WorldWideScience

Sample records for fluorescence-spectral determination aerodynamic

  1. Determination of the carmine content based on spectrum fluorescence spectral and PSO-SVM

    Science.gov (United States)

    Wang, Shu-tao; Peng, Tao; Cheng, Qi; Wang, Gui-chuan; Kong, De-ming; Wang, Yu-tian

    2018-03-01

    Carmine is a widely used food pigment in various food and beverage additives. Excessive consumption of synthetic pigment shall do harm to body seriously. The food is generally associated with a variety of colors. Under the simulation context of various food pigments' coexistence, we adopted the technology of fluorescence spectroscopy, together with the PSO-SVM algorithm, so that to establish a method for the determination of carmine content in mixed solution. After analyzing the prediction results of PSO-SVM, we collected a bunch of data: the carmine average recovery rate was 100.84%, the root mean square error of prediction (RMSEP) for 1.03e-04, 0.999 for the correlation coefficient between the model output and the real value of the forecast. Compared with the prediction results of reverse transmission, the correlation coefficient of PSO-SVM was 2.7% higher, the average recovery rate for 0.6%, and the root mean square error was nearly one order of magnitude lower. According to the analysis results, it can effectively avoid the interference caused by pigment with the combination of the fluorescence spectrum technique and PSO-SVM, accurately determining the content of carmine in mixed solution with an effect better than that of BP.

  2. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Science.gov (United States)

    Nečemer, Marijan; Kump, Peter; Rajčevič, Marija; Jačimović, Radojko; Budič, Bojan; Ponikvar, Maja

    2003-07-01

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  3. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Necemer, Marijan; Kump, Peter; Rajcevic, Marija; Jacimovic, Radojko; Budic, Bojan; Ponikvar, Maja

    2003-07-18

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  4. System for determining aerodynamic imbalance

    Science.gov (United States)

    Churchill, Gary B. (Inventor); Cheung, Benny K. (Inventor)

    1994-01-01

    A system is provided for determining tracking error in a propeller or rotor driven aircraft by determining differences in the aerodynamic loading on the propeller or rotor blades of the aircraft. The system includes a microphone disposed relative to the blades during the rotation thereof so as to receive separate pressure pulses produced by each of the blades during the passage thereof by the microphone. A low pass filter filters the output signal produced by the microphone, the low pass filter having an upper cut-off frequency set below the frequency at which the blades pass by the microphone. A sensor produces an output signal after each complete revolution of the blades, and a recording display device displays the outputs of the low pass filter and sensor so as to enable evaluation of the relative magnitudes of the pressure pulses produced by passage of the blades by the microphone during each complete revolution of the blades.

  5. Fission products determination in high activity waste solution by wavelength dispersive X-ray fluorescence spectral interference correction by intensity ratio

    International Nuclear Information System (INIS)

    Sato, I.M.

    1988-01-01

    Fission products Se, Rb, Y, Zr, Mo, Ru, Rh, Pd, Te, Cd, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu and Gd were determined in simulated high activity radioactive waste solution by wavelength dispersive X-ray fluorescence spectrometry without chemical separation. Thin layer technique was employed for the sample preparation. For the L spectral lines, the absorption effect was verified by Rasberry-Heinrich, Lucas Tooth-Pyne and Lachance-Trail relations. This effect was quantified and corrected accordingly. The spectral interferences of Kα and/or Lα lines of Y, Zr, Mo, La, Ce, Pr, Nd, Sm, Eu and Gd elements were eliminated by the intensity ratio method. The overlapping of up to three analytical lines was corrected by applying this method. The concentration influence of the interfering element on the intensity ratio values as well the efficiency of the correction method were investigated in order to assure that no systematic or residual error, resulting from the correction, affect the actual fluorescent intensity determination. The results is compared with the data obtained from measurements of free lines of spectral interference and also with those obtained by the linear equation system. Fission products determination presented a precision in the range of 0.1 to 5.0% and an accuracy of up to ± 7.0% the results are compared with those obtained by neutron activation analysis and inductively coupled plasma - atomic emission spectrometry. Leaching data, when radioactive waste is incorporated in cement matrix, were attempted by X-ray fluorescence technique. For two years leaching period, leaching rate and diffusion coefficient data of cesium were determined. The results obtained agree with those obtained by γ-spectromety. (author) [pt

  6. Method determination of aerodynamic performances of profile in the plane airfoil cascade

    Directory of Open Access Journals (Sweden)

    Л. Г. Волянська

    2003-03-01

    Full Text Available Method determination of aerodynamic forces by direct measurement using three-component aerodynamic balance are given in the article. There are the schematic model of the facility for determination airfoil cascade aerodynamic performances in the article. Drawing and description of slewing pack of blades are shown in the article

  7. Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned

    Science.gov (United States)

    Heck, M. L.; Findlay, J. T.; Compton, H. R.

    1983-01-01

    The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.

  8. Determination of aerodynamic sensitivity coefficients for wings in transonic flow

    Science.gov (United States)

    Carlson, Leland A.; El-Banna, Hesham M.

    1992-01-01

    The quasianalytical approach is applied to the 3-D full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. The quasianalytical approach is believed to be reasonably accurate and computationally efficient for 3-D problems.

  9. Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements

    Science.gov (United States)

    Glenn, G. M.

    1976-01-01

    A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.

  10. An experiment for Shuttle aerodynamic force coefficient determination from inflight dynamical and atmospheric measurements

    Science.gov (United States)

    Compton, H. R.; Blanchard, R. C.; Walberg, G. D.

    1978-01-01

    A two-phase experiment is proposed which utilizes the Shuttle Orbiter and its unique series of repeated entries into the earth's atmosphere as an airborne in situ aerodynamic testing laboratory. The objective of the experiment is to determine static aerodynamic force coefficients, first of the orbiter, and later of various entry configurations throughout the high speed flight regime, including the transition from free molecule to continuum fluid flow. The objective will be accomplished through analysis of inflight measurements from both shuttle-borne and shuttle-launched instrumented packages. Results are presented to demonstrate the feasibility of such an experiment.

  11. Determination of aerodynamic sensitivity coefficients based on the three-dimensional full potential equation

    Science.gov (United States)

    Elbanna, Hesham M.; Carlson, Leland A.

    1992-01-01

    The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.

  12. Determination of aerodynamic sensitivity coefficients in the transonic and supersonic regimes

    Science.gov (United States)

    Elbanna, Hesham M.; Carlson, Leland A.

    1989-01-01

    The quasi-analytical approach is developed to compute airfoil aerodynamic sensitivity coefficients in the transonic and supersonic flight regimes. Initial investigation verifies the feasibility of this approach as applied to the transonic small perturbation residual expression. Results are compared to those obtained by the direct (finite difference) approach and both methods are evaluated to determine their computational accuracies and efficiencies. The quasi-analytical approach is shown to be superior and worth further investigation.

  13. Development of Fluorescence Spectral Imaging for Location of Uranium Deposited on Surfaces

    International Nuclear Information System (INIS)

    Monts, D.L.; Wang, G.; Su, Y.; Jang, P.R.; Waggoner, Ch.A.

    2009-01-01

    Since the 1980's, depleted uranium (DU) has been the primary material used by the US military in armor-piercing rounds. Domestic firing ranges that have been used for DU munitions training purposes are located around the country and have varying extents of contamination by other types of projectiles. A project is underway to develop a set of sensors to locate expended DU rounds and to process soil and debris to recover the material. In the environment, metallic DU readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450 - 650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system to locate and quantify uranyl compounds dispersed in soils and on other surfaces on domestic firing ranges; this system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. FSI images provide both spatial and spectral information. The FSI system is described and its performance characterized in the field and also by using field samples. The development and characterization of an improved transportable FSI system is presented. The applicability of this system for detection of uranium compounds deposited on surfaces for Decontaminating and Decommissioning (D and D) activities is discussed. We have successfully demonstrated in situ a first-generation, transportable Fluorescence Spectral Imaging (FSI) system for locating uranyl compounds dispersed in soils and on other surfaces of a domestic firing range. FSI images provide both spatial and spectral information. FSI images are acquired by illuminating a

  14. Fluorescence spectral properties of stomach tissues with pathology

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Lahina, M. A.

    2012-05-01

    Steady-state fluorescence and diffuse reflection spectra are measured for in vivo normal and pathological (chronic atrophic and ulcerating defects, malignant neoplasms) stomach mucous lining tissues. The degree of distortion of the fluorescence spectra is estimated taking light scattering and absorption into account. A combination of Gauss and Lorentz functions is used to decompose the fluorescence spectra. Potential groups of fluorophores are determined and indices are introduced to characterize the dynamics of their contributions to the resultant spectra as pathologies develop. Reabsorption is found to quench the fluorescence of structural proteins by as much as a factor of 3, while scattering of the light can increase the fluorescence intensity of flavin and prophyrin groups by as much as a factor of 2.

  15. Fluorescence spectral studies of Gum Arabic: Multi-emission of Gum Arabic in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dhenadhayalan, Namasivayam, E-mail: ndhena@gmail.com [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Mythily, Rajan, E-mail: rajanmythily@gmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India); Kumaran, Rajendran, E-mail: kumaranwau@rediffmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India)

    2014-11-15

    Gum Arabic (GA), a food hydrocolloid is a natural composite obtained from the stems and branches of Acacia Senegal and Acacia Seyal trees. GA structure is made up of highly branched arabinogalactan polysaccharides. Steady-state absorption, fluorescence, and time-resolved fluorescence spectral studies of acid hydrolyzed GA solutions were carried out at various pH conditions. The fluorescence in GA is predominantly attributed to the presence of tyrosine and phenylalanine amino acids. The presence of multi-emissive peaks at different pH condition is attributed to the exposure of the fluorescing amino acids to the aqueous phase, which contains several sugar units, hydrophilic and hydrophobic moieties. Time-resolved fluorescence studies of GA exhibits a multi-exponential decay with different fluorescence lifetime of varying amplitude which confirms that tyrosine is confined to a heterogeneous microenvironment. The existence of multi-emissive peaks with large variation in the fluorescence intensities were established by 3D emission contour spectral studies. The probable location of the fluorophore in a heterogeneous environment was further ascertained by constructing a time-resolved emission spectrum (TRES) and time-resolved area normalized emission spectrum (TRANES) plots. Fluorescence spectral technique is used as an analytical tool in understanding the photophysical properties of a water soluble complex food hydrocolloid containing an intrinsic fluorophore located in a multiple environment is illustrated. - Highlights: • The Manuscript deals with the steady state absorption, emission, fluorescence lifetime and time-resolved emission spectrum studies of Gum Arabic in aqueous medium at various pH conditions. • The fluorescence emanates from the tyrosine amino acid present in GA. • Change in pH results in marked variation in the fluorescence spectral properties of tyrosine. • Fluorescence spectral techniques are employed as a tool in establishing the

  16. Fluorescence spectral studies on interaction of fluorescent probes with Bovine Serum Albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaushik, E-mail: ghoshfcy@iitr.ac.in; Rathi, Sweety; Arora, Deepshikha

    2016-07-15

    Interaction of 2-(1-(naphthale-1-ylimino)ethyl)phenol (1), 2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenol (2) and 2-methoxy-4-((naphthalene-1-ylimino)methyl)phenol (3) with Bovine Serum Albumin (BSA) was examined. Fluorescence spectral data were obtained from the probes by varying the concentration of BSA as well as from BSA by varying the concentration of probes. Synchronous fluorescence measurements were performed and binding constants of the probes were calculated. To understand mode of quenching, Stern–Volmer plot, absorption spectral studies and life time measurements were performed. Förster resonance energy transfer (FRET) was also scrutinized. - Highlights: • Schiff bases with pendant phenolato function and interaction with BSA. • Synchronous fluorescence studies and a preferred interaction with tryptophan. • Probable interaction of probes with Trp-213 residue in the hydrophobic cavity. • 1:1 binding stoichiometry of probes and BSA in Benesi–Hildebrand graph.

  17. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    International Nuclear Information System (INIS)

    Ragni, D; Ashok, A; Van Oudheusden, B W; Scarano, F

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988–92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°

  18. The role of flow field structure in determining the aerodynamic response of a delta wing

    Science.gov (United States)

    Addington, Gregory Alan

    Delta wings have long been known to exhibit nonlinear aerodynamic responses as a result of the presence of helical leading-edge vortices. This nonlinearity, found under both steady-state and unsteady conditions, is particularly profound in the presence of vortex burst. Modeling such aerodynamic responses with the Nonlinear Indicial Response (NIR) methodology provides a means of simulating these nonlinearities through its inclusion of motion history in addition to superposition. The NIR model also includes provisions for a finite number of discrete locations where the aerodynamic response is discontinuous with response to a state variable. These critical states also separate regions of states where the unsteady aerodynamic responses are potentially of highly-disparate characters. Although these critical states have been found in the past, their relationship with flow field bifurcation is uncertain. The purpose of this dissertation is to explore the relationship between nonlinear aerodynamic responses, critical states and flow field bifurcations from an experimental approach. This task has been accomplished by comparing a comprehensive database of skin-friction line topologies with static and unsteady aerodynamic responses. These data were collected using a 65sp° delta wing which rolled about an inclined longitudinal body axis. In this study, compelling, but not conclusive, evidence was found to suggest that a bifurcation in the skin-friction line topology was a necessary condition for the presence of a critical state. Although the presence of critical states was well predicted through careful observation and analysis of highly-resolved static loading data alone, their precise placement as a function of the independent variable was aided through the consideration of the locations of skin-friction line bifurcations. Furthermore, these static data were found to contain indications of the basic lagged or unlagged behavior of the unsteady aerodynamic response. This

  19. Fluorescence Spectral Properties of All4261 Binding with Phycocyanobilin in E.Coli

    Science.gov (United States)

    Ma, Q.; Zheng, X. J.; Zhou, Z.; Zhou, N.; Zhao, K. H.; Zhou, M.

    2014-07-01

    Cyanobacteriochromes (CBCRs) are chromophorylated proteins that acting as sensory photoreceptors in cyanobacteria. Based on the bioinformatics of All4261 in Nostoc sp. PCC7120, All4261 is a CBCR apoprotein composed of GAF domains in the N-terminal region. Via polymerase chain reaction with specific primers, All4261 was amplified with genome DNA of Nostoc sp. PCC7120 as template and then subcloned into the expression vector pET30(a+). To survey the fluorescence spectral properties, All4261 was coexpressed with the plasmid that catalyzes phycocyanobilin (PCB) biosynthesis, pACYC-ho1-pcyA, in E.coli BL21. Fluorescence emission spectra and excitation spectra showed that chromophorylated cells containing All4261-PCB had a fluorescence emission peak at 645 nm and a fluorescence excitation peak at 550 nm, but no reversible photoconversion. In order to identify the binding site of PCB in All4261, we obtained three variants All4261(C296L), All4261(C328A), and All4261(C339L), via sitedirected mutagenesis. The binding site was identified as C339 based on the lack of PCB binding of All4261(C339L).

  20. Fluorescence spectral imaging as a tool for locating uranium deposited on surfaces - 16089

    International Nuclear Information System (INIS)

    Monts, David L.; Wang, Guangjun; Su, Yi; Jang, Ping-Rey; Waggoner, Charles A.

    2009-01-01

    In the environment, metallic uranium readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450-650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system as a tool for locating and quantifying uranyl compounds dispersed in soils and on other surfaces. A project is underway to develop a set of sensors to locate expended depleted uranium (DU) rounds and to process soil and debris to recover the material from domestic firing ranges. The FSI system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. The FSI image provides both spatial and spectral information. The FSI system is described and its performance characterized using field samples. (authors)

  1. Feasibility of Determining Aerodynamic Coefficients for a NASA Apollo Body With the Use of Telemetry Data From Free Flight Range Testing

    National Research Council Canada - National Science Library

    Topper, Benjamin; Brown, T. G; Bukowski, Edward; Davis, Bradford S; Hall, Rex A; Muller, Peter C; Vong, Timothy T; Brandon, Fred J

    2007-01-01

    ... s) Langley Research Center to perform a free-flight experiment with telemetry (TM) instrumented sub-scaled re-entry vehicle in order to determine the feasibility of using TM to obtain aerodynamic coefficients...

  2. Aerodynamic potpourri

    Science.gov (United States)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  3. CFD-Based Over-Determined Trim Analysis for Optimum Aerodynamic Efficiency, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this Phase I project is to develop a nonlinear trim module in FUN3D for enabling the determined and over-determined trim analyses to be...

  4. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  5. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  6. Determination of aerodynamic damping of twin cables in wet conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Eriksen, Mads Beedholm; Mattiello, E.; Georgakis, Christos T.

    2013-01-01

    Moderate amplitude cable vibrations continue to be reported on the cable-stayed Øresund Bridge, despite the presence of helical fillets and dampers. The vibrations are particularly notable in wet conditions, which would suggest a form of rain-wind induced vibrations (RWIV). A statistical...... of the bridge cables. For the wet tests, the twin cable surfaces were treated in order to obtain uniform upper and lower water rivulets. The interaction between water rivulets, surface properties and the flow was found to govern the activation of the RWIV mechanism. The resulting aerodynamic damping from wet...

  7. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections...

  8. Enveloping Aerodynamic Decelerator

    Science.gov (United States)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)

    2018-01-01

    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  9. Distributed Aerodynamic Sensing and Processing Toolbox

    Science.gov (United States)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  10. Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.; Su, Y.Y. [McGill University, Department of Mechanical Engineering, Montreal, QC (Canada)

    2012-11-15

    The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C{sub l}. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C{sub l} data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C{sub l} with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C{sub l} data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio. (orig.)

  11. Experimental study of canard UAV aerodynamics

    Directory of Open Access Journals (Sweden)

    Panayotov Hristian

    2017-01-01

    Full Text Available The present paper presents the aerodynamic characteristics of a canard fixed-wing unmanned aircraft TERES-02. A wind tunnel experiment is conducted using a specially designed model of the aircraft. The model is produced through the methods of rapid prototyping using a FDM 3D printer. Aerodynamic corrections are made and thorough analysis and discussion of the results is carried out. The obtained results can be used to determine the accuracy of numerical methods for analysis of aircraft performance.

  12. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander; Matthies, Hermann G.; Liu, Dishi; Schillings, Claudia; Schulz, Volker

    2017-01-01

    In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al '17]. For modeling we used the TAU code, developed in DLR, Germany.

  13. Determination of aerodynamic damping and force coefficients of filleted twin cables in dry conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Mattiello, E.; Eriksen, M. B.; Georgakis, Christos T.

    /FORCE Technology Climatic Wind Tunnel facility. The measured aerodynamic damping of the twin-cable arrangement in dry conditions was compared to the values obtained from full-scale monitoring and from an analytical model using static force coefficients. The comparison revealed broad agreement in the investigated...... Re range, as did the force coefficients obtained from dynamic and static tests....

  14. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    Science.gov (United States)

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Tactical missile aerodynamics

    Science.gov (United States)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  16. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  17. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  18. Aerodynamic window for a laser fusion device

    International Nuclear Information System (INIS)

    Masuda, Wataru

    1983-01-01

    Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

  19. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  20. Use of a generalized Stokes number to determine the aerodynamic capture efficiency of non-Stokesian particles from a compressible gas flow

    Science.gov (United States)

    Israel, R.; Rosner, D. E.

    1983-01-01

    The aerodynamic capture efficiency of small but nondiffusing particles suspended in a high-speed stream flowing past a target is known to be influenced by parameters governing small particle inertia, departures from the Stokes drag law, and carrier fluid compressibility. By defining an effective Stokes number in terms of the actual (prevailing) particle stopping distance, local fluid viscosity, and inviscid fluid velocity gradient at the target nose, it is shown that these effects are well correlated in terms of a 'standard' (cylindrical collector, Stokes drag, incompressible flow, sq rt Re much greater than 1) capture efficiency curve. Thus, a correlation follows that simplifies aerosol capture calculations in the parameter range already included in previous numerical solutions, allows rational engineering predictions of deposition in situations not previously specifically calculated, and should facilitate the presentation of performance data for gas cleaning equipment and aerosol instruments.

  1. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander

    2017-05-16

    We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.

  2. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  3. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  4. ISOLATED AERODYNAMIC SURFACE CALCULUS

    Directory of Open Access Journals (Sweden)

    ENUŞ Marilena

    2014-07-01

    Full Text Available The paper proposes to present a few steps for calculating the dynamics of flight. From an organizational perspective, the paper is structured in three parts. The first part provides essential information that needs to be taken into account when designing an aircraft wing. The second part presents the basic steps in the wing design procedure and finally, the third part contains the diagrams in which one can find the aerodynamic coefficient of a specifying wing.

  5. An Aerodynamic Investigation of a Forward Swept Wing

    Science.gov (United States)

    1977-12-01

    attached flow at higher angles of attack. 59 -. - . -- ~II The use of winglets should-also be considered to determine their effect on the aerodynamic ...INVSTGAIO OF A" ’/7AI/A/A7D1 ¾~nnt ¾ý’i ~~~)a al -A ApprovedYA~I forSIATO OFli Aees;dsrbuinulmtd AFIT/GAE/AA/77D -4 .1 AN AERODYNAMIC INVESTIGATION OF A...this study was to experimentally and analytically determine certain aerodynamic characteristics of a recently proposed high subsonic, forward swept wing

  6. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  7. TAD- THEORETICAL AERODYNAMICS PROGRAM

    Science.gov (United States)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  8. Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections

    DEFF Research Database (Denmark)

    Koss, Holger; Lund, Mia Schou Møller

    2013-01-01

    The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations...... of bridge cables under wind action. This paper describes the experimental simulation of ice accretion on a real bridge cable sheet HDPE tube segment (diameter 160mm) and its effect on the aerodynamic load. Furthermore, aerodynamic instability will be estimated with quasi-steady theory using the determined...

  9. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  10. Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2017-01-01

    Full Text Available Aerodynamic roughness is very important to urban meteorological and climate studies. Radar remote sensing is considered to be an effective means for aerodynamic roughness retrieval because radar backscattering is sensitive to the surface roughness and geometric structure of a given target. In this paper, a methodology for aerodynamic roughness length estimation using SAR data in urban areas is introduced. The scale and orientation characteristics of backscattering of various targets in urban areas were firstly extracted and analyzed, which showed great potential of SAR data for urban roughness elements characterization. Then the ground truth aerodynamic roughness was calculated from wind gradient data acquired by the meteorological tower using fitting and iterative method. And then the optimal dimension of the upwind sector for the aerodynamic roughness calculation was determined through a correlation analysis between backscattering extracted from SAR data at various upwind sector areas and the aerodynamic roughness calculated from the meteorological tower data. Finally a quantitative relationship was set up to retrieve the aerodynamic roughness length from SAR data. Experiments based on ALOS PALSAR and COSMO-SkyMed data from 2006 to 2011 prove that the proposed methodology can provide accurate roughness length estimations for the spatial and temporal analysis of urban surface.

  11. Numerical aerodynamic simulation (NAS)

    International Nuclear Information System (INIS)

    Peterson, V.L.; Ballhaus, W.F. Jr.; Bailey, F.R.

    1984-01-01

    The Numerical Aerodynamic Simulation (NAS) Program is designed to provide a leading-edge computational capability to the aerospace community. It was recognized early in the program that, in addition to more advanced computers, the entire computational process ranging from problem formulation to publication of results needed to be improved to realize the full impact of computational aerodynamics. Therefore, the NAS Program has been structured to focus on the development of a complete system that can be upgraded periodically with minimum impact on the user and on the inventory of applications software. The implementation phase of the program is now under way. It is based upon nearly 8 yr of study and should culminate in an initial operational capability before 1986. The objective of this paper is fivefold: 1) to discuss the factors motivating the NAS program, 2) to provide a history of the activity, 3) to describe each of the elements of the processing-system network, 4) to outline the proposed allocation of time to users of the facility, and 5) to describe some of the candidate problems being considered for the first benchmark codes

  12. Estimation of aircraft aerodynamic derivatives using Extended Kalman Filter

    OpenAIRE

    Curvo, M.

