. The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8% and fluoroquinolones (6.8%. To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR strains were found to be associated with higher minimum inhibitory concentration (MIC than their single-drug resistant (SDR counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance. CONCLUSION: Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi

  18. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method

    International Nuclear Information System (INIS)

    Zhang Liwei; Wang Kun; Zhang Xinxiang

    2007-01-01

    The interactions between fluoroquinolones and human serum albumin (HSA) were investigated by affinity capillary electrophoresis (ACE) and fluorescence quenching technique. Based on the efficient separation of several fluoroquinolones using a simple phosphate buffer, the binding constants of fluoroquinolones with HSA were determined simultaneously during one set of electrophoresis by ACE method. The thermodynamic parameters were obtained from data at different temperatures, and the negative ΔH and ΔS values showed that both hydrogen bonds and van der Waals interaction played major roles in the binding of fluoroquinolones to HSA. The interactions were also studied by fluorescence quenching technique. The results of fluorescence titration revealed that fluoroquinolones had the strong ability to quenching the intrinsic fluorescence of HSA through the static quenching procedure. The binding site number n, apparent binding constant K b and the Stern-Volmer quenching constant K sv were determined. The thermodynamic parameters were also studied by fluorescence method, and the results were consonant with that of ACE

  19. Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses.

    Science.gov (United States)

    Xie, Yi; Chen, Jiazhen; He, Junlin; Miao, Xinyu; Xu, Meng; Wu, Xingwen; Xu, Beiyun; Yu, Liying; Zhang, Wenhong

    2014-02-01

    This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated.

  20. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    Science.gov (United States)

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  2. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  3. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  4. Complete genome sequence of multidrug-resistant Staphylococcus cohnii ssp. urealyticus strain SNUDS-2 isolated from farmed duck, Republic of Korea.

    Science.gov (United States)

    Han, Jee Eun; Lee, Seungki; Jeong, Dae Gwin; Yoon, Sun-Woo; Kim, Doo-Jin; Lee, Moo-Seung; Kim, Hye Kwon; Park, Sung-Kyun; Kim, Ji Hyung; Park, Se Chang

    2017-09-01

    Staphylococcus cohnii has become increasingly recognized as a potential pathogen of clinically significant nosocomial and farm animal infections. This study was designed to determine the genome of a multidrug-resistant S. cohnii subsp. urealyticus strain SNUDS-2 isolated from a farmed duck in Korea. Genomic DNA was sequenced using the PacBio RS II system. The complete genome was annotated and the presence of antimicrobial resistance and virulence genes were identified. The annotated 2,625,703 bp genome contained various antimicrobial resistance genes conferring resistance to β-lactam, aminoglycosides, fluoroquinolones, phenicols and trimethoprim. The virulence-associated three synergistic hemolysins have been identified in the strain. To the best of our knowledge, this is the first complete genome of S. cohnii, and will provide important insights into the biodiversity of CoNS and valuable information for the control of this emerging pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  5. Prevalence and Genetic Basis of Antimicrobial Resistance in Non-aureus Staphylococci Isolated from Canadian Dairy Herds

    Science.gov (United States)

    Nobrega, Diego B.; Naushad, Sohail; Naqvi, S. Ali; Condas, Larissa A. Z.; Saini, Vineet; Kastelic, John P.; Luby, Christopher; De Buck, Jeroen; Barkema, Herman W.

    2018-01-01

    Emergence and spread of antimicrobial resistance is a major concern for the dairy industry worldwide. Objectives were to determine: (1) phenotypic and genotypic prevalence of drug-specific resistance for 25 species of non-aureus staphylococci, and (2) associations between presence of resistance determinants and antimicrobial resistance. Broth micro-dilution was used to determine resistance profiles for 1,702 isolates from 89 dairy herds. Additionally, 405 isolates were sequenced to screen for resistance determinants. Antimicrobial resistance was clearly species-dependent. Resistance to quinupristin/dalfopristin was common in Staphylococcus gallinarum (prevalence of 98%), whereas S. cohnii and S. arlettae were frequently resistant to erythromycin (prevalence of 63 and 100%, respectively). Prevalence of resistance was 10% against β-lactams and tetracyclines. In contrast, resistance to antimicrobials critically important for human medicine, namely vancomycin, fluoroquinolones, linezolid and daptomycin, was uncommon (< 1%). Genes encoding multidrug-resistance efflux pumps and resistance-associated residues in deducted amino acid sequences of the folP gene were the most frequent mechanisms of resistance, regardless of species. The estimated prevalence of the mecA gene was 17% for S. epidermidis. Several genes, including blaZ, mecA, fexA, erm, mphC, msrA, and tet were associated with drug-specific resistance, whereas other elements were not. There were specific residues in gyrB for all isolates of species intrinsically resistant to novobiocin. This study provided consensus protein sequences of key elements previously associated with resistance for 25 species of non-aureus staphylococci from dairy cattle. These results will be important for evaluating effects of interventions in antimicrobial use in Canadian dairy herds. PMID:29503642

  6. Prevalence and Genetic Basis of Antimicrobial Resistance in Non-aureus Staphylococci Isolated from Canadian Dairy Herds

    Directory of Open Access Journals (Sweden)

    Diego B. Nobrega

    2018-02-01

    Full Text Available Emergence and spread of antimicrobial resistance is a major concern for the dairy industry worldwide. Objectives were to determine: (1 phenotypic and genotypic prevalence of drug-specific resistance for 25 species of non-aureus staphylococci, and (2 associations between presence of resistance determinants and antimicrobial resistance. Broth micro-dilution was used to determine resistance profiles for 1,702 isolates from 89 dairy herds. Additionally, 405 isolates were sequenced to screen for resistance determinants. Antimicrobial resistance was clearly species-dependent. Resistance to quinupristin/dalfopristin was common in Staphylococcus gallinarum (prevalence of 98%, whereas S. cohnii and S. arlettae were frequently resistant to erythromycin (prevalence of 63 and 100%, respectively. Prevalence of resistance was 10% against β-lactams and tetracyclines. In contrast, resistance to antimicrobials critically important for human medicine, namely vancomycin, fluoroquinolones, linezolid and daptomycin, was uncommon (< 1%. Genes encoding multidrug-resistance efflux pumps and resistance-associated residues in deducted amino acid sequences of the folP gene were the most frequent mechanisms of resistance, regardless of species. The estimated prevalence of the mecA gene was 17% for S. epidermidis. Several genes, including blaZ, mecA, fexA, erm, mphC, msrA, and tet were associated with drug-specific resistance, whereas other elements were not. There were specific residues in gyrB for all isolates of species intrinsically resistant to novobiocin. This study provided consensus protein sequences of key elements previously associated with resistance for 25 species of non-aureus staphylococci from dairy cattle. These results will be important for evaluating effects of interventions in antimicrobial use in Canadian dairy herds.

  7. Detection of mutations in quinolone-resistant determining regions in ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... Since the use of fluoroquinolone antibiotic in clinical practice was introduced about two decades ago, quinolone-resistant E. coli strains .... containing dehydrated antibiotics (Merlin Diagnostika, Germany) in two–fold dilution. .... alterations in parC play fundamental role in developing high level of resistance ...

  8. Extremely High Prevalence of Metronidazole-Resistant Helicobacter pylori Strains in Mountain People (Karen and Hmong) in Thailand.

    Science.gov (United States)

    Vilaichone, Ratha-korn; Ratanachu-Ek, Thawee; Gamnarai, Pornpen; Chaithongrat, Supakarn; Uchida, Tomahisa; Yamaoka, Yoshio; Mahachai, Varocha

    2016-04-01

    This study aimed to survey the prevalence, patterns of antibiotic resistance, and clinical factors associated with antibiotic resistance in Helicobacter pylori among the Karen and Hmong mountain people of Thailand. We recruited dyspeptic patients in the Maesod district, Tak Province, Thailand. All subjects underwent upper gastrointestinal endoscopy, and three antral gastric biopsies were obtained for rapid urease tests and culture. An epsilometer was used to determine the minimum inhibitory concentrations of amoxicillin (AMX), clarithromycin (CLR), metronidazole (MNZ), levofloxacin (LVX), ciprofloxacin (CIP), and tetracycline (TET). A total of 291 subjects were enrolled; 149 (51.2%) were infected with H. pylori. Helicobacter pylori infection was present in 47.1% of Thai, 51.7% of Karen, and 58.7% of Hmong subjects. Antibiotic resistance was present in 75.8% including AMX (0.8%), TET (0%), CLR (5.6%), MNZ (71.8%), CIP (19.4%), LVX (19.4%), and multidrug resistance in 21.8%. Karen subjects had the highest prevalence of MNZ resistance (84.6%), and Hmong subjects had the highest prevalence of fluoroquinolone (27.3%) and multidrug (34.1%) resistance. MNZ plus fluoroquinolone (14.5%) was the most common multidrug resistance. There was no association between clinical factors and antibiotic resistance. MNZ resistance was prevalent, whereas fluoroquinolone- and multidrug-resistant H. pylori infections are important problems in mountain people of Thailand. © The American Society of Tropical Medicine and Hygiene.

  9. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-08-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-01-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l−1 and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1R allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1R and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1V or the duplicated ace-1D allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  11. Fluoroquinolones in the treatment of Actinobacillus actinomycetemcomitans associated periodontitis

    NARCIS (Netherlands)

    Kleinfelder, JW; Mueller, RF; Lange, DE

    Background: Periodontitis patients harboring Actinobacillus actinmycetemcomitans (Aa) are prime candidates for systemic antibiotic therapy. Besides tetracycline and the combination of metronidazole and amoxicillin the fluoroquinolones are also believed to have antibacterial activity against Aa. The

  12. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    Science.gov (United States)

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.

  13. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

    Science.gov (United States)

    Buschmann, Alejandro H.; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A.; Henríquez, Luis A.; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P.; Cabello, Felipe C.

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments. PMID:22905164

  14. Salmon aquaculture and antimicrobial resistance in the marine environment.

    Directory of Open Access Journals (Sweden)

    Alejandro H Buschmann

    Full Text Available Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.

  15. Molecular Scree ning of Blast Resistance Genes in Rice Germplasms Resistant to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-01-01

    Full Text Available Molecular screening of major rice blast resistance genes was determined with molecular markers, which showed close-set linkage to 11 major rice blast resistance genes (Pi-d2, Pi-z, Piz-t, Pi-9, Pi-36, Pi-37, Pi5, Pi-b, Pik-p, Pik-h and Pi-ta2, in a collection of 32 accessions resistant to Magnaporthe oryzae. Out of the 32 accessions, the Pi-d2 and Pi-z appeared to be omnipresent and gave positive express. As the second dominant, Pi-b and Piz-t gene frequencies were 96.9% and 87.5%. And Pik-h and Pik-p gene frequencies were 43.8% and 28.1%, respectively. The molecular marker linkage to Pi-ta2 produced positive bands in eleven accessions, while the molecular marker linkage to Pi-36 and Pi-37 in only three and four accessions, respectively. The natural field evaluation analysis showed that 30 of the 32 accessions were resistant, one was moderately resistant and one was susceptible. Infection types were negatively correlated with the genotype scores of Pi-9, Pi5, Pi-b, Pi-ta2 and Pik-p, although the correlation coefficients were very little. These results are useful in identification and incorporation of functional resistance genes from these germplasms into elite cultivars through marker-assisted selection for improved blast resistance in China and worldwide.

  16. Fluoroquinolones impair tendon healing in a rat rotator cuff repair model: a preliminary study.

    Science.gov (United States)

    Fox, Alice J S; Schär, Michael O; Wanivenhaus, Florian; Chen, Tony; Attia, Erik; Binder, Nikolaus B; Otero, Miguel; Gilbert, Susannah L; Nguyen, Joseph T; Chaudhury, Salma; Warren, Russell F; Rodeo, Scott A

    2014-12-01

    Recent studies suggest that fluoroquinolone antibiotics predispose tendons to tendinopathy and/or rupture. However, no investigations on the reparative capacity of tendons exposed to fluoroquinolones have been conducted. Fluoroquinolone-treated animals will have inferior biochemical, histological, and biomechanical properties at the healing tendon-bone enthesis compared with controls. Controlled laboratory study. Ninety-two rats underwent rotator cuff repair and were randomly assigned to 1 of 4 groups: (1) preoperative (Preop), whereby animals received fleroxacin for 1 week preoperatively; (2) pre- and postoperative (Pre/Postop), whereby animals received fleroxacin for 1 week preoperatively and for 2 weeks postoperatively; (3) postoperative (Postop), whereby animals received fleroxacin for 2 weeks postoperatively; and (4) control, whereby animals received vehicle for 1 week preoperatively and for 2 weeks postoperatively. Rats were euthanized at 2 weeks postoperatively for biochemical, histological, and biomechanical analysis. All data were expressed as mean ± standard error of the mean (SEM). Statistical comparisons were performed using either 1-way or 2-way ANOVA, with P repair response that has potential clinical implications for patients who are exposed to fluoroquinolones before tendon repair surgery. © 2014 The Author(s).

  17. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  18. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  19. Is 5 days of oral fluoroquinolone enough for acute uncomplicated pyelonephritis? The DTP randomized trial.

    Science.gov (United States)

    Dinh, A; Davido, B; Etienne, M; Bouchand, F; Raynaud-Lambinet, A; Aslangul-Castier, E; Szwebel, T A; Duran, C; Der Sahakian, G; Jordy, C; Ranchoux, X; Sembach, N; Mathieu, E; Davido, A; Salomon, J; Bernard, L

    2017-08-01

    The treatment duration of acute uncomplicated pyelonephritis (AUP) is still under debate. As shortening treatment duration could be a means to reduce antimicrobial resistance, we aimed to establish whether 5 days of antibiotic treatment is non-inferior to 10 days in patients with AUP. We performed an open-label prospective randomized trial comparing 5 days to 10 days of fluoroquinolone treatment for AUP. The inclusion criteria were: female patients aged ≥18 years with clinical signs of urinary tract infection, fever >38 °C, and positive urinalysis. Patients were randomized to either 5 or 10 days of fluoroquinolone treatment. Outcome was cure at day 10 and day 30 after the end of treatment. One hundred patients were randomized and 12 were excluded after randomization. The mean ± standard deviation (SD) age was 31.8 ± 11 years old and the mean ± SD temperature was 38.6 ± 0.7 °C. The main bacterium involved was Escherichia coli (n = 86; 97.7%) and 3 (3.4%) patients had a positive blood culture. In the post-hoc analysis, clinical cure 10 days after the end of the treatment was 28/30 (93.3%) in the 5-day arm and 36/38 (94.7%) in the 10-day arm (p = 1.00). At day 30, the clinical cure rate was 23/23 (100%) in the 5-day arm and 20/20 (100%) in the 10-day arm (p = 1.00). The microbiological cure rate was 20/23 (87.0%) in the 5-day arm and 16/20 (80.0%) in the 10-day arm (p = 1.00). The efficacy of 5 days of fluoroquinolone treatment does not seem different from 10 days of treatment for AUP.

  20. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  1. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    Science.gov (United States)

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  3. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Science.gov (United States)

    Sahoo, Dipak K; Abeysekara, Nilwala S; Cianzio, Silvia R; Robertson, Alison E; Bhattacharyya, Madan K

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  4. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    Directory of Open Access Journals (Sweden)

    Dipak K Sahoo

    Full Text Available Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs (F7 families were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  5. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water.

    Science.gov (United States)

    He, Ke; Soares, Ana Dulce; Adejumo, Hollie; McDiarmid, Melissa; Squibb, Katherine; Blaney, Lee

    2015-03-15

    As annual sales of antibiotics continue to rise, the mass of these specially-designed compounds entering municipal wastewater treatment systems has also increased. Of primary concern here is that antibiotics can inhibit growth of specific microorganisms in biological processes of wastewater treatment plants (WWTPs) or in downstream ecosystems. Growth inhibition studies with Escherichia coli demonstrated that solutions containing 1-10 μg/L of fluoroquinolones can inhibit microbial growth. Wastewater samples were collected on a monthly basis from various treatment stages of a 30 million gallon per day WWTP in Maryland, USA. Samples were analyzed for the presence of 11 fluoroquinolone antibiotics. At least one fluoroquinolone was detected in every sample. Ofloxacin and ciprofloxacin exhibited detection frequencies of 100% and 98%, respectively, across all sampling sites. Concentrations of fluoroquinolones in raw wastewater were as high as 1900 ng/L for ciprofloxacin and 600 ng/L for ofloxacin. Difloxacin, enrofloxacin, fleroxacin, moxifloxacin, norfloxacin, and orbifloxacin were also detected at appreciable concentrations of 9-170 ng/L. The total mass concentration of fluoroquinolones in raw wastewater was in the range that inhibited E. coli growth, suggesting that concerns over antibiotic presence in wastewater and wastewater-impacted surface water are valid. The average removal efficiency of fluoroquinolones during wastewater treatment was approximately 65%; furthermore, the removal efficiency for fluoroquinolones was found to be negatively correlated to biochemical oxygen demand removal and positively correlated to phosphorus removal. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Science.gov (United States)

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (psulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  7. Epidemiology and Characteristics of Escherichia coli Sequence Type 131 (ST131) from Long-Term Care Facility Residents Colonized Intestinally with Fluoroquinolone-Resistant Escherichia coli

    Science.gov (United States)

    Han, Jennifer H.; Garrigan, Charles; Johnston, Brian; Nachamkin, Irving; Clabots, Connie; Bilker, Warren B.; Santana, Evelyn; Tolomeo, Pam; Maslow, Joel; Myers, Janice; Carson, Lesley; Lautenbach, Ebbing; Johnson, James R.

    2016-01-01

    The objective of this study was to evaluate molecular and epidemiologic factors associated with Escherichia coli sequence type 131 (ST131) among long-term care facility (LTCF) residents who acquired gastrointestinal tract colonization with fluoroquinolone-resistant E. coli (FQREC). Colonizing isolates from 37 residents who newly developed FQREC colonization at three LTCFs from 2006–2008 were evaluated. Twenty-nine (78%) of 37 total FQREC colonizing isolates were ST131. Most ST131 isolates had a distinctive combination of gyrA and parC replacement mutations. The ST131 and non-ST131 isolates differed significantly for the prevalence of many individual virulence factors but not for the proportion that qualified molecularly as extraintestinal pathogenic E. coli (ExPEC) or aggregate virulence factor scores. E. coli ST131 was highly prevalent among LTCF residents with FQREC colonization. Future studies should determine the risk factors for infection among ST131-colonized residents, and assess the potential for increased transmissibility of ST131 in the long-term care setting. PMID:27939288

  8. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Clostridium difficile Infections: A Global Overview of Drug Sensitivity and Resistance Mechanisms

    Directory of Open Access Journals (Sweden)

    Saeed S. Banawas

    2018-01-01

    Full Text Available Clostridium difficile (C. difficile is the most prevalent causative pathogen of healthcare-associated diarrhea. Notably, over the past 10 years, the number of Clostridium difficile outbreaks has increased with the rate of morbidity and mortality. The occurrence and spread of C. difficile strains that are resistant to multiple antimicrobial drugs complicate prevention as well as potential treatment options. Most C. difficile isolates are still susceptible to metronidazole and vancomycin. Incidences of C. difficile resistance to other antimicrobial drugs have also been reported. Most of the antibiotics correlated with C. difficile infection (CDI, such as ampicillin, amoxicillin, cephalosporins, clindamycin, and fluoroquinolones, continue to be associated with the highest risk for CDI. Still, the detailed mechanism of resistance to metronidazole or vancomycin is not clear. Alternation in the target sites of the antibiotics is the main mechanism of erythromycin, fluoroquinolone, and rifamycin resistance in C. difficile. In this review, different antimicrobial agents are discussed and C. difficile resistance patterns and their mechanism of survival are summarized.

  10. Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis.

    Science.gov (United States)

    Reddy, Bhaskar; Singh, Krishna M; Patel, Amrutlal K; Antony, Ancy; Panchasara, Harshad J; Joshi, Chaitanya G

    2014-10-01

    Buffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs. A total of 3914.94 MB data were generated from all three treatments group. The data were analysed with Metagenome rapid annotation system tools. At phyla level, Bacteroidetes were dominant in all the treatments followed by Firmicutes. Genes coding for functional responses to stress (oxidative stress and heat shock proteins) and resistome genes (resistance to antibiotics and toxic compounds, phages, transposable elements and pathogenicity islands) were prevalent in similar proportion in liquid and solid fraction of rumen metagenomes. The fluoroquinolone resistance, MDR efflux pumps and Methicillin resistance genes were broadly distributed across 11, 9, and 14 bacterial classes, respectively. Bacteria responsible for phages replication and prophages and phage packaging and rlt-like streptococcal phage genes were mostly assigned to phyla Bacteroides, Firmicutes and proteaobacteria. Also, more reads matching the sigma B genes were identified in the buffalo rumen. This study underscores the presence of diverse mechanisms of adaptation to different diet, antibiotics and other stresses in buffalo rumen, reflecting the proportional representation of major bacterial groups.

  11. Determination of Tetracycline and Fluoroquinolone Antibiotics at Trace Levels in Sludge and Soil

    Directory of Open Access Journals (Sweden)

    Marie-Virginie Salvia

    2015-01-01

    Full Text Available This work describes the development of a sensitive analytical method to determine simultaneously traces of tetracycline and fluoroquinolone antibiotics in sludge and soil, based on PLE extraction, followed by SPE purification and finally an analysis by LC-MS/MS. Recoveries were greater than 87% in the case of fluoroquinolones and between 25.4 and 41.7% for tetracyclines. Low relative standard deviations (<15% were obtained in both matrices. The limits of quantification were comprised between 1.1 and 4.6 ng/g and between 5 and 20 ng/g in soil and sludge, respectively. The method was then successfully applied to the analysis of the target antibiotics in sludge as well as soil that received spreading. The substances most frequently found and with the highest levels were fluoroquinolones with concentrations exceeding 1,000 ng/g in several samples of sludge and up to 16 ng/g in soil.

  12. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    Science.gov (United States)

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  13. Resistance patterns to beta-lactams and quinolones in clinical isolates of bacteria from Cuban hospitals.

    Science.gov (United States)

    Gonzáles, I; Niebla, A; Vallin, C

    1995-01-01

    The resistance patterns to 26 beta-lactams and 8 quinolones of clinical isolates from Cuban hospitals were evaluated using the disk susceptibility test, according to the NCCLS guidelines (1992). The genera studied were Escherichia sp (320), Enterobacter sp (10), Klebsiella sp (90), Proteus sp (10), Pseudomonas sp (90), Serratia sp (20), and Staphylococcus sp (80). Higher resistance to beta-lactams was observed in the genera Pseudomonas, Escherichia and Klebsiella. For fluoroquinolones we found no significant resistance, with the exception of the genus Klebsiella. The most effective antibiotics were cephalosporins of the second and third generations, fluoroquinolones, and non-classical beta-lactams (cephamycins, moxalactam and monobactams). On the contrary, a pronounced resistance was found to penicillin, oxacillin, ticarcillin, ampicillin, methicillin, nalidixic acid and cinoxacin. These resistance patterns correspond to the high consumption of these antibiotics throughout the country.

  14. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  15. Global changes in Staphylococcus aureus gene expression during human prosthetic joint infection

    DEFF Research Database (Denmark)

    Xu, Yijuan; Nielsen, Per Halkjær; Nielsen, Jeppe Lund

    2016-01-01

    and Environmental Engineering, Aalborg University, Denmark 2: Danish Technological Institute, Aarhus, Denmark Aim: ”The aim of this study was to gain insight into the in vivo expression of virulence and metabolic genes of Staphylococcus aureus in a prosthetic joint infection in a human subject” Method: ”Deep RNA......Global changes in Staphylococcus aureus gene expression during human prosthetic joint infection Xu, Yijuan1; Nielsen, Per H.1; Nielsen, Jeppe L.1; Thomsen, Trine R. 1,2; Nielsen, Kåre L.1 and the PRIS study group 1: Center for Microbial Communities, Department of Biotechnology, Chemistry...... involved overexpression of various enzymes related to cell-wall synthesis and multidrug efflux pumps. Interestingly, these efflux pumps are only known to be related to fluoroquinolone resistance. Many of the genes encoding virulence factors were upregulated, including toxins and superantigen-like proteins...

  16. A novel sensor based on electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones

    International Nuclear Information System (INIS)

    Zhang, Fenfen; Gu, Shuqing; Ding, Yaping; Zhang, Zhen; Li, Li

    2013-01-01

    Graphical abstract: The inner cavities of β-CD could restrain fluoroquinolones to form stable host–guest inclusion complexes, and the guanidyl group of L-arg could enable L-arg to form electrostatic interactions with negatively charged groups -COO − of fluoroquinolones. Highlights: ► Electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode. ► The electrooxidation and reaction of FQs on the modified CPE were surmised. ► The sensor is used to detect ciprofloxacin, ofloxacin, norfloxacin and gatifloxacin. ► Determine FQs drugs in pharmaceutical formulations and human serum samples. ► It showed high stability, repeatability, reproducibility, good sensitivity. -- Abstract: An electrochemical sensor for fluoroquinolones (FQs) based on polymerization of β-cyclodextrin (β-CD) and L-arginine (L-arg) modified carbon paste electrode (CPE) (P-β-CD-L-arg/CPE) was built for the first time. Synergistic effect of L-arg and β-CD was used to construct this sensor for quantification of these important antibiotics. Scanning electron microscope (SEM) image shows that polymer of β-CD and L-arg has been successfully modified on electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) further indicate that polymer of β-CD and L-arg efficiently decreased the charge transfer resistance value of electrode and improved the electron transfer kinetic between analyte and electrode. Under the optimized conditions, this modified electrode was utilized to determine the concentrations of ciprofloxacin, ofloxacin, norfloxacin and gatifloxacin. The differential pulse voltammogram (DPV) exhibits the oxidation peak currents were linearly proportional to their concentration in the range of 0.05–100 μM for ciprofloxacin, 0.1–100 μM for ofloxacin, 0.1–40 μM for norfloxacin and 0.06–100 μM for gatifloxacin, respectively. This method was also successfully used to detect the concentrations of each drug in pharmaceutical

  17. A novel sensor based on electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenfen [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Gu, Shuqing [Department of Chemistry, Shanghai University, Shanghai 200444 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ding, Yaping, E-mail: wdingyp@sina.com [Department of Chemistry, Shanghai University, Shanghai 200444 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Zhang, Zhen [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); School of Chemistry and Chemical Engineering, Linyi University, 18 TongDa Road, Linyi 276005 (China); Li, Li [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2013-04-03

    Graphical abstract: The inner cavities of β-CD could restrain fluoroquinolones to form stable host–guest inclusion complexes, and the guanidyl group of L-arg could enable L-arg to form electrostatic interactions with negatively charged groups -COO{sup −} of fluoroquinolones. Highlights: ► Electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode. ► The electrooxidation and reaction of FQs on the modified CPE were surmised. ► The sensor is used to detect ciprofloxacin, ofloxacin, norfloxacin and gatifloxacin. ► Determine FQs drugs in pharmaceutical formulations and human serum samples. ► It showed high stability, repeatability, reproducibility, good sensitivity. -- Abstract: An electrochemical sensor for fluoroquinolones (FQs) based on polymerization of β-cyclodextrin (β-CD) and L-arginine (L-arg) modified carbon paste electrode (CPE) (P-β-CD-L-arg/CPE) was built for the first time. Synergistic effect of L-arg and β-CD was used to construct this sensor for quantification of these important antibiotics. Scanning electron microscope (SEM) image shows that polymer of β-CD and L-arg has been successfully modified on electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) further indicate that polymer of β-CD and L-arg efficiently decreased the charge transfer resistance value of electrode and improved the electron transfer kinetic between analyte and electrode. Under the optimized conditions, this modified electrode was utilized to determine the concentrations of ciprofloxacin, ofloxacin, norfloxacin and gatifloxacin. The differential pulse voltammogram (DPV) exhibits the oxidation peak currents were linearly proportional to their concentration in the range of 0.05–100 μM for ciprofloxacin, 0.1–100 μM for ofloxacin, 0.1–40 μM for norfloxacin and 0.06–100 μM for gatifloxacin, respectively. This method was also successfully used to detect the concentrations of each drug in

  18. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    Science.gov (United States)

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  19. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    Science.gov (United States)

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  20. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    DEFF Research Database (Denmark)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana

    2016-01-01

    for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance....

  1. Strategies to enhance the removal of Fluoroquinolones

    OpenAIRE

    Amorim, Catarina L.; Maia, Alexandra S.; Moreira, Irina S.; van Loosdrecht, Mark C.M.; Tiritan, Maria E.; Castro, Paula M.L.

    2013-01-01

    Fluoroquinolones (FQs) are broad-spectrum antibiotics that play an important role in the treatment of serious bacterial infections. Currently, several FQs are available but ciprofloxacin (CPF), ofloxacin (OFL) and norfloxacin (NOR) are amongst the most worldwide prescribed antibiotics. Antibiotics can reach wastewater treatment plants (WWTP) from different routes. Thus removal of these contaminants during the biotreatment process is of major importance in order to avoid their release to other...

  2. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla TEM , bla SHV , ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  4. Presence of antiseptic resistance genes in porcine methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Wong, T Z; Zhang, M; O'Donoghue, M; Boost, M

    2013-03-23

    Numerous studies have documented the presence of methicillin-resistant Staphylococcus aureus (MRSA) in meat-producing animals, which has led to concern about its spread into the community. Disinfectants play an important role in reduction of contamination in both animal husbandry and food-preparation, helping control spread of organisms from foodstuffs, including raw meat. Plasmid-borne antiseptic resistance (AR) genes increasing tolerance to several disinfectants have been reported in S. aureus of human origin (qacA/B and smr) and from bovine, equine, and caprine staphylococcal isolates (qacG, qacH, and qacJ). This study investigated the presence of AR genes in porcine MRSA isolates. Plasmid DNA from 100 MRSA ST9 strains isolated from pig carcasses was amplified for the presence of AR genes. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) to benzalkonium chloride (BC) and chlorhexidine gluconate (CHX) were determined in AR gene-positive isolates. qacG was present in 45 strains, eight of which also harbored smr. No strains carried qacA/B, qacH or qacJ. Presence of smr increased MICs to both BC and CHX and MBCs of CHX, but qacG presence only resulted in elevated MBC for CHX. This is the first report of AR genes from a porcine source. AR gene positivity has previously been associated with methicillin resistance and AR gene presence in these strains may increase their ability to persist in the environment. Improved implementation of hygiene measures during transportation and pre- and post-slaughter should be considered to prevent spread in the community. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. DNA tagging of blast resistant gene(s in three Brazilian rice cultivars

    Directory of Open Access Journals (Sweden)

    S.S. Sandhu

    2003-12-01

    Full Text Available Rice blast is the most important fungal disease of rice and is caused by Pyricularia oryzae Sacc. (Telomorph Magnoporthe grisea Barr.. Seven randomly amplified polymorphic DNA (RAPD markers OPA5, OPG17, OPG18, OPG19, OPF9, OPF17 and OPF19 showed very clear polymorphism in resistant cultivar lines which differed from susceptible lines. By comparing different susceptible lines, nine DNA amplifications of seven primers (OPA5(1000, OPA5(1200, OPG17(700, OPG18(850, OPG19(500, OPG19(600, OPF9(600, OPF17(1200 and OPF19(600 were identified as dominant markers for the blast resistant gene in resistant cultivar lines. These loci facilitate the indirect scoring of blast resistant and blast susceptible genotypes. The codomine RAPDs markers will facilitate marker-assisted selection of the blast resistant gene in two blast resistant genotypes of rice (Labelle and Line 11 and will be useful in rice breeding programs.

  6. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  7. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  8. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    Science.gov (United States)

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  9. A maize resistance gene functions against bacterial streak disease in rice.

    Science.gov (United States)

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  10. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Science.gov (United States)

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  11. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  12. Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers.

    Science.gov (United States)

    Chantziaras, Ilias; Smet, Annemieke; Haesebrouck, Freddy; Boyen, Filip; Dewulf, Jeroen

    2017-07-01

    Factors potentially contributing to fluoroquinolone resistance selection in commensal Escherichia coli strains in poultry were studied through a series of in vivo experiments. The effect of the initial prevalence of enrofloxacin resistance in the E. coli gut microbiota, effect of the bacterial fitness of the enrofloxacin-resistant strain and effect of treatment with enrofloxacin (effect of dose and effect of route of administration) were assessed. Four in vivo studies with broiler chickens were performed. Right after hatching, the chicks were inoculated with either a bacteriologically fit or a bacteriologically non-fit fluoroquinolone-resistant strain as either a minority or the majority of the total E. coli population. Six days later, the chicks were treated for three consecutive days either orally or parenterally and using three different doses (under-, correct- and over-dose) of enrofloxacin. The faecal shedding of E. coli strains was quantified by plating on agar plates either supplemented or not supplemented with enrofloxacin. Linear mixed models were used to assess the effect of the aforementioned variables on the selection of enrofloxacin resistance. The factors that significantly contributed were treatment ( P  <   0.001), bacterial fitness of the resistant donor strain ( P  <   0.001), administration route ( P  =   0.052) and interactions between bacterial fitness and administration route ( P  <   0.001). In the currently used models, fluoroquinolone resistance selection was influenced by treatment, bacterial fitness of the inoculation strain and administration route. The use of oral treatment seems to select more for fluoroquinolone resistance, particularly in the model where a non-fit strain was used for inoculation. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  14. Comparative Outcome Analysis of Penicillin-Based Versus Fluoroquinolone-Based Antibiotic Therapy for Community-Acquired Pneumonia

    Science.gov (United States)

    Wang, Chi-Chuan; Lin, Chia-Hui; Lin, Kuan-Yin; Chuang, Yu-Chung; Sheng, Wang-Huei

    2016-01-01

    Abstract Community-acquired pneumonia (CAP) is a common but potentially life-threatening condition, but limited information exists on the effectiveness of fluoroquinolones compared to β-lactams in outpatient settings. We aimed to compare the effectiveness and outcomes of penicillins versus respiratory fluoroquinolones for CAP at outpatient clinics. This was a claim-based retrospective cohort study. Patients aged 20 years or older with at least 1 new pneumonia treatment episode were included, and the index penicillin or respiratory fluoroquinolone therapies for a pneumonia episode were at least 5 days in duration. The 2 groups were matched by propensity scores. Cox proportional hazard models were used to compare the rates of hospitalizations/emergence service visits and 30-day mortality. A logistic model was used to compare the likelihood of treatment failure between the 2 groups. After propensity score matching, 2622 matched pairs were included in the final model. The likelihood of treatment failure of fluoroquinolone-based therapy was lower than that of penicillin-based therapy (adjusted odds ratio [AOR], 0.88; 95% confidence interval [95%CI], 0.77–0.99), but no differences were found in hospitalization/emergence service (ES) visits (adjusted hazard ratio [HR], 1.27; 95% CI, 0.92–1.74) and 30-day mortality (adjusted HR, 0.69; 95% CI, 0.30–1.62) between the 2 groups. The likelihood of treatment failure of fluoroquinolone-based therapy was lower than that of penicillin-based therapy for CAP on an outpatient clinic basis. However, this effect may be marginal. Further investigation into the comparative effectiveness of these 2 treatment options is warranted. PMID:26871827

  15. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Directory of Open Access Journals (Sweden)

    Na Wang

    Full Text Available Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05. The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  16. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  17. Prevalence of resistance to 11 antimicrobials among Campylobacter coill isolated from pigs on 80 grower-finisher farms in Ontario.

    Science.gov (United States)

    Varela, Norma P; Friendship, Robert; Dewey, Cate

    2007-07-01

    We carried out a cross-sectional study to investigate antimicrobial resistance patterns of Campylobacter coli isolated from Ontario grower-finisher pigs. From January to June 2004, 1200 samples were collected from 80 farms by obtaining a constant number (15) of fecal samples per farm. Susceptibility of the isolates to 11 antimicrobial drugs was determined by the agar-dilution technique. The overall prevalence of resistance to 1 or more antimicrobials among the isolates was 99.2%. High levels of resistance were observed for azithromycin, clindamycin, erythromycin, streptomycin, and tetracycline: 91.7%, 82.5%, 81.4%, 70.7%, and 63.7%, respectively. For sulfamethoxazole, ampicillin, and nalidixic acid, resistance was observed in 40.3%, 26.6%, and 22.7% of the isolates, respectively. Although at very low levels, resistance was observed for ciprofloxacin (a fluoroquinolone), chloramphenicol, and gentamicin: in 2.4%, 1.7%, and 0.2%, respectively. Many of the isolates (29.7%) were resistant to 5 antimicrobials, the most common being azithromycin, clindamycin, erythromycin, streptomycin, and tetracycline. Isolates from the same farm showed at least 5 patterns of resistance. Results from this study indicate high levels of resistance to the antimicrobial drugs most commonly used in the Canadian swine industry (macrolides, lincosamides, and tetracyclines) among C. coli isolated from grower-finisher pigs in Ontario. Macrolides and fluoroquinolones are the drugs most commonly used to treat severe human campylobacteriosis. Fortunately, at present, there is little resistance to fluoroquinolones among C. coli from pigs in Ontario.

  18. Identification and characterization of two novel bla(KLUC resistance genes through large-scale resistance plasmids sequencing.

    Directory of Open Access Journals (Sweden)

    Teng Xu

    Full Text Available Plasmids are important antibiotic resistance determinant carriers that can disseminate various drug resistance genes among species or genera. By using a high throughput sequencing approach, two groups of plasmids of Escherichia coli (named E1 and E2, each consisting of 160 clinical E. coli strains isolated from different periods of time were sequenced and analyzed. A total of 20 million reads were obtained and mapped onto the known resistance gene sequences. As a result, a total of 9 classes, including 36 types of antibiotic resistant genes, were identified. Among these genes, 25 and 27 single nucleotide polymorphisms (SNPs appeared, of which 9 and 12 SNPs are nonsynonymous substitutions in the E1 and E2 samples. It is interesting to find that a novel genotype of bla(KLUC, whose close relatives, bla(KLUC-1 and bla(KLUC-2, have been previously reported as carried on the Kluyvera cryocrescens chromosome and Enterobacter cloacae plasmid, was identified. It shares 99% and 98% amino acid identities with Kluc-1 and Kluc-2, respectively. Further PCR screening of 608 Enterobacteriaceae family isolates yielded a second variant (named bla(KLUC-4. It was interesting to find that Kluc-3 showed resistance to several cephalosporins including cefotaxime, whereas bla(KLUC-4 did not show any resistance to the antibiotics tested. This may be due to a positively charged residue, Arg, replaced by a neutral residue, Leu, at position 167, which is located within an omega-loop. This work represents large-scale studies on resistance gene distribution, diversification and genetic variation in pooled multi-drug resistance plasmids, and provides insight into the use of high throughput sequencing technology for microbial resistance gene detection.

  19. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  20. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    Science.gov (United States)

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  1. Gene Profiling in Late Blight Resistance in Potato Genotype SD20

    Directory of Open Access Journals (Sweden)

    Xiaohui Yang

    2018-06-01

    Full Text Available Late blight caused by the oomycete fungus Phytophthora infestans (Pi is the most serious obstacle to potato (Solanum tuberosum production in the world. A super race isolate, CN152, which was identified from Sichuan Province, China, could overcome nearly all known late blight resistance genes and caused serious damage in China. The potato genotype SD20 was verified to be highly resistant to CN152; however, the molecular regulation network underlying late blight resistance pathway remains unclear in SD20. Here, we performed a time-course experiment to systematically profile the late blight resistance response genes using RNA-sequencing in SD20. We identified 3354 differentially expressed genes (DEGs, which mainly encoded transcription factors and protein kinases, and also included four NBS-LRR genes. The late blight responsive genes showed time-point-specific induction/repression. Multi-signaling pathways of salicylic acid, jasmonic acid, and ethylene signaling pathways involved in resistance and defense against Pi in SD20. Gene Ontology and KEGG analyses indicated that the DEGs were significantly enriched in metabolic process, protein serine/threonine kinase activity, and biosynthesis of secondary metabolites. Forty-three DEGs were involved in immune response, of which 19 were enriched in hypersensitive response reaction, which could play an important role in broad-spectrum resistance to Pi infection. Experimental verification confirmed the induced expression of the responsive genes in the late blight resistance signaling pathway, such as WRKY, ERF, MAPK, and NBS-LRR family genes. Our results provided valuable information for understanding late blight resistance mechanism of potato.

  2. Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections.

    Science.gov (United States)

    Rôças, Isabela N; Siqueira, José F

    2012-12-01

    Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    OpenAIRE

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of a...

  4. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  5. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  6. Molecular characterization of mutations associated with resistance to second-line tuberculosis drug among multidrug-resistant tuberculosis patients from high prevalence tuberculosis city in Morocco.

    Science.gov (United States)

    Oudghiri, Amal; Karimi, Hind; Chetioui, Fouad; Zakham, Fathiah; Bourkadi, Jamal Eddine; Elmessaoudi, My Driss; Laglaoui, Amin; Chaoui, Imane; El Mzibri, Mohammed

    2018-02-27

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global TB control. Although multi drug-resistant tuberculosis (MDR- TB) prevalence and associated genetic mutations in Morocco are well documented, scarce information on XDR TB is available. Hence, the evaluation of pre-XDR and XDR prevalence, as well as the mutation status of gyrA, gyrB, rrs, tlyA genes and eis promoter region, associated with resistance to second line drugs, is of great value for better management of M/XDR TB in Morocco. To evaluate pre-XDR and XDR prevalence, as well as the mutation status of gyrA, gyrB, rrs, tlyA genes and eis promoter region, associated with resistance to second line drug resistance, in 703 clinical isolates from TB patients recruited in Casablanca, and to assess the usefulness of molecular tools in clinical laboratories for better management of M/XDR TB in Morocco. Drug susceptibility testing (DST) was performed by the proportional method for first line drugs, and then the selected MDR isolates were tested for second line drugs (Ofloxacin, Kanamycin, Amikacin and Capreomycin). Along with DST, all samples were subjected to rpoB, katG and p-inhA mutation analysis by PCR and DNA sequencing. MDR isolates as well as 30 pan-susceptible strains were subjected to PCR and DNA sequencing of gyrA, gyrB, rrs, tlyA genes and eis promoter, associated with resistance to fluoroquinolones and injectable drugs. Among the 703 analysed strains, 12.8% were MDR; Ser531Leu and Ser315Thr being the most common recorded mutations within rpoB and katG genes associated with RIF and INH resistance respectively. Drug susceptibility testing for second line drugs showed that among the 90 MDR strains, 22.2% (20/90) were resistant to OFX, 2.22% (2/90) to KAN, 3.33% (3/90) to AMK and 1.11% (1/90) to CAP. Genotypic analysis revealed that 19 MDR strains harbored mutations in the gyrA gene; the most recorded mutation being Asp91Ala accounting for 47.6% (10

  7. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  8. Evaluation of expression of NorA efflux pump in ciprofloxacin resistant Staphylococcus aureus against hexahydroquinoline derivative by real-time PCR.

    Science.gov (United States)

    Pourmand, Mohammad Reza; Yousefi, Masoud; Salami, Seyed Alireza; Amini, Mohsen

    2014-01-01

    Staphylococcus aureus causes a wide variety of infections worldwide. Methicillin-resistant S. aureus is one of most common causes of nosocomial and community acquired infections. The fluoroquinolones are an important class of antibiotics that used to treat infections caused by S. aureus. Today, a significant increase in the rate of ciprofloxacin resistance in methicillin-resistant S. aureus strains is concerning. The norA efflux pump is considered as contributors to antibiotic resistance. Here, we aimed to evaluate the expression of norA efflux pump in the presence of hexahydroquinoline derivative in methicillin and ciprofloxacin resistant S. aureus. We were determined minimum inhibitory concentration of ciprofloxacin and hexahydroquinoline derivative and their combination by broth microdilution method against ciprofloxacin resistant S. aureus. The expression of the norA efflux pump gene was evaluated by quantitative Real-time PCR. This study showed that minimum inhibitory concentrations of ciprofloxacin in the presence of hexahydroquinoline derivative in comparison to ciprofloxacin were decreased. Quantitative Real-time PCR identified the increased expression of norA efflux pump gene in methicillin and ciprofloxacin resistant S. aureus strain. The increased expression of norA efflux pump gene may have resulted in the effort of S. aureus to survive. The results showed that the hexahydroquinoline derivative enhanced the antibacterial effect of ciprofloxacin against methicillin and ciprofloxacin resistant S. aureus. Therefore, the derivatives may be used as inhibitors of antibiotic resistance for combination therapy.

  9. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  10. Gene Expression Analysis of Four Radiation-resistant Bacteria

    OpenAIRE

    Gao, Na; Ma, Bin-Guang; Zhang, Yu-Sheng; Song, Qin; Chen, Ling-Ling; Zhang, Hong-Yu

    2009-01-01

    To investigate the general radiation-resistant mechanisms of bacteria, bioinformatic method was employed to predict highly expressed genes for four radiation-resistant bacteria, i.e. Deinococcus geothermalis (D. geo), Deinococcus radiodurans (D. rad), Kineococcus radiotolerans (K. rad) and Rubrobacter xylanophilus (R. xyl). It is revealed that most of the three reference gene sets, i.e. ribosomal proteins, transcription factors and major chaperones, are generally highly expressed in the four ...

  11. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... plasmodiophoride-like fungus, Polymyxa betae Keskin. (1964) (Tamada and Richard, 1992). Source of resistance to rhizomania were found in Holly sugar beet company source (Lewellen, 1987). Resistance in Holly is simply inherited by a single dominant gene(Rz1). (Lewellen et al., 1987; Scholten et al., ...

  12. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  13. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    Prevalence, antibiotic-resistance properties and enterotoxin gene profile of Bacillus cereus strains isolated from milk-based baby foods. ... Conclusion: Considerable prevalence of resistant and toxigenic B. cereus and high consumption of milk-based infant foods in Iran, represent an important public health issue which ...

  14. Limited bacterial diversity within a treatment plant receiving antibiotic containing waste from bulk drug production

    NARCIS (Netherlands)

    Marathe, Nachiket P.; Shetty, Sudarshan A.; Shouche, Yogesh S.; Larsson, D.G.J.

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted

  15. Extended spectrum beta-lactamases in Escherichia coli from municipal wastewater

    Directory of Open Access Journals (Sweden)

    Tatiana Čornejová

    2015-09-01

    Conclusions. The results showed that the wastewater is a source of ESBLs, carbapenemases and plasmid fluoroquinolone resistance. Strains with biofilm production, antibiotic resistance of CTX-M group, CMY-2, qnrS genes and virulence factors present a potential environmental health risk.

  16. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.

    Science.gov (United States)

    Guo, Huiling; Pan, Lin; Li, Lina; Lu, Jie; Kwok, Laiyu; Menghe, Bilige; Zhang, Heping; Zhang, Wenyi

    2017-03-01

    Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB. © 2017 Institute of Food Technologists®.

  17. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  18. Stability Prediction of Polymeric Suspensions of some Fluoroquinolones

    OpenAIRE

    Subhashree Sahoo; Chandra Kanti Chakraborti; Pradipta Kumar Behera

    2014-01-01

    Considering the importance of physical stability, zeta potential values, percentage volume of sedimentation and redispersibility of polymeric suspensions of some fluoroquinolones like Ciprofloxacin (Cipro) and Ofloxacin (Oflox) were measured. These formulations were prepared using two grades of Carbopol polymer such as C934 and C940; and Hydroxypropyl methylcellulose (HPMC). Above mentioned values of each suspension was determined by following standard methods. The results of those experiment...

  19. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes.

    Science.gov (United States)

    Ingham, Victoria A; Jones, Christopher M; Pignatelli, Patricia; Balabanidou, Vasileia; Vontas, John; Wagstaff, Simon C; Moore, Jonathan D; Ranson, Hilary

    2014-11-25

    The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot

  20. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent.

    Science.gov (United States)

    Hultman, Jenni; Tamminen, Manu; Pärnänen, Katariina; Cairns, Johannes; Karkman, Antti; Virta, Marko

    2018-04-01

    Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.

  1. Isolation of NBS-LRR class resistant gene (I2 gene) from tomato ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-16

    Oct 16, 2013 ... type of F. oxysporum f. sp. lycopersici observed commonly which require presence of I1 gene in tomato plant for the incompatibility ... Key words: Fusarium wilt, race, R-gene, resistance, tomato. ... MATERIALS AND METHODS.

  2. Triprotic site-specific acid-base equilibria and related properties of fluoroquinolone antibacterials.

    Science.gov (United States)

    Rusu, Aura; Tóth, Gergő; Szőcs, Levente; Kökösi, József; Kraszni, Márta; Gyéresi, Árpád; Noszál, Béla

    2012-07-01

    The complete macro- and microequilibrium analyses of six fluoroquinolone drugs - ciprofloxacin, enrofloxacin, norfloxacin, pefloxacin, ofloxacin and moxifloxacin - are presented. Previous controversial literature data are straightened up, the protonation centers are unambiguously identified, and the protonation macro- and microconstant values are reported. The macroconstants were determined by (1)H NMR-pH titrations while the microconstants were determined by a multi-modal spectroscopic-deductive methodology, in which methyl ester derivatives were synthesized and their NMR-pH titration data contributed to the evaluation of all the microconstants. The full (1)H, (13)C and (15)N NMR assignments, NMR-pH profiles, macro- and microprotonation schemes and species-specific diagrams are included. Our studies show that the fluoroquinolones have three protonation centers: the carboxylate group, the N-1' and N-4' piperazine nitrogens and concentration of the uncharged microspecies is way below the values published earlier. The results could be well interpreted in terms of structural properties. The protonation macro- and microconstant values allow the pre-planned method development in techniques such as capillary zone electrophoresis and also, the interpretation of fluoroquinolone mechanism of biological action, including the pharmacokinetic properties, and antibacterial activities that are all heavily influenced by the states of protonation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Genome scanning for identification of resistance gene analogs (RGAs)

    African Journals Online (AJOL)

    Disease resistance in plants is a desirable economic trait. Many disease resistance genes from various plants have been cloned so far. The gene products of some of these can be distinguished by the presence of an N terminal nucleotide binding site and a C-terminal stretch of leucine-rich repeats. Oligonucleotides already ...

  4. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  5. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    Science.gov (United States)

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  6. Nalidixic acid-resistant Salmonella enterica serotype Typhi presenting as a primary psoas abscess: case report and review of the literature.

    Science.gov (United States)

    Shakespeare, William A; Davie, Daniel; Tonnerre, Claude; Rubin, Michael A; Strong, Michael; Petti, Cathy A

    2005-02-01

    We report an unusual case of Salmonella enterica serotype Typhi presenting as a primary psoas abscess. The isolate tested susceptible to ciprofloxacin but resistant to nalidixic acid in vitro, a pattern associated with fluoroquinolone therapeutic failures. We review the literature for serovar Typhi psoas abscess in the absence of bacteremia and discuss the importance of identifying isolates with reduced susceptibility to fluoroquinolones.

  7. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  8. SSTAR, a Stand-Alone Easy-To-Use Antimicrobial Resistance Gene Predictor.

    Science.gov (United States)

    de Man, Tom J B; Limbago, Brandi M

    2016-01-01

    We present the easy-to-use Sequence Search Tool for Antimicrobial Resistance, SSTAR. It combines a locally executed BLASTN search against a customizable database with an intuitive graphical user interface for identifying antimicrobial resistance (AR) genes from genomic data. Although the database is initially populated from a public repository of acquired resistance determinants (i.e., ARG-ANNOT), it can be customized for particular pathogen groups and resistance mechanisms. For instance, outer membrane porin sequences associated with carbapenem resistance phenotypes can be added, and known intrinsic mechanisms can be included. Unique about this tool is the ability to easily detect putative new alleles and truncated versions of existing AR genes. Variants and potential new alleles are brought to the attention of the user for further investigation. For instance, SSTAR is able to identify modified or truncated versions of porins, which may be of great importance in carbapenemase-negative carbapenem-resistant Enterobacteriaceae. SSTAR is written in Java and is therefore platform independent and compatible with both Windows and Unix operating systems. SSTAR and its manual, which includes a simple installation guide, are freely available from https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-. IMPORTANCE Whole-genome sequencing (WGS) is quickly becoming a routine method for identifying genes associated with antimicrobial resistance (AR). However, for many microbiologists, the use and analysis of WGS data present a substantial challenge. We developed SSTAR, software with a graphical user interface that enables the identification of known AR genes from WGS and has the unique capacity to easily detect new variants of known AR genes, including truncated protein variants. Current software solutions do not notify the user when genes are truncated and, therefore, likely nonfunctional, which makes phenotype predictions less accurate. SSTAR

  9. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    International Nuclear Information System (INIS)

    Tao Ran; Ying Guangguo; Su Haochang; Zhou Hongwei; Sidhu, Jatinder P.S.