    2000-01-01

    Design of flight control laws, verification of performance predictions, and the implementation of flight simulations are tasks that require a mathematical model of the aircraft dynamics. The dynamical models are characterized by coefficients (aerodynamic derivatives) whose values must be determined from flight tests. This work outlines the use of the Extended Kalman Filter (EKF) in obtaining the aerodynamic derivatives of an aircraft. The EKF shows several advantages over the more traditional...

  13. Darrieus rotor aerodynamics

    Science.gov (United States)

    Klimas, P. C.

    1982-05-01

    A summary of the progress of modeling the aerodynamic effects on the blades of a Darrieus wind turbine is presented. Interference is discussed in terms of blade/blade wake interaction and improvements in single and multiple stream tube models, of vortex simulations of blades and their wakes, and a hybrid momentum/vortex code to combine fast computation time with interference-describing capabilities. An empirical model has been developed for treating the properties of dynamic stall such as airfoil geometry, Reynolds number, reduced frequency, angle-of-attack, and Mach number. Pitching circulation has been subjected to simulation as potential flow about a two-dimensional flat plate, along with applications of the concepts of virtual camber and virtual incidence, with a cambered airfoil operating in a rectilinear flowfield. Finally, a need to develop a loading model suitable for nonsymmetrical blade sections is indicated, as well as blade behavior in a dynamic, curvilinear regime.

  14. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  15. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  16. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  17. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    to a categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...... been conducted. The two current prevailing systems consisting of helically filleted cables and cables with a pattern-indented surface were directly compared under the same conditions and both applications were found with attractive properties. The pattern-indented surface maintained a low supercritical...... of reducing the intensity of the axial flow and disrupting the near wake flow structures. Similar studies during wet conditions with artificial simulation of light rain in the wind tunnel showed that the plain cable suffered from severe rain-wind induced vibrations. But despite the presence of both upper...

  18. Reciprocity relations in aerodynamics

    Science.gov (United States)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  19. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    Science.gov (United States)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  20. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  1. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  2. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  3. Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an entry and descent technology to enhance and enable robotic and scientific missions to destinations with atmospheres.The Hypersonic Inflatable Aerodynamic...

  4. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  5. Dynamic soaring: aerodynamics for albatrosses

    International Nuclear Information System (INIS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration

  6. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  7. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  8. The impact of aerodynamics on fuel consumption in railway applications

    Directory of Open Access Journals (Sweden)

    Bogdan TARUS

    2012-03-01

    Full Text Available The main consequence of on air flow surrounding a moving train resides in the aerodynamic drag and a certain pressure distribution on the frontal and lateral surfaces of the vehicle. The actual value of the aerodynamic drag (if pre-determined may lead to a more accurate design of the whole locomotive power transmission. The aerodynamic drag may be estimated by using two specific experiments: the traction method and the free launch method. While the first one uses highly complex equipment, the second is easier to use due to the relative low number of devices required. The present work’s main goal is to illustrate the importance of aerodynamic design of the railway vehicles, as their performances are influenced by the aerodynamic drag. In order to illustrate the influence of the aerodynamic shape of o locomotive body, we have chosen the latest diesel model available on the local market, the Class 621 EGM locomotives, currently in service at the national passenger railway operator, CFR Călători SA.

  9. Aerodynamic Drag Scoping Work.

    Energy Technology Data Exchange (ETDEWEB)

    Voskuilen, Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erickson, Lindsay Crowl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined by Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.

  10. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  11. Wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering, Wind Energy Group

    2010-07-01

    The need for clean, renewable electricity in remote communities of Canada and the world was discussed in this presentation. The University of Waterloo Wind Energy Laboratory (WEL) performs research in a large scale indoor environment on wind turbines, blade aerodynamics, and aeroacoustics. A key area of research involves developing turbines for remote off-grid communities where climatic conditions are challenging. This presentation outlined research that is underway on wind energy and off-grid renewable energy systems. Many communities in Canada and remote communities in the rest of the world are not connected to the grid and are dependent on other means to supply electrical energy to their community. Remote communities in northern Canada have no road access and diesel is the dominant source of electrical energy for these communities. All of the community supply of diesel comes from brief winter road access or by air. The presentation discussed existing diesel systems and the solution of developing local renewable energy sources such as wind, hydro, biomass, geothermal, and solar power. Research goals, wind energy activities, experimental equipment, and the results were also presented. Research projects have been developed in wind energy; hydrogen generation/storage/utilization; power electronics/microgrid; and community engagement. figs.

  12. Aerodynamics of badminton shuttlecocks

    Science.gov (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  13. An assessment of glass microspheres for use as number-based aerodynamic size standards

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Marshall, I.A.; Mitchell, J.P.; Rideal, G.

    1989-08-01

    Polydisperse, non-porous microspheres are required with well-defined aerodynamic properties to determine if enhanced settling of micron-sized aerosol particles occurs in the presence of larger particles (gravitational agglomeration). Glass spheres with claimed unimodal narrow distributions were evaluated using a TSI Aerodynamic Particle Sizer (APS33B). The size fractions containing particles in the range from 1 to 5 μm aerodynamic diameter were truly unimodal, but the fractions which were supposed to consist solely of particles larger than 5 μm aerodynamic diameter contained a significant proportion of submicron particles. (author)

  14. Aerodynamic drag on intermodal railcars

    Science.gov (United States)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  15. Aerodynamic profiles of women with muscle tension dysphonia/aphonia.

    Science.gov (United States)

    Gillespie, Amanda I; Gartner-Schmidt, Jackie; Rubinstein, Elaine N; Abbott, Katherine Verdolini

    2013-04-01

    In this study, the authors aimed to (a) determine whether phonatory airflows and estimated subglottal pressures (est-Psub) for women with primary muscle tension dysphonia/aphonia (MTD/A) differ from those for healthy speakers; (b) identify different aerodynamic profile patterns within the MTD/A subject group; and (c) determine whether results suggest new understanding of pathogenesis in MTD/A. Retrospective review of aerodynamic data collected from 90 women at the time of primary MTD/A diagnosis. Aerodynamic profiles were significantly different for women with MTD/A as compared with healthy speakers. Five distinct profiles were identified: (a) normal flow, normal est-Psub; (b) high flow, high est-Psub; (c) low flow, normal est-Psub; (d) normal flow, high est-Psub; and (e) high flow, normal est-Psub. This study is the first to identify distinct subgroups of aerodynamic profiles in women with MTD/A and to quantitatively identify a clinical phenomenon sometimes described in association with it-"breath holding"-that is shown by low airflow with normal est-Psub. Results were consistent with clinical claims that diverse respiratory and laryngeal functions may underlie phonatory patterns associated with MTD/A. One potential mechanism, based in psychobiological theory, is introduced to explain some of the variability in aerodynamic profiles of women with MTD/A.

  16. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  17. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  18. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  19. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  20. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  1. Engineering models in wind energy aerodynamics : Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  2. Ground effect aerodynamics of racing cars

    OpenAIRE

    Zhang, Xin; Toet, Willem; Zerihan, Jonathan

    2006-01-01

    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  3. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  4. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix D: Procedures used to determine the mass distribution for idealized low aspect ratio two spar fighter wings

    Science.gov (United States)

    Roskam, J.; Hamler, F. R.; Reynolds, D.

    1972-01-01

    The procedures used to establish the mass matrices characteristics for the fighter type wings studied are given. A description of the procedure used to find the mass associated with a specific aerodynamic panel is presented and some examples of the application of the procedure are included.

  5. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...

  6. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  7. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  8. The aerodynamics of sailing apparel

    NARCIS (Netherlands)

    Jansen, A.J.; Van Deursen, B.; Howe, C.

    2012-01-01

    The paper presents the effect of changes in sailing apparel on aerodynamic drag, starting from the assumption that drag reduction of sailing apparel will increase the speed of an Olympic class sailing boat (in this case the Laser, a single-handed Olympic dinghy), mainly on upwind courses. Due to the

  9. Aerodynamics and Control of Quadrotors

    Science.gov (United States)

    Bangura, Moses

    Quadrotors are aerial vehicles with a four motor-rotor assembly for generating lift and controllability. Their light weight, ease of design and simple dynamics have increased their use in aerial robotics research. There are many quadrotors that are commercially available or under development. Commercial off-the-shelf quadrotors usually lack the ability to be reprogrammed and are unsuitable for use as research platforms. The open-source code developed in this thesis differs from other open-source systems by focusing on the key performance road blocks in implementing high performance experimental quadrotor platforms for research: motor-rotor control for thrust regulation, velocity and attitude estimation, and control for position regulation and trajectory tracking. In all three of these fundamental subsystems, code sub modules for implementation on commonly available hardware are provided. In addition, the thesis provides guidance on scoping and commissioning open-source hardware components to build a custom quadrotor. A key contribution of the thesis is then a design methodology for the development of experimental quadrotor platforms from open-source or commercial off-the-shelf software and hardware components that have active community support. Quadrotors built following the methodology allows the user access to the operation of the subsystems and, in particular, the user can tune the gains of the observers and controllers in order to push the overall system to its performance limits. This enables the quadrotor framework to be used for a variety of applications such as heavy lifting and high performance aggressive manoeuvres by both the hobby and academic communities. To address the question of thrust control, momentum and blade element theories are used to develop aerodynamic models for rotor blades specific to quadrotors. With the aerodynamic models, a novel thrust estimation and control scheme that improves on existing RPM (revolutions per minute) control of

  10. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  11. [Acoustic and aerodynamic characteristics of the oesophageal voice].

    Science.gov (United States)

    Vázquez de la Iglesia, F; Fernández González, S

    2005-12-01

    The aim of the study is to determine the physiology and pathophisiology of esophageal voice according to objective aerodynamic and acoustic parameters (quantitative and qualitative parameters). Our subjects were comprised of 33 laryngectomized patients (all male) that underwent aerodynamic, acoustic and perceptual protocol. There is a statistical association between acoustic and aerodynamic qualitative parameters (phonation flow chart type, sound spectrum, perceptual analysis) among quantitative parameters (neoglotic pressure, phonation flow, phonation time, fundamental frequency, maximum intensity sound level, speech rate). Nevertheles, not always such observations bring practical resources to clinical practice. We consider that the facts studied may enable us to add, pragmatically, new resources to the more effective vocal rehabilitation to these patients. The physiology of esophageal voice is well understood by the method we have applied, also seeking for rehabilitation, improving oral communication skills in the laryngectomee population.

  12. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  13. Aerodynamic Profiles of Women with Muscle Tension Dysphonia/Aphonia

    Science.gov (United States)

    Gillespie, Amanda I.; Gartner-Schmidt, Jackie; Rubinstein, Elaine N.; Abbott, Katherine Verdolini

    2013-01-01

    Purpose: In this study, the authors aimed to (a) determine whether phonatory airflows and estimated subglottal pressures (est-P[subscript sub]) for women with primary muscle tension dysphonia/aphonia (MTD/A) differ from those for healthy speakers; (b) identify different aerodynamic profile patterns within the MTD/A subject group; and (c) determine…

  14. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  15. CALCULATION OF ROCKET NOSE FAIRING SHELLS AERODYNAMIC CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Vladimir T. Kalugin

    2018-01-01

    Full Text Available The aerodynamic characteristics of the detachable elements of transport systems are introduced, they allow to calculate the trajectories of these elements after their separation and determine the size of elements impact areas. Special consideration is given to head fairing shells, containing cylindrical, conical and spherical sections. Head fairing shells have high lift-to-drag ratio and the widest impact areas. Aerodynamics of bodies of such configurations has been insufficiently studied. The paper presents the numerical results of modeling the flow around a typical head fairing shell in free flight. Open source OpenFOAM package is used for numerical simulation. The aerodynamic characteristics at trans- and supersonic velocities are obtained, flow pattern transformation with the change of the angle of attack and Mach number is analyzed. The possibility of OpenFOAM package for aerodynamic calculations of thin shells is shown. The analysis of the obtained results demonstrate that there are many complex shock waves interacting with each other at flow supersonic speeds, at subsonic speeds vast regions of flow separations are observed. The authors identify intervals of angles of attack, where different types of flow structures are realized, both for trans- and supersonic flow speeds. The flow pattern change affects the aerodynamic characteristics, the aerodynamic coefficients significantly change with increase of the angle of attack. There are two trim angles of attack at all examined flow velocities. The results obtained can be used to develop a passive stabilization system for fairing shell that will balance the body at the angle of attack with minimum lift-to-drag ratio and will reduce random deviations.

  16. Aerodynamic instability: A case history

    Science.gov (United States)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  17. Research on the Aerodynamic Resistance of Trickle Biofilter

    Directory of Open Access Journals (Sweden)

    Alvydas Zagorskis

    2011-12-01

    Full Text Available A four – section trickle biofilter was constructed for experimental research. The filter was filled with the packing material of artificial origin. The material consists of plastic balls having a large surface area. The dependence of biofilter aerodynamic resistance on supply air flow rate and the number of filter sections was determined. The aerodynamic resistance of the biofilter was measured in two cases. In the first case, the packing material of the filter was dry, whereas in the second case it was wet. The experimental research determined that an increase in the air flow rate from 0.043 m/s to 0.076 m/s causes an increase in biofilter aerodynamic resistance from 30.5 to 62.5 Pa after measuring four layers of dry packing material. In case of wet packing material, biofilter aerodynamic resistance after measuring four layers of plastic balls increases from 42.1 to 90.4 Pa.Article in Lithuanian

  18. Unsteady Aerodynamics of Deformable Thin Airfoils

    OpenAIRE

    Walker, William Paul

    2009-01-01

    Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...

  19. ON THE IMPACT OF FLIGHT SAFETY CERTIFICATION REQUIREMENTS ON THE AERODYNAMIC EFFICIENCY OF COMMERCIAL AIRPLANES

    Directory of Open Access Journals (Sweden)

    Vladimir I. Shevyakov

    2018-01-01

    Full Text Available The article considers the issue of aerodynamics efficiency implementation taking into account certification requirements for flight safety. Aerodynamics efficiency means high aerodynamic performance (depending on the airplane size, aerodynamic performance in cruise flight, high aerodynamic performance at takeoff, as well as lift performance at landing.The author estimated the impact on aerodynamics efficiency of both the requirements for aerodynamics performance and requirements for aircraft systems, noncompliance with which may result in significant change of expected operating conditions. It was shown that the use of supercritical wing profiles may result in flight mode limitations due to failure of the required buffeting capacities. It does not allow engaging all the advantages of aerodynamics layout and requires special design solutions to prevent such cases.There were reviewed certification requirements for flight level pressure altitude accuracy and icing conditions warning sysytem. The research presented the methods of aerodynamic efficiency increase by meeting the requirements for reduced vertical separation minima flights and in icing conditions, including requirements for air data probes. Reduced vertical separation minima flight requirements are met by means of efficient air data probes location. Theoretical methods of flow calculation determine areas on the airplane skin surface where static probes minimize errors depending on angle-of-attack and sideslip. It was shown that if certification requirements are not met and in case of flight out of reduced vertical separation minima area, aerodynamics efficiency is significantly reduced and fuel consumption can be increased by 10% and higher. Suggested approaches implementation allows increasing commercial airplanes competitiveness.

  20. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den

    1985-01-01

    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  1. Elemental study of aerodynamic profile

    International Nuclear Information System (INIS)

    Montanero, J. M.

    2001-01-01

    In teaching fluid Mechanics, it would be convenient to provide the students with simple theoretical tools which allow them to deal with real and of technological interest situations. For instance, the apparently simple fluid motion around wing sections of arbitrary shape can not be overcome by using the mathematical methods available for students. In this article we present a simple theoretical procedure to analyze this problem. In the proposed method the role played by the analytical and numerical calculations are greatly reduced in order to emphasize the purely aerodynamic concepts. (Author) 3 refs. 001ES0100130

  2. Future Computer Requirements for Computational Aerodynamics

    Science.gov (United States)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  3. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  4. Aerodynamical study of a photovoltaic solar tracker

    OpenAIRE

    Gutiérrez Castillo, José Leonardo

    2016-01-01

    Investigate the aerodynamic features of ground-mounted solar trackers under atmospheric boundary layer flows. Study and identify the aerodynamical interactions of solar trackers when they are displayed as an array. State of the art. Literature review about CFD applied to solar panels. Analytic approach of the problem. Application of CFD analysis. Validation of the results. Discussion of the results. Improvements proposal.

  5. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...

  6. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  7. Aerodynamic Parameters of a UK City Derived from Morphological Data

    Science.gov (United States)

    Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.

    2013-03-01

    Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.

  8. Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. [FORCE code

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W. N.; Leonard, T. M.

    1980-11-01

    An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. This report describes a load generator which has been used at Sandia for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

  9. The Aerodynamics of Frisbee Flight

    Directory of Open Access Journals (Sweden)

    Kathleen Baumback

    2010-01-01

    Full Text Available This project will describe the physics of a common Frisbee in flight. The aerodynamic forces acting on the Frisbee are lift and drag, with lift being explained by Bernoulli‘s equation and drag by the Prandtl relationship. Using V. R. Morrison‘s model for the 2-dimensional trajectory of a Frisbee, equations for the x- and y- components of the Frisbee‘s motion were written in Microsoft Excel and the path of the Frisbee was illustrated. Variables such as angle of attack, area, and attack velocity were altered to see their effect on the Frisbee‘s path and to speculate on ways to achieve maximum distance and height.

  10. Rarefaction Effects in Hypersonic Aerodynamics

    Science.gov (United States)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  11. Comparison of advanced aerodynamic models

    Energy Technology Data Exchange (ETDEWEB)

    McWilliam, M.; Cline, S.; Lawton, S.; Crawford, C. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Victoria Univ., BC (Canada). Sustainable Systems Design Laboratory

    2010-07-01

    This PowerPoint presentation discussed the development of aerodynamic tools for designing sweep and out-of-plane curvatures for wind turbine blades. Potential flow and vortex methods are used to simulate individual vortex elements at the blade and in the wake, and are appropriate modelling tools are both out-of-plane and sweep curvatures. Centrifugal pumping, hub loss, and turbulent wake models are used to correct the blade element momentum (BEM) theory, where a blade's wake is modelled as a momentum balance between the far upstream and downstream. Wake shape can be numerically solved using the vortex theory. Wake vorticity is then integrated to characterize rotor conditions. Potential flow and vortex methods are used to account for the influence of the rotor and to model the wake structure. Details of experimental studies and validation test cases using the modelling methods were provided. tabs., figs.

  12. Aerodynamic Interactions During Laser Cutting

    Science.gov (United States)

    Fieret, J.; Terry, M. J.; Ward, B. A.

    1986-11-01

    Most laser cutting systems utilise a gas jet to remove molten or vaporised material from the kerf. The speed, economy and quality of the cut can be strongly dependent on the aerodynamic conditions created by the nozzle, workpiece proximity and kerf shape. Adverse conditions can be established that may lead to an unwelcome lack of reproducibility of cut quality. Relatively low gas nozzle pressures can result in supersonic flow in the jet with its associated shock fronts. When the nozzle is placed at conventional distances (1-2mm) above the workpiece, the force exerted by the gas on the workpiece and the cut products (the cutting pressure) can be significantly less than the nozzle pressure. Higher cutting pressures can be achieved by increasing the height of the nozzle above the workpiece, to a more damage resistant zone, provided that the shock structure of the jet is taken into account. Conventional conical nozzles with circular exits can be operated with conditions that will result in cutting pressures up to 3 Bar (g) in the more distant zone. At higher pressures in circular tipped nozzles the cutting pressure in this zone decays to inadequate levels. Investigations of a large number of non-circular nozzle tip shapes have resulted in the selection of a few specific shapes that can provide cutting pressures in excess of 6 Bar(g) at distances of 4 to 7mm from the nozzle tip. Since there is a strong correlation between cutting pressure and the speed and quality of laser cutting, the paper describes the aerodynamic requirements for achieving the above effects and reports the cutting results arising from the different nozzle designs and conditions. The results of the work of other investigators, who report anomalous laser cutting results, will be examined and reviewed in the light of the above work.

  13. Aerodynamic Noise Generated by Shinkansen Cars

    Science.gov (United States)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  14. NASA Iced Aerodynamics and Controls Current Research

    Science.gov (United States)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  15. Aerodynamic analysis of Pegasus - Computations vs reality

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  16. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  17. Lifting Wing in Constructing Tall Buildings —Aerodynamic Testing

    Directory of Open Access Journals (Sweden)

    Ian Skelton

    2014-05-01

    Full Text Available This paper builds on previous research by the authors which determined the global state-of-the-art of constructing tall buildings by surveying the most active specialist tall building professionals around the globe. That research identified the effect of wind on tower cranes as a highly ranked, common critical issue in tall building construction. The research reported here presents a design for a “Lifting Wing,” a uniquely designed shroud which potentially allows the lifting of building materials by a tower crane in higher and more unstable wind conditions, thereby reducing delay on the programmed critical path of a tall building. Wind tunnel tests were undertaken to compare the aerodynamic performance of a scale model of a typical “brick-shaped” construction load (replicating a load profile most commonly lifted via a tower crane against the aerodynamic performance of the scale model of the Lifting Wing in a range of wind conditions. The data indicate that the Lifting Wing improves the aerodynamic performance by a factor of up to 50%.

  18. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  19. Aerodynamical noise from wind turbine generators

    International Nuclear Information System (INIS)

    Jakobsen, J.; Andersen, B.

    1993-06-01

    Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)

  20. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  1. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  2. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  3. Take-off aerodynamics in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Kivekäs, J; Komi, P V

    2001-04-01

    The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.

  4. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  5. Nasalance Scores of Children with Repaired Cleft Palate Who Exhibit Normal Velopharyngeal Closure during Aerodynamic Testing

    Science.gov (United States)

    Zajac, David J.

    2013-01-01

    Purpose: To determine if children with repaired cleft palate and normal velopharyngeal (VP) closure as determined by aerodynamic testing exhibit greater acoustic nasalance than control children without cleft palate. Method: Pressure-flow procedures were used to identify 2 groups of children based on VP closure during the production of /p/ in the…

  6. Continuous-time state-space unsteady aerodynamic modelling for efficient aeroelastic load analysis

    NARCIS (Netherlands)

    Werter, N.P.M.; De Breuker, R.; Abdalla, M.M.

    2015-01-01

    Over the years, wings have become lighter and more flexible, making them more prone to aeroelastic effects. Thus, aeroelasticity in design becomes more important. In order to determine the response of an aircraft to, for example, a gust, an unsteady aerodynamic model is required to determine the

  7. Experimental Research of Influence of a Relative Particles Positioning in a Gas Stream on Characteristics of their Aerodynamic Traces

    Directory of Open Access Journals (Sweden)

    Volkov Roman S.

    2016-01-01

    Full Text Available The cycle of experimental studies on determination of length of aerodynamic traces of the particles which are flowed round by an air stream is executed. When carrying out researches, panoramic optical methods for diagnostics of multiphase flows of PIV and PTV were used. Velocities of an air flow were varied in the range of 1-3 m/s. The sizes of particles changed from 1mm to 5 mm. The defining influence of the sizes of particles and velocities of an air stream on length of aerodynamic traces is established. Influence of a relative positioning of particles on features of formation of an aerodynamic trace is shown.