    2010-01-01

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  10. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    Energy Technology Data Exchange (ETDEWEB)

    Tao Ran [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Su Haochang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhou Hongwei [Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, 1838 North Guangzhou Street, Baiyun District, Guangzhou 510515 (China); Sidhu, Jatinder P.S. [CSIRO Land and Water, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 (Australia)

    2010-06-15

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  11. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zaw, Myo T; Emran, Nor A; Lin, Zaw

    2018-04-26

    Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR). Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed. The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance. Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    KAUST Repository

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyr B mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  13. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    KAUST Repository

    Ali, Asho

    2015-02-26

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyr B mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  14. Carbapenem and cefoxitin resistance of Klebsiella pneumoniae strains associated with porin OmpK36 loss and DHA-1 β-lactamase production

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    2013-01-01

    Full Text Available Clinical isolates of carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae strains are being increased worldwide. Five pan-resistant K. pneumoniae strains have been isolated from respiratory and ICU wards in a Chinese hospital, and reveal strong resistance to all β-lactams, fluoroquinolones and aminoglycosides. Totally 27 β-lactamase genes and 2 membrane pore protein (porin genes in 5 K. pneumoniae strains were screened by polymerase chain reaction (PCR. The results indicated that all of 5 K. pneumoniae strains carried blaTEM-1 and blaDHA-1 genes, as well as base deletion and mutation of OmpK35 or OmpK36 genes. Compared with carbapenem-sensitive isolates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, the resistant isolates markedly lacked the protein band of 34-40 kDa, which might be the outer membrane proteins of OmpK36 according to the electrophoresis mobility. In addition, the conjugation test was confirmed that blaDHA-1 mediated by plasmids could be transferred between resistant and sensitive strains. When reserpine (30 µg/mL and carbonyl cyanide m-chlorophenylhydrazone (CCCP (50 µg/mL were added in imipenem and meropenem, the MICs had no change against K. pneumoniae strains. These results suggest that both DHA-1 β-lactamase and loss or deficiency of porin OmpK36 may be the main reason for the cefoxitin and carbapenem resistance in K. pneumoniae strains in our hospital.

  15. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  16. Spread of tetracycline resistance genes at a conventional dairy farm

    Directory of Open Access Journals (Sweden)

    Martina eKyselkova

    2015-05-01

    Full Text Available The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks, likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W, tet(Q and tet(M in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O, tet(Q and tet(W representing a ‘core TC-resistome’ of the farm, and tet(A, tet(M, tet(Y and tet(X occurring occasionally. The genes tet(A, tet(M, tet(Y and tet(X were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.

  17. Occurrence and Distribution of Antibiotic-resistant Bacteria and Transfer of Resistance Genes in Lake Taihu

    Science.gov (United States)

    Yin, Qian; Yue, Dongmei; Peng, Yuke; Liu, Ying; Xiao, Lin

    2013-01-01

    The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: blaTEM > blaSHV > blaCTMX and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption. PMID:24240317

  18. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  19. In vitro study of the interaction between some fluoroquinolones and ...

    African Journals Online (AJOL)

    The cup diffusion method (CD) was used to evaluate the in vitro interaction of some fluoroquinolones (ciprofloxacin, pefloxacin and levofloxacin) with extracts of Kola nitida seed (KNS) against a clinical isolate of Escherichia coli. Minimum inhibitory concentration (MIC) of the drugs was determined separately and in ...

  20. Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance.

    Science.gov (United States)

    Tan, G X; Weng, Q M; Ren, X; Huang, Z; Zhu, L L; He, G C

    2004-03-01

    The whitebacked planthopper (WBPH), Sogatella furcifera, and brown planthopper (BPH) Nilaparvata lugens Stål are important sucking insects of rice (Oryza sativa L.) crops throughout the world. Rice 'B5', which has derived its resistance genes from the wild rice O. officinalis Wall ex Watt, is a line that is highly resistant to both WBPH and BPH. Previously, two resistance genes against BPH, Qbp1, and Qbp2 in 'B5' had been mapped onto chromosome 3 and chromosome 4, respectively. In this study, we employed a mapping population composed of 187 recombinant inbred lines (RILs), produced from a cross between 'B5' and susceptible variety 'Minghui63', to locate the WBPH and BPH resistance genes. A RFLP survey of the bulked extremes from the RIL population identified two genomic regions, one on chromosome 3 and the other on chromosome 4, likely containing the resistance genes to planthoppers. QTL analysis of the RILs further confirmed that two WBPH resistance genes were mapped on the same loci as Qbp1 and Qbp2, using a linkage map with 242 molecular markers distributed on 12 rice chromosomes. Of the two WBPH resistance genes, one designated Wbph7(t) was located within a 1.1-cM region between R1925 and G1318 on chromosome 3, the other designated Wbph8(t) was within a 0.3-cM region flanked by R288 and S11182 on chromosome 4. A two-way analysis of variance showed that two loci acted independently with each other in determining WBPH resistance. The results have significant implications in studying the interactions between sucking insects and plants and in breeding programs of resistance to rice planthoppers.

  1. Tagging of blast resistance gene(s) to DNA markers and marker-assisted selection (MAS) in rice improvement

    International Nuclear Information System (INIS)

    Zhuang, J.Y.; Lu, J.; Qian, H.R.; Lin, H.X.; Zheng, K.L.

    1998-01-01

    This paper reports progress made on the tagging of blast resistance gene(s) to DNA markers and on the initiation of marker-assisted selection (MAS) for blast resistance in rice improvement. A pair of near isogenic lines, K8OR and K79S, were developed using a Chinese landrace Hong-jiao-zhan as the resistance donor. Ten putatively positive markers were identified by screening 177 mapped DNA markers. Using the F 2 population of 143 plants and the derived F 3 lines, three Restriction Fragment Length Polymorphism (RFLP) markers (RG81, RG869 and RZ397) on chromosome 12 of rice were identified to be closely linked to the blast resistance gene Pi-12(t). The genetic distance between Pi-12(t) and the closest marker RG869 was 5.1 cM. By employing the bulk segregant analysis (BSA) procedure, six of 199 arbitrary primers were found to produce positive Randomly Amplified Polymorphic DNA (RAPD) bands. Tight linkage between Pi-12(t) and three RAPD bands, each from a different primer, was confirmed after amplification of DNA of all F 2 individuals. Two fragments were cloned and sequenced, and two sequence characterised amplified re-ion (SCAR) markers were established. In two other F 3 populations, Xian-feng I/Tetep and Xian-feng, 1/Hong-jiao-zhan, the blast resistance was found to be controlled by interactions of two or more genes. One resistance gene was located in the vicinity of RG81 in both populations. Work to identify other gene(s) is currently under way. Marker assisted selection for blast resistance was initiated. Crosses were made between elite varieties and blast resistance donors to develop populations for DNA marker-assisted selection of blast resistance. In addition, 48 varieties widely used in current rice breeding programs were provided by rice breeders. DNA marker-based polymorphism among, these varieties and resistance donors were analysed to produce a database for future MAS program. (author)

  2. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China.

    Science.gov (United States)

    Zhu, Yuanting; Lai, Haimei; Zou, Likou; Yin, Sheng; Wang, Chengtao; Han, Xinfeng; Xia, Xiaolong; Hu, Kaidi; He, Li; Zhou, Kang; Chen, Shujuan; Ao, Xiaolin; Liu, Shuliang

    2017-10-16

    A total of 189 Salmonella isolates were recovered from 627 samples which were collected from cecal contents of broilers, chicken carcasses, chicken meat after cutting step and frozen broiler chicken products along the slaughtering process at a slaughterhouse in Sichuan province of China. The Salmonella isolates were subjected to antimicrobial susceptibility testing to 10 categories of antimicrobial agents using the Kirby-Bauer disk diffusion method. Those antibiotics-resistant isolates were further investigated for the occurrence of resistance genes, the presence of class 1 integron as well as the associated gene cassettes, and the mutations within the gyrA and parC genes. Consequently, the prevalence of Salmonella was 30.14% (47.96% for cecal content, 18.78% for chicken carcasses, 31.33% for cutting meat and 14.00% for frozen meat, respectively). The predominant serotypes were S. Typhimurium (15.34%) and S. Enteritidis (69.84%). High resistance rates to the following drugs were observed: nalidixic acid (99.5%), ampicillin (87.8%), tetracycline (51.9%), ciprofloxacin (48.7%), trimethoprim/sulfamethoxazole (48.1%), and spectinomycin (34.4%). Antimicrobial resistance profiling showed that 60.8% of isolates were multidrug resistant (MDR), and MDR strains increased from 44.7% to 78.6% along the slaughtering line. 94.6% (n=157) of beta-lactam-resistant isolates harbored at least one resistance gene of bla TEM or bla CTX-M . The relatively low prevalence of aminoglycoside resistance genes (aac(3)-II, aac(3)-IV, and ant(2″)-I) was found in 49 (66.2%) of antibiotic-resistant isolates. The tetracycline resistance genes (tet(A), tet(B), tet(C), and tet(G) and sulfonamide resistance genes (sul1, sul2, and sul3) were identified in 84 (85.7%) and 89 (97.8%) antibiotic-resistant isolates respectively. floR was identified in 44 (97.8%) florfenicol-resistant isolates. Class 1 integron was detected in 37.4% (n=43) of the MDR isolates. Two different gene cassettes, bla OXA-30 -aad

  3. Tagging of resistance gene(s) to rhizomania disease in sugar beet ...

    African Journals Online (AJOL)

    The rhizomania disease is one of the most important diseases in Iran and some other parts of the world which potentially could play a role in decreasing sugar yield in fields. One approach to combat with this disease is the use of resistance varieties. This varieties have been identified which are having resistance genes to ...

  4. A maize resistance gene functions against bacterial streak disease in rice

    OpenAIRE

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, wh...

  5. Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China.

    Science.gov (United States)

    Tong, Changlun; Zhuo, Xiajun; Guo, Yun

    2011-07-13

    A sensitive liquid chromatography-fluorescence detection method, combined with one-step solid-phase extraction, was established for detecting the residual levels of the four typical fluoroquinolone antibiotics (ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) in influent, effluent, and surface waters from Hangzhou, China. For the various environmental water matrices, the overall recoveries were from 76.8 to 122%, and no obvious interferences of matrix effect were observed. The limit of quantitation of this method was estimated to be 17 ng/L for ciprofloxacin and norfloxacin, 20 ng/L for ofloxacin, and 27 ng/L for enrofloxacin. All of the four typical fluoroquinolone antibiotics were found in the wastewaters and surface waters. The residual contents of the four typical fluoroquinolone antibiotics in influent, effluent, and surface water samples are 108-1405, 54-429, and 7.0-51.6 ng/L, respectively. The removal rates of the selected fluoroquinolone antibiotics were 69.5 (ofloxacin), 61.3 (norfloxacin), and 50% (enrofloxacin), indicating that activated sludge treatment is effective except for ciprofloxacin and necessary to remove these fluoroquinolone antibiotics in municipal sewage. The risk to the aquatic environment was estimated by a ratio of measured environmental concentration and predicted no-effect concentration. At the concentrations, these fluoroquinolone antibiotics were found in influent, effluent, and surface waters, and they should not pose a risk for the aquatic environment.

  6. Putative resistance genes in the CitEST database

    Directory of Open Access Journals (Sweden)

    Simone Guidetti-Gonzalez

    2007-01-01

    Full Text Available Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R and pathogen avirulence (Avr genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR. When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.

  7. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability.

    Science.gov (United States)

    Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe

    2014-02-22

    Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.

  8. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    Science.gov (United States)

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  9. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing.

    Science.gov (United States)

    Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie

    2017-02-01

    This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.

  10. Nalidixic Acid-Resistant Salmonella enterica Serotype Typhi Presenting as a Primary Psoas Abscess: Case Report and Review of the Literature

    Science.gov (United States)

    Shakespeare, William A.; Davie, Daniel; Tonnerre, Claude; Rubin, Michael A.; Strong, Michael; Petti, Cathy A.

    2005-01-01

    We report an unusual case of Salmonella enterica serotype Typhi presenting as a primary psoas abscess. The isolate tested susceptible to ciprofloxacin but resistant to nalidixic acid in vitro, a pattern associated with fluoroquinolone therapeutic failures. We review the literature for serovar Typhi psoas abscess in the absence of bacteremia and discuss the importance of identifying isolates with reduced susceptibility to fluoroquinolones. PMID:15695728

  11. Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2011-06-01

    Full Text Available Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are resistant to fungal infection and/or aflatoxin production. To identify peanut Aspergillus-interactive and peanut Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST project which we used to construct a peanut glass slide oligonucleotide microarray. The fabricated microarray represents over 40% of the protein coding genes in the peanut genome. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. The subsequent microarray analysis identified 62 genes in resistant cultivars that were up-expressed in response to Aspergillus infection. In addition, we identified 22 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes that were previously shown to confer resistance to fungal infection. This study is a first step towards a comprehensive genome-scale platform for developing Aspergillus-resistant peanut cultivars through targeted marker-assisted breeding and genetic engineering.

  12. Are duplicated genes responsible for anthracnose resistance in common bean?

    Science.gov (United States)

    Costa, Larissa Carvalho; Nalin, Rafael Storto; Ramalho, Magno Antonio Patto; de Souza, Elaine Aparecida

    2017-01-01

    The race 65 of Colletotrichum lindemuthianum, etiologic agent of anthracnose in common bean, is distributed worldwide, having great importance in breeding programs for anthracnose resistance. Several resistance alleles have been identified promoting resistance to this race. However, the variability that has been detected within race has made it difficult to obtain cultivars with durable resistance, because cultivars may have different reactions to each strain of race 65. Thus, this work aimed at studying the resistance inheritance of common bean lines to different strains of C. lindemuthianum, race 65. We used six C. lindemuthianum strains previously characterized as belonging to the race 65 through the international set of differential cultivars of anthracnose and nine commercial cultivars, adapted to the Brazilian growing conditions and with potential ability to discriminate the variability within this race. To obtain information on the resistance inheritance related to nine commercial cultivars to six strains of race 65, these cultivars were crossed two by two in all possible combinations, resulting in 36 hybrids. Segregation in the F2 generations revealed that the resistance to each strain is conditioned by two independent genes with the same function, suggesting that they are duplicated genes, where the dominant allele promotes resistance. These results indicate that the specificity between host resistance genes and pathogen avirulence genes is not limited to races, it also occurs within strains of the same race. Further research may be carried out in order to establish if the alleles identified in these cultivars are different from those described in the literature.

  13. A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici.

    Science.gov (United States)

    Reeves, Gregory; Monroy-Barbosa, Ariadna; Bosland, Paul W

    2013-05-01

    A novel disease resistance inhibitor gene (inhibitor of P. capsici resistance [Ipcr]), found in the chile pepper (Capsicum annuum) variety 'New Mexico Capsicum Accession 10399' (NMCA10399), inhibits resistance to Phytophthora capsici but not to other species of Phytophthora. When a highly P. capsici-resistant variety was hybridized with NMCA10399, the resultant F1 populations, when screened, were completely susceptible to P. capsici for root rot and foliar blight disease syndromes, despite the dominance inheritance of P. capsici resistance in chile pepper. The F2 population displayed a 3:13 resistant-to-susceptible (R:S) ratio. The testcross population displayed a 1:1 R:S ratio, and a backcross population to NMCA10399 displayed complete susceptibility. These results demonstrate the presence of a single dominant inhibitor gene affecting P. capsici resistance in chile pepper. Moreover, when lines carrying the Ipcr gene were challenged against six Phytophthora spp., the nonhost resistance was not overcome. Therefore, the Ipcr gene is interfering with host-specific resistance but not the pathogen- or microbe-associated molecular pattern nonhost responses.

  14. Mapping of stripe rust resistance gene in an Aegilops caudate introgression line in wheat and its genetic association with leaf rust resistance.

    Science.gov (United States)

    Toor, Puneet Inder; Kaur, Satinder; Bansal, Mitaly; Yadav, Bharat; Chhuneja, Parveen

    2016-12-01

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.

  15. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  16. Natural variation of rice blast resistance gene Pi-d2

    Science.gov (United States)

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  17. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  18. Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance.

    Science.gov (United States)

    Lin, Ming-Feng; Lin, Yun-You; Tu, Chi-Chao; Lan, Chung-Yu

    2017-04-01

    Efflux pumps are one of the major mechanisms of antimicrobial resistance in Acinetobacter baumannii. This study aimed to understand the distribution of different types of pump genes in clinical isolates of multidrug-resistant A. baumannii (MDRAB) and to reveal the relationship between their presence and expression with antimicrobial resistance. MDRAB isolates were collected from five hospitals in Taiwan. Different categories of pump genes, including adeB, adeJ, macB, abeM, abeS, emrA-like, emrB-like, and craA, were chosen, and their presence in the collected isolates was determined. Three induced resistant strains of A. baumannii ATCC 17978 to tigecycline, imipenem, and amikacin were also included. The expressions of the selected pump genes were determined using quantitative reverse transcription-polymerase chain reaction. Twenty-one MDRAB clinical isolates were obtained from five hospitals. All of the studied pump genes were present in the collected MDRAB isolates except one isolate that lacked the emrA-like gene. The gene expression of these efflux pumps was variable among the strains. The upregulation of the adeB, adeJ, and macB genes was responsible for tigecycline resistance, and the increased abeS expression was strongly related to amikacin resistance. Of all the antibiotics studied, tigecycline was the strongest inducer of gene expression for many efflux pumps in A. baumannii. Efflux pump genes are universally present in the collected clinical MDRAB isolates. The upregulation of the adeB, adeJ, macB and abeS genes is more related with antibiotic resistance. Copyright © 2015. Published by Elsevier B.V.

  19. Correlations between Income inequality and antimicrobial resistance.

    Science.gov (United States)

    Kirby, Andrew; Herbert, Annie

    2013-01-01

    The aim of this study is to investigate if correlations exist between income inequality and antimicrobial resistance. This study's hypothesis is that income inequality at the national level is positively correlated with antimicrobial resistance within developed countries. Income inequality data were obtained from the Standardized World Income Inequality Database. Antimicrobial resistance data were obtained from the European antimicrobial Resistance Surveillance Network and outpatient antimicrobial consumption data, measured by Defined daily Doses per 1000 inhabitants per day, from the European Surveillance of antimicrobial Consumption group. Spearman's correlation coefficient (r) defined strengths of correlations of: > 0.8 as strong, > 0.5 as moderate and > 0.2 as weak. Confidence intervals and p values were defined for all r values. Correlations were calculated for the time period 2003-10, for 15 European countries. Income inequality and antimicrobial resistance correlations which were moderate or strong, with 95% confidence intervals > 0, included the following. Enterococcus faecalis resistance to aminopenicillins, vancomycin and high level gentamicin was moderately associated with income inequality (r= ≥0.54 for all three antimicrobials). Escherichia coli resistance to aminoglycosides, aminopenicillins, third generation cephalosporins and fluoroquinolones was moderately-strongly associated with income inequality (r= ≥0.7 for all four antimicrobials). Klebsiella pneumoniae resistance to third generation cephalosporins, aminoglycosides and fluoroquinolones was moderately associated with income inequality (r= ≥0.5 for all three antimicrobials). Staphylococcus aureus methicillin resistance and income inequality were strongly associated (r=0.87). As income inequality increases in European countries so do the rates of antimicrobial resistance for bacteria including E. faecalis, E. coli, K. pneumoniae and S. aureus. Further studies are needed to confirm these

  20. Effect of a Health Care System Respiratory Fluoroquinolone Restriction Program To Alter Utilization and Impact Rates of Clostridium difficile Infection.

    Science.gov (United States)

    Shea, Katherine M; Hobbs, Athena L V; Jaso, Theresa C; Bissett, Jack D; Cruz, Christopher M; Douglass, Elizabeth T; Garey, Kevin W

    2017-06-01

    Fluoroquinolones are one of the most commonly prescribed antibiotic classes in the United States despite their association with adverse consequences, including Clostridium difficile infection (CDI). We sought to evaluate the impact of a health care system antimicrobial stewardship-initiated respiratory fluoroquinolone restriction program on utilization, appropriateness of quinolone-based therapy based on institutional guidelines, and CDI rates. After implementation, respiratory fluoroquinolone utilization decreased from a monthly mean and standard deviation (SD) of 41.0 (SD = 4.4) days of therapy (DOT) per 1,000 patient days (PD) preintervention to 21.5 (SD = 6.4) DOT/1,000 PD and 4.8 (SD = 3.6) DOT/1,000 PD posteducation and postrestriction, respectively. Using segmented regression analysis, both education (14.5 DOT/1,000 PD per month decrease; P = 0.023) and restriction (24.5 DOT/1,000 PD per month decrease; P cost of moxifloxacin, the formulary respiratory fluoroquinolone, was observed postrestriction compared to preintervention within the health care system ($123,882 versus $12,273; P = 0.002). Implementation of a stewardship-initiated respiratory fluoroquinolone restriction program can increase appropriate use while reducing overall utilization, acquisition cost, and CDI rates within a health care system. Copyright © 2017 American Society for Microbiology.

  1. Mechanisms of resistance to quinolones and epidemiological significance of Salmonella spp.

    OpenAIRE

    Velhner, Maja

    2016-01-01

    Bacteria develop resistance to antimicrobial agents by a number of different mechanisms. The resistance to (fluoro)quinolones in Salmonella is of particular importance especially if therapy in humans is required. For decades there has been a significant interest in studying the biology of Salmonella because these bacteria are among the leading causes of foodborne illnesses around the globe. To this date, two main mechanisms of quinolone resistance have been established: alteration in the targ...

  2. Overview and experience with the use of fluoroquinolone in children ...

    African Journals Online (AJOL)

    The use of fluoroquinolone is contraindicated in children because of the potential complication of arthropathy. In spite of this, the role of ciprofloxacin is becoming increasingly significant. We report two cases in which organisms that did not respond to the use of some other potent antibiotics clearly responded to the use of ...

  3. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib

    Science.gov (United States)

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-01-01

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. PMID:25414333

  4. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  5. The cfr and cfr-like multiple resistance genes

    DEFF Research Database (Denmark)

    Vester, Birte

    2018-01-01

    . The cfr gene is found in various bacteria in many geographical locations and placed on plasmids or associated with transposons. Cfr-related genes providing similar resistance have been identified in Bacillales, and now also in the pathogens Clostridium difficile and Enterococcus faecium. In addition......, the presence of the cfr gene has been detected in harbours and food markets....

  6. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  7. Whole genome sequencing-based characterization of extensively drug resistant (XDR strains of Mycobacterium tuberculosis from Pakistan

    Directory of Open Access Journals (Sweden)

    Zahra Hasan

    2015-01-01

    Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and genotypic testing, the results would be rifampicin (100%, isoniazid (89%, fluoroquinolones (95%, aminoglycoside (81% and ethambutol (61%. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.

  8. Evaluation of the influence of fluoroquinolone chemical structure on stability: forced degradation and in silico studies

    Directory of Open Access Journals (Sweden)

    André Valle de Bairros

    2018-05-01

    Full Text Available ABSTRACT Fluoroquinolones are a known antibacterial class commonly used around the world. These compounds present relative stability and they may show some adverse effects according their distinct chemical structures. The chemical hydrolysis of five fluoroquinolones was studied using alkaline and photolytic degradation aiming to observe the differences in molecular reactivity. DFT/B3LYP-6.31G* was used to assist with understanding the chemical structure degradation. Gemifloxacin underwent degradation in alkaline medium. Gemifloxacin and danofloxacin showed more degradation perceptual indices in comparison with ciprofloxacin, enrofloxacin and norfloxacin in photolytic conditions. Some structural features were observed which may influence degradation, such as the presence of five member rings attached to the quinolone ring and the electrostatic positive charges, showed in maps of potential electrostatic charges. These measurements may be used in the design of effective and more stable fluoroquinolones as well as the investigation of degradation products from stress stability assays.

  9. Antimicrobial resistance, class 1 integrons, and genomic island 1 in Salmonella isolates from Vietnam.

    Directory of Open Access Journals (Sweden)

    An T T Vo

    Full Text Available BACKGROUND: The objective was to investigate the phenotypic and genotypic resistance and the horizontal transfer of resistance determinants from Salmonella isolates from humans and animals in Vietnam. METHODOLOGY/PRINCIPAL FINDINGS: The susceptibility of 297 epidemiologically unrelated non-typhoid Salmonella isolates was investigated by disk diffusion assay. The isolates were screened for the presence of class 1 integrons and Salmonella genomic island 1 by PCR. The potential for the transfer of resistance determinants was investigated by conjugation experiments. Resistance to gentamicin, kanamycin, chloramphenicol, streptomycin, trimethoprim, ampicillin, nalidixic acid, sulphonamides, and tetracycline was found in 13 to 50% of the isolates. Nine distinct integron types were detected in 28% of the isolates belonging to 11 Salmonella serovars including S. Tallahassee. Gene cassettes identified were aadA1, aadA2, aadA5, bla(PSE-1, bla(OXA-30, dfrA1, dfrA12, dfrA17, and sat, as well as open reading frames with unknown functions. Most integrons were located on conjugative plasmids, which can transfer their antimicrobial resistance determinants to Escherichia coli or Salmonella Enteritidis, or with Salmonella Genomic Island 1 or its variants. The resistance gene cluster in serovar Emek identified by PCR mapping and nucleotide sequencing contained SGI1-J3 which is integrated in SGI1 at another position than the majority of SGI1. This is the second report on the insertion of SGI1 at this position. High-level resistance to fluoroquinolones was found in 3 multiresistant S. Typhimurium isolates and was associated with mutations in the gyrA gene leading to the amino acid changes Ser83Phe and Asp87Asn. CONCLUSIONS: Resistance was common among Vietnamese Salmonella isolates from different sources. Legislation to enforce a more prudent use of antibiotics in both human and veterinary medicine should be implemented by the authorities in Vietnam.