  8. CONDITIONS OF PHYSICAL MODELING AERODYNAMIC CHARACTERISTICS OF AIRCRAFT WITH CHASSIS HOVERCRAFT

    Directory of Open Access Journals (Sweden)

    Yu. Yu. Merzlikin

    2015-01-01

    Full Text Available The features of the physical modeling in the experimental determination of aerodynamics-cal tubes (WT of low-velocity steady and unsteady aerodynamic characteristics at takeoff and landing of aircraft (LA with the chassis air-cushion (ball screw and in studies to determine the stability of equilibrium regimes of movement and shock-absorbing properties of ball screws. Are conscdered the requirements for the experimental facilities, model aircraft with ball screws and re-test of the latest zhimam on the free stream velocity, flow and pressure blowers VР, the frequencies and amplitudes of the oscillations are formulated.

  9. Computational aerodynamics and aeroacoustics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.Z.

    2009-10-15

    The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind turbines. The main objective of the research was to develop new computational tools and techniques for analysing flows about wind turbines. A few papers deal with applications of Blade Element Momentum (BEM) theory to wind turbines. In most cases the incompressible Navier-Stokes equations in primitive variables (velocity-pressure formulation) are employed as the basic governing equations. However, since fluid mechanical problems essentially are governed by vortex dynamics, it is sometimes advantageous to use the concept of vorticity (defined as the curl of velocity). In vorticity form the Navier-Stokes equations may be formulated in different ways, using a vorticity-stream function formulation, a vorticity-velocity formulation or a vorticity-potential-stream function formulation. In [1] - [3] two different vorticity formulations were developed for 2D and 3D wind turbine flows. In [4] and [5] numerical techniques for avoiding pressure oscillations were developed when solving the velocity-pressure coupling system in the in-house EllipSys2D/3D code. In [6] - [8] different actuator disc techniques combined with CFD are presented. This includes actuator disc, actuator line and actuator surface techniques, which were developed to simulate flows past one or more wind turbines. In [9] and [10] a tip loss correction method that improves the conventional models was developed for use in combination with BEM or actuator/Navier-Stokes computations. A simple and efficient technique for determining the angle of attack for flow past a wind turbine rotor

  10. Unsteady aerodynamic modeling at high angles of attack using support vector machines

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-06-01

    Full Text Available Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as selection of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfying learning and generalization performance of LS-SVMs.

  11. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  12. Summary analysis of the Gemini entry aerodynamics

    Science.gov (United States)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  13. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  14. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    Science.gov (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  15. Exploring bird aerodynamics using radio-controlled models

    International Nuclear Information System (INIS)

    Hoey, Robert G

    2010-01-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.

  16. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    Science.gov (United States)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  17. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  18. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  19. Particle Methods in Bluff Body Aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj

    . The implementation is two-dimensional and sequential. The implementation is validated against the analytic solution to the Perlman test case and by free-space simulations of the onset flow around fixed and rotating circular cylinders and bluff body flows around bridge sections. Finally a three-dimensional vortex...... is important. This dissertation focuses on the use of vortex particle methods and computational efficiency. The work is divided into three parts. A novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics is presented. The method involves a model for describing oncoming...... section during the construction phase and the swimming motion of the medusa Aurelia aurita....

  20. Aerodynamics support of research instrument development

    Science.gov (United States)

    Miller, L. Scott

    1990-09-01

    A new velocimetry system is currently being developed at NASA LaRC. The device, known as a Doppler global velocimeter (DGV), can record three velocity components within a plane simultaneously and in near real time. To make measurements the DGV, like many other velocimetry systems, relies on the scattering of light from numerous small particles in a flow field. The particles or seeds are illuminated by a sheet of laser light and viewed by two CCD cameras. The scattered light from the particles will have a frequency which is a function of the source laser light frequency, the viewing angle, and most importantly the seed velocities. By determining the scattered light intensity the velocity can be measured at all points within the light sheet simultaneously. Upon completion of DGV component construction and initial check out a series of tests in the Basic Aerodynamic Research (wind) Tunnel (BART) are scheduled to verify instrument operation and accuracy. If the results are satisfactory, application of the DGV to flight measurements on the F-18 High Alpha Research Vehicle (HARV) are planned. The DGV verification test in the BART facility will utilize a 75 degree swept delta wing model. A major task undertaken this summer included evaluation of previous results for this model. A specific series of tests matching exactly the previous tests and exploring new DGV capabilities were developed and suggested. Another task undertaken was to study DGV system installation possibilities in the F-18 HARV aircraft. In addition, a simple seeding system modification was developed and utilized to make Particle Imaging Velocimetry (PIV) measurements in the BART facility.

  1. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG

    2016-01-01

    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  2. Comparison of Theodorsen's Unsteady Aerodynamic Forces with Doublet Lattice Generalized Aerodynamic Forces

    Science.gov (United States)

    Perry, Boyd, III

    2017-01-01

    This paper identifies the unsteady aerodynamic forces and moments for a typical section contained in the NACA Report No. 496, "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen. These quantities are named Theodorsen's aerodynamic forces (TAFs). The TAFs are compared to the generalized aerodynamic forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach number computed by the doublet lattice method. Agreement between TAFs and GAFs is very-good-to-excellent. The paper also reveals that simple proportionality relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others also hold for the real and imaginary parts of the corresponding TAFs.

  3. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  4. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  5. Aerodynamic analysis of an isolated vehicle wheel

    Science.gov (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  6. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Leśniewicz, P; Kulak, M; Karczewski, M

    2014-01-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  7. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  8. Recent Experiments at the Gottingen Aerodynamic Institute

    Science.gov (United States)

    Ackeret, J

    1925-01-01

    This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).

  9. Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties---Comparison of Approaches

    KAUST Repository

    Liu, Dishi; Litvinenko, Alexander; Schillings, Claudia; Schulz, Volker

    2015-01-01

    Uncertainty quantification in aerodynamic simulations calls for efficient numerical methods to reduce computational cost, especially for uncertainties caused by random geometry variations which involve a large number of variables. This paper compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and by point collocation, radial basis function and a gradient-enhanced version of kriging, and examines their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry which is parameterized by independent Gaussian variables. The results show that gradient-enhanced surrogate methods achieve better accuracy than direct integration methods with the same computational cost.

  10. Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties---Comparison of Approaches

    KAUST Repository

    Liu, Dishi

    2015-04-14

    Uncertainty quantification in aerodynamic simulations calls for efficient numerical methods to reduce computational cost, especially for uncertainties caused by random geometry variations which involve a large number of variables. This paper compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and by point collocation, radial basis function and a gradient-enhanced version of kriging, and examines their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry which is parameterized by independent Gaussian variables. The results show that gradient-enhanced surrogate methods achieve better accuracy than direct integration methods with the same computational cost.

  11. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  12. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 蒋林; 赵慧

    2016-01-01

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  13. Flapping wing flight can save aerodynamic power compared to steady flight.

    Science.gov (United States)

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  14. Research on aerodynamic means of isotope enrichment

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Talbot, L.; Willis, D.R.; Hurlbut, F.C.; Fiszdon, W.; Anderson, J.B.

    1978-03-01

    The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented

  15. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  16. Experimental investigation of turbine disk cavity aerodynamics and heat transfer

    Science.gov (United States)

    Daniels, W. A.; Johnson, B. V.

    1993-01-01

    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  17. Estimation of morphing airfoil shapes and aerodynamic loads using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan Scott

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape, as well as the aerodynamic loads, in real time. One approach is to utilize a new type of artificial hair sensors (AHS) developed at the Air Force Research Laboratory (AFRL) to determine the flow conditions surrounding deformable airfoils. In this study, AHS measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the AHS measurements. Such measurements will then be used in an artificial neural network (ANN) based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Additionally, an aerodynamic formulation based on the finite-state inflow theory has been developed to calculate the aerodynamic loads on thin airfoils with arbitrary camber deformations. Various aerodynamic properties approximated from the AHS/ANN system will be compared with the results of the finite-state inflow aerodynamic formulation in order to validate the approximation approach.

  18. Aerodynamic characteristics of flying fish in gliding flight.

    Science.gov (United States)

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  19. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator

    Science.gov (United States)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng

    2017-07-01

    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight

  20. Modification of Flow Structure Over a Van Model By Suction Flow Control to Reduce Aerodynamics Drag

    Directory of Open Access Journals (Sweden)

    Harinaldi Harinaldi

    2012-05-01

    Full Text Available Automobile aerodynamic studies are typically undertaken to improve safety and increase fuel efficiency as well as to  find new innovation in automobile technology to deal with the problem of energy crisis and global warming. Some car companies have the objective to develop control solutions that enable to reduce the aerodynamic drag of vehicle and  significant modification progress is still possible by reducing the mass, rolling friction or aerodynamic drag. Some flow  control method provides the possibility to modify the flow separation to reduce the development of the swirling structures around the vehicle. In this study, a family van is modeled with a modified form of Ahmed's body by changing the orientation of the flow from its original form (modified/reversed Ahmed body. This model is equipped with a suction on the rear side to comprehensively examine the pressure field modifications that occur. The investigation combines computational and experimental work. Computational approach used  a commercial software with standard k-epsilon flow turbulence model, and the objectives was  to determine the characteristics of the flow field and aerodynamic drag reduction that occurred in the test model. Experimental approach used load cell in order to validate the aerodynamic drag reduction obtained by computational approach. The results show that the application of a suction in the rear part of the van model give the effect of reducing the wake and the vortex formation. Futhermore, aerodynamic drag reduction close to 13.86% for the computational approach and 16.32% for the experimental have been obtained.

  1. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  2. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.

    1991-01-01

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  3. Influence of Icing on Bridge Cable Aerodynamics

    DEFF Research Database (Denmark)

    Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar

    2013-01-01

    In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions....

  4. Specialized computer architectures for computational aerodynamics

    Science.gov (United States)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  5. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  6. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations......-Raphson method, andsolutions converged to machine accuracy are found at small computing costs.The model has been validated against published measurementson various fan configurations,comprising two rotor-only fan stages, a counter-rotatingfan unit and a stator-rotor-stator stage.Comparisons of local...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...

  7. Computational Aerodynamic Modeling of Small Quadcopter Vehicles

    Science.gov (United States)

    Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.

    2017-01-01

    High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.

  8. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    and applied to laminar flows. An aero-acoustic formulation for turbulent flows was in [15] developed for Large Eddy Simulation (LES), Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) and Detached Eddy Simulation (DES). In [16] a collocated grid / finite volume method for aero-acoustic computations...... with Computational Aero-Acoustics (CAA). With the spread of wind turbines near urban areas, there is an increasing need for accurate predictions of aerodynamically generated noise. Indeed, noise has become one of the most important issues for further development of wind power, and the ability of controlling...... and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind...

  9. Compressor performance aerodynamics for the user

    CERN Document Server

    Gresh, Theodore

    2001-01-01

    Compressor Performance is a reference book and CD-ROM for compressor design engineers and compressor maintenance engineers, as well as engineering students. The book covers the full spectrum of information needed for an individual to select, operate, test and maintain axial or centrifugal compressors. It includes basic aerodynamic theory to provide the user with the ""how's"" and ""why's"" of compressor design. Maintenance engineers will especially appreciate the troubleshooting guidelines offered. Includes many example problems and reference data such as gas propert

  10. Uncertainty quantification and race car aerodynamics

    OpenAIRE

    Bradford, J; Montomoli, F; D'Ammaro, A

    2014-01-01

    28.04.15 KB. Ok to add accepted version to spiral, embargo expired Car aerodynamics are subjected to a number of random variables which introduce uncertainty into the downforce performance. These can include, but are not limited to, pitch variations and ride height variations. Studying the effect of the random variations in these parameters is important to predict accurately the car performance during the race. Despite their importance the assessment of these variations is difficult and it...

  11. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  12. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  13. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  14. Optimal Spacecraft Attitude Control Using Aerodynamic Torques

    Science.gov (United States)

    2007-03-01

    His design resembles a badminton shuttlecock and “uses passive aerodynamic drag torques to stabilize pitch and yaw” and active magnetic torque...Ravindran’s and Hughes’ ‘arrow-like’ design. Psiaki notes that “this arrow concept has been modified to become a badminton shuttlecock-type design...panels were placed to the rear of the center-of-mass, similar to a badminton shuttlecock, to provide passive stability about the pitch and yaw axes

  15. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  16. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Science.gov (United States)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  17. Aerodynamic sampling for landmine trace detection

    Science.gov (United States)

    Settles, Gary S.; Kester, Douglas A.

    2001-10-01

    Electronic noses and similar sensors show promise for detecting buried landmines through the explosive trace signals they emit. A key step in this detection is the sampler or sniffer, which acquires the airborne trace signal and presents it to the detector. Practicality demands no physical contact with the ground. Further, both airborne particulates and molecular traces must be sampled. Given a complicated minefield terrain and microclimate, this becomes a daunting chore. Our prior research on canine olfactory aerodynamics revealed several ways that evolution has dealt with such problems: 1) proximity of the sniffer to the scent source is important, 2) avoid exhaling back into the scent source, 3) use an aerodynamic collar on the sniffer inlet, 4) use auxiliary airjets to stir up surface particles, and 5) manage the 'impedance mismatch' between sniffer and sensor airflows carefully. Unfortunately, even basic data on aerodynamic sniffer performance as a function of inlet-tube and scent-source diameters, standoff distance, etc., have not been previously obtained. A laboratory-prototype sniffer was thus developed to provide guidance for landmine trace detectors. Initial experiments with this device are the subject of this paper. For example, a spike in the trace signal is observed upon starting the sniffer airflow, apparently due to rapid depletion of the available signal-laden air. Further, shielding the sniffer from disruptive ambient airflows arises as a key issue in sampling efficiency.

  18. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  19. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  20. Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars

    OpenAIRE

    Huemer, J.; Stickel, T.; Sagan, E.; Schwarz, M.; Wall, W.A.

    2015-01-01

    Recent approaches towards numerical investigations with CFD-Methods on unsteady aerodynamic loads of passenger cars identified major differences compared to steady state aerodynamic excitations. Furthermore innovative vehicle concepts like electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve...

  1. The Aerodynamic Performance of the 24 Inch Houck Configuration

    Science.gov (United States)

    2007-03-01

    Winglets “ Winglets are aerodynamic components, placed at the tip of a wing to improve its efficiency during cruise” (6). The purpose of the winglet ... winglets have, by and large, been accepted as effective fuel-saving aerodynamic devices by both small and large aircraft manufacturers. 12 2.6... Winglet Airfoil for Low-Speed Aircraft.” AIAA 19th Applied Aerodynamics Conference, 11-14 June, 2001. AIAA Paper 2001-2406. 22. Mock, R. M. “The

  2. The Aerodynamic Performance of the Houck Configuration Flow Guides

    Science.gov (United States)

    2007-06-01

    efficiency factor (e = 1 for elliptical wing). 2.5 Winglets A winglet is best described by Jean Chattot’s quote: “ Winglets are aerodynamic components...spite of all the disadvantages, many aviation manufacturers have accepted winglets as a proven fuel- saving aerodynamic device (4). A study...conducted by Smith and Campbell in 1996 showed the effect of winglets on aerodynamic efficiency of a low-aspect-ratio model with respect to lift-to-drag

  3. Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation

    Science.gov (United States)

    Saini, Aditya

    The identification of inflow air data quantities such as airspeed, angle of attack, and local lift coefficient on various sections of a wing or rotor blade provides the capability for load monitoring, aerodynamic diagnostics, and control on devices ranging from air vehicles to wind turbines. Real-time measurement of aerodynamic parameters during flight provides the ability to enhance aircraft operating capabilities while preventing dangerous stall situations. This thesis presents a novel Leading-Edge Flow Sensing (LEFS) algorithm for the determination of the air -data parameters using discrete surface pressures measured at a few ports in the vicinity of the leading edge of a wing or blade section. The approach approximates the leading-edge region of the airfoil as a parabola and uses pressure distribution from the exact potential-ow solution for the parabola to _t the pressures measured from the ports. Pressures sensed at five discrete locations near the leading edge of an airfoil are given as input to the algorithm to solve the model using a simple nonlinear regression. The algorithm directly computes the inflow velocity, the stagnation-point location, section angle of attack and lift coefficient. The performance of the algorithm is assessed using computational and experimental data in the literature for airfoils under different ow conditions. The results show good correlation between the actual and predicted aerodynamic quantities within the pre-stall regime, even for a rotating blade section. Sensing the deviation of the aerodynamic behavior from the linear regime requires additional information on the location of ow separation on the airfoil surface. Bio-inspired artificial hair sensors were explored as a part of the current research for stall detection. The response of such artificial micro-structures can identify critical ow characteristics, which relate directly to the stall behavior. The response of the microfences was recorded via an optical microscope for

  4. Study of Swept Angle Effects on Grid Fins Aerodynamics Performance

    Science.gov (United States)

    Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad

    2018-04-01

    Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.

  5. Prediction and Validation of Mars Pathfinder Hypersonic Aerodynamic Data Base

    Science.gov (United States)

    Gnoffo, Peter A.; Braun, Robert D.; Weilmuenster, K. James; Mitcheltree, Robert A.; Engelund, Walter C.; Powell, Richard W.

    1998-01-01

    Postflight analysis of the Mars Pathfinder hypersonic, continuum aerodynamic data base is presented. Measured data include accelerations along the body axis and axis normal directions. Comparisons of preflight simulation and measurements show good agreement. The prediction of two static instabilities associated with movement of the sonic line from the shoulder to the nose and back was confirmed by measured normal accelerations. Reconstruction of atmospheric density during entry has an uncertainty directly proportional to the uncertainty in the predicted axial coefficient. The sensitivity of the moment coefficient to freestream density, kinetic models and center-of-gravity location are examined to provide additional consistency checks of the simulation with flight data. The atmospheric density as derived from axial coefficient and measured axial accelerations falls within the range required for sonic line shift and static stability transition as independently determined from normal accelerations.

  6. Aerodynamics and Percolation: Unfolding Laminar Separation Bubble on Airfoils

    Science.gov (United States)

    Traphan, Dominik; Wester, Tom T. B.; Gülker, Gerd; Peinke, Joachim; Lind, Pedro G.

    2018-04-01

    As a fundamental phenomenon of fluid mechanics, recent studies suggested laminar-turbulent transition belonging to the universality class of directed percolation. Here, the onset of a laminar separation bubble on an airfoil is analyzed in terms of the directed percolation model using particle image velocimetry data. Our findings indicate a clear significance of percolation models in a general flow situation beyond fundamental ones. We show that our results are robust against fluctuations of the parameter, namely, the threshold of turbulence intensity, that maps velocimetry data into binary cells (turbulent or laminar). In particular, this percolation approach enables the precise determination of the transition point of the laminar separation bubble, an important problem in aerodynamics.

  7. Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2017-04-01

    Full Text Available This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP allocator to generate torque commanded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effectiveness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.

  8. Study on the aerodynamic behavior of a UAV with an applied seeder for agricultural practices

    Science.gov (United States)

    Felismina, Raimundo; Silva, Miguel; Mateus, Artur; Malça, Cândida

    2017-06-01

    It is irrefutable that the use of Unmanned Airborne Vehicle Systems (UAVs) in agricultural tasks and on the analysis of health and vegetative conditions represents a powerful tool in modern agriculture. To contribute to the growth of the agriculture economic sector a seeder to be coupled to any type of UAV was previously developed and designed by the authors. This seeder allows for the deposition of seeds with positional accuracy, i.e., seeds are accurately deposited at pre-established distances between plants [1]. This work aims at analyzing the aerodynamic behavior of UAV/Seeder assembly to determine the suitable inclination - among 0°, 15° and 30° - for its takeoff and for its motion during the seeding operation and, in turn, to define the suitable flight plan that increases the batteries autonomy. For this the ANSYS® FLUENT computational tool was used to simulate a wind tunnel which has as principle the Navier-Stokes differential equations, that designates the fluid flow around the UAV/Seeder assembly. The aerodynamic results demonstrated that for take-off the UAV inclination of 30° is the aerodynamically most favorable position due to the lower aerodynamic drag during the climb. Concerning flying motion during the seeding procedure the UAV inclination of 0° is that which leads to lower UAV/Seeder frontal area and drag coefficient.

  9. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  10. Aerodynamic drag of modern soccer balls.

    Science.gov (United States)

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  11. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    Science.gov (United States)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  12. Wind Turbines: Unsteady Aerodynamics and Inflow Noise

    DEFF Research Database (Denmark)

    Broe, Brian Riget

    in order to estimate the lift fluctuations due to unsteady aerodynamics (Sears, W. R.: 1941, Some aspects of non-stationary airfoil theory and its practical application; Goldstein, M. E. and Atassi, H. M.: 1976, A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust...... (Sears, W. R.: 1941; and Graham, J. M. R.: 1970). An acoustic model is investigated using a model for the lift distribution as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil in a turbulent stream). The two models for lift distribution are used in the acoustic model. One of the models...

  13. Modelling of Aerodynamic Drag in Alpine Skiing

    OpenAIRE

    Elfmark, Ola

    2017-01-01

    Most of the breaking force in the speed disciplines in alpine skiing is caused by the aerodynamic drag, and a better knowledge of the drag force is therefore desirable to gain time in races. In this study a complete database of how the drag area (CDA) changes, with respect to the different body segments, was made and used to explain a complete body motion in alpine skiing. Three experiments were performed in the wind tunnel at NTNU, Trondheim. The database from a full body measurement on an a...

  14. Aerodynamic Benchmarking of the Deepwind Design

    DEFF Research Database (Denmark)

    Bedona, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    2015-01-01

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...... the blade solicitation and the cost of energy. Different parameters are considered for the benchmarking study. The DeepWind blade is characterized by a shape similar to the Troposkien geometry but asymmetric between the top and bottom parts: this shape is considered as a fixed parameter in the benchmarking...

  15. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  16. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  17. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  18. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  19. Variable volume combustor with aerodynamic support struts

    Science.gov (United States)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  20. Aerodynamics profile not in stationary flow

    Directory of Open Access Journals (Sweden)

    А.А. Загорулько

    2006-02-01

    Full Text Available  Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.

  1. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    Science.gov (United States)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  2. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    Science.gov (United States)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  3. Aerodynamic models for a Darrieus wind turbine

    Science.gov (United States)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.; Delclaux, F.

    1982-11-01

    Various models proposed for the aerodynamics of Darrieus wind turbines are reviewed. The magnitude of the L/D ratio for a Darrieus rotor blade is dependent on the profile, the Re, boundary layer characteristics, and the three-dimensional flow effects. The aerodynamic efficiency is theoretically the Betz limit, and the interference of one blade with another is constrained by the drag force integrated over all points on the actuator disk. A single streamtube model can predict the power available in a Darrieus, but the model lacks definition of the flow structure and the cyclic stresses. Techniques for calculating the velocity profiles and the consequent induced velocity at the blades are presented. The multiple streamtube theory has been devised to account for the repartition of the velocity in the rotor interior. The model has been expanded as the double multiple streamtube theory at Sandia Laboratories. Futher work is necessary, however, to include the effects of dynamic decoupling at high rotation speeds and to accurately describe blade behavior.

  4. Aerodynamic analysis of formula student car

    Science.gov (United States)

    Dharmawan, Mohammad Arief; Ubaidillah, Nugraha, Arga Ahmadi; Wijayanta, Agung Tri; Naufal, Brian Aqif

    2018-02-01

    Formula Society of Automotive Engineering (FSAE) is a contest between ungraduated students to create a high-performance formula student car that completes the regulation. Body and the other aerodynamic devices are significant because it affects the drag coefficient and the down force of the car. The drag coefficient is a measurement of the resistance of an object in a fluid environment, a lower the drag coefficient means it will have a less drag force. Down force is a force that pushes an object to the ground, in the car more down force means more grip. The objective of the research was to study the aerodynamic comparison between the race vehicle when attached to the wings and without it. These studies were done in three dimensional (3D) computational fluid dynamic (CFD) simulation method using the Autodesk Flow Design software. These simulations were done by conducted in 5 different velocities. The results of those simulations are by attaching wings on race vehicle has drag coefficient 0.728 and without wings has drag coefficient 0.56. Wings attachment will decrease the drag coefficient about 23 % and also the contour pressure and velocity were known at these simulations.

  5. Electro-aerodynamic field aided needleless electrospinning.

    Science.gov (United States)

    Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong

    2018-06-08

    Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h -1 ), by 350% in comparison to the setup without auxiliary field (1.0 g h -1 ), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10-30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.

  6. Electro-aerodynamic field aided needleless electrospinning

    Science.gov (United States)

    Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong

    2018-06-01

    Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h‑1), by 350% in comparison to the setup without auxiliary field (1.0 g h‑1), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10–30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.

  7. Aerodynamic Simulation of the MEXICO Rotor

    International Nuclear Information System (INIS)

    Herraez, I; Medjroubi, W; Peinke, J; Stoevesandt, B

    2014-01-01

    CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed

  8. [Aerodynamic focusing of particles and heavy molecules

    International Nuclear Information System (INIS)

    de la Mora, J.F.

    1990-01-01

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m p some 3.6 x 10 5 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/m p ) times the nozzle diameter d n . But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs

  9. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  10. Reliability and Applicability of Aerodynamic Measures in Dysphonia Assessment

    Science.gov (United States)

    Yiu, Edwin M.-L.; Yuen, Yuet-Ming; Whitehill, Tara; Winkworth, Alison

    2004-01-01

    Aerodynamic measures are frequently used to analyse and document pathological voices. Some normative data are available for speakers from the English-speaking population. However, no data are available yet for Chinese speakers despite the fact that they are one of the largest populations in the world. The high variability of aerodynamic measures…

  11. Some Features of Aerodynamics of Cyclonic Chamber with Free Exit

    Directory of Open Access Journals (Sweden)

    A. N. Orekhov

    2007-01-01

    Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.

  12. Aerodynamic tailoring of the Learjet Model 60 wing

    Science.gov (United States)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  13. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  14. Minimum-domain impulse theory for unsteady aerodynamic force

    Science.gov (United States)

    Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.

    2018-01-01

    We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.

  15. Evaluation of aerodynamic derivatives from a magnetic balance system

    Science.gov (United States)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  16. A finite wake theory for two-dimensional rotary wing unsteady aerodynamics

    OpenAIRE

    Couch, Mark A.

    1993-01-01

    Approved for public release; distribution is unlimited. The unsteady aerodynamic forces and moments of an oscillating airfoil for the fixed wing case were determined by Theodorsen along with the development of a lift deficiency function. Loewy subsequently developed an analogous lift deficiency function for the rotary wing case in which there are an infinite number of layers of shed vorticity, or wakes, below the reference airfoil. With the advent of computer panel codes that calculate the...

  17. Fluorescence spectral properties of outer antenna LHC II

    CERN Document Server

    He Jun Fang; Zhang, Shu; He Fang Tao; Ren Zhao You; Li Liang Bi; Kuang Ting Yun

    2002-01-01

    Outer antenna LHC II acts to absorb and transfer energy for photosynthesis. The authors studied the fluorescence properties of LHC II of spinach with scanning imaging fluorescence spectroscopy. After it had been excited by 514.5 nm laser, the integral fluorescence spectrum of LHC II was detected. It was shown that energy transfer existed between carotenoid and chlorophyll. Seven bands of LHC II fluorescence emission were resolved by Gauss combination, viz. 656.7, 664.6, 671.5, 677.2, 683.5, 689.6, 695.3 nm, and the percentages of them were 3.0%, 13.1%,13.3%, 21.1%, 13.2%, 33.3%, 3.0% respectively. The emission of 658.7 nm was attributed to chlorophyll b, the other emission bands were produced by chlorophyll a molecules with the maximum absorption 662, 670/671, 676, 680 nm and over 690 nm. The band 656.7 nm, whose percentage was 3.0%, shows that the most energy was absorbed by chlorophyll a. The percentage of band 689.6 nm was the most, which was possibly correlated with one type of self protective mechanism o...

  18. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging

    Science.gov (United States)

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226

  19. The development of a capability for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    Science.gov (United States)

    Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward

    1989-01-01

    A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.

  20. Active aerodynamic stabilisation of long suspension bridges

    DEFF Research Database (Denmark)

    Nissen, Henrik Ditlev; Sørensen, Paul Haase; Jannerup, Ole Erik

    2004-01-01

    The paper describes the addition of actively controlled appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suppension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to make...... use of control analysis and design techniques, a linear model of the structural and aerodynamic motion around equilibriun is developed. The model is validated through comparison with finite element calculations and wind tunnel experimental data on the Great Belt East Bridge in Denmark. The developed...... active control scheme is local in that the flap control signal at a given longitudinal position along the bridge only depends on local motion measurements. The analysis makes use of the Nyquist stability criteria and an anlysis of the sensitivity function for stability analysis. The analysis shows...

  1. Improving the efficiency of aerodynamic shape optimization

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1994-01-01

    The computational efficiency of an aerodynamic shape optimization procedure that is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid-point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit methodology to calculate the highly converged flow solutions that are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. Practically identical optimization results are obtained that are independent of the method used to represent the surface. A substantial factor of 8 decrease in computational time for the optimization process is achieved by implementing both of the design procedure improvements.

  2. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  3. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    Science.gov (United States)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  4. Aerodynamics and vortical structures in hovering fruitflies

    Science.gov (United States)

    Meng, Xue Guang; Sun, Mao

    2015-03-01

    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  5. Dynamic stability of an aerodynamically efficient motorcycle

    Science.gov (United States)

    Sharma, Amrit; Limebeer, David J. N.

    2012-08-01

    Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.

  6. Aerodynamic properties of turbulent combustion fields

    Science.gov (United States)

    Hsiao, C. C.; Oppenheim, A. K.

    1985-01-01

    Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

  7. Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2012-11-01

    Full Text Available Aerodynamic roughness height (Zom is a key parameter required in several land surface hydrological models, since errors in heat flux estimation are largely dependent on optimization of this input. Despite its significance, it remains an uncertain parameter which is not readily determined. This is mostly because of non-linear relationship in Monin-Obukhov similarity (MOS equations and uncertainty of vertical characteristic of vegetation in a large scale. Previous studies often determined aerodynamic roughness using a minimization of cost function over MOS relationship or linear regression over it, traditional wind profile method, or remotely sensed vegetation index. However, these are complicated procedures that require a high accuracy for several other related parameters embedded in serveral equations including MOS. In order to simplify this procedure and reduce the number of parameters in need, this study suggests a new approach to extract aerodynamic roughness parameter from single or two heat flux measurements analyzed via Ensemble Kalman Filter (EnKF that affords non-linearity. So far, to our knowledge, no previous study has applied EnKF to aerodynamic roughness estimation, while the majority of data assimilation study have paid attention to updates of other land surface state variables such as soil moisture or land surface temperature. The approach of this study was applied to grassland in semi-arid Tibetan Plateau and maize on moderately wet condition in Italy. It was demonstrated that aerodynamic roughness parameter can be inversely tracked from heat flux EnKF final analysis. The aerodynamic roughness height estimated in this approach was consistent with eddy covariance method and literature value. Through a calibration of this parameter, this adjusted the sensible heat previously overestimated and latent heat flux previously underestimated by the original Surface Energy Balance System (SEBS model. It was considered that

  8. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating

  9. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    Science.gov (United States)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  10. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    Pindado, Santiago; Pérez, Imanol; Aguado, Maite

    2013-01-01

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  11. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    Science.gov (United States)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  12. Experimental Investigation of Unsteady Aerodynamic Forces on Airfoil in Harmonic Translatory Motion

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Sørensen, Jens Nørkær

    2003-01-01

    The present paper describes the main results from an experimental investigation of the unsteady aerodynamic forces on a NACA 0015 airfoil subject to 1-degree-of-freedom (DOF) harmonic translatory motion. The focus of the experimental investigations was to determine the factors that influence...... maximum lift for both stationary and moving airfoil configurations. The mean as well as the dynamic characteristics of the different stall levels were found to differ from each other. An investigation of the negative aerodynamically damped cases showed that the damping decrease as the reduced frequency...... is decreased. Comparison between the experimental data, 2D Navier-Stokes computations and two commonly used dynamic stall models reveal that all models failed to reproduce the dynamic characteristics of the flow for incidences above maximum lift, however the Navier-Stokes computations generally captured...

  13. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    Science.gov (United States)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  14. Simulation of airflow and aerodynamic forces acting on a commercial turbine ventilator

    International Nuclear Information System (INIS)

    Farahani, A.S.; Nor Mariah Adam; Khairol Anuar

    2009-01-01

    Full text: This study is concerned with performing simulation of airflow using Computational Fluid Dynamics (CFD) technique code name FLUENT so as to visualize the flow behavior around and within turbine ventilator in addition to determining the aerodynamic forces acting on turbine ventilator during operation and comparing the simulated results to the wind tunnel experiment. To achieve this, Realizable k-ε and RSM turbulence models are used by taking advantage of moving mesh method to simulate the rotation of turbine ventilator and the consequent results are obtained through the sequential process which ensures accuracy of the computations. The results demonstrated that, the RSM turbulence model shows the best performance on flow visualization and predicting the aerodynamic forces acting on a turbine ventilator. Results from this work would lead us to a noticeable increase in efficiency of future turbine ventilator by enhancing the shape of inner vanes, and redesign them using CFD technique. (author)

  15. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  16. Estimation of morphing airfoil shape and aerodynamic load using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan S.; Su, Weihua; Thapa Magar, Kaman S.; Reich, Gregory W.

    2016-04-01

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape as well as the aerodynamic loads at all times. One approach is to utilize a new type of artificial hair sensors developed at the Air Force Research Laboratory to determine the flow conditions surrounding deformable airfoils. In this work, the hair sensor measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the hair sensor measurements. Such measurements will then be used in an artificial neural network based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Various aerodynamic and geometrical properties approximated from the artificial hair sensor and artificial neural network system will be compared with the results of XFoil in order to validate the approximation approach.

  17. Numerical simulation of aerodynamic performance of a couple multiple units high-speed train

    Science.gov (United States)

    Niu, Ji-qiang; Zhou, Dan; Liu, Tang-hong; Liang, Xi-feng

    2017-05-01

    In order to determine the effect of the coupling region on train aerodynamic performance, and how the coupling region affects aerodynamic performance of the couple multiple units trains when they both run and pass each other in open air, the entrance of two such trains into a tunnel and their passing each other in the tunnel was simulated in Fluent 14.0. The numerical algorithm employed in this study was verified by the data of scaled and full-scale train tests, and the difference lies within an acceptable range. The results demonstrate that the distribution of aerodynamic forces on the train cars is altered by the coupling region; however, the coupling region has marginal effect on the drag and lateral force on the whole train under crosswind, and the lateral force on the train cars is more sensitive to couple multiple units compared to the other two force coefficients. It is also determined that the component of the coupling region increases the fluctuation of aerodynamic coefficients for each train car under crosswind. Affected by the coupling region, a positive pressure pulse was introduced in the alternating pressure produced by trains passing by each other in the open air, and the amplitude of the alternating pressure was decreased by the coupling region. The amplitude of the alternating pressure on the train or on the tunnel was significantly decreased by the coupling region of the train. This phenomenon did not alter the distribution law of pressure on the train and tunnel; moreover, the effect of the coupling region on trains passing by each other in the tunnel is stronger than that on a single train passing through the tunnel.

  18. Determination of extra trajectory parameters of projectile layout motion

    Science.gov (United States)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.

    2017-11-01

    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  19. Study of aerodynamical and mechanical behaviours of Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Hadj Lakhdar Univ., Batna (Algeria). Applied Energetic Physic Laboratory

    2007-07-01

    Although the efficiency of a Savonius rotor is not as high conventional propeller-type and Darrieus wind turbines, it has the advantage of simple construction; acceptance of wind from various directions, thereby eliminating the need for reorientation; high starting torque; and, relatively low operating speed. These advantages outweigh its low efficiency and make it an ideal economic source to meet small-scale power requirements. The instantaneous pressure field on the blades surface was determined in order to analyze the flow around a Savonius rotor. A two dimensional analysis was used to determine the aerodynamic strengths, which led to underline the Magnus effect and to vibrations on the rotor. An anti-vibratory system was also proposed to stabilize or avoid these vibrations. The drag and lift coefficients were found to be in good agreement with results reported in literature. This study identified an inversion lift effect on a Savonius rotor, which closely resembled the Reynolds number, particularly in the peripheral speed coefficient values. It was shown that the machine does not move in accordance with the Magnus effect. 22 refs., 1 tab., 9 figs.

  20. Aerodynamic and sound intensity measurements in tracheoesophageal voice

    NARCIS (Netherlands)

    Grolman, Wilko; Eerenstein, Simone E. J.; Tan, Frédérique M. L.; Tange, Rinze A.; Schouwenburg, Paul F.

    2007-01-01

    BACKGROUND: In laryngectomized patients, tracheoesophageal voice generally provides a better voice quality than esophageal voice. Understanding the aerodynamics of voice production in patients with a voice prosthesis is important for optimizing prosthetic designs and successful voice rehabilitation.

  1. Future requirements and roles of computers in aerodynamics

    Science.gov (United States)

    Gregory, T. J.

    1978-01-01

    While faster computers will be needed to make solution of the Navier-Stokes equations practical and useful, most all of the other aerodynamic solution techniques can benefit from faster computers. There is a wide variety of computational and measurement techniques, the prospect of more powerful computers permits extension and an enhancement across all aerodynamic methods, including wind-tunnel measurement. It is expected that, as in the past, a blend of methods will be used to predict aircraft aerodynamics in the future. These will include methods based on solution of the Navier-Stokes equations and the potential flow equations as well as those based on empirical and measured results. The primary flows of interest in aircraft aerodynamics are identified, the predictive methods currently in use and/or under development are reviewed and two of these methods are analyzed in terms of the computational resources needed to improve their usefulness and practicality.

  2. High-Fidelity Aerodynamic Design with Transition Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to significantly improve upon the integration (performed in Phase 1) of a new sweep/taper...

  3. High-Fidelity Aerodynamic Design with Transition Prediction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to combine a new sweep/taper integrated-boundary-layer (IBL) code that includes transition...

  4. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  5. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...

  6. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  7. Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a modern panel code for calculation of steady and unsteady aerodynamic loads needed for dynamic servoelastic (DSE) analysis of flight...

  8. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  9. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  10. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient s...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics.......In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...

  11. Test-retest reliability for aerodynamic measures of voice.

    Science.gov (United States)

    Awan, Shaheen N; Novaleski, Carolyn K; Yingling, Julie R

    2013-11-01

    The purpose of this study was to investigate the intrasubject reliability of aerodynamic characteristics of the voice within typical/normal speakers across testing sessions using the Phonatory Aerodynamic System (PAS 6600; KayPENTAX, Montvale, NJ). Participants were 60 healthy young adults (30 males and 30 females) between the ages 18 and 31 years with perceptually typical voice. Participants were tested using the PAS 6600 (Phonatory Aerodynamic System) on two separate days with approximately 1 week between each session at approximately the same time of day. Four PAS protocols were conducted (vital capacity, maximum sustained phonation, comfortable sustained phonation, and voicing efficiency) and measures of expiratory volume, maximum phonation time, mean expiratory airflow (during vowel production) and target airflow (obtained via syllable repetition), peak air pressure, aerodynamic power, aerodynamic resistance, and aerodynamic efficiency were obtained during each testing session. Associated acoustic measures of vocal intensity and frequency were also collected. All phonations were elicited at comfortable pitch and loudness. All aerodynamic and associated variables evaluated in this study showed useable test-retest reliability (ie, intraclass correlation coefficients [ICCs] ≥ 0.60). A high degree of mean test-retest reliability was found across all subjects for aerodynamic and associated acoustic measurements of vital capacity, maximum sustained phonation, glottal resistance, and vocal intensity (all with ICCs > 0.75). Although strong ICCs were observed for measures of glottal power and mean expiratory airflow in males, weaker overall results for these measures (ICC range: 0.60-0.67) were observed in females subjects and sizable coefficients of variation were observed for measures of power, resistance, and efficiency in both men and women. Differences in degree of reliability from measure to measure were revealed in greater detail using methods such as ICCs and

  12. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  13. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  14. Self-starting aerodynamics analysis of vertical axis wind turbine

    OpenAIRE

    Jianyang Zhu; Hailin Huang; Hao Shen

    2015-01-01

    Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter defi...

  15. An explicit multi-time-stepping algorithm for aerodynamic flows

    OpenAIRE

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.

  16. Aerodynamic models for high-amplitude, low reynolds flapping airfoils

    OpenAIRE

    Morales Tirado, Elisa

    2015-01-01

    In this thesis a new aerodynamic model of insect-like flapping flight for micro air vehicles has been developed. The New Predicted Aerodynamic Model (NPAM) was based on the model described by Weis-Fogh model in Energetics of Hovering Flight in Hummingbirds and Drosophila. In order to achieved the NPAM some variations were introduced regarding the geometry of the problem under study and also some improvements was done to the theory developed by Weis-Fogh. To have the required ...

  17. Application of CFD technique for HYFLEX aerodynamic design

    OpenAIRE

    Yamamoto, Yukimitsu; Watanabe, Shigeya; Ishiguro, Mitsuo; Ogasawara, Ko; 山本 行光; 渡辺 重哉; 石黒 満津夫; 小笠原 宏

    1994-01-01

    An overview of the application of Computational Fluid Dynamics (CFD) technique for the HYFLEX (Hypersonic Flight Experiment) aerodynamic design by using the numerical simulation codes in the supersonic and hypersonic speed ranges is presented. Roles of CFD required to make up for the short term of development and small amount of the wind tunnel test cases, application in the HYFLEX aerodynamic design and their application methods are described. The procedure of CFD code validation by the expe...

  18. Progress in vehicle aerodynamics and thermal management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Jochen (ed.) [Stuttgart Univ. (DE). Inst. fuer Kraftfahrwesen und Verbrennungsmotoren (IVK); Forschungsinstitut fuer Kraftfahrwesen und Fahrzeugmotoren (FKFS), Stuttgart (Germany)

    2010-07-01

    Vehicle aerodynamics and thermal management are subjects of increasing importance for automotive development especially regarding the necessity to reduce the energy consumption of the vehicle as well as the need to improve ist comfort. This book is intended for engineers, physicists, and mathematicians who work on vehicle aerodynamics. It is also addressed to people in research organizations, at universities and agencies. It may be of interest to technical journalists and to students. (orig.)

  19. The aerodynamic design of an advanced rotor airfoil

    Science.gov (United States)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  20. Multidisciplinary Aerodynamic Design of a Rotor Blade for an Optimum Rotor Speed Helicopter

    Directory of Open Access Journals (Sweden)

    Jiayi Xie

    2017-06-01

    Full Text Available The aerodynamic design of rotor blades is challenging, and is crucial for the development of helicopter technology. Previous aerodynamic optimizations that focused only on limited design points find it difficult to balance flight performance across the entire flight envelope. This study develops a global optimum envelope (GOE method for determining blade parameters—blade twist, taper ratio, tip sweep—for optimum rotor speed helicopters (ORS-helicopters, balancing performance improvements in hover and various freestream velocities. The GOE method implements aerodynamic blade design by a bi-level optimization, composed of a global optimization step and a secondary optimization step. Power loss as a measure of rotor performance is chosen as the objective function, referred to as direct power loss (DPL in this study. A rotorcraft comprehensive code for trim simulation with a prescribed wake method is developed. With the application of the GOE method, a DPL reduction of as high as 16.7% can be achieved in hover, and 24% at high freestream velocity.

  1. Comparison of Computational Approaches for Rapid Aerodynamic Assessment of Small UAVs

    Science.gov (United States)

    Shafer, Theresa C.; Lynch, C. Eric; Viken, Sally A.; Favaregh, Noah; Zeune, Cale; Williams, Nathan; Dansie, Jonathan

    2014-01-01

    Computational Fluid Dynamic (CFD) methods were used to determine the basic aerodynamic, performance, and stability and control characteristics of the unmanned air vehicle (UAV), Kahu. Accurate and timely prediction of the aerodynamic characteristics of small UAVs is an essential part of military system acquisition and air-worthiness evaluations. The forces and moments of the UAV were predicted using a variety of analytical methods for a range of configurations and conditions. The methods included Navier Stokes (N-S) flow solvers (USM3D, Kestrel and Cobalt) that take days to set up and hours to converge on a single solution; potential flow methods (PMARC, LSAERO, and XFLR5) that take hours to set up and minutes to compute; empirical methods (Datcom) that involve table lookups and produce a solution quickly; and handbook calculations. A preliminary aerodynamic database can be developed very efficiently by using a combination of computational tools. The database can be generated with low-order and empirical methods in linear regions, then replacing or adjusting the data as predictions from higher order methods are obtained. A comparison of results from all the data sources as well as experimental data obtained from a wind-tunnel test will be shown and the methods will be evaluated on their utility during each portion of the flight envelope.

  2. The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils

    Science.gov (United States)

    Miller, M.; Slew, K. Lee; Matida, E.

    2016-09-01

    With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.

  3. Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil

    Science.gov (United States)

    Xia, X.; Mohseni, K.

    2017-11-01

    Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.

  4. Aerodynamics of Ventilation in Termite Mounds

    Science.gov (United States)

    Bailoor, Shantanu; Yaghoobian, Neda; Turner, Scott; Mittal, Rajat

    2017-11-01

    Fungus-cultivating termites collectively build massive, complex mounds which are much larger than the size of an individual termite and effectively use natural wind and solar energy, as well as the energy generated by the colony's own metabolic activity to maintain the necessary environmental condition for the colony's survival. We seek to understand the aerodynamics of ventilation and thermoregulation of termite mounds through computational modeling. A simplified model accounting for key mound features, such as soil porosity and internal conduit network, is subjected to external draft conditions. The role of surface flow conditions in the generation of internal flow patterns and the ability of the mound to transport gases and heat from the nursery are examined. The understanding gained from our study could be used to guide sustainable bio-inspired passive HVAC system design, which could help optimize energy utilization in commercial and residential buildings. This research is supported by a seed Grant from the Environment, Energy Sustainability and Health Institute of the Johns Hopkins University.

  5. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)

    1997-08-01

    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  6. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-08-01

    The advances to be made in aerodynamic prediction requires a deeper understanding of the physical processes occurring at the blades, and in the wake, of a wind turbine. This can only come from a continuing process of experimental observation and theoretical analysis. The present symposium presents the opportunity to do this by exchange of data from experiments and simulations, and by discussion of new or modified wake theories. The symposium will consists of a number of presentations by invited speakers and conclude with a summary of the talks and a round-the-table technical discussion. The talks offer the change to present behaviour from full-scale and laboratory experiments that are not explained by existing prediction codes. In addition, presentations are welcome on new modelling techniques or formulations that could make existing codes more accurate, less computationally intensive and easier to use. This symposium is intended to provide a starting point for the formulation of advanced rotor performance methods, which will improve the accuracy of load and performance prediction codes useful to the wind turbine industry. (au)

  7. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    Science.gov (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  8. Novel Aerodynamic Design for Formula SAE Vehicles

    Science.gov (United States)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan

    2017-11-01

    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  9. The aerodynamic signature of running spiders.