  10. Antibiotic resistance of staphylococci from humans, food and different animal species according to data of the Hungarian resistance monitoring system in 2001.

    Science.gov (United States)

    Kaszanyitzky, Eva J; Jánosi, Sz; Egyed, Zsuzsanna; Agost, Gizella; Semjén, G

    2003-01-01

    Based on data of the Hungarian resistance monitoring system the antibiotic resistance of Staphylococcus strains of human and animal origin was studied. No methicillin-resistant staphylococci harbouring mecA gene were isolated from animals in 2001. Penicillin resistance, mediated by penicillinase production, was the most frequent among Staphylococcus aureus strains isolated from humans (96%), from bovine mastitis (55%), from foods (45%) and from dogs. In staphylococci isolated from animals low resistance percentages to aminoglycosides (0-2%), fluoroquinolones (0.5-3%) and sulphonamides (0.5-4%) were found but in strains isolated humans these figures were higher (1-14%, 5-18% and 3-31%, respectively). The most frequent antibiotic resistance profiles of strains isolated from animals and food were penicillin/tetracycline, penicillin/lincomycin and penicillin/lincomycin/tetracycline. Penicillin/tetracycline resistance was exhibited by strains from mastitis (3), samples from the meat industry (31), poultry flocks (1), poultry industry (1), noodle (1) and horses (2). Penicillin/lincomycin resistance was found in 10 Staphylococcus strains from mastitis, 1 from the dairy industry, 1 from the meat industry and 6 from dogs. Isolates from mastitis (2), from the dairy industry (2), from pigs (1), from the meat industry (1) and from poultry (1) harboured penicillin/lincomycin/tetracycline resistance pattern. Multiresistant strains were usually isolated only from one and sometimes from two animal species; therefore, the spread of defined resistant strains (clones) among different animal species could not be demonstrated. These results also suggest that the transfer of antibiotic resistance of S. aureus from animals to humans probably occurs less frequently than is generally assumed.

  11. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  12. TaEDS1 genes positively regulate resistance to powdery mildew in wheat.

    Science.gov (United States)

    Chen, Guiping; Wei, Bo; Li, Guoliang; Gong, Caiyan; Fan, Renchun; Zhang, Xiangqi

    2018-04-01

    Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.

  13. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China

    International Nuclear Information System (INIS)

    Su Haochang; Ying Guangguo; Tao Ran; Zhang Ruiquan; Zhao Jianliang; Liu Yousheng

    2012-01-01

    Antibiotic susceptibility, detection of sul gene types and presence of class 1, 2 and 3 integrons and gene cassettes using PCR assays were investigated in 3456 Escherichia coli isolates obtained from 38 sampling sites of the Dongjiang River catchment in the dry and wet seasons. 89.1% of the isolates were resistant and 87.5% showed resistance to at least three antibiotics. sul2 was detected most frequently in 89.2% of 1403 SXT-resistant isolates. The presence of integrons (class 1 and 2) was frequently observed (82.3%) while no class 3 integron was found. In these integrons, 21 resistance genes of 14 gene cassette arrays and 10 different families of resistance genes were identified. Three gene cassette arrays, aac(6')-Ib-cr-aar-3-dfrA27-aadA16, aacA4-catB3-dfrA1 and aadA2-lnuF, were detected for the first time in surface water. The results showed that bacterial resistance in the catchment was seriously influenced by human activities, especially discharge of wastewater. Highlights: ► Antibiotic resistance was investigated for a river catchment of southern China. ► 87.5% of E coli isolates showed resistance to at least three antibiotics. ► The presence of integrons (class 1 and 2) was frequently observed (82.3%). ► Bacterial resistance in the catchment was seriously influenced by human activities. - Bacterial resistance to antibiotics in a catchment is related to the discharge of wastewater into the aquatic environment.

  14. A novel gene of Kalanchoe daigremontiana confers plant drought resistance.

    Science.gov (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi

    2018-02-07

    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  15. Analysis of differentially expressed genes related to resistance in spinosad- and neonicotinoid-resistant Musca domestica L. (Diptera: Muscidae) strains

    DEFF Research Database (Denmark)

    Castberg, Dorte Heidi Højland; Kristensen, Michael

    2017-01-01

    strains differing significantly in their response to insecticides. High differential expression of P450s and genes coding for cuticle protein indicates a combination of factors involved in metabolic neonicotinoid and spinosad resistance. Conclusion Resistance in these strains is apparently not linked...... interesting in terms of neonicotinoid resistance, while cyp4d9 was overexpressed in 791spin compared to spinosad-susceptible strains. GSTs, ESTs and UGTs were mostly overexpressed, but not to the same degree as P450s. We present a comprehensive and comparative picture of gene expression in three housefly......Background The housefly is a global pest that has developed resistance to most insecticides applied against it. Resistance of the spinosad-resistant strain 791spin and the neonicotinoid-resistant 766b strain is believed to be due to metabolism. We investigate differentially expressed genes...

  16. RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem.

    Directory of Open Access Journals (Sweden)

    Michele Gusberti

    Full Text Available Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible and old (ontogenic resistant leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3 were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result

  17. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-07-22

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    Science.gov (United States)

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  19. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Strong, P J; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-08-16

    Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases that are distinguished by the temperature resulting from microbial activity, namely the mesophilic, thermophilic, cooling, and maturing phases. In this study, changes of resistome expression were determined and related to active microbiome profiles during the dynamic composting process. This was achieved by integrating metagenomic and time series metatranscriptomic data for the evolving microbial community during composting. Composting noticeably reduced the aggregated expression level of the manure resistome, which primarily consisted of genes encoding for tetracycline, vancomycin, fluoroquinolone, beta-lactam, and aminoglycoside resistance, as well as efflux pumps. Furthermore, a varied transcriptional response of resistome to composting at the ARG levels was highlighted. The expression of tetracycline resistance genes (tetM-tetW-tetO-tetS) decreased during composting, where distinctive shifts in the four phases of composting were related to variations in antibiotic concentration. Composting had no effect on the expression of sulfonamide and fluoroquinolone resistance genes, which increased slightly during the thermophilic phase and then decreased to initial levels. As indigenous populations switched greatly throughout the dynamic composting, the core resistome persisted and their reservoir hosts' composition was significantly correlated with dynamic active microbial phylogenetic structure. Hosts for sulfonamide and fuoroquinolone resistance genes changed notably in phylognetic structure

  20. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan

    DEFF Research Database (Denmark)

    Lauderdale, T. L.; Aarestrup, Frank Møller; Chen, P. C.

    2006-01-01

    (41%) and was highly prevalent in Salmonella enterica serotype Typhimurium (72.7%, 176/242) the most common serotype. Additional resistance to trimethoprim was present in 155 (19.4% overall) of the ACSSuT R-type isolates from several serotypes. Reduced susceptibility to fluoroquinolone (FQ...... multiresistant to other antimicrobials. Studies are needed to determine the sources of different multidrug-resistant serotypes. Continued national surveillance is underway to monitor changes in resistance trends and to detect further emergence of resistant Salmonella serotypes in Taiwan. (c) 2006 Elsevier Inc...

  1. GenoType HelicoDR test in the determination of antimicrobial resistance of Helicobacter pylori in Korea.

    Science.gov (United States)

    Lee, Jung Won; Kim, Nayoung; Nam, Ryoung Hee; Park, Ji Hyun; Choi, Yoon Jin; Kim, Jung Mogg; Kim, Joo Sung; Jung, Hyun Chae

    2014-09-01

    Antimicrobial resistance of Helicobacter pylori is most important factor in eradication success. GenoType HelicoDR test has been developed for rapid detection of antimicrobial resistance. The present study evaluated the clinical usefulness of GenoType HelicoDR test in Korea. To detect 23S rRNA for clarithromycin resistance and gyrA mutations for fluoroquinolone resistance, both DNA sequencing after minimal inhibitory test (MIC) and GenoType HelicoDR test were performed in H. pylori isolates from the gastric mucosa of 101 patients. The eradication results of clarithromycin and moxifloxacin-containing triple therapy were evaluated by the 23S rRNA and gyrA mutations. For 42 isolates with A2143G mutation by GenoType HelicoDR, 83.3% (35/42) of concordance rate was estimated with DNA sequencing method and 85.7% (36/42) for MIC test. For 43 isolates with N87K mutation by GenoType HelicoDR, 71.1% (31/43) of concordance rate was estimated with DNA sequencing and 88.4% (38/43) for MIC test. The sensitivity and specificity of GenoType HelicoDR test in determination of 23S rRNA mutation were 94.9% and 87.1%, and those of gyrA 98.2% and 80.0%. The sensitivity and specificity of GenoType HelicoDR test in determination of clarithromycin resistance based on MIC test were 55.0% and 80.0%, for fluoroquinolone 74.4% and 70.0%. GenoType HelicoDR test is useful to determine mutations responsible for clarithromycin or fluoroquinolone-containing eradication failure but has a limitation for the clinical applicability in determination of resistance.

  2. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: an ecological study.

    Science.gov (United States)

    Vieira, Antonio R; Collignon, Peter; Aarestrup, Frank M; McEwen, Scott A; Hendriksen, Rene S; Hald, Tine; Wegener, Henrik C

    2011-12-01

    In addition to medical antimicrobial usage, the use of antimicrobials in food animals contributes to the occurrence of resistance among some bacterial species isolated from infections in humans. Recently, several studies have indicated that a large proportion of Escherichia coli causing infections in humans, especially those resistant to antimicrobials, have an animal origin. We analyzed the correlation between the prevalence of antimicrobial resistance in E. coli isolates from blood stream infections in humans and in E. coli isolates from poultry, pigs, and cattle between 2005 and 2008 for 11 countries, using available surveillance data. We also assessed the correlation between human antimicrobial usage and the occurrence of resistance in E. coli isolates from blood stream infections. Strong and significant correlations between prevalences of resistance to ampicillin (r=0.94), aminoglycosides (r=0.72), third-generation cephalosporins (r=0.76), and fluoroquinolones (r=0.68) were observed for human and poultry E. coli isolates. Similar significant correlations were observed for ampicillin (r=0.91), aminoglycosides (r=0.73), and fluoroquinolone resistance (r=0.74) in pig and human isolates. In cattle isolates, only ampicillin resistance (r=0.72) was significantly correlated to human isolates. When usage of antimicrobials in humans was analyzed with antimicrobial resistance among human isolates, only correlations between fluoroquinolones (r=0.90) and third-generation cephalosporins (r=0.75) were significant. Resistance in E. coli isolates from food animals (especially poultry and pigs) was highly correlated with resistance in isolates from humans. This supports the hypothesis that a large proportion of resistant E. coli isolates causing blood stream infections in people may be derived from food sources.

  3. Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene.

    Science.gov (United States)

    Zang, Wen; Eckstein, Peter E; Colin, Mark; Voth, Doug; Himmelbach, Axel; Beier, Sebastian; Stein, Nils; Scoles, Graham J; Beattie, Aaron D

    2015-07-01

    The candidate gene for the barley Un8 true loose smut resistance gene encodes a deduced protein containing two tandem protein kinase domains. In North America, durable resistance against all known isolates of barley true loose smut, caused by the basidiomycete pathogen Ustilago nuda (Jens.) Rostr. (U. nuda), is under the control of the Un8 resistance gene. Previous genetic studies mapped Un8 to the long arm of chromosome 5 (1HL). Here, a population of 4625 lines segregating for Un8 was used to delimit the Un8 gene to a 0.108 cM interval on chromosome arm 1HL, and assign it to fingerprinted contig 546 of the barley physical map. The minimal tilling path was identified for the Un8 locus using two flanking markers and consisted of two overlapping bacterial artificial chromosomes. One gene located close to a marker co-segregating with Un8 showed high sequence identity to a disease resistance gene containing two kinase domains. Sequence of the candidate gene from the parents of the segregating population, and in an additional 19 barley lines representing a broader spectrum of diversity, showed there was no intron in alleles present in either resistant or susceptible lines, and fifteen amino acid variations unique to the deduced protein sequence in resistant lines differentiated it from the deduced protein sequences in susceptible lines. Some of these variations were present within putative functional domains which may cause a loss of function in the deduced protein sequences within susceptible lines.

  4. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  5. Characterization of resistance to tetracyclines and aminoglycosides of sheep mastitis pathogens: study of the effect of gene content on resistance.

    Science.gov (United States)

    Lollai, S A; Ziccheddu, M; Duprè, I; Piras, D

    2016-10-01

    Mastitis causes economic losses and antimicrobials are frequently used for mastitis treatment. Antimicrobial resistance surveys are still rare in the ovine field and characterization of strains is important in order to acquire information about resistance and for optimization of therapy. Bacterial pathogens recovered in milk samples from mastitis-affected ewes were characterized for resistance to tetracyclines and aminoglycosides, members of which are frequently used antimicrobials in small ruminants. A total of 185 strains of staphylococci, streptococci, and enterococci, common mastitis pathogens, were tested for minimal inhibitory concentration (MIC) to tetracycline, doxycycline, minocycline, gentamicin, kanamycin, streptomycin, and for resistance genes by PCR. Effects of different tet genes arrangements on MICs were also investigated. Staphylococci expressed the lowest MIC for tetracycline and tet(K) was the most common gene recovered; tet(M) and tet(O) were also found. Gene content was shown to influence the tetracycline MIC values. Enterococci and streptococci showed higher MICs to tetracyclines and nonsusceptible strains always harboured at least one ribosomal protection gene (MIC above 8 μg ml(-1) ). Streptococci often harboured two or more tet determinants. As regards the resistance to aminoglycosides, staphylococci showed the lowest gentamicin and kanamycin median MIC along with streptomycin high level resistant (HLR) strains (MIC >1024 μg ml(-1) ) all harbouring str gene. The resistance determinant aac(6')-Ie-aph(2″)-Ia was present in few strains. Streptococci were basically nonsusceptible to aminoglycosides but neither HLR isolates nor resistance genes were detected. Enterococci revealed the highest MICs for gentamicin; two str harbouring isolates were shown to be HLR to streptomycin. Evidence was obtained for the circulation of antimicrobial-resistant strains and genes in sheep dairy farming. Tetracycline MIC of 64 μg ml(-1) and high

  6. Overview of antimicrobial options for Mycoplasma pneumoniae pneumonia: focus on macrolide resistance.

    Science.gov (United States)

    Cao, Bin; Qu, Jiu-Xin; Yin, Yu-Dong; Eldere, Johan Van

    2017-07-01

    Community-acquired pneumonia (CAP) is a common infectious disease affecting children and adults of any age. Mycoplasma pneumoniae has emerged as leading causative agent of CAP in some region, and the abrupt increasing resistance to macrolide that widely used for management of M. pneumoniae has reached to the level that it often leads to treatment failures. We aim to discuss the drivers for development of macrolide-resistant M. pneumoniae, antimicrobial stewardship and also the potential treatment options for patients infected with macrolide-resistant M. pneumonia. The articles in English and Chinese published in Pubmed and in Asian medical journals were selected for the review. M. pneumoniae can develop macrolide resistance by point mutations in the 23S rRNA gene. Inappropriate and overuse of macrolides for respiratory tract infections may induce the resistance rapidly. A number of countries have introduced the stewardship program for restricting the use of macrolide. Tetracyclines and fluoroquinolones are highly effective for macrolide-resistant strains, which may be the substitute in the region of high prevalence of macrolide-resistant M. pneumoniae. The problem of macrolide resistant M. pneumonia is emerging. Antibiotic stewardship is needed to inhibit the inappropriate use of macrolide and new antibiotics with a more acceptable safety profile for all ages need to be explored. © 2015 John Wiley & Sons Ltd.

  7. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.

    Science.gov (United States)

    Beseli, Aydin; Goulart da Silva, Marilia; Daub, Margaret E

    2015-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides and plant pathogenic fungus Cercospora nicotianae have been used as models for understanding resistance to singlet oxygen ((1)O(2)), a highly toxic reactive oxygen species. In Rhodobacter and Cercospora, (1)O(2) is derived, respectively, from photosynthesis and from the (1)O(2)-generating toxin cercosporin which the fungus produces to parasitize plants. We identified common genes recovered in transcriptome studies of putative (1)O(2)-resistance genes in these two systems, suggesting common (1)O(2)-resistance mechanisms. To determine if the Cercospora homologs of R. sphaeroides (1)O(2)-resistance genes are involved in resistance to cercosporin, we expressed the genes in the cercosporin-sensitive fungus Neurospora crassa and assayed for increases in cercosporin resistance. Neurospora crassa transformants expressing genes encoding aldo/keto reductase, succinyl-CoA ligase, O-acetylhomoserine (thiol) lyase, peptide methionine sulphoxide reductase and glutathione S-transferase did not have elevated levels of cercosporin resistance. Several transformants expressing aldehyde dehydrogenase were significantly more resistant to cercosporin. Expression of the transgene and enzyme activity did not correlate with resistance, however. We conclude that although the genes tested in this study are important in (1)O(2) resistance in R. sphaeroides, their Cercospora homologs are not involved in resistance to (1)O(2) generated from cercosporin. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  9. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  10. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P antibiotic-resistant bacteria (P < 0.01).

  11. Association between Mycobacterium tuberculosis complex phylogenetic lineage and acquired drug resistance.

    Directory of Open Access Journals (Sweden)

    Courtney M Yuen

    Full Text Available BACKGROUND: Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. METHODS: We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004-2011 with assigned species and lineage and both initial and final drug susceptibility test results. We determined univariate associations between species and lineage of Mycobacterium tuberculosis complex bacteria and acquired resistance to isoniazid, rifamycins, fluoroquinolones, and second-line injectables. We used Poisson regression with backward elimination to generate multivariable models for acquired resistance to isoniazid and rifamycins. RESULTS: M. bovis was independently associated with acquired resistance to isoniazid (adjusted prevalence ratio = 8.46, 95% CI 2.96-24.14 adjusting for HIV status, and with acquired resistance to rifamycins (adjusted prevalence ratio = 4.53, 95% CI 1.29-15.90 adjusting for homelessness, HIV status, initial resistance to isoniazid, site of disease, and administration of therapy. East Asian lineage was associated with acquired resistance to fluoroquinolones (prevalence ratio = 6.10, 95% CI 1.56-23.83. CONCLUSIONS: We found an association between mycobacterial species and lineage and acquired drug resistance using U.S. surveillance data. Prospective clinical studies are needed to determine the clinical significance of these findings, including whether rapid genotyping of isolates at the outset of treatment may benefit patient management.

  12. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Lertworapreecha, M.; Evans, M.C.

    2003-01-01

    and gentamicin. All nine ampicillin-resistant isolates contained a sequence similar to the bla(TEM-1b) gene, one of the eight chloramphenicol-resistant isolates a sequence similar to the catA1 gene, all three neomycin-resistant isolates a sequence similar to the aphA-2 gene, 16 (73%) of the 22 streptomycin...... isolates were examined for susceptibility to antimicrobial agents, and resistant isolates were examined for the presence of selected resistance genes by PCR. Results: Only 48 (9.5%) of the isolates were resistant to one or more of the antimicrobial agents tested. A low frequency of resistance was found...

  14. Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum.

    Science.gov (United States)

    Egervärn, M; Roos, S; Lindmark, H

    2009-11-01

    The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions. A tet(W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm(B) and one strain each was positive for erm(C) and erm(T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet(M) gene. The majority of the tet(W)-positive Lact. reuteri strains and all erm-positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study. Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated. These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics.

  15. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  16. Effective genes for resistance to stripe rust and virulence of Puccinia ...

    African Journals Online (AJOL)

    The results revealed that stripe rust resistance genes Yr3, Yr5, Yr10, Yr15, Yr26, YrSP and YrCV were resistant, while Yr18 showed moderate susceptibility at all locations. Genes YrA-, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27 and gene combinations Opata (Yr27+Yr18) and Super Kauz (Yr9, Yr27, Yr18) were found susceptible.

  17. High prevalence of multidrug-resistant tuberculosis among patients with rifampicin resistance using GeneXpert Mycobacterium tuberculosis/rifampicin in Ghana.

    Science.gov (United States)

    Boakye-Appiah, Justice K; Steinmetz, Alexis R; Pupulampu, Peter; Ofori-Yirenkyi, Stephen; Tetteh, Ishmael; Frimpong, Michael; Oppong, Patrick; Opare-Sem, Ohene; Norman, Betty R; Stienstra, Ymkje; van der Werf, Tjip S; Wansbrough-Jones, Mark; Bonsu, Frank; Obeng-Baah, Joseph; Phillips, Richard O

    2016-06-01

    Drug-resistant strains of tuberculosis (TB) represent a major threat to global TB control. In low- and middle-income countries, resource constraints make it difficult to identify and monitor cases of resistance using drug susceptibility testing and culture. Molecular assays such as the GeneXpert Mycobacterium tuberculosis/rifampicin may prove to be a cost-effective solution to this problem in these settings. The objective of this study is to evaluate the use of GeneXpert in the diagnosis of pulmonary TB since it was introduced into two tertiary hospitals in Ghana in 2013. A 2-year retrospective audit of clinical cases involving patients who presented with clinically suspected TB or documented TB not improving on standard therapy and had samples sent for GeneXpert testing. GeneXpert identified 169 cases of TB, including 17 cases of rifampicin-resistant TB. Of the seven cases with final culture and drug susceptibility testing results, six demonstrated further drug resistance and five of these were multidrug-resistant TB. These findings call for a scale-up of TB control in Ghana and provide evidence that the expansion of GeneXpert may be an optimal means to improve case finding and guide treatment of drug-resistant TB in this setting. Copyright © 2016. Published by Elsevier Ltd.

  18. A multicopy suppressor screening approach as a means to identify antibiotic resistance determinant candidates in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Moy Richard L

    2008-07-01

    Full Text Available Abstract Background Yersinia pestis is the causative agent of plague and a potential agent of bioterrorism and biowarfare. The plague biothreat and the emergence of multidrug-resistant plague underscore the need to increase our understanding of the intrinsic potential of Y. pestis for developing antimicrobial resistance and to anticipate the mechanisms of resistance that may emerge in Y. pestis. Identification of Y. pestis genes that, when overexpressed, are capable of reducing antibiotic susceptibility is a useful strategy to expose genes that this pathogen may rely upon to evolve antibiotic resistance via a vertical modality. In this study, we explored the use of a multicopy suppressor, Escherichia coli host-based screening approach as a means to expose antibiotic resistance determinant candidates in Y. pestis. Results We constructed a multicopy plasmid-based, Y. pestis genome-wide expression library of nearly 16,000 clones in E. coli and screened the library for suppressors of the antimicrobial activity of ofloxacin, a fluoroquinolone antibiotic. The screen permitted the identification of a transcriptional regulator-encoding gene (robAYp that increased the MIC99 of ofloxacin by 23-fold when overexpressed from a multicopy plasmid in Y. pestis. Additionally, we found that robAYp overexpression in Y. pestis conferred low-level resistance to many other antibiotics and increased organic solvent tolerance. Overexpression of robAYp also upregulated the expression of several efflux pumps in Y. pestis. Conclusion Our study provides proof of principle for the use of multicopy suppressor screening based on the tractable and easy-to-manipulate E. coli host as a means to identify antibiotic resistance determinant candidates of Y. pestis.

  19. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers.

    Science.gov (United States)

    Chełkowski, Jerzy; Tyrka, Mirosław; Sobkiewicz, Andrzej

    2003-01-01

    Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.

  20. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis

    Directory of Open Access Journals (Sweden)

    Wan Hongjian

    2010-08-01

    Full Text Available Abstract Background Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L., an introgression line (IL5211S was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S. Results Degenerate primers that were designed based on the conserved motifs in the NBS domain of resistance (R proteins were used to isolate NBS-type sequences from IL5211S. A total of 28 sequences were identified and named as cucumber (C. sativus = CS resistance gene analogs as CSRGAs. Polygenetic analyses separated these sequences into four different classes. Quantitative real-time polymerase chain reaction (qRT-PCR analysis showed that these CSRGAs expressed at different levels in leaves, roots, and stems. In addition, introgression from C. hystrix induced expression of the partial CSRGAs in cultivated cucumber, especially CSRGA23, increased four-fold when compared to the backcross parent CC3. Furthermore, the expression of CSRGA23 under P. cubensis infection and abiotic stresses was also analyzed at different time points. Results showed that the P. cubensis treatment and four tested abiotic stimuli, MeJA, SA, ABA, and H2O2, triggered a significant induction of CSRGA23 within 72 h of inoculation. The results indicate that CSRGA23 may play a critical role in protecting cucumber against P. cubensis through a signaling the pathway triggered by these molecules. Conclusions Four classes of NBS-type RGAs were

  1. Epidemiology of infections caused by multiresistant gram-negatives: ESBLs, MBLs, panresistant strains.

    Science.gov (United States)

    Rossolini, Gian Maria; Mantengoli, Elisabetta; Docquier, Jean-Denis; Musmanno, Rosa Anna; Coratza, Grazietta

    2007-07-01

    Microbial drug resistance is a growing problem of global magnitude. In gram-negative pathogens, the most important resistance problems are encountered in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter, with increasing trends observed for all major anti-gram-negative agents (beta-lactams, fluoroquinolones and aminoglycosides). A matter of major concern is the emergence of new beta-lactamases capable of degrading the expanded-spectrum cephalosporins and/or carbapenems, such as the extended-spectrum beta-lactamases (ESBLs) and the carbapenemases. These beta-lactamase genes are often associated with resistance determinants to non-beta-lactam agents (e.g. aminoglycosides and fluoroquinolones), and strains producing ESBLs or carbapenemases often exhibit complex multidrug resistant phenotypes and sometimes are panresistant. The problem is worsened by the dearth of new agents active on multidrug-resistant Gram-negatives in the pipeline. The importance to develop better strategies to control resistance is underscored.