    Directory of Open Access Journals (Sweden)

    Jérôme Casas

    Full Text Available Many predators display two foraging modes, an ambush strategy and a cruising mode. These foraging strategies have been classically studied in energetic, biomechanical and ecological terms, without considering the role of signals produced by predators and perceived by prey. Wolf spiders are a typical example; they hunt in leaf litter either using an ambush strategy or by moving at high speed, taking over unwary prey. Air flow upstream of running spiders is a source of information for escaping prey, such as crickets and cockroaches. However, air displacement by running arthropods has not been previously examined. Here we show, using digital particle image velocimetry, that running spiders are highly conspicuous aerodynamically, due to substantial air displacement detectable up to several centimetres in front of them. This study explains the bimodal distribution of spider's foraging modes in terms of sensory ecology and is consistent with the escape distances and speeds of cricket prey. These findings may be relevant to the large and diverse array of arthropod prey-predator interactions in leaf litter.

  10. Determining

    Directory of Open Access Journals (Sweden)

    Bahram Andarzian

    2015-06-01

    Full Text Available Wheat production in the south of Khuzestan, Iran is constrained by heat stress for late sowing dates. For optimization of yield, sowing at the appropriate time to fit the cultivar maturity length and growing season is critical. Crop models could be used to determine optimum sowing window for a locality. The objectives of this study were to evaluate the Cropping System Model (CSM-CERES-Wheat for its ability to simulate growth, development, grain yield of wheat in the tropical regions of Iran, and to study the impact of different sowing dates on wheat performance. The genetic coefficients of cultivar Chamran were calibrated for the CSM-CERES-Wheat model and crop model performance was evaluated with experimental data. Wheat cultivar Chamran was sown on different dates, ranging from 5 November to 9 January during 5 years of field experiments that were conducted in the Khuzestan province, Iran, under full and deficit irrigation conditions. The model was run for 8 sowing dates starting on 25 October and repeated every 10 days until 5 January using long-term historical weather data from the Ahvaz, Behbehan, Dezful and Izeh locations. The seasonal analysis program of DSSAT was used to determine the optimum sowing window for different locations as well. Evaluation with the experimental data showed that performance of the model was reasonable as indicated by fairly accurate simulation of crop phenology, biomass accumulation and grain yield against measured data. The normalized RMSE were 3%, 2%, 11.8%, and 3.4% for anthesis date, maturity date, grain yield and biomass, respectively. Optimum sowing window was different among locations. It was opened and closed on 5 November and 5 December for Ahvaz; 5 November and 15 December for Behbehan and Dezful;and 1 November and 15 December for Izeh, respectively. CERES-Wheat model could be used as a tool to evaluate the effect of sowing date on wheat performance in Khuzestan conditions. Further model evaluations

  11. Phonation Quotient in Women: A Measure of Vocal Efficiency Using Three Aerodynamic Instruments.

    Science.gov (United States)

    Joshi, Ashwini; Watts, Christopher R

    2017-03-01

    The purpose of this study was to examine measures of vital capacity and phonation quotient across three age groups in women using three different aerodynamic instruments representing low-tech and high-tech options. This study has a prospective, repeated measures design. Fifteen women in each age group of 25-39 years, 40-59 years, and 60-79 years were assessed using maximum phonation time and vital capacity obtained from three aerodynamic instruments: a handheld analog windmill type spirometer, a handheld digital spirometer, and the Phonatory Aerodynamic System (PAS), Model 6600. Phonation quotient was calculated using vital capacity from each instrument. Analyses of variance were performed to test for main effects of the instruments and age on vital capacity and derived phonation quotient. Pearson product moment correlation was performed to assess measurement reliability (parallel forms) between the instruments. Regression equations, scatterplots, and coefficients of determination were also calculated. Statistically significant differences were found in vital capacity measures for the digital spirometer compared with the windmill-type spirometer and PAS across age groups. Strong positive correlations were present between all three instruments for both vital capacity and derived phonation quotient measurements. Measurement precision for the digital spirometer was lower than the windmill spirometer compared with the PAS. However, all three instruments had strong measurement reliability. Additionally, age did not have an effect on the measurement across instruments. These results are consistent with previous literature reporting data from male speakers and support the use of low-tech options for measurement of basic aerodynamic variables associated with voice production. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Aerodynamic modelling and optimization of axial fans

    Energy Technology Data Exchange (ETDEWEB)

    Noertoft Soerensen, Dan

    1998-01-01

    A numerically efficient mathematical model for the aerodynamics of low speed axial fans of the arbitrary vortex flow type has been developed. The model is based on a blade-element principle, whereby the rotor is divided into a number of annular stream tubes. For each of these stream tubes relations for velocity, pressure and radial position are derived from the conservation laws for mass, tangential momentum and energy. The equations are solved using the Newton-Raphson methods, and solutions converged to machine accuracy are found at small computing costs. The model has been validated against published measurements on various fan configurations, comprising two rotor-only fan stages, a counter-rotating fan unit and a stator-rotor stator stage. Comparisons of local and integrated properties show that the computed results agree well with the measurements. Optimizations have been performed to maximize the mean value of fan efficiency in a design interval of flow rates, thus designing a fan which operates well over a range of different flow conditions. The optimization scheme was used to investigate the dependence of maximum efficiency on 1: the number of blades, 2: the width of the design interval and 3: the hub radius. The degree of freedom in the choice of design variable and constraints, combined with the design interval concept, provides a valuable design-tool for axial fans. To further investigate the use of design optimization, a model for the vortex shedding noise from the trailing edge of the blades has been incorporated into the optimization scheme. The noise emission from the blades was minimized in a flow rate design point. Optimizations were performed to investigate the dependence of the noise on 1: the number of blades, 2: a constraint imposed on efficiency and 3: the hub radius. The investigations showed, that a significant reduction of noise could be achieved, at the expense of a small reduction in fan efficiency. (EG) 66 refs.

  13. Application Program Interface for the Orion Aerodynamics Database

    Science.gov (United States)

    Robinson, Philip E.; Thompson, James

    2013-01-01

    The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The

  14. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  15. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    Science.gov (United States)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  16. [Role of aerodynamic parameters in voice function assessment].

    Science.gov (United States)

    Guo, Yong-qing; Lin, Sheng-zhi; Xu, Xin-lin; Zhou, Li; Zhuang, Pei-yun; Jiang, Jack J

    2012-10-01

    To investigate the application and significance of aerodynamic parameters in voice function assessment. The phonatory aerodynamic system (PAS) was used to collect aerodynamic parameters from subjects with normal voice, vocal fold polyp, vocal fold cyst, and vocal fold immobility. Multivariate statistical analysis was used to compare measurements across groups. Phonation threshold flow (PTF), mean flow rate (MFR), maximum phonation time (MPT), and glottal resistance (GR) in one hundred normal subjects were significantly affected by sex (P efficiency (VE) were not (P > 0.05). PTP, PTF, MFR, SGP, and MPT were significantly different between normal voice and voice disorders (P 0.05). Receiver operating characteristic (ROC) analysis found that PTP, PTF, SGP, MFR, MPT, and VE in one hundred thirteen voice dis orders had similar diagnostic utility (P aerodynamic parameters of the three degrees of voice dysfunction due to vocal cord polyps were compared and found to have no significant differences (P > 0.05). PTP, PTF, MFR, SGP and MPT in forty one patients with vocal polyps were significantly different after surgical resection of vocal cord polyps (P aerodynamic parameters can objectively and effectively evaluate the variations of vocal function, and have good auxiliary diagnostic value.

  17. Influence of unsteady aerodynamics on driving dynamics of passenger cars

    Science.gov (United States)

    Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.

    2014-11-01

    Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.

  18. Aerodynamic analysis of the Darrieus rotor including secondary effects

    Science.gov (United States)

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-10-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  19. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  20. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  1. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  2. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    Science.gov (United States)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  3. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2006-01-01

    Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force

  4. Aerodynamic loads on buses due to crosswind gusts: extended analysis

    Science.gov (United States)

    Drugge, Lars; Juhlin, Magnus

    2010-12-01

    The objective of this work is to use inverse simulations on measured vehicle data in order to estimate the aerodynamic loads on a bus when exposed to crosswind situations. Tyre forces, driver input, wind velocity and vehicle response were measured on a typical coach when subjected to natural crosswind gusts. Based on these measurements and a detailed MBS vehicle model, the aerodynamic loads were estimated through inverse simulations. In order to estimate the lift force, roll and pitch moments in addition to the lateral force and yaw moment, the simulation model was extended by also incorporating the estimation of the vertical road disturbances. The proposed method enables the estimation of aerodynamic loads due to crosswind gusts without using a full scale wind tunnel adapted for crosswind excitation.

  5. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  6. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    Science.gov (United States)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  7. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  8. Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Kavari, Ghazale; Masdari, Mehran

    2017-01-01

    This study is aimed to aerodynamically design a 1 mega-Watt horizontal axis wind turbine in order to obtain the maximum power coefficient by linearizing the chord and twist distributions. A new linearization method has been used for chord and twist distributions by crossing tangent line through...... the geometry of the blades determines the power generated by rotor, designing the blade is a very important issue. Herein, calculations are done for different types of airfoil families namely Risø-A1-21, Risø-A1-18, S809, S814 and Du 93-W-210. Hence, the effect of selecting different airfoil families is also...

  9. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  10. Free wake analysis of wind turbine aerodynamics. Wind energy conversion. ASRL-TR-184-14

    Energy Technology Data Exchange (ETDEWEB)

    Gohard, J.C.

    1978-09-01

    The underlying theory is presented for determining blade and rotor/tower vibration and dynamic stability characteristics as well as the basic dynamic (as opposed to aerodynamic) operating loads. Starting with a simple concept of equivalent hinged rotors, the equations of motion for the blade including pitch, flap and lag motions are developed. The nonlinear equations are derived first and linearized about a finite displacement of the blade out of the plane of rotation. This is important since wind turbines tend to operate at relatively high coning angles. The effect of distributed flexibility, as opposed to the equivalent hinge concept, is then discussed.

  11. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  12. Transient response of two lobe aerodynamic journal bearing

    Directory of Open Access Journals (Sweden)

    Saurabh Kumar Yadav

    2018-03-01

    Full Text Available The dynamic behavior of a rotor-dynamic system is greatly affected by the performance of aerodynamic bearing and the performance of bearing is characterized by the stiffness and damping coefficients. In the present work, stiffness and damping coefficients of bearing are computed and the performance of the bearing is greatly changed with the change in bearing air film profile. The effect of lobe offset factors on the transient performance of aerodynamic bearing is presented. Bifurcation and Poincare diagrams of two lobe journal bearing have been presented for different offset factors. A bearing designer can judge the bearing performance based on bifurcation diagrams.

  13. Aerodynamic-structural model of offwind yacht sails

    Science.gov (United States)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the

  14. Use of water towing tanks for aerodynamics and hydrodynamics

    Science.gov (United States)

    Gadelhak, Mohamed

    1987-01-01

    Wind tunnels and flumes have become standard laboratory tools for modeling a variety of aerodynamic and hydrodynamic flow problems. Less available, although by no means less useful, are facilities in which a model can be towed (or propelled) through air or water. This article emphasizes the use of the water towing tank as an experimental tool for aerodynamic and hydrodynamic studies. Its advantages and disadvantages over other flow rigs are discussed, and its usefullness is illustrated through many examples of research results obtained over the past few years in a typical towing tank facility.

  15. Aerodynamic Noise An Introduction for Physicists and Engineers

    CERN Document Server

    Bose, Tarit

    2013-01-01

    Aerodynamic Noise extensively covers the theoretical basis and mathematical modeling of sound, especially the undesirable sounds produced by aircraft. This noise could come from an aircraft’s engine—propellers, fans, combustion chamber, jets—or the vehicle itself—external surfaces—or from sonic booms. The majority of the sound produced is due to the motion of air and its interaction with solid boundaries, and this is the main discussion of the book. With problem sets at the end of each chapter, Aerodynamic Noise is ideal for graduate students of mechanical and aerospace engineering. It may also be useful for designers of cars, trains, and wind turbines.

  16. Design and aerodynamic analysis of a new Formula Ashenkoff car

    OpenAIRE

    Mateo Muñoz, Albert

    2016-01-01

    This project has the objective to learn to use CFD free software OpenFOAM focusing on turbulent problems resolution, with the objective of analyzing the aerodynamics of a formula racing car. We had the opportunity to contact with the company Ashenkoff S.L., whose managers were interested in creating a new prototype, the Ashenkoff K100, and they will borrow us resources to make it. The project will consists on the aerodynamic analysis of this new model using CFD software OpenFOAM. Previo...

  17. Aerodynamic Support of a Big Industrial Turboblower Rotor

    OpenAIRE

    Šimek, Jiří; Kozánek, Jan; Šafr, Milan

    2007-01-01

    Aerodynamic bearing support for the rotor of a 100 kW input industrial turboblower with operational speed of 18 000 rpm was designed and manufactured. Rotor with mass of about 50 kg is supported in two tilting-pad journal bearings 120 mm in diameter, axial forces are taken up by aerodynamic spiral groove thrust bearing 250 mm in diameter. Some specific features of the bearing design are described in the paper and the results of rotor support tests are presented. The paper is an extended versi...

  18. Aerodynamic instabilities in governing valves of steam turbines

    International Nuclear Information System (INIS)

    Richard, J.M.; Pluviose, M.

    1991-01-01

    The capacity of a.c. turbogenerators in a Pressurized Water Reactor (PWR) is regulated by means of governing valves located at the inlet of the high-pressure turbine. The conditions created in these valves (due to the throttling of the steam) involve the generation of a jet structure, possibly supersonic. Aerodynamic instabilities could potentially excite the mechanical structure. These aerodynamic phenomena are studied in this paper by means of a two-dimensional numerical model. Viscous effects are taken into account with heuristic criteria on separation and reattachment. Detailed experimental analysis of the flow behaviour is compared with the numerical prediction of stability limits. (Author)

  19. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... for the MEXICO rotor. Results show that the improved BEM theory gives a better prediction than the classic BEM method, especially in the blade tip region, when comparing to the MEXICO measurements. (C) 2016 Elsevier Ltd. All rights reserved....

  20. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  1. Analysis of broadband aerodynamic noise from VS45

    Energy Technology Data Exchange (ETDEWEB)

    Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)

    1997-12-31

    This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)

  2. Aerodynamic Simulation Analysis of Unmanned Airborne Electronic Bomb

    Science.gov (United States)

    Yang, Jiaoying; Guo, Yachao

    2017-10-01

    For microelectronic bombs for UAVs, on the basis of the use of rotors to lift the insurance on the basis of ammunition, increased tail to increase stability. The aerodynamic simulation of the outer structure of the ammunition was carried out by FLUENT software. The resistance coefficient, the lift coefficient and the pitch moment coefficient under different angle of attack and Mach number were obtained, and the aerodynamic characteristics of the electronic bomb were studied. The pressure line diagram and the velocity line diagram of the flow around the bomb are further analyzed, and the rationality of the external structure is verified, which provides a reference for the subsequent design of the electronic bomb.

  3. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  4. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  5. Aerodynamic efficiency of a bio-inspired flapping wing rotor at low Reynolds number

    OpenAIRE

    Li, Hao; Guo, Shijun

    2018-01-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsiv...

  6. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus.

    Directory of Open Access Journals (Sweden)

    Benjamin Ponitz

    Full Text Available This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

  7. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    Science.gov (United States)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    in the IRT. From these molds, castings were made that closely replicated the features of the accreted ice. The castings were then mounted on the full-scale model in the F1 tunnel, and aerodynamic performance measurements were made using model surface pressure taps, the facility force balance system, and a large wake rake designed specifically for these tests. Tests were run over a range of Reynolds and Mach numbers. For each run, the model was rotated over a range of angles-of-attack that included airfoil stall. The benchmark data collected during these campaigns were, and continue to be, used for various purposes. The full-scale data form a unique, ice-accretion and associated aerodynamic performance dataset that can be used as a reference when addressing concerns regarding the use of subscale ice-accretion data to assess full-scale icing effects. Further, the data may be used in the development or enhancement of both ice-accretion prediction codes and computational fluid dynamic codes when applied to study the effects of icing. Finally, as was done in the wider study, the data may be used to help determine the level of geometric fidelity needed for artificial ice used to assess aerodynamic degradation due to aircraft icing. The structured, multifaceted approach used in this research effort provides a unique perspective on the aerodynamic effects of aircraft icing. The data presented in this report are available in electronic form upon formal approval by proper NASA and ONERA authorities.

  8. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system

    Science.gov (United States)

    Wu, Han; Zeng, Xiao-Hui; Yu, Yang

    2017-12-01

    In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.

  9. Experimental analysis of aerodynamic stability of stress-ribbon footbridges

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš; Fischer, Ondřej

    1999-01-01

    Roč. 2, č. 2 (1999), s. 95-104 ISSN 1226-6116 Institutional support: RVO:68378297 Keywords : footbridges * aerodynamic stability * bending-torsional vibrations * wind-excited vibrations * wind-tunnel in civil engineering Subject RIV: JM - Building Engineering http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=KJKHCF_1999_v2n2_95&ordernum=5

  10. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  11. An explicit multi-time-stepping algorithm for aerodynamic flows

    NARCIS (Netherlands)

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for

  12. Aerodynamic force coefficients of plain bridge cables in wet conditions

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos T.

    In this paper, the aerodynamic forces and force coefficients from preliminary static wind tunnel tests on a plain cable in wet conditions are presented. The presented results are for several different relative cable wind-angles. A comparison is made with tests in dry conditions. In dry conditions...

  13. PRINCIPLE "EARLY MATCHING" AERODYNAMIC DESIGN AIRCRAFT WITH LANDING GEAR HOVERCRAFT

    Directory of Open Access Journals (Sweden)

    V. P. Morozov

    2015-01-01

    Full Text Available The principle of "early matching" aircraft aerohydrodynamic layouts with air cushion landing gear is suggested. Application of this principle is considered as an example of adaptation to the ball screw base circuit of light transport aircraft. The principle, other than weight, aerodynamic, technological and operational requirements includes additional project activities related to the installation of ball screws.

  14. PyFly: A fast, portable aerodynamics simulator

    KAUST Repository

    Garcia, D.; Ghommem, M.; Collier, N.; Varga, B.O.N.; Calo, V.M.

    2018-01-01

    We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.

  15. Aerodynamic sound from a sawtooth plate with different thickness ...

    African Journals Online (AJOL)

    Acoustic performance of an airfoil can be improved with the serrated leading or trailing edge. A sawtooth plate is one of the serration shapes. In this study, the effect of sawtooth plate thickness on the aerodynamically generated noise in wake-sawtooth plate interaction at a Reynolds number of 150 is numerically investigated ...

  16. Aerodynamic effects of trees on pollutant concentration in street canyons

    NARCIS (Netherlands)

    Buccolieri, R.; Gromke, C.B.; Sabatino, Di S.; Ruck, B.

    2009-01-01

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant

  17. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  18. Aerodynamic benefit for a cyclist by a following motorcycle

    NARCIS (Netherlands)

    Blocken, B.J.E; Toparlar, Y.; Andrianne, Th.

    2016-01-01

    In recent years, many accidents have occurred between cyclists and in-race motorcycles, even yielding fatal injuries. The accidents and the potential aerodynamics issues have impelled the present authors to perform dedicated wind-tunnel measurements and Computational Fluid Dynamics (CFD) simulations

  19. PyFly: A fast, portable aerodynamics simulator

    KAUST Repository

    Garcia, D.

    2018-03-18

    We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.

  20. The efficiency of aerodynamic force production in Drosophila.

    Science.gov (United States)

    Lehmann, F O

    2001-12-01

    Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.

  1. Evolutive and nonlinear vibrations of rotor on aerodynamic bearings

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Kozánek, Jan

    2007-01-01

    Roč. 2007, č. 50 (2007), s. 829-840 ISSN 0924-090X R&D Projects: GA ČR GA101/06/1787 Institutional research plan: CEZ:AV0Z20760514 Keywords : rotordynamics * aerodynamic bearings * vibrations Subject RIV: BI - Acoustics Impact factor: 1.045, year: 2007

  2. Aerodynamic investigation of winglets on wind turbine blades using CFD

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...

  3. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    Science.gov (United States)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  4. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  5. Topological estimation of aerodynamic controlled airplane system functionality of quality

    Directory of Open Access Journals (Sweden)

    С.В. Павлова

    2005-01-01

    Full Text Available  It is suggested to use topological methods for stage estimation of aerodynamic airplane control in widespread range of its conditions The estimation is based on normalized stage virtual non-isotropy of configurational airplane systems calculation.

  6. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  7. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  8. Aerodynamic support of a big industrial turboblower rotor

    Czech Academy of Sciences Publication Activity Database

    Šimek, J.; Kozánek, Jan; Šafr, M.

    2007-01-01

    Roč. 14, 1/2 (2007), s. 105-116 ISSN 1802-1484 R&D Projects: GA AV ČR IBS2076301 Institutional research plan: CEZ:AV0Z20760514 Keywords : industrial turboblower * aerodynamic bearing * rotor-dynamic calculation Subject RIV: BI - Acoustics

  9. High speed PIV applied to aerodynamic noise investigation

    NARCIS (Netherlands)

    Koschatzky, V.; Moore, P.D.; Westerweel, J.; Scarano, F.; Boersma, B.J.

    2010-01-01

    In this paper, we study the acoustic emissions of the flow over a rectangular cavity. Especially, we investigate the possibility of estimating the acoustic emission by analysis of PIV data. Such a possibility is appealing, since it would allow to directly relate the flow behavior to the aerodynamic

  10. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  11. Indigenous development and performance evaluation of BARC aerodynamic size separator (BASS)

    International Nuclear Information System (INIS)

    Singh, Sanjay; Purwar, R.C.; Das, Tanmoy; Narayanan, K.P.; Sapra, B.K.; Sunny, Faby; Khan, Arshad; Mayya, Y.S.

    2002-06-01

    Commercially available cascade impactors, commonly used for aerodynamic size separation of aerosol particles, are based on the principle of inertial impaction. As of now, these instruments are imported at a cost of several lakhs of rupees; hence an effort has been made to develop an aerodynamic particle sizer indigenously in BARC. This unit, referred to as BARC Aerodynamic Size Separator (BASS), separates aerosols into seven size classes ranging from 0.53 μm to 10 μm and operates at a flow rate of 45 Ipm. Intercomparison studies between the standard Andersen Mark-II (Grasbey Andersen Inc.) impactor and BASS using nebulizer generated aerosols have consistently shown excellent performance by BASS in all respects. In particular, BASS yielded the parameters of polydisperse aerosols quite accurately. Experiments to evaluate the individual stage cut-off diameters show that these are within 8% of their designed value for all stages except the higher two stages which indicate about 30% lower values than the designed ones. The replotting of all the mass distribution data using the experimental cut-off diameters showed perfect lognormal fits, thereby indicating that these diameters are closer to the true stage cut-off diameters for BASS. The studies show that BASS will be suitable for determining the particle size distributions in the context of the radiological safety programmes of DAE. Being indigenous in design, it may be fabricated on a commercial scale at a cost far less than that of the imported units. Such a venture will greatly help several national programmes on atmospheric pollution being carried out by many laboratories and institutions across the country. (author)

  12. Design and aerodynamic performance evaluation of a high-work mixed flow turbine stage

    Science.gov (United States)

    Neri, Remo N.; Elliott, Thomas J.; Marsh, David N.; Civinskas, Kestutis C.

    1994-01-01

    As axial and radial turbine designs have been pushed to their aerothermodynamic and mechanical limits, the mixed-flow turbine (MFT) concept has been projected to offer performance and durability improvements, especially when ceramic materials are considered. The objective of this NASA/U.S. Army sponsored mixed-flow turbine (AMFT) program was to determine the level of performance attainable with MFT technology within the mechanical constraints of 1997 projected ceramic material properties. The MFT geometry is similar to a radial turbine, exhibiting a large radius change from inlet to exit, but differing in that the inlet flowpath is not purely radial, nor axial, but mixed; it is the inlet geometry that gives rise to the name 'mixed-flow'. The 'mixed' orientation of the turbine inlet offers several advantages over radial designs by allowing a nonzero inlet blade angle yet maintaining radial-element blades. The oblique inlet not only improves the particle-impact survivability of the design, but improves the aerodynamic performance by reducing the incidence at the blade inlet. The difficulty, however, of using mixed-flow geometry lies in the scarcity of detailed data and documented design experience. This paper reports the design of a MFT stage designed with the intent to maximize aerodynamic performance by optimizing design parameters such as stage reaction, rotor incidence, flowpath shape, blade shape, vane geometry, and airfoil counts using 2-D, 3-D inviscid, and 3-D viscous computational fluid dynamics code. The aerodynamic optimization was accomplished while maintaining mechanical integrity with respect to vibration and stress levels in the rotor. A full-scale cold-flow rig test was performed with metallic hardware fabricated to the specifications of the hot ceramic geometry to evaluate the stage performance.

  13. Experimental Study Of SHEFEX II Hypersonic Aerodynamics And Canard Efficiency In H2K

    Science.gov (United States)

    Neeb, D.; Gulhan, A.

    2011-05-01

    One main objective of the DLR SHEFEX programme is to prove that sharp edged vehicles are capable of performing a re-entry into earth atmosphere by using a simple thermal protection system consisting of flat ceramic tiles. In comparison to blunt nose configurations like the Space shuttle, which are normally used for re-entry configurations, the SHEFEX TPS design is able to significantly reduce the costs and complexity of TPS structures and simultaneously increase the aerodynamic performance of the flight vehicle [1], [2]. To study its characteristics and perform several defined in-flight experiments during re-entry, the vehicle’s attitude will be controlled actively by canards [3]. In the framework of the SHEFEX II project an experimental investigation has been conducted in the hypersonic wind tunnel H2K to characterize the aerodynamic performance of the vehicle in hypersonic flow regime. The model has a modular design to enable the study of a variety of different influencing parameters. Its 4 circumferential canards have been made independently adjustable to account for the simulation of different manoeuvre conditions. To study the control behaviour of the vehicle and validate CFD data, a variation of canard deflections, angle of attack and angle of sideslip have been applied. Tests have been carried out at Mach 7 and 8.7 with a Reynolds number sensitivity study at the lower Mach number. The model was equipped with a six component internal balance to realize accurate coefficient measurements. The flow topology has been analyzed using Schlieren images. Beside general aerodynamic performance and canard efficiencies, flow phenomena like shock impingement on the canards could be determined by Schlieren images as well as by the derived coefficients.

  14. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.

    Science.gov (United States)

    Wang, Chenglei; Tang, Hui

    2018-05-25

    In this study, we explore the use of synthetic jet (SJ) in manipulating the vortices around a rigid heaving airfoil, so as to enhance its aerodynamic performance. The airfoil heaves at two fixed pitching angles, with the Strouhal number, reduced frequency and Reynolds number chosen as St  =  0.3, k  =  0.25 and Re  =  100, respectively, all falling in the ranges for natural flyers. As such, the vortex force plays a dominant role in determining the airfoil's aerodynamic performance. A pair of in-phase SJs is implemented on the airfoil's upper and lower surfaces, operating with the same strength but in opposite directions. Such a fluid-structure interaction problem is numerically solved using a lattice Boltzmann method based numerical framework. It is found that, as the airfoil heaves with zero pitching angle, its lift and drag can be improved concurrently when the SJ phase angle [Formula: see text] relative to the heave motion varies between [Formula: see text] and [Formula: see text]. But this concurrent improvement does not occur as the airfoil heaves with [Formula: see text] pitching angle. Detailed inspection of the vortex evolution and fluid stress over the airfoil surface reveals that, if at good timing, the suction and blowing strokes of the SJ pair can effectively delay or promote the shedding of leading edge vortices, and mitigate or even eliminate the generation of trailing edge vortices, so as to enhance the airfoil's aerodynamic performance. Based on these understandings, an intermittent operation of the SJ pair is then proposed to realize concurrent lift and drag improvement for the heaving airfoil with [Formula: see text] pitching angle.

  15. The impact of size and shape of particles of undergrowth and herbs mixtures on aerodynamic properties

    Directory of Open Access Journals (Sweden)

    Marian Panasiewicz

    2014-09-01

    Full Text Available The impact of the size and shape of a selected group of herbs (dried juniper berries Juniperus communis, dry blueberries Vaccinium myrtillus, petals of cornflower Centaurea cyanus on the value of the volatility coefficient, the coefficient of sphericity and the critical speed was analysed in the presented research. A laboratory anemometer to measure the speed of air was used. The determination of the volatility coefficient of particular size fractions was conducted on the basis of critical speed values, calculated as an average established after five measurements. The established aerodynamic properties of particular mixtures allow the determination and the assessment of differences among fractions of valuable resources and different impurities. The presented data might constitute a basis to determine the scope of differences among them and establish interrelations which allow the application of proper parameters for the pneumatic separation process in practice.

  16. An interactive version of PropID for the aerodynamic design of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ninham, C.P.; Selig, M.S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-12-31

    The original PROP code developed by AeroVironment, Inc. and its various versions have been in use for wind turbine performance predictions for over ten years. Due to its simplicity, rapid execution times and relatively accurate predictions, it has become an industry standard in the US. The Europeans have similar blade-element/momentum methods in use for design. Over the years, PROP has continued to be improved (in its accuracy and capability), e.g., PROPSH, PROPPC, PROP93, and PropID. The latter version incorporates a unique inverse design capability that allows the user to specify the desired aerodynamic characteristics from which the corresponding blade geometry is determined. Through this approach, tedious efforts related to manually adjusting the chord, twist, pitch and rpm to achieve desired aerodynamic/performance characteristics can be avoided, thereby making it possible to perform more extensive trade studies in an effort to optimize performance. Past versions of PropID did not have supporting graphics software. The more current version to be discussed includes a Matlab-based graphical user interface (GUI) and additional features that will be discussed in this paper.

  17. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    Science.gov (United States)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  18. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  19. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  20. A data-driven decomposition approach to model aerodynamic forces on flapping airfoils

    Science.gov (United States)

    Raiola, Marco; Discetti, Stefano; Ianiro, Andrea

    2017-11-01

    In this work, we exploit a data-driven decomposition of experimental data from a flapping airfoil experiment with the aim of isolating the main contributions to the aerodynamic force and obtaining a phenomenological model. Experiments are carried out on a NACA 0012 airfoil in forward flight with both heaving and pitching motion. Velocity measurements of the near field are carried out with Planar PIV while force measurements are performed with a load cell. The phase-averaged velocity fields are transformed into the wing-fixed reference frame, allowing for a description of the field in a domain with fixed boundaries. The decomposition of the flow field is performed by means of the POD applied on the velocity fluctuations and then extended to the phase-averaged force data by means of the Extended POD approach. This choice is justified by the simple consideration that aerodynamic forces determine the largest contributions to the energetic balance in the flow field. Only the first 6 modes have a relevant contribution to the force. A clear relationship can be drawn between the force and the flow field modes. Moreover, the force modes are closely related (yet slightly different) to the contributions of the classic potential models in literature, allowing for their correction. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P.

  1. Aerodynamics of ski jumping: experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meile, W.; Reisenberger, E.; Brenn, G. [Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer, Graz (Austria); Mayer, M. [VRVis GmbH, Vienna (Austria); Schmoelzer, B.; Mueller, W. [Medical University of Graz, Department for Biophysics, Graz (Austria)

    2006-12-15

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required. (orig.)

  2. Aerodynamics of ski jumping: experiments and CFD simulations

    Science.gov (United States)

    Meile, W.; Reisenberger, E.; Mayer, M.; Schmölzer, B.; Müller, W.; Brenn, G.

    2006-12-01

    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required.

  3. Aerodynamic shape optimization of Airfoils in 2-D incompressible flow

    Science.gov (United States)

    Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth

    2010-11-01

    An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.

  4. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    Science.gov (United States)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  5. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    Science.gov (United States)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  6. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    Science.gov (United States)

    Acree, C W.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  7. Aerodynamic findings and Voice Handicap Index in Parkinson's disease.

    Science.gov (United States)

    Motta, Sergio; Cesari, Ugo; Paternoster, Mariano; Motta, Giovanni; Orefice, Giuseppe

    2018-04-23

    To verify possible relations between vocal disability and aerodynamic measures in selected Parkinson's disease (PD) patients with low/moderate-grade dysphonia. Fifteen idiopathic dysphonic PD male patients were examined and compared with 15 euphonic subjects. Testing included the following measures: Voice Handicap Index (VHI), maximum phonation time (MPT), mean estimated subglottal pressure (MESGP), mean sound pressure level (MSPL), mean phonatory power (MPP), mean phonatory efficiency (MPE) and mean phonatory resistance (MPR). Statistical analysis showed: a significant reduction in MPR and MSPL in PD subjects compared to the healthy ones; a significant positive correlation between VHI score and MSPL, MPR, MPP, MESGP and a significant negative correlation between VHI and MTP within PD subjects. Test for multiple linear regression showed a significant correlation between VHI score, MPT, MPR and MSPL. A relationship between VHI and aerodynamic measures was shown in the present study. Compensatory mechanisms may aggravate vocal disability in PD subjects.

  8. Aerodynamic load control strategy of wind turbine in microgrid

    Science.gov (United States)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  9. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    Science.gov (United States)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  10. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    Science.gov (United States)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  11. Development of an aerodynamic measurement system for hypersonic rarefied flows.

    Science.gov (United States)

    Ozawa, T; Fujita, K; Suzuki, T

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  12. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun

    2014-01-01

    characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase......The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...

  13. KNOW-BLADE Task-2 report: Aerodynamic accessories

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.; Zahle, Frederik

    2004-01-01

    In the EC project KNOW-BLADE a work package has been defined to investigate the possibility to numerically model aerodynamic accessories in existing Navier-Stokes solvers. Four different aerodynamic accessories have been investigated. Firstly, thepotential of applying active flow control by means...... of the stall strip. Finally, the effect of surface roughness was modelled by either modifying the boundary condition of the turbulence model or by modifying the airfoil geometry. Using the roughness model gave relatively good agreement withmeasurements and it must be concluded that the effect of using...... to increase the oscillation amplitude, which is not very attractive for load control on wind turbines. Secondly, the effect of vortex generators hasbeen modelled using two phenomenological vortex generator models. The models have been applied to three airfoil configurations. For all cases investigated...

  14. Aerodynamic calculational methods for curved-blade Darrieus VAWT WECS

    Science.gov (United States)

    Templin, R. J.

    1985-03-01

    Calculation of aerodynamic performance and load distributions for curved-blade wind turbines is discussed. Double multiple stream tube theory, and the uncertainties that remain in further developing adequate methods are considered. The lack of relevant airfoil data at high Reynolds numbers and high angles of attack, and doubts concerning the accuracy of models of dynamic stall are underlined. Wind tunnel tests of blade airbrake configurations are summarized.

  15. Aerodynamic Classification of Swept-Wing Ice Accretion

    Science.gov (United States)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  16. Computational Prediction of the Aerodynamic Characteristics of SSTO Vehicle Configurations

    OpenAIRE

    Keiichiro, FUJIMOTO; Kozo, FUJI

    2003-01-01

    Flow-fields around basic SSTO-rocket configurations are numerically simulated by the Navier-Stokes computations. The study starts with the simulations of the Apollo-type configuration, in which the simulated results arecomparing with NASA's experiments and the capability of CFD approach is discussed.Computed aerodynamic coeffcients of Apollo configuration agree well with the experiments at subsonic, transonic and supersonic regime at all angles of attack and the present computational approach...

  17. Unsteady aerodynamic coefficients obtained by a compressible vortex lattice method.

    OpenAIRE

    Fabiano Hernandes

    2009-01-01

    Unsteady solutions for the aerodynamic coefficients of a thin airfoil in compressible subsonic or supersonic flows are studied. The lift, the pitch moment, and pressure coefficients are obtained numerically for the following motions: the indicial response (unit step function) of the airfoil, i.e., a sudden change in the angle of attack; a thin airfoil penetrating into a sharp edge gust (for several gust speed ratios); a thin airfoil penetrating into a one-minus-cosine gust and sinusoidal gust...

  18. Australian Aerodynamic Design Codes for Aerial Tow Bodies.

    Science.gov (United States)

    1987-08-27

    HTP -1, which deals with aerial targets, it was recognised that there was a need for a complete and well docL mented approach for their aerodynamic and...circular cables cannot be assessed with the programs in their present form. 10. none of the programs are well documented and user’s manuals are not...National Leader ANL TTCP HTP -1 Weapons Systems Research Laboratory Director Superintendent - Weapons Division - Combat Systems Division Navy Office Navy

  19. Examples of using CFD for wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.O.L.; Soerensen, J.N. [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark); Soerensen, N.N. [Risoe National Lab., Test Station for Wind Turbines (Denmark)

    1997-12-31

    Overall it is concluded that in order to improve the results from CFD (Computational Fluid Dynamics) for wind turbine aerodynamics characterized by: high angles of attack; thick airfoils; 3-D effects; instationary effects. Extreme care must be put on turbulence and transition models, and fine grids are necessary especially at the suction peak. If these precautions are taken CFD can be used as a tool for obtaining lift and drag coefficients for the BEM (Blade Element Momentum) model. (au)

  20. Reducing Aerodynamic Drag on Empty Open Cargo Vehicles

    Science.gov (United States)

    Ross, James C.; Storms, Bruce L.; Dzoan, Dan

    2009-01-01

    Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.

  1. Aerodynamic effects in isotope separation by gaseous diffusion

    International Nuclear Information System (INIS)

    Bert, L.A.; Prosperetti, A.; Fiocchi, R.

    1978-01-01

    The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the separation efficiency. The predictions of the model are found to compare very favourably with experiment. In the limit of small suction velocities, results obtained by other investigators for diffusion in a turbulent steam are recovered. (author)

  2. Aerodynamic investigation of winglets on wind turbine blades using CFD

    OpenAIRE

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of themwere pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets...

  3. Aerodynamic Research on the Midsection of a Long Turbine Blade

    Czech Academy of Sciences Publication Activity Database

    Šimurda, David; Luxa, Martin; Šafařík, Pavel; Synáč, J.

    2008-01-01

    Roč. 12, 3-4 (2008), s. 135-145 ISSN 1428-6394. [Polish National Conference of Fluid Mechanics /18./. Jastrzebia Góra, 21.09.2008-25.09.2008] R&D Projects: GA ČR GA101/07/1508 Institutional research plan: CEZ:AV0Z20760514 Keywords : high speed aerodynamics * blade cascade * experiment Subject RIV: BK - Fluid Dynamics

  4. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Science.gov (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  5. Aerodynamic focusing of particles and heavy molecules: First annual report

    International Nuclear Information System (INIS)

    de la Mora, J.F.

    1988-01-01

    Our first goal was to investigate the phenomenon of aerodynamic focusing in supersonic free jets, in order to assess its potential technological uses in /open quotes/direct writing/close quotes/ and other energy-related applications. Our research program divides itself naturally into two chapters: on focusing microscopic particles, and on focusing individual molecules of heavy vapors carried in jets of He and H 2 . In both lines we combine diverse experimental and theoretical methods of attack. 3 refs., 4 figs

  6. Aerodynamic and aeroacoustic performance of airfoils with morphing structures

    OpenAIRE

    Ai, Qing; Azarpeyvand, Mahdi; Lachenal, Xavier; Weaver, Paul M.

    2016-01-01

    Aerodynamic and aeroacoustic performance of airfoils fitted with morphing trailing edges are investigated using a coupled structure/fluid/noise model. The control of the flow over the surface of an airfoil using shape optimization techniques can significantly improve the load distribution along the chord and span lengths whilst minimising noise generation. In this study, a NACA 63-418 airfoil is fitted with a morphing flap and various morphing profiles are considered with two features that di...

  7. Adaptive Missile Flight Control for Complex Aerodynamic Phenomena

    Science.gov (United States)

    2017-08-09

    roll damping and magnus stability coefficients for finned projectiles. J Spacecraft Rockets. 2016, accepted. 20. Burt JR. The effectiveness of canards...Performance degradation usually propagates into the pitch and yaw directions when these adverse roll control effects are encountered due to the coupling of... effect of control action (e.g., canard deflections) in the pitch and yaw planes is combined in an overall aerodynamic scaling and control amplitude

  8. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  9. High angle of attack aerodynamics subsonic, transonic, and supersonic flows

    CERN Document Server

    Rom, Josef

    1992-01-01

    The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...

  10. Aerodynamic resistance reduction of electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  11. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  12. Acoustic and aerodynamic measures of the voice during pregnancy.

    Science.gov (United States)

    Hancock, Adrienne B; Gross, Heather E

    2015-01-01

    Known influences of sex hormones on the voice would suggest pregnancy hormones could have an effect, yet studies using acoustic measures have not indicated changes. Additionally, no examination of the voice before the third trimester has been reported. Effect of pregnancy on the voice is relatively unexplored yet could be quite relevant to female speakers and singers. It is possible that spectral and aerodynamic measures would be more sensitive to tissue-level changes caused by pregnancy hormones. In this first longitudinal study of a 32-year-old woman's pregnancy, weekly voice samples were analyzed for acoustic (fundamental frequency, perturbation ratios of shimmer and jitter, Harmonic-to-Noise Ratio, spectral measures, and maximum phonation time) and aerodynamic (average airflow, peak flow, AC/DC ratio, open quotient, and speed quotient) parameters. All measures appeared generally stable during weeks 11-39 of pregnancy compared with 21 weeks postpartum. Slight decrease in minimum airflow and open speed quotient may reflect suspected vocal fold tissue changes. It is recommended that future studies monitor and test correlations among hormone levels, visual analyses of vocal fold mucosa, aerodynamic function, and glottal efficiency. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Shark skin-inspired designs that improve aerodynamic performance.

    Science.gov (United States)

    Domel, August G; Saadat, Mehdi; Weaver, James C; Haj-Hariri, Hossein; Bertoldi, Katia; Lauder, George V

    2018-02-01

    There have been significant efforts recently aimed at improving the aerodynamic performance of aerofoils through the modification of their surfaces. Inspired by the drag-reducing properties of the tooth-like denticles that cover the skin of sharks, we describe here experimental and simulation-based investigations into the aerodynamic effects of novel denticle-inspired designs placed along the suction side of an aerofoil. Through parametric modelling to query a wide range of different designs, we discovered a set of denticle-inspired surface structures that achieve simultaneous drag reduction and lift generation on an aerofoil, resulting in lift-to-drag ratio improvements comparable to the best-reported for traditional low-profile vortex generators and even outperforming these existing designs at low angles of attack with improvements of up to 323%. Such behaviour is enabled by two concurrent mechanisms: (i) a separation bubble in the denticle's wake altering the flow pressure distribution of the aerofoil to enhance suction and (ii) streamwise vortices that replenish momentum loss in the boundary layer due to skin friction. Our findings not only open new avenues for improved aerodynamic design, but also provide new perspective on the role of the complex and potentially multifunctional morphology of shark denticles for increased swimming efficiency. © 2018 The Author(s).

  14. Shape optimization for aerodynamic efficiency and low observability

    Science.gov (United States)

    Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.

    1993-01-01

    Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.

  15. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends

    Science.gov (United States)

    Bashir, M.; Rajendran, P.; Khan, S. A.

    2018-01-01

    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  16. Dynamic control of a bistable wing under aerodynamic loading

    International Nuclear Information System (INIS)

    Bilgen, Onur; Arrieta, Andres F; Friswell, Michael I; Hagedorn, Peter

    2013-01-01

    The aerodynamic evaluation of a dynamic control technique applied to a bistable unsymmetrical cross-ply composite plate with surface bonded piezoelectric actuators is presented. The plate is clamped on one end to form a low-aspect-ratio wing. A previously proposed dynamic control method, utilizing bending resonance in different stable equilibrium positions, is used to induce snap-through between the two equilibrium states. Compared to quasi-static actuation, driving the bistable plate near resonance using surface bonded piezoelectric materials requires, theoretically, a lower peak excitation voltage to achieve snap-through. First, a set of extensive wind tunnel experiments are conducted on the passive bistable wing to understand the change in the dynamic behavior under various aerodynamic conditions. The passive wing demonstrated sufficient bending stiffness to sustain its shape under aerodynamic loading while preserving the desired bistable behavior. Next, by the use of the resonant control technique, the plate is turned into an effectively monostable structure, or alternatively, both stable equilibrium positions can be reached actively from the other stable equilibrium. Dynamic forward and reverse snap-through is demonstrated in the wind tunnel which shows both the effectiveness of the piezoelectric actuation as well as the load carrying capability of both states of the bistable wing. (paper)

  17. Numerical simulation of the tip aerodynamics and acoustics test

    Science.gov (United States)

    Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.

    2016-04-01

    The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.

  18. CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm

    Directory of Open Access Journals (Sweden)

    Nak Joon Choi

    2014-11-01

    Full Text Available This study examined the aerodynamic power output change of wind turbines with inter-turbine spacing variation for a 6 MW wind farm composed of three sets of 2 MW wind turbines using computational fluid dynamics (CFD. The wind farm layout design is becoming increasingly important as the use of wind energy is steadily increasing. Among the many wind farm layout design parameters, the inter-turbine spacing is a key factor in the initial investment cost, annual energy production and maintenance cost. The inter-turbine spacing should be determined to maximize the annual energy production and minimize the wake effect, turbulence effect and fatigue load during the service lifetime of wind turbines. Therefore, some compromise between the aerodynamic power output of wind turbines and the inter-turbine spacing is needed. An actuator disc model with the addition of a momentum source was not used, and instead, a full 3-dimensional model with a tower and nacelle was used for CFD analysis because of its great technical significance. The CFD analysis results, such as the aerodynamic power output, axial direction wind speed change, pressure drop across the rotor of wind turbine, and wind speed deficit due to the wake effect with inter-turbine spacing variation, were studied. The results of this study can be applied effectively to wind farm layout design and evaluation.