  2. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2.

    Science.gov (United States)

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2018-01-01

    The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli Rosetta TM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  3. Genomic Analysis of Multidrug-Resistant Escherichia coli from North Carolina Community Hospitals: Ongoing Circulation of CTX-M-Producing ST131-H30Rx and ST131-H30R1 Strains.

    Science.gov (United States)

    Kanamori, Hajime; Parobek, Christian M; Juliano, Jonathan J; Johnson, James R; Johnston, Brian D; Johnson, Timothy J; Weber, David J; Rutala, William A; Anderson, Deverick J

    2017-08-01

    Escherichia coli sequence type 131 (ST131) predominates globally among multidrug-resistant (MDR) E. coli strains. We used whole-genome sequencing (WGS) to investigate 63 MDR E. coli isolates from 7 North Carolina community hospitals (2010 to 2015). Of these, 39 (62%) represented ST131, including 37 (95%) from the ST131- H 30R subclone: 10 (27%) from its H 30R1 subset and 27 (69%) from its H 30Rx subset. ST131 core genomes differed by a median of 15 (range, 0 to 490) single-nucleotide variants (SNVs) overall versus only 7 within H 30R1 (range, 3 to 12 SNVs) and 11 within H 30Rx (range, 0 to 21). The four isolates with identical core genomes were all H 30Rx. Epidemiological and clinical characteristics did not vary significantly by strain type, but many patients with MDR E. coli or H 30Rx infection were critically ill and had poor outcomes. H 30Rx isolates characteristically exhibited fluoroquinolone resistance and CTX-M-15 production, had a high prevalence of trimethoprim-sulfamethoxazole resistance (89%), sul1 (89%), and dfrA17 (85%), and were enriched for specific virulence traits, and all qualified as extraintestinal pathogenic E. coli The high overall prevalence of CTX-M-15 appeared to be possibly attributable to its association with the ST131- H 30Rx subclone and IncF[F2:A1:B-] plasmids. Some phylogenetically clustered non-ST131 MDR E. coli isolates also had distinctive serotypes/ fimH types, fluoroquinolone mutations, CTX-M variants, and IncF types. Thus, WGS analysis of our community hospital source MDR E. coli isolates suggested ongoing circulation and differentiation of E. coli ST131 subclones, with clonal segregation of CTX-M variants, other resistance genes, Inc-type plasmids, and virulence genes. Copyright © 2017 American Society for Microbiology.

  4. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  5. Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana).

    Science.gov (United States)

    Panwar, Preety; Jha, Anand Kumar; Pandey, P K; Gupta, Arun K; Kumar, Anil

    2011-06-01

    Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05(504,) NBS-09(711), NBS-07(688), NBS-03(509) and EST-SSR-04(241)) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.

  6. Overexpression of antibiotic resistance genes in hospital effluents over time

    OpenAIRE

    Rowe, Will P. M.; Baker-Austin, Craig; Verner-Jeffreys, David W.; Ryan, Jim J.; Micallef, Christianne; Maskell, Duncan J.; Pearce, Gareth P.

    2017-01-01

    $\\textbf{Objectives}$: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varyi...

  7. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  8. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    Science.gov (United States)

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  9. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  10. SolRgene: an online database to explore disease resistance genes in tuber-bearing Solanum species

    Directory of Open Access Journals (Sweden)

    Vleeshouwers Vivianne GAA

    2011-08-01

    Full Text Available Abstract Background The cultivated potato (Solanum tuberosum L. is an important food crop, but highly susceptible to many pathogens. The major threat to potato production is the Irish famine pathogen Phytophthora infestans, which causes the devastating late blight disease. Potato breeding makes use of germplasm from wild relatives (wild germplasm to introduce resistances into cultivated potato. The Solanum section Petota comprises tuber-bearing species that are potential donors of new disease resistance genes. The aim of this study was to explore Solanum section Petota for resistance genes and generate a widely accessible resource that is useful for studying and implementing disease resistance in potato. Description The SolRgene database contains data on resistance to P. infestans and presence of R genes and R gene homologues in Solanum section Petota. We have explored Solanum section Petota for resistance to late blight in high throughput disease tests under various laboratory conditions and in field trials. From resistant wild germplasm, segregating populations were generated and assessed for the presence of resistance genes. All these data have been entered into the SolRgene database. To facilitate genetic and resistance gene evolution studies, phylogenetic data of the entire SolRgene collection are included, as well as a tool for generating phylogenetic trees of selected groups of germplasm. Data from resistance gene allele-mining studies are incorporated, which enables detection of R gene homologs in related germplasm. Using these resources, various resistance genes have been detected and some of these have been cloned, whereas others are in the cloning pipeline. All this information is stored in the online SolRgene database, which allows users to query resistance data, sequences, passport data of the accessions, and phylogenic classifications. Conclusion Solanum section Petota forms the basis of the SolRgene database, which contains a

  11. Complete Circular Genome Sequence of Successful ST8/SCCmecIV Community-Associated Methicillin-Resistant Staphylococcus aureus (OC8 in Russia: One-Megabase Genomic Inversion, IS256's Spread, and Evolution of Russia ST8-IV.

    Directory of Open Access Journals (Sweden)

    Tsai-Wen Wan

    Full Text Available ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA has been a common threat, with large USA300 epidemics in the United States. The global geographical structure of ST8/SCCmecIV has not yet been fully elucidated. We herein determined the complete circular genome sequence of ST8/SCCmecIVc strain OC8 from Siberian Russia. We found that 36.0% of the genome was inverted relative to USA300. Two IS256, oppositely oriented, at IS256-enriched hot spots were implicated with the one-megabase genomic inversion (MbIN and vSaβ split. The behavior of IS256 was flexible: its insertion site (att sequences on the genome and junction sequences of extrachromosomal circular DNA were all divergent, albeit with fixed sizes. A similar multi-IS256 system was detected, even in prevalent ST239 healthcare-associated MRSA in Russia, suggesting IS256's strong transmission potential and advantage in evolution. Regarding epidemiology, all ST8/SCCmecIVc strains from European, Siberian, and Far Eastern Russia, examined had MbIN, and geographical expansion accompanied divergent spa types and resistance to fluoroquinolones, chloramphenicol, and often rifampicin. Russia ST8/SCCmecIVc has been associated with life-threatening infections such as pneumonia and sepsis in both community and hospital settings. Regarding virulence, the OC8 genome carried a series of toxin and immune evasion genes, a truncated giant surface protein gene, and IS256 insertion adjacent to a pan-regulatory gene. These results suggest that unique single ST8/spa1(t008/SCCmecIVc CA-MRSA (clade, Russia ST8-IVc emerged in Russia, and this was followed by large geographical expansion, with MbIN as an epidemiological marker, and fluoroquinolone resistance, multiple virulence factors, and possibly a multi-IS256 system as selective advantages.

  12. Complete Circular Genome Sequence of Successful ST8/SCCmecIV Community-Associated Methicillin-Resistant Staphylococcus aureus (OC8) in Russia: One-Megabase Genomic Inversion, IS256's Spread, and Evolution of Russia ST8-IV.

    Science.gov (United States)

    Wan, Tsai-Wen; Khokhlova, Olga E; Iwao, Yasuhisa; Higuchi, Wataru; Hung, Wei-Chun; Reva, Ivan V; Singur, Olga A; Gostev, Vladimir V; Sidorenko, Sergey V; Peryanova, Olga V; Salmina, Alla B; Reva, Galina V; Teng, Lee-Jene; Yamamoto, Tatsuo

    2016-01-01

    ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has been a common threat, with large USA300 epidemics in the United States. The global geographical structure of ST8/SCCmecIV has not yet been fully elucidated. We herein determined the complete circular genome sequence of ST8/SCCmecIVc strain OC8 from Siberian Russia. We found that 36.0% of the genome was inverted relative to USA300. Two IS256, oppositely oriented, at IS256-enriched hot spots were implicated with the one-megabase genomic inversion (MbIN) and vSaβ split. The behavior of IS256 was flexible: its insertion site (att) sequences on the genome and junction sequences of extrachromosomal circular DNA were all divergent, albeit with fixed sizes. A similar multi-IS256 system was detected, even in prevalent ST239 healthcare-associated MRSA in Russia, suggesting IS256's strong transmission potential and advantage in evolution. Regarding epidemiology, all ST8/SCCmecIVc strains from European, Siberian, and Far Eastern Russia, examined had MbIN, and geographical expansion accompanied divergent spa types and resistance to fluoroquinolones, chloramphenicol, and often rifampicin. Russia ST8/SCCmecIVc has been associated with life-threatening infections such as pneumonia and sepsis in both community and hospital settings. Regarding virulence, the OC8 genome carried a series of toxin and immune evasion genes, a truncated giant surface protein gene, and IS256 insertion adjacent to a pan-regulatory gene. These results suggest that unique single ST8/spa1(t008)/SCCmecIVc CA-MRSA (clade, Russia ST8-IVc) emerged in Russia, and this was followed by large geographical expansion, with MbIN as an epidemiological marker, and fluoroquinolone resistance, multiple virulence factors, and possibly a multi-IS256 system as selective advantages.

  13. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.

    Science.gov (United States)

    Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa

    2016-02-01

    A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Rapid selection of Plasmodium falciparum chloroquine resistance transporter gene and multidrug resistance gene-1 haplotypes associated with past chloroquine and present artemether-lumefantrine use in Inhambane District, southern Mozambique

    DEFF Research Database (Denmark)

    Thomsen, Thomas T; Madsen, Laura B; Hansson, Helle H

    2013-01-01

    Chloroquine (CQ) use in Mozambique was stopped in 2002 and artemether-lumefantrine (AL) was implemented in 2008. In light of no use of CQ and extensive use of AL, we determined the frequency of molecular markers of Plasmodium falciparum drug resistance/tolerance to CQ and AL in persons living...... in Linga-Linga, an isolated peninsula and in Furvela village, which is located 8 km inland. The P. falciparum chloroquine resistance transporter gene CVMNK wild type increased in frequency from 43.9% in 2009 to 66.4% in 2010 (P = 0.001), and combined P. falciparum multidrug resistance gene 1 N86-184F-D1246...... haplotype increased significantly between years (P = 0.039). The combination of P. falciparum chloroquine resistance transporter gene CVMNK and P. falciparum multidrug resistance gene NFD increased from 24.3% (2009) to 45.3% in (2010, P = 0.017). The rapid changes observed may largely be caused by decreased...

  15. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Science.gov (United States)

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  16. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus.

    Science.gov (United States)

    Li, Ting; Liu, Lena; Zhang, Lee; Liu, Nannan

    2014-09-29

    G-protein-coupled receptors regulate signal transduction pathways and play diverse and pivotal roles in the physiology of insects, however, the precise function of GPCRs in insecticide resistance remains unclear. Using quantitative RT-PCR and functional genomic methods, we, for the first time, explored the function of GPCRs and GPCR-related genes in insecticide resistance of mosquitoes, Culex quinquefasciatus. A comparison of the expression of 115 GPCR-related genes at a whole genome level between resistant and susceptible Culex mosquitoes identified one and three GPCR-related genes that were up-regulated in highly resistant Culex mosquito strains, HAmCq(G8) and MAmCq(G6), respectively. To characterize the function of these up-regulated GPCR-related genes in resistance, the up-regulated GPCR-related genes were knockdown in HAmCq(G8) and MAmCq(G6) using RNAi technique. Knockdown of these four GPCR-related genes not only decreased resistance of the mosquitoes to permethrin but also repressed the expression of four insecticide resistance-related P450 genes, suggesting the role of GPCR-related genes in resistance is involved in the regulation of resistance P450 gene expression. This results help in understanding of molecular regulation of resistance development in Cx. quinquefasciatus.

  17. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis.

    Science.gov (United States)

    Yu, Guotai; Champouret, Nicolas; Steuernagel, Burkhard; Olivera, Pablo D; Simmons, Jamie; Williams, Cole; Johnson, Ryan; Moscou, Matthew J; Hernández-Pinzón, Inmaculada; Green, Phon; Sela, Hanan; Millet, Eitan; Jones, Jonathan D G; Ward, Eric R; Steffenson, Brian J; Wulff, Brande B H

    2017-06-01

    We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F 6 recombinant inbred line and an F 2 population, two genes were identified that mapped to the short arm of chromosome 1S sh , designated as Sr-1644-1Sh, and the long arm of chromosome 5S sh , designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.

  18. Complete Circular Genome Sequence of Successful ST8/SCCmecIV Community-Associated Methicillin-Resistant Staphylococcus aureus (OC8) in Russia: One-Megabase Genomic Inversion, IS256’s Spread, and Evolution of Russia ST8-IV

    Science.gov (United States)

    Wan, Tsai-Wen; Higuchi, Wataru; Hung, Wei-Chun; Reva, Ivan V.; Singur, Olga A.; Gostev, Vladimir V.; Sidorenko, Sergey V.; Peryanova, Olga V.; Salmina, Alla B.; Reva, Galina V.; Teng, Lee-Jene; Yamamoto, Tatsuo

    2016-01-01

    ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has been a common threat, with large USA300 epidemics in the United States. The global geographical structure of ST8/SCCmecIV has not yet been fully elucidated. We herein determined the complete circular genome sequence of ST8/SCCmecIVc strain OC8 from Siberian Russia. We found that 36.0% of the genome was inverted relative to USA300. Two IS256, oppositely oriented, at IS256-enriched hot spots were implicated with the one-megabase genomic inversion (MbIN) and vSaβ split. The behavior of IS256 was flexible: its insertion site (att) sequences on the genome and junction sequences of extrachromosomal circular DNA were all divergent, albeit with fixed sizes. A similar multi-IS256 system was detected, even in prevalent ST239 healthcare-associated MRSA in Russia, suggesting IS256’s strong transmission potential and advantage in evolution. Regarding epidemiology, all ST8/SCCmecIVc strains from European, Siberian, and Far Eastern Russia, examined had MbIN, and geographical expansion accompanied divergent spa types and resistance to fluoroquinolones, chloramphenicol, and often rifampicin. Russia ST8/SCCmecIVc has been associated with life-threatening infections such as pneumonia and sepsis in both community and hospital settings. Regarding virulence, the OC8 genome carried a series of toxin and immune evasion genes, a truncated giant surface protein gene, and IS256 insertion adjacent to a pan-regulatory gene. These results suggest that unique single ST8/spa1(t008)/SCCmecIVc CA-MRSA (clade, Russia ST8-IVc) emerged in Russia, and this was followed by large geographical expansion, with MbIN as an epidemiological marker, and fluoroquinolone resistance, multiple virulence factors, and possibly a multi-IS256 system as selective advantages. PMID:27741255

  19. Identification of leaf rust resistant gene Lr10 in Pakistani wheat ...

    African Journals Online (AJOL)

    Leaf (brown) rust is the major disease of wheat in Pakistan and other countries. The disease is more effectively controlled when several rust resistance genes are pyramided into a single line. Molecular survey was conducted to screen 25 Pakistan wheat germplasm for the presence of leaf rust resistance gene Lr10 using ...

  20. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Yajun Chen

    Full Text Available Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR and ciprofloxacin (CIP, by nano-hydroxyapatite (n-HAP were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g · L(-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics.

  1. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    Science.gov (United States)

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  2. In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    Science.gov (United States)

    Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818

  3. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.

  4. [Adherence to international recommendations in the fight against antimicrobial resistance - Substantial difference between outpatient consumption in Spain and Denmark].

    Science.gov (United States)

    Malo, Sara; Rabanaque, María José; Bjerrum, Lars

    2016-02-01

    Increasing antibiotic resistance represents a major public health threat that jeopardises the future treatment of bacterial infections. This study aims to describe the adherence to recommendations proposed by the World Health Organization (WHO) Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR), in Spain and Denmark, and to analyse the relation between the outpatient use of Critically Important Antimicrobials (CIA) and the bacterial resistance rates to these agents. The Antimicrobial consumption interactive database (ESAC-Net) and Antimicrobial resistance interactive database (EARS-Net) provided data on outpatient use (2010-2013) of CIA (fluoroquinolones, macrolides, and 3rd and 4th generation cephalosporins) and the percentages of isolates of the main pathogens causing serious infections, resistant to these agents. The use of cephalosporins and fluoroquinolones, as well as the percentage of bacteria resistant, is higher in Spain than in Denmark. Although consumption of macrolides in both countries is similar, the proportion of Streptococcus pneumoniae resistant to macrolides is significantly higher in Spain. The high outpatient consumption of CIA agents in Spain deviates substantially from the WHO recommendations. Moreover, it has the effect of elevated rates of antimicrobial resistance, that are lower in Denmark.

  5. Bacterial metal resistance genes and metal bioavailability in contaminated sediments

    International Nuclear Information System (INIS)

    Roosa, Stéphanie; Wattiez, Ruddy; Prygiel, Emilie; Lesven, Ludovic; Billon, Gabriel; Gillan, David C.

    2014-01-01

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. - Highlights: • Metal resistance genes were used to estimate metal bioavailability in sediments. • Gene levels were correlated to metals using 5 different metal extraction protocols. • CzcA gene levels determined by quantitative PCR is a promising tool for Cd/Zn/Co. - Capsule Bacterial czcA is a potential biomarker of Cd, Zn and Co bioavailability in aquatic sediments as shown by quantitative PCR and sequential metal extraction

  6. The LBP Gene and Its Association with Resistance to Aeromonas hydrophila in Tilapia

    Directory of Open Access Journals (Sweden)

    Gui Hong Fu

    2014-12-01

    Full Text Available Resistance to pathogens is important for the sustainability and profitability of food fish production. In immune-related genes, the lipopolysaccharide-binding protein (LBP gene is an important mediator of the inflammatory reaction. We analyzed the cDNA and genomic structure of the LBP gene in tilapia. The full-length cDNA (1901 bp of the gene contained a 1416 bp open reading frame, encoding 471 amino acid residues. Its genomic sequence was 5577 bp, comprising 15 exons and 14 introns. Under normal conditions, the gene was constitutively expressed in all examined tissues. The highest expression was detected in intestine and kidney. We examined the responses of the gene to challenges with two bacterial pathogens Streptcoccus agalactiae and Aeromonas hydrophila. The gene was significantly upregulated in kidney and spleen post-infection with S. agalactiae and A. hydrophila, respectively. However, the expression profiles of the gene after the challenge with the two pathogens were different. Furthermore, we identified three SNPs in the gene. There were significant associations (p < 0.05 of two of the three SNPs with the resistance to A. hydrophila, but not with the resistance to S. agalactiae or growth performance. These results suggest that the LBP gene is involved in the acute-phase immunologic response to the bacterial infections, and the responses to the two bacterial pathogens are different. The two SNPs associated with the resistance to A. hydrophila may be useful in the selection of tilapia resistant to A. hydrophila.

  7. Relationship between Psidium species (Myrtaceae) by resistance gene analog markers: focus on nematode resistance.

    Science.gov (United States)

    Noia, L R; Tuler, A C; Ferreira, A; Ferreira, M F S

    2017-03-16

    Guava (Psidium guajava L.) crop is severely affected by the nematode Meloidogyne enterolobii. Native Psidium species have been reported as sources of resistance against this nematode. Knowledge on the molecular relationship between Psidium species based on plant resistance gene analogs (RGA) can be useful in the genetic breeding of guava for resistance to M. enterolobii. In this study, RGA markers from conserved domains, and structural features of plant R genes, were employed to characterize Psidium species and establish genetic proximity, with a focus on nematode resistance. SSR markers were also applied owing to their neutral nature, thus differing from RGA markers. For this, species reported as sources of resistance to M. enterolobii, such as P. cattleianum and P. friedrichsthalianum, as well as species occurring in the Atlantic Rainforest and susceptible genotypes, were investigated. In 10 evaluated Psidium species, high interspecific genetic variability was verified through RGA and SSR markers, with intraspecific variation in P. guajava higher with SSR, as was expected. Resistant species were clustered by RGA markers, and differential amplicons among genotypes resistant and susceptible to M. enterolobii were identified. Knowledge on the molecular relationships between Psidium species constitutes useful information for breeding of the guava tree, providing direction for hybridization and material for rootstocks. Additionally, the genetic relationship between native species, which have been little studied, and P. guajava were estimated by RGAs, which were confirmed as important markers for genetic diversity related to pathogen resistance.

  8. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    Genetic analysis in F1, F2 and F2.3 families at the seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single incompletely dominant gene. The leaf rust resistance gene was mapped to chromosome 3BL with SSR markers Xgwm114 and Xgwm547 flanking the gene at a distance of 28.3 cM ...

  9. The effect of a commercial competitive exclusion product on the selection of enrofloxacin resistance in commensal E. coli in broilers.

    Science.gov (United States)

    Chantziaras, Ilias; Smet, Annemieke; Filippitzi, Maria Eleni; Damiaans, Bert; Haesebrouck, Freddy; Boyen, Filip; Dewulf, Jeroen

    2018-06-07

    The effect of a competitive exclusion product (Aviguard ® ) on the selection of fluoroquinolone resistance in poultry was assessed in vivo in the absence or presence of fluoroquinolone treatment. Two experiments using a controlled seeder-sentinel animal model (2seeders:4sentinels per group) with one-day-old chicks were used. For both experiments,as soon as the chicks were hatched, the animals of two groups were administered Aviguard ® and two groups were left untreated. Three days later, all groups were inoculated with an enrofloxacin-susceptible commensal E. coli strain. Five days after hatching, two animals per group were inoculated either with a bacteriologically-fit or a bacteriologically non-fit enrofloxacin-resistant commensal E. coli strain. In experiment 2, all groups were orally treated for three consecutive days (Day 8-10) with enrofloxacin. Throughout the experiments, faecal excretion of all inoculated E. coli strains was determined on days 2-5-8-11-18-23 by selective plating (via spiral plater). Linear mixed models were used to assess the effect of Aviguard ® on the selection of fluoroquinolone resistance. The use of Aviguard® (penrofloxacin-resistant E. coli when no enrofloxacin treatment was administered. However, this beneficial effect disappeared (p=0.37) when the animals were treated with enrofloxacin. Similarly, bacterial fitness of the enrofloxacin-resistant E. coli strain used for inoculation had an effect (penrofloxacin resistance when no treatment was administered, whereas this effect was no longer present when enrofloxacin was administered (p =0.70). Thus, enrofloxacin treatment cancelled the beneficial effects from administrating Aviguard ® in one-day-old broiler chicks and resulted in a enrofloxacin-resistant flora.

  10. Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica.

    Science.gov (United States)

    Zhao, Yan; Weng, Qiaoyun; Song, Jinhui; Ma, Hailian; Yuan, Jincheng; Dong, Zhiping; Liu, Yinghui

    2016-06-01

    In plants, resistance (R) genes are involved in pathogen recognition and subsequent activation of innate immune responses. The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes family forms the largest R-gene family among plant genomes and play an important role in plant disease resistance. In this paper, comprehensive analysis of NBS-encoding genes is performed in the whole Setaria italica genome. A total of 96 NBS-LRR genes are identified, and comprehensive overview of the NBS-LRR genes is undertaken, including phylogenetic analysis, chromosome locations, conserved motifs of proteins, and gene expression. Based on the domain, these genes are divided into two groups and distributed in all Setaria italica chromosomes. Most NBS-LRR genes are located at the distal tip of the long arms of the chromosomes. Setaria italica NBS-LRR proteins share at least one nucleotide-biding domain and one leucine-rich repeat domain. Our results also show the duplication of NBS-LRR genes in Setaria italica is related to their gene structure.

  11. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2.

    Directory of Open Access Journals (Sweden)

    Dhananjay Dhokane

    Full Text Available Fusarium head blight (FHB caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance.In our study recombinant inbred lines (RILs carrying resistant (R-RIL and susceptible (S-RIL alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL, callose synthase (CS, basic Helix Loop Helix (bHLH041 transcription factor, glutathione S-transferase (GST, ABC transporter-4 (ABC4 and cinnamyl alcohol dehydrogenase (CAD as putative resistance genes localized within the QTL-Fhb2 region.Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat

  12. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB

    DEFF Research Database (Denmark)

    Guardabassi, L.; Christensen, H.; Hasman, Henrik

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related...

  13. Remapping of the stripe rust resistance gene Yr10 in common wheat.

    Science.gov (United States)

    Yuan, Cuiling; Wu, Jingzheng; Yan, Baiqiang; Hao, Qunqun; Zhang, Chaozhong; Lyu, Bo; Ni, Fei; Caplan, Allan; Wu, Jiajie; Fu, Daolin

    2018-02-23

    Yr10 is an important gene to control wheat stripe rust, and the search for Yr10 needs to be continued. Wheat stripe rust or yellow rust is a devastating fungal disease caused by Puccinia striiformis f. sp. tritici (Pst). Host disease resistance offers a primary source for controlling wheat stripe rust. The stripe rust resistance gene Yr10 confers the race-specific resistance to most tested Pst races in China including CYR29. Early studies proposed that Yr10 was a nucleotide-binding site, leucine-rich repeat gene archived as GenBank accession AF149112 (hereafter designated the Yr10 candidate gene or Yr10 CG ). In this study, we revealed that 15 Chinese wheat cultivars positive for Yr10 CG are susceptible to CYR29. We then expressed the Yr10 CG cDNA in the common wheat 'Bobwhite'. The Yr10 CG -cDNA positive transgenic plants were also susceptible to CYR29. Thus, it is highly unlikely that Yr10 CG corresponds to the Yr10 resistance gene. Using the Yr10 donor 'Moro' and the Pst-susceptible wheat 'Huixianhong', we generated two F 3 populations that displayed a single Mendelian segregation on the Yr10 gene, and used them to remap the Yr10 gene. Six markers were placed in the Yr10 region, with the Yr10 CG gene now mapping about 1.2-cM proximal to the Yr10 locus and the Xsdauw79 marker is completely linked to the Yr10 locus. Apparently, the Yr10 gene has not yet been identified. Fine mapping and positional cloning of Yr10 is important for gene pyramiding for stripe rust resistance in wheat.

  14. Detection and Characterizations of Genes Resistant to Tetracycline and Sulfa among the Bacteria in Mariculture Water

    Science.gov (United States)

    Qu, L.; Li, Y.; Zhu, P.

    2013-12-01

    One hundred and thirty-five bacteria from maricultural environments were tested for sensitivity to tetracycline and sulfa. Result show that 72% of the bacteria were sulfa-resistant, 36% of the bacteria were tetracycline-resistant, and 16.5% of bacteria showed resistance to both tetracyclines and sulfa ,indicating that the proportion of sulfa and tetracycline resistance bacteria isvery large in the maricultural environments. PCR methods were used to detect if these resistant bacteria carry tetracycline and sulfa resistance genes. Out of the 33 tetracycline-resistant bacteria screened, 3 were positive for tetA, 6 were positive for tetB and no isolate wasboth positive for tetA and tetB. Of the 97 sulfa-resistant bacteria screened, 9 were positive for sul2, 6 were positive for sul1, 1 isolate was positive for bothsul1 and sul2. The minimum inhibitory concentration (MIC) of tetracycline for tetA-carrying isolates were higher than those tetB-carrying isolates.while The MIC of sulfa for sul2-carrying isolates were higher than those sul1-carrying isolates. Indicating that tetA and sul2 gene may play ubknown roles in resisting tetracycline and sulfa than tetB and sul1 genes. The results showed the 4 kinds of genes (tetA,tetB,sul1,sul2) has no host specificity. All these 16S sequence are from the isolates which are positive for the above genes, it indicated the above antibiotic resistance genes are widespread in the environment regardless of the host. While the DNA sequence of these four genes showed tetA, sul1, sul2 genes are conservative in different bacteria , etB gene conserved poorly. The research aim is to get a preliminary understanding of resistance mechanism related to the resistant bacteria and the resistance genes in marine aquaculture environment through the analysis of resistant genes, providing research base for the prevention and treatment of drug-resistant bacteria so as to reduce the threat to the ecological environment, aquaculture and human health.

  15. Cloning and characterization of NBS-LRR resistance gene ...

    African Journals Online (AJOL)

    biotech

    2013-07-03

    Jul 3, 2013 ... Rose using degernate primers designed from the conserved motifs of different plant resistance genes. A total of 40 sequences were hit with various R genes, of which 20 .... absorption ratio OD260 nm/OD280 nm between 1.80 and ..... status and outlook for small-holders agriculture in C S Gold and B.

  16. PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant streptomycete isolates from diverse habitats

    NARCIS (Netherlands)

    Nikolakopoulou, T; Egan, S; van Overbeek, L; Guillaume, G; Heuer, H; Wellington, EMH; van Elsas, JD; Collard, JM; Smalla, K; Karagouni, A

    2005-01-01

    A range of European habitats was screened by PCR for detection of the oxytetracycline resistance genes otr(A) and otr(B), found in the oxytetracycline-producing strain Streptomyces rimosus. Primers were developed to detect these otr genes in tetracycline-resistant (Tc-R) streptomycete isolates from

  17. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L.

    Science.gov (United States)

    Chhuneja, Parveen; Kumar, Krishan; Stirnweis, Daniel; Hurni, Severine; Keller, Beat; Dhaliwal, Harcharan S; Singh, Kuldeep

    2012-04-01

    Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (A(b)A(b)) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.

  18. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  19. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

    Directory of Open Access Journals (Sweden)

    Orla Coleman

    2015-03-01

    Full Text Available Phylogenetic (tree-based approaches to understanding evolutionary history are unable to incorporate convergent evolutionary events where two genes merge into one. In this study, as exemplars of what can be achieved when a tree is not assumed a priori, we have analysed the evolutionary histories of polyketide synthase genes and antibiotic resistance genes and have shown that their history is replete with convergent events as well as divergent events. We demonstrate that the overall histories of these genes more closely resembles the remodelling that might be seen with the children’s toy Lego, than the standard model of the phylogenetic tree. This work demonstrates further that genes can act as public goods, available for re-use and incorporation into other genetic goods.

  20. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104

    DEFF Research Database (Denmark)

    Molbak, K.; Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1999-01-01

    Background Food-borne salmonella infections have become a major problem in industrialized countries. The strain of Salmonella enterica serotype typhimurium known as definitive phage type 104 (DT104) is usually resistant to five drugs: ampicillin, chloramphenicol, streptomycin, sulfonamides......, and tetracycline. An increasing proportion of DT104 isolates also have reduced susceptibility to fluoroquinolones. Methods The Danish salmonella surveillance program determines the phage types of all typhimurium strains from the food chain, and in the case of suspected outbreaks, five-drug-resistant strains...... are characterized by molecular methods. All patients infected with five-drug-resistant typhimurium are interviewed to obtain clinical and epidemiologic data. In 1998, an outbreak of salmonella occurred, in which the strain of typhimurium DT104 was new to Denmark. We investigated this outbreak and report our...

  1. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene.

    Science.gov (United States)

    Yang, Haiyuan; Ren, Xiang; Weng, Qingmei; Zhu, Lili; He, Guangcun

    2002-01-01

    The brown planthopper (BPH), Nilaparvata lugens Stål, is a serious insect pest of rice (Oryza saliva L.). We have determined the chromosomal location of a BPH resistance gene in rice using SSR and RFLP techniques. A rice line 'B14', derived from the wild rice Oryza latifolia, showed high resistance to BPH. For tagging the resistance gene in 'B14X', an F2 population and a recombinant inbred (RI) population from a cross between Taichung Native 1 and 'B14' were developed and evaluated for BPH resistance. The results showed that a single dominant gene controlled the resistance of 'B14' to BPH. Bulked segregant SSR analysis was employed for identification of DNA markers linked to the resistance gene. From the survey of 302 SSR primer pairs, three SSR (RM335, RM261, RM185) markers linked to the resistance gene were identified. The closest SSR marker RM261 was linked to the resistance gene at a distance of 1.8 cM. Regions surrounding the resistance gene and the SSR markers were examined with additional RFLP markers on chromosome 4 to define the location of the resistance gene. Linkage of RFLP markers C820, R288, C946 with the resistance gene further confirmed its location on the short arm of chromosome 4. Closely linked DNA markers will facilitate selection for resistant lines in breeding programs and provide the basis for map-based cloning of this resistance gene.

  2. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland.

    Science.gov (United States)

    Lanz, Roland; Kuhnert, Peter; Boerlin, Patrick

    2003-01-02

    Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

  3. PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections.

    Science.gov (United States)

    Tran, Chau Minh; Tanaka, Kaori; Watanabe, Kunitomo

    2013-04-01

    Little information is available on the distribution of antimicrobial resistance genes in anaerobes in Japan. To understand the background of antimicrobial resistance in anaerobes involved in intra-abdominal infections, we investigated the distribution of eight antimicrobial resistance genes (cepA, cfiA, cfxA, ermF, ermB, mefA, tetQ, and nim) and a mutation in the gyrA gene in a total of 152 organisms (Bacteroides spp., Prevotella spp., Fusobacterium spp., Porphyromonas spp., Bilophila wadsworthia, Desulfovibrio desulfuricans, Veillonella spp., gram-positive cocci, and non-spore-forming gram-positive bacilli) isolated between 2003 and 2004 in Japan. The cepA gene was distributed primarily in Bacteroides fragilis. Gene cfxA was detected in about 9 % of the Bacteroides isolates and 75 % of the Prevotella spp. isolates and did not appear to contribute to cephamycin resistance. Two strains of B. fragilis contained the metallo-β-lactamase gene cfiA, but they did not produce the protein product. Gene tetQ was detected in about 81, 44, and 63 % of B. fragilis isolates, other Bacteroides spp., and Prevotella spp. isolates, respectively. The ermF gene was detected in 25, 13, 56, 64, and 16 % of Bacteroides spp., Prevotella spp., Fusobacterium spp., B. wadsworthia, and anaerobic cocci, respectively. Gene mefA was found in only 10 % of the B. fragilis strains and 3 % of the non-B. fragilis strains. Genes nim and ermB were not detected in any isolate. Substitution at position 82 (Ser to Phe) in gyrA was detected in B. fragilis isolates that were less susceptible or resistant to moxifloxacin. This study is the first report on the distribution of resistance genes in anaerobes isolated from intra-abdominal infections in Japan. We expect that the results might help in understanding the resistance mechanisms of specific anaerobes.

  4. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure.

    Science.gov (United States)

    Le Devendec, Laetitia; Mourand, Gwenaelle; Bougeard, Stéphanie; Léaustic, Julien; Jouy, Eric; Keita, Alassane; Couet, William; Rousset, Nathalie; Kempf, Isabelle

    2016-10-15

    The application of manure may result in contamination of the environment with antimicrobials, antimicrobial-resistant bacteria, resistance genes and plasmids. The aim of this study was to investigate the impact of the administration of colistin and of manure management on (i) the presence of colistin-resistant Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and (ii) the prevalence of various antimicrobial resistance genes in feces and in composted or stored manure. One flock of chickens was treated with colistin at the recommended dosage and a second flock was kept as an untreated control. Samples of feces, litter and stored or composted manure from both flocks were collected for isolation and determination of the colistin-susceptibility of E. coli, K. pneumoniae and P. aeruginosa and quantification of genes coding for resistance to different antimicrobials. The persistence of plasmids in stored or composted manure from colistin-treated broilers was also evaluated by plasmid capturing experiments. Results revealed that colistin administration to chickens had no apparent impact on the antimicrobial resistance of the dominant Enterobacteriaceae and P. aeruginosa populations in the chicken gut. Composting stimulated an apparently limited decrease in genes coding for resistance to different antimicrobial families. Importantly, it was shown that even after six weeks of composting or storage, plasmids carrying antimicrobial resistance genes could still be transferred to a recipient E. coli. In conclusion, composting is insufficient to completely eliminate the risk of spreading antimicrobial resistance through chicken manure. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  6. Systematic Analysis and Comparison of Nucleotide-Binding Site Disease Resistance Genes in a Diploid Cotton Gossypium raimondii

    Science.gov (United States)

    Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun

    2013-01-01

    Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. PMID:23936305

  7. sugE: A gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27.

    Science.gov (United States)

    Cruz, Andreia; Micaelo, Nuno; Félix, Vitor; Song, Jun-Young; Kitamura, Shin-Ichi; Suzuki, Satoru; Mendo, Sónia

    2013-01-01

    The mechanism of bacterial resistance to tributyltin (TBT) is still unclear. The results herein presented contribute to clarify that mechanism in the TBT-resistant bacterium Aeromonas molluscorum Av27. We have identified and cloned a new gene that is involved in TBT resistance in this strain. The gene is highly homologous (84%) to the Aeromonas hydrophila-sugE gene belonging to the small multidrug resistance gene family (SMR), which includes genes involved in the transport of lipophilic drugs. In Av27, expression of the Av27-sugE was observed at the early logarithmic growth phase in the presence of a high TBT concentration (500 μM), thus suggesting the contribution of this gene for TBT resistance. E. coli cells transformed with Av27-sugE become resistant to ethidium bromide (EtBr), chloramphenicol (CP) and tetracycline (TE), besides TBT. According to the Moriguchi logP (miLogP) values, EtBr, CP and TE have similar properties and are substrates for the sugE-efflux system. Despite the different miLogP of TBT, E. coli cells transformed with Av27-sugE become resistant to this compound. So it seems that TBT is also a substrate for the SugE protein. The modelling studies performed also support this hypothesis. The data herein presented clearly indicate that sugE is involved in TBT resistance of this bacterium.

  8. Anthropogenic antibiotic resistance genes mobilization to the polar regions.

    Science.gov (United States)

    Hernández, Jorge; González-Acuña, Daniel

    2016-01-01

    Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.

  9. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa.

    Science.gov (United States)

    Slootweg, Erik; Koropacka, Kamila; Roosien, Jan; Dees, Robert; Overmars, Hein; Lankhorst, Rene Klein; van Schaik, Casper; Pomp, Rikus; Bouwman, Liesbeth; Helder, Johannes; Schots, Arjen; Bakker, Jaap; Smant, Geert; Goverse, Aska

    2017-09-01

    Plants have evolved a limited repertoire of NB-LRR disease resistance ( R ) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1 , which confer resistance in potato ( Solanum tuberosum ) to the cyst nematode Globodera pallida and Potato virus X , respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2 CN /Rx1 L ) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1 CN /Gpa2 L ) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Prevalence of quinolone resistance genes, copper resistance genes, and the bacterial communities in a soil-ryegrass system co-polluted with copper and ciprofloxacin.

    Science.gov (United States)

    Tuo, Xiaxia; Gu, Jie; Wang, Xiaojuan; Sun, YiXin; Duan, Manli; Sun, Wei; Yin, Yanan; Guo, Aiyun; Zhang, Li

    2018-04-01

    The presence of high concentrations of residual antibiotics and antibiotic resistance genes (ARGs) in soil may pose potential health and environmental risks. This study investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) genes, copper resistance genes (CRGs), and the bacterial communities in a soil-ryegrass pot system co-polluted with copper and ciprofloxacin (CIP; 0, 20, or 80 mg kg -1 dry soil). Compared with the samples on day 0, the total relative abundances of the PMQR genes and mobile genetic elements (MGEs) were reduced significantly by 80-89% in the ryegrass and soil by the cutting stage (after 75 days). The abundances of PMQR genes and MGEs were reduced by 63-81% in soil treated with 20 mg kg -1 CIP compared with the other treatments, but the abundances of CRGs increased by 18-42%. The presence of 80 mg kg -1 CIP affected the microbial community structure in the soil by increasing the abundances of Acidobacteria and Thaumarchaeota, but decreasing those of Firmicutes. Redundancy analysis indicated that the pH and microbial composition were the main factors that affected the variations in PMQR genes, MGEs, and CRGs, where they could explain 42.2% and 33.3% of the variation, respectively. Furthermore, intI2 may play an important role in the transfer of ARGs. We found that 80 mg kg -1 CIP could increase the abundances of ARGs and CRGs in a soil-ryegrass pot system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora.

    Science.gov (United States)

    Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans

    2016-11-01

    Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.

  12. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.

    Science.gov (United States)

    Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans

    2017-11-01

    The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli.

    Science.gov (United States)

    Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn; Gänzle, Michael G

    2017-10-15

    The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae , including pathogenic strains of Salmonella enterica and Escherichia coli The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI , yfdX2 , hdeD GI , orf11 , trx GI , kefB , and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript "GI" [genomic island] if an ortholog of the same gene is present in genomes of E. coli ) LHR-encoded heat shock proteins sHSP20, ClpK GI , and sHSP GI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI , kefB , and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the

  14. Who possesses drug resistance genes in the aquatic environment?: sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines.

    Science.gov (United States)

    Suzuki, Satoru; Ogo, Mitsuko; Miller, Todd W; Shimizu, Akiko; Takada, Hideshige; Siringan, Maria Auxilia T

    2013-01-01

    Recent evidence has shown that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in "colony forming bacterial assemblages" and "natural bacterial assemblages." Our monitoring for antibiotic contamination revealed that sulfamethoxazole (SMX) is a major contaminant in aquatic environments of Metro-Manila, which would have been derived from human and animal use, and subsequently decreased through the process of outflow from source to the sea. The SMX-resistant bacterial rate evaluated by the colony forming unit showed 10 to 86% of the total colony numbers showed higher rates from freshwater sites compared to marine sites. When sul genes were quantified by qPCR, colony-forming bacteria conveyed sul1 and sul2 genes in freshwater and seawater (10(-5)-10(-2) copy/16S) but not sul3. Among the natural bacterial assemblage, all sul1, sul2, and sul3 were detected (10(-5)-10(-3) copy/16S), whereas all sul genes were at an almost non-detectable level in the freshwater assemblage. This study suggests that sul1 and sul2 are main sul genes in culturable bacteria, whereas sul3 is conveyed by non-culturable bacteria in the sea. As a result marine bacteria possess sul1, sul2 and sul3 genes in the marine environment.

  15. Who Possesses Drug Resistance Genes in the Aquatic Environment? : Sulfamethoxazole (SMX Resistance Genes among the Bacterial Community in Water Environment of Metro-Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Satoru eSuzuki

    2013-04-01

    Full Text Available Recent evidence has shown that antibiotic resistant bacteria (ARB and antibiotic resistance genes (ARG are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in colony forming bacterial assemblages and natural bacterial assemblages. Our monitoring for antibiotic contamination revealed that sulfamethoxazole (SMX is a major contaminant in aquatic environments of Metro-Manila, which would have been derived from human and animal use, and subsequently decreased through the process of outflow from source to the sea. The SMX-resistant bacterial rate evaluated by the colony forming unit showed 10 to 86 % of the total colony numbers showed higher rates from freshwater sites compared to marine sites. When sul genes were quantified by qPCR, colony-forming bacteria conveyed sul1 and sul2 genes in freshwater and seawater (10-5-10-2 copy/16S but not sul3. Among the natural bacterial assemblage, all sul1, sul2 and sul3 were detected (10-5-10-3 copy/16S, whereas all sul genes were at an almost non-detectable level in the freshwater assemblage. This study suggests that sul1 and sul2 are main sul genes in culturable bacteria, whereas sul3 is conveyed by non-culturable bacteria in the sea. As a result marine bacteria possess sul1, sul2 and sul3 genes in the marine environment.

  16. Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2006-01-01

    = 13) sources. The gene cassette arrangements could be determined in 51 of the positive isolates, which harboured one [dfrA22, aadA1 or orf3 (putative trimethoprim resistance)], two [aadA1-dfrA1, aac(6)-lb-orf1 (unknown function) or aacA4-aadA1], three [dfrA15b-cmlA4-aadA2, orf2 (unknown function......Objectives: To determine the occurrence of antimicrobial resistance genes and role of integrons among 135 anti microbial-resistant Salmonella enterica from Brazil. Methods: The presence of antimicrobial resistance genes, class 1 and 2 integrons and gene cassettes was analysed by PCR and sequencing....... The genetic location of class 1 integrons was determined in 25 isolates by hybridization and plasmid transfer experiments. Results: Fifty-five of the isolates were positive for class I integrons. Integron-positive isolates represented 17 different serovars and were mainly from human (n = 28) and animal (n...

  17. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  18. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...

  19. Surveillance of multidrug resistance-associated genes in Acinetobacter baumannii isolates from elderly patients

    Directory of Open Access Journals (Sweden)

    Zhe DONG

    2012-03-01

    Full Text Available Objective To understand the status of multidrug resistance-associated genes carried by Acinetobacter baumannii isolates from elderly patients in our hospital in order to provide a basis for surveillance of drug-resistance and inflection control. Methods One hundred and twenty A. baumannii isolates were collected from elderly patients between 2008 and 2010. The mean age of the patients was 85 (65 to 95 years. Whonet 5.6 software was used to analyze the resistance rate of 16 antimicrobial agents. Polymerase chain reaction (PCR and the sequencing method were adopted to detect 10 kinds of resistance genes (blaOXA-51-like, blaOXA- 23-like, blaOXA-24-like, blaOXA-58-like, blaTEM, blaampC, armA, ISAba1, intI 1, and intI 2. The corresponding resistance gene profiling(RGP was analyzed and designated according to the status of resistance genes. Results The resistance rates to the remaining 15 kinds of antibiotics varied between 70.8% and 97.5%, with the exception of the sensitivity rate to polymyxin B by up to more than 90%. The positivity rates of blaOXA-51-like, blaOXA-23-like, blaOXA-58-like, blaTEM, blaampC, armA, ISAba1 and intI 1 were 100%, 81.7%, 0.8%, 10.8%, 91.7%, 81.7%, 86.7%, and 83.3% respectively. A total of 18 kinds of drug-resistant gene maps were found, but blaOXA-24-like and intI 2 were not detected. Among these gene maps, the rate of RGP1 (blaOXA-23-like+blaampC+armA+ISAba1+ intI 1 was as high as 60.8%. Conclusions A. baumannii isolates from elderly patients have a higher carrying rate of drug-resistant genes, resulting in severe multidrugresistant conditions. Therefore, full-time infection control personnel and clinical physicians should actively participate in the surveillance, prevention, and control of infections caused by A. baumannii in the elderly.

  20. Comparison of a fluoroquinolone surface plasmon resonance biosensor screening assay with established methods

    NARCIS (Netherlands)

    Weigel, S.; Pikkemaat, M.G.; Elferink, J.W.A.; Mulder, P.P.J.; Huet, A.C.; Delahaut, P.; Schittko, S.; Flerus, R.; Nielen, M.W.F.

    2009-01-01

    The performance of a previously developed immunochemical biosensor screening method for fluoroquinolone (FQ) antibiotics in poultry muscle, fish and egg was compared with established methods. Blank sample material of the target matrices was individually spiked with the FQs at half maximum residue

  1. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    Science.gov (United States)

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.

  2. Laboratory and molecular surveillance of paediatric typhoidal Salmonella in Nepal: Antimicrobial resistance and implications for vaccine policy.

    Directory of Open Access Journals (Sweden)

    Carl D Britto

    2018-04-01

    Full Text Available Children are substantially affected by enteric fever in most settings with a high burden of the disease, including Nepal. However pathogen population structure and transmission dynamics are poorly delineated in young children, the proposed target group for immunization programs. Here we present whole genome sequencing and antimicrobial susceptibility data on 198 S. Typhi and 66 S. Paratyphi A isolated from children aged 2 months to 15 years of age during blood culture surveillance at Patan Hospital, Nepal, 2008-2016.S. Typhi was the dominant agent and comprised several distinct genotypes, dominated by 4.3.1 (H58. The heterogeneity of genotypes in children under five was reduced compared to data from 2005-2006, attributable to ongoing clonal expansion of H58. Most isolates (86% were non-susceptible to fluoroquinolones, associated mainly with S. Typhi H58 lineage II and S. Paratyphi A harbouring mutations in the quinolone resistance-determining region (QRDR; non-susceptible strains from these groups accounted for 50% and 25% of all isolates. Multi-drug resistance (MDR was rare (3.5% of S. Typhi, 0 S. Paratyphi A and restricted to chromosomal insertions of resistance genes in H58 lineage I strains. Temporal analyses revealed a shift in dominance from H58 Lineage I to H58 Lineage II, with the latter being significantly more common after 2010. Comparison to global data sets showed the local S. Typhi and S. Paratyphi A strains had close genetic relatives in other South Asian countries, indicating regional strain circulation. Multiple imports from India of ciprofloxacin-resistant H58 lineage II strains were identified, but these were rare and showed no evidence of clonal replacement of local S. Typhi.These data indicate that enteric fever in Nepal continues to be a major public health issue with ongoing inter- and intra-country transmission, and highlights the need for regional coordination of intervention strategies. The absence of a S. Paratyphi A

  3. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea.

    Science.gov (United States)

    Jang, Hyun Min; Kim, Young Beom; Choi, Sangki; Lee, Yunho; Shin, Seung Gu; Unno, Tatsuya; Kim, Young Mo

    2018-02-01

    The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla TEM , bla CTX , bla SHV ), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10 -3 to 1.46 × 10 -2 copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.

  5. Prevalence, antibiotic-resistance properties and enterotoxin gene ...

    African Journals Online (AJOL)

    milk-based infant foods in Iran, represent an important public health issue which should be considered ... Keywords: Prevalence, Bacillus cereus, Antibiotic resistance, Enterotoxigenic genes, Milk-based infant food. Tropical Journal of Pharmaceutical Research is indexed by Science ..... and cereals collected in Korea.

  6. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  7. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  8. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    Science.gov (United States)

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  9. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar.

    Science.gov (United States)

    González, Ana M; Godoy, Luís; Santalla, Marta

    2017-11-23

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.

  10. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  11. Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil.

    Science.gov (United States)

    Riaz, Luqman; Mahmood, Tariq; Khalid, Azeem; Rashid, Audil; Ahmed Siddique, Muhammad Bashir; Kamal, Atif; Coyne, Mark S

    2018-01-01

    The use of fluoroquinolones (FQs) antibiotics as therapeutic agents and growth promoters is increasing worldwide; however their extensive uses are also resulting in antibiotic resistance among world communities. FQs have also become one of the major contaminants in the waste water bodies, which are not even completely removed during the treatment processes. Furthermore, their abundance in agricultural resources, such as the irrigation water, the bio-solids and the livestock manure can also affect the soil micro-environment. These antibiotics in soil tend to interact in several different ways to affect soil flora and fauna. The current review endeavors to highlight the some critical aspects of FQs prevalence in the environment. The review presents a detailed discussion on the pathways and abundance of FQs in soil. The discussion further spans the issue of sorption and FQs transformation into the soil better understand of their behavior and their toxicity to soil flora and fauna. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation

    Directory of Open Access Journals (Sweden)

    Iara Rossi Gonçalves

    Full Text Available Abstract Pseudomonas aeruginosa is an opportunistic pathogen that causes frequently nosocomial infections, currently becoming more difficult to treat due to the various resistance mechanisms and different virulence factors. The purpose of this study was to determine the risk factors independently associated with the development of bacteremia by carbapenem-resistant P. aeruginosa, the frequency of virulence genes in metallo-β-lactamases producers and to evaluate their ability to produce biofilm. We conducted a case–control study in the Uberlândia Federal University – Hospital Clinic, Brazil. Polymerase Chain Reaction was performed for metallo-β-lactamases and virulence genes. Adhesion and biofilm assays were done by quantitative tests. Among the 157 strains analyzed, 73.9% were multidrug-resistant, 43.9% were resistant to carbapenems, 16.1% were phenotypically positive for metallo-β-lactamases, and of these, 10.7% were positive for blaSPM gene and 5.3% positive for blaVIM. The multivariable analysis showed that mechanical ventilation, enteral/nasogastric tubes, primary bacteremia with unknown focus, and inappropriate therapy were independent risk factors associated with bacteremia. All tested strains were characterized as strongly biofilm producers. A higher mortality was found among patients with bacteremia by carbapenem-resistant P. aeruginosa strains, associated independently with extrinsic risk factors, however it was not evident the association with the presence of virulence and metallo-β-lactamases genes.