  19. Integrated optimization on aerodynamics-structure coupling and flight stability of a large airplane in preliminary design

    Directory of Open Access Journals (Sweden)

    Xiaozhe WANG

    2018-06-01

    Full Text Available The preliminary phase is significant during the whole design process of a large airplane because of its enormous potential in enhancing the overall performance. However, classical sequential designs can hardly adapt to modern airplanes, due to their repeated iterations, long periods, and massive computational burdens. Multidisciplinary analysis and optimization demonstrates the capability to tackle such complex design issues. In this paper, an integrated optimization method for the preliminary design of a large airplane is proposed, accounting for aerodynamics, structure, and stability. Aeroelastic responses are computed by a rapid three-dimensional flight load analysis method combining the high-order panel method and the structural elasticity correction. The flow field is determined by the viscous/inviscid iteration method, and the cruise stability is evaluated by the linear small-disturbance theory. Parametric optimization is carried out using genetic algorithm to seek the minimal weight of a simplified plate-beam wing structure in the cruise trim condition subject to aeroelastic, aerodynamic, and stability constraints, and the optimal wing geometry shape, front/rear spar positions, and structural sizes are obtained simultaneously. To reduce the computational burden of the static aeroelasticity analysis in the optimization process, the Kriging method is employed to predict aerodynamic influence coefficient matrices of different aerodynamic shapes. The multidisciplinary analyses guarantee computational accuracy and efficiency, and the integrated optimization considers the coupling effect sufficiently between different disciplines to improve the overall performance, avoiding the limitations of sequential approaches utilized currently. Keywords: Aeroelasticity, Integrated optimization, Multidisciplinary analysis, Large airplane, Preliminary design

  20. Project Analysis of Aerodynamics Configuration of Re-entry Сapsule-shaped Body Based on Numerical Methods for Newtonian Flow Theory

    Directory of Open Access Journals (Sweden)

    V. E. Minenko

    2015-01-01

    Full Text Available The article objective is to review the basic design parameters of space capsule (SC to select a rational shape at the early stages of design.The choice is based on the design parameters such as a volume filling factor (volumetric efficiency of shape, aerodynamic coefficients, margin of stability, and centering characteristics.The aerodynamic coefficients are calculated by a numerical method based on approximate Newton's theory. A proposed engineering technique uses this theory to calculate aerodynamic characteristics of the capsule shapes. The gist of the technique is in using a developed programme to generate capsule shapes and provide numerical calculation of aerodynamic characteristics. The accuracy of the calculation, performed according to proposed technique, tends to the results obtained by analytical integral dependencies according to the Newtonian technique.When considering the stability of the capsule shapes the paper gives a diagram of the aerodynamic forces acting on the SC in the descent phase, and using the aerodynamically-shaped SC "Soyuz" as an example analyses a dangerous moment of flow at adverse angles of attack.After determining a design center-of-mass position to meet the stability requirements it is necessary at the early stage, before starting the SC layout work, to evaluate the complexity of bringing the center-of-mass to the specified point. In this regard have been considered such design parameters of the shape as a volume-centering and surface-centering coefficients.Next, using the above engineering technique are calculated aerodynamic characteristics of capsule shapes similar to the well-known SC "Soyuz", "Zarya 2" and the command module "Apollo".All calculated design parameters are summarized in the table. Currently, among the works cited in foreign publications concerning the contours of winged configuration of the type "Space Shuttle" some papers are close to the proposed technique.Application of the proposed

  1. Aerodynamics and Characteristics of a Spinner Anemometer

    International Nuclear Information System (INIS)

    Pedersen, T F; Soerensen, N N; Enevoldsen, P

    2007-01-01

    A spinner anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine spinner is used for determination of the free wind. Analogies to the concept are the flow around a sphere and a five hole pitot-tube. But, in stead of measuring pressure differences on the surface, the spinner anemometer measures directional air speeds in the flow above the spinner surface. A spinner anemometer, based on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around the spinner was calculated with the EllipSys3D CFD-code. Calculations were made for varying wind speeds and yaw angles, and the air speed within the sonic sensor path was determined during rotation. The calculated air speeds were used as 'calibration' data for an analogue spinner anemometer algorithm. The algorithm converts, by inclusion of a measured rotor position, the measured sonic sensor air speeds to free wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept test and a full scale field experiment with a comparison to a 3D sonic anemometer were made. The results indicate that the 300kW spinner anemometer characteristics are comparable to the 3D sonic anemometer with respect to time traces and average and standard deviation of wind speeds

  2. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  3. Research of the launch vehicle design made of composite materials under the aerodynamic, thermal and acoustic loadings

    Directory of Open Access Journals (Sweden)

    Davydovich Denis

    2017-01-01

    Full Text Available The experimental research of the carbon composite material sample of payload fairing half structural element was carried out under different types of loading. Mathematical and physical modeling of the sample loading using aerodynamic flow was conducted. Heat loading was researched by the method of a thermal analysis during which typical heat dots corresponding to the changes in the sample structure were determined. Ultrasonic influence on the sample characteristics was considered. As a result, the value of heat leak to the structure surface while moving in the atmospheric phase of the descent was determined.

  4. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  5. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT...... to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover...

  6. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattic method, L216 (DUBFLX). Volume 1: Engineering and usage

    Science.gov (United States)

    Richard, M.; Harrison, B. A.

    1979-01-01

    The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  7. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    OpenAIRE

    Hui Li; Dian-Gui Huang

    2017-01-01

    Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the pro...

  8. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    OpenAIRE

    Nakata, Toshiyuki; Liu, Hao

    2011-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated comp...

  9. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil

    OpenAIRE

    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo

    2000-01-01

    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  10. Simulation and control element design for a coupled aerodynamic/magnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E

    1982-11-01

    Aerodynamic effects are among the many problems raised by the Maglev technique and its industrial application, but until recently they were only regarded as disturbances. Theoretical studies as well as model experiments in wind and water tunnels were only interested in optimizing the shape of the vehicle cell. The most important goals of development were low sensitivity to side-wind and a neutral aerodynamic design of the vehicle nose. The present paper investigates the aerodynamic effects by means of extended models. Aerodynamic effects on the elevation control system are considered by a suitable control element structure.

  11. Nonlinear Aerodynamic ROM-Structural ROM Methodology for Inflatable Aeroelasticity in Hypersonic Atmospheric Entry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an innovative nonlinear structural reduced order model (ROM) - nonlinear aerodynamic ROM methodology for the inflatable...

  12. The Aerodynamic Behavior of a Harmonically Oscillating Finite Sweptback Wing in Supersonic Flow

    National Research Council Canada - National Science Library

    Chang, Chieh-Chien

    1951-01-01

    By an extension of Evvard's "diaphragm" concept outside the wing tip, the present paper presents two approximate methods for calculating the aerodynamic behavior of harmonically oscillating, sweptback...

  13. Implementation and Assessment of a Time-Accurate Aeroelastic Model for Analysis of Inflatable Aerodynamic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — In light of NASA's goal for planetary exploration, the development of new technology is imperative. The aerodynamic deceleration technique used during Entry,...

  14. New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2017-01-01

    Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.

  15. A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges

    Directory of Open Access Journals (Sweden)

    Igor Kavrakov

    2017-12-01

    Full Text Available Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. Keywords: Buffeting, Flutter, Long-span bridges, Bridge aerodynamics, Bridge aeroelasticity, Erection stage

  16. Effects of surface design on aerodynamic forces of iced bridge cables

    DEFF Research Database (Denmark)

    Koss, Holger

    2014-01-01

    In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -...... influences the accretion of ice to an extent that the aerodynamic forces differ significantly amongst the designs. The experiments were conducted in a wind tunnel facility capable amongst others to simulate in-cloud icing conditions........ The determination of these force coefficients require a proper simulation of the ice layer occurring under the specific climatic conditions, favouring real ice accretion over simplified artificial reproduction. The work presented in this paper was performed to study whether the design of bridge cable surface...

  17. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    Science.gov (United States)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  18. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    Science.gov (United States)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  19. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  20. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  1. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    Science.gov (United States)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  2. Temperature decline thermography for laminar-turbulent transition detection in aerodynamics

    Science.gov (United States)

    von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.

    2017-09-01

    Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.

  3. Aerodynamic Characteristics of Syllable and Sentence Productions in Normal Speakers.

    Science.gov (United States)

    Thiel, Cedric; Yang, Jin; Crawley, Brianna; Krishna, Priya; Murry, Thomas

    2018-01-08

    Aerodynamic measures of subglottic air pressure (Ps) and airflow rate (AFR) are used to select behavioral voice therapy versus surgical treatment for voice disorders. However, these measures are usually taken during a series of syllables, which differs from conversational speech. Repeated syllables do not share the variation found in even simple sentences, and patients may use their best rather than typical voice unless specifically instructed otherwise. This study examined the potential differences in estimated Ps and AFR in syllable and sentence production and their effects on a measure of vocal efficiency in normal speakers. Prospective study. Measures of estimated Ps, AFR, and aerodynamic vocal efficiency (AVE) were obtained from 19 female and four male speakers ages 22-44 years with no history of voice disorders. Subjects repeated a series of /pa/ syllables and a sentence at comfortable effort level into a face mask with a pressure-sensing tube between the lips. AVE varies as a function of the speech material in normal subjects. Ps measures were significantly higher for the sentence-production samples than for the syllable-production samples. AFR was higher during sentence production than syllable production, but the difference was not statistically significant. AVE values were significantly higher for syllable versus sentence productions. The results suggest that subjects increase Ps and AFR in sentence compared with syllable production. Speaking task is a critical factor when considering measures of AVE, and this preliminary study provides a basis for further aerodynamic studies of patient populations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  5. Numerical Investigation of Aerodynamic Braking for a Ground Vehicle

    Science.gov (United States)

    Devanuri, Jaya Krishna

    2018-06-01

    The purpose of this article is to observe the effect of an air brake on the aerodynamics of a ground vehicle and also to study the influence of change in the parameters like the velocity of the vehicle, the angle of inclination, height, and position of the air brake on the aerodynamics of the vehicle body. The test subject used is an Ahmed body which is a generic 3D car body as it retains all the aerodynamic characteristics of a ground vehicle. Numerical investigation has been carried out by RNG k-ɛ turbulence model. Results are presented in terms of streamlines and drag coefficient to understand the influence of pertinent parameters on flow physics. It is found that with the use of an air brake, though the drag coefficient remains more or less constant with velocity, it increases with the increase in height and angle of inclination of the air brake. But the effect of position of air brake on the coefficient of drag is surprising since for certain heights of the air brake the drag coefficient is maximum at the foremost point and as the air brake moves towards the rear it is first observed to decrease and then increase. It is also observed that with the increase in height of the air brake the drag coefficient monotonically decreases as the position of the air brake is moved towards the rear. Taguchi method has been employed with L16 orthogonal array to obtain the optimal configuration for the air brake. For each of the selected parameters, four different levels have been chosen to obtain the maximum drag coefficient value. The study could provide an invaluable database for the optimal design of an airbrake for a ground vehicle.

  6. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  7. Aerodynamics of small-scale vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  8. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  9. Predictions of Aerodynamic Heating on Tactical Missile Domes

    Science.gov (United States)

    1979-04-25

    A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O. Box 8555 Philadelphia, PA J9101... A LEVELs NSWC TR 79-21 i PREDICTIONS OF AERODYNAMIC HEATING ON TACTICAL MISSILE DOMES A wo BY T. F. ZIEN W. C. RAGSDALE RESEARCH TECHNOLOGY...DOMES SAUTHOR( a ) 8. CONTRACT OR GRANT NUMBER() T. F. ZiendW.C jRagsale 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

  10. Spalled, aerodynamically modified moldavite from Slavice, Moravia, Czechoslovakia

    Science.gov (United States)

    Chao, E.C.T.

    1964-01-01

    A Czechoslovakian tektite or moldavite shows clear, indirect evidence of aerodynamic ablation. This large tektite has the shape of a teardrop, with a strongly convex, deeply corroded, but clearly identifiable front and a planoconvex, relatively smooth, posterior surface. In spite of much erosion and corrosion, demarcation of the posterior and the anterior part of the specimen (the keel) is clearly preserved locally. This specimen provides the first tangible evidence that moldavites entered the atmosphere cold, probably at a velocity exceeding 5 kilometers per second; the result was selective heating of the anterior face and perhaps ablation during the second melting. This provides evidence of the extraterrestial origin of moldavites.

  11. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.

    2015-01-01

    and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of temperature, wind speed and yaw angle of accretion, were reproduced in a climatic wind tunnel, giving rise to different types of accretion. These were chosen such to generate the most common natural ice formations expected to produce bridge cable vibrations. A description of the geometric characteristics...

  12. Aerodynamic benchmarking of the DeepWind design

    DEFF Research Database (Denmark)

    Bedon, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...... the blade solicitation and the cost of energy. Different parameters are considered for the benchmarking study. The DeepWind blade is characterized by a shape similar to the Troposkien geometry but asymmetric between the top and bottom parts. The blade shape is considered as a fixed parameter...

  13. Research on Aerodynamic Characteristics of Composite powered Unmanned Airship

    Science.gov (United States)

    Chen, Yu; Wang, Yun; Wang, Lu; Ma, Chengyu; Xia, Jun

    2017-10-01

    The main structure of the composite powered unmanned airship is consists of airbags and four-rotor system, which airbag increases the available lift, and has more advantages in terms of load and flight when compared with the traditional four-rotor. In order to compare the aerodynamic performance of the composite powered unmanned airship and the traditional four-rotor, the SIMPLE algorithm and the RNG k-epsilon model method are be used. The energy consumption of the composite powered unmanned airship is lesser than the traditional four-rotor under the same load and range was found.

  14. Influence of stationary vehicles on bridge aerodynamic and aeroelastic coefficients

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Buljac, A.; Kozmar, H.; Kuznetsov, Sergeii; Macháček, Michael; Král, Radomil

    2017-01-01

    Roč. 22, č. 4 (2017), č. článku 05016012. ISSN 1084-0702 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : wind-vehicle-bridge system * cable-supported bridge * bridge aerodynamics and aeroelasticity * stationary vehicles * wind tunnel tests Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 1.476, year: 2016 http://ascelibrary.org/doi/full/10.1061/%28ASCE%29BE.1943-5592.0001017

  15. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.

    2007-01-01

    . Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  16. A Study of Aerodynamics in Kevlar-Wall Test Sections

    OpenAIRE

    Brown, Kenneth Alexander

    2014-01-01

    This study is undertaken to characterize the aerodynamic behavior of Kevlar-wall test sections and specifically those containing two-dimensional, lifting models. The performance of the Kevlar-wall test section can be evaluated against the standard of the hard-wall test section, which in the case of the Stability Wind Tunnel (SWT) at Virginia Tech can be alternately installed or replaced by the Kevlar-wall test section. As a first step towards the evaluation of the Kevlar-wall test section aer...

  17. Effect of Moving Surface on NACA 63218 Aerodynamic Performance

    Directory of Open Access Journals (Sweden)

    Yahiaoui Tayeb

    2015-01-01

    Full Text Available The main subject of this work is the numerical study control of flow separation on a NACA 63218 airfoil by using moving surface. Different numerical cases are considered: the first one is the numerical simulation of non-modified airfoil NACA 63218 according at different angle of attack and the second one a set of moving cylinder is placed on leading edge of the airfoil. The rotational velocity of the cylinder is varied to establish the effect of momentum injection on modified airfoil aerodynamic performances. The turbulence is modeled by two equations k-epsilon model.

  18. The aerodynamics and control of free flight manoeuvres in Drosophila

    Science.gov (United States)

    Muijres, Florian T.

    2016-01-01

    A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528778

  19. Aerodynamic and related hydrodynamic studies using water facilities

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Related problems, experiences and advancements in aeronautical and maritime fluid dynamics through the use of water facilities are reviewed. In recent years there has been an increasing use of water facilities for aerodynamic investigations. These include water tunnels, towing channels, and stationary tanks. Examples include basic research problems as well as flow fields around fighter aircraft, inlet flows, recirculation flow patterns associated with VTOL, ramjet simulation, etc., and, in general, 3-D flows with vortices or separated regimes as prominent features. The Symposium was organized to provide an appropriate forum for the exchange of information within the aeronautical and maritime fluid dynamics community.

  20. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    Science.gov (United States)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  1. Design of a wind turbine rotor for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac

    2009-01-01

    The design of a three-bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off-design, issues are not considered, leading to a purely theoretical design for investigating...... maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...

  2. Application of porous material to reduce aerodynamic sound from bluff bodies

    International Nuclear Information System (INIS)

    Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio

    2010-01-01

    Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)

  3. Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

    Science.gov (United States)

    Papalia, John J.

    Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA

  4. The Betz–Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools

    DEFF Research Database (Denmark)

    Okulov, Valery L.; van Kuik, Gijs A.M.

    2012-01-01

    The derivation of the efficiency of an ideal wind turbine has been attributed to the three famous scientists of the three aerodynamic research schools in Europe during the first decades of the previous century: Lanchester, Betz and Joukowsky. However, detailed reading of their classical papers has...... shown that Lanchester did not accept Froude's result that the velocity through the disc is the average of the velocities far upstream and far downstream, by which his solution is not determined. Betz and Joukowsky used vortex theory to support Froude's result and derived the ideal efficiency of a wind...

  5. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  6. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aerodynamic data book 2

    Science.gov (United States)

    Nelson, D. P.

    1981-01-01

    Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.

  7. An aerodynamic study on flexed blades for VAWT applications

    Science.gov (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  8. Aerodynamic study of state transport bus using computational fluid dynamics

    Science.gov (United States)

    Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.

  9. An experimental study of airfoil-spoiler aerodynamics

    Science.gov (United States)

    Mclachlan, B. G.; Karamcheti, K.

    1985-01-01

    The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.

  10. Design, aerodynamics and autonomy of the DelFly

    International Nuclear Information System (INIS)

    De Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; Van Oudheusden, B W

    2012-01-01

    One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor.

  11. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    Science.gov (United States)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  12. Aerodynamic drag control by pulsed jets on simplified car geometry

    Science.gov (United States)

    Gilliéron, Patrick; Kourta, Azeddine

    2013-02-01

    Aerodynamic drag control by pulsed jets is tested in a wind tunnel around a simplified car geometry named Ahmed body with a rear slant angle of 35°. Pulsed jet actuators are located 5 × 10-3 m from the top of the rear window. These actuators are produced by a pressure difference ranging from 1.5 to 6.5 × 105 Pa. Their excitation frequency can vary between 10 and 550 Hz. The analysis of the control effects is based on wall visualizations, aerodynamic drag coefficient measurements, and the velocity fields obtained by 2D PIV measurements. The maximum drag reduction is 20 % and is obtained for the excitation frequency F j = 500 Hz and for the pressure difference ∆ P = 1.5 × 105 Pa. This result is linked with a substantial reduction in the transverse development of the longitudinal vortex structures coming from the left and right lateral sides of the rear window, with a displacement of the vortex centers downstream and with a decrease in the transverse rotational absolute values of these structures.

  13. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  14. An aerodynamic noise propagation model for wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2005-01-01

    A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from temperat......A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from...... temperature and airflow. At a given receiver point, the sound pressure is corrected by taking into account these propagation effects. As an overall assumption, the noise field generated by the wind turbine is simplified as a point source placed at the hub height of the wind turbine. This assumtion...... is reasonable, for the receiver is located in the far field, at distances from the wind turbine that are much longer than the diameter of the rotor....

  15. Influence of inflow angle on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Li, Z M; Li, C

    2013-01-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance

  16. Aerodynamic properties of six organo-mineral fertiliser particles

    Directory of Open Access Journals (Sweden)

    Marcello Biocca

    2013-09-01

    Full Text Available Agricultural fertilisers are generally applied by means of centrifugal disk spreaders. The machinery, the working conditions and the physical characteristics of fertilizers (including the aerodynamic characteristics of particles may affect the behaviour of particles after the discarding from the spreader. We investigated the aerodynamic properties of organo-mineral fertilisers (a class of slow release fertilisers that are less investigated since they are relatively new in the market using a vertical wind tunnel similar to an elutriator. In the same time, the morphological characteristics of individual fertilizer particles were measured by means of an image analysis procedure. In the study we compare six different fertilisers and we discuss the suitability of the employed methods. The results provide the terminal velocity – Vt – (the velocity value that overcome the gravity force of the particles of the particles, ranging from 8.60 to 9.55 m s-1, and the relationships between Vt and some physical properties (mass, shape, dimensions of the fertilizers. Moreover, the results of field distribution trials show the behaviour of the tested fertilizers during practical use. Such data can contribute to enhance the quality of application of these products in field.

  17. Aerodynamic bases and effects of new wind turbines

    International Nuclear Information System (INIS)

    Vrsalovic, I.; Vrsalovic, I.

    2000-01-01

    Wind is a clean and renewable energy sources, however having one failure: low profitability in zones of weaker potential. However, by using a new type of wind turbine built in regulable mantle's nozzle, which replaces the free air stream of wind into into programmed i.e. regulated and partially concentrated one it is possible to generate more quantities of energy from weaker and medium winds. As a result, their efficiency will be multiplied. This article will describe and show the basic elements of aerodynamical construction, stators profiles and control blades of new wind turbines, mechanism of automatic stator regulation (beside rotor regulation) as well as modified diagram of raised medium wind speeds. power calculations and diagrams are showing that new wind turbines in nozzle, of the same diameter of rotor and at same wind speeds, due to aerodynamic activity of nozzle and 'square-cube' relation in that transformation are giving 4,3 times more electric energy than the standard types. The wind speed on rotor is raising according to square of outer diameter (dv 2 ) of stator mantle while power of new turbine in nozzle is growing with cube (v 3 ) of raised speed for normal working area. The costs of construction and operation will rise like speed according square of diameter while the production and profits, like the power, are growing with cube of raised speed. (author)

  18. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  19. Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics

    Science.gov (United States)

    Farassat, F.

    1994-01-01

    Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  20. Helium compressor aerodynamic design considerations for MHTGR circulators

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1988-01-01

    Compressor aerodynamic design considerations for both the main and shutdown cooling circulators in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) plant are addressed in this paper. A major selection topic relates to the impeller type (i.e., axial or radial flow), and the aerothermal studies leading to the selection of optimum parameters are discussed. For the conceptual designs of the main and shutdown cooling circulators, compressor blading geometries were established and helium gas flow paths defined. Both circulators are conservative by industrial standards in terms of aerodynamic and structural loading, and the blade tip speeds are particularly modest. Performance characteristics are presented, and the designs embody margin to ensure that pressure-rise growth potential can be accomodated should the circuit resistance possibly increase as the plant design advances. The axial flow impeller for the main circulator is very similar to the Fort St. Vrain (FSV) helium compressor which performs well. A significant technology base exists for the MHTGR plant circulators, and this is highlighted in the paper. (author). 15 refs, 16 figs, 12 tabs

  1. Full-scale measurements of aerodynamic induction in a rotor plane

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented....

  2. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Bergami, Leonardo; Guntur, Srinivas

    2014-01-01

    the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind...

  3. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.

    2001-12-01

    The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.

  4. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  5. AERODYNAMIC IMPROVEMENT OF KhADI 33 RACING CAR RADIATOR COMPARTMENT

    Directory of Open Access Journals (Sweden)

    A. Avershyn

    2011-01-01

    Full Text Available Aerodynamic characteristics of radiator compartment of KhADI 33 racing car on the basis of the decision of the interfaced problem of internal and external aerodynamics are numerically investigated. The rational variant of radiator compartment which is characterized by high throughput and low level of non-uniformity of speed field at the input is offered.

  6. Laryngeal Aerodynamics in Healthy Older Adults and Adults with Parkinson's Disease

    Science.gov (United States)

    Matheron, Deborah; Stathopoulos, Elaine T.; Huber, Jessica E.; Sussman, Joan E.

    2017-01-01

    Purpose: The present study compared laryngeal aerodynamic function of healthy older adults (HOA) to adults with Parkinson's disease (PD) while speaking at a comfortable and increased vocal intensity. Method: Laryngeal aerodynamic measures (subglottal pressure, peak-to-peak flow, minimum flow, and open quotient [OQ]) were compared between HOAs and…

  7. Prediction of the aerodynamic performance of the Mexico rotor by using airfoil data extracted from CFD

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Xu, Haoran

    2013-01-01

    Blade Element Momentum (BEM) theory is a widely used technique for prediction of wind turbine aerodynamics performance, but the reliability of airfoil data is an important factor to improve the prediction accuracy of aerodynamic loads and power using a BEM code. The airfoil characteristics used...

  8. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  9. Numerical simulation of the aerodynamic field in complex terrain wind farm based on actuator disk model

    DEFF Research Database (Denmark)

    Xu, Chang; Li, Chen Qi; Han, Xing Xing

    2015-01-01

    Study on the aerodynamic field in complex terrain is significant to wind farm micro-sitting and wind power prediction. This paper modeled the wind turbine through an actuator disk model, and solved the aerodynamic field by CFD to study the influence of meshing, boundary conditions and turbulence ...

  10. Integration of CFD and Experimental Results at VKI in Low-Speed Aerodynamic Design

    Science.gov (United States)

    2007-06-01

    erosion in wind tunnel behind the building Today, almost all modern Antartic stations have undergone aerodynamic studies at different stages of design...2] J. Sanz Rodrigo, C. Gorle, J. van Beeck, P. Planquart: Aerodynamic Design of the Princess Elizabeth Antartic Research Station, 17th

  11. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Science.gov (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  12. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  13. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    Science.gov (United States)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  14. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    Science.gov (United States)

    Wolff, T.; Ernst, B.; Seume, J. R.