  13. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  14. Multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP and lung resistance protein (LRP gene expression in childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Elvis Terci Valera

    Full Text Available CONTEXT: Despite the advances in the cure rate for acute lymphoblastic leukemia, approximately 25% of affected children suffer relapses. Expression of genes for the multiple drug resistance protein (MDR-1, multidrug resistance-related protein (MRP, and lung resistance protein (LRP may confer the phenotype of resistance to the treatment of neoplasias. OBJECTIVE: To analyze the expression of the MDR-1, MRP and LRP genes in children with a diagnosis of acute lymphoblastic leukemia via the semiquantitative reverse transcription polymerase chain reaction (RT-PCR, and to determine the correlation between expression and event-free survival and clinical and laboratory variables. DESIGN: A retrospective clinical study. SETTING: Laboratory of Pediatric Oncology, Department of Pediatrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil. METHODS: Bone marrow aspirates from 30 children with a diagnosis of acute lymphoblastic leukemia were assessed for the expression of messenger RNA for the MDR-1, MRP and LRP genes by semi-quantitative RT-PCR. RESULTS: In the three groups studied, only the increased expression of LRP was related to worsened event-free survival (p = 0.005. The presence of the common acute lymphoblastic leukemia antigen (CALLA was correlated with increased LRP expression (p = 0.009 and increased risk of relapse or death (p = 0.05. The relative risk of relapse or death was six times higher among children with high LRP expression upon diagnosis (p = 0.05, as confirmed by multivariate analysis of the three genes studied (p = 0.035. DISCUSSION: Cell resistance to drugs is a determinant of the response to chemotherapy and its detection via RT-PCR may be of clinical importance. CONCLUSIONS: Evaluation of the expression of genes for resistance to antineoplastic drugs in childhood acute lymphoblastic leukemia upon diagnosis, and particularly the expression of the LRP gene, may be of clinical relevance, and should be the

  15. Frequency of antiseptic resistance genes in clinical staphycocci and enterococci isolates in Turkey

    Directory of Open Access Journals (Sweden)

    Seyda Ignak

    2017-08-01

    Full Text Available Abstract Background Disinfectants and antiseptics are biocides widely used in hospitals to prevent spread of pathogens. It has been reported that antiseptic resistance genes, qac’s, caused tolerance to a variety of biocidal agents, such as benzalkonium chloride (BAC and chlorhexidine digluconate (CHDG in Staphylococcus spp. isolates. We aimed to search the frequency of antiseptic resistance genes in clinical Staphylococcus spp. and Enterococcus spp. isolates to investigate the possible association with antiseptic tolerance and antibiotic resistance. Methods Antiseptic resistance genes (qacA/B, smr, qacG, qacH, and qacJ isolated from Gram-positive cocci (69 Staphylococcus spp. and 69 Enterococcus spp. were analyzed by PCR method. The minimum inhibitory concentrations (MICs of BAC and CHDG were determined by agar dilution method, whereas antibiotic susceptibility was analyzed by disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI criteria. Results The frequency of antiseptic resistance genes was found to be high (49/69; 71.0% in our clinical staphylococci isolates but absent (0/69; 0% in enterococci isolates. The frequency of qacA/B and smr genes was higher (25/40; 62.5% and 7/40; 17.5%, respectively in coagulase negative staphylococci (CNS when compared to Staphylococcus aureus strains (3/29; 10.3%, and 4/29; 13.8%, respectively. In contrast, the frequency of qacG and qacJ genes was higher (11/29; 37.9% and 8/29; 27.5%, respectively in S. aureus than those of CNS (5/40; 12.5%, 10/40; 25.0% strains. qacH was not identified in none of the strains. We found an association between presence of antiseptic resistance genes and increased MIC values of BAC (>4 μg/mL in staphylococci and it was found to be statistically statistically significant (p < 0.01. We also showed that MICs of BAC and CHDG of vancomycin-resistant enterococci (VRE isolates were significantly higher than those of vancomycin

  16. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  17. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  18. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Aljassim, Nada I.; Ansari, Mohd Ikram; Mackie, Roderick

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  19. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  20. A dual resistance gene system prevents infection by three distinct pathogens.

    Science.gov (United States)

    Narusaka, Mari; Kubo, Yasuyuki; Shiraishi, Tomonori; Iwabuchi, Masaki; Narusaka, Yoshihiro

    2009-10-01

    Colletotrichum higginsianum causes typical anthracnose lesions on the leaves, petioles, and stems of cruciferous plants. Inoculation of Arabidopsis thaliana ecotype Columbia leaves with C. higginsianum results in fungal growth and disease symptoms reminiscent of those induced in other cruciferous plants. We performed map-based cloning and natural variation analysis of 19 A. thaliana ecotypes to identify a dominant resistance locus against C. higginsianum. We found that the A. thaliana RCH2 (for recognition of C. higginsianum) locus encodes two NB-LRR proteins, both of which are required for resistance to C. higginsianum in the A. thaliana ecotype Ws-0. Both proteins are well-characterized R proteins involved in resistance against bacterial pathogens; RRS1 (resistance to Ralstonia solanacearum 1) confers resistance to strain Rs1000 of R. solanacearum and RPS4 to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). Furthermore, we found that both RRS1-Ws and RPS4-Ws genes are required for resistance to Pst-avrRps4 and to Rs1002 R. solanacearum. We therefore demonstrate that a pair of neighboring genes, RRS1-Ws and RPS4-Ws, function cooperatively as a dual R-gene system against at least three distinct pathogens.

  1. Fluoroquinolone's effect on growth of human chondrocytes and chondrosarcomas. In vitro and in vivo correlation

    DEFF Research Database (Denmark)

    Multhaupt, H A; Alvarez, J C; Rafferty, P A

    2001-01-01

    Clinical and in vitro studies have demonstrated that fluoroquinolones are toxic to chondrocytes; however, the exact mechanism of fluoroquinolone arthropathy is unknown. We investigated the toxicity of ciprofloxacin on normal cartilage and on cartilaginous tumors. Normal human cartilage, enchondroma...... with use of conventional light microscopy, electron microscopy, and immunohistochemistry to identify extracellular matrix, cell proliferation, and apoptosis. Cultures of normal chondrocytes expressed type-II collagen. Electron microscopy revealed a large amount of glycogen in the cells; the presence of fat...... of vimentin filaments. The treated chondrocytes showed a decrease in cell proliferation, but there was no induction of apoptosis or effect on the expression of extracellular matrix proteins. Ciprofloxacin-treated chondrosarcoma cultures and tissue samples showed changes in cartilage matrix composition...

  2. DETERMINATION OF THE SPECTRUM OF ANTIBIOTIC RESISTANCE GENES HAVE PHENOTYPIC RESISTANT STRAINS OF PARIETAL INTESTINAL MICROBIOTA IN RATS BY RT-PCR

    Directory of Open Access Journals (Sweden)

    Bukina Y.V.

    2016-06-01

    Full Text Available Introduction. The problem of formation of bacterial resistance to glycopeptides and beta-lactam antibiotics (cephalosporins and carbapenems are used worldwide for the treatment of severe community acquired and nosocomial infections, especially caused by polymicrobial flora has become global and is a major factor limiting the effectiveness of antibiotic therapy. In this regard, the study of genetic microbial resistance determinants allows not only to carry out an effective antibiotic therapy, but also to identify two main processes leading to the development of epidemiologically significant events: the introduction of the agent in the risk population from the outside and in situ pathogen (spontaneous genetic drift targeted restructuring of the population. Therefore, the aim of our study was to investigate the resistance genes to carbapenems, cephalosporins, glycopeptides have clinically important phenotype of resistant strains of microorganisms families Enterobacteriaceae, Pseudomonadaceae, Bacteroidaceae, Enterococcaceae, Peptostreptococcaceae. Materials and methods. As a material for PCR studies 712 phenotypically resistant strains of microorganisms isolated from 80 rats "Wistar" line in microbiological study microflora of the wall were used. During the investigation 474 isolates of bacteria of the family Enterobacteriaceae, 39 - Pseudomonadaceae, 71 - Bacteroidaceae, 96 - Enterococcaceae, 32 - Peptostreptococcaceae were studied. Isolation of DNA from bacteria in the study was performed using reagents "DNA-Express" ("Litekh", Russia. For the detection of resistance genes by PCR in real time (RT-PCR reagent kits "FLUOROPOL-RV" ("Litekh", Russia were used. During the experiment, the VIM genes, OXA-48, NDM, KPC, responsible for the resistance of microorganisms to carbapenems, CTX-M - resistance to cephalosporins, as well as genes Van A and van B, the development of resistance to glycopeptides (vancomycin and teicoplanin were determined. Analysis

  3. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    ARC) domain, and a leucine-rich repeat (LRR) domain, all of which are typical characteristics of resistance genes. We proposed the resistance mechanism of CreV8 based on functional analysis and predictions from its conserved domains and ...

  4. Phenotypic and Genotypic Resistance of Salmonella Isolates from Healthy and Diseased Pigs in China During 2008-2015.

    Science.gov (United States)

    Jiu, Yueguang; Zhu, Shun; Khan, Sher Bahadar; Sun, Mengzhen; Zou, Geng; Meng, Xianrong; Wu, Bin; Zhou, Rui; Li, Shaowen

    2017-07-01

    The antimicrobial resistance of Salmonella strains is rapidly increasing worldwide, which poses significant threats to animal and public health. In this study, a total of 249 porcine Salmonella isolates collected in China during 2008-2015 were examined, including 155 clinical isolates from diseased pigs and 94 nonclinical isolates from healthy pigs. Based on the minimum inhibitory concentration of seven antimicrobial agents, 96.4% of the isolates were resistant to at least one of the tested antibiotics and 81.0% of them showed multidrug resistance. The highest antimicrobial resistance was observed for tetracycline (85.9%), and the lowest was found for cefotaxime (13.3%). The isolates from diseased pigs exhibited significantly higher levels of antimicrobial resistance than those from healthy pigs. Twenty-two isolates from healthy pigs were resistant to ciprofloxacin, which may inhibit the curative effectiveness of fluoroquinolones on bacterial food-borne poisoning and infections in humans caused by contaminated food. Moreover, cefotaxime resistance of the strains isolated from diseased pigs during 2013-2015 was significantly higher compared with the strains isolated during 2008-2010. Further study showed that the correlation between phenotypic and genotypic resistance varied among the isolates from different sources, and in many cases, the presence of resistance genes was not consistent with the resistance to the corresponding antimicrobials. These results are very significant for veterinary practice and public health.

  5. Characterization of the psoRPM1 gene for resistance to root-knot ...

    African Journals Online (AJOL)

    Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different stone fruit crops. However, none of them has yet been cloned and they were only located on the chromosomes. In this study, a candidate root-knot nematode resistance gene (designated as psoRPM1) was isolated from the ...

  6. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Beaudoin, Trevor; Zhang, Li; Hinz, Aaron J; Parr, Christopher J; Mah, Thien-Fah

    2012-06-01

    Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.

  7. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Li, Bing; Li, Li-Guan

    2017-01-01

    resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion......Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce...... the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal...

  8. Spread of tetracycline resistance genes at a conventional dairy farm

    NARCIS (Netherlands)

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of

  9. Gene Expression Analysis of Plum pox virus (Sharka Susceptibility/Resistance in Apricot (Prunus armeniaca L..

    Directory of Open Access Journals (Sweden)

    Manuel Rubio

    Full Text Available RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925, which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein PPVres region could also be involved in the resistance.

  10. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  11. Successful outcomes with oral fluoroquinolones combined with rifampicin in the treatment of Mycobacterium ulcerans: an observational cohort study.

    Directory of Open Access Journals (Sweden)

    Daniel P O'Brien

    2012-01-01

    Full Text Available BACKGROUND: The World Health Organization currently recommends combined streptomycin and rifampicin antibiotic treatment as first-line therapy for Mycobacterium ulcerans infections. Alternatives are needed when these are not tolerated or accepted by patients, contraindicated, or neither accessible nor affordable. Despite in vitro effectiveness, clinical evidence for fluoroquinolone antibiotic use against Mycobacterium ulcerans is lacking. We describe outcomes and tolerability of fluoroquinolone-containing antibiotic regimens for Mycobacterium ulcerans in south-eastern Australia. METHODOLOGY/PRINCIPAL FINDINGS: Analysis was performed of prospectively collected data including all primary Mycobacterium ulcerans infections treated at Barwon Health between 1998 and 2010. Medical treatment involved antibiotic use for more than 7 days; surgical treatment involved surgical excision of a lesion. Treatment success was defined as complete lesion healing without recurrence at 12 months follow-up. A complication was defined as an adverse event attributed to an antibiotic that required its cessation. A total of 133 patients with 137 lesions were studied. Median age was 62 years (range 3-94 years. 47 (34% had surgical treatment alone, and 90 (66% had combined surgical and medical treatment. Rifampicin and ciprofloxacin comprised 61% and rifampicin and clarithromycin 23% of first-line antibiotic regimens. 13/47 (30% treated with surgery alone failed treatment compared to 0/90 (0% of those treated with combination medical and surgical treatment (p<0.0001. There was no difference in treatment success rate for antibiotic combinations containing a fluoroquinolone (61/61 cases; 100% compared with those not containing a fluoroquinolone (29/29 cases; 100%. Complication rates were similar between ciprofloxacin and rifampicin (31% and rifampicin and clarithromycin (33% regimens (OR 0.89, 95% CI 0.27-2.99. Paradoxical reactions during treatment were observed in 8 (9% of

  12. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens

    OpenAIRE

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-01-01

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers d...

  13. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm

    Science.gov (United States)

    Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E.; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2018-01-01

    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops. PMID:29672525

  14. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm.

    Science.gov (United States)

    Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder; Murphy, Denis J

    2018-01-01

    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.

  15. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

    Directory of Open Access Journals (Sweden)

    Iñigo Loureiro

    Full Text Available The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum. A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction. Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation.

  16. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  17. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.513 Potato Leaf Roll... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  18. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    Directory of Open Access Journals (Sweden)

    Ana M. González

    2017-11-01

    Full Text Available Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL, Natural Resistance Associated Macrophage (NRAMP and Pentatricopeptide Repeat family (PPR proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s in UI3 genotype.

  19. Identification of a New Antimicrobial Resistance Gene Provides Fresh Insights Into Pleuromutilin Resistance in Brachyspira hyodysenteriae, Aetiological Agent of Swine Dysentery

    Directory of Open Access Journals (Sweden)

    Roderick M. Card

    2018-06-01

    Full Text Available Brachyspira hyodysenteriae is the aetiological agent of swine dysentery, a globally distributed disease that causes profound economic loss, impedes the free trade and movement of animals, and has significant impact on pig health. Infection is generally treated with antibiotics of which pleuromutilins, such as tiamulin, are widely used for this purpose, but reports of resistance worldwide threaten continued effective control. In Brachyspira hyodysenteriae pleuromutilin resistance has been associated with mutations in chromosomal genes encoding ribosome-associated functions, however the dynamics of resistance acquisition are poorly understood, compromising stewardship efforts to preserve pleuromutilin effectiveness. In this study we undertook whole genome sequencing (WGS and phenotypic susceptibility testing of 34 UK field isolates and 3 control strains to investigate pleuromutilin resistance in Brachyspira hyodysenteriae. Genome-wide association studies identified a new pleuromutilin resistance gene, tva(A (tiamulin valnemulin antibiotic resistance, encoding a predicted ABC-F transporter. In vitro culture of isolates in the presence of inhibitory or sub-inhibitory concentrations of tiamulin showed that tva(A confers reduced pleuromutilin susceptibility that does not lead to clinical resistance but facilitates the development of higher-level resistance via mutations in genes encoding ribosome-associated functions. Genome sequencing of antibiotic-exposed isolates identified both new and previously described mutations in chromosomal genes associated with reduced pleuromutilin susceptibility, including the 23S rRNA gene and rplC, which encodes the L3 ribosomal protein. Interesting three antibiotic-exposed isolates harboured mutations in fusA, encoding Elongation Factor G, a gene not previously associated with pleuromutilin resistance. A longitudinal molecular epidemiological examination of two episodes of swine dysentery at the same farm indicated

  20. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  1. Testing of disease-resistance of pokeweed antiviral protein gene ...

    African Journals Online (AJOL)

    Transformation of pokeweed antiviral protein gene (PAP) into plants was shown to improve plant resistance to several viruses or fungi pathogens with no much negative effect on plant growth. The non-virulent defective PAP inhibits only the virus but does not interfere with the host. A non-virulent defective PAP gene ...

  2. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    Science.gov (United States)

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  3. Fluoroquinolone residues in raw meat from open markets in Ibadan, Southwest, Nigeria

    Directory of Open Access Journals (Sweden)

    Adekunbi Bridget Omotoso

    2015-07-01

    Full Text Available Misuse of fluoroquinolones in livestock production may lead to the presence of their residues in tissues of meat animals after slaughter, constituting health hazards to consumers. The present study was designed to screen for residues of three fluoroquinolones (ciprofloxacin, norfloxacin and ofloxacin in raw meat. Microbiological assay, followed by High Performance Liquid Chromatography (HPLC was used to screen three hundred and twenty samples of beef, chicken, pork and chevon purchased from open markets. Initial screening by microbiological assay revealed that 50%, 55%, 40% and 40% of beef, chicken, pork and chevon, respectively were positive for residues of antibiotics. Further analysis by HPLC with UV detection revealed the presence of ciprofloxacin, norfloxacin and ofloxacin at varying concentrations in the meat samples. Ofloxacin was the least in frequency and abundance in all meat types. Results obtained in this study have implications for public health and will lead to steps that will further enhance the safety of animal foods in order to protect consumers and the animal production industry

  4. Molecular characterization and antimicrobial susceptibility profile of New Delhi metallo-beta-lactamase-1-producing Escherichia coli among hospitalized patients

    Directory of Open Access Journals (Sweden)

    Anjali Agarwal

    2018-01-01

    CONCLUSION: There is an increased prevalence of NDM-1 gene-producing E. coli isolates. These carbapenemase-producing isolates are more resistant to other group of antibiotics (aminoglycosides, fluoroquinolones along with β-lactam group. Early detection of bla NDM-1 gene can help in choosing the effective treatment options for hospitalized patients in time, thereby reducing the risk of mortality.

  5. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Science.gov (United States)

    Burt, Andrew J; William, H Manilal; Perry, Gregory; Khanal, Raja; Pauls, K Peter; Kelly, James D; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  6. Genetic and physical mapping of homologues of the virus resistance gene Rx1 and the cyst nematode resistance gene Gpa2 in potato.

    Science.gov (United States)

    Bakker, E; Butterbach, P; Rouppe van der Voort, J; van der Vossen, E; van Vliet, J; Bakker, J; Goverse, A

    2003-05-01

    Nine resistance gene homologues (RGHs) were identified in two diploid potato clones (SH and RH), with a specific primer pair based on conserved motifs in the LRR domain of the potato cyst nematode resistance gene Gpa2 and the potato virus X resistance gene Rx1. A modified AFLP method was used to facilitate the genetic mapping of the RGHs in the four haplotypes under investigation. All nine RGHs appeared to be located in the Gpa2/ Rx1 cluster on chromosome XII. Construction of a physical map using bacterial artificial chromosome (BAC) clones for both the Solanum tuberosum ssp. tuberosum and the S. tuberosum ssp. andigena haplotype of SH showed that the RGHs are located within a stretch of less than 200 kb. Sequence analysis of the RGHs revealed that they are highly similar (93 to 95%) to Gpa2 and Rx1. The sequence identities among all RGHs range from 85 to 100%. Two pairs of RGHs are identical, or nearly so (100 and 99.9%), with each member located in a different genotype. Southern-blot analysis on genomic DNA revealed no evidence for additional homologues outside the Gpa2/ Rx1 cluster on chromosome XII.

  7. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition.

    Directory of Open Access Journals (Sweden)

    Bin He

    Full Text Available Oryza meyeriana (O. meyeriana, with a GG genome type (2n = 24, accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11 genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26 differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease

  8. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    Science.gov (United States)

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  9. Study of the separation of fluoroquinolones using HPLC: Application to the study of their degradation by gamma radiation

    International Nuclear Information System (INIS)

    Ben Saad, Latifa

    2013-01-01

    A method of high performance liquid chromatography (HPLC) in reverse phase was developed for the separation of a mixture of five fluoroquinolones (lomefloxacin, ciprofloxacin, levofloxacin, enoxacin and enrofloxacin). The optimum operating conditions are: the wavelength of detection is fixed at 282nm DAD detector, the stationary phase consists of silica type X scratched Terra RP-18 (250mm x 4, 6 mm, 5μm) and the mobile phase consisted of acetonitrile and phosphate buffer (0.02 M) (20: 80 v: v), pH equal to flow rate of 1ml/M/Xin 3etde. This optimized method was applied to analyze the solutions of different concentrations of each fluoroquinolone (100 and 20 ppm) after irradiation with doses of gamma radiation (5 and 25 kGry). The study of the effect of such radiation on fluoroquinolones shows that with a dose of 5 kGry these radiations allow complete degradation of these active ingredients at a concentration of 20 ppm and the appearance of other degradation products. But a dose of 5 kGry is insufficient to degrade the active ingredients (100ppm).

  10. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  11. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    An AFLP marker linked to turnip mosaic virus resistance gene in pak-choi. W Xinhua, C Huoying, Z Yuying, H Ruixian. Abstract. Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an ...

  12. PCR Screening of Antibiotic Resistance Genes in Faecal Samples from Australian and Chinese Children.

    Science.gov (United States)

    Ravensdale, Joshua T; Xian, Darren Ten Wei; Wei, Chooi Ming; Lv, Quanjun; Wen, Xiajian; Guo, Jing; Coorey, Ranil; LeSouëf, Peter; Lu, Fengmin; Zhang, Brad; Dykes, Gary A

    2018-03-31

    Recent public awareness campaigns on the risk of antibiotic resistance in pathogenic microbes has placed pressure on governments to enforce stricter antimicrobial stewardship policies on the hospital and agricultural industry. This study aimed to screen faecal samples from Australian and Chinese children for the presence of antibiotic resistance genes to identify demographics at risk of carriage of these genes and examine antimicrobial stewardship policies from the two countries which may influence carriage. Faecal samples from 46 Australian and 53 Chinese children were screened for the presence of six clinically relevant antibiotic resistance genes using PCR. Clinical and demographic data was also collected from each patient. Over 90% of faecal samples from Chinese children tested positive for β-lactam, macrolide, tetracycline, and aminoglycoside resistance genes, which was substantially higher than Australian samples. Besides country of origin, no clear trend could be seen to predict carriage of resistance genes. The exception to this was Chinese born children who immigrated to Australia having higher rates of carriage for bla TEM and tetM genes than children born and still living in Australia. These data indicated that Chinese children were more likely to carry certain antibiotic resistance genes than Australian children. The Chinese government has recently implemented strict policies to control the overuse of antibiotics in hospitals. However, many of these policies do not extend to the agricultural industry which could explain the differences seen in this study. Copyright © 2018. Published by Elsevier Ltd.

  13. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2017-08-01

    Full Text Available Non-target-site resistance (NTSR to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol. population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK, water-only control (WCK, and mesosulfuron-methyl treatment (T of R and susceptible (S. Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450 genes, two glutathione S-transferase (GST genes, two glucosyltransferase (GT genes, two ATP-binding cassette (ABC transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence

  14. Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Precious Takondwa Makondi

    Full Text Available Acquired drug resistance to the chemotherapeutic drug irinotecan (the active metabolite of which is SN-38 is one of the significant obstacles in the treatment of advanced colorectal cancer (CRC. The molecular mechanism or targets mediating irinotecan resistance are still unclear. It is urgent to find the irinotecan response biomarkers to improve CRC patients' therapy.Genetic Omnibus Database GSE42387 which contained the gene expression profiles of parental and irinotecan-resistant HCT-116 cell lines was used. Differentially expressed genes (DEGs between parental and irinotecan-resistant cells, protein-protein interactions (PPIs, gene ontologies (GOs and pathway analysis were performed to identify the overall biological changes. The most common DEGs in the PPIs, GOs and pathways were identified and were validated clinically by their ability to predict overall survival and disease free survival. The gene-gene expression correlation and gene-resistance correlation was also evaluated in CRC patients using The Cancer Genomic Atlas data (TCGA.The 135 DEGs were identified of which 36 were upregulated and 99 were down regulated. After mapping the PPI networks, the GOs and the pathways, nine genes (GNAS, PRKACB, MECOM, PLA2G4C, BMP6, BDNF, DLG4, FGF2 and FGF9 were found to be commonly enriched. Signal transduction was the most significant GO and MAPK pathway was the most significant pathway. The five genes (FGF2, FGF9, PRKACB, MECOM and PLA2G4C in the MAPK pathway were all contained in the signal transduction and the levels of those genes were upregulated. The FGF2, FGF9 and MECOM expression were highly associated with CRC patients' survival rate but not PRKACB and PLA2G4C. In addition, FGF9 was also associated with irinotecan resistance and poor disease free survival. FGF2, FGF9 and PRKACB were positively correlated with each other while MECOM correlated positively with FGF9 and PLA2G4C, and correlated negatively with FGF2 and PRKACB after doing gene-gene

  15. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.

    Science.gov (United States)

    Price, Ric N; Uhlemann, Anne-Catrin; Brockman, Alan; McGready, Rose; Ashley, Elizabeth; Phaipun, Lucy; Patel, Rina; Laing, Kenneth; Looareesuwan, Sornchai; White, Nicholas J; Nosten, François; Krishna, Sanjeev

    The borders of Thailand harbour the world's most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6.3 (95% CI 2.9-13.8, p<0.001) after mefloquine monotherapy and 5.4 (2.0-14.6, p=0.001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with

  16. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    Science.gov (United States)

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  17. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    Science.gov (United States)

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O; Chen, Xinbin; Rebhun, Robert B

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.

  18. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Kyoung won Seo

    Full Text Available Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1 expression resulting in decreased proliferation and increased S-G(2/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.

  19. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A.

    LENUS (Irish Health Repository)

    Song, Yajun

    2010-08-01

    OBJECTIVES: Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. METHODS: By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (Nal(R)) and\\/or decreased susceptibility to fluoroquinolones. RESULTS: This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (Nal(R) = 223 and Nal(S) = 69) and 106 isolates of Salmonella Paratyphi A (Nal(R) = 24 and Nal(S) = 82). All of the 247 Nal(R) Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143\\/223 for Salmonella Typhi and 18\\/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight Nal(S) Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. CONCLUSIONS: The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes.

  20. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Pathogen, E. coli O157:H7, virulence genes, antibiotic-resistance, beef meat. Correspondence: ... box to the laboratory for further processing. Isolation and identification of ... Technologies (IDT) Inc, U.S.A. The sequences and annealing ...

  1. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  2. Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant.

    Science.gov (United States)

    Lebeau, A; Gouy, M; Daunay, M C; Wicker, E; Chiroleu, F; Prior, P; Frary, A; Dintinger, J

    2013-01-01

    Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F(6) population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.

  3. Antibiotic resistance and trend of urinary pathogens in general outpatients from a major urban city

    Directory of Open Access Journals (Sweden)

    Carlos R. Kiffer

    2007-02-01

    Full Text Available OBJECTIVE: We assessed the antimicrobial resistance patterns of pathogens responsible for urinary tract infections (UTI in outpatients in São Paulo, Brazil, as well as the Escherichia coli antimicrobial resistance trend. MATERIALS AND METHODS: Outpatients urine cultures were collected from January 2000 to December 2003. Statistical analysis considered positive results for one bacterial species with colony count > 100,000 CFU/mL. Stratification was done on age group and gender. Statistical tests used included chi-square and the chi-square test for trend to evaluate differences between susceptibility rates among age groups and ordering in the E. coli resistance rates per year, respectively. RESULTS: There were 37,261 positive results with Enterobacteriaceae isolated in 32,530 (87.3% and Gram-positive cocci in 2,570 (6.9% cultures. E. coli had the highest prevalence (71.6%. Susceptibility tests were performed in 31,716 cultures. E. coli had elevated resistance rates (> 30% to ampicillin, trimethoprim-sulfamethoxazole, and tetracycline. Significant differences between age groups and ordering among years were observed. CONCLUSIONS: The use of trimethoprim-sulfamethoxazole is precluded in the population studied due to elevated resistance rates (> 30% among most prevalent pathogens. Significant resistance rate differences among age groups and years were observed, particularly for fluoroquinolones. Fluoroquinolones should be used with caution. Nitrofurantoin should be used as empirical therapy for primary, non-complicated urinary tract infections.

  4. Genetic analysis of rust resistance genes in global wheat cultivars: an overview

    International Nuclear Information System (INIS)

    Aktar-Uz-Zaman, Md; Tuhina-Khatun, Mst; Hanafi, Mohamed Musa; Sahebi, Mahbod

    2017-01-01

    Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding

  5. Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers.

    Science.gov (United States)

    Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa

    2010-03-01

    Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.

  6. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  7. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    Science.gov (United States)

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Rapid selection of quinolone resistance in Campylobacter jejuni but not in Escherichia coli in individually housed broilers

    NARCIS (Netherlands)

    Boven, van R.M.; Veldman, K.T.; Jong, de M.C.M.; Mevius, D.J.

    2003-01-01

    Objective: To determine the within-host population dynamics of Campylobacter jejuni and Escherichia coli in chickens during and after treatment with fluoroquinolones. Materials and methods: Total and resistant faecal counts were determined from cloacal swabs during and after treatment with

  9. Molecular tagging of a novel rust resistance gene R(12) in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Gong, L; Hulke, B S; Gulya, T J; Markell, S G; Qi, L L

    2013-01-01

    Sunflower production in North America has recently suffered economic losses in yield and seed quality from sunflower rust (Puccinia helianthi Schwein.) because of the increasing incidence and lack of resistance to new rust races. RHA 464, a newly released sunflower male fertility restorer line, is resistant to both of the most predominant and most virulent rust races identified in the Northern Great Plains of the USA. The gene conditioning rust resistance in RHA 464 originated from wild Helianthus annuus L., but has not been molecularly marked or determined to be independent from other rust loci. The objectives of this study are to identify molecular markers linked to the rust resistance gene and to investigate the allelism of this gene with the unmapped rust resistance genes present in HA-R6, HA-R8 and RHA 397. Virulence phenotypes of seedlings for the F(2) population and F(2:3) families suggested that a single dominant gene confers rust resistance in RHA 464, and this gene was designated as R(12). Bulked segregant analysis identified ten markers polymorphic between resistant and susceptible bulks. In subsequent genetic mapping, the ten markers covered 33.4 cM of genetic distance on linkage group 11 of sunflower. A co-dominant marker CRT275-11 is the closest marker distal to R(12) with a genetic distance of 1.0 cM, while ZVG53, a dominant marker linked in the repulsion phase, is proximal to R(12) with a genetic distance of 9.6 cM. The allelism test demonstrated that R(12) is not allelic to the rust resistance genes in HA-R6, HA-R8 and RHA 397, and it is also not linked to any previously mapped rust resistance genes. Discovery of the R(12) novel rust resistance locus in sunflower and associated markers will potentially support the molecular marker-assisted introgression and pyramiding of R(12) into sunflower breeding lines.

  10. Molecular Identification and Quantification of Tetracycline and Erythromycin Resistance Genes in Spanish and Italian Retail Cheeses

    Directory of Open Access Journals (Sweden)

    Ana Belén Flórez

    2014-01-01

    Full Text Available Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR, and denaturing gradient gel electrophoresis (DGGE. The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K, tet(L, tet(M, tet(O, tet(S, and tet(W, and two with respect to erythromycin, that is, erm(B and erm(F. The most common resistance genes in the analysed cheeses were tet(S, tet(W, tet(M, and erm(B. The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log⁡10/g. DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W-carrying cheeses, though the similarity of the sequences suggests this tet(W to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants.

  11. Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria.

    Science.gov (United States)

    Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Milani, Christian; Mangifesta, Marta; Ferrario, Chiara; Anzalone, Rosaria; Viappiani, Alice; van Sinderen, Douwe; Ventura, Marco

    2017-02-01

    The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria

  12. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Christian Johannes Hendrik Von Wintersdorff

    2016-02-01

    Full Text Available The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria – and also mobile genetic elements and bacteriophages – form a reservoir of ARGs (the resistome from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT. HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance.

  13. Data mining and influential analysis of gene expression data for plant resistance gene identification in tomato (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Francisco Torres-Avilés

    2014-03-01

    Conclusion: Application of different statistical analyses to detect potential resistance genes reliably has shown to conduct interesting results that improve knowledge on molecular mechanisms of plant resistance to pathogens.

  14. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  15. [Analysis of resistant genes of beta-lactam antibiotics from Pseudomonas aeruginosa in pediatric patients].

    Science.gov (United States)

    Dong, Fang; Xu, Xi-wei; Song, Wen-qi; Lü, Ping; Yang, Yong-hong; Shen, Xu-zhuang

    2008-11-18

    To analyze the antibiotic resistance of the Pseudomonas aeruginosa (PA) isolated from pediatric patients and the resistant genes of beta-lactam antibiotics thereof. 146 PA strains were isolated from pediatric patients. Agar dilution method recommended by the Clinical and Laboratory Standards Institute was used to examine the minimum inhibitory concentrations (MICs) of 12 antimicrobial agents, including the penicillins, third and fourth genet ration cephalosporins, carbapenemase, Aztreonam, beta-lactamase inhibitors, quinolones, and aminoglycosides. PCR was used to detect the expression of the genes TEM, SHV, OXA, PER, GES, CTX-M, IMP, VIM, DHA, MIR, FOX, and oprD2. The multi-drug resistance rates against different antibiotic were high among the 146 PA strains. The rates of imipenem and meropenem resistance were 41.1% and 35.6% respectively. Among the 146 PA strains, 46 (31.5%) were positive for the MBL genotype; 38 (82.6%) carried the blaIMP gene, 8 (17.4%) carried the blaVIM gene, and 114 (78.1%) were oprD2 negative. The genes TEM, SHV, OXA, CTX-M, PER, VEB, GES, FOX, MIR, and DHA were not found in all strains. Many PA isolated from pediatric patients carry the genes IMP or VIM and losses oprD2 gene related to the expression of the outer membrane porin OprD2. The loss of the gene oprD2 is essential mechanism of beta-lactam antibiotics resistance in PA.

  16. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Directory of Open Access Journals (Sweden)

    Andrew J Burt

    Full Text Available Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris. Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08 where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  17. A set of vectors for introduction of antibiotic resistance genes by in vitro Cre-mediated recombination

    Directory of Open Access Journals (Sweden)

    Vassetzky Yegor S

    2008-12-01

    Full Text Available Abstract Background Introduction of new antibiotic resistance genes in the plasmids of interest is a frequent task in molecular cloning practice. Classical approaches involving digestion with restriction endonucleases and ligation are time-consuming. Findings We have created a set of insertion vectors (pINS carrying genes that provide resistance to various antibiotics (puromycin, blasticidin and G418 and containing a loxP site. Each vector (pINS-Puro, pINS-Blast or pINS-Neo contains either a chloramphenicol or a kanamycin resistance gene and is unable to replicate in most E. coli strains as it contains a conditional R6Kγ replication origin. Introduction of the antibiotic resistance genes into the vector of interest is achieved by Cre-mediated recombination between the replication-incompetent pINS and a replication-competent target vector. The recombination mix is then transformed into E. coli and selected by the resistance marker (kanamycin or chloramphenicol present in pINS, which allows to recover the recombinant plasmids with 100% efficiency. Conclusion Here we propose a simple strategy that allows to introduce various antibiotic-resistance genes into any plasmid containing a replication origin, an ampicillin resistance gene and a loxP site.

  18. Molecular determination of extended spectrum b-lactamases antibiotics resistance genes in E.coli isolated from diarrhea in cattle

    Directory of Open Access Journals (Sweden)

    Ghassan Khudhair Ismaeel

    2017-07-01

    Full Text Available None response to the treatment by an antibiotic called antibiotics resistance result from some genes called resistance genes .This mechanism is widespread in most of the bacteria, like E.coli . All of the extended resistance genes called (ESBIS is a typical example for study of some genes that resistance beta-lactam antibiotic is subject of this research. Fifty feces sample were collected from cattle suffering from diarrhea in alqaissiyah city were cultured on selective media for E.coli , then DNA was extracted from all E.coli isolates for antibiotic resistance gene detection by PCR ; The results of this study revealed the prevalence of B-lactamase gene four B-lactamases genes in E.coli blaAmpc gene were (91.4%, the blactx-m gene were (80%, blaTem were (62.8% and finally and blaSHV gene were (22% among isolates E.coli ; blaAMPC gene has high prevalence than others genes while blaSHV was a lower percentage than other genes

  19. Development of a novel genetically modified bioluminescent-bacteria-based assay for detection of fluoroquinolones in animal-derived foods.

    Science.gov (United States)

    Cheng, Guyue; Dong, Xiaobing; Wang, Yulian; Peng, Dapeng; Wang, Xu; Hao, Haihong; Xie, Shuyu; Qu, Wei; Liu, Zhenli; Yuan, Zonghui

    2014-12-01

    Fluoroquinolones (FQNs) are broad-spectrum antibacterial agents widely used in animal husbandry and aquaculture. The residues and antimicrobial resistance of such antibiotics are a major public health concern. To realize multianalyte detection of FQN residues, a genetically modified bacterium, Escherichia coli pK12 harboring plasmid pRecAlux3, was constructed in this study to develop a bioluminescent-bacteria-based assay for the detection of FQNs in animal-derived foods. This assay was based on the principle of induction of an SOS response by FQNs via inducing the recA-promoter-fused luciferase reporter gene existing on the plasmid pRecAlux3. E. coli pK12 was able to recognize 11 FQNs: difloxacin, enrofloxacin, ciprofloxacin, sarafloxacin, norfloxacin, danofloxacin, ofloxacin, pefloxacin, lomefloxacin, marbofloxacin, and orbifloxacin. This method could be applied to 11 edible tissues, including milk, fish muscle, and the muscles, livers, and kidneys of cattle, chickens, and pigs, with a very simple and rapid sample extraction procedure using only phosphate-buffered saline. The limits of detection of the FQNs were between 12.5 and 100 μg kg(-1), all of which were lower than the maximum residue limits. Most of the recoveries of the FQNs were in the range from 60 to 120 %, and the interassay coefficients of variation were less than 30 %. This method, confirmed by high-performance liquid chromatography, is reliable and can be used as both a screening test and a semiquantitative assay, when the identity of a single type of FQN is known.

  20. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage.

    Science.gov (United States)

    Shrestha, Shovita; Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Ohara, Hiroshi; Shimada, Kayo; Satou, Kazuhito; Teruya, Kuniko; Nakano, Kazuma; Shiroma, Akino; Sherchand, Jeevan Bdr; Rijal, Basista Psd; Hirano, Takashi; Kirikae, Teruo; Pokhrel, Bharat Mani

    2015-11-01

    The emergence of multidrug-resistant (MDR) Acinetobacter baumannii has become a serious medical problem worldwide. To clarify the genetic and epidemiological properties of MDR A. baumannii strains isolated from a medical setting in Nepal, 246 Acinetobacter spp. isolates obtained from different patients were screened for MDR A. baumannii by antimicrobial disk susceptibility testing. Whole genomes of the MDR A. baumannii isolates were sequenced by MiSeq™ (Illumina), and the complete genome of one isolate (IOMTU433) was sequenced by PacBio RS II. Phylogenetic trees were constructed from single nucleotide polymorphism concatemers. Multilocus sequence types were deduced and drug resistance genes were identified. Of the 246 Acinetobacter spp. isolates, 122 (49.6%) were MDR A. baumannii, with the majority being resistant to aminoglycosides, carbapenems and fluoroquinolones but not to colistin and tigecycline. These isolates harboured the 16S rRNA methylase gene armA as well as bla(NDM-1), bla(OXA-23) or bla(OXA-58). MDR A. baumannii isolates belonging to clonal complex 1 (CC1) and CC2 as well as a novel clonal complex (CC149) have spread throughout a medical setting in Nepal. The MDR isolates harboured genes encoding carbapenemases (OXA and NDM-1) and a 16S rRNA methylase (ArmA). Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones

    International Nuclear Information System (INIS)

    Xu, S.; Jiang, C.; Lin, Y.; Jia, L.

    2012-01-01

    We have surface-functionalized magnetic particles (MPs) with polydimethylsiloxane and multi-walled carbon nanotubes in a two-step reaction. The MPs were applied to solid-phase extraction of the fluoroquinolones ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin prior to their determination by capillary liquid chromatography. The effects of sample pH, adsorption time, type of eluent, desorption time and desorption temperature were investigated. Under the optimum conditions, the extraction efficiencies are in the range from 81.5 % to 94.1 %, with relative standard deviations (RSDs) of -1 . The method was applied to the analysis of spiked mineral water and honey. The recoveries for the fluoroquinolones in the real samples range from 84.0 % to 112 %, with RSDs ranging from 2.9 % to 7.8 %. (author)

  2. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  3. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  4. Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting

    Science.gov (United States)

    Yin, Yanan; Gu, Jie; Wang, Xiaojuan; Song, Wen; Zhang, Kaiyu; Sun, Wei; Zhang, Xin; Zhang, Yajun; Li, Haichao

    2017-01-01

    Copper is one of the most abundant heavy metals present in swine manure. In this study, a laboratory-scale aerobic composting system was amended with Cu at three levels (0, 200, and 2000 mg kg-1, i.e., control, Cu200, and Cu2000 treatments, respectively) to determine its effect on the fate of copper resistance genes [copper resistance genes (CRGs): pcoA, cusA, copA, and tcrB], antibiotic resistance genes [antibiotic resistance genes (ARGs): erm(A) and erm(B)], and intl1. The results showed that the absolute abundances of pcoA, tcrB, erm(A), erm(B), and intl1 were reduced, whereas those of copA and cusA increased after swine manure composting. Redundancy analysis showed that temperature significantly affected the variations in CRGs, ARGs, and intl1. The decreases in CRGs, ARGs, and intI1 were positively correlated with the exchangeable Cu levels. The bacterial community could be grouped according to the composting time under different treatments, where the high concentration of copper had a more persistent effect on the bacterial community. Network analysis determined that the co-occurrence of CRGs, ARGs, and intI1, and the bacterial community were the main contributors to the changes in CRGs, ARG, and intl1. Thus, temperature, copper, and changes in the bacterial community composition had important effects on the variations in CRGs, ARGs, and intl1 during manure composting in the presence of added copper. PMID:28316595

  5. Erythromycin-resistant genes in group A β-haemolytic Streptococci in Chengdu, Southwestern China

    Directory of Open Access Journals (Sweden)

    W Zhou

    2014-01-01

    Full Text Available Context: The management of Group A β-haemolytic Streptococci (Streptococcus pyogenes or GAS infection include the use of penicillins, cephalosporins or macrolides for treatment. A general increase in macrolides resistance in GAS has been observed in recent years. Differences in rates of resistance to these agents have existed according to geographical location and investigators. Aims: To investigate the antibiotic pattern and erythromycin-resistant genes of GAS isolates associated with acute tonsillitis and scarlet fever in Chengdu, southwestern China. Settings and Design: To assess the macrolide resistance, phenotype, and genotypic characterization of GAS isolated from throat swabs of children suffering from different acute tonsillitis or scarlet fever between 2004 and 2011 in the city of Chengdu, located in the southwestern region of China. Materials and Methods: Minimal inhibitory concentration with seven antibiotics was performed on 127 GAS isolates. Resistance phenotypes of erythromycin-resistant GAS isolates were determined by the double-disk test. Their macrolide-resistant genes (mefA, ermB and ermTR were amplified by PCR. Results: A total of 98.4% (125/127 of the isolates exhibited resistance to erythromycin, clindamycin and tetracycline. All isolates were sensitive to penicillin G and cefotaxime. Moreover, 113 ermB-positive isolates demonstrating the cMLS phenotype of erythromycin resistance were predominant (90.4% and these isolates showed high-level resistance to both erythromycin and clindamycin (MIC 90 > 256 μg/ml; 12 (9.6% isolates demonstrating the MLS phenotype of erythromycin resistance carried the mefA gene, which showed low-level resistance to both erythromycin (MIC 90 = 8 μg/ml and clindamycin (MIC 90 = 0.5 μg/ml; and none of the isolates exhibited the M phenotype. Conclusions: The main phenotype is cMLS, and the ermB gene code is the main resistance mechanism against macrolides in GAS. Penicillin is the most beneficial

  6. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.

    Science.gov (United States)

    Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong

    2017-09-01

    Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

  7. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  8. Molecular mapping and candidate gene analysis for resistance to powdery mildew in Cucumis sativus stem.

    Science.gov (United States)

    Liu, P N; Miao, H; Lu, H W; Cui, J Y; Tian, G L; Wehner, T C; Gu, X F; Zhang, S P

    2017-08-31

    Powdery mildew (PM) of cucumber (Cucumis sativus), caused by Podosphaera xanthii, is a major foliar disease worldwide and resistance is one of the main objectives in cucumber breeding programs. The resistance to PM in cucumber stem is important to the resistance for the whole plant. In this study, genetic analysis and gene mapping were implemented with cucumber inbred lines NCG-122 (with resistance to PM in the stem) and NCG-121 (with susceptibility in the stem). Genetic analysis showed that resistance to PM in the stem of NCG-122 was qualitative and controlled by a single-recessive nuclear gene (pm-s). Susceptibility was dominant to resistance. In the initial genetic mapping of the pm-s gene, 10 SSR markers were discovered to be linked to pm-s, which was mapped to chromosome 5 (Chr.5) of cucumber. The pm-s gene's closest flanking markers were SSR20486 and SSR06184/SSR13237 with genetic distances of 0.9 and 1.8 cM, respectively. One hundred and fifty-seven pairs of new SSR primers were exploited by the sequence information in the initial mapping region of pm-s. The analysis on the F 2 mapping population using the new molecular markers showed that 17 SSR markers were confirmed to be linked to the pm-s gene. The two closest flanking markers, pmSSR27and pmSSR17, were 0.1 and 0.7 cM from pm-s, respectively, confirming the location of this gene on Chr.5. The physical length of the genomic region containing pm-s was 135.7 kb harboring 21 predicted genes. Among these genes, the gene Csa5G623470 annotated as encoding Mlo-related protein was defined as the most probable candidate gene for the pm-s. The results of this study will provide a basis for marker-assisted selection, and make the benefit for the cloning of the resistance gene.

  9. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi - Metabolites, enzymes and residual antibacterial activity

    Czech Academy of Sciences Publication Activity Database

    Čvančarová, Monika; Moeder, M.; Filipová, Alena; Cajthaml, Tomáš

    2015-01-01

    Roč. 136, OCT 2015 (2015), s. 311-320 ISSN 0045-6535 R&D Projects: GA TA ČR TE01020218; GA ČR GA13-28283S Institutional support: RVO:61388971 Keywords : Fluoroquinolone antibiotics * White rot fungi * Residual antibacterial activity Subject RIV: EE - Microbiology, Virology Impact factor: 3.698, year: 2015

  10. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile

    Directory of Open Access Journals (Sweden)

    Marlon López

    2015-09-01

    Full Text Available Potato Genebank of the Universidad Austral de Chile (UACh is an important gene bank in Chile. The accessions collected all over the country possess high genetic diversity, present interesting agronomic and cooking traits, and show resistance to biotic and abiotic stress. A particularly interesting subgroup of the gene bank includes the accessions collected in the South of Chile, the Chilota Potato Genebank. The focus of this study is the identification of virus and nematode resistant genes in potatoes (Solatium tuberosum L., using the RYSC3 and YES3-3B molecular markers. The Potato virus Y(PVY resistance genes Ry adg and Ry sto were identified. Furthermore, the CP60 marker was used to assess the Rx resistance gene that confers resistance to Potato virus X (PVX. In addition, the HC and GRO1-4 markers were utilized to identify the GpaVvrn_QTL and Gro1-4, resistance genes of Globodera pallida and Globodera rostochiensis, respectively. Both G. pallida and G. rostochiensis are Potato Cyst Nematodes (PCN. The plant material used in this study included leaves from 271 accessions of the gene bank. These samples were collected in the field where natural pathogen pressure of potential viruses and diseases exists. ELISA assays were run for field detection of PVY and PVX. However, there have been no previous reports of nematode presence in the plant material. The results herein presented indicate presence of virus and nematode resistance genes in accessions of the Chilota Potato Genebank. In terms of virus resistance, 99 accessions out of the 271 tested possess the Ry adg resistance gene and 17 accessions of these 271 tested have the Ry sto resistance gene. Also, 10 accessions showed positive amplification of the Rxl resistant gene marker. As to nematode resistance, 99 accessions have possible resistance to G. pallida and 54 accessions show potential resistance to G. rostochiensis as detected using the available molecular markers.

  11. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    Science.gov (United States)

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor

  12. Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics

    Directory of Open Access Journals (Sweden)

    Read Ronald R

    2011-01-01

    Full Text Available Abstract Background Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control. Model fecal deposits (n = 3 were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of tet, sul and erm resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE of PCR-amplified 16S-rRNA. Results The concentrations of 16S-rRNA in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of 16S-rRNA differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of tet(B, tet(C, sul1, sul2, erm(A tended to increase, and decline thereafter, whereas tet(M and tet(W gradually declined over 175 days. At day 7, the concentration of erm(X was greatest in feces from cattle fed tylosin, compared to all other treatments. Conclusion The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days

  13. Towards allele mining of bacterial wilt disease resistance gene in tomato

    International Nuclear Information System (INIS)

    Galvez, H.F.; Narciso, J.O.; Opina, N.L.; Canama, A.O.; Colle, M.G.; Latiza, M.A.; Caspillo, C.L.; Bituin, J.L.; Frankie, R.B.; Hautea, D.M.

    2005-01-01

    Tomato (Lycopersicon esculentum Mill.) is the most important vegetable commodity of the Philippines. Bacterial wilt caused by Ralstonia solanacearum is one serious constraint in tomato production particularly during off-season planting. A major locus derived from H7996 that confers resistance to bacterial wilt has been mapped in the tomato genome. To validate the biological function of the resistance locus and generate multiple allele -mimics-, targeted mutation was induced in tomato using gamma ray and ethyl methane sulfonate (EMS) mutagens. Suitable mutagen treatment was established by evaluating a wide range of mutagen doses/concentrations for a) percent seed germination, b) reduction in plant height, and c) loss of resistance. Six hundred Gy and 1.0% EMS were identified to generate large M1 families of H7996. From 10,000 initial seeds treated with either gamma ray or EMS, a total of 3,663 M1 plants were generated. M2 seeds were harvested from all surviving M1 plants. Several DNA markers have been resourced and are being developed specific to the bacterial wilt resistant gene. In the large M2 population, of H7996, both the phenotypic manifestation of bacterial wilt susceptibility and nucleotide changes in the resistance locus will be evaluated. Large M3 families for the different allele series of the bacterial wilt resistance gene will be established for future high throughput TILLING (Targeting Induced Local Lesions in Genomes) analysis in the gene region

  14. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes.

    Science.gov (United States)

    Hsam, Sai L K; Mohler, Volker; Zeller, Friedrich J

    2014-05-01

    The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar 'Bruno' carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar 'Jumbo' possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar 'Rollo', in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.

  15. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products

    DEFF Research Database (Denmark)

    Li, Lili; Ye, Lei; Kromann, Sofie

    2017-01-01

    There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone...... resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE...... isolates from RTE meat products. The E. coli isolates with multiple antimicrobial resistance genes may transmit to humans through food chain and thus require further investigation and increased awareness....

  16. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    %, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  17. Correction: Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    LENUS (Irish Health Repository)

    Costa, Sofia S

    2013-06-06

    AbstractAfter the publication of our study [1], we became aware that the mutations in the quinolone resistance-determining region (QRDR) of the gene grlA were incorrectly described for some of the Staphylococcus aureus clinical isolates studied in this work. In particular, isolates SM1, SM10, SM14, SM17, SM25, SM27, SM43, SM46, SM47 and SM48 carry the GrlA double mutation S80Y\\/E84G; isolate SM52 carries the GrlA mutation S80Y; isolates SM3 and SM5 carry the GrlA double mutation S80F\\/E84G. The correct data can be found in Table 1.

  18. Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Tian Ya Li

    Full Text Available Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7% tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32. No Sr25 or Sr26 (effective against Ug99 was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust.

  19. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.

    1999-01-01

    for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC......Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used......). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella...

  20. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to