    2014-06-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.

  15. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    International Nuclear Information System (INIS)

    Wolff, T; Ernst, B; Seume, J R

    2014-01-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated

  16. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  17. A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics

    Science.gov (United States)

    Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.

    2015-01-01

    A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.

  18. The effect of variations in first- and second-order derivatives on airfoil aerodynamic performance

    Directory of Open Access Journals (Sweden)

    Penghui Yi

    2017-01-01

    Full Text Available The geometric factors which influence airfoil aerodynamic performance are attributed to variations in local first- and second-order curvature derivatives. Based on a self-developed computational fluid dynamics (CFD program called UCFD, the influence of local profile variations on airfoil aerodynamic performance in different pressure areas is investigated. The results show that variations in first- and second-order derivatives of the airfoil profiles can cause fluctuations in airfoil aerodynamic performance. The greater the variation in local first- and second-order derivatives, the greater the fluctuation amplitude of the airfoil aerodynamic coefficients. Moreover, at the area near the leading edge and the shock-wave position, the surface pressure is more sensitive to changes in first- and second-order derivatives. These results provide a reference for airfoil aerodynamic shape design.

  19. Influence of wind on aerodynamic drag for the second case of the arrangement of the equipment on the LE 060EA locomotive bodywork

    Directory of Open Access Journals (Sweden)

    Sorin ARSENE

    2015-06-01

    Full Text Available The electric power supply equipment of electric railways vehicles of surface is placed on the their body. The arrangement of the equipment on the vehicle body determines the variation of the aerodynamic drag. The gusts of wind occurring during the vehicle movement result in additional requests. The case of the locomotive of type LE 060 EA 5100kW moving with the second driving position is analyzed in this paper. For this particular case the components ensemble of the power supply system was geometric modelled in 3D format at 1:1 scale. The resulted model was placed in air flow simulation software to determine the aerodynamic resistance. The wind influence is analyzed for five point values of its speed. The wind direction is simulated by eight point values of the angle that it makes to the longitudinal axis of the vehicle.

  20. Investigation of Load Prediction on the Mexico Rotor Using the Technique of Determination of the Angle of Attack

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2012-01-01

    Blade element moment (BEM) is a widely used technique for prediction of wind turbine aerodynamics performance, the reliability of airfoil data is an important factor to improve the prediction accuracy of aerodynamic loads and power using a BEM code. The method of determination of angle of attack ...

  1. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing

  2. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    Science.gov (United States)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  3. Project, Aerodynamic, Thermal and Ballistic Analysis of a Lifting-Body Reentry Vehicle

    Directory of Open Access Journals (Sweden)

    A. N. Eliseev

    2015-01-01

    Full Text Available The objective of this article is to assess the prospects for an increasingly maneuverable reentry vehicle (RV of class "lifting body". In this regard, a project aerodynamic thermal and ballistic analysis has been conducted and the results have been compared with some well-known projects of the RV of the same class, made both in our country and abroad.The project analysis begins with finding a position of the "lifting body" vehicle in the classification system. Said classification distribution allows correct formulation of requirements for the conceptual structure of an aerospace vehicle at the initial stage of design in terms of system positions, since just the initial phase of the design often determines the success of the whole program.Then the paper compares design characteristics of the RV of class "lifting body" with vehicles such as X-15 rocket plane, the orbiter "Space Shuttle», M2-F2, HL-10, SV-5, and NASP "Hermes". It also gives a comparative estimate of the "lifting body" RV mass in a wide range of dimensions. The paper shows the sustainability of various landing complexes with reference to the Russian experience in developing the RV " Soyuz", and the conditions for using the vehicles of class "lifting body" in space programs.The aerodynamic analysis uses method for the approximate Newtonian theory to calculate aerodynamic characteristics of the perspective RV of class "lifting body" in the hypersonic descent phase. To obtain the desired aerodynamic performance and reduce balancing weight is contemplated a possibility to provide balance by introducing additional boards. The ballistic analysis considers four modes of descent:1. zero roll descent;2. maximum cross-range descent without restriction;3. maximum cross-range descent with restriction of maximum overload and maximum temperature;4. ballistic descent.To calculate the RV ballistic characteristics a system of equations of the vehicle motion in the atmosphere is used. The vehicle

  4. High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow

    Science.gov (United States)

    Rashad, Ramy

    To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition

  5. Investigation of Aerodynamic Interference between Twin Deck Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC)

    2016-05-01

    Construction of a twin bridge can be a cost effective and minimally disruptive way to increase capacity when an existing bridge is not near the end of its service life. With ever growing vehicular traffic, when demand approaches the capacity of many existing roads and bridges. Remodeling a structure with an insufficient number of lanes can be a good solution in case of smaller and less busy bridges. Closing down or reducing traffic on crossings of greater importance for the construction period, however, can result in major delays and revenue loss for commerce and transportation as well as increasing the traffic load on alternate route bridges. Multiple-deck bridges may be the answer to this issue. A parallel deck can be built next to the existing one, without reducing the flow. Additionally, a new bridge can be designed as a twin or multi-deck structure. Several such structures have been built throughout the United States, among them: - The New NY Bridge Project - the Tappan Zee Hudson River Crossing, - SR-182 Columbia River Bridge, - The Thaddeus Kosciusko Bridge (I-87), - The Allegheny River Bridge, Pennsylvania, which carries I76, - Fred Hartman Bridge, TX, see Figure 1.2. With a growing number of double deck bridges, additional, more detailed, studies on the interaction of such bridge pairs in windy conditions appears appropriate. Aerodynamic interference effects should be examined to assure the aerodynamic stability of both bridges. There are many studies on aerodynamic response of single deck bridges, but the literature on double-deck structures is not extensive. The experimental results from wind tunnels are still limited in number, as a parametric study is required, they can be very time consuming. Literature review shows that some investigation of the effects of gap-width and angle of wind incidence has been done. Most of the CFD computational studies that have been done were limited to 2D simulations. Therefore, it is desirable to investigate twin decks

  6. Calculation of aerodynamics of aerosol filter designs for cleaning of heavy liquid metal cooler reactor gas loops

    International Nuclear Information System (INIS)

    Valery P Melnikov; Pyotr N Martynov; Albert K Papovyants; Ivan V Yagodkin

    2005-01-01

    Full text of publication follows: One of the basic performances of aerosol filters is the aerodynamic resistance to the flow of gaseous medium to be cleaned. Calculation of the aerodynamics of aerosol filters in reference to the gas loops of reactor installations with heavy liquid metal coolant (HLMC) allows the design of the structural components of filters to be optimized to provide minimum initial resistance values. It is established that owing to various factors aerosol particles of different concentration and disperse composition are present always in the gas spaces of heavy liquid metal cooled reactor gas loops. To prevent the negative effect of aerosols on the equipment of the gas loops, it is reasonable to use filters of multistep design with sections of preliminary and fine cleaning to catch micron and submicron particles, respectively. A computer program and technique have been developed to evaluate the aerodynamics of folded aerosol filters for different parameters of their structural components, taking account of the aerosol spectrum and concentration. The algorithm of the calculation is presented by the example of a two-step design assembled in single vessel; the filter dimensions and pattern of the air flow to be cleaned are determined under the given boundary conditions. The evaluation of the aerodynamic resistance of filters was performed with consideration for local resistances and resistances of all the structural components of the filter (sudden constriction, expansion, the flow in air channels, filtering material and so on). Correlations have been derived for the resistance of air channels, filtering materials of preliminary and fine cleaning sections as a function of such parameters as the section depth (50-500 mm), the height of separators (3,5-20 mm), the filtering surface area (1,5-30 m 2 ). Based on the calculation results, the auto-similarity domain was brought out for the minimal values of filter resistances as a function of the ratio of

  7. Application of surrogate-based global optimization to aerodynamic design

    CERN Document Server

    Pérez, Esther

    2016-01-01

    Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogat...

  8. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    Science.gov (United States)

    Paraschivoiu, I.

    1981-12-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity; lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  9. Aerodynamic performance prediction of Darrieus-type wind turbines

    Directory of Open Access Journals (Sweden)

    Ion NILĂ

    2010-06-01

    Full Text Available The prediction of Darrieus wind turbine aerodynamic performances provides the necessarydesign and operational data base related to the wind potential. In this sense it provides the type ofturbine suitable to the area where it is to be installed. Two calculation methods are analyzed for arotor with straight blades. The first one is a global method that allows an assessment of the turbinenominal power by a brief calculation. This method leads to an overestimation of performances. Thesecond is the calculation method of the gust factor and momentum which deals with the pale as beingcomposed of different elements that don’t influence each other. This method, developed based on thetheory of the turbine blades, leads to values close to the statistical data obtained experimentally. Thevalues obtained by the calculation method of gust factor - momentum led to the concept of a Darrieusturbine, which will be tested for different wind values in the INCAS subsonic wind tunnel.

  10. 1st Stage Separation Aerodynamics Of VEGA Launcher

    Science.gov (United States)

    Genito, M.; Paglia, F.; Mogavero, A.; Barbagallo, D.

    2011-05-01

    VEGA is an European launch vehicle under development by the Prime Contractor ELV S.p.A. in the frame of an ESA contract. It is constituted by four stages, dedicated to the scientific/commercial market of small satellites (300 ÷ 2500 kg) into Low Earth Orbits, with inclinations ranging from 5.2° up to Sun Synchronous Orbits and with altitude ranging from 300 to 1500 km. Aim of this paper is to present a study of flow field due to retro-rockets impingement during the 1st stage VEGA separation phase. In particular the main goal of the present work is to present the aerodynamic activities performed for the justification of the separation phase.

  11. Vortex-flow aerodynamics - An emerging design capability

    Science.gov (United States)

    Campbell, J. F.

    1981-01-01

    Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.

  12. International Symposium on Recent Advances in Aerodynamics and Acoustics

    CERN Document Server

    Smith, Charles

    1986-01-01

    The Joint Institute for Aeronautics and Acoustics at Stanford University was established in October 1973 to provide an academic environment for long-term cooperative research between Stanford and NASA Ames Research Center. Since its establishment, the Institute has conducted theoretical and experimental work in the areas of aerodynamics, acoustics, fluid mechanics, flight dynamics, guidance and control, and human factors. This research has involved Stanford faculty, research associates, graduate students, and many distinguished visitors in collaborative efforts with the research staff of NASA Ames Research Center. The occasion of the Institute's tenth anniversary was used to reflect back on where that research has brought us, and to consider where our endeavors should be directed next. Thus, an International Symposium was held to review recent advances in the fields relevant to the activities of the Institute and to discuss the areas of research to be undertaken in the future. This anniversary was also chosen...

  13. Aerodynamic coefficients in generalized unsteady thin airfoil theory

    Science.gov (United States)

    Williams, M. H.

    1980-01-01

    Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).

  14. Quasi-3d aerodynamic code for analyzing dynamic flap response

    DEFF Research Database (Denmark)

    Ramos García, Néstor

    A computational model for predicting the aerodynamic behavior of wind turbine airfoil profiles subjected to steady and unsteady motions has been developed. The model is based on a viscous-inviscid interaction technique using strong coupling between the viscous and inviscid parts. The inviscid part...... transition model. Validation of the steady two dimensional version of the code has been carried out against experiments for different airfoil geometries and Reynolds numbers. The unsteady version of the code has been benchmarked against experiments for different airfoil geometries at various reduced...... frequencies and oscillation amplitudes, and generally a good agreement is obtained. The capability of the code to simulate a trailing edge flap under steady or unsteady flow conditions has been proven. A parametric study on rotational effects induced by Coriolis and centrifugal forces in the boundary layer...

  15. Preconditioner considerations for an aerodynamic Newton-Krylov solver

    International Nuclear Information System (INIS)

    Chisholm, T.; Zingg, D.W.

    2003-01-01

    A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The one-equation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An RCM reordering is used, with a suggested root node in the wake. The advantages of a matrix-free technique for forming matrix-vector products are shown. Three test cases are used to demonstrate convergence rates. Single-element cases are solved in less than 60 seconds on a desktop computer, while the solution of a multi-element case can be found in about 10 minutes. (author)

  16. Review of design optimization methods for turbomachinery aerodynamics

    Science.gov (United States)

    Li, Zhihui; Zheng, Xinqian

    2017-08-01

    In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.

  17. Improving the efficiency of aerodynamic shape optimization procedures

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1992-01-01

    The computational efficiency of an aerodynamic shape optimization procedure which is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit (ADI) methodology to calculate the highly converged flow solutions which are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. A substantial factor of 8 decrease in computational time for the optimization process was achieved by implementing both of the design improvements.

  18. Recent developments in rotary-wing aerodynamic theory

    Science.gov (United States)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  19. A parallel finite-difference method for computational aerodynamics

    International Nuclear Information System (INIS)

    Swisshelm, J.M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs

  20. Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology

    Science.gov (United States)

    Hebert, Leonard J.

    2006-01-01

    This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.

  1. Scientific visualization in computational aerodynamics at NASA Ames Research Center

    Science.gov (United States)

    Bancroft, Gordon V.; Plessel, Todd; Merritt, Fergus; Walatka, Pamela P.; Watson, Val

    1989-01-01

    The visualization methods used in computational fluid dynamics research at the NASA-Ames Numerical Aerodynamic Simulation facility are examined, including postprocessing, tracking, and steering methods. The visualization requirements of the facility's three-dimensional graphical workstation are outlined and the types hardware and software used to meet these requirements are discussed. The main features of the facility's current and next-generation workstations are listed. Emphasis is given to postprocessing techniques, such as dynamic interactive viewing on the workstation and recording and playback on videodisk, tape, and 16-mm film. Postprocessing software packages are described, including a three-dimensional plotter, a surface modeler, a graphical animation system, a flow analysis software toolkit, and a real-time interactive particle-tracer.

  2. Numerical study on aerodynamic heat of hypersonic flight

    Directory of Open Access Journals (Sweden)

    Huang Haiming

    2016-01-01

    Full Text Available Accurate prediction of the shock wave has a significant effect on the development of space transportation vehicle or exploration missions. Taking Lobb sphere as the example, the aerodynamic heat of hypersonic flight in different Mach numbers is simulated by the finite volume method. Chemical reactions and non-equilibrium heat are taken into account in this paper, where convective flux of the space term adopts the Roe format, and discretization of the time term is achieved by backward Euler algorithm. The numerical results reveal that thick mesh can lead to accurate prediction, and the thickness of the shock wave decreases as grid number increases. Furthermore, most of kinetic energy converts into internal energy crossing the shock wave.

  3. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Yu Yonggui; Jie Junhun

    2013-01-01

    For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field

  4. Investigation of Aerodynamic Interference in a Multirotor by PIV Method

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2018-03-01

    Full Text Available This paper presents part of the investigation into aerodynamics of the vertical take-off and landing multirotor. There are described the technology to design a research object and the Particle Image Velocimetry (PIV setup to measure airflow around the aircraft. The around-the-aircraft speed distribution was investigated for an angle of attack of 0o and for four different configurations. The results are presented in form of vector velocity field of airflow on the plane of symmetry of the test object. The results enabled the characteristics of speed vs. the distance from the fuselage. It was observed that the push propeller and the main rotor impact the speed field around the fuselage.

  5. Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations

    Science.gov (United States)

    Nielsen, Eric J.

    2016-01-01

    An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.

  6. AERODYNAMIC LOAD OF AN AIRCRAFT WITH A HIGHLY ELASTIC WING

    Directory of Open Access Journals (Sweden)

    Pavel Schoř

    2017-09-01

    Full Text Available In this article, a method for calculation of air loads of an aircraft with an elastic wing is presented. The method can predict a redistribution of air loads when the elastic wing deforms. Unlike the traditional Euler or Navier-Stokes CFD to FEM coupling, the method uses 3D panel method as a source of aerodynamic data. This makes the calculation feasible on a typical recent workstation. Due to a short computational time and low hardware demands this method is suitable for both the preliminary design stage and the load evaluation stage. A case study is presented. The study compares a glider wing performing a pull maneuver at both rigid and and elastic state. The study indicates a significant redistribution of air load at the elastic case.

  7. Aerodynamic shape optimization using preconditioned conjugate gradient methods

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay

    1993-01-01

    In an effort to further improve upon the latest advancements made in aerodynamic shape optimization procedures, a systematic study is performed to examine several current solution methodologies as applied to various aspects of the optimization procedure. It is demonstrated that preconditioned conjugate gradient-like methodologies dramatically decrease the computational efforts required for such procedures. The design problem investigated is the shape optimization of the upper and lower surfaces of an initially symmetric (NACA-012) airfoil in inviscid transonic flow and at zero degree angle-of-attack. The complete surface shape is represented using a Bezier-Bernstein polynomial. The present optimization method then automatically obtains supercritical airfoil shapes over a variety of freestream Mach numbers. Furthermore, the best optimization strategy examined resulted in a factor of 8 decrease in computational time as well as a factor of 4 decrease in memory over the most efficient strategies in current use.

  8. Validation of the newborn larynx modeling with aerodynamical experimental data.

    Science.gov (United States)

    Nicollas, R; Giordano, J; Garrel, R; Medale, M; Caminat, P; Giovanni, A; Ouaknine, M; Triglia, J M

    2009-06-01

    Many authors have studied adult's larynx modelization, but the mechanisms of newborn's voice production have very rarely been investigated. After validating a numerical model with acoustic data, studies were performed on larynges of human fetuses in order to validate this model with aerodynamical experiments. Anatomical measurements were performed and a simplified numerical model was built using Fluent((R)) with the vocal folds in phonatory position. The results obtained are in good agreement with those obtained by laser Doppler velocimetry (LDV) and high-frame rate particle image velocimetry (HFR-PIV), on an experimental bench with excised human fetus larynges. It appears that computing with first cry physiological parameters leads to a model which is close to those obtained in experiments with real organs.

  9. An aerodynamic study on flexed blades for VAWT applications

    International Nuclear Information System (INIS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-01-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small

  10. Aerodynamic effects of trees on pollutant concentration in street canyons.

    Science.gov (United States)

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.

  11. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  12. Thermal lift generation and drag reduction in rarefied aerodynamics

    Science.gov (United States)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  13. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    International Nuclear Information System (INIS)

    Xu, Haoran; Yang, Hua; Liu, Chao; Shen, Wenzhong; Zhu, Weijun

    2014-01-01

    The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL methods at a chord Reynolds number of 3 × 10 6 . The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase. The transient calculations over-predict the lift at large angles of attack and drag at all angles of attack than the steady calculations which is likely to be caused by the artificial restriction of the flow in two dimensions

  14. Aerodynamic Characteristics of a Flying-Boat Hull Having a Length-Beam Ratio of 15, TED No. NACA 2206

    Science.gov (United States)

    Riebe, John M.; Naeseth, Rodger L.

    1951-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.

  15. Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

    Science.gov (United States)

    Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.

    2015-01-01

    Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.

  16. Impacts of the aerodynamic force representation on the stability and performance of a galloping-based energy harvester

    Science.gov (United States)

    Javed, U.; Abdelkefi, A.

    2017-07-01

    One of the challenging tasks in the analytical modeling of galloping systems is the representation of the galloping force. In this study, the impacts of using different aerodynamic load representations on the dynamics of galloping oscillations are investigated. A distributed-parameter model is considered to determine the response of a galloping energy harvester subjected to a uniform wind speed. For the same experimental data and conditions, various polynomial expressions for the galloping force are proposed in order to determine the possible differences in the variations of the harvester's outputs as well as the type of instability. For the same experimental data of the galloping force, it is demonstrated that the choice of the coefficients of the polynomial approximation may result in a change in the type of bifurcation, the tip displacement and harvested power amplitudes. A parametric study is then performed to investigate the effects of the electrical load resistance on the harvester's performance when considering different possible representations of the aerodynamic force. It is indicated that for low and high values of the electrical resistance, there is an increase in the range of wind speeds where the response of the energy harvester is not affected. The performed analysis shows the importance of accurately representing the galloping force in order to efficiently design piezoelectric energy harvesters.

  17. Aerodynamic Factors Responsible for the Deaggregation of Carrier-Free Drug Powders to form Micrometer and Submicrometer Aerosols

    Science.gov (United States)

    Longest, P. Worth; Son, Yoen-Ju; Holbrook, Landon; Hindle, Michael

    2013-01-01

    Purpose The objective of this study was to employ in vitro experiments combined with computational fluid dynamics (CFD) analysis to determine which aerodynamic factors were most responsible for deaggregating carrier-free powders to form micrometer and submicrometer aerosols from a capsule-based platform. Methods Eight airflow passages were evaluated for deaggregation of the aerosol including a standard constricted tube, impaction surface, 2D mesh, inward radial jets, and newly proposed 3D grids and rod arrays. CFD simulations were implemented to evaluate existing and new aerodynamic factors for deaggregation and in vitro experiments were used to evaluate performance of each inhaler. Results For the carrier-free formulation considered, turbulence was determined to be the primary deaggregation mechanism. A strong quantitative correlation was established between the mass median diameter (MMD) and newly proposed non-dimensional specific dissipation (NDSD) factor, which accounts for turbulent energy, inverse of the turbulent length scale, and exposure time. A 3D rod array design with unidirectional elements maximized NDSD and produced the best deaggregation with MMD<1μm. Conclusions The new NDSD parameter can be used to develop highly effective dry powder inhalers like the 3D rod array that can efficiently produce submicrometer aerosols for next-generation respiratory drug delivery applications. PMID:23471640

  18. Bifurcation Analysis with Aerodynamic-Structure Uncertainties by the Nonintrusive PCE Method

    Directory of Open Access Journals (Sweden)

    Linpeng Wang

    2017-01-01

    Full Text Available An aeroelastic model for airfoil with a third-order stiffness in both pitch and plunge degree of freedom (DOF and the modified Leishman–Beddoes (LB model were built and validated. The nonintrusive polynomial chaos expansion (PCE based on tensor product is applied to quantify the uncertainty of aerodynamic and structure parameters on the aerodynamic force and aeroelastic behavior. The uncertain limit cycle oscillation (LCO and bifurcation are simulated in the time domain with the stochastic PCE method. Bifurcation diagrams with uncertainties were quantified. The Monte Carlo simulation (MCS is also applied for comparison. From the current work, it can be concluded that the nonintrusive polynomial chaos expansion can give an acceptable accuracy and have a much higher calculation efficiency than MCS. For aerodynamic model, uncertainties of aerodynamic parameters affect the aerodynamic force significantly at the stage from separation to stall at upstroke and at the stage from stall to reattach at return. For aeroelastic model, both uncertainties of aerodynamic parameters and structure parameters impact bifurcation position. Structure uncertainty of parameters is more sensitive for bifurcation. When the nonlinear stall flutter and bifurcation are concerned, more attention should be paid to the separation process of aerodynamics and parameters about pitch DOF in structure.

  19. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the proposed centrifugal steam turbine. The results exhibit reasonable flow field and smooth streamline; the aerodynamic performance of the designed turbine meets our initial expectations. These results indicate that the one-dimensional aerodynamic design program is reliable and effective. The off-design aerodynamic performance of centrifugal steam turbine was analyzed, and the results show that the mass flow increases with the decrease of the pressure ratio at a constant speed, until the critical mass flow is reached. The efficiency curve with the pressure ratio has an optimum efficiency point. And the pressure ratio of the optimum efficiency agrees well with that of the one-dimensional design. The shaft power decreases as the pressure ratio increases at a constant speed. Overall, the centrifugal turbine has a wide range and good off-design aerodynamic performance.

  20. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